

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 07/29/13 - 08/21/2013 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1307261479.A3L

FCC ID:

A3LSMN9009

APPLICANT:

SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Application Type: FCC Rule Part(s): Model(s):

Portable Handset Certification CFR §2.1093 SM-N9009

Equipment	Band & Mode	Tx Frequency	Measured conducted		SAR		
Class	Band & Mode	TXTTequency	Power [dBm]	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	10 gm Extremity (W/kg)
PCE	GSM/GPRS 850	824.20 - 848.80 MHz	32.03	0.35	0.18	0.18	
PCE	GSM/GPRS 1900	1850.20 - 1909.80 MHz	29.58	< 0.1	0.10	0.10	
PCE	Cell. CDMA/EVDO	824.70 - 848.31 MHz	24.59	0.20	0.29	0.29	
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	24.00	0.15	1.08	1.08	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	16.26	< 0.1	0.10	0.10	
DTS	5.8 GHz WLAN	5745 - 5825 MHz	12.42	< 0.1	< 0.1		< 0.1
NII	5.2 GHz WLAN	5180 - 5240 MHz	12.89	< 0.1	< 0.1		0.10
NII	5.3 GHz WLAN	5260 - 5320 MHz	12.52	< 0.1	< 0.1		<0.1
NII	5.5 GHz WLAN	5500 - 5700 MHz	12.62	< 0.1	< 0.1		< 0.1
DSS/DTS Bluetooth 2402 - 2480 MHz 9.87			9.87		1	N/A	
Simultaneous SAR per KDB 690783 D01v01r02:				0.61	1.46	1.33	0.10

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 1 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 1 of 49
© 2013 PCTEST Engineering Labo	pratory. Inc.			REV 12.5 M

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTRODU	JCTION	9
3	DOSIME	TRIC ASSESSMENT 1	0
4	DEFINITI	ON OF REFERENCE POINTS 1	1
5	TEST CC	NFIGURATION POSITIONS FOR HANDSETS 1	2
6	RF EXPC	SURE LIMITS 1	6
7	FCC MEA	ASUREMENT PROCEDURES 1	7
8	RF CON	DUCTED POWERS 2	0
9	SYSTEM	VERIFICATION 2	5
10	SAR DAT	A SUMMARY 2	8
11	FCC MUL	TI-TX AND ANTENNA SAR CONSIDERATIONS 3	6
12	SAR MEA	ASUREMENT VARIABILITY 4	3
13	EQUIPM	ENT LIST 4	4
14	MEASUR	EMENT UNCERTAINTIES 4	5
15	CONCLU	SION 4	7
16	REFERE	NCES 4	8
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	

APPENDIX F: S	AR TEST SETUP	PHOTOGRAPHS
---------------	---------------	-------------

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 2 of 40	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 2 of 49	
© 2013 PCTEST Engineering Lab	oratory, Inc.			REV 12.5 M	

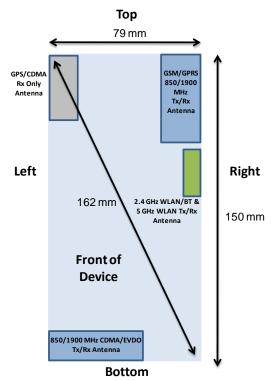
DEVICE UNDER TEST 1

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS 1900	Voice/Data	1850.20 - 1909.80 MHz
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
5.8 GHz WLAN	Data	5745 - 5825 MHz
5.2 GHz WLAN	Data	5180 - 5240 MHz
5.3 GHz WLAN	Data	5260 - 5320 MHz
5.5 GHz WLAN	Data	5500 - 5700 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
Ant+	Data	2402 - 2480 MHz

1.2 **Nominal and Maximum Output Power Specifications**

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.


Mode / Pand	Voice (dBm)	Burst Average GMSK (dBm)				
Wode / Ballu	Mode / Band			2 TX	3 TX	4 TX
				Slots	Slots	Slots
GSM/GPRS 850	Maximum	33.0	33.0	31.5	30.0	28.5
G3W/ GFK3 830	Nominal	32.5	32.5	31.0	29.5	28.0
GSM/GPRS 1900	Maximum	30.0	30.0	28.5	27.0	26.0
G3W/GPR3 1900	Nominal	29.5	29.5	28.0	26.5	25.5

Mode / Band	Modulated Average (dBm)	
Cell. CDMA/EVDO	Maximum	25.0
	Nominal	24.5
	Maximum	24.0
PCS CDMA/EVDO	Nominal	23.5

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Demo 2 of 40	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 3 of 49	
© 2013 PCTEST Engineering Labo	pratory, Inc.	·		REV 12.5 M	

Mode / Band			
IEEE 802.11b (2.4 GHz)	Maximum	17.5	
	Nominal	17.0	
IEEE 802.11g (2.4 GHz)	Maximum	14.5	
1222 802.11g (2.4 0112)	Nominal	14.0	
IEEE 802.11n (2.4 GHz)	Maximum	13.5	
IEEE 802.1111 (2.4 GHZ)	Nominal	13.0	
IEEE 802.11a (5 GHz)	Maximum	13.5	
IEEE 802.118 (3 GHZ)	Nominal	13.0	
	Maximum	13.5	
IEEE 802.11n 20 MHz (5 GHz)	Nominal	13.0	
	Maximum	12.5	
IEEE 802.11n 40 MHz (5 GHz)	Nominal	12.0	
	Maximum	11.5	
IEEE 802.11ac (5 GHz)	Nominal	11.0	
Bluetooth	Maximum	10.5	
Biueloolii	Nominal	10.0	
Rhustaath I F	Maximum	7.5	
Bluetooth LE	Nominal	7.0	

1.3 DUT Antenna Locations

Note:

1. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing.

2. Because the diagonal distance of this device is 162 mm > 160 mm, it is considered a "phablet."

Figure 1-1

DUT Antenna Locations FCC ID: A3LSMN9009 Image: Colspan="2">Reviewed by: Quality Quality Manager Document S/N: Test Dates: DUT Type: Portable Handset Page 4 of 49 0Y1307261479.A3L 07/29/13 - 08/21/13 Portable Handset Description of the portable Handset Description of the portable Handset

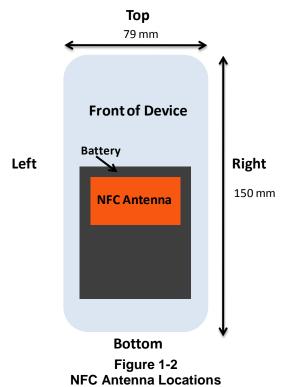

Mobile Hotspot and Extremity Sides for SAR Testing							
Mode	Exposure Condition	Back	Front	Тор	Bottom	Right	Left
GSM/GPRS 850	Hotspot	Yes	Yes	Yes	No	Yes	No
GSM/GPRS 1900	Hotspot	Yes	Yes	Yes	No	Yes	No
Cell. CDMA/EVDO	Hotspot	Yes	Yes	No	Yes	No	Yes
PCS CDMA/EVDO	Hotspot	Yes	Yes	No	Yes	No	Yes
2.4 GHz WLAN	Hotspot	Yes	Yes	No	No	Yes	No
5 GHz WLAN	Extremity	Yes	Yes	No	No	Yes	No

Table 1-1 Mobile Hotspot and Extremity Sides for SAR Testing

Note: Particular DUT edges were not required to be evaluated for Wireless Router or Extremity SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01r01 guidance, page 2 (Wireless Router) and FCC KDB Publication 648474 D04v01r01 (Extremity). The antenna document shows the distances between the transmit antennas and the edges of the device.

1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the specialized battery. The SAR tests were performed with the standard battery (Model: B800BC).

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 5 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 5 of 49
© 2013 PCTEST Engineering Labo	oratory, Inc.	•		REV 12.5 M

1.5 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-2

Capable Transmit Configurations GSM 850/1900 MHz Voice + 2.4GHz WIFI GSM 850/1900 MHz Voice + 2.4GHz Bluetooth GSM 850/1900 MHz Voice + 5 GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz WIFI 1 x CDMA 850/1900 MHz Voice + 2.4GHz WIFI 1 x CDMA 850/1900 MHz Voice + 2.4GHz WIFI	IEEE 1528, Supp C V/A Yes N/A N/A	Supp C Yes Yes N/A	FCC KDB 941225 D06 edges/sides N/A N/A N/A	FCC KDB 648474 D04 edges/sides Yes Yes	Note Voice and WIFI Data
GSM 850/1900 MHz Voice + 2.4GHz Bluetooth GSM 850/1900 MHz Voice + 5 GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz Bluetooth GPRS 850/1900 MHz Data + 5 GHz WIFI	N/A Yes N/A N/A	Yes Yes N/A	N/A N/A	Yes Yes	
GSM 850/1900 MHz Voice + 5 GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz Bluetooth GPRS 850/1900 MHz Data + 5 GHz WIFI	Yes N/A N/A	Yes N/A	N/A	Yes	Voice and W/IEL Data
GPRS 850/1900 MHz Data + 2.4GHz WIFI GPRS 850/1900 MHz Data + 2.4GHz Bluetooth GPRS 850/1900 MHz Data + 5 GHz WIFI	N/A N/A	N/A			Visice and WIEL Data
GPRS 850/1900 MHz Data + 2.4GHz Bluetooth GPRS 850/1900 MHz Data + 5 GHz WIFI	N/A				voice alla WIFI Dala
GPRS 850/1900 MHz Data + 5 GHz WIFI			Yes	Yes	Data + 2.4 GHz WIFI Hotspot
		N/A	N/A	Yes	
1x CDMA 850/1000 MHz V/gigo + 2 4GHz W/IEI	N/A	N/A	N/A	Yes	
TX CDWA 630/1900 WHZ VOICE + 2.4GHZ WHT	Yes	Yes	N/A	Yes	Voice and WIFI Data
1x CDMA 850/1900 MHz Voice + 2.4GHz Bluetooth	N/A	Yes	N/A	Yes	
1x CDMA 850/1900 MHz Voice + 5 GHz WIFI	Yes	Yes	N/A	Yes	Voice and WIFI Data
					EVDO + 2.4 GHz WIFI Hotspo
					2.4 GHz WIFI Hotspot
					2.4 GHz WIFI Hotspot
					Not Supported by HW
GPRS 850/1900 MHz Data + EVDO 850/1900 MHz Data	N/A	N/A	N/A	N/A	Not Supported by SW
	EVDO 850/1900 MHz Data + 2.4GHz WIFI EVDO 850/1900 MHz Data + 2.4GHz WIFI ix CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI GSM 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz Buletooth CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz Buletooth GSM 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Buletooth GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Buletooth GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Buletooth GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Buletooth GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI 1x CDMA 850/1900 MHz Voice + EVDO 850/1900 MHz Data GPRS 850/1900 MHz Data + EVDO 850/1900 MHz Data	EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A EVDO 850/1900 MHz Data + 5 GHz WIFI N/A 1x CDMA 850/1900 MHz Data + 5 GHz WIFI N/A 1x CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data Yes CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI Yes CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI Yes SMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI N/A GSM 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI Yes SSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes SGM 950/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes SGM 950/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A SGM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A GPRS 850/1900 MHz Voice + EVDO 850/1900 MHz Data N/A GPRS 850/1900 MHz Data + EVDO 850/1900 MHz Data N/A GPRS 850/1900 MHz Data + EVDO 850/1900 MHz Data N/A Q Sh	EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A Yes EVDO 850/1900 MHz Data + 5 GHz WIFI N/A N/A 1x CDMA 850/1900 MHz Data + 5 GHz WIFI N/A N/A 1x CDMA 850/1900 MHz Data + 5 GHz WIFI N/A N/A 1x CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI Yes Yes CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI Yes Yes CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI N/A N/A CDMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI N/A N/A GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes MS 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes MS 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes MS 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes SSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI N/A Yes SSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 3.4Hz Data N/A N/A 1x CDMA 850/1900 MHz Voice + EVDO 850	EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes Yes EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A Yes N/A EVDO 850/1900 MHz Data + 2.4GHz Bluetooth N/A N/A N/A 1x CDMA 850/1900 MHz Data + 5 GHz WIFI N/A N/A N/A 1x CDMA 850/1900 MHz Data + 5 GHz WIFI Yes Yes N/A 0CMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz WIFI Yes Yes N/A COMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data + 2.4GHz Bluetooth N/A Yes N/A COMA 850/1900 MHz Voice + GPRS 850/1900 MHz Data Yes Yes N/A GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data Yes Yes Yes M 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes N/A GSM 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes Yes M 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes Yes Yes M 850/1900 MHz Voice + EVDO 850/1900 MHz Data + 3.6Hz WIFI N/A N/A N/A SGM 850/1900 MHz Voice + EVDO 850/1900 MHz Data N/A	EVDO 850/1900 MHz Data + 2.4GHz WIFI Yes N/A Yes N/A Yes N/A Yes N/A Yes N/A Yes Yes N/A Yes N/A Yes N/A Yes Yes N/A Yes Yes Yes Yes Yes Yes Yes

Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.

1.6 SAR Test Exclusions Applied

(A) WIFI/BT

Since Hotspot operations are not allowed by the chipset firmware using 5 GHz WIFI, only 2.4 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v01.

Per FCC KDB Publication 648474 D03-D04, this device is considered a "phablet" since its diagonal distance is greater than 160 mm and less than 200mm. Therefore hand SAR tests are required. Because wireless router operations are not supported for 5 GHz WIFI, hand SAR was evaluated for 5 GHz WIFI. However, hand SAR was not evaluated for 2.4 GHz WIFI since Hotspot SAR for 2.4 GHz WIFI was <1.2 W/kg.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo C of 40	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Page 6 of 49	

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

This device supports IEEE 802.11ac with the following features:
a) Up to 80 MHz Bandwidth only
b) No aggregate channel configurations
c) 1 Tx antenna output
d) 256 QAM is supported

e) No new 5 GHz channels

Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(11/10)^* \sqrt{2.441}] = 1.7 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v05r01, the SAR exclusion threshold for 10g Extremity SAR for distances <50mm is defined by the following equation:

 $\frac{Max Power of Channel (mW)}{Separation Dist(mm)} * \sqrt{Frequency (GHz)} \le 7.5$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(11/5)^* \sqrt{2.441}] = 3.4 < 7.5$. Per KDB Publication 447498 D01v05r01, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data.

Per FCC KDB Publication 648474 D04 v01r01, since all hotspot SAR was <1.2W/kg, hand SAR was not required for licensed transmitters.

1.7 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.8 Guidance Applied

• FCC OET Bulletin 65 Supplement C [June 2001]

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 7 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Page 7 of 49

- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05r01 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D03-D04 (Phablet Procedures)
- April 2013 TCB Workshop Notes (IEEE 802.11ac)

1.9 Device Serial Numbers

Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number	Extremity Serial Number
GSM/GPRS 850	F193E	F193E	F193E	-
GSM/GPRS 1900	F193E	F193E	F193E	-
Cell. CDMA/EVDO	F193E	F193E	F193E	-
PCS CDMA/EVDO	F193E	F193E	F193E	-
2.4 GHz WLAN	F1939	F1939	F1939	-
5 GHz WLAN	F1939	F193E	-	F193E

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 9 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 8 of 49
© 2013 PCTEST Engineering Lab	oratory, Inc.	·		REV 12.5 M

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

CAD	d(dU)	d	dU	
SAR = -	$\frac{d}{dt} \left(\frac{dU}{dm} \right)$	$=\overline{dt}$	$\left(\overline{\rho dv} \right)$	

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 0 of 40	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 9 of 49	
© 2013 PCTEST Engineering Labo	2013 PCTEST Engineering Laboratory, Inc.				

3 DOSIMETRIC ASSESSMENT

3.1 **Measurement Procedure**

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1).
- 2. The point SAR measurement was taken at the maximum SAR

region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

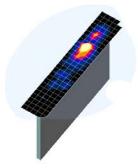


Figure 3-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

The data was extrapolated to the surface of the outer-shell of the phantom. The a. combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

After the maximum interpolated values were calculated between the points in the cube, b. the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

All neighboring volumes were evaluated until no neighboring volume with a higher c. average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

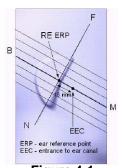

	Frequency	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	imum Zoom So Resolution (•	Minimum Zoom Scan	
	Frequency	$(\Delta x_{area}, \Delta y_{area})$	$(\Delta x_{zoom}, \Delta y_{zoom})$	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)	
		alea/ / alea/	x 200m/ 7200m/	∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	$\Delta z_{zoom}(n>1)^*$		
	≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30	
	2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30	
	3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28	
	4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25	
	5-6 GHz	≤ 10	≤4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22	
FCC ID: A3LSMN	9009			Reviewe Quality Manager				
Document S/N: 0Y1307261479.A3	L	Test Dates: 07/29/13 - 08/21/1	3 Portable Har	DUT Type: Portable Handset			Page 10	of 49

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

4 DEFINITION OF REFERENCE POINTS

4.1 EAR REFERENCE POINT

Figure 4-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 4-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 4-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 4-1 Close-Up Side view of ERP

4.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 4-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 4-2 Front, back and side view of SAM Twin Phantom

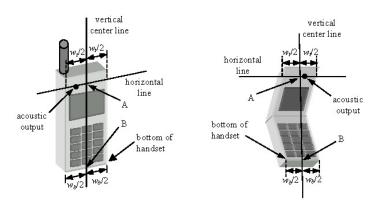


Figure 4-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 11 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 11 of 49
© 2013 PCTEST Engineering Labo	ratory. Inc.	•		REV 12.5 M

5 TEST CONFIGURATION POSITIONS FOR HANDSETS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

5.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 5-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 5-2).

5.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5-2).

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 10 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 12 of 49
© 2012 PCTEST Engineering Labo	ratory Inc			DEV/12.5 M

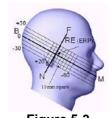


Figure 5-3 Side view w/ relevant markings

Figure 5-2 Front, Side and Top View of Ear/15^o Tilt Position

5.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

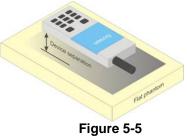


Figure 5-4 Twin SAM Chin20

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dega 12 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 13 of 49
© 2013 PCTEST Engineering Labo	ratory, Inc.			REV 12.5 M

5.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5-5). Per FCC KDB Publication 648474 D04v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater

Sample Body-Worn Diagram

than or equal to that required for hotspot mode, when applicable. When the reported SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that bodyworn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 44798 D01v05 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC minitablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04 v01r01DR04 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 14 of 49
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Fage 14 01 49

5.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 15 of 49	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Fage 15 01 49	
© 2013 PCTEST Engineering Laboratory, Inc.				

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUM	1AN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

Table 6-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 16 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 16 of 49
© 2013 PCTEST Engineering Laborat	ory Inc			REV 12.5 M

7 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

7.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

7.3 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

7.3.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by "SAR Measurement Procedures for 3G Devices" v02, October 2007. Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "<u>All Up</u>" condition.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 7-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 7-2 was applied.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 17 of 10	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 17 of 49	
© 2012 DOTECT Engineering Laborer	terms for a				

Table 7-1						
Parameters for Max. Power for RC1						

Parameter	Units	Value
Î _{or}	dBm/1.23 MHz	-104
$\frac{\text{Pilot } E_c}{I_{or}}$	dB	-7
Traffic E _c	dB	-7.4

Table 7-2
Parameters for Max. Power for RC3

Parameter	Units	Value
Î _{or}	dBm/1.23 MHz	-86
$\frac{\text{Pilot } E_c}{I_{or}}$	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

7.3.2 Head SAR Measurements

SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

Head SAR was additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 7.3.4 for EVDO Rev. A configuration parameters.

7.3.3 Body SAR Measurements

SAR for body exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. SAR for multiple code channels (FCH + SCH_n) is not required when the maximum average output of each RF channel is less than ¼ dB higher than that measured with FCH only. Otherwise, SAR is measured on the maximum output channel (FCH + SCH_n) with FCH at full rate and SCH₀ enabled at 9600 bps using the exposure configuration that results in the highest SAR for that channel with FCH only. When multiple code channels are enabled, the DUT output may shift by more than 0.5 dB and lead to higher SAR drifts and SCH dropouts. Body SAR was measured using TDSO / SO32 with power control bits in the "All Up"

Body SAR in RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

7.3.4 Handsets with EVDO

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than ¼ dB higher than that measured in RC3 (1x RTT), body SAR for EV-DO is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3. SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel for Rev. A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots would be configured in the downlink for both Rev. 0 and Rev. A.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 19 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 18 of 49
© 0040 DOTEOT Es siste sine Laboration	· ·	•		

7.3.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 per KDB Publication 941225 D01 procedures for "1x Ev-Do data Devices". SAR for Subtype 2 Physical layer configurations is not required for Rev. A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for the RF channels in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

SAR is not required for 1x RTT for Ev-Do devices that also support 1x RTT voice and/or data operations, when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0. Otherwise, CDMA "Body-SAR Measurement" procedures for "CDMA 2000 1x Handsets" were applied.

7.4 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

7.4.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

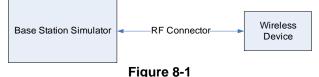
7.4.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode. 802.11ac SAR was evaluated for highest 802.11a configuration in each 5 GHz band and each exposure condition. 802.11ac modes were additionally evaluated for SAR if the output power for the respective mode was more than 0.25 dB higher than powers of 802.11a modes.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dege 10 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Page 19 of 49


Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	FCH+SCH	FCH	(RTAP)	(RETAP)
	1013	22H	824.7	24.48	24.46	24.44	24.45	24.51	24.49
Cellular	384	22H	836.52	24.55	24.55	24.59	24.59	24.58	24.57
	777	22H	848.31	24.37	24.40	24.43	24.41	24.39	24.38
	25	24E	1851.25	23.29	23.36	23.33	23.32	23.95	23.93
PCS	600	24E	1880	23.44	23.50	23.45	23.41	24.00	23.99
	1175	24E	1908.75	23.30	23.39	23.39	23.37	23.77	23.76

8.1 CDMA Conducted Powers

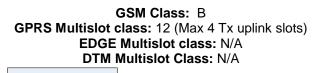
Note: RC1 is only applicable for IS-95 compatibility.

Per KDB Publication 941225 D01v02:

- 1. Head SAR was tested with SO55 RC3. SO55 RC1 was not required since the average output power was not more than 0.25 dB than the SO55 RC3 powers.
- 2.Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH and Ev-Do Rev. 0 Only. TDSO / SO32 FCH+SCH SAR tests were not required since the average output power was not more than 0.25 dB higher than the TDSO / SO32 FCH only powers.
- 3. Hotspot SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. If the average output power of Subtype 2 for Rev. A is less than the Rev. 0 power levels, then Rev. A SAR is not required. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for that RF channel in Rev. 0. SAR is not required for 1x RTT for Ev-Do hotspot devices when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0.
- 4. CDMA 1xRTT SAR was additionally required to be evaluated for Hotspot exposure conditions to support simultaneous transmission capabilities.
- 5. Ev-Do Rev. 0 SAR was additionally required to be evaluated for Head exposure conditions to support simultaneous transmission capabilities.
- 6.Head SAR was additionally evaluated with EVDO Rev. A to determine compliance for held-to-ear VoIP operations.

Power Measurement Setup

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	DUT Type:		
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 20 of 49	
© 2013 PCTEST Engineering Labo	ratory Inc			REV/12.5 M	


8.2 GSM Conducted Powers

		Μ	laximum Bur	st-Averaged	Output Powe	er
		Voice		GPRS Dat	ta (GMSK)	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot
	128	32.03	32.03	30.55	28.70	26.77
GSM 850	190	32.03	32.02	30.55	28.70	26.77
	251	31.98	31.97	30.51	28.65	26.71
	512	29.69	29.71	27.76	26.27	24.44
GSM 1900	661	29.58	29.59	27.63	26.16	24.77
	810	29.57	29.58	27.62	26.13	24.30
L			20.00	21102		200
				n Frame-Ave		
					raged Outpu	
Band	Channel	Calcula	ted Maximur	n Frame-Ave	raged Outpu	
Band	Channel 128	Calcula <i>Voice</i> GSM [dBm] CS	ted Maximur GPRS [dBm] 1	n Frame-Ave GPRS Dat GPRS [dBm] 2	raged Outpu ta (GMSK) GPRS [dBm] 3	t Power GPRS [dBm] 4
Band GSM 850		Calcula Voice GSM [dBm] CS (1 Slot)	ted Maximur GPRS [dBm] 1 Tx Slot	n Frame-Ave GPRS Dar GPRS [dBm] 2 Tx Slot	raged Outpu ta (GMSK) GPRS [dBm] 3 Tx Slot	t Power GPRS [dBm] 4 Tx Slot
	128	Calcula Voice GSM [dBm] CS (1 Slot) 23.00	ted Maximur GPRS [dBm] 1 Tx Slot 23.00	n Frame-Ave GPRS Dat GPRS [dBm] 2 Tx Slot 24.53	raged Outpu ta (GMSK) GPRS [dBm] 3 Tx Slot 24.44	t Power GPRS [dBm] 4 Tx Slot 23.76
	128 190	Calcula Voice GSM [dBm] CS (1 Slot) 23.00 23.00	GPRS [dBm] 1 Tx Slot 23.00 22.99	n Frame-Ave GPRS Dat GPRS [dBm] 2 Tx Slot 24.53 24.53	raged Outpu ta (GMSK) GPRS [dBm] 3 Tx Slot 24.44 24.44	t Power GPRS [dBm] 4 Tx Slot 23.76 23.76
	128 190 251	Calcula Voice GSM [dBm] CS (1 Slot) 23.00 23.00 22.95	ted Maximur GPRS [dBm] 1 Tx Slot 23.00 22.99 22.94	n Frame-Ave GPRS Dat GPRS [dBm] 2 Tx Slot 24.53 24.53 24.49	raged Outpu ta (GMSK) GPRS [dBm] 3 Tx Slot 24.44 24.44 24.39	GPRS [dBm] 4 Tx Slot 23.76 23.76 23.70

Note: Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table according to KDB 941225 D03v01.

GPRS (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

Base Station Simulator	RF Connector >	Wireless Device

Figure 8-2 Power Measurement Setup

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 21 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Page 21 of 49
			DEV/ 40 E M

© 2013 PCTEST Engineering Laboratory, Inc.

8.3 WLAN Conducted Powers

802.11b (2.4 GHz) Conducted Power [dBm] Freq Mode Channel Data Rate [Mbps] [MHz] 11 1 5.5 2 802.11b 2412 16.10 16.34 16.39 16.15 1* 2437 802.11b 6* 16.26 16.35 16.43 16.46 802.11b 2462 11* 16.02 16.15 16.17 16.15

Table 8-1 IEEE 802.11b Average RF Power

Table 8-2 IEEE 802.11g Average RF Power

	Frea			802.11g (2.4 GHz) Conducted Power [dBm]								
Mode	Fleq	Channel		Data Rate [Mbps]								
	[MHz]		6	6 9 12 18 24 36 48 54								
802.11g	2412	1	14.07	14.22	14.21	14.22	14.08	14.05	14.29	14.03		
802.11g	2437	6	14.23	14.25	14.26	14.34	14.26	14.17	14.31	14.07		
802.11g	2462	11	13.99	13.92	14.03	13.96	13.99	13.96	14.14	13.92		

Table 8-3

IEEE 802.11n Average RF Power

	Freq			802.11n (2.4 GHz) Conducted Power [dBm]								
Mode	Fieq	Channel		Data Rate [Mbps]								
	[MHz]		6.5	6.5 13 20 26 39 52 58								
802.11n	2412	1	13.17	13.12	13.13	13.03	13.13	13.07	13.07	13.18		
802.11n	2437	6	13.20	13.23	13.22	13.28	13.06	13.10	13.12	13.13		
802.11n	2462	11	12.99	12.91	12.98	13.07	12.95	13.02	12.88	12.82		

Table 8-4

	IEEE 802.11a Average RF Power										
	Freq					GHz) Conduc		[dBm]			
Mode	Fleq	Channel				Data Rate [Mbps]				
	[MHz]		6	9	12	18	24	36	48	54	
802.11a	5180	36*	12.89	12.95	13.00	12.99	12.90	12.92	12.98	12.82	
802.11a	5200	40	12.89	12.94	12.94	12.90	12.93	12.80	12.95	12.84	
802.11a	5220	44	12.78	12.84	12.88	12.80	12.78	12.76	12.97	12.74	
802.11a	5240	48*	12.74	12.76	12.80	12.80	12.78	12.71	12.86	12.68	
802.11a	5260	52*	12.48	12.49	12.57	12.59	12.53	12.48	12.59	12.39	
802.11a	5280	56	12.52	12.44	12.44	12.50	12.49	12.38	12.56	12.31	
802.11a	5300	60	12.29	12.45	12.45	12.42	12.35	12.34	12.49	12.28	
802.11a	5320	64*	12.28	12.35	12.37	12.30	12.27	12.16	12.38	12.22	
802.11a	5500	100	12.62	12.59	12.72	12.55	12.61	12.55	12.74	12.52	
802.11a	5520	104*	12.49	12.47	12.56	12.57	12.45	12.55	12.58	12.47	
802.11a	5540	108	12.45	12.53	12.51	12.60	12.59	12.48	12.55	12.39	
802.11a	5560	112	12.34	12.46	12.49	12.50	12.36	12.36	12.42	12.33	
802.11a	5580	116*	12.33	12.38	12.41	12.31	12.42	12.35	12.45	12.20	
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11a	5660	132	12.12	12.07	12.04	12.03	12.03	11.90	12.09	11.94	
802.11a	5680	136*	12.04	12.13	11.96	12.00	12.00	12.07	12.13	11.92	
802.11a	5700	140	11.86	11.96	12.00	11.95	11.90	11.94	12.15	11.87	
802.11a	5745	149*	12.42	12.52	12.52	12.45	12.48	12.37	12.61	12.31	
802.11a	5765	153	12.40	12.42	12.46	12.41	12.48	12.33	12.52	12.35	
802.11a	5785	157*	12.30	12.32	12.29	12.38	12.32	12.22	12.46	12.28	
802.11a	5805	161*	12.25	12.28	12.31	12.25	12.23	12.30	12.38	12.21	
802.11a	5825	165	12.27	12.25	12.27	12.23	12.28	12.19	12.33	12.18	

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 22 of 49
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Faye 22 01 49

© 2013 PCTEST Engineering Laboratory, Inc.

	IEEE 802.11h Average RF Power – 20 MHz Bandwidth 20MHz BW 802.11n (5GHz) Conducted Power [dBm]										
	Freq			20M	Hz BW 802.1	1n (5GHz) C	onducted	Power [dB	m]		
Mode	rieq	Channel	Data Rate [Mbps]								
	[MHz]		6.5	13	19.5	26	39	52	58.5	65	
802.11n	5180	36	12.82	12.85	12.85	12.77	12.86	12.87	12.83	12.94	
802.11n	5200	40	12.80	12.76	12.79	12.79	12.84	12.83	12.79	12.76	
802.11n	5220	44	12.67	12.65	12.76	12.69	12.73	12.74	12.73	12.72	
802.11n	5240	48	12.66	12.61	12.63	12.71	12.69	12.71	12.74	12.68	
802.11n	5260	52	12.43	12.52	12.40	12.43	12.41	12.46	12.50	12.44	
802.11n	5280	56	12.41	12.31	12.37	12.43	12.38	12.35	12.38	12.40	
802.11n	5300	60	12.31	12.31	12.36	12.34	12.30	12.43	12.37	12.26	
802.11n	5320	64	12.27	12.20	12.18	12.22	12.29	12.26	12.27	12.27	
802.11n	5500	100	12.48	12.64	12.55	12.64	12.61	12.62	12.59	12.60	
802.11n	5520	104	12.42	12.38	12.49	12.52	12.37	12.40	12.39	12.51	
802.11n	5540	108	12.56	12.45	12.41	12.33	12.50	12.29	12.35	12.43	
802.11n	5560	112	12.20	12.19	12.11	12.05	12.09	12.38	12.32	12.36	
802.11n	5580	116	12.29	12.33	12.36	12.19	12.20	12.27	12.29	12.30	
802.11n	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11n	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11n	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11n	5660	132	12.07	11.99	11.99	12.03	11.95	11.99	11.97	11.97	
802.11n	5680	136	11.80	11.89	11.88	11.90	11.96	11.99	11.84	11.91	
802.11n	5700	140	11.79	11.81	11.80	11.83	11.96	11.82	11.79	11.86	
802.11n	5745	149	12.32	12.39	12.41	12.36	12.44	12.58	12.63	12.55	
802.11n	5765	153	12.50	12.41	12.49	12.50	12.39	12.42	12.47	12.40	
802.11n	5785	157	12.37	12.38	12.36	12.46	12.34	12.38	12.41	12.47	
802.11n	5805	161	12.40	12.33	12.37	12.33	12.28	12.25	12.26	12.36	
802.11n	5825	165	12.29	12.27	12.22	12.30	12.35	12.30	12.35	12.37	

Table 8-5 IEEE 802.11n Average RF Power – 20 MHz Bandwidth

Table 8-6 IEEE 802.11n Average RF Power – 40 MHz Bandwidth

	Freq			40M	Hz BW 802.1	1n (5GHz) C	onducted	Power [dB	m]	
Mode	печ	Channel		Data Rate [Mbps]						
	[MHz]		13.5	27	40.5	54	81	108	121.5	135
802.11n	5190	38	12.09	12.06	12.06	11.94	12.10	12.12	12.16	12.08
802.11n	5230	46	11.94	12.01	11.99	11.88	12.01	11.99	11.95	11.88
802.11n	5270	54	11.98	12.13	12.06	11.91	11.97	12.04	12.11	12.12
802.11n	5310	62	11.91	11.96	11.95	11.90	11.95	11.89	11.89	11.84
802.11n	5510	102	11.93	11.99	12.01	11.91	12.01	11.94	12.05	11.97
802.11n	5550	110	11.84	11.90	11.91	11.85	11.97	11.87	11.89	11.72
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5670	134	11.35	11.37	11.43	11.38	11.43	11.44	11.55	11.49
802.11n	5755	151	12.28	12.30	12.14	12.13	12.25	12.29	12.39	12.30
802.11n	5795	159	12.22	12.20	12.03	12.13	12.13	12.01	12.29	12.17

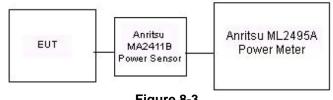


Figure 8-3 Power Measurement Setup for Bandwidths < 50 MHz

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 23 of 49
© 2013 PCTEST Engineering Labo	pratory, Inc.			REV 12.5 M

	Frea				80MHz	BW 802.11a	c (5GHz) C	onducted	Power [dBm]		
Mode	[MHz]	Channel		Data Rate [Mbps]								
	[IVITZ]		29.3	58.5	87.8	117	175.5	234	263.3	292.5	351	390
802.11ac	5210	42	10.36	10.32	10.31	10.38	10.25	10.33	10.23	10.33	10.29	10.46
802.11ac	5290	58	11.28	11.29	10.88	11.00	11.02	11.00	10.98	10.93	11.18	11.04
802.11ac	5530	106	10.69	10.70	10.74	10.59	10.66	10.51	10.41	10.54	10.59	10.67
802.11ac	5775	155	10.60	10.64	10.60	10.71	10.71	10.70	10.47	10.69	10.63	10.64

Table 8-7IEEE 802.11ac Average RF Power – 80 MHz Bandwidth

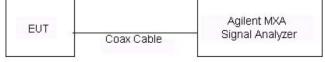


Figure 8-4 Power Measurement Setup for Bandwidths > 50 MHz

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 24 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 24 of 49
© 2013 PCTEST Engineering Labo	pratory, Inc.			REV 12.5 M

9 SYSTEM VERIFICATION

9.1 Tissue Verification

			Measure	ed Tissue P	roperties	5			
Tissue Type	Calibrated Date:	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev a
			820	0.912	42.202	0.898	41.571	1.56%	1.52%
07/31/2013	835H	22.9	835	0.926	42.024	0.900	41.500	2.89%	1.26%
			850	0.939	41.844	0.916	41.500	2.51%	0.83%
			1850	1.387	38.942	1.400	40.000	-0.93%	-2.65
08/05/2013	1900H	22.6	1880	1.412	38.775	1.400	40.000	0.86%	-3.06
			1910	1.448	38.646	1.400	40.000	3.43%	-3.39
			1850	1.369	38.578	1.400	40.000	-2.21%	-3.55
08/21/2013	1900H	22.6	1880	1.396	38.428	1.400	40.000	-0.29%	-3.93
			1910	1.424	38.343	1.400	40.000	1.71%	-4.14
			2401	1.795	39.289	1.758	39.298	2.10%	-0.02
07/31/2013	2450H	23.9	2450	1.852	39.114	1.800	39.200	2.89%	-0.22
			2499	1.908	38.894	1.852	39.135	3.02%	-0.62
			5180	4.680	36.517	4.639	36.020	0.88%	1.38
			5200	4.707	36.497	4.660	36.000	1.01%	1.38
			5220	4.729	36.490	4.680	35.980	1.05%	1.42
			5280	4.777	36.355	4,740	35.920	0.78%	1.21
			5300	4.799	36.312	4.760	35.900	0.82%	1.15
	5200H-5800H		5500	5.006	36.029	4.965	35.650	0.83%	1.06
08/05/2013		22.7	5520	5.024	35.987	4.986	35.620	0.76%	1.03
			5540	5.041	35.935	5.007	35.590	0.68%	0.97
			5745	5.269	35.612	5.215	35.355	1.04%	0.73
				5.288	35.583	5.235	35.335	1.04%	0.70
			5765	5.299	35.543	5.255	35.315	0.84%	0.65
			5785	5.314	35.506	5.270	35.300	0.83%	0.58
			5800 820	0.983	54.651	0.969	55.258	1.44%	-1.10
07/31/2013	835B	22.7	835	0.997	54.493	0.909	55.200	2.78%	-1.28
07/31/2013	0355	22.1	850	1.012	54.340	0.988	55.154	2.43%	-1.48
			1850	1.447	52.990	1.520	53.300	-4.80%	-0.58
07/29/2013	1900B	23.0	1880	1.447	52.990	1.520	53.300	-4.80%	-0.38
07/29/2013	1300B	23.0		1.518		1.520			
	-		1910 1850		52.772 52.177		53.300 53.300	-0.13% -1.25%	-0.99 -2.11
09/01/0010	1900B	22.9		1.501 1.531	52.177	1.520 1.520	53.300	0.72%	-2.11
08/21/2013	19006	22.9	1880 1910		52.073	1.520	53.300	2.70%	-2.30
				1.561					
07/00/0040	24500	01.0	2401	1.922	52.230	1.903	52.765	1.00%	-1.01
07/29/2013	2450B	24.0	2450	1.980	51.971	1.950	52.700	1.54%	-1.38
			2499	2.026	51.744	2.019	52.638	0.35%	-1.70
			5180	5.529	47.107	5.276	49.041	4.80%	-3.94
			5200	5.512	46.801	5.299	49.014	4.02%	-4.52
			5220	5.486	47.059	5.323	48.987	3.06%	-3.94
			5280	5.659	47.141	5.393	48.879	4.93%	-3.56
			5300	5.642	46.865	5.416	48.851	4.17%	-4.07
08/05/2013	5200B-5800B	23.4	5500	5.890	47.060	5.650	48.580	4.25%	-3.13
			5520	5.892	47.074	5.673	48.553	3.86%	-3.05
			5540	5.900	47.047	5.696	48.526	3.58%	-3.05
			5745	6.080	46.730	5.936	48.248	2.43%	-3.15
			5765	6.084	46.598	5.959	48.220	2.10%	-3.36
			5785	6.122	46.561	5.982	48.242	2.34%	-3.48
	1	1	5800	6.168	46.377	6.000	48.200	2.80%	-3.78

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

V ENDIVERENTE LARDERTORY, INC.		Quality Manager
Test Dates:	DUT Type:	Dogo 25 of 40
07/29/13 - 08/21/13	Portable Handset	Page 25 of 49
		est Dates: DUT Type:

© 2013 PCTEST	Engineering Laboratory	, Inc.

Test System Verification 9.2

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

	System Verification TARGET & MEASURED														
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR1g (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)			
G	835	HEAD	07/31/2013	24.9	22.9	0.100	4d026	3209	0.994	9.390	9.940	5.86%			
I	1900	HEAD	08/05/2013	23.2	22.2	0.100	5d148	3319	4.280	39.700	42.800	7.81%			
G	1900	HEAD	08/21/2013	23.4	22.6	0.100	5d148	3209	3.910	39.700	39.100	-1.51%			
С	2450	HEAD	07/31/2013	23.5	23.4	0.100	719	3022	5.620	52.700	56.200	6.64%			
E	5200	HEAD	08/05/2013	22.6	22.8	0.100	1120	3920	7.200	76.000	72.000	-5.26%			
E	5300	HEAD	08/05/2013	22.6	22.8	0.100	1120	3920	7.960	78.700	79.600	1.14%			
E	5500	HEAD	08/05/2013	22.8	22.8	0.100	1120	3920	7.870	80.100	78.700	-1.75%			
E	5800	HEAD	08/05/2013	22.9	22.7	0.100	1120	3920	7.680	74.900	76.800	2.54%			
G	835	BODY	07/31/2013	24.9	22.7	0.100	4d026	3209	1.020	9.580	10.200	6.47%			
E	1900	BODY	07/29/2013	23.8	23.2	0.100	5d148	3920	4.080	40.800	40.800	0.00%			
E	1900	BODY	08/21/2013	24.1	23.0	0.100	5d148	3920	4.360	40.800	43.600	6.86%			
С	2450	BODY	07/29/2013	23.0	23.2	0.100	719	3022	5.340	51.600	53.400	3.49%			
А	5200	BODY	08/05/2013	23.8	22.7	0.100	1057	3589	7.670	75.500	76.700	1.59%			
А	5300	BODY	08/05/2013	23.8	22.7	0.100	1057	3589	8.040	75.300	80.400	6.77%			
А	5500	BODY	08/05/2013	23.8	22.9	0.100	1057	3589	8.020	80.800	80.200	-0.74%			
А	5800	BODY	08/05/2013	23.9	22.8	0.100	1057	3589	7.970	75.100	79.700	6.13%			

Table 9-2 **System Verification Results**

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 26 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 26 of 49
© 2013 PCTEST Engineering Labo	pratory Inc.	•		REV 12.5 M

	System verification Results - Extremity SAR												
	System Verification TARGET & MEASURED												
SAR System #	Frequency Date: Power SAR10g Normalized												
А	5200	BODY	08/05/2013	23.8	22.7	0.100	1057	3589	2.140	21.100	21.400	1.42%	
А	5300	BODY	08/05/2013	23.8	22.7	0.100	1057	3589	2.230	21.100	22.300	5.69%	
А	5500	BODY	08/05/2013	23.8	22.9	0.100	1057	3589	2.210	22.400	22.100	-1.34%	
А	5800	BODY	08/05/2013	23.9	22.8	0.100	1057	3589	2.190	20.700	21.900	5.80%	

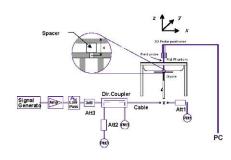


Figure 9-1 System Verification Setup Diagram

Figure 9-2 System Verification Setup Photo

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 07 at 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 27 of 49
© 2013 PCTEST Engineering Lab	oratory, Inc.			REV 12.5 M

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

					G	SM 85	50 Hea	d SAR	2						
					М	EASURE	EMENT F	RESULTS	6						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# Time	Duty	SAR (1g)	oouning	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.0	32.03	0.04	Right	Cheek	F193E	1	1:8.3	0.103	1.250	0.129	
836.60	190	GSM 850	GSM	33.0	32.03	0.00	Right	Tilt	F193E	1	1:8.3	0.082	1.250	0.103	
836.60	190	GSM 850	GSM	33.0	32.03	0.01	Left	Cheek	F193E	1	1:8.3	0.231	1.250	0.289	
836.60	190	GSM 850	GSM	33.0	32.03	0.05	Left	Tilt	F193E	1	1:8.3	0.183	1.250	0.229	
836.60	190	GSM 850	GPRS	31.5	30.55	0.06	Right	Cheek	F193E	2	1:4.15	0.144	1.245	0.179	
836.60	190	GSM 850	GPRS	31.5	30.55	0.01	Right	Tilt	F193E	2	1:4.15	0.122	1.245	0.152	
836.60	190	GSM 850	GPRS	31.5	30.55	0.01	Left	Cheek	F193E	2	1:4.15	0.280	1.245	0.349	A1
836.60	190	GSM 850	GPRS	31.5	30.55	0.03	Left	Tilt	F193E	2	1:4.15	0.237	1.245	0.295	
		ISI / IEEE C95 Sp ontrolled Expo						Head W/kg (mW jed over 1							

Table 10-1

Table 10-2 GSM 1900 Head SAR

							10001								
						MEAS	UREMEN	IT RESU	ILTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed		Power Drift	Side	Test	Device Serial	# Time	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.20	Right	Cheek	F193E	1	1:8.3	0.017	1.102	0.019	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.13	Right	Tilt	F193E	1	1:8.3	0.013	1.102	0.014	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.09	Left	Cheek	F193E	1	1:8.3	0.033	1.102	0.036	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.11	Left	Tilt	F193E	1	1:8.3	0.022	1.102	0.024	
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.07	Right	Cheek	F193E	3	1:2.76	0.030	1.213	0.036	
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.08	Right	Tilt	F193E	3	1:2.76	0.021	1.213	0.025	
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.02	Left	Cheek	F193E	3	1:2.76	0.054	1.213	0.066	A2
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.09	Left	Tilt	F193E	3	1:2.76	0.034	1.213	0.041	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dega 20 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 28 of 49
© 2013 PCTEST Engineering Lab	oratory, Inc.			REV 12.5 M

					00	II. CDI	WATE	ad SAF	`					
					ME	EASURE	MENT F	RESULTS	5					
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.52	384	Cell. CDMA	RC3 / SO55	25.0	24.55	0.00	Right	Cheek	F193E	1:1	0.119	1.109	0.132	
836.52	384	Cell. CDMA	RC3 / SO55	25.0	24.55	0.08	Right	Tilt	F193E	1:1	0.074	1.109	0.082	
836.52	384	Cell. CDMA	RC3 / SO55	25.0	24.55	-0.01	Left	Cheek	F193E	1:1	0.178	1.109	0.197	A3
836.52	384	Cell. CDMA	RC3 / SO55	25.0	24.55	0.04	Left	Tilt	F193E	1:1	0.072	1.109	0.080	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	0.00	Right	Cheek	F193E	1:1	0.121	1.102	0.133	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	0.10	Right	Tilt	F193E	1:1	0.063	1.102	0.069	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	-0.05	Left	Cheek	F193E	1:1	0.130	1.102	0.143	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	0.04	Left	Tilt	F193E	1:1	0.078	1.102	0.086	
836.52	384	Cell. CDMA	EVDO Rev. A	25.0	24.57	0.06	Right	Cheek	F193E	1:1	0.116	1.104	0.128	
836.52	384	Cell. CDMA	EVDO Rev. A	25.0	24.57	0.00	Right	Tilt	F193E	1:1	0.058	1.104	0.064	
836.52	384	Cell. CDMA	EVDO Rev. A	25.0	24.57	0.06	Left	Cheek	F193E	1:1	0.112	1.104	0.124	
836.52	384	Cell. CDMA	EVDO Rev. A	25.0	24.57	0.07	Left	Tilt	F193E	1:1	0.068	1.104	0.075	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									1.6 W	Head /kg (mW/g) d over 1 gra			

Table 10-3 Cell, CDMA Head SAR

Table 10-4 PCS CDMA Head SAR

					ME	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number		(W/kg)	Factor	(W/kg)	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	23.50	0.01	Right	Cheek	F193E	1:1	0.065	1.122	0.073	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	23.50	0.15	Right	Tilt	F193E	1:1	0.085	1.122	0.095	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	23.50	0.15	Left	Cheek	F193E	1:1	0.093	1.122	0.104	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	23.50	0.10	Left	Tilt	F193E	1:1	0.067	1.122	0.075	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.00	Right	Cheek	F193E	1:1	0.102	1.000	0.102	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.03	Right	Tilt	F193E	1:1	0.087	1.000	0.087	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.00	Left	Cheek	F193E	1:1	0.143	1.000	0.143	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.09	Left	Tilt	F193E	1:1	0.093	1.000	0.093	
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	23.99	0.02	Right	Cheek	F193E	1:1	0.086	1.002	0.086	
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	23.99	0.02	Right	Tilt	F193E	1:1	0.097	1.002	0.097	
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	23.99	0.09	Left	Cheek	F193E	1:1	0.146	1.002	0.146	A4
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	23.99	-0.03	Left	Tilt	F193E	1:1	0.077	1.002	0.077	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									1.6 W/k	ead g (mW/g) over 1 gram	ı		

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 29 of 49
© 2013 PCTEST Engineering Labo	pratory, Inc.	<u>.</u>		REV 12.5 M

	DTS Head SAR														
					ME	SUREN	IENT R	ESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)		(W/kg)	Factor	(W/kg)	
2437	6	IEEE 802.11b	DSSS	17.5	16.26	0.14	Right	Cheek	F1939	1	1:1	0.011	1.330	0.015	
2437	6	IEEE 802.11b	DSSS	17.5	16.26	-0.06	Right	Tilt	F1939	1	1:1	0.012	1.330	0.016	
2437	6	IEEE 802.11b	DSSS	17.5	16.26	0.00	Left	Cheek	F1939	1	1:1	0.051	1.330	0.068	A5
2437	6	IEEE 802.11b	DSSS	17.5	16.26	-0.10	Left	Tilt	F1939	1	1:1	0.030	1.330	0.040	
5745	149	IEEE 802.11a	OFDM	13.5	12.42	0.14	Right	Cheek	F1939	6	1:1	0.002	1.282	0.003	A6
5775	155	IEEE 802.11ac	OFDM	11.5	10.60	-0.14	Right	Cheek	F1939	29.3	1:1	0.000	1.230	0.000	
5745	149	IEEE 802.11a	OFDM	13.5	12.42	0.16	Right	Tilt	F1939	6	1:1	0.000	1.282	0.000	
5745	149	IEEE 802.11a	OFDM	13.5	12.42	0.11	Left	Cheek	F1939	6	1:1	0.001	1.282	0.001	
5745	149	IEEE 802.11a	OFDM	13.5	12.42	0.12	Left	Tilt	F1939	6	1:1	0.000	1.282	0.000	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									1.6 W	Head /kg (mW/g d over 1 g				

Table 10-5

Table 10-6 **NII Head SAR**

	Nil Head SAN														
					I	MEASURI	EMENT I	RESULT	s						
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power	Power Drift	Side	Test	Device Serial	Data Rate	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.	mode	Dervice	[dBm]	[dBm]	[dB]	oluc	Position	Number	(Mbps)	Duty Oycie	(W/kg)	Factor	(W/kg)	110(#
5180	36	IEEE 802.11a	OFDM	13.5	12.89	-0.13	Right	Cheek	F1939	6	1:1	0.000	1.151	0.000	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	-0.12	Right	Tilt	F1939	6	1:1	0.000	1.151	0.000	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	0.13	Left	Cheek	F1939	6	1:1	0.000	1.151	0.000	
5210	42	IEEE 802.11ac	OFDM	11.5	10.36	0.13	Left	Cheek	F1939	29.3	1:1	0.001	1.300	0.001	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	0.12	Left	Tilt	F1939	6	1:1	0.000	1.151	0.000	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	0.14	Right	Cheek	F1939	6	1:1	0.000	1.253	0.000	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	0.13	Right	Tilt	F1939	6	1:1	0.000	1.253	0.000	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	0.14	Left	Cheek	F1939	6	1:1	0.000	1.253	0.000	
5290	58	IEEE 802.11ac	OFDM	11.5	11.28	0.14	Left	Cheek	F1939	29.3	1:1	0.000	1.052	0.000	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	0.09	Left	Tilt	F1939	6	1:1	0.000	1.253	0.000	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	0.19	Right	Cheek	F1939	6	1:1	0.005	1.225	0.006	A7
5530	106	IEEE 802.11ac	OFDM	11.5	10.69	-0.10	Right	Cheek	F1939	29.3	1:1	0.000	1.205	0.000	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	0.00	Right	Tilt	F1939	6	1:1	0.000	1.225	0.000	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	0.16	Left	Cheek	F1939	6	1:1	0.001	1.225	0.001	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	0.18	Left	Tilt	F1939	6	1:1	0.000	1.225	0.000	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head				
	Spatial Peak Uncontrolled Exposure/General Population										.6 W/kg (n raged over				
Uncontrolled Exposure/General Population												g			

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 30 of 49
© 2013 PCTEST Engineering Labo	pratory, Inc.			REV 12.5 M

-	GSW/CDWA Body-Wolfi SAR Data														
					MEASU	REMEN	T RESU	LTS							
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	I Ower [ubin]	Dint[ab]		Number	01013	Oyele		(W/kg)	Tactor	(W/kg)	
836.60	190	GSM 850	GSM	33.0	32.03	0.04	10 mm	F193E	1	1:8.3	back	0.123	1.250	0.154	
836.60	190	GSM 850	GPRS	31.5	30.55	0.09	10 mm	F193E	2	1:4.15	back	0.146	1.245	0.182	A8
1880.00	661	GSM 1900	GSM	30.0	29.58	0.17	10 mm	F193E	1	1:8.3	back	0.054	1.102	0.060	
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.01	10 mm	F193E	3	1:2.76	back	0.082	1.213	0.099	A9
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.59	0.03	10 mm	F193E	N/A	1:1	back	0.264	1.099	0.290	A10
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	0.02	10 mm	F193E	N/A	1:1	back	0.263	1.102	0.290	
1851.25	25	PCS CDMA	TDSO / SO32	24.0	23.32	-0.09	10 mm	F193E	N/A	1:1	back	0.632	1.169	0.739	
1880.00	600	PCS CDMA	TDSO / SO32	24.0	23.41	-0.02	10 mm	F193E	N/A	1:1	back	0.809	1.146	0.927	
1908.75	1175	PCS CDMA	TDSO / SO32	24.0	23.37	-0.02	10 mm	F193E	N/A	1:1	back	0.854	1.156	0.987	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.0	23.95	0.00	10 mm	F193E	N/A	1:1	back	0.693	1.012	0.701	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.00	10 mm	F193E	N/A	1:1	back	0.890	1.000	0.890	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.0	23.77	-0.06	10 mm	F193E	N/A	1:1	back	0.915	1.054	0.964	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.0	23.77	-0.03	10 mm	F193E	N/A	1:1	back	1.020	1.054	1.075	A11
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Body N/kg (m jed over				

10.2 Standalone Body-Worn SAR Data

Table 10-7 GSM/CDMA Body-Worn SAR Data

Note: Blue entry represents repeatability measurement.

Table 10-8 DTS Body-Worn SAR

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2437	6	IEEE 802.11b	DSSS	17.5	16.26	-0.03	10 mm	F1939	1	back	1:1	0.075	1.330	0.100	A12
5745	149	IEEE 802.11a	OFDM	13.5	12.42	-0.12	10 mm	F193E	6	back	1:1	0.010	1.282	0.013	A13
5775	155	IEEE 802.11ac	OFDM	11.5	10.60	-0.10	10 mm	F193E	29.3	back	1:1	0.007	1.230	0.009	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									4.63	Body	14//~			
	Spatial Peak Uncontrolled Exposure/General Population										N/kg (m ed over				

Table 10-9 NII Body-Worn SAR

					ME	EASURE	MENT R	ESULT	s						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	-0.18	10 mm	F193E	6	back	1:1	0.017	1.151	0.020	A14
5210	42	IEEE 802.11ac	OFDM	11.5	10.36	-0.19	10 mm	F193E	29.3	back	1:1	0.003	1.300	0.004	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	-0.13	10 mm	F193E	6	back	1:1	0.010	1.253	0.013	
5290	58	IEEE 802.11ac	OFDM	11.5	11.28	0.00	10 mm	F193E	29.3	back	1:1	0.000	1.052	0.000	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	-0.19	10 mm	F193E	6	back	1:1	1.225	0.002		
5530	106	IEEE 802.11ac	OFDM	11.5	10.69	0.00	10 mm	F193E	29.3	back	1:1	0.000	1.205	0.000	
		ANSI / IEEE C	Spatial F	Peak							Body W/kg (n ged over				
FCC ID:	CID: A3LSMN9009					SA	R EVAL	JATION	REPOR	т		SAMSUNG		Reviewe Quality Manager	d by:
Document S/N: Test Dates: DUT Type: 0Y1307261479.A3L 07/29/13 - 08/21/13 Portable Handset							Page 31	of 49							

© 2013 PCTEST Engineering Laboratory, Inc.

10.3 Standalone Wireless Router SAR Data

					MEAS	UREME			0/ 11 1						
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted Power	Power	Spacing	Device Serial	# of GPRS	Duty	Side	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.	mode	OCIVICE	Power [dBm]	[dBm]	Drift [dB]	opacing	Number	Slots	Cycle	oluc	(W/kg)	Factor	(W/kg)	1101#
836.60	190	GSM 850	GSM	33.0	32.03	0.04	10 mm	F193E	1	1:8.3	back	0.123	1.250	0.154	
836.60	190	GSM 850	GSM	33.0	32.03	0.00	10 mm	F193E	1	1:8.3	front	0.073	1.250	0.091	
836.60	190	GSM 850	GSM	33.0	32.03	-0.03	10 mm	F193E	1	1:8.3	top	0.075	1.250	0.094	
836.60	190	GSM 850	GSM	33.0	32.03	0.05	10 mm	F193E	1	1:8.3	right	0.088	1.250	0.110	
836.60	190	GSM 850	GPRS	31.5	30.55	0.09	10 mm	F193E	2	1:4.15	back	0.146	1.245	0.182	A8
836.60	190	GSM 850	GPRS	31.5	30.55	-0.02	10 mm	F193E	2	1:4.15	front	0.075	1.245	0.093	
836.60	190	GSM 850	GPRS	31.5	30.55	-0.01	10 mm	F193E	2	1:4.15	top	0.094	1.245	0.117	
836.60	190	GSM 850	GPRS	31.5	30.55	-0.05	10 mm	F193E	2	1:4.15	right	0.108	1.245	0.134	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.17	10 mm	F193E	1	1:8.3	back	0.054	1.102	0.060	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.13	10 mm	F193E	1	1:8.3	front	0.007	1.102	0.008	
1880.00	661	GSM 1900	GSM	30.0	29.58	0.11	10 mm	F193E	1	1:8.3	top	0.007	1.102	0.008	
1880.00	661	GSM 1900	GSM	30.0	29.58	-0.13	10 mm	F193E	1	1:8.3	right	0.031	1.102	0.034	
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.01	10 mm	F193E	3	1:2.76	back	0.082	1.213	0.099	A9
1880.00	661	GSM 1900	GPRS	27.0	26.16	-0.13	10 mm	F193E	3	1:2.76	front	0.011	1.213	0.013	
1880.00	661	GSM 1900	GPRS	27.0	26.16	-0.16	10 mm	F193E	3	1:2.76	top	0.011	1.213	0.013	
1880.00	661	GSM 1900	GPRS	27.0	26.16	0.00	10 mm	F193E	3	1:2.76	right	0.045	1.213	0.055	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.59	0.03	10 mm	F193E	N/A	1:1	back	0.264	1.099	0.290	A10
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.59	0.06	10 mm	F193E	N/A	1:1	front	0.164	1.099	0.180	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.59	-0.05	10 mm	F193E	N/A	1:1	bottom	0.250	1.099	0.275	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	24.59	-0.02	10 mm	F193E	N/A	1:1	left	0.191	1.099	0.210	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	0.02	10 mm	F193E	N/A	1:1	back	0.263	1.102	0.290	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	-0.01	10 mm	F193E	N/A	1:1	front	0.156	1.102	0.172	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	-0.01	10 mm	F193E	N/A	1:1	bottom	0.223	1.102	0.246	
836.52	384	Cell. CDMA	EVDO Rev. 0	25.0	24.58	-0.06	10 mm	F193E	N/A	1:1	left	0.173	1.102	0.191	
1851.25	25	PCS CDMA	TDSO / SO32	24.0	23.32	-0.09	10 mm	F193E	N/A	1:1	back	0.632	1.169	0.739	
1880.00	600	PCS CDMA	TDSO / SO32	24.0	23.41	-0.02	10 mm	F193E	N/A	1:1	back	0.809	1.146	0.927	
1908.75	1175	PCS CDMA	TDSO / SO32	24.0	23.37	-0.02	10 mm	F193E	N/A	1:1	back	0.854	1.156	0.987	
1880.00	600	PCS CDMA	TDSO / SO32	24.0	23.41	-0.07	10 mm	F193E	N/A	1:1	front	0.405	1.146	0.464	
1880.00	600	PCS CDMA	TDSO / SO32	24.0	23.41	0.02	10 mm	F193E	N/A	1:1	bottom	0.406	1.146	0.465	
1880.00	600	PCS CDMA	TDSO / SO32	24.0	23.41	0.03	10 mm	F193E	N/A	1:1	left	0.215	1.146	0.246	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.0	23.95	0.00	10 mm	F193E	N/A	1:1	back	0.693	1.012	0.701	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.00	10 mm	F193E	N/A	1:1	back	0.890	1.000	0.890	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.0	23.77	-0.06	10 mm	F193E	N/A	1:1	back	0.915	1.054	0.964	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.13	10 mm	F193E	N/A	1:1	front	0.517	1.000	0.517	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	0.00	10 mm	F193E	N/A	1:1	bottom	0.562	1.000	0.562	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.0	24.00	-0.03	10 mm	F193E	N/A	1:1	left	0.278	1.000	0.278	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.0	23.77	-0.03	10 mm	F193E	N/A	1:1	back	1.020	1.054	1.075	A11
		ANSI / IEEE (C95.1 1992 - SA Spatial Peak	FETY LIMIT						1.6 V	Body V/kg (mV	V/g)			
	Uncontrolled Exposure/General Population									average	ed over 1	gram			

Table 10-10 GSM/GPRS/CDMA/EVDO Hotspot SAR Data

Note: Blue entry represents repeatability measurement.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 32 of 49
© 2012 PCTEST Engineering Labo	ratory Inc			DEV/12.5 M

Table 10-11 WLAN Hotspot SAR

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode Service	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #	
MHz	Ch.			[dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2437	6	IEEE 802.11b	DSSS	17.5	16.26	-0.03	10 mm	F1939	1	back	1:1	0.075	1.330	0.100	A12
2437	6	IEEE 802.11b	DSSS	17.5	16.26	-0.13	10 mm	F1939	1	front	1:1	0.009	1.330	0.012	
2437	6	IEEE 802.11b	DSSS	17.5	16.26	0.02	10 mm	F1939	1	right	1:1	0.032	1.330	0.043	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Body W/kg (m ged over	•			

10.4 Standalone Hand SAR Data

Table 10-12 WLAN Hand SAR

					ME	ASURE	IENT RE	ESULTS	6						
FREQU MHz	ENCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	SAR (10g) (W/kg)	Scaling Factor	Scaled SAR (10g) (W/kg)	Plot #
5745	149	IEEE 802.11a	OFDM	13.5	12.42	-0.12	0 mm	F193E	6	back	1:1	0.061	1.282	0.078	A15
5775	155	IEEE 802.11ac	OFDM	11.5	10.60	-0.14	0 mm	F193E	29.3	back	1:1	0.040	1.230	0.049	
5745	149	IEEE 802.11a	OFDM	13.5	12.42	0.00	0 mm	F193E	6	front	1:1	0.000	1.282	0.000	
5745	149	IEEE 802.11a	OFDM	13.5	12.42	-0.19	0 mm	F193E	6	right	1:1	0.014	1.282	0.018	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	-0.12	0 mm	F193E	6	back	1:1	0.088	1.151	0.101	A16
5210	42	IEEE 802.11ac	OFDM	11.5	10.36	-0.19	0 mm	F193E	29.3	back	1:1	0.044	1.300	0.057	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	0.00	0 mm	F193E	6	front	1:1	0.000	1.151	0.000	
5180	36	IEEE 802.11a	OFDM	13.5	12.89	0.15	0 mm	F193E	6	right	1:1	0.022	1.151	0.025	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	-0.12	0 mm	F193E	6	back	1:1	0.068	1.253	0.085	
5290	58	IEEE 802.11ac	OFDM	11.5	11.28	0.16	0 mm	F193E	29.3	back	1:1	0.049	1.052	0.052	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	0.00	0 mm	F193E	6	front	1:1	0.000	1.253	0.000	
5280	56	IEEE 802.11a	OFDM	13.5	12.52	0.13	0 mm	F193E	6	right	1:1	0.016	1.253	0.020	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	-0.12	0 mm	F193E	6	back	1:1	0.048	1.225	0.059	
5530	106	IEEE 802.11ac	OFDM	11.5	10.69	-0.13	0 mm	F193E	29.3	back	1:1	0.023	1.205	0.028	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	0.00	0 mm	F193E	6	front	1:1	0.000	1.225	0.000	
5500	100	IEEE 802.11a	OFDM	13.5	12.62	0.15	0 mm	F193E	6	right	1:1	0.010	1.225	0.012	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Hand W/kg (m ed over 1	W/g) 0 grams			

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 33 of 49
© 2013 PCTEST Engineering Lab	oratory, Inc.			REV 12.5 M

10.5 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery with NFC antenna was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg or when the measures 10 gram SAR results for a frequency band were greater than 2.0 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 12 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 5.7 for more details).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR. Additionally, GPRS data was evaluated for body-worn SAR to support simultaneous capabilities.
- 2. GSM Voice Hotspot SAR and GPRS Data Head SAR were additionally evaluated to support simultaneous capabilities.
- 3. Justification for reduced test configurations per KDB Publication 941225 D03v01: The sourcebased time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power was evaluated for SAR for hotspot SAR.
- 4. Per FCC KDB Publication 447498 D01v05r01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

CDMA Notes:

- 1. Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v02. EVDO Rev 0 was evaluated for Head SAR to support simultaneous capabilities.
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH and EVDO Rev 0. TDSO / SO32 FCH+SCH SAR tests were not required since the average output power was not more than 0.25 dB higher than the TDSO / SO32 FCH only powers, per FCC KDB Publication 941225 D01v02. EVDO Rev 0 was evaluated for Body-Worn exposure since the average output power was more than 0.25 dB higher than the TDSO / SO32 FCH only powers and to support simultaneous capabilities.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 34 of 49	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Fage 34 01 49	

- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01 procedures for data devices. Since the average output power of Subtype 2 for Rev. A is less than the Rev. 0 power levels, then EVDO Rev. A SAR is not required. SAR is not required for 1x RTT for Ev-Do hotspot devices when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. CDMA 1xRTT Hotspot SAR and EVDO Rev. 0 Head SAR were additionally evaluated to support simultaneous capabilities.
- 6. Per FCC KDB Publication 447498 D01v05r01, when the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is > 0.8 W/kg, testing at the other channels is required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz bandwidths) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Per FCC KDB Publication 648474 D03-D04, this device is considered a "phablet" since its diagonal distance is greater than 160 mm and less than 200mm. Therefore hand SAR tests are required. Because wireless router operations are not supported for 5 GHz WIFI, hand SAR was evaluated for 5 GHz WIFI. However, hand SAR was not evaluated for 2.4 GHz WIFI since Hotspot SAR for 2.4 GHz WIFI was <1.2 W/kg.
- 4. Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- 5. When Hotspot is enabled, all 5 GHz bands are disabled. Therefore no 5 GHz WIFI Hotspot SAR Data was required.
- 6. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg and the reported 10g averaged SAR is <2.0 W/kg, SAR testing on other default channels was not required.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 25 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 35 of 49
© 2012 BCTEST Engineering Laboratory Inc.				DEV/ 12 E M

© 2013 PCTEST Engineering Laboratory, Inc.

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r01 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r01 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Main Antenna SAR testing was not required per FCC KDB 648474 for extremity exposure conditions. Therefore, no further analysis was required to determine that possible simultaneous scenarios (including those with WIFI direct) would not exceed the SAR Limit.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$$

Table 11-1
Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2441	10.50	10	0.229

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 26 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 36 of 49
© 2013 PCTEST Engineering Laboratory, Inc.			REV 12.5 M	

11.3 Head SAR Simultaneous Transmission Analysis

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.129	0.015	0.144		Right Cheek	0.019	0.015	0.034
Head SAR	Right Tilt	0.103	0.016	0.119	Head SAR	Right Tilt	0.014	0.016	0.030
Tieau SAIX	Left Cheek	0.289	0.068	0.357	Head SAIN	Left Cheek	0.036	0.068	0.104
	Left Tilt	0.229	0.040	0.269		Left Tilt	0.024	0.040	0.064
Simult Tx	Configuration	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.132	0.015	0.147		Right Cheek	0.073	0.015	0.088
Head SAR	Right Tilt	0.082	0.016	0.098	Head SAR	Right Tilt	0.095	0.016	0.111
Tieau SAIX	Left Cheek	0.197	0.068	0.265	Head SAIN	Left Cheek	0.104	0.068	0.172
	Left Tilt	0.080	0.040	0.120		Left Tilt	0.075	0.040	0.115
Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.128	0.015	0.143		Right Cheek	0.086	0.015	0.101
Head SAR	Right Tilt	0.064	0.016	0.080	Head SAR	Right Tilt	0.097	0.016	0.113
TIEau SAR	Left Cheek	0.124	0.068	0.192	Head SAR	Left Cheek	0.146	0.068	0.214
	Left Tilt	0.075	0.040	0.115		Left Tilt	0.077	0.040	0.117

Table 11-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 27 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 37 of 49
© 2013 PCTEST Engineering Laborato	ry, Inc.			REV 12.5 M

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	(W/kg) Simult Tx	Configuration	GPRS 850 SAR (W/kg)	PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2	1+2+3			1	2	3	1+2	1+2+3
	Right Cheek	0.179	0.132	0.015	0.311	0.326		Right Cheek	0.179	0.073	0.015	0.252	0.267
Head SAR	Right Tilt	0.152	0.082	0.016	0.234	0.250	Head SAR	Right Tilt	0.152	0.095	0.016	0.247	0.263
Tieau SAIN	Left Cheek	0.349	0.197	0.068	0.546	0.614	Head SAIN	Left Cheek	0.349	0.104	0.068	0.453	0.521
	Left Tilt	0.295	0.080	0.040	0.375	0.415		Left Tilt	0.295	0.075	0.040	0.370	0.410
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	ΣSAR	(W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2	1+2+3			1	2	3	1+2	1+2+3
	Right Cheek	0.036	0.132	0.015	0.168	0.183		Right Cheek	0.036	0.073	0.015	0.109	0.124
Head SAR	Right Tilt	0.025	0.082	0.016	0.107	0.123	Head SAR	Right Tilt	0.025	0.095	0.016	0.120	0.136
	Left Cheek	0.066	0.197	0.068	0.263	0.331	nead OAIX	Left Cheek	0.066	0.104	0.068	0.170	0.238
	Left Tilt	0.041	0.080	0.040	0.121	0.161		Left Tilt	0.041	0.075	0.040	0.116	0.156
Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2	1+2+3			1	2	3	1+2	1+2+3
	Right Cheek	0.133	0.129	0.015	0.262	0.277		Right Cheek	0.133	0.019	0.015	0.152	0.167
Head SAR	Right Tilt	0.069	0.103	0.016	0.172	0.188	Head SAR	Right Tilt	0.069	0.014	0.016	0.083	0.099
Head SAIN	Left Cheek	0.143	0.289	0.068	0.432	0.500	Head SAIN	Left Cheek	0.143	0.036	0.068	0.179	0.247
	Left Tilt	0.086	0.229	0.040	0.315	0.355		Left Tilt	0.086	0.024	0.040	0.110	0.150
Simult Tx	Configuration	PCS EVDO SAR (W/kg)	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2	1+2+3			1	2	3	1+2	1+2+3
	Right Cheek	0.102	0.129	0.015	0.231	0.246		Right Cheek	0.102	0.019	0.015	0.121	0.136
Head SAR	Right Tilt	0.087	0.103	0.016	0.190	0.206	Head SAR	Right Tilt	0.087	0.014	0.016	0.101	0.117
LIEau SAR	Left Cheek	0.143	0.289	0.068	0.432	0.500	neau oAR	Left Cheek	0.143	0.036	0.068	0.179	0.247
	Left Tilt	0.093	0.229	0.040	0.322	0.362		Left Tilt	0.093	0.024	0.040	0.117	0.157

Table 11-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	Table 11-4 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)										
Simult Tx	Configuration	GSM 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GSM 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
	Right Cheek	0.129	0.006	0.135		Right Cheek	0.019	0.006	0.025		
Head SAR	Right Tilt	0.103	0.000	0.103	Head SAR	Right Tilt	0.014	0.000	0.014		
Head SAR	Left Cheek	0.289	0.001	0.290	Head SAR	Left Cheek	0.036	0.001	0.037		
	Left Tilt	0.229	0.000	0.229		Left Tilt	0.024	0.000	0.024		
Simult Tx	Configuration	Cell. CDMA SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS CDMA SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
	Right Cheek	0.132	0.006	0.138		Right Cheek	0.073	0.006	0.079		
Head SAR	Right Tilt	0.082	0.000	0.082	Head SAR	Right Tilt	0.095	0.000	0.095		
TIEau SAR	Left Cheek	0.197	0.001	0.198	TIEau OAIX	Left Cheek	0.104	0.001	0.105		
	Left Tilt	0.080	0.000	0.080		Left Tilt	0.075	0.000	0.075		

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		D 00 (40		
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 38 of 49		
© 2013 PCTEST Engineering Laboratory, Inc.						

11.4 Body-Worn Simultaneous Transmission Analysis

		Table) 11-5			
Simultaneous	Transmissi	on Scenario wi	th 2.4 GH	z WLAN (Body-W	orn at 10 mm)
				2 4 GHz		

Configuration	Mode	GSM/CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.154	0.100	0.254
Back Side	GSM 1900	0.060	0.100	0.160
Back Side	Cell. CDMA	0.290	0.100	0.390
Back Side	PCS CDMA	0.987	0.100	1.087

Table 11-6 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 10 mm)

Configuration	GSM 850 SAR (W/kg)	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	GSM 850 SAR (W/kg)	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3
Back	0.154	0.290	0.100	0.444	0.544	Back	0.154	1.075	0.100	1.229	1.329
Configuration	GSM 1900 SAR (W/kg)	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	GSM 1900 SAR (W/kg)	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3
Back	0.060	0.290	0.100	0.350	0.450	Back	0.060	1.075	0.100	1.135	1.235
Configuration	Cell. CDMA SAR (W/kg)	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	Cell. CDMA SAR (W/kg)	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3
Back	0.290	0.182	0.100	0.472	0.572	Back	0.290	0.099	0.100	0.389	0.489
	PCS CDMA SAR (W/kg)	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	PCS CDMA SAR (W/kg)	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3
Back	0.987	0.182	0.100	1.169	1.269	Back	0.987	0.099	0.100	1.086	1.186

Table 11-7 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 10 mm)

Configuration	Mode	GSM/CDMA SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.154	0.020	0.174
Back Side	GSM 1900	0.060	0.020	0.080
Back Side	Cell. CDMA	0.290	0.020	0.310
Back Side	PCS CDMA	0.987	0.020	1.007

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 (40	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 39 of 49	
© 2013 PCTEST Engineering Labo	pratory, Inc.	·		REV 12.5 M	

Table 11-8
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 10 mm)

Configuration	Mode	GSM/CDMA SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.154	0.229	0.383
Back Side	GSM 1900	0.060	0.229	0.289
Back Side	Cell. CDMA	0.290	0.229	0.519
Back Side	PCS CDMA	0.987	0.229	1.216

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	Table 11-9 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 10 mm)											
Configuration	GSM 850 SAR (W/kg)	Cell. EVDO SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	GSM 850 SAR (W/kg)	PCS EVDO SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3	
Back	0.154	0.290	0.229	0.444	0.673	Back	0.154	1.075	0.229	1.229	1.458	
Configuration	GSM 1900 SAR (W/kg)	Cell. EVDO SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	GSM 1900 SAR (W/kg)	PCS EVDO SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3	
Back	0.060	0.290	0.229	0.350	0.579	Back	0.060	1.075	0.229	1.135	1.364	
Configuration	Cell. CDMA SAR (W/kg)	GPRS 850 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	Cell. CDMA SAR (W/kg)	GPRS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3	
Back	0.290	0.182	0.229	0.472	0.701	Back	0.290	0.099	0.229	0.389	0.618	
Configuration	PCS CDMA SAR (W/kg)	GPRS 850 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	Configuration	PCS CDMA SAR (W/kg)	GPRS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Σ SAR (W/kg)	
	1	2	3	1+2	1+2+3		1	2	3	1+2	1+2+3	
Back	0.987	0.182	0.229	1.169	1.398	Back	0.987	0.099	0.229	1.086	1.315	

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results

were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 at 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 40 of 49
© 2013 PCTEST Engineering Lab	oratory, Inc.	·		REV 12.5 M

11.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.182	0.100	0.282		Back	0.099	0.100	0.199
	Front	0.093	0.012	0.105		Front	0.013	0.012	0.025
Body	Тор	0.117	-	0.117	Body	Тор	0.013	-	0.013
SAR	Bottom	-	-	0.000	SAR	Bottom	-	-	0.000
	Right	0.134	0.043	0.177		Right	0.055	0.043	0.098
	Left	-	-	0.000		Left	-	-	0.000
Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.290	0.100	0.390		Back	1.075	0.100	1.175
	Front	0.172	0.012	0.184		Front	0.517	0.012	0.529
Body	Тор	-	-	0.000	Body	Тор	-	-	0.000
SAR	Bottom	0.246	-	0.246	SAR	Bottom	0.562	-	0.562
	Right	-	0.043	0.043		Right	-	0.043	0.043
	Left	0.191	-	0.191		Left	0.278	-	0.278

Table 11-10 Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Table 11-11

Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 850 SAR (W/kg)	PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.182	0.290			Back	0.182	0.987	0.100	1.269	
			Front	0.093	0.464	0.012	0.569				
Body			Тор	0.117	-	-	0.117				
SAR	Bottom - 0.275 - 0.275 SAR E		Bottom	-	0.465	-	0.465				
	Right	0.134	-	0.043	0.177		Right	0.134	-	0.043	0.177
	Left	-	0.210	-	0.210		Left	-	0.246	-	0.246
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.099	0.290	0.100	0.489		Back	0.099	0.987	0.100	1.186
	Front	0.013	0.180	0.012	0.205		Front	0.013	0.464	0.012	0.489
Body	Тор	0.013	-	-	0.013	Body	Тор	0.013	-	-	0.013
SAR	Bottom	-	0.275	-	0.275	SAR	Bottom	-	0.465	-	0.465
	Right	0.055	-	0.043	0.098		Right	0.055	-	0.043	0.098
	Left - 0.210 - 0.210			Left	-	0.246	-	0.246			

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 41 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 41 of 49
© 2013 PCTEST Engineering Labo	oratory, Inc.	·		REV 12.5 M

Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.290	0.154	0.100	0.544		Back	0.290	0.060	0.100	0.450
	Front	0.172	0.091	0.012	0.275		Front	0.172	0.008	0.012	0.192
Body	Тор	-	0.094	-	0.094	Body	Тор	-	0.008	-	0.008
SAR	Bottom	0.246	-	-	0.246	SAR	Bottom	0.246	-	-	0.246
	Right	-	0.110	0.043	0.153		Right	-	0.034	0.043	0.077
	Left	0.191	-	-	0.191		Left	0.191	-	-	0.191
Simult Tx	Configuration	PCS EVDO SAR (W/kg)	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	1.075	0.154	0.100	1.329		Back	1.075	0.060	0.100	1.235
	Front	0.517	0.091	0.012	0.620		Front	0.517	0.008	0.012	0.537
Body	Тор	-	0.094	-	0.094	Body	Тор	-	0.008	-	0.008
SAR	Bottom	0.562	-	-	0.562	SAR	Bottom	0.562	-	-	0.562
	Right	-	0.110	0.043	0.153		Right	-	0.034	0.043	0.077
	Left	0.278	-	-	0.278		Left	0.278	-	-	0.278

11.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 at 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 42 of 49
© 2013 PCTEST Engineering Labo	oratory, Inc.	·		REV 12.5 M

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

	body SAR measurement variability results												
				BOD	YVAR	ABILIT	Y RESUL	тs					
Band	Band FREQUENCY Mode Service Side						Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1908.75	1175	PCS CDMA	EVDO Rev. 0	back	10 mm	0.915	1.020	1.11	N/A	N/A	N/A	N/A
	ANSI	/ IEEE (C95.1 1992 - SAF	ETY LIMIT					Bo	dy			
	Spatial Peak								1.6 W/kg	ı (mW/g)			
	Uncontrolled Exposure/General Population							av	eraged c	ver 1 gram			

Table 12-1 Body SAR Measurement Variability Results

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the standard measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Baga 42 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Page 43 of 49
© 2013 PCTEST Engineering Laboratory	, Inc.		REV 12.5 M

13 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/16/2013	Annual	4/16/2014	JP38020182
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/16/2013	Annual	4/16/2014	MY45470194
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/17/2013	Annual	4/17/2014	3629U00687
Agilent	N9020A	MXA Signal Analyzer	10/9/2012	Annual	10/9/2013	US46470561
Agilent	85070C	Dielectric Probe Kit	2/14/2013	Annual	2/14/2014	MY44300633
Agilent	E5515C	Wireless Communications Test Set	10/18/2012	Biennial	10/18/2014	GB43193563
Agilent	85047A	S-Parameter Test Set	N/A	N/A	N/A	2904A00579
mplifier Research Anritsu	5S1G4 MA2481A	5W, 800MHz-4.2GHz Power Sensor	CBT 2/14/2013	N/A Annual	CBT 2/14/2014	21910 5318
Anritsu	ML2438A	Power Meter	2/14/2013	Annual	2/14/2014	1190013
Anritsu	ML2438A ML2438A	Power Meter	2/14/2013	Annual	2/14/2014	98150041
Anritsu	ML2438A	Power Meter	12/4/2012	Annual	12/4/2013	1070030
Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	5821
Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	2400
Anritsu	MA2411B	Pulse Sensor	9/19/2012	Annual	9/19/2013	1027293
Anritsu	ML2495A	Power Meter	10/11/2012	Annual	10/11/2013	1039008
Anritsu	MT8820C	Radio Communication Tester	11/6/2012	Annual	11/6/2013	6200901190
Anritsu	MA24106A	USB Power Sensor	8/22/2012	Annual	8/22/2013	1231538
Anritsu	MA24106A	USB Power Sensor	8/22/2012	Annual	8/22/2013	1231535
Anritsu	MA2481D	Universal Sensor	12/17/2012	Annual	12/17/2013	1204419
Anritsu	MA2481D	Universal Sensor	12/17/2012	Annual	12/17/2013	1204343
Anritsu	ML2496A	Power Meter	11/28/2012	Annual	11/28/2013	1138001
Anritsu	MA2411B	Pulse Power Sensor	12/4/2012	Annual	12/4/2013	1207364
Anritsu	MA2411B	Pulse Power Sensor	12/5/2012	Annual	12/5/2013	1126066
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-100
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014488
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122539615
Fisher Scientific	15-077-960	Thermometer	11/6/2012	Biennial	11/6/2014	122640025
Fisher Scientific	15-078J	Long Stem Thermometer	10/30/2012	Biennial	10/30/2014	122626059
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/10/2012	Annual	10/10/2013	1833460
Gigatronics	8651A	Universal Power Meter	10/10/2012	Annual	10/10/2013	8650319
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	5/3/2013	Annual	5/3/2014	836371/0079
Rohde & Schwarz	NRVD	Dual Channel Power Meter	10/12/2012	Biennial	10/12/2014	101695
Rohde & Schwarz	NRV-Z32	Peak Power Sensor	10/12/2012	Biennial	10/12/2014	836019/013
Rohde & Schwarz	SMIQ03B	Signal Generator	4/17/2013	Annual	4/17/2014	DE27259
Rohde & Schwarz	CMW500	Radio Communication Tester	10/7/2011	Biennial	10/7/2013	103962
Rohde & Schwarz	CMW500	Radio Communication Tester	2/8/2013	Annual	2/8/2014	101699
Rohde & Schwarz	SME06	Signal Generator	10/11/2012	Annual	10/11/2013	832026
Rohde & Schwarz	CMW500	Radio Communication Tester	9/26/2012	Annual	9/26/2013	108798
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	12/11/2012	Annual	12/11/2013	1091
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/17/2013	Annual	4/17/2014	B010177
VWR	36934-158	Wall-Mounted Thermometer	9/30/2011	Biennial	9/30/2013	111859323
VWR	36934-158	Wall-Mounted Thermometer	9/30/2011	Biennial	9/30/2013	111859332
VWR	62344-925	Mini-Thermometer	10/24/2011	Biennial	10/24/2013	111886414
VWR VWR	62344-925	Mini-Thermometer	10/24/2011	Biennial Biennial	10/24/2013	111886441 122179874
	23226-658	Long Stem Thermometer	3/30/2012		3/30/2014 5/16/2014	
VWR	23226-658 D1900V2	Long Stem Thermometer 1900 MHz SAR Dipole	5/16/2012 2/6/2013	Biennial		122295544 5d148
SPEAG SPEAG	D1900V2 D2450V2		8/23/2013	Annual	2/6/2014 8/23/2013	50148
		2450 MHz SAR Dipole		Annual		/19
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/14/2013 1/11/2013		2/14/2014	1120
SPEAG	D5GHzV2	5 GHz SAR Dipole		Annual	1/11/2014	1057
SPEAG	D835V2	835 MHz SAR Dipole	8/23/2012	Annual	8/23/2013	4d026
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/6/2013	Annual	2/6/2014	649
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/17/2013	Annual	1/17/2014	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/22/2013	Annual	4/22/2014	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/24/2012	Annual	8/24/2013	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/8/2013	Annual	3/8/2014	1334
SPEAG	ES3DV2	SAR Probe	8/28/2012	Annual	8/28/2013	3022
SPEAG	ES3DV3	SAR Probe	3/15/2013	Annual	3/15/2014	3209
	ES3DV3	SAR Probe	4/29/2013	Annual	4/29/2014	3319
SPEAG						
SPEAG SPEAG SPEAG	EX3DV4 EX3DV4	SAR Probe SAR Probe	1/17/2013 2/27/2013	Annual Annual	1/17/2014 2/27/2014	3589 3920

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 11 of 10
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 44 of 49
© 2012 BCTEST Engineering Labo	arotony Inc			DEV/ 12 E M

© 2013 PCTEST Engineering Laboratory, Inc.

14 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u,	ui	vi
	000.	. ,				Ű	(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.0	Ν	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 45 of 49	
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		
© 2012 DCTEST Engineering Laboratory Inc.				

© 2013 PCTEST Engineering Laboratory, Inc.

Applicable for frequencies up to 6 GHz.

a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	cxg/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v,
	Sec.	(= /0)		5	. 9	i o gino	(± %)	(± %)	
Measurement System							(= /0)	(_ /0)	
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	x
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	x
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	x
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	x
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	x
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	x
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	x
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	x
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 46 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 46 of 49

© 2013 PCTEST Engineering Laboratory, Inc.

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 47 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset		Page 47 of 49
© 2013 PCTEST Engineering Laboratory, Inc.				

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

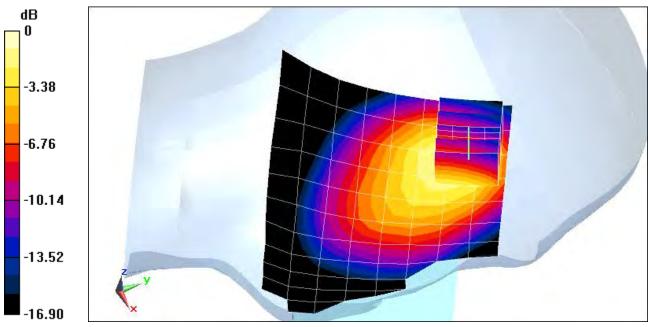
FCC ID: A3LSMN9009		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 49 of 40
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset	Page 48 of 49

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [33] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 49 of 49		
0Y1307261479.A3L	07/29/13 - 08/21/13	Portable Handset			
© 2012 DOTEST Engineering Laboratory Inc.					

APPENDIX A: SAR TEST DATA

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E


Communication System: GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 42.005$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 07-31-2013; Ambient Temp: 24.9°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.46, 6.46, 6.46); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

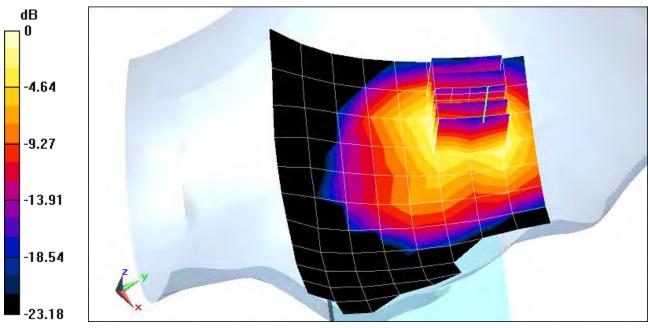
Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.340 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.573 W/kg SAR(1 g) = 0.280 W/kg

0 dB = 0.292 W/kg = -5.35 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.396$ S/m; $\varepsilon_r = 38.428$; $\rho = 1000$ kg/m³


Phantom section: Left Section

Test Date: 08-21-2013; Ambient Temp: 23.4°C; Tissue Temp: 22.6°C

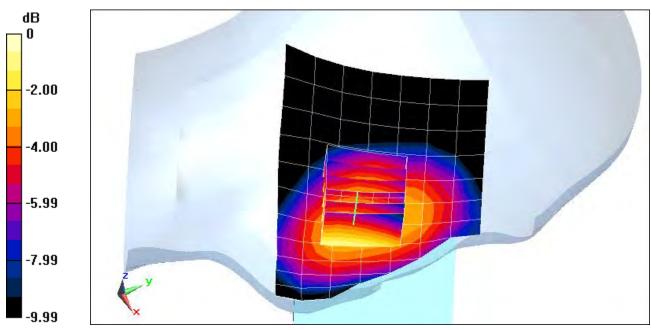
Probe: ES3DV3 - SN3209; ConvF(5.21, 5.21, 5.21); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 3 Tx slots

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.480 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.106 W/kg SAR(1 g) = 0.054 W/kg

0 dB = 0.0593 W/kg = -12.27 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E


Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 42.006$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 07-31-2013; Ambient Temp: 24.9°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.46, 6.46, 6.46); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Mode: Cell. CDMA, Left Head, Cheek, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.453 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.212 W/kg SAR(1 g) = 0.178 W/kg

0 dB = 0.187 W/kg = -7.28 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.412$ S/m; $\varepsilon_r = 38.775$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 08-05-2013; Ambient Temp: 23.2°C; Tissue Temp: 22.2°C

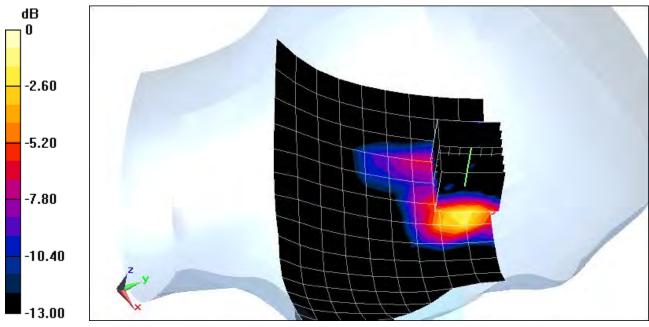
Probe: ES3DV3 - SN3319; ConvF(5.22, 5.22, 5.22); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013 Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (6);SEMCAD X Version 14.6.10 (7164)

Mode: PCS EVDO RevA, Left Head, Cheek, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.490 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.222 W/kg SAR(1 g) = 0.146 W/kg

0 dB = 0.156 W/kg = -8.07 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F1939


Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.837$ S/m; $\varepsilon_r = 39.16$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 07-31-2013; Ambient Temp: 23.5°C; Tissue Temp: 23.4°C

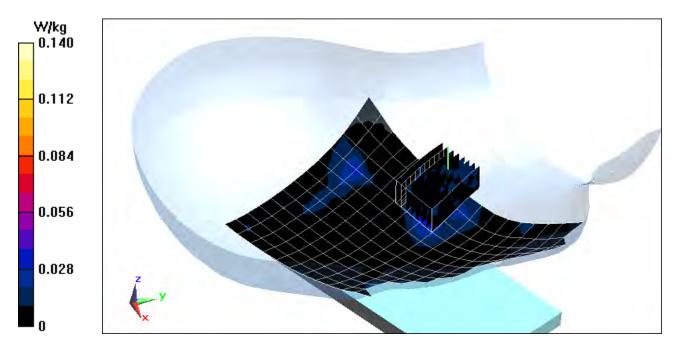
Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Left Head, Cheek, Ch 06, 1 Mbps

Area Scan (10x15x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.843 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.105 W/kg SAR(1 g) = 0.051 W/kg

0 dB = 0.0701 W/kg = -11.54 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F1939


Communication System: IEEE 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5745 MHz; $\sigma = 5.269$ S/m; $\varepsilon_r = 35.612$; $\rho = 1000$ kg/m³ Phantom section: Right Section

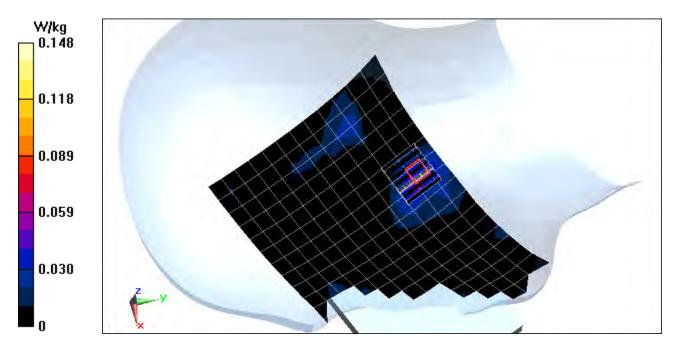
Test Date: 08-05-2013; Ambient Temp: 22.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3920; ConvF(4.02, 4.02, 4.02); Calibrated: 2/27/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Right Head, Cheek, Ch 149, 6 Mbps

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (11x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 0.559 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.0480 W/kg SAR(1 g) = 0.00201 W/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F1939


Communication System: IEEE 802.11a; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5500 MHz; $\sigma = 5.006$ S/m; $\varepsilon_r = 36.029$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 08-05-2013; Ambient Temp: 22.8°C; Tissue Temp: 22.8°C

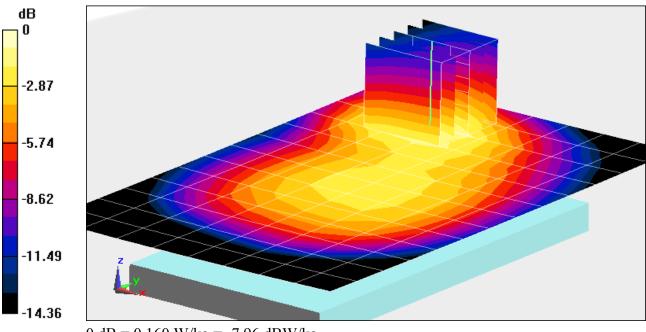
Probe: EX3DV4 - SN3920; ConvF(4.52, 4.52, 4.52); Calibrated: 2/27/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.5 GHz, Right Head, Cheek, Ch 100, 6 Mbps

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 0 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.124 W/kg SAR(1 g) = 0.00452 W/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.999$ S/m; $\varepsilon_r = 54.477$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-31-2013; Ambient Temp: 24.9°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots

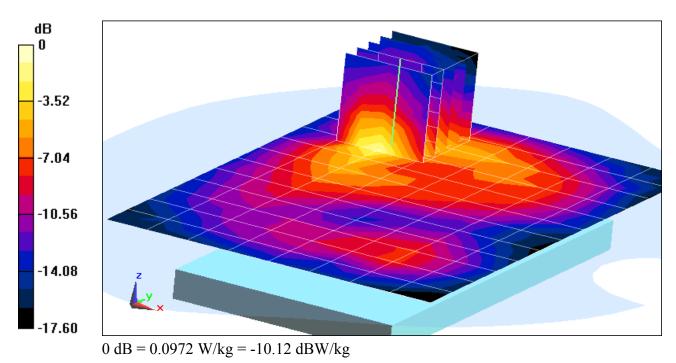
Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.118 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.249 W/kg SAR(1 g) = 0.146 W/kg

0 dB = 0.160 W/kg = -7.96 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used:

f = 1880 MHz; σ = 1.481 S/m; ϵ_r = 52.844; ρ = 1000 kg/m^3


Phantom section: Flat Section; Space: 1.0 cm

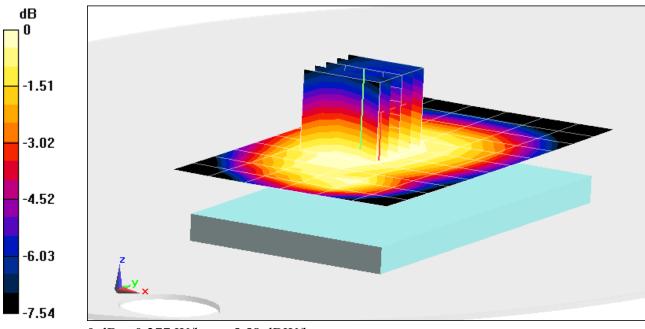
Test Date: 07-29-2013; Ambient Temp: 23.8°C; Tissue Temp: 23.2°C

Probe: EX3DV4 - SN3920; ConvF(7.38, 7.38, 7.38); Calibrated: 2/27/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 3 Tx Slots

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.107 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.151 W/kg SAR(1 g) = 0.082 W/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E


Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.999$ S/m; $\varepsilon_r = 54.477$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-31-2013; Ambient Temp: 24.9°C; Tissue Temp: 22.7°C

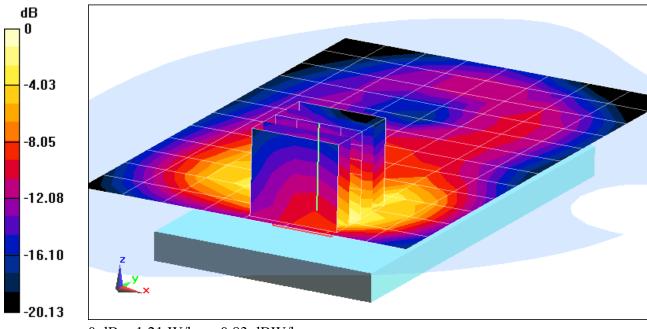
Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Mode: Cell. CDMA, Body SAR, Back side, Mid.ch

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.747 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.329 W/kg SAR(1 g) = 0.264 W/kg

0 dB = 0.277 W/kg = -5.58 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E


Communication System: CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1908.75 MHz; $\sigma = 1.56$ S/m; $\varepsilon_r = 51.973$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-21-2013; Ambient Temp: 24.1°C; Tissue Temp: 23.0°C

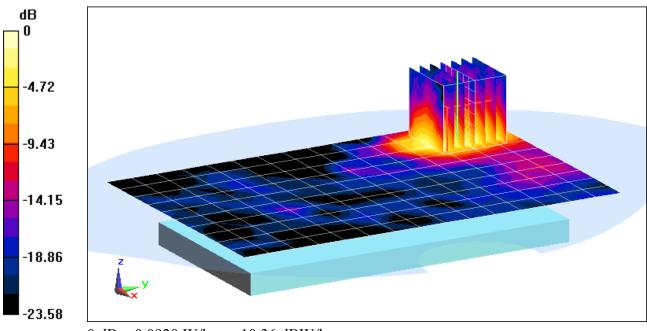
Probe: EX3DV4 - SN3920; ConvF(7.38, 7.38, 7.38); Calibrated: 2/27/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Mode: PCS EVDO Rev. 0, Body SAR, Back side, High.ch

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.260 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.86 W/kg SAR(1 g) = 1.020 W/kg

0 dB = 1.21 W/kg = 0.83 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F1939


Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.965$ S/m; $\varepsilon_r = 52.04$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.0°C; Tissue Temp: 23.2°C

Probe: ES3DV2 - SN3022; ConvF(3.97, 3.97, 3.97); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Back Side

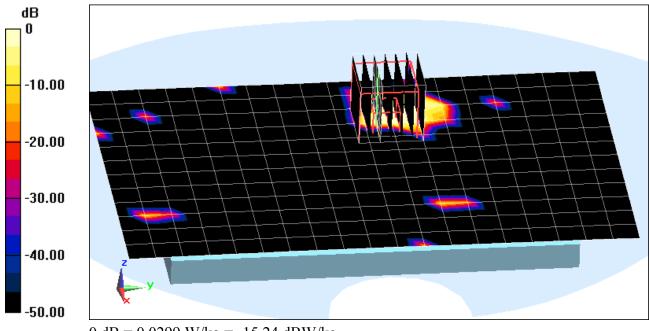
Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.600 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.178 W/kg SAR(1 g) = 0.075 W/kg

0 dB = 0.0920 W/kg = -10.36 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:

f = 5745 MHz; σ = 6.08 S/m; ϵ_r = 46.73; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 149, 6 Mbps, Back Side

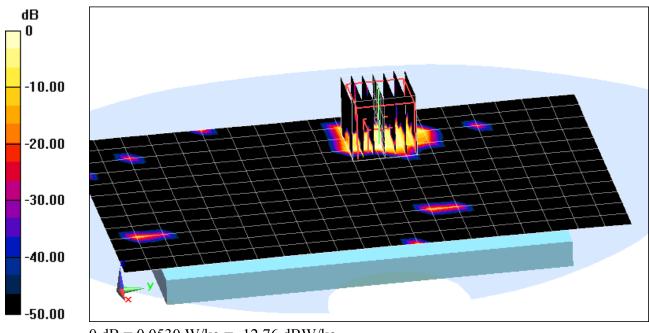
Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Grid: 1.4 Reference Value = 0.831 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.153 W/kg SAR(1 g) = 0.010 W/kg

0 dB = 0.0299 W/kg = -15.24 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:

f = 5180 MHz; σ = 5.529 S/m; ε_r = 47.107; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (6);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.2 GHz, Body SAR, Ch 36, 6 Mbps, Back Side

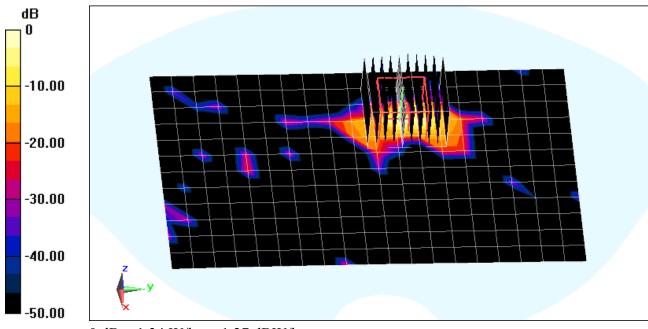
Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 1.831 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.132 W/kg SAR(1 g) = 0.017 W/kg

0 dB = 0.0530 W/kg = -12.76 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:

f = 5745 MHz; σ = 6.08 S/m; ϵ_r = 46.73; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Extremity SAR, Ch 149, 6 Mbps, Back Side

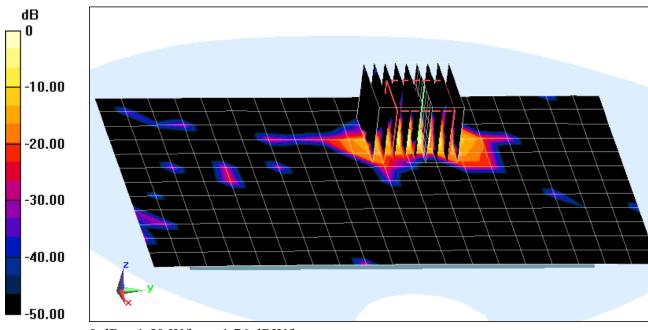
Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (10x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 10.896 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.28 W/kg SAR(10 g) = 0.061 W/kg

0 dB = 1.34 W/kg = 1.27 dBW/kg

DUT: A3LSMN9009; Type: Portable Handset; Serial: F193E

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:

f = 5180 MHz; σ = 5.529 S/m; ε_r = 47.107; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.2 GHz, Extremity SAR, Ch 36, 6 Mbps, Back Side

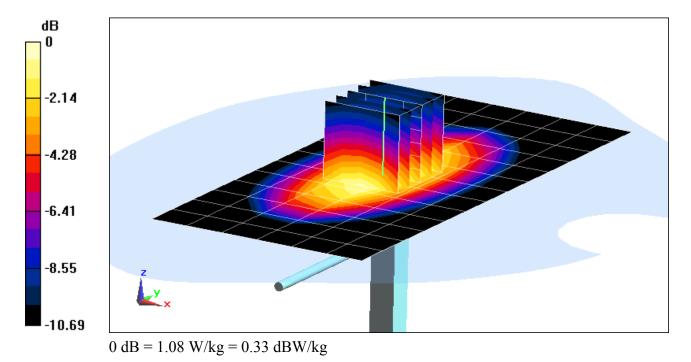
Area Scan 2 (13x20x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 11.456 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(10 g) = 0.088 W/kg

0 dB = 1.50 W/kg = 1.76 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d026

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.926$ S/m; $\varepsilon_r = 42.024$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-31-2013; Ambient Temp: 24.9°C; Tissue Temp: 22.9°C

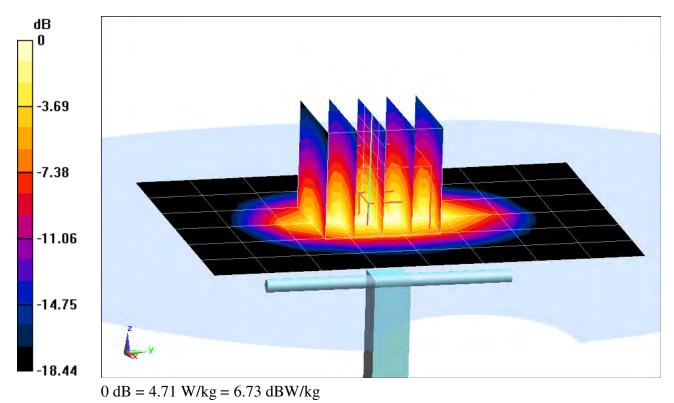
Probe: ES3DV3 - SN3209; ConvF(6.46, 6.46, 6.46); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 0.994 W/kg Deviation = 5.86%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated):


f = 1900 MHz; σ = 1.436 S/m; ϵ_r = 38.689; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

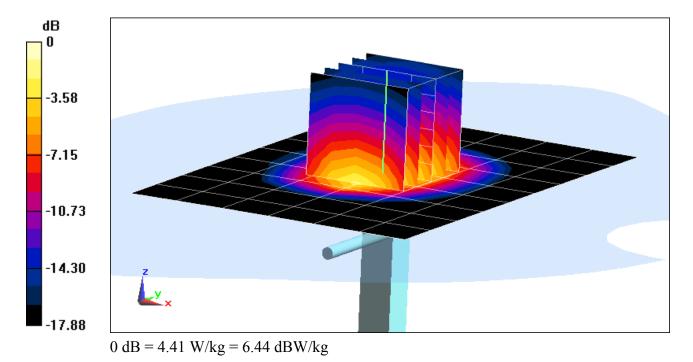
Test Date: 08-05-2013; Ambient Temp: 23.2°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(5.22, 5.22, 5.22); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013 Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (6);SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 7.92 W/kg SAR(1 g) = 4.28 W/kg Deviation = 7.81%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 38.371$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-21-2013; Ambient Temp: 23.4°C; Tissue Temp: 22.6°C

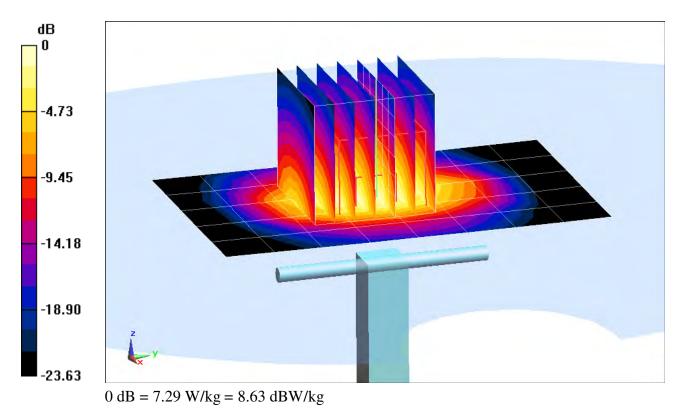
Probe: ES3DV3 - SN3209; ConvF(5.21, 5.21, 5.21); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 7.23 W/kg SAR(1 g) = 3.91 W/kg Deviation = -1.51%

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used:


f = 2450 MHz; σ = 1.852 S/m; ϵ_r = 39.114; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-31-2013; Ambient Temp: 23.5°C; Tissue Temp: 23.4°C

Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

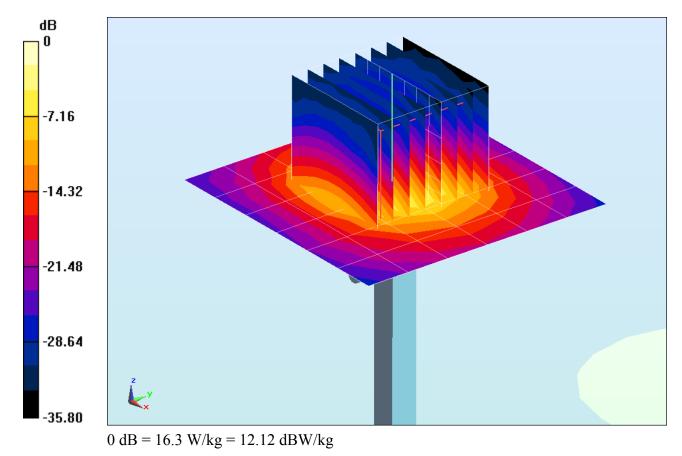
2450MHz System Verification

Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.62 W/kg Deviation = 6.64%

DUT: SAR Dipole 5200 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5200 MHz; $\sigma = 4.707$ S/m; $\varepsilon_r = 36.497$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm


Test Date: 08-05-2013; Ambient Temp: 22.6°C; Tissue Temp: 22.8°C

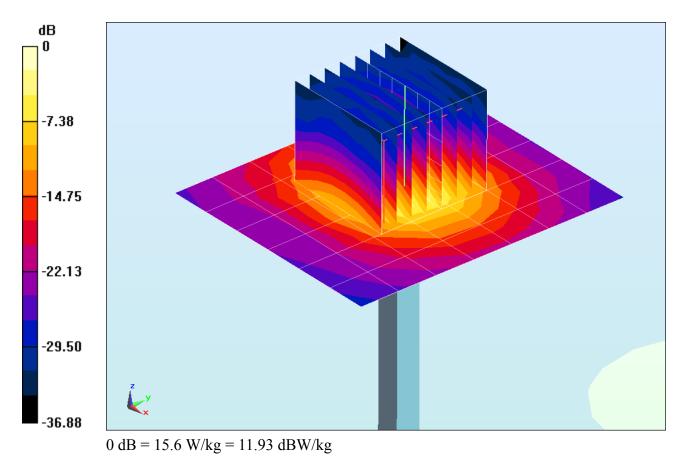
Probe: EX3DV4 - SN3920; ConvF(4.87, 4.87, 4.87); Calibrated: 2/27/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

5200 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.2 W/kg

Deviation = -5.26%

DUT: SAR Dipole 5300 MHz; Type: D5GHzV2; Serial: 1120


Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5300 MHz; $\sigma = 4.799$ S/m; $\varepsilon_r = 36.312$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 22.6°C; Tissue Temp: 22.8°C

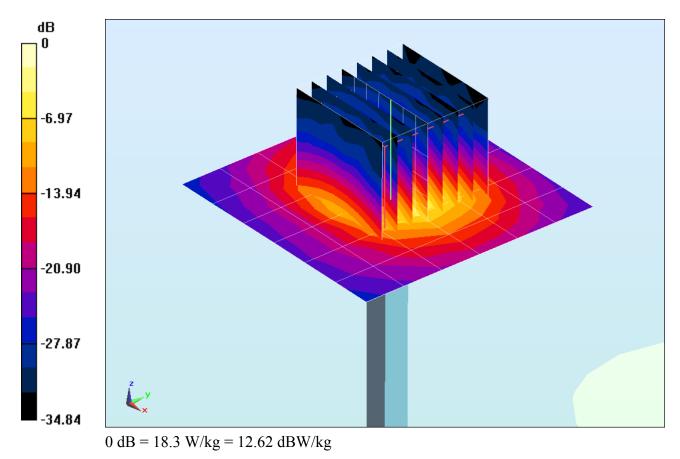
Probe: EX3DV4 - SN3920; ConvF(4.73, 4.73, 4.73); Calibrated: 2/27/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

5300 MHz System Verification

Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.96 W/kg Deviation = 1.14%

DUT: SAR Dipole 5500 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5500 MHz; $\sigma = 5.006$ S/m; $\varepsilon_r = 36.029$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 22.8°C; Tissue Temp: 22.8°C

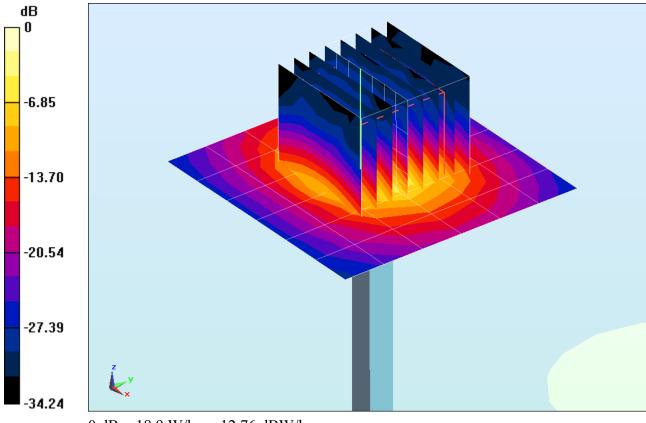
Probe: EX3DV4 - SN3920; ConvF(4.52, 4.52, 4.52); Calibrated: 2/27/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

5500 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.87 W/kg Deviation = -1.75%

DUT: SAR Dipole 5800 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5800 MHz; $\sigma = 5.314$ S/m; $\varepsilon_r = 35.506$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 22.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3920; ConvF(4.02, 4.02, 4.02); Calibrated: 2/27/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

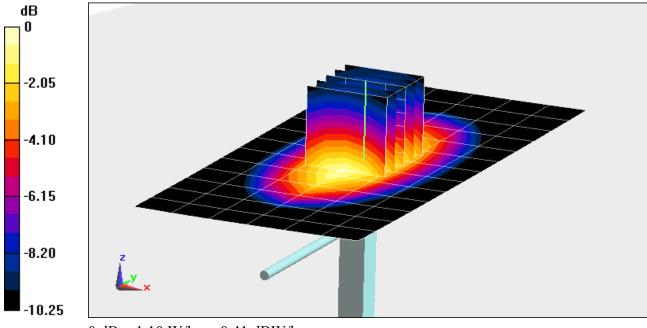
5800 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 33.4 W/kg SAR(1 g) = 7.68 W/kg Deviation = 2.54%

0 dB = 18.9 W/kg = 12.76 dBW/kg

DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d026

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.997$ S/m; $\varepsilon_r = 54.493$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-31-2013; Ambient Temp: 24.9°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

835 MHz System Verification

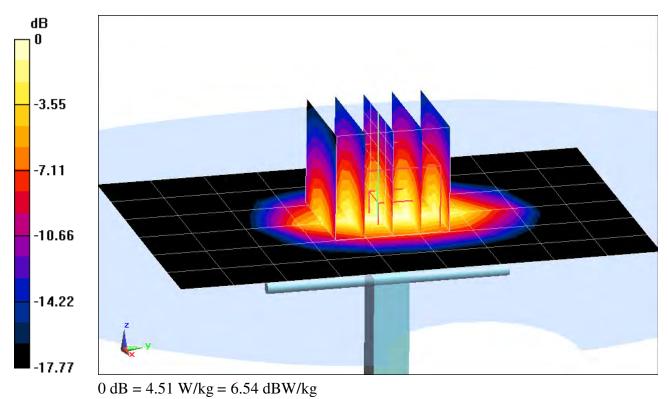
Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 1.02 W/kg Deviation = 6.47%

0 dB = 1.10 W/kg = 0.41 dBW/kg

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated):

f = 1900 MHz; σ = 1.506 S/m; ϵ_r = 52.796; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 07-29-2013; Ambient Temp: 23.8°C; Tissue Temp: 23.2°C

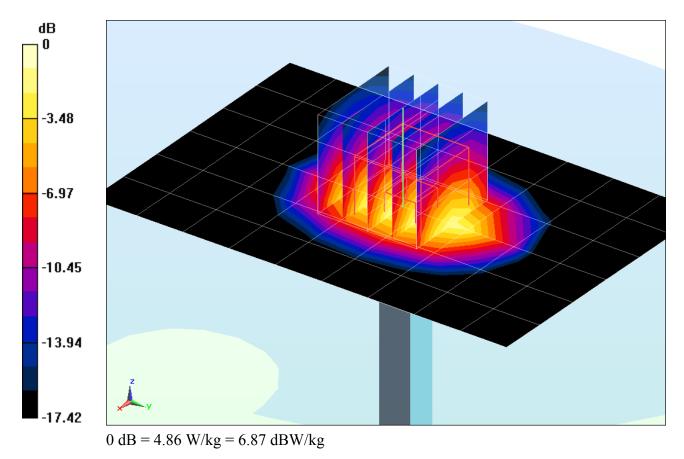
Probe: EX3DV4 - SN3920; ConvF(7.38, 7.38, 7.38); Calibrated: 2/27/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 7.31 W/kg SAR(1 g) = 4.08 W/kg

Deviation = 0.00%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \sigma = 1.551 \text{ S/m}; \epsilon_r = 52.004; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-21-2013; Ambient Temp: 24.1°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3920; ConvF(7.38, 7.38, 7.38); Calibrated: 2/27/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/6/2013 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

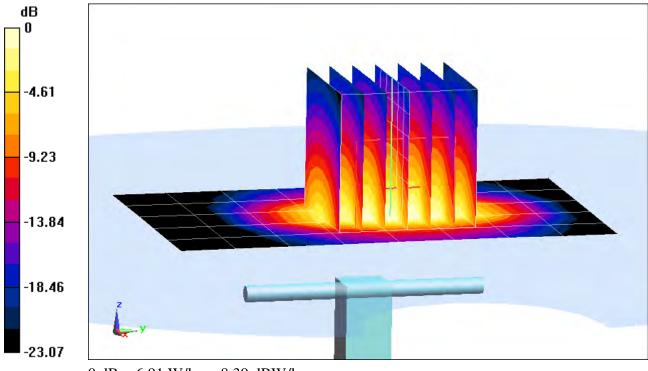
1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 7.88 W/kg SAR(1 g) = 4.36 W/kg Deviation = 6.86%

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used:

f = 2450 MHz; σ = 1.98 S/m; ε_r = 51.971; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.0°C; Tissue Temp: 23.2°C

Probe: ES3DV2 - SN3022; ConvF(3.97, 3.97, 3.97); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

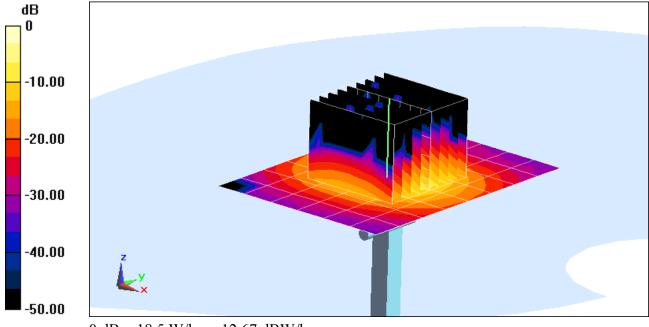
2450MHz System Verification

Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.34 W/kg Deviation = 3.49%

0 dB = 6.91 W/kg = 8.39 dBW/kg

DUT: SAR Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5200 MHz; $\sigma = 5.512$ S/m; $\varepsilon_r = 46.801$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Thantom Section. That Section, Space. The ent

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

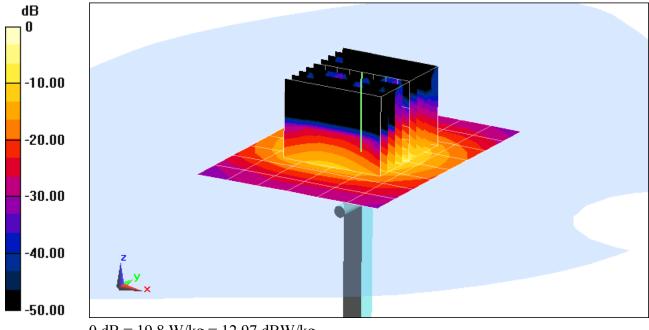
5200MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.14 W/kg Deviation (1 g) = 1.59%Deviation (10 g) = 1.42%

0 dB = 18.5 W/kg = 12.67 dBW/kg

DUT: SAR Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5300 MHz; $\sigma = 5.642$ S/m; $\varepsilon_r = 48.865$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

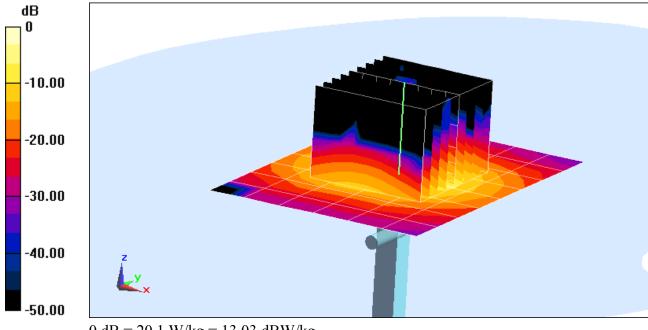
5300MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.23 W/kg Deviation (1 g) = 6.77%Deviation (10 g) = 5.69%

0 dB = 19.8 W/kg = 12.97 dBW/kg

DUT: SAR Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5500 MHz; $\sigma = 5.89$ S/m; $\varepsilon_r = 47.06$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.9°C

Probe: EX3DV4 - SN3589; ConvF(3.52, 3.52, 3.52); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

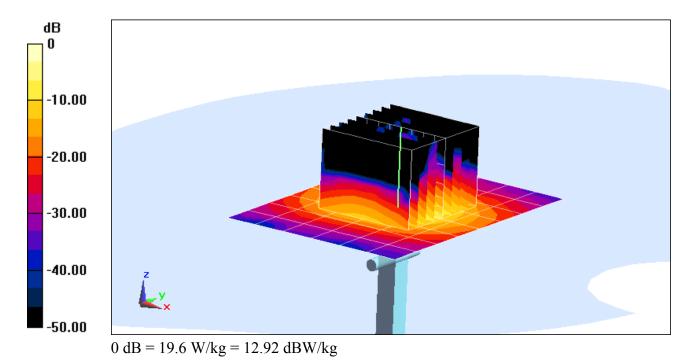
5500MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20 dBm (100 mW0 Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.21 W/kg Deviation (1 g) = -0.74% Deviation (10 g) = -1.34%

0 dB = 20.1 W/kg = 13.03 dBW/kg

DUT: SAR Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5800 MHz; $\sigma = 6.168$ S/m; $\epsilon_r = 46.377$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.19 W/kg Deviation (1 g) = 6.13% Deviation (10 g) = 5.80%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D835V2-4d026_Aug12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D835V2 - SN: 4d	026			
Calibration procedure(s)	QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz				
Calibration date:	August 23, 2012		160 K 1/12		
The measurements and the unce	This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.				
Calibration Equipment used (M&T	E critical for calibration)				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12		
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12		
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13		
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13		
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12		
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13		
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13		
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12		
	Name	Function	Signature		
Calibrated by:	Israe El-Naouq	Laboratory Technician	Wran EinDaoug		
Approved by:	Katja Pokovic	Technical Manager	Jac Mys		
		n full without written approval of the laborato	issued: August 23, 2012		
This calibration certificate shall need to be a	ot be reproduced except if	i iuli without written approval of the laborato	ny.		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835\/2-4d026_Aug12

Dogo D of 0

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.39 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.12 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.58 m₩ / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.33 m₩ / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω - 3.4 jΩ
Return Loss	- 26.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω - 4.8 jΩ
Return Loss	- 26.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.389 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

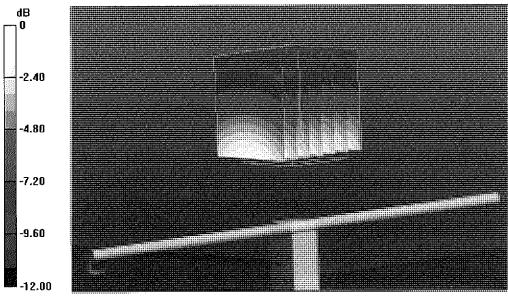
Manufactured by	SPEAG
Manufactured on	December 17, 2004

DASY5 Validation Report for Head TSL

Date: 23.08.2012

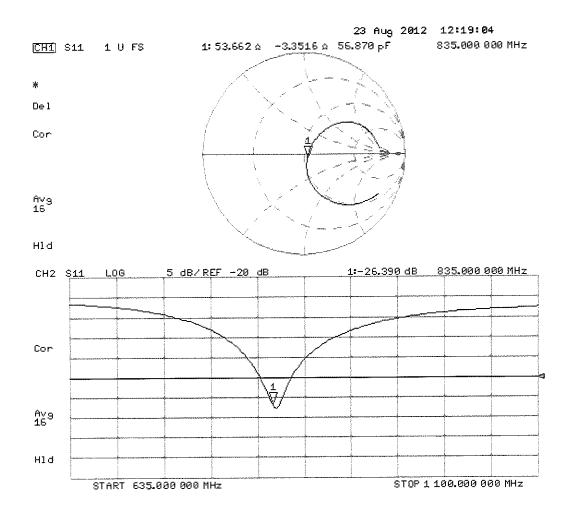
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d026


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.824 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.482 mW/g SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.72 W/kg

0 dB = 2.72 W/kg = 8.69 dB W/kg

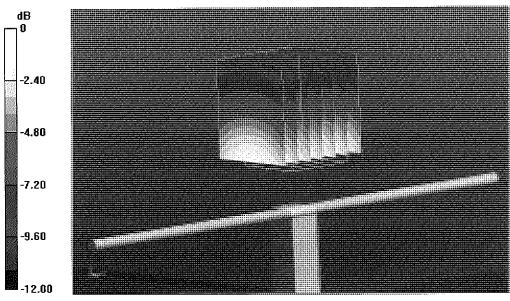
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.08.2012

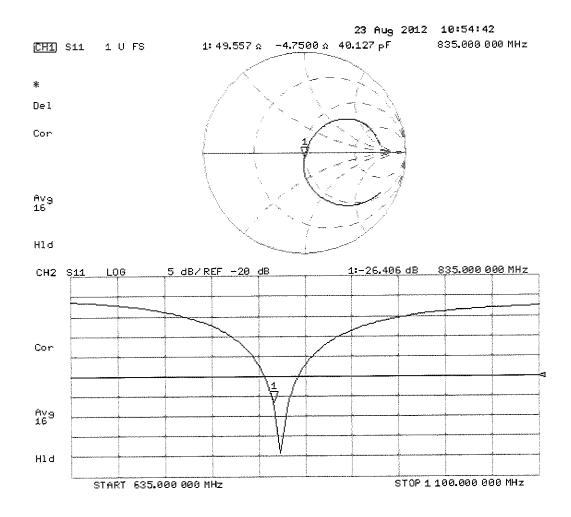
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d026


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 55.339 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.592 mW/g SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 9.16 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

GWISS C. C. Z. Priore

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Client PC Test

Certificate No: D	1900V2-5d148	Feh13
Certificate No: D	190042-30140	_າ-ເກເວ

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5	d148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	February 06, 201	3	Again Statis
The measurements and the uncer	tainties with confidence pr	onal standards, which realize the physical ur robability are given on the following pages ar y facility: environment temperature (22 \pm 3)°	nd are part of the certificate.
Primany Standarda	ID #	Cal Data (Cartificata No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.)	
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13 Dec-13
Reference Probe ES3DV3 DAE4	SN: 3205 SN: 601	28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Socondany Standarda	ID #	Check Date (in house)	Scheduled Check
Secondary Standards Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sif Alger-
Approved by:	Katja Pokovic	Technical Manager	ACH4
			Issued: February 6, 2013
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory	у.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.9 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω + 6.3 jΩ
Return Loss	- 23.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

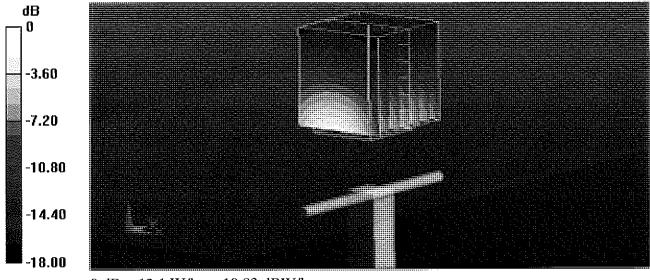
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 06.02.2013

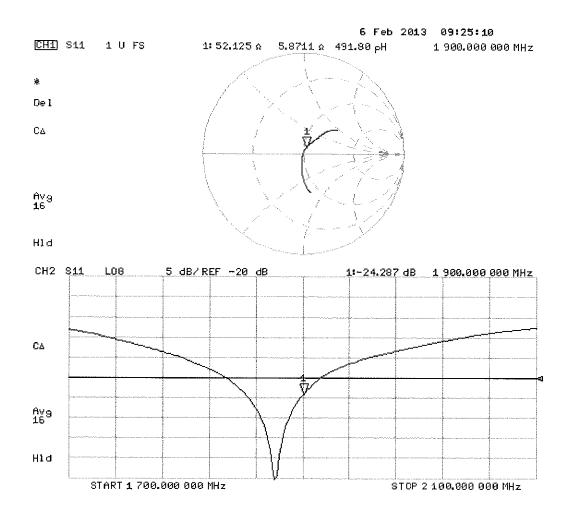
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 S/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.534 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

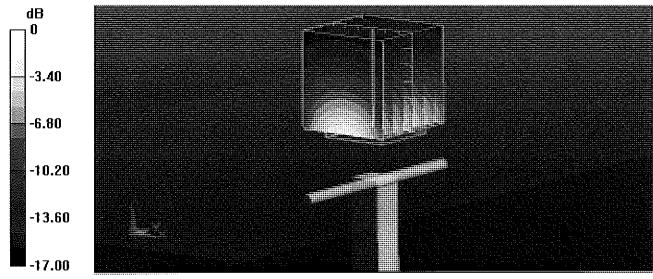
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 06.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.53 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.534 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.45 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

s.

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D2450V2 - SN: 7	19	
Calibration procedure(s)		dure for dipole validation kits abo	ove 700 MHz
Calibration date:	August 23, 2012		1 potrim
The measurements and the uncert All calibrations have been conduct	rtainties with confidence p ted in the closed laborator	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Calibration Equipment used (M&T	,		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Israe A-Daoug
Approved by:	Katja Pokovic	Technical Manager	Israu Al-Laong
This calibration certificate shall no	t be reproduced except in	full without written approval of the Jaboratory	Issued: August 23, 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	,

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω + 3.8 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω + 5.9 jΩ
Return Loss	- 24.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

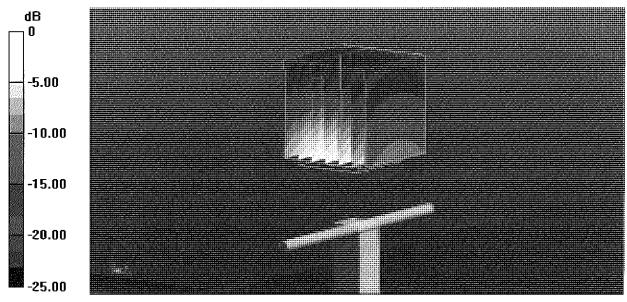
Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

Date: 23.08.2012

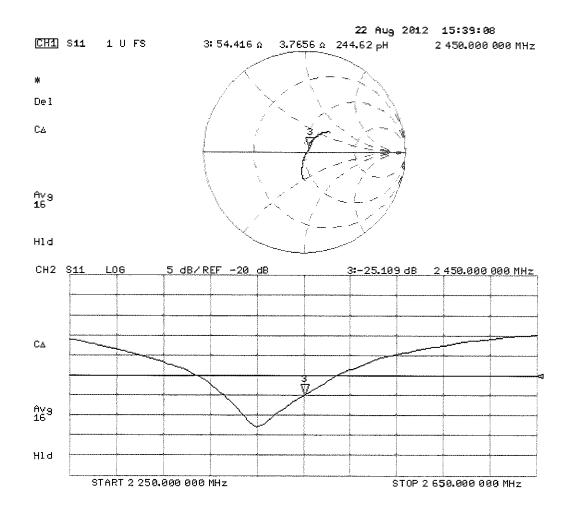
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.219 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.633 mW/g SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.19 mW/g Maximum value of SAR (measured) = 16.5 W/kg

0 dB = 16.5 W/kg = 24.35 dB W/kg

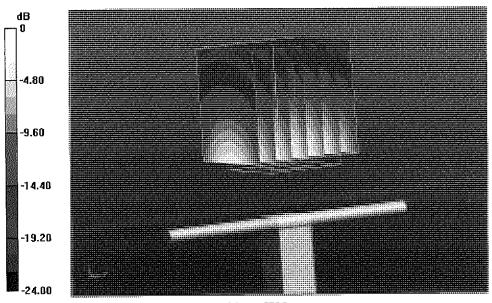
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.08.2012

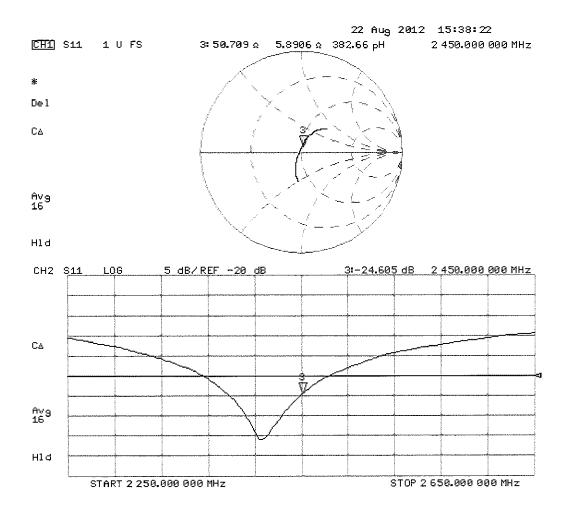
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.970 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.692 mW/g SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/g Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 24.66 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1120_Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN: 1	120 Martin Martin Andrea	
Calibration procedure(s)		dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	February 14, 201	3	V pot 1/2
		onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Nomo	Function	Signature
Calibrated by:	Name Israe El-Naouq	Laboratory Technician	Arren El-Naleng
Approved by:	Katja Pokovic	Technical Manager	Solley .
			Issued: February 14, 2013
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laboratory	у

SWISS C. Z. Z. R. J. Z. C. Z. C. S. S. S.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	7.94 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W / kg ± 19.9 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm° (10 g) of Head TSL SAR measured	condition 100 mW input power	2.27 W/kg	

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.74 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.28 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	74.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.36 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.17 W/kg

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.71 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	5.83 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.12 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	53.8 Ω - 6.3 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.1 Ω + 0.5 jΩ
Return Loss	- 45.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.0 Ω - 0.9 jΩ
Return Loss	- 37.9 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.3 Ω - 0.9 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.5 Ω + 3.3 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.7 Ω - 4.8 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω + 2.4 jΩ
Return Loss	- 32.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.6 Ω - 1.5 jΩ
Return Loss	- 33.3 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.4 Ω + 0.9 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.5 Ω + 3.2 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.206 ns		
	Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

DASY5 Validation Report for Head TSL

Date: 08.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\varepsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.57$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.74$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.83$ S/m; $\varepsilon_r = 34.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.05$ S/m; $\varepsilon_r = 33.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

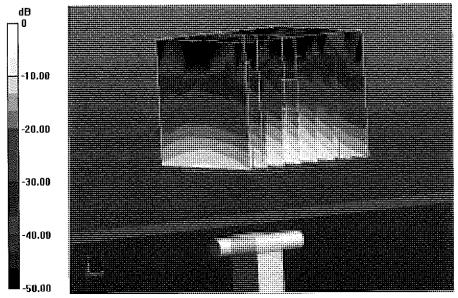
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.561 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.429 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 18.5 W/kg

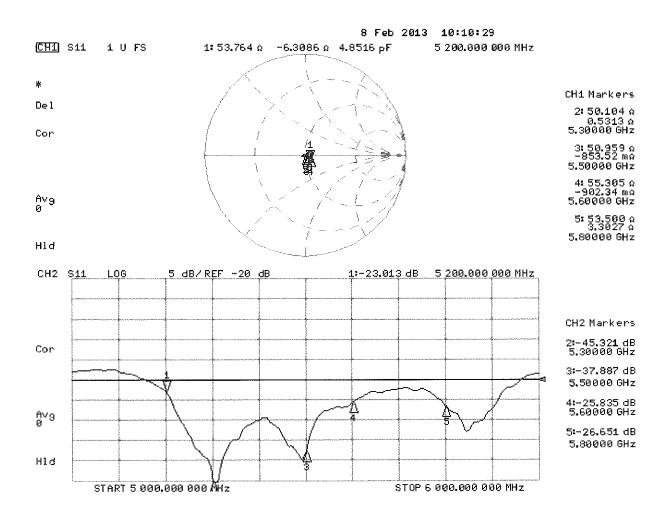
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.998 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.540 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.600 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

DASY5 Validation Report for Body TSL

Date: 14.02.2013

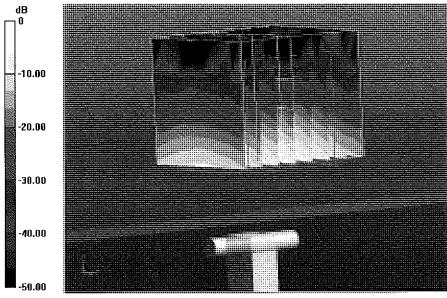
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

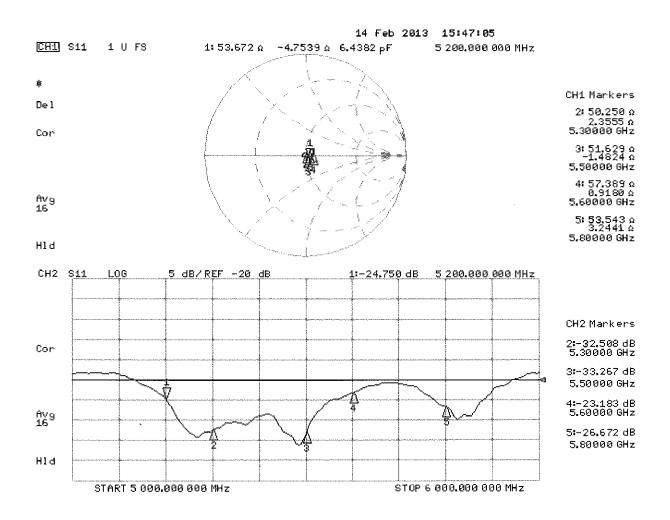
Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.48$ S/m; $\varepsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.71$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.83$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.12$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.053 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.021 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.5 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.894 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 35.3 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.730 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 36.8 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.663 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 36.4 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

С

S

Client PC Test

Certificate No: ES3-3022_Aug12

CERTIFICATE
ES3DV2 - SN:3022
QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes
August 28, 2012
uments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
ducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.
A&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13	
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508) Apr-13		
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13	
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529) Apr-13		
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532) Apr-13		
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11) Dec-12		
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12) Jun-13		
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11) In house check: Ap		
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12	

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-r
Approved by:	Katja Pokovic	Technical Manager	1201L
			Issued: August 28, 2012
This calibration certificate	e shall not be reproduced except in	full without written approval of the lat	poratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Ologgary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Accreditation No.: SCS 108

Probe ES3DV2

SN:3022

Manufactured: April 15, 2003 Calibrated:

August 28, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.00	1.04	0.99	± 10.1 %
DCP (mV) ^B	98.3	99.5	101.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	133.3	±2.7 %
		-	Y	0.00	0.00	1.00	140.3	
			Z	0.00	0.00	1.00	178.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

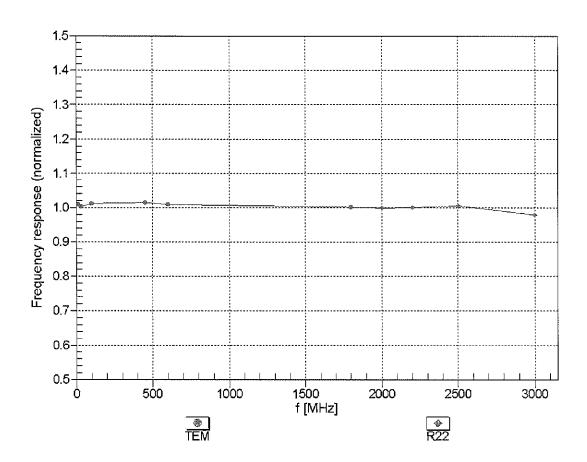
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.30	6.30	6.30	0.30	1.72	± 12.0 %
835	41.5	0.90	6.03	6.03	6.03	0.35	1.63	± 12.0 %
1750	40.1	1.37	5.07	5.07	5.07	0.32	1.89	± 12.0 %
1900	40.0	1.40	4.86	4.86	4.86	0.40	1.57	± 12.0 %
2450	39.2	1.80	4.23	4.23	4.23	0.59	1.44	± 12.0 %
2600	39.0	1.96	4.10	4.10	4.10	0.67	1.37	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

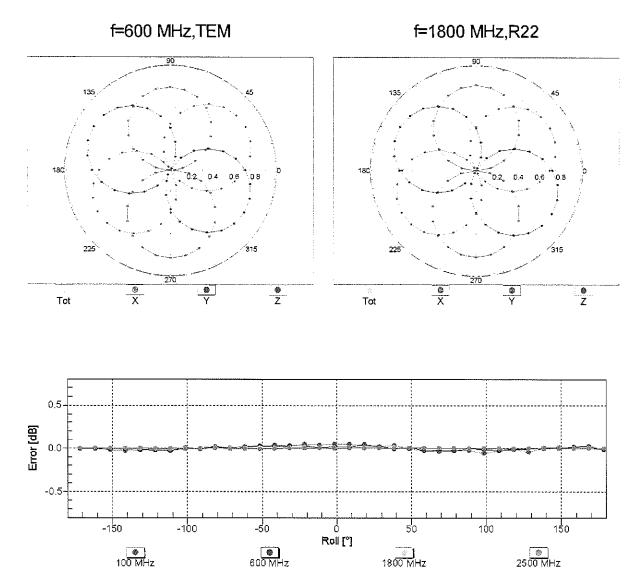
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

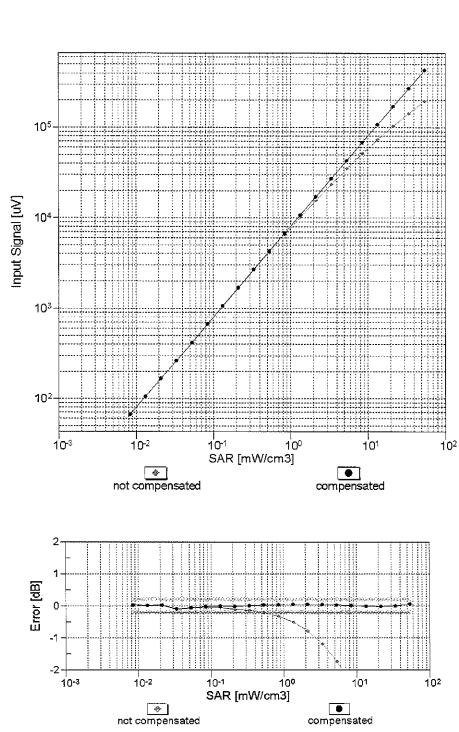
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.07	6.07	6.07	0.23	2.09	± 12.0 %
835	55.2	0.97	6.02	6.02	6.02	0.47	1.44	± 12.0 %
1750	53.4	1.49	4.70	4.70	4.70	0.46	1.55	± 12.0 %
1900	53.3	1.52	4.43	4.43	4.43	0.36	1.87	± 12.0 %
2450	52.7	1.95	3.97	3.97	3.97	0.65	1.06	± 12.0 %
2600	52.5	2.16	3.80	3.80	3.80	0.54	0.75	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

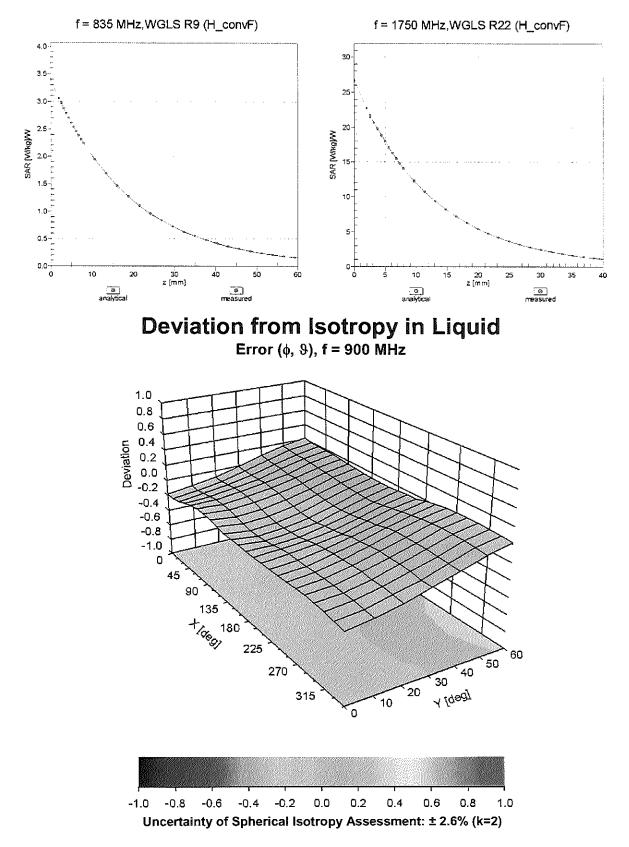
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


⁺ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

August 28, 2012


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	98.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 m m
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3319_Apr13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

ES3DV3 - SN:3319
QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes
100
April 29, 2013
ents the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Арг-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	A Will
			N · XIII
Approved by:	Katja Pokovic	Technical Manager	12/01
			the they
			Issued: April 29, 2013
This calibration certificate s	shall not be reproduced except	in full without written approval of the lab	poratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid sensitivity in free space NORMx,y,z ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization ϕ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3319

Calibrated:

Manufactured: January 10, 2012 April 29, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3319_Apr13

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.12	1.20	1.22	± 10.1 %
DCP (mV) ^B	100.7	102.6	102.4	

Modulation Calibration Parameters

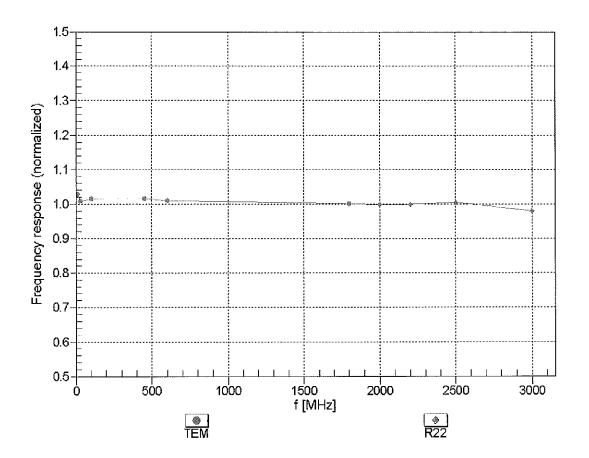
UID	Communication System Name		Α	В	С	D	VR	Unc ^L
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	152.0	±3.8 %
		Y	0.0	0.0	1.0		159.0	
		Z	0.0	0.0	1.0		149.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

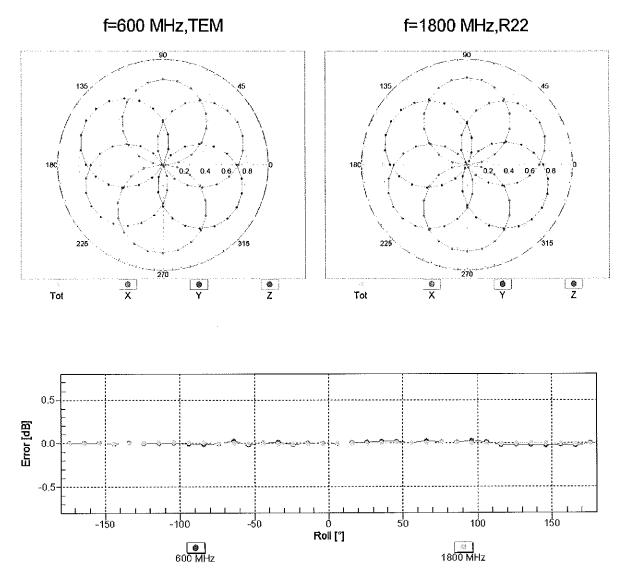
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.49	6.49	6.49	0.28	1.97	± 12.0 %
850	41.5	0.92	6.23	6.23	6.23	0.42	1.57	± 12.0 %
1900	40.0	1.40	5.22	5.22	5.22	0.80	1.24	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.80	1.32	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media


^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty is determined to the RSS of the ConvF uncertainty for the validity of tissue parameters. the ConvF uncertainty for indicated target tissue parameters.

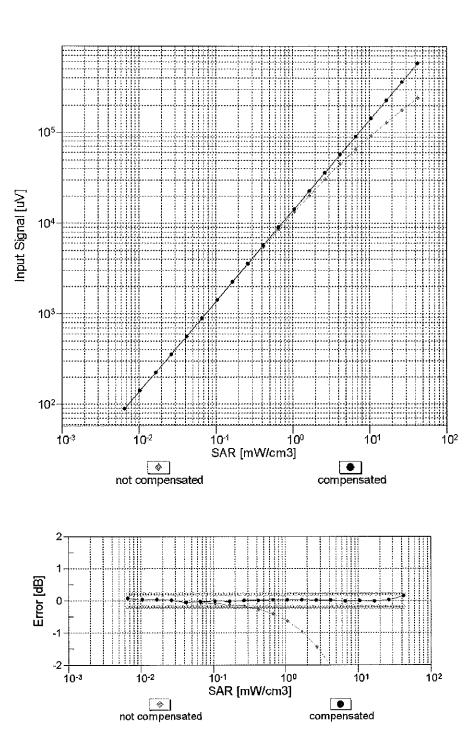
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.30	6.30	6.30	0.45	1.53	± 12.0 %
850	55.2	0.99	6.15	6.15	6.15	0.42	1.65	± 12.0 %
1900	53.3	1.52	4.85	4.85	4.85	0.63	1.49	± 12.0 %
2450	52.7	1.95	4.32	4.32	4.32	0.69	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

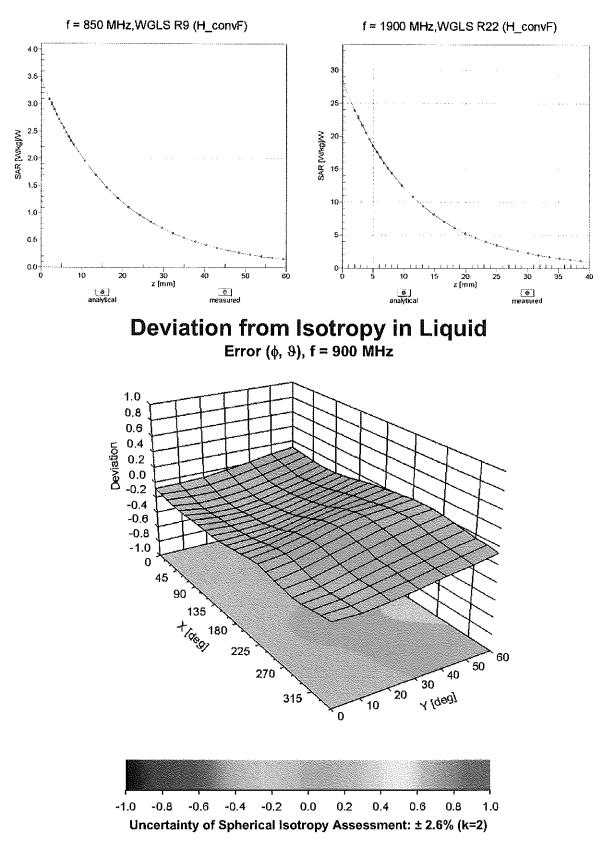

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

April 29, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-104.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

S D e а q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ES3DV3
Serial Number:	3319
Place of Assessment:	Zurich
Date of Assessment:	June 19, 2013
Probe Calibration Date:	April 29, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1900 MHz.

Assessed by:

s p <u>e a g</u>

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3319

Conversion factor (± standard deviation)

1750 ± 50 MHz	СолуF	5.59 ± 7%	$\epsilon_r = 40.1 \pm 5\%$ $\sigma = 1.37 \pm 5\% \text{ mho/m}$ (head tissue)
1750 ± 50 MHz	СолуF	5.22 ± 7%	$\epsilon_r = 53.4 \pm 5\%$ $\sigma = 1.49 \pm 5\%$ mho/m (body tissue)

Important Note:						
For numerically as					オモート しきし オモレート	a in the
DASY software m	ust have the fol	llowing entri	es: Alpha =	0 and Delta	a ≂ I.	
Please see also DA	SY Manual.					

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **PC** Test Certificate No: ES3-3209 Mar13

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3209	
Calibration procedure(s)	QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes	
Calibration date:	March 15, 2013	
	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificat	
All calibrations have been cond	ucted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.	1.8 5
Calibration Equipment used (M	&TE critical for calibration)	Y WYW

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Арг-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Asrae Arnaeerg
Approved by:	Katja Pokovic	Technical Manager	Letter 1
			Issued: March 15, 2013
This calibration certificate	e shall not be reproduced except in ful	without written approval of the lat	poratory.

SHISS

ſŕ[,]

∕8R₽

S

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Certificate No: ES3-3209_Mar13

80244

1

Calibration Laboratory of

Glossary

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Giussary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Accreditation No.: SCS 108

Probe ES3DV3

SN:3209

Manufactured: Calibrated:

October 14, 2008 March 15, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.35	1.33	1.14	± 10.1 %
DCP (mV) ^B	99.2	97.8	98.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	163.6	±3.5 %
		Y	0.0	0.0	1.0		170.3	
		Z	0.0	0.0	1.0		158.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

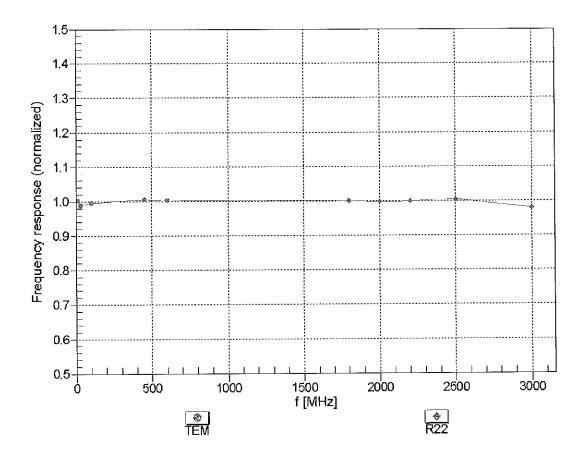
 ⁸ Numerical linearization parameter: uncertainty not required.
 ⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

	0									
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)		
750	41.9	0.89	6.74	6.74	6.74	0.76	1.18	± 12.0 %		
835	41.5	0.90	6.46	6.46	6.46	0.31	1.81	± 12.0 %		
1750	40.1	1.37	5.39	5.39	5.39	0.80	1.21	± 12.0 %		
1900	40.0	1.40	5.21	5.21	5.21	0.78	1.26	± 12.0 %		
2450	39.2	1.80	4.57	4.57	4.57	0.65	1.43	± 12.0 %		
2600	39.0	1.96	4.43	4.43	4.43	0.75	1.36	± 12.0 %		

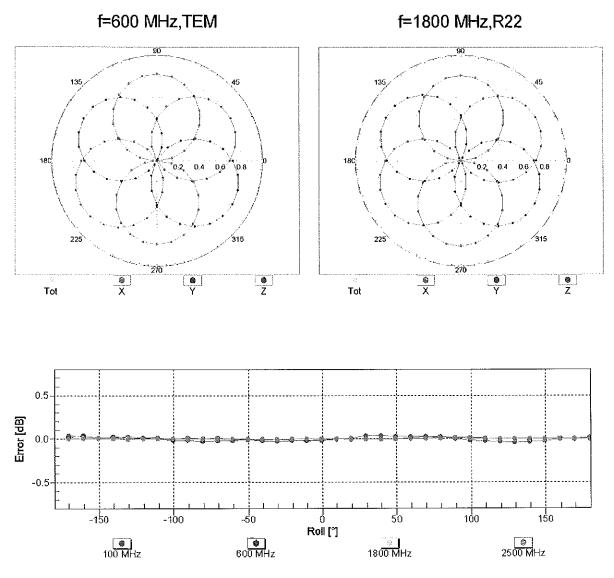
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.38	6.38	6.38	0.80	1.16	± 12.0 %
835	55.2	0.97	6.28	6.28	6.28	0.52	1.45	± 12.0 %
1750	53.4	1.49	5.03	5.03	5.03	0.58	1.45	± 12.0 %
1900	53.3	1.52	4.77	4.77	4.77	0.70	1.36	± 12.0 %
2450	52.7	1.95	4.34	4.34	4.34	0.80	1.15	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.80	1.00	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

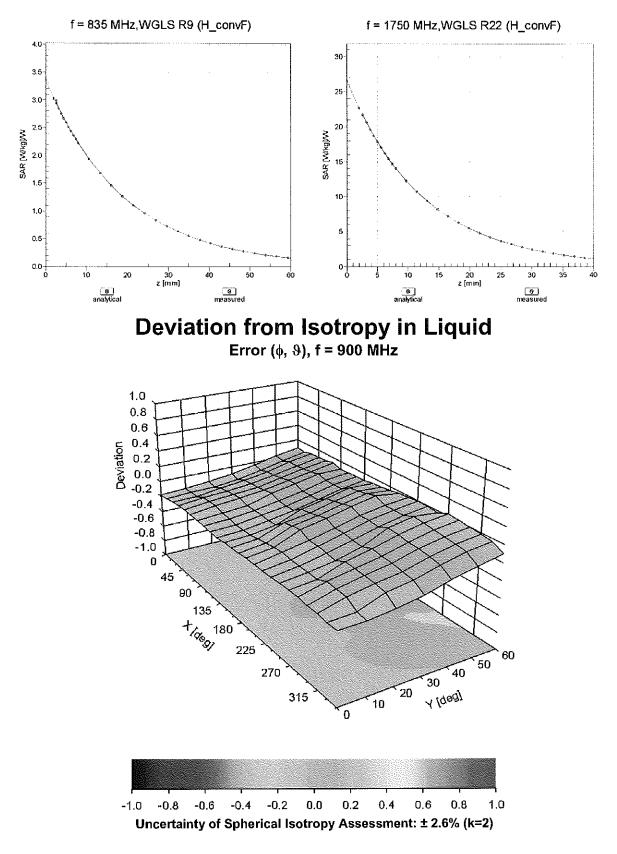

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

March 15, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-40.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: EX3-3920_Feb13/2

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE (Replacement of No: EX3-3920_Feb13)

Object	EX3DV4 - SN:3920
Calibration procedure(s)	QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes
Calibration date:	February 27, 2013
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conduct	ed in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			UCK
Approved by:	Katja Pokovic	Technical Manager	72101
			per dag
			issued: March 5, 2013
This calibration certificate	shall not be reproduced except in full	without written approval of the lab	oratory.

Calibration Laboratory of Schmid & Partner

Classer

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Polarization φ rotation around probe axis		tissue simulating liquid z sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters n φ φ rotation around probe axis n θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center),
---	--	--

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3920

Manufactured: Calibrated:

December 18, 2012 February 27, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.50	0.50	± 10.1 %
DCP (mV) ^B	101.2	101.0	99.1	

Modulation Calibration Parameters

UID	Communication System Name		А	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	134.3	±3.3 %
		Y	0.0	0.0	1.0		164.7	
		Z	0.0	0.0	1.0		161.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

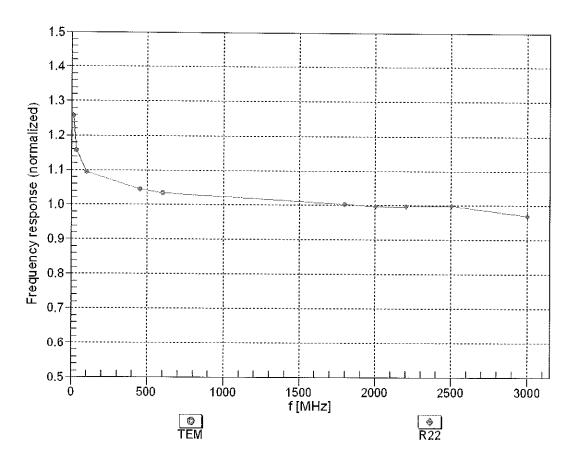
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^e Uncertainties of NormA, 1,2 do not anot the E-field uncertainty inside 1 of (soc), ages of all 2 //. ^e Numerical linearization parameter: uncertainty not required. ^e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.86	9.86	9.86	0.19	1.39	± 12.0 %
835	41.5	0.90	9.58	9.58	9.58	0.77	0.54	± 12.0 %
1750	40.1	1.37	7.97	7.97	7.97	0.57	0.69	± 12.0 %
1900	40.0	1.40	7.73	7.73	7.73	0.54	0.73	± 12.0 %
2450	39.2	1.80	7.04	7.04	7.04	0.40	0.82	± 12.0 %
2600	39.0	1.96	6.80	6.80	6.80	0.49	0.76	± 12.0 %
5200	36.0	4.66	4.87	4.87	4.87	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.73	4.73	4.73	0.37	1.80	± 13.1 %
5500	35.6	4.96	4.52	4.52	4.52	0.39	1.80	± 13.1 %
5600	35.5	5.07	4.17	4.17	4.17	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.02	4.02	4.02	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

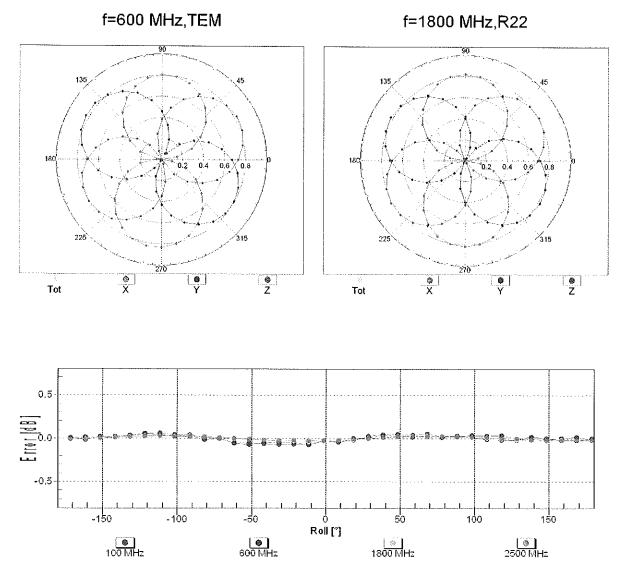
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.57	9.57	9.57	0.43	0.83	± 12.0 %
835	55.2	0.97	9.42	9.42	9.42	0.36	0.98	± 12.0 %
1750	53.4	1.49	7.59	7.59	7.59	0.43	0.78	± 12.0 %
1900	53.3	1.52	7.38	7.38	7.38	0.33	0.91	± 12.0 %
2450	52.7	1.95	7.07	7.07	7.07	0.80	0.55	± 12.0 %
2600	52.5	2.16	6.73	6.73	6.73	0.80	0.56	± 12.0 %
5200	49.0	5.30	4.23	4.23	4.23	0.51	1.90	± 13.1 %
5300	48.9	5.42	4.13	4.13	4.13	0.49	1.90	± 13.1 %
5500	48.6	5.65	3.63	3.63	3.63	0.52	1.90	± 13.1 %
5600	48.5	5.77	3.62	3.62	3.62	0.49	1.90	± 13.1 %
5800	48.2	6.00	3.91	3.91	3.91	0.54	1.90	± 13.1 %

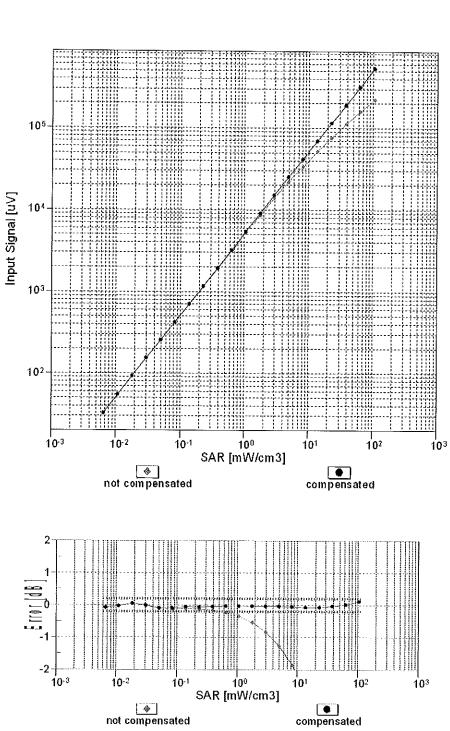
Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

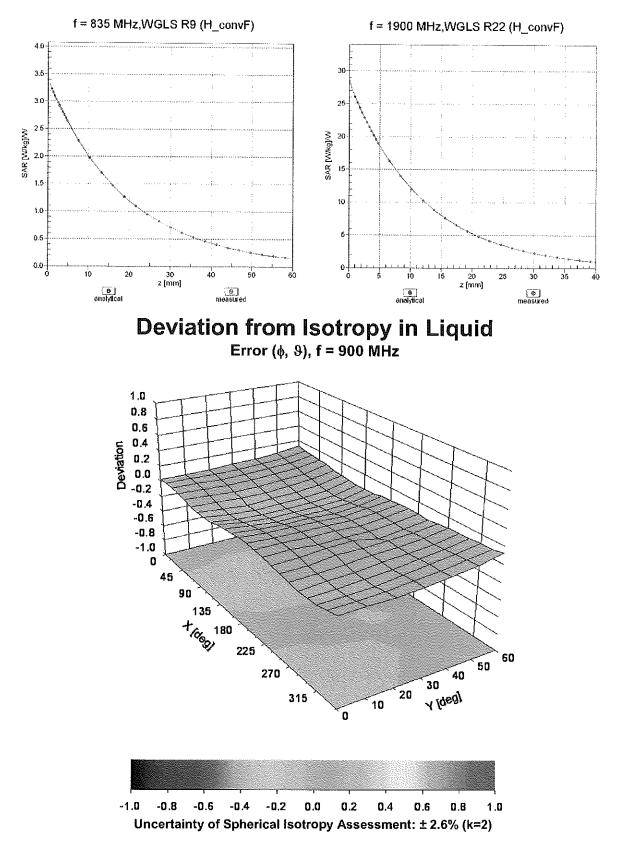

⁷ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


į

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

February 27, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Certificate No: EX3-3920_Feb13/2

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-21.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland lac-mrA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-3589_Jan13

Accreditation No.: SCS 108

S

С

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3589	
Calibration procedure(s)	OA CAL-01.v8, OA CAL-14,v3, OA CAL-23.v4, OA CAL-25.v4 Celloration procedure for dosimetric E-field probes	
Calibration date:	January 17, 2013	
	nts the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	$C \subset C$
Approved by:	Katja Pokovic	Technical Manager	Ral
			Issued: January 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D φ rotation around probe axis Polarization ϕ Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3589

Calibrated:

Manufactured: March 30, 2006 January 17, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.46	0.40	0.40	± 10.1 %
DCP (mV) ^B	100.5	103.8	99.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊭] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	165.8	±3.3 %
		Y	0.0	0.0	1.0		134.3	
		Z	0.0	0.0	1.0		140.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

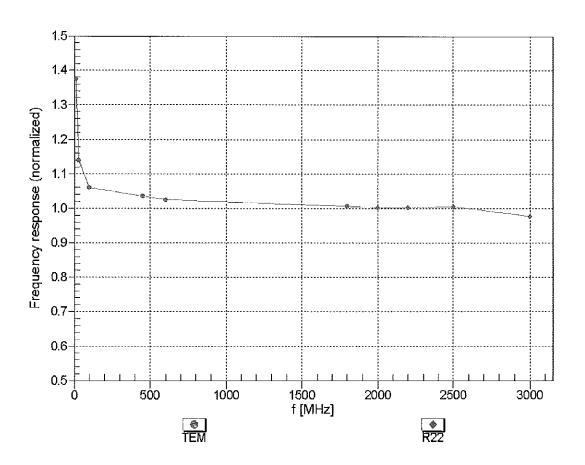
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.70	8.70	8.70	0.39	0.96	± 12.0 %
835	41.5	0.90	8.40	8.40	8.40	0.52	0.74	± 12.0 %
1750	40.1	1.37	7.34	7.34	7.34	0.45	0.93	± 12.0 %
1900	40.0	1.40	7.09	7.09	7.09	0.80	0.65	± 12.0 %
2450	39.2	1.80	6.37	6.37	6.37	0.39	0.97	± 12.0 %
2600	39.0	1.96	6.19	6.19	6.19	0.30	1.12	± 12.0 %
5200	36.0	4.66	4.48	4.48	4.48	0.45	1.80	± 13.1 %
5300	35.9	4.76	4.27	4.27	4.27	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.14	4.14	4.14	0.50	1.80	± 13.1 %
5600	35.5	5.07	3.81	3.81	3.81	0.55	1.80	± 13.1 %
5800	35.3	5.27	3.85	3.85	3.85	0.55	1.80	± 13.1 %

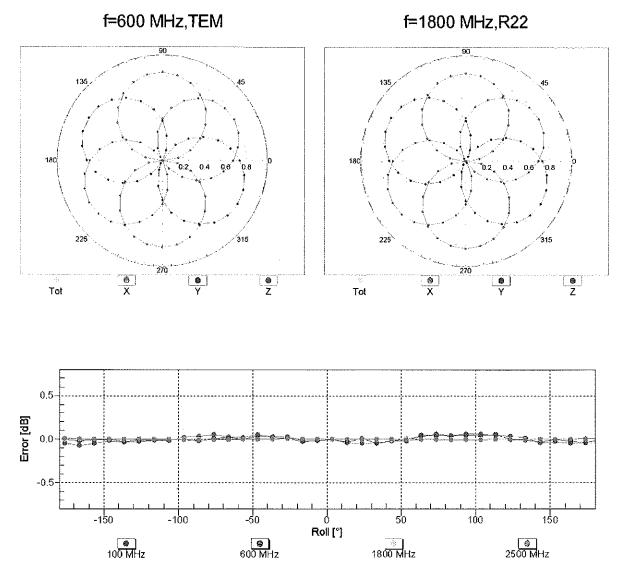
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

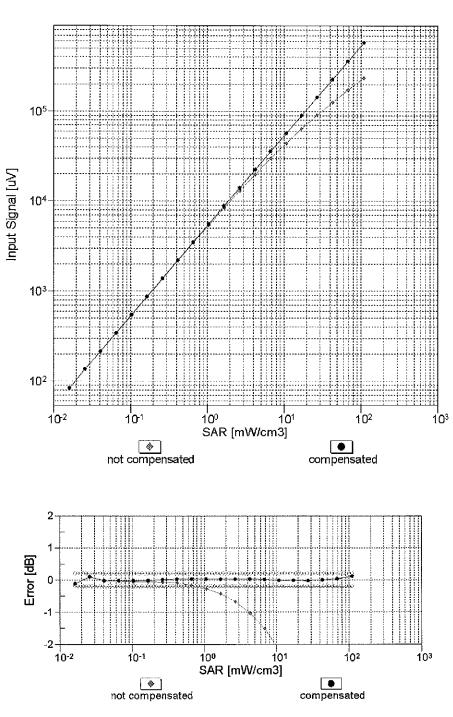

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.59	8.59	8.59	0.49	0.86	± 12.0 %
835	55.2	0.97	8.43	8.43	8.43	0.38	1.05	± 12.0 %
1750	53.4	1.49	7.87	7.87	7.87	0.44	0.89	± 12.0 %
1900	53.3	1.52	7.46	7.46	7.46	0.58	0.75	± 12.0 %
2450	52.7	1.95	7.07	7.07	7.07	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.68	6.68	6.68	0.80	0.50	± 12.0 %
5200	49.0	5.30	3.99	3.99	3.99	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.81	3.81	3.81	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.52	3.52	3.52	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.32	3.32	3.32	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.66	3.66	3.66	0.60	1.90	± 13.1 %

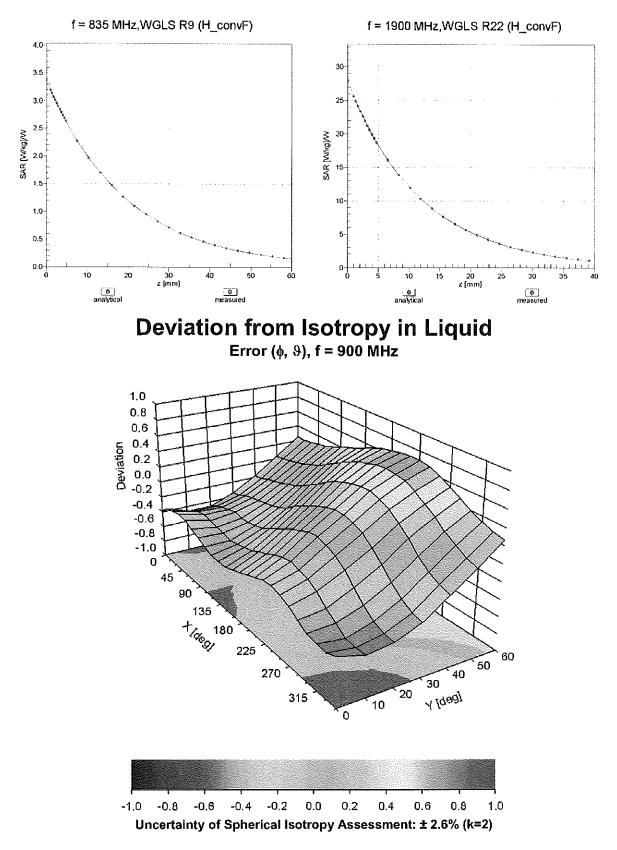
Calibration Parameter Determined in Body Tissue Simulating Media


^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-26.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of Schmid & Partner

PC Test

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1057_Jan13

Accreditation No.: SCS 108

	ERTIFICATE		
Object	D5GHzV2 - SN: 1	1057	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	January 11, 2013		telenergenergenergenergen for Konglige
	•	onal standards, which realize the physical un robability are given on the following pages ar	
All calibrations have been conduct	ted in the closed laborator	y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Jonan Anaouer
Approved by:	Katja Pokovic	Technical Manager	2C/4
			Issued: January 11, 2013

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.9 W / kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
SAR averaged over 10 cm (10 g) of head 15L	condition	
SAR averaged over 10 cm (10 g) of head TSL SAR measured	condition 100 mW input power	2.22 W/kg

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.79 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
		0.00.14/4
SAR measured	100 mW input power	2.30 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.55 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm° (10 g) of Body ISL SAR measured	condition 100 mW input power	2.26 W/kg

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
		\.

SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.5 Ω - 9.8 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.5 Ω - 4.5 jΩ
Return Loss	- 26.4 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 5.8 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 3.8 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.5 Ω - 4.4 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 7.9 jΩ
Return Loss	- 22.0 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω - 3.2 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.2 Ω - 4.8 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.6 Ω - 2.1 jΩ
Return Loss	- 27.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.3 Ω - 2.9 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

DASY5 Validation Report for Head TSL

Date: 11.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.5 S/m; ε_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.6 S/m; ε_r = 34.5; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.79 S/m; ε_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.88 S/m; ε_r = 34.1; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.09 S/m; ε_r = 33.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

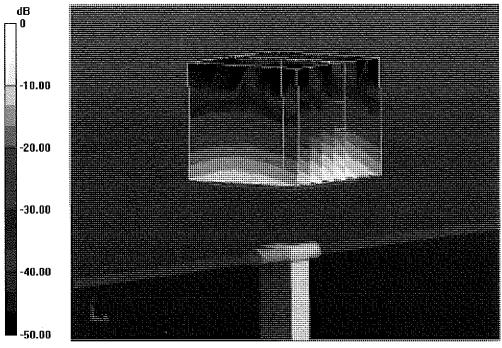
- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.671 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.5 W/kg

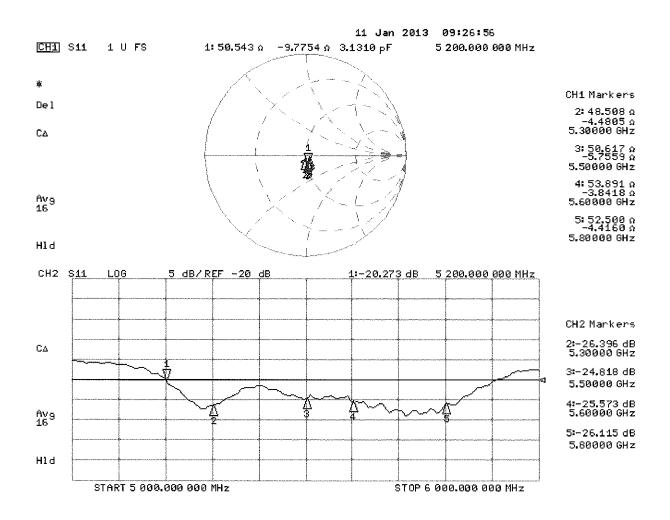
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.473 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.735 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.848 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 20.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 60.467 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kgMaximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.55$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.81$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

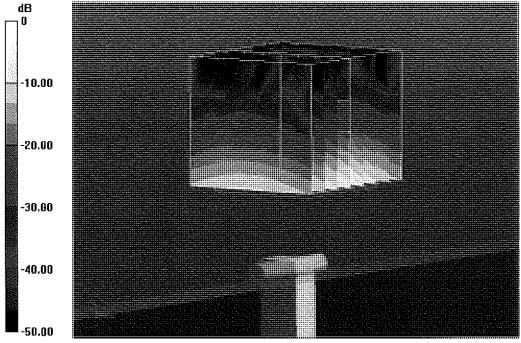
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.074 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.924 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.9 W/kg

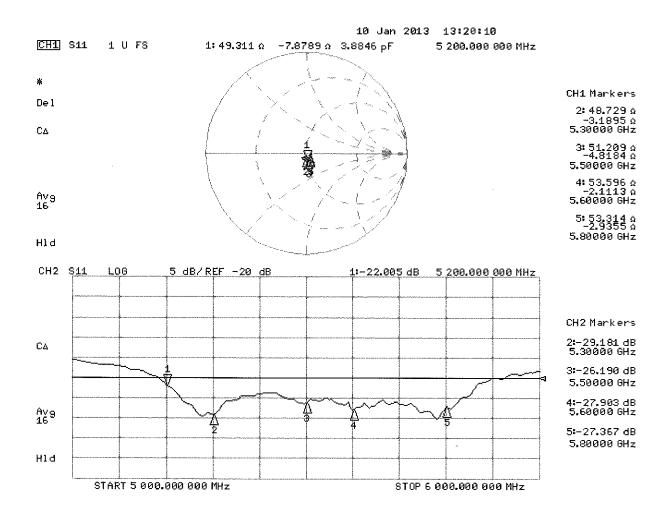
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.561 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 35.3 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.884 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 36.3 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.753 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

APPENDIX 8: SAR T=GGI 9 GD97 = =75 H=CBG

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra): _ _

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $i = \sqrt{-1}$.

	Composi		0 110040	Iquitar				
Frequency (MHz)	835	835	1900	1900	2450	2450	5200-5800	5200-5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)								
Bactericide	0.1	0.1						
DGBE			44.92	29.44		26.7		
HEC	1	1						
NaCl	1.45	0.94	0.18	0.39	See Page 2	0.1	See Page 3	
Sucrose	57	44.9						
Polysorbate (Tween) 80								20
Water	40.45	53.06	54.9	70.17		73.2		80

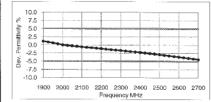
Table D-I Composition of the Tissue Equivalent Matter

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D: Page 1 of 3
07/29/13 - 08/21/13	Portable Handset			r age r or o
© 2013 PCTEST Engineering Lab	poratory. Inc.			REV 12.5 M

© 2013 PCTEST Engineering Laboratory, I

2 Composition / Information on ingredients

The Item is c	omposed of the following ingredients:
H2O	Water, 52 – 75%
C8H18O3	Diethylene glycol monobutyl ether (DGBE), 25 – 48%
	(CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)
	Relevant for safety; Refer to the respective Safety Data Sheet*.
NaCl	Sodium Chloride, <1.0%
	Figure D-1


Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test

ltern Name	Head Tissue Simulating Liquid (HSL 2450)
Product No.	SL AAH 245 BA (Charge: 120112-4)
Manufacturer	SPEAG CT
	*
Measurement Met	hod
TSL dielectric para	meters measured using calibrated OCP probe (type DAK).
Target Parameter	
	s as defined in the IEEE 1528 and IEC 62209 compliance standards.
	5
Target parameters	5
	5
Target parameters Test Condition	5
Target parameters Test Condition	as del ned in the IEEE 1528 and IEC 62209 compliance standards.
Target parameters Test Condition Ambient Condition TSL Temperature	as del ned in the IEEE 1528 and IEC 62209 compliance standards.
Target parameters Test Condition Ambient Condition TSL Temperature Test Date	as defined in the IEEE 1528 and IEC 62209 compliance standards. 22°C ; 30% humidity 23°C 18-Jan-12
Target parameters Test Condition Ambient Condition TSL Temperature Test Date Additional Inform	as defined in the IEEE 1528 and IEC 62209 compliance standards. 22°C ; 30% humidity 23°C 18-Jan-12 ation
Target parameters Test Condition Ambient Condition TSL Temperature Test Date	as defined in the IEEE 1528 and IEC 62209 compliance standards. 22°C; 30% humidity 23°C 18-Jan-12 ation 0.988 g/cm ³

. 3	Measu	ired .		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-eps	∆-sigma
1900	40.5	11.99	1.27	40.0	1.40	1.1	-9.5
1925	40.3	12.08	1.29	40.0	1.40	0.9	-7.6
1950	40.2	12.17	1.32	40.0	1.40	0.6	-5.7
1975	40.1	12.26	1.35	40.0	1.40	0.3	-3.8
2000	40.0	12.35	1.37	40.0	1.40	0.0	-1.9
2025	39.9	12.44	1.40	40.0	1.42	-0.1	-1.5
2050	39.8	12.53	1.43	39.9	1.44	-0.3	-1.1
2075	39.7	12.60	1.46	39.9	1.47	-0.4	-0.8
2100	39.6	12.68	1.48	39.8	1.49	-0.6	-0.5
2125	39.5	12.76	1.51	39.8	1.51	-0.7	-0.2
2150	39.4	12.84	1.54	39.7	1.53	-0.8	0.2
2175	39.3	12.93	1.56	39.7	1.56	-1.0	0.6
2200	39.2	13.02	1.59	39.6	1.58	-1.1	1.0
2225	39.1	13.09	1.62	39.6	1.60	-1.3	1.3
2250	39.0	13.17	1.65	39.6	1.62	-1.4	1.6
2275	38.9	13.25	1.68	39.5	1.64	-1.5	2.0
2300	38.8	13.33	1.71	39.5	1.67	-1.7	2.3
2325	38.7	13.40	1.73	39.4	1.69	-1.8	2.7
2350	38.6	13.48	1.76	39.4	1.71	-2.0	3.0
2375	38.5	13.56	1.79	39.3	1.73	-2.1	3.3
2400	38.4	13.63	1.82	39.3	1.76	-2.3	3.7
2425	38.3	13.71	1.85	39.2	1.78	-2.4	4.0
2450	38.2	13.78	1.88	39.2	1.80	-2.6	4.4
2475	38.1	13.85	1.91	39.2	1.83	-2,7	4.4
2500	38.0	13.93	1.94	39.1	1.85	-2.9	4.4
2525	37.9	13.99	1.97	39.1	1.88	-3.1	4.4
2650	37.8	14.06	1.99	39.1	1.91	-3.3	4.4
2575	37.7	14.13	2.02	39.0	1.94	-3.5	4.5
2600	37.6	14.20	2.05	39.0	1.96	-3.7	4.6
2625	37.5	14.26	2.08	39.0	1.99	-3.8	4.6
	37.4	14.32	2,11	38.9	2.02	-4.0	4.6
2650					0.05		
2650 2675	37.3	14.39	2.14	38.9	2.05	-4.3	4.7

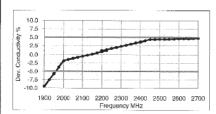


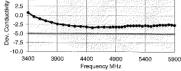
Figure D-2 2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D: Page 2 of 3
07/29/13 - 08/21/13	Portable Handset			Tage 2 015
© 2012 DOTECT Engineering Lab	anotoni lao			

© 2013 PCTEST Engineering Laboratory, Inc.

2 Composition / Information on ingredients

The Item is composed of the following ingredients: Water


	Figure D-3
Sodium salt	0 – 1.5%
Emulsifiers	8 – 25%
Mineral oil	10 – 30%
Water	50 — 65%

Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test

	lame						g Liquid (H		3500-	5800	V5)						
Produ			SL AAH 502 AB (Charge: 120402-2)														
Manuf	acture	r	SPEAG														
		nt Met								-							
TSL d	electri	c para	meter	s mea	sured	using c	alibrated C	CP pr	obe (type I	DAK						
													~		1		
Targa	Dara	meter															
				finadi	in the I	ECE 10	28 and IEC	0 000	0.00			tanda					
raigei	parai	letera	as ue	meur	nuei	EEE 13		\$ 022l	19.00	npila	nce :	aanda	ras.				
	condit																
				; 30%	humio	dity											
TSL T		ature															
Test D)ate		4-Apr	r-12													
		nform			3												
TSL D			0.985														
ISLH	eat-ca	pacity	3.383	3 KJ/(k	:g*K)		10										
Resul	ts																
0.00	Measu	ired	920.H	Targe		Diff.to T	farget [%]										
f [MHz]	HP-e'		sigma		sigma		∆-sigma		10.0	1	-252	3972	a P	eser e	17.50	2422122	100
3400	38.7	14.96	2.83	38.0	2.81	1.8	0.7	%	7.5	12.00	1000 1000	<u>666700</u> #086707	s k	yaan. Dolwan O			
3500	38.6	14.91	2.90	37.9	2.91	1.7	-0.3	Dev. Permittivity	5.0	-				rani da			
3600	38.5	14.92	2.99	37.8	3.02	1.7	-0.9	E	2.5				-		1. 1		494 (14) 494 (14)
3700	38.3	14.92	3.07	37.7	3.12	1.7	-1.5	Per	0.0		-nic					*******	******
3800	38,2	14.94	3.16	37.6	3.22	1.7	-1.9	ev.	-2.5	•	200	are Velate	문문			open o se Stitus exte	
	38.1	14.95	3.24	37.5	3.32	1.7	-2.4			1000			200			1.23	51,222 1002/2011
3900	1.2.2.2.2		1.	01.0	2.42		-2.4	-	-5.0					and the second second			
3900 4000	38.0	15.00	3.34	37.4	3.43	1.8	-2.4		-5.0 •7.5			(``) - [- -		100			121.8
4000 4100	38.0 37.9	15.04	3.43			1.8 1.8			-7.5 -10.0	1971 J		(V) I					
4000	38.0		1015.03	37.4	3.43		-2.5		-7.5 -10.0	400	39	50	4400) 4	900	5400	59
4000 4100 4200 4300	38.0 37.9 37.8 37.7	15.04 15.08 15.14	3.43 3.52 3.62	37.4 37.2	3.43 3.53	1.8	-2.5 -2.8		-7.5 -10.0	100	39	00) 4 juency f		5400	59
4000 4100 4200 4300 4400	38.0 37.9 37.8 37.7 37.5	15.04 15.08 15.14 15.18	3.43 3.52	37.4 37.2 37.1	3.43 3.53 3.63	1.8 1.8	-2.5 -2.8 -2.9		-7.5 -10.0	400	39	50				5400	59
4000 4100 4200 4300 4400 4500	38.0 37.9 37.8 37.7 37.5 37.4	15.04 15.08 15.14 15.18 15.20	3.43 3.52 3.62 3.71 3.81	37.4 37.2 37.1 37.0	3.43 3.53 3.63 3.73	1.8 1.8 1.8	-2.5 -2.8 -2.9 -3.0		-7.5 -10.0	400	39	50				5400	59
4000 4100 4200 4300 4400 4500 4600	38.0 37.9 37.8 37.7 37.5 37.4 37.3	15.04 15.08 15.14 15.18 15.20 15.29	3.43 3.52 3.62 3.71 3.81 3.91	37.4 37.2 37.1 37.0 36.9 36.8 36.7	3.43 3.53 3.63 3.73 3.84 3.94 4.04	1.8 1.8 1.8 1.7 1.6 1.6	-2.5 -2.8 -2.9 -3.0 -3.1 -3.3 -3.2		-7.5 -10.0 3	100	39	50				5400	59
4000 4100 4200 4300 4400 4500 4600 4700	38.0 37.9 37.8 37.7 37.5 37.4 37.8 37.1	15.04 15.08 15.14 15.18 15.20 15.29 15.34	3.43 3.52 3.62 3.71 3.81 3.91 4.01	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6	3.43 3.53 3.63 3.63 3.84 3.94 4.04 4.14	1.8 1.8 1.7 1.6 1.5	-2.5 -2.8 -2.9 -3.0 -3.1 -3.3		-7.5 -10.0 3 10.0	100	39	00				5400	59
4000 4100 4200 4300 4400 4500 4600 4700 4800	38.0 37.9 37.8 37.7 37.5 37.4 37.4 37.3 37.1 37.0	15.04 15.08 15.14 15.18 15.20 15.29 15.34 15.39	3.43 3.52 3.62 3.71 3.81 3.91 4.01 4.11	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4	3.43 3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25	1.8 1.8 1.7 1.6 1.5 1.5	-2.5 -2.6 -2.9 -3.0 -3.1 -3.3 -3.2 -3.2 -3.2 -3.2		-7.5 -10.0 3 10.0 7.5	400	39	00				5400	59
4000 4100 4200 4300 4400 4500 4600 4700 4800 4850	38.0 37.9 37.8 37.7 37.5 37.4 37.3 37.1 37.0 36.9	15.04 15.08 15.14 15.20 15.29 15.34 15.39 15.39	3.43 3.52 3.62 3.71 3.81 3.91 4.01 4.11 4.16	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6	3.43 3.53 3.63 3.63 3.84 3.94 4.04 4.14	1.8 1.8 1.7 1.6 1.5	-2.5 -2.8 -3.0 -3.1 -3.3 -3.2 -3.2	*	-7.5 -10.0 3 10.0 7.5 5.0	100	39	00				5400	59
4000 4100 4200 4300 4400 4500 4600 4700 4800 4850 4850 4900	38.0 37.9 37.8 37.7 37.5 37.4 37.3 37.1 37.0 36.9 36.8	15.04 15.08 15.14 15.20 15.29 15.34 15.39 15.43 15.43	3.43 3.52 3.62 3.71 3.81 3.91 4.01 4.11 4.16 4.21	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4	3.43 3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25	1.8 1.8 1.7 1.6 1.5 1.4 1.3 1.3	-2.5 -2.6 -2.9 -3.0 -3.1 -3.3 -3.2 -3.2 -3.2 -3.2	*	-7.5 -10.0 3 10.0 7.5 5.0 2.5	100	39	0				5400	59
4000 4100 4200 4300 4400 4500 4600 4700 4800 4850 4900 4950	38.0 37.9 37.8 37.7 37.5 37.4 37.3 37.1 37.0 36.9	15.04 15.08 15.14 15.20 15.29 15.34 15.39 15.39	3.43 3.52 3.62 3.71 3.81 3.91 4.01 4.11 4.16	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4	3.43 3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25 4.30	1.8 1.8 1.7 1.6 1.5 1.4 1.3	-2.5 -2.8 -2.9 -3.0 -3.1 -3.3 -3.2 -3.2 -3.2 -3.2 -3.1	*	-7.5 -10.0 3 10.0 7.5 5.0 2.5 0.0	400	39	>0				5400	59
4000 4100 4200 4300 4400 4500 4800 4800 4850 4800 4900 4950 5000	38.0 37.9 37.8 37.7 37.5 37.4 37.3 37.1 37.0 36.9 36.8	15.04 15.08 15.14 15.20 15.29 15.34 15.39 15.43 15.45 15.45 15.47 15.50	3.43 3.52 3.62 3.71 3.81 3.91 4.01 4.11 4.16 4.21 4.26 4.31	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.4 36.3	3.43 3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.35	1.8 1.8 1.7 1.6 1.5 1.4 1.3 1.3	-2.5 -2.8 -2.9 -3.0 -3.1 -3.3 -3.2 -3.2 -3.2 -3.2 -3.1 -3.1	*	-7.5 -10.0 3 10.0 7.5 5.0 2.5 0.0 -2.5	400	39	>0				5400	59
4000 4100 4200 4300 4400 4400 4400 4800 4800 4850 4850 4900 4950 5000 5050	36.0 37.9 37.8 37.7 37.5 37.4 37.3 37.1 37.0 36.9 36.8 36.7 36.7 36.7 36.6	15.04 15.08 15.14 15.20 15.29 15.34 15.39 15.43 15.45 15.45 15.47 15.50	3.43 3.52 3.62 3.71 3.81 5.91 4.01 4.11 4.16 4.21 4.26 4.31 4.37	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.3 36.2 36.2	3.43 3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.35 4.40 4.45 4.50	1.8 1.8 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2	-2.5 -2.8 -2.9 -3.0 -3.1 -3.2 -3.2 -3.2 -3.2 -3.1 -3.1 -3.1	Conductivity %	-7.5 -10.0 3 10.0 7.5 5.0 2.5 0.0 -2.5 -5.0		39	20				5400	59
4000 4100 4200 4300 4400 4500 4800 4800 4800 4850 4900 4950 5000	36.0 37.9 37.8 37.7 37.5 37.4 37.3 37.1 37.0 36.9 36.8 36.7 36.7	15.04 15.08 15.14 15.20 15.29 15.34 15.39 15.43 15.45 15.45 15.47 15.50	3.43 3.52 3.62 3.71 3.81 3.91 4.01 4.11 4.16 4.21 4.26 4.31	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.3	3.43 3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.35 4.40 4.45	1.8 1.8 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.2	-2.5 -2.8 -2.9 -3.0 -3.1 -3.3 -3.2 -3.2 -3.2 -3.2 -3.1 -3.1 -3.1 -3.1	*	-7.5 -10.0 3 10.0 7.5 5.0 2.5 0.0 -2.5		39	20				5400	59

Figure D-4
5GHz Head Tissue Equivalent Matter

-2.8

-2.8 -2.7 -2.9

-2.7

-2.8

-2.9

-2.7

-2.7

-2.6

-2.6

-2.6

-2.4 -2.5 -2.6

1.0

1.0

1.0

0.9

0.8

0.9

8.0

0.8

0.7

0.7

0.5

0.4

0.2

36.0 4.60

35.9 4.76

35.8 4.81 35.8 4.81 35.8 4.86 35.7 4.91

35.6 5.01 35.5 5.07

35.5 5.12

5.22 0.6

35.4 5.17 0.7

35.4

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D: Page 3 of 3
07/29/13 - 08/21/13	Portable Handset			Fage 5 01 5
© 2013 PCTEST Engineering Lab	oratory Inc			DEV/12.5 M

5150 36.4

5350

5400

5450

5600 5650

5700 35.7 35.6 15.88

5750

5800

5850

5900

5.62 4.48

15.70

15.74

15.75

15.90 5.08

35.8 15.82 35.7 15.86

 5500
 35.9
 15.75
 4.82
 35.6
 4.96

 5550
 35.9
 15.80
 4.88
 35.6
 5.01

36.2 36.1 36.1 36.0 5300

 5200
 36.4
 15.65
 4.53
 36.0
 4.66

 5250
 36.3
 15.67
 4.58
 35.9
 4.71

4.53 4.63 4.67 4.73 4.77 15.67 15.70

4,88 4,93 4,98 5.03

 35.5
 15.94
 5.14
 35.3
 5.22

 35.4
 15.94
 5.14
 35.3
 5.27

 35.4
 15.98
 5.20
 35.3
 5.34

 35.4
 16.02
 5.26
 35.3
 5.40

APPENDIX 9: G5 F SYSTEM V5 @=85 H=CB

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01 v01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System validation Summary														
SAR EDEO							COND.	PERM.		CW VALIDATIC	MOD. VALIDATION			
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
G	835	3/27/2013	3209	ES3DV3	835	Head	0.925	41.29	PASS	PASS	PASS	GMSK	PASS	N/A
G	1900	3/27/2013	3209	ES3DV3	1900	Head	1.449	39.10	PASS	PASS	PASS	GMSK	PASS	N/A
1	1900	7/1/2013	3319	ES3DV3	1900	Head	1.434	38.88	PASS	PASS	PASS	GMSK	PASS	N/A
С	2450	11/9/2012	3022	ES3DV2	2450	Head	1.874	38.23	PASS	PASS	PASS	OFDM	N/A	PASS
E	5200	3/21/2013	3920	EX3DV4	5200	Head	4.529	35.64	PASS	PASS	PASS	OFDM	N/A	PASS
E	5300	3/21/2013	3920	EX3DV4	5300	Head	4.638	35.52	PASS	PASS	PASS	OFDM	N/A	PASS
E	5500	3/28/2013	3920	EX3DV4	5500	Head	4.813	34.07	PASS	PASS	PASS	OFDM	N/A	PASS
E	5800	3/22/2013	3920	EX3DV4	5800	Head	5.108	34.76	PASS	PASS	PASS	OFDM	N/A	PASS
G	835	3/26/2013	3209	ES3DV3	835	Body	1.006	54.42	PASS	PASS	PASS	GMSK	PASS	N/A
E	1900	3/5/2013	3920	EX3DV4	1900	Body	1.574	52.42	PASS	PASS	PASS	GMSK	PASS	N/A
С	2450	11/8/2012	3022	ES3DV2	2450	Body	2.038	51.10	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5200	1/23/2013	3589	EX3DV4	5200	Body	5.292	47.85	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5300	1/23/2013	3589	EX3DV4	5300	Body	5.477	47.47	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5500	1/23/2013	3589	EX3DV4	5500	Body	5.729	47.03	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5800	1/23/2013	3589	EX3DV4	5800	Body	6.233	46.20	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-I SAR System Validation Summary

 Table E-II

 SAR System Validation Summary: Extremity SAR Considerations

SAR							COND.	PERM.		CW VALIDATIC	N	м	IOD. VALIDATI	ON
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ɛ,)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
Α	5200	3/11/2013	3589	EX3DV4	5200	Body	5.268	48.58	PASS	PASS	PASS	OFDM	N/A	PASS
A	5300	3/11/2013	3589	EX3DV4	5300	Body	5.405	48.31	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5500	3/11/2013	3589	EX3DV4	5500	Body	5.703	47.90	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5800	3/11/2013	3589	EX3DV4	5800	Body	6.160	47.11	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: All measurements were performed using probes calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

FCC ID: A3LSMN9009		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
07/29/13 - 08/21/13	Portable Handset			Page 1 of 1
© 2012 PCTEST Engineering La	boratory Inc			DEV 12.5 M

© 2013 PCTEST Engineering Laboratory, Inc.