PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC PART 15.247 WLAN 802.11a/b/g/n/ac

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu Suwon-city, Gyeonggi-do, 443-803 Republic of Korea

Date of Testing:

07/29-08/08/2013 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1307261481.A3L

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model(s): EUT Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification SM-N9009 Portable Handset Digital Transmission System (DTS) Part 15.247 KDB 558074 v03r01

		Avg Co	nducted	Peak Co	Peak Conducted	
Mode	Tx Frequency	Max.	Max.	Max.	Max.	
WOUE	(MHz)	(MHz) Power		Power	Power	
		(mW)	(dBm)	(mW)	(dBm)	
802.11b	2412 - 2462	44.259	16.46	91.201	19.60	
802.11g	2412 - 2462	27.164	14.34	152.055	21.82	
802.11n	2412 - 2462	21.281	13.28	119.950	20.79	
802.11a	5745 - 5825	18.239	12.61	110.154	20.42	
802.11n (20MHz)	5745 - 5825	18.323	12.63	113.763	20.56	
802.11n (40MHz)	5755 - 5795	17.338	12.39	100.000	20.00	
802.11ac (80MHz)	5775	11.776	10.71	75.683	18.79	

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 v03r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 1 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 1 of 67
© 2013 PCTEST Engineering L	aboratory, Inc.			V 3.10

TABLE OF CONTENTS

FCC	PART	15.247 MEASUREMENT REPORT	3
1.0	INT	RODUCTION	4
	1.1	SCOPE	4
	1.2	PCTEST TEST LOCATION	4
2.0	PRO	ODUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	TEST CONFIGURATION	5
	2.4	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.5	LABELING REQUIREMENTS	5
3.0	DES	SCRIPTION OF TEST	6
	3.1	EVALUATION PROCEDURE	6
	3.2	AC LINE CONDUCTED EMISSIONS	6
	3.3	RADIATED EMISSIONS	7
4.0	ANT	TENNA REQUIREMENTS	8
5.0	TES	ST EQUIPMENT CALIBRATION DATA	9
6.0	TES	ST RESULTS	10
	6.1	SUMMARY	10
	6.2	6DB BANDWIDTH MEASUREMENT – 802.11A/B/G/N/AC	11
	6.3	OUTPUT POWER MEASUREMENT – 802.11B/G/N (2.4GHZ)	22
	6.4	OUTPUT POWER MEASUREMENT – 802.11A/N/AC (5GHZ)	25
	6.5	POWER SPECTRAL DENSITY (802.11A/B/G/N/AC)	26
	6.6	CONDUCTED EMISSIONS AT THE BAND EDGE	
	6.7	CONDUCTED SPURIOUS EMISSIONS	45
	6.8	RADIATED SPURIOUS EMISSION MEASUREMENTS	53
	6.9	RADIATED RESTRICTED BAND EDGE MEASUREMENTS	59
	6.10	LINE-CONDUCTED TEST DATA	63
7.0	CO	NCLUSION	67

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 2 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 2 of 67
© 2013 PCTEST Engineering	Laboratory, Inc.			V 3.10 06/17/2013

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	Samsung Electronics Co., Ltd.			
APPLICANT ADDRESS:	129, Samsung-ro, Yeongtong-gu			
	Suwon-city, Gyeonggi-do, 443-803, Republic of Korea			
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.			
TEST SITE ADDRESS:	7185 Oakland Mills Road, Columbia, MD 21046 USA			
FCC RULE PART(S):	Part 15.247			
IC SPECIFICATION(S):	RSS-210 Issue 8			
MODEL NAME:	SM-N9009			
FCC ID:	A3LSMN9009			
Test Device Serial No.:	#1, #4, BT/WIFI	Production	Pre-Production	Engineering
FCC CLASSIFICATION:	Digital Transmission System (DTS)			
DATE(S) OF TEST:	07/29-08/08/2013			
TEST REPORT S/N:	0Y1307261481.A3L			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 5 01 67
© 2013 PCTEST Engineering Laboratory, Inc.				

the ISOJEC 17825-2004

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on February 15, 2012.

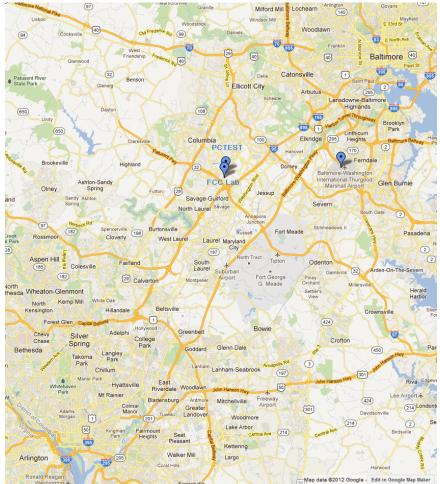


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 4 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 4 of 67	
© 2013 PCTEST Engineering Laboratory. Inc. V 3.10					

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMN9009**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A (BC0, BC1), 850/1900 GSM/GPRS, 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x,EDR, LE), NFC, ANT+

Note: 5GHz WLAN (DTS/NII) operation is possible in 20MHz, 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 v03r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

- 802.11b 99.8%
- 802.11a/g/n 20MHz Bandwidth 98.8%
- 802.11n 40MHz Bandwidth 98.8%
- 802.11ac 80MHz Bandwidth 99.5%

2.3 Test Configuration

The Samsung Portable Handset FCC ID: A3LSMN9009 was tested per the guidance of KDB 558074 v03r01. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2, 3.3, and 6.1 of this test report for a description of the AC line conducted emissions, radiated emissions, and antenna port conducted emissions test setups, respectively.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5 Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 5 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 5 of 67	
© 2013 PCTEST Engineering Laboratory, Inc.					

3.0 DESCRIPTION OF TEST

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009), and the guidance provided in KDB 558074 v03r01 were used in the measurement of the **Samsung Portable Handset FCC ID: A3LSMN9009.**

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 6.10. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 8.51.0.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 6 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 6 of 67
© 2013 PCTEST Engineering L	aboratory, Inc.	·		V 3.10

06/17/2013

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A $\frac{3}{4}$ " (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. For the EUT positioning, "H" is defined with the EUT lying flat on the test surface, "H2" is defined with the EUT standing up on its side, and "V" is defined with the EUT standing upright.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 7 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 7 of 67	
© 2013 PCTEST Engineering Laboratory, Inc. V					

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the Portable Handset are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The Samsung Portable Handset FCC ID: A3LSMN9009 unit complies with the requirement of §15.203.

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Ch.	BW (MHz)	Frequency (MHz)
149	20	5745
151	20 / 40	5755
153	20	5765
155	20 / 80	5775
157	20	5785

Ch.	BW (MHz)	Frequency (MHz)
159	20 / 40	5795
161	20	5805
163	20	5815
165	20	5825

Table 4-1. Frequency/ Channel Operations

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 9 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 8 of 67	
© 2013 PCTEST Engineering L	2013 PCTEST Engineering Laboratory, Inc.				

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	3/29/2013	Annual	3/29/2014	N/A
-	RE2	Radiated Emissions Cable Set (VHF/UHF)	3/29/2013	Annual	3/29/2014	N/A
-	WL25-1	Conducted Cable Set (25GHz)	1/16/2013	Annual	1/16/2014	N/A
-	WL40-1	Conducted Cable Set (40GHz)	1/29/2013	Annual	1/29/2014	N/A
Agilent	8447D	Broadband Amplifier	5/31/2013	Annual	5/31/2014	2443A01900
Agilent	N9020A	MXA Signal Analyzer	10/9/2012	Annual	10/9/2013	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	1/11/2013	Annual	1/11/2014	MY52350166
Anritsu	MA2411B	Pulse Sensor	9/19/2012	Annual	9/19/2013	1027293
Anritsu	ML2495A	Power Meter	10/11/2012	Annual	10/11/2013	1039008
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	7/24/2013	Biennial	7/24/2015	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Biennial	5/30/2014	135427
ETS Lindgren	3160-10	26.5-40 GHz Standard Gain Horn	6/6/2012	Biennial	6/6/2014	130993
Mini-Circuits	VHF-3100+	High Pass Filter	1/17/2013	Annual	1/17/2014	30841
Mini-Circuits	VHF-8400+	3.4GHz - 9.9GHz High Pass Filter	1/17/2013	Annual	1/17/2014	31048
Rohde & Schwarz	ESU26	EMI Test Receiver	2/25/2013	Annual	2/25/2014	100342
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100040
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	6/6/2012	Biennial	6/6/2014	100037
Solar Electronics	8012-50-R-24-BNC	LISN	6/20/2013	Biennial	6/20/2015	310233
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/26/2012	Biennial	1/26/2014	A051107

Table 5-1. Annual Test Equipment Calibration Schedule

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 9 01 67	
© 2013 PCTEST Engineering L	2 2013 PCTEST Engineering Laboratory, Inc.				

6.0 TEST RESULTS

6.1 Summary

Notes:

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMN9009
FCC Classification:	Digital Transmission System (DTS)
Data Rate(s) Tested:	<u>1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)</u>
	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (a/g)
	6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps,
	<u>52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n – 20MHz)</u>
	13.5/15Mbps, 27/30Mbps, 40.5/45Mbps, 54/60Mbps, 81/90Mbps, 108/120Mbps,
	<u>121.5/135Mbps, 135/150Mbps (n – 40MHz)</u>
	29.3/32.5Mbps, 58.5/65Mbps, 87.8/97.5Mbps, 117/130Mbps, 175.5/195Mbps,
	234/260Mbps, 263.3/292.5Mbps, 292.5/325Mbps, 351/390Mbps, 390/433.3Mbps
	<u>(ac – 80MHz BW)</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTE	R MODE (TX)					
15.247(a)(2)	RSS-210 [A8.2]	6dB Bandwidth	> 500kHz		PASS	Section 6.2
15.247(b)(3)	RSS-210 [A8.4]	Transmitter Output Power	< 1 Watt	CONDUCTED	PASS	Sections 6.3, 6.4
15.247(e)	RSS-210 [A8.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band		PASS	Section 6.5
15.247(d)	RSS-210 [A8.5]	Band Edge / Out-of-Band Emissions	Conducted ≥ 30dBc		PASS	Sections6.6, 6.7
15.205 15.209	RSS-210 [A8.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 6.8, 6.9
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 6.10

Table 6-1. Summary of Test Results

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation", Version 2.3.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 10 01 67
© 2013 PCTEST Engineering L	2013 PCTEST Engineering Laboratory, Inc.			

06/17/2013

6.2 6dB Bandwidth Measurement – 802.11a/b/g/n/ac §15.247(a)(2); RSS-210 [A8.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 v03r01 - Section 8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

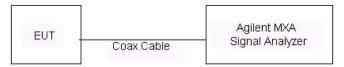


Figure 6-1. Test Instrument & Measurement Setup

Test Notes

None

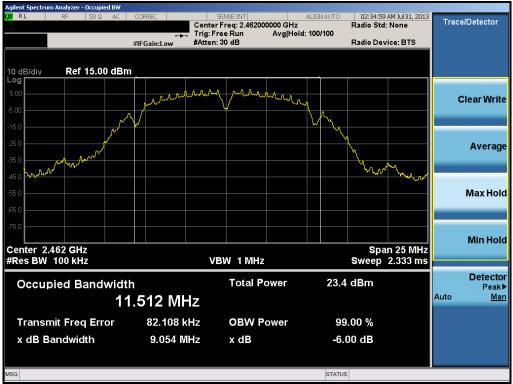
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 11 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 11 of 67
© 2013 PCTEST Engineering L	© 2013 PCTEST Engineering Laboratory, Inc.			



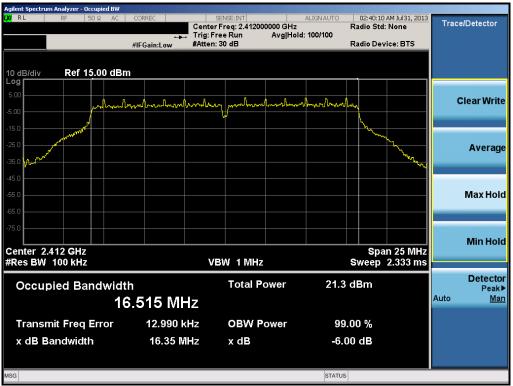
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
2412	1	b	1	8.602	0.500	Pass
2437	6	b	1	8.595	0.500	Pass
2462	11	b	1	9.054	0.500	Pass
2412	1	g	6	16.35	0.500	Pass
2437	6	g	6	16.37	0.500	Pass
2462	11	g	6	16.36	0.500	Pass
2412	1	n	6.5/7.2 (MCS0)	16.35	0.500	Pass
2437	6	n	6.5/7.2 (MCS0)	16.34	0.500	Pass
2462	11	n	6.5/7.2 (MCS0)	16.34	0.500	Pass
5745	149	а	6	16.39	0.500	Pass
5785	157	а	6	16.35	0.500	Pass
5825	165	а	6	16.37	0.500	Pass
5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.60	0.500	Pass
5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.61	0.500	Pass
5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.60	0.500	Pass
5755	151	n (40MHz)	13.5/15 (MCS0)	36.38	0.500	Pass
5795	159	n (40MHz)	13.5/15 (MCS0)	36.36	0.500	Pass
5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.54	0.500	Pass

 Table 6-2. Conducted Bandwidth Measurements

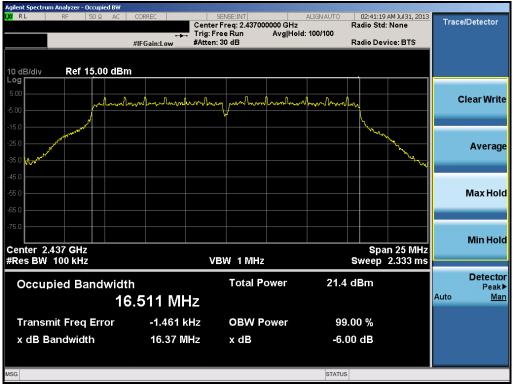
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 12 01 67	
© 2013 PCTEST Engineering L	2013 PCTEST Engineering Laboratory, Inc.				

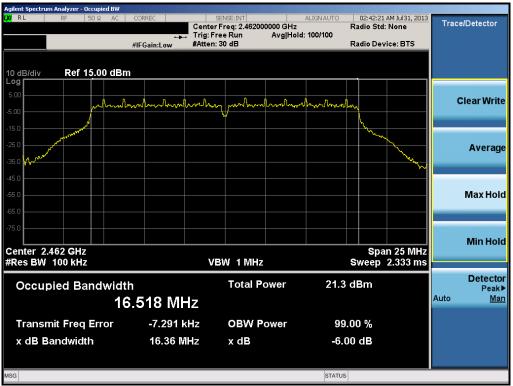


Plot 6-2. 6dB Bandwidth Plot (802.11b - Ch. 6)

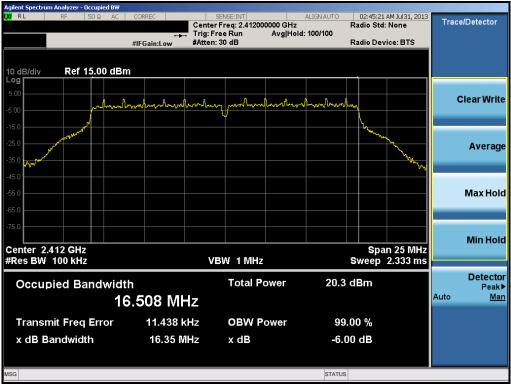

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 13 of 67	
© 2013 PCTEST Engineering Laboratory, Inc.					

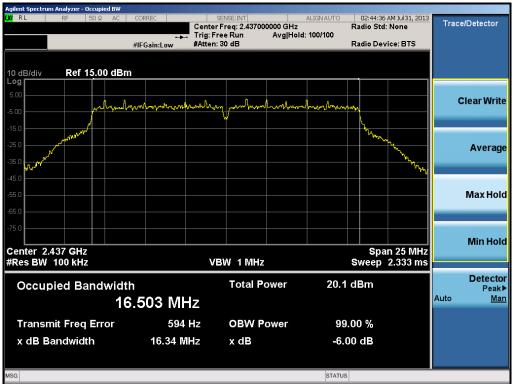
lory, mor


Plot 6-3. 6dB Bandwidth Plot (802.11b - Ch. 11)

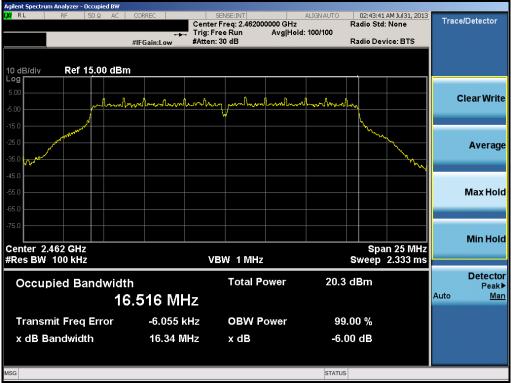

Plot 6-4. 6dB Bandwidth Plot (802.11g - Ch. 1)

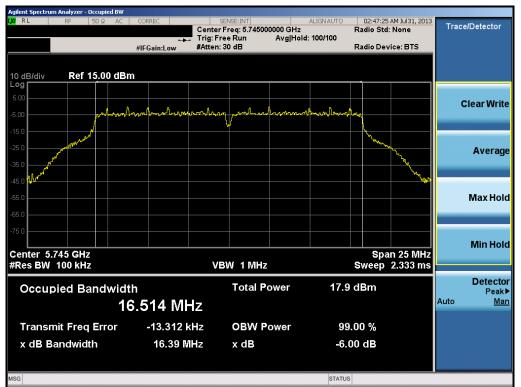
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 14 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 14 of 67
© 2013 DCTEST Engineering I	aboratory Inc			\/ 3 10




Plot 6-6. 6dB Bandwidth Plot (802.11g - Ch. 11)

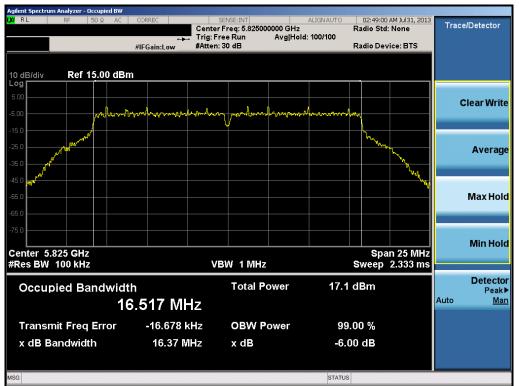
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 15 01 67
© 2013 DCTEST Engineering	aboratory Inc			V 3 10


Plot 6-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)


Plot 6-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6)

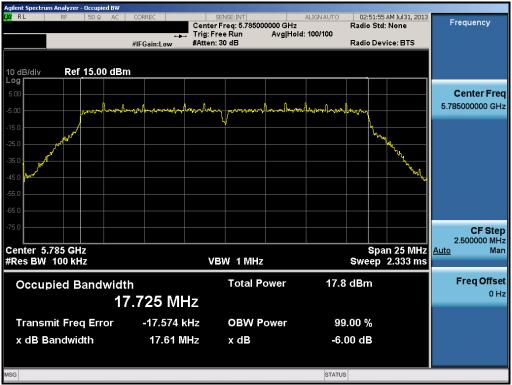
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 16 of 67
© 2013 PCTEST Engineering	aboratory Inc	•		V 3 10


Plot 6-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

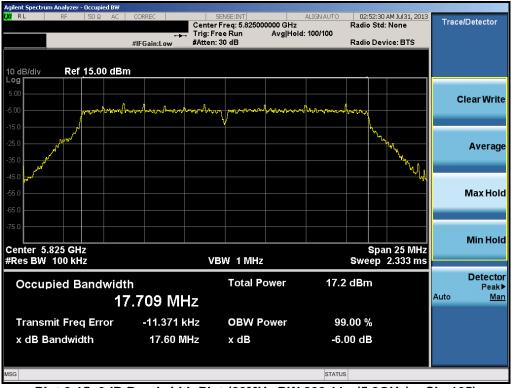

Plot 6-10. 6dB Bandwidth Plot (802.11a - Ch. 149)

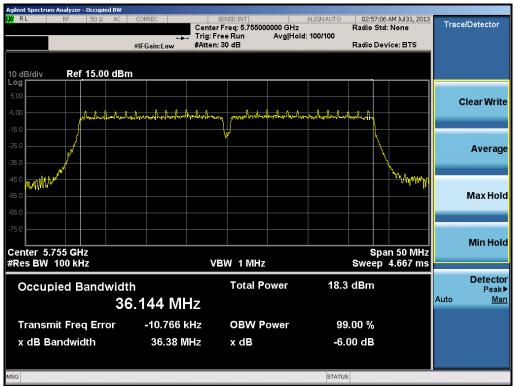
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 17 01 07
© 2013 DCTEST Engineering	aboratory Inc			V 3 10


Plot 6-11. 6dB Bandwidth Plot (802.11a - Ch. 157)

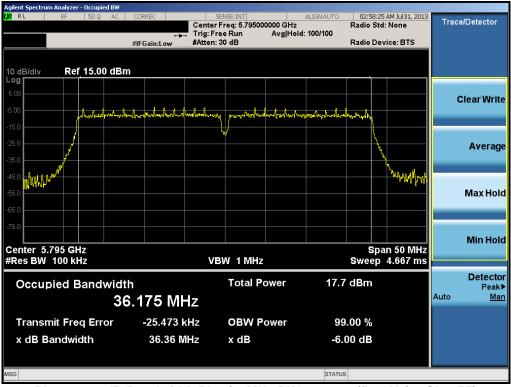

Plot 6-12. 6dB Bandwidth Plot (802.11a - Ch. 165)

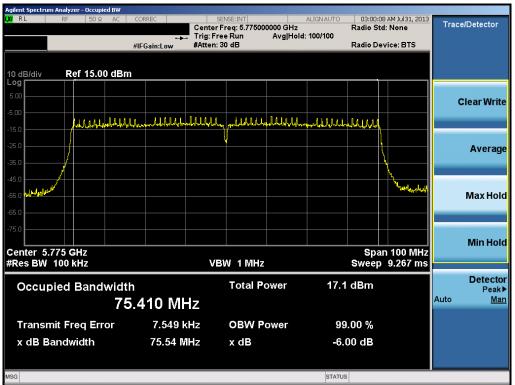
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 10 01 07
© 2013 DCTEST Engineering	aboratory Inc			V 3 1(


Plot 6-13. 6dB Bandwidth Plot (20MHz BW 802.11n (5.8GHz) - Ch. 149)


Plot 6-14. 6dB Bandwidth Plot (20MHz BW 802.11n (5.8GHz) - Ch. 157)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 10 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 19 of 67
© 2013 PCTEST Engineering I	aboratory Inc	•		V 3 10


Plot 6-15. 6dB Bandwidth Plot (20MHz BW 802.11n (5.8GHz) - Ch. 165)


Plot 6-16. 6dB Bandwidth Plot (40MHz BW 802.11n (5.8GHz) - Ch. 151)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 20 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 20 of 67
© 2013 PCTEST Engineering	aboratory Inc	•		V 3 10

Plot 6-17. 6dB Bandwidth Plot (40MHz BW 802.11n (5.8GHz) - Ch. 155)

Plot 6-18. 6dB Bandwidth Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 21 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 21 of 67
© 2013 PCTEST Engineering I	aboratory Inc	•		V 3 10

Output Power Measurement – 802.11b/g/n (2.4GHz) 6.3 §15.247(b)(3); RSS-210 [A8.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 v03r01 – Section 9.1.3 PKPM1 Peak Power Method (for signals with BW ≤ 50MHz) KDB 558074 v03r01 – Section 9.1.2 Integrated Band Power Method (for signals with BW > 50MHz)

KDB 558074 v03r01 – Section 9.2.3.2 Method AVGPM-G (for signals of all BWs)

Test Settings

<u>Method PKPM1 (Peak Power</u> Measurement of Signals with DTS BW ≤ 50MHz)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Integrated Band Power Method (Peak Power Measurement of Signals with DTS BW > 50MHz)

Since the RF power meter used only implemented a VBW of 50MHz, a signal analyzer was required to perform power measurements for signals' whose bandwidth were > 50MHz. The following settings shown in the next two sub-sections were used on a signal analyzer:

- 1. The signal analyzers' channel power measurement function was enabled with the integration bandwidth set to the measured DTS bandwidth
- 2. RBW = 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span ≥ 1.5 x DTS BW
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to fully stabilize

Method AVGPM-G (Average Power Measurements for Signals With Any Channel BW)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 of 07
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 22 of 67
© 2013 PCTEST Engineering	aboratory Inc	•		V 3 10

2013 PCTEST Engineering Laboratory, In

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

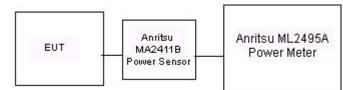


Figure 6-2. Test Instrument & Measurement Setup for Power Meter Measurements

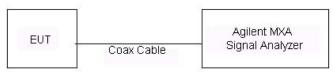


Figure 6-3. Test Instrument & Measurement Setup for Signal Analyzer Measurements

Test Notes

None

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dege 22 of 67			
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 23 of 67			
© 2013 PCTEST Engineering L	2013 PCTEST Engineering Laboratory, Inc.						

Mode	Freq	Channel	Detector	802.11b Conducted Power [dBm]					
woue	Fleq	Channer	Delector		Data Rate [Mbps]				
	[MHz]			1	2	5.5	11		
802.11b	2412	1	AVG	16.10	16.34	16.39	16.15		
			PEAK	19.36	19.38	19.48	19.34		
802.11b	2437	6	AVG	16.26	16.35	16.43	16.46		
			PEAK	19.46	19.51	19.54	19.60		
802.11b	2462	11	AVG	16.02	16.15	16.17	16.15		
			PEAK	19.26	19.36	19.30	19.30		

Table 6-3. 802.11b Conducted Output Power Measurements

Mode	Frea	Channel	Detector		802.11g Conducted Power [dBm]						
woue	ileq	Channer	Delector		Data Rate [Mbps]						
	[MHz]			6	9	12	18	24	36	48	54
802.11g	2412	1	AVG	14.07	14.22	14.21	14.22	14.08	14.05	14.29	14.03
			PEAK	21.21	21.43	21.37	21.82	21.16	21.70	21.44	21.39
802.11g	2437	6	AVG	14.23	14.25	14.26	14.34	14.26	14.17	14.31	14.07
			PEAK	21.16	21.37	21.55	21.79	21.24	21.70	21.38	21.35
802.11g	2462	11	AVG	13.99	13.92	14.03	13.96	13.99	13.96	14.14	13.92
			PEAK	20.93	21.06	21.03	21.67	21.04	21.64	21.32	21.18
			Tabla 6	1 000 11	a Condua	tod Outp	ut Dowor	Magguro	monto	•	

 Table 6-4. 802.11g Conducted Output Power Measurements

Mode	Frea	Channel	Detector		802.11n (2.4GHz) Conducted Power [dBm]							
woue	rieq	Channer	Delector		Data Rate [Mbps]							
	[MHz]			6.5/7.2	5/7.2 13/14.4 19.5/21.7 26/28.9 39/43.4 52/57.8 58.5/65 65/72.2							
802.11n	2412	1	AVG	13.17	13.12	13.13	13.03	13.13	13.07	13.07	13.18	
			PEAK	20.66	20.79	20.62	20.58	20.77	20.49	20.73	20.74	
802.11n	2437	6	AVG	13.20	13.23	13.22	13.28	13.06	13.10	13.12	13.13	
			PEAK	20.76	20.67	20.76	20.68	20.64	20.74	20.54	20.67	
802.11n	2462	11	AVG	12.99	12.91	12.98	13.07	12.95	13.02	12.88	12.82	
			PEAK	20.49	20.44	20.54	20.72	20.66	20.46	20.41	20.43	

Table 6-5. 20MHz BW 802.11n (2.4GHz) Conducted Output Power Measurements

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 24 01 07
© 2013 PCTEST Engineering L	aboratory, Inc.			V 3.10

6.4 Output Power Measurement – 802.11a/n/ac (5GHz) §15.247(b)(3); RSS-210 [A8.4]

Mode	Erog	Channel	Detector			802.1	11a Conduct	ed Power [c	lBm]		
wode	Freq	Channel	Delector		Data Rate [Mbps]						
	[MHz]			6	9	12	18	24	36	48	54
802.11a	5745	149	AVG	12.42	12.52	12.52	12.45	12.48	12.37	12.61	12.31
			PEAK	19.68	19.84	20.05	20.28	19.77	20.32	20.16	19.93
802.11a	5765	153	AVG	12.40	12.42	12.46	12.41	12.48	12.33	12.52	12.35
			PEAK	19.70	19.86	20.03	20.42	19.75	20.28	20.03	20.00
802.11a	5785	157	AVG	12.30	12.32	12.29	12.38	12.32	12.22	12.46	12.28
			PEAK	19.50	19.91	19.82	20.04	19.73	20.15	19.88	19.77
802.11a	5805	161	AVG	12.25	12.28	12.31	12.25	12.23	12.30	12.38	12.21
			PEAK	19.54	19.71	19.75	20.26	19.60	20.24	19.84	19.70
802.11a	5825	165	AVG	12.27	12.25	12.27	12.23	12.28	12.19	12.33	12.18
			PEAK	19.61	19.8	19.80	20.18	19.67	20.09	19.86	19.87

Table 6-6. 802.11a Conducted Output Power Measurements

Mode	Frea	Channel	Detector		2	0MHz BW 80	2.11n (5GHz) Conducted	Power [dBr	n]	
wode	Freq	Channel	Delector		Data Rate [Mbps]						
	[MHz]			6.5/7.2	13/14.4	19.5/21.7	26/28.9	39/43.4	52/57.8	58.5/65	65/72.2
802.11n	5745	149	AVG	12.32	12.39	12.41	12.36	12.44	12.58	12.63	12.55
			PEAK	20.00	20.16	20.27	20.05	20.21	20.27	20.56	20.41
802.11n	5765	153	AVG	12.50	12.41	12.49	12.50	12.39	12.42	12.47	12.40
			PEAK	20.13	20.12	20.23	20.31	20.26	20.14	20.22	20.20
802.11n	5785	157	AVG	12.37	12.38	12.36	12.46	12.34	12.38	12.41	12.47
			PEAK	19.98	20.12	20.29	20.30	20.20	20.10	20.17	20.40
802.11n	5805	161	AVG	12.40	12.33	12.37	12.33	12.28	12.25	12.26	12.36
			PEAK	20.11	20.08	20.04	20.11	20.13	19.98	20.17	20.20
802.11n	5825	165	AVG	12.29	12.27	12.22	12.30	12.35	12.30	12.35	12.37
			PEAK	19.97	20.04	20.10	20.10	20.00	20.02	20.07	20.28

Table 6-7. 20MHz BW 802.11n (5GHz) Conducted Output Power Measurements

Mode	Frea	Channel	Detector		40MHz BW 802.11n (5GHz) Conducted Power [dBm] Data Rate [Mbps]							
Mode	Fleq	Channer	Delector									
	[MHz]			13.5/15	27/30	40.5/45	54/60	81/90	108/120	121.5/135	135/150	
802.11n	5755	151	AVG	12.28	12.30	12.14	12.13	12.25	12.29	12.39	12.30	
			PEAK	19.75	19.54	19.56	20.00	19.70	19.70	20.00	19.72	
802.11n	5795	159	AVG	12.22	12.20	12.03	12.13	12.13	12.01	12.29	12.17	
			PEAK	19.77	19.48	19.46	19.99	19.56	19.37	19.82	19.42	

Table 6-8. 40MHz BW 802.11n (5GHz) Conducted Output Power Measurements

Mode	Frea	Channel	Detector		80MHz BW 802.11ac (5GHz) Conducted Power [dBm] Data Rate [Mbps]								
woue	Tieq	Channel	Delector										
	[MHz]			29.3/32.5	58.5/65	87.8/97.5	117/130	175.5/195	234/260	263.3/292.5	292.5/325	351/390	390/433.3
802.11ac	5775	155	AVG	10.60	10.64	10.60	10.71	10.71	10.70	10.47	10.69	10.63	10.64
			PEAK	17.03	17.27	18.35	17.35	17.49	17.80	17.49	17.31	17.56	18.79

Table 6-9. 80MHz BW 802.11ac (5GHz) Conducted Output Power Measurements

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 25 01 67
© 2013 PCTEST Engineering L	aboratory, Inc.	·		V 3.10

6.5 Power Spectral Density (802.11a/b/g/n/ac) §15.247(e); RSS-210 [A8.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 v03r01 - Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

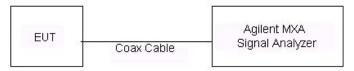


Figure 6-4. Test Instrument & Measurement Setup

Test Notes

None

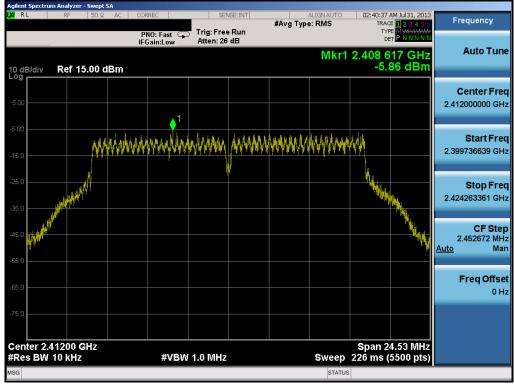
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 26 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 26 of 67
© 2013 PCTEST Engineering L	aboratory, Inc.			V 3.10

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	-0.49	8.000	-8.49	Pass
2437	6	b	1	-0.17	8.000	-8.17	Pass
2462	11	b	1	-1.13	8.000	-9.13	Pass
2412	1	g	6	-5.86	8.000	-13.86	Pass
2437	6	g	6	-5.64	8.000	-13.64	Pass
2462	11	g	6	-5.99	8.000	-13.99	Pass
2412	1	n	6.5/7.2 (MCS0)	-6.72	8.000	-14.72	Pass
2437	6	n	6.5/7.2 (MCS0)	-7.15	8.000	-15.15	Pass
2462	11	n	6.5/7.2 (MCS0)	-6.94	8.000	-14.94	Pass
5745	149	а	6	-8.40	8.000	-16.40	Pass
5785	157	а	6	-8.10	8.000	-16.10	Pass
5825	165	а	6	-9.09	8.000	-17.09	Pass
5745	149	n (20MHz)	6.5/7.2 (MCS0)	-7.97	8.000	-15.97	Pass
5785	157	n (20MHz)	6.5/7.2 (MCS0)	-8.13	8.000	-16.13	Pass
5825	165	n (20MHz)	6.5/7.2 (MCS0)	-8.18	8.000	-16.18	Pass
5755	151	n (40MHz)	13.5/15 (MCS0)	-10.74	8.000	-18.74	Pass
5795	159	n (40MHz)	13.5/15 (MCS0)	-10.00	8.000	-18.00	Pass
5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-14.44	8.000	-22.44	Pass

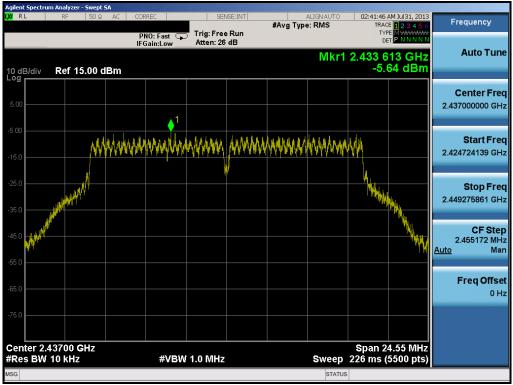
Table 6-10. Conducted Power Density Measurements

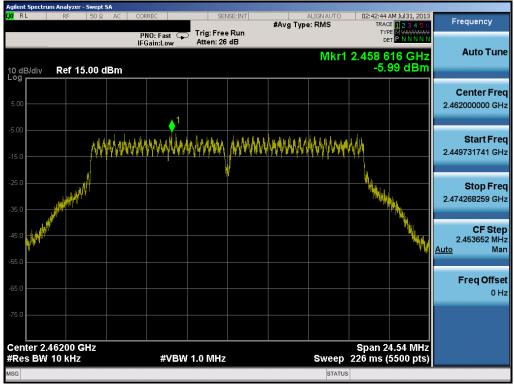
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 27 01 07
© 2013 PCTEST Engineering L	aboratory, Inc.			V 3.10

Plot 6-19. Power Spectral Density Plot (802.11b – Ch. 1)

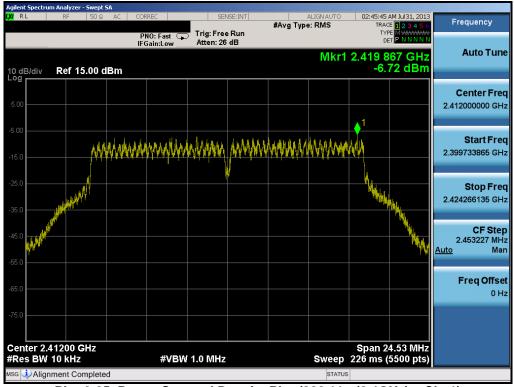

Plot 6-20. Power Spectral Density Plot (802.11b - Ch. 6)

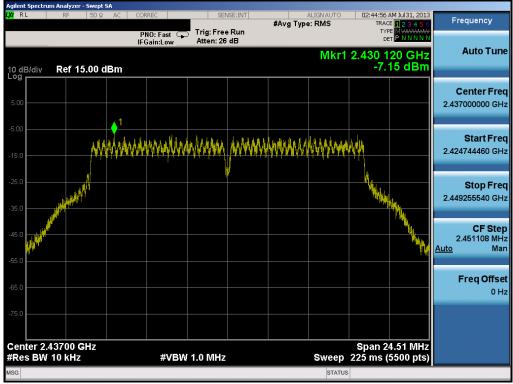
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 26 01 67
© 2013 PCTEST Engineering L	aboratory, Inc.	•		V 3.10



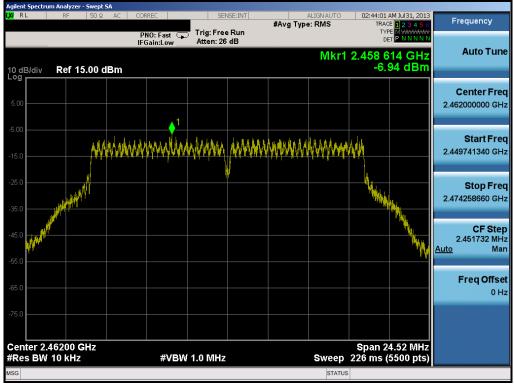

Plot 6-22. Power Spectral Density Plot (802.11g - Ch. 1)

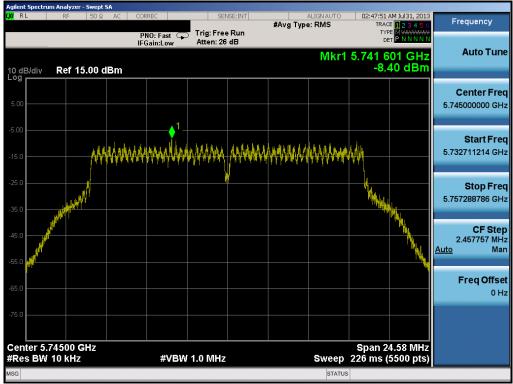
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 20 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 29 of 67
© 2013 PCTEST Engineering	aboratory Inc	•		V 3 10



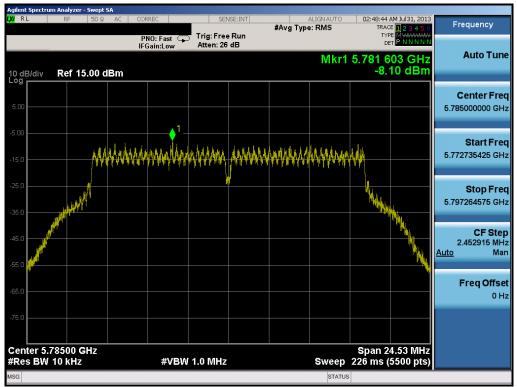

Plot 6-24. Power Spectral Density Plot (802.11g - Ch. 11)

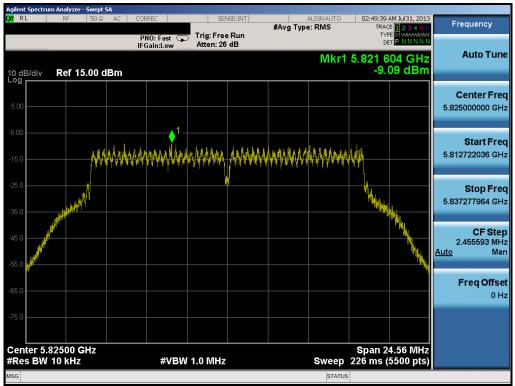
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 20 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 30 of 67
© 2013 PCTEST Engineering Jahoratory Inc.				



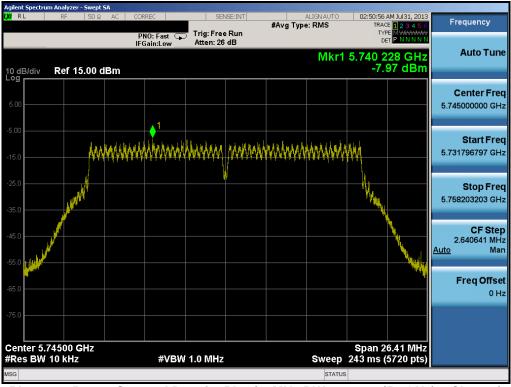

Plot 6-26. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

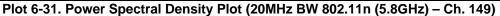
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 21 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 31 of 67
© 2013 PCTEST Engineering Laboratory, Inc.				

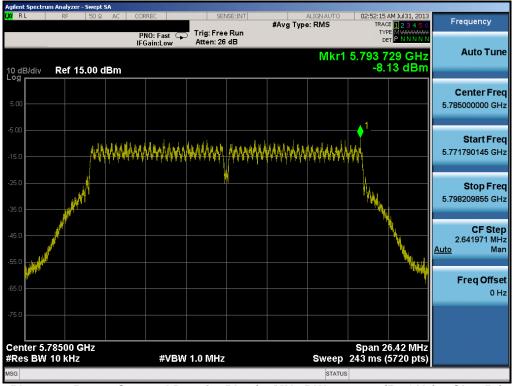



Plot 6-28. Power Spectral Density Plot (802.11a - Ch. 149)

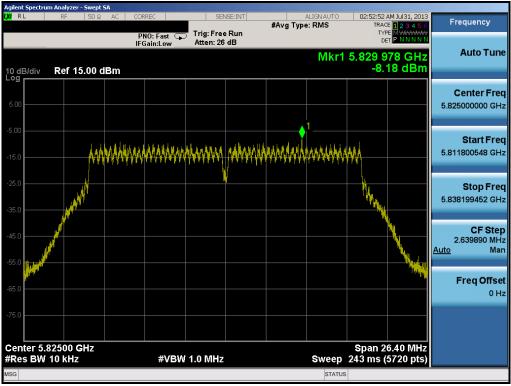
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 32 01 67
© 2013 PCTEST Engineering Laboratory Inc.				

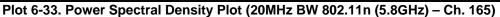

Plot 6-29. Power Spectral Density Plot (802.11a - Ch. 157)

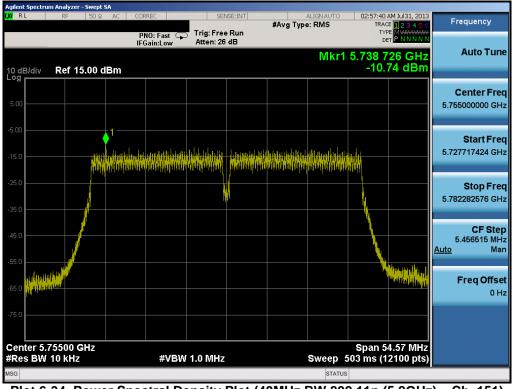



Plot 6-30. Power Spectral Density Plot (802.11a - Ch. 165)

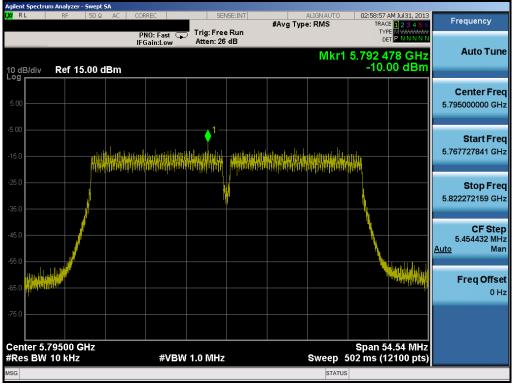
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 22 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 33 of 67
© 2013 PCTEST Engineering Laboratory Inc.				

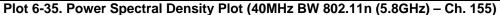


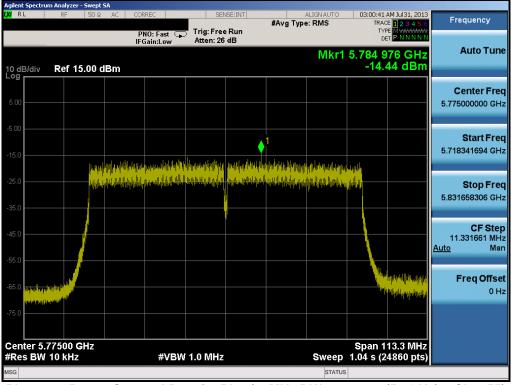

Plot 6-32. Power Spectral Density Plot (20MHz BW 802.11n (5.8GHz) - Ch. 157)


FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 24 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 34 of 67
© 2013 PCTEST Engineering Laboratory Inc				

2013 PCTEST Engineering Labo ratory, II






Plot 6-34. Power Spectral Density Plot (40MHz BW 802.11n (5.8GHz) - Ch. 151)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 25 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 35 of 67
© 2013 PCTEST Engineering Laboratory Inc				

Plot 6-36. Power Spectral Density Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 26 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 36 of 67	
© 2013 PCTEST Engineering Laboratory, Inc. V 3 10					

6.6 Conducted Emissions at the Band Edge §15.247(d); RSS-210 [A8.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6 Mbps for "a" mode, 6.5/7.2Mbps for 20MHz BW "n" mode, 13.5/15Mbps for 40MHz "n", and 29.3/32.5Mbps for 80MHz "ac" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 9.1).

Test Procedure Used

KDB 558074 v03r01 – Section 11.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

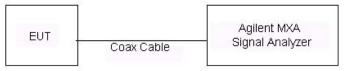
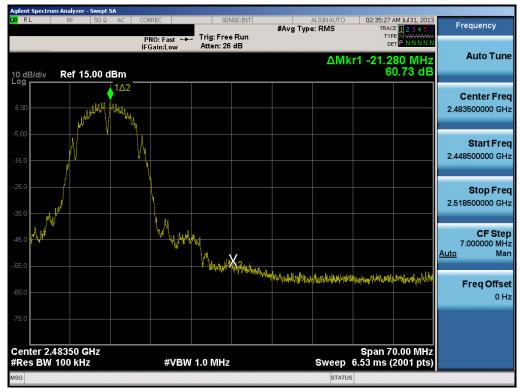
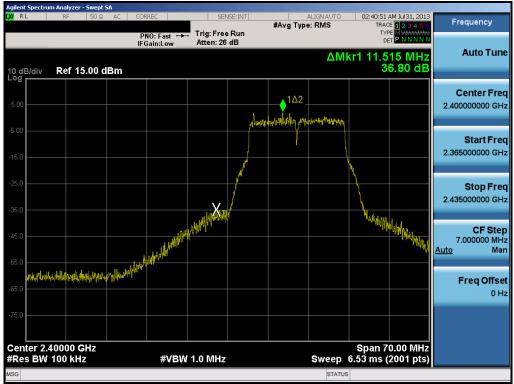


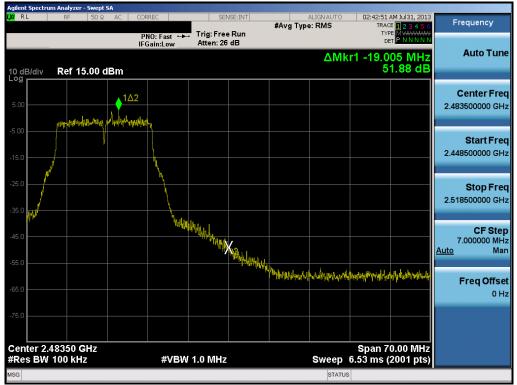
Figure 6-5. Test Instrument & Measurement Setup

Test Notes

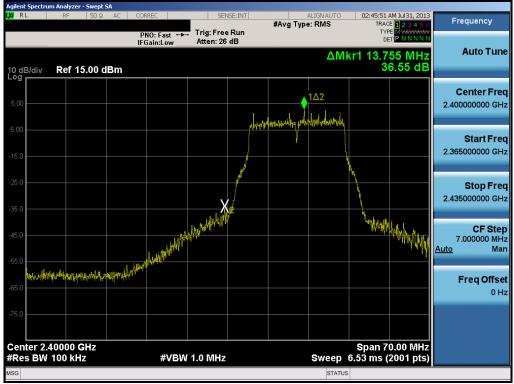

None

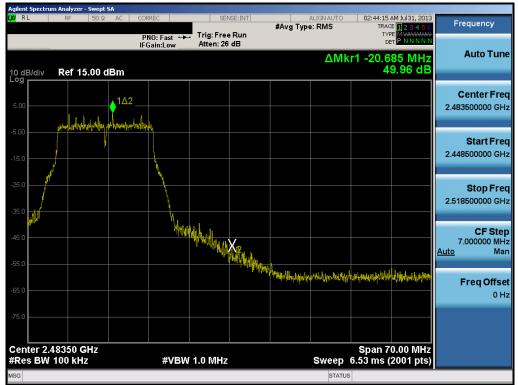
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 37 01 67
© 2013 PCTEST Engineering Laboratory, Inc.				


Plot 6-37. Band Edge Plot (802.11b - Ch. 1)


Plot 6-38. Band Edge Plot (802.11b - Ch. 11)

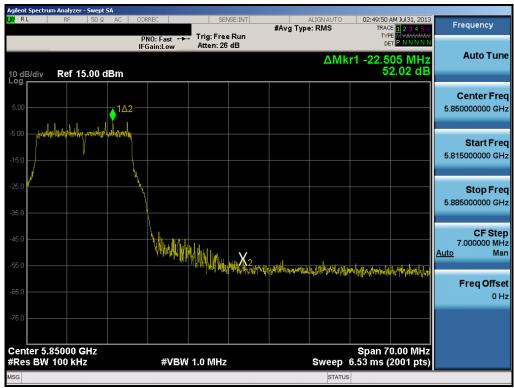
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 36 01 67	
© 2013 PCTEST Engineering Laboratory Inc.					




Plot 6-40. Band Edge Plot (802.11g - Ch. 11)

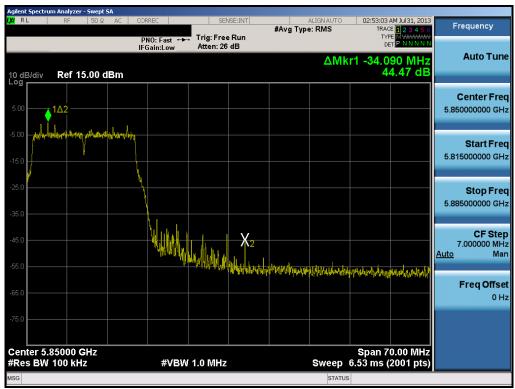
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 20 of 07
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 39 of 67
© 2013 PCTEST Engineering Laboratory. Inc.				

Plot 6-41. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

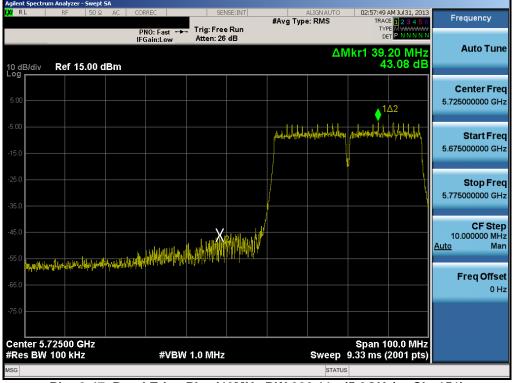

Plot 6-42. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

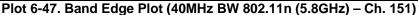
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 40 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 40 of 67
© 2013 PCTEST Engineering Laboratory Inc				

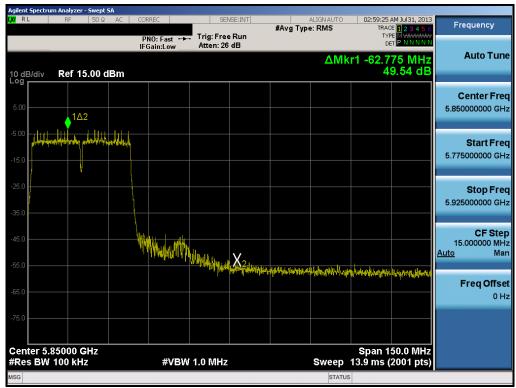
Plot 6-43. Band Edge Plot (802.11a - Ch. 149)


Plot 6-44. Band Edge Plot (802.11a - Ch. 165)

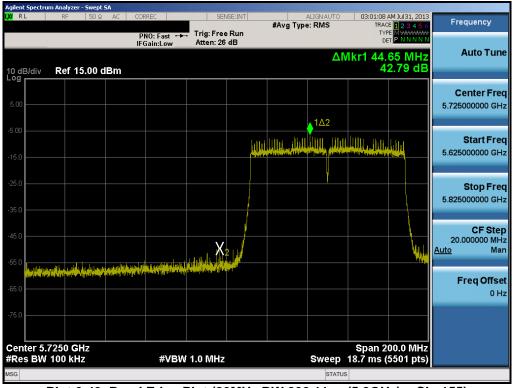
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 41 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 41 of 67
© 2013 PCTEST Engineering Laboratory, Inc.				V 3.10

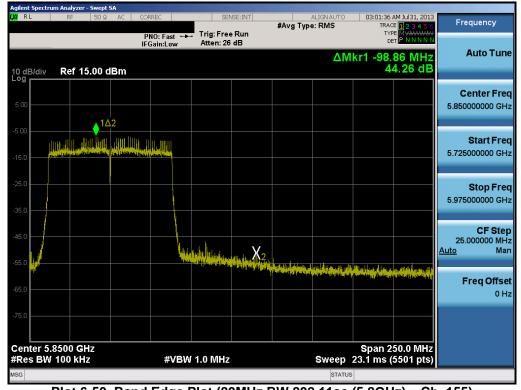

Plot 6-45. Band Edge Plot (20MHz BW 802.11n (5.8GHz) - Ch. 149)




Plot 6-46. Band Edge Plot (20MHz BW 802.11n (5.8GHz) - Ch. 165)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 42 of 67
© 2013 PCTEST Engineering Laboratory, Inc.				




Plot 6-48. Band Edge Plot (40MHz BW 802.11n (5.8GHz) - Ch. 159)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 42 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 43 of 67
© 2013 PCTEST Engineering Laboratory, Inc.				

Plot 6-49. Band Edge Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

Plot 6-50. Band Edge Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 44 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 44 of 67	

6.7 Conducted Spurious Emissions §15.247(d); RSS-210 [A8.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "a", "n", and "ac" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below. The worst case spurious emissions for the 5.8GHz band were found while transmitting in "a" mode at 6 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 v03r01.

Test Procedure Used

KDB 558074 v03r01 – Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

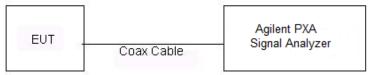


Figure 6-6. Test Instrument & Measurement Setup

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 45 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 45 of 67
© 2013 PCTEST Engineering Laboratory, Inc.				

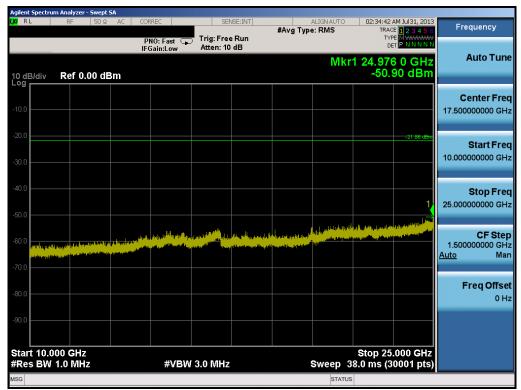
Test Notes


- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 46 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 46 of 67
© 2013 PCTEST Engineering Laboratory, Inc.				V 3.10

Agilent Spectrum Analyzer - Swept SA					
LX/RL RF 50Ω AC	CORREC S	ENSE:INT #Avg Typ	ALIGNAUTO 02:32:32 e: RMS TRAC	AM Jul 31, 2013 CE 1 2 3 4 5 6 PE MWWWWWW	Frequency
	PNO: Fast Trig: Fr IFGain:Low Atten: 2		TYI D		
	IFGain:Low Atten.	20 00			Auto Tune
10 dB/div Ref 15.00 dBm			Mkr1 3.15 -43	62 dBm	
			+ •.		
					Center Freq
5.00					5.015000000 GHz
-5.00					Otort From
					Start Freq 30.000000 MHz
-15.0					30.000000 WH2
				-22.08 dBm	
-25.0					Stop Freq
					10.00000000 GHz
-35.0	.1				
-45.0					CF Step
-45.0	a transfer of the state of the	and Malacana and an and a second second		AND CONTRACTOR	997.000000 MHz Auto Man
-55.0	أأهمار ومراجلتها إخاصال ووالقاقدة		a a bea fills a da broth blog (on a se a scatta og for delakti blog (a s		<u>Auto</u> Man
-33.0					_
-65.0					Freq Offset
					0 Hz
-75.0					
Start 30 MHz #Res BW 1.0 MHz	#VBW 3.0 MH	7	Stop 10 Sweep 18.0 ms (3	.000 GHz	
· · · · ·				looo r pro)	
MSG Deints changed; all trace			STATUS		

Plot 6-51. Conducted Spurious Plot (802.11b - Ch. 1)


Plot 6-52. Conducted Spurious Plot (802.11b - Ch. 1)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 47 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 47 01 07
© 2013 PCTEST Engineering Laboratory, Inc.				V 3.10

Agilent Spectrum Analyzer - Swept SA							
L <mark>X/</mark> RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type	ERMS	TRAC	M Jul 31, 2013	Frequency
		ig: Free Run tten: 26 dB	•		TYP	E M WWWWW T P N N N N N	
	IFGain:Low At	tten: 26 db		Mile			Auto Tune
40 JDAIL Dof 45 00 dBm				IVIK	-43 9	5 GHz 98 dBm	
10 dB/div Ref 15.00 dBm							
							Center Freq
5.00							5.015000000 GHz
-5.00							Otest From
							Start Freq 30.000000 MHz
-15.0							30.000000 WH2
						-21.86 dBm	
-25.0							Stop Freq
							10.00000000 GHz
-35.0	. 1						
	♦ '						CF Step
-45.0	and the part of the second	the shift parent to parent fire	A Providence of the second	high a state of the	Al Indiana pha	alisalimittis _{yille}	997.000000 MHz
-55.0 - market and the ballet for the state	States of the second	And Designed in the second	hait des hipt de stadt	والمراجع والمراجع والمراجع والمراجع	ومعاوية ألبانه الإراكة ومعاول	official and a stream	<u>Auto</u> Man
-55.0							
-65.0							Freq Offset
-05.0							0 Hz
-75.0							
-13.0							
Start 30 MHz	10 (B) 11 0 0				Stop 10.	000 GHz	
#Res BW 1.0 MHz	#VBW 3.0			Sweep 18	3.0 ms (3	UUUT pts)	
MSG 🗼 Points changed; all traces	cleared			STATUS			

Plot 6-53. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 6-54. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 48 of 67	
© 2013 PCTEST Engineering L	aboratory, Inc.	•		V 3.10 06/17/2013	

Agilent Spectrum Analyzer - Swept SA XI RL RF 50 Q A	C CORREC	SENSE:INT	ALIGN AUTO	02:35:54 AM Jul 31, 2013	
μ κι κρ 50 Ω Α			#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 26 dB		DET P NNNN	
			N	1kr1 3.141 6 GHz	Auto Tune
10 dB/div Ref 15.00 dBr	n			-42.94 dBm	
					Center Freq
5.00					5.015000000 GHz
-5.00					
-3.00					Start Freq
-15.0					30.000000 MHz
				-22.18 dBm	
-25.0					Stop Freq
-35.0					10.000000000 GHz
	↓ ↓ ¹				CF Step
-45.0		and the standard stan		Antonianal address from a distance for the	997.000000 MHz
-55.0		Statistics of the second statistics of the second statistics of the second statistics of the second statistics			<u>Auto</u> Man
					FreqOffset
-65.0					0 Hz
75.0					
-75.0					
Ofer # 20 Mill=				Oton 10 000 Otto	
Start 30 MHz #Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	Stop 10.000 GHz 18.0 ms (30001 pts)	
MSG 🗼 Points changed; all trac	es cleared		STAT		

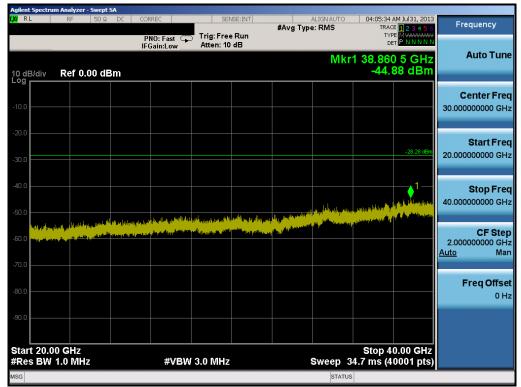
Plot 6-55. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 6-56. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset	Page 49 of 67	
© 2013 PCTEST Engineering L	aboratory, Inc.	·		V 3.10

Agilent Spectrum Analyzer - Swe	-							
L <mark>X/</mark> RL RF 50	Ω DC CORREC		VSE:INT	#Avg Type	ALIGNAUTO	TRACE	M Jul 31, 2013	Frequency
	PNO: F IFGain:	ast 🖵 Trig: Free ow Atten: 26	eRun dB			TYPI DE		
	ii dani.				Mkr	1 19.457	3 GHz	Auto Tune
10 dB/div Ref 15.00) dBm					-38.1	5 dBm	
Log								
F.00								Center Freq
5.00								10.015000000 GHz
-5.00								
0.00								Start Freq
-15.0								30.000000 MHz
-25.0								Stop Freq
							-30.96 dBm	20.000000000 GHz
-35.0	<u> </u>						\	
	A REAL PROPERTY AND A REAL PROPERTY AND A	And a state of the	at in the interaction .	فالمعربين والمعان	line the second large	destand the state	n later til stat styl	CF Step
-45.0	All the state of the second		A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	and the second s	A Soften Han and the specification	وأحاطك والملافقين		1.997000000 GHz
-55.0								<u>Auto</u> Man
-55.0								
-65.0								Freq Offset
								0 Hz
-75.0								
Start 30 MHz						Stop 20.		
#Res BW 1.0 MHz		#VBW 3.0 MHz			Sweep 34	4.7 ms <u>(4</u>	000 GH2 0001 pt <u>s)</u>	
мsg 🤳 Points changed; a					STATUS			
					(222.4			

Plot 6-57. Conducted Spurious Plot (802.11a - Ch. 149)


Plot 6-58. Conducted Spurious Plot (802.11a - Ch. 149)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 50 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset			
© 2013 PCTEST Engineering L	aboratory, Inc.	•		V 3.10	

RL	RF 50Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS		Frequency
		PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 26 dB	#Avg Type: RMS	TRACE 123456 TYPE MWWWWWW DET PINNNNN	
0 dB/div	Ref 15.00 dBm		Autorit 20 MB	Mk	r1 19.495 3 GHz -37.63 dBm	Auto Tune
5.00						Center Fre 10.015000000 GH
15.0						Start Fre 30.000000 M⊦
35.0					-28.28 dBm	Stop Fre 20.000000000 G⊦
45.0				in , y a dig daa ya ay di di gaadha a san di ya a Tay ya dig daa ya ah in ta' a amaa ya ah daa ya		CF Ste 1.997000000 GH <u>Auto</u> Ma
65.0						Freq Offs 0 F
75.0		43 (B)U			Stop 20.000 GHz	
	1.0 MHz ts changed; all trace		3.0 MHz	Sweep	34.7 ms (40001 pts)	

Plot 6-59. Conducted Spurious Plot (802.11a - Ch. 157)


Plot 6-60. Conducted Spurious Plot (802.11a - Ch. 157)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 51 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 51 of 67
© 2013 DCTEST Engineering	aboraton/ Inc	·		V 3 10

RL	RF	50 Ω DC	CORREC	SENSE:		ALIGN AUTO	04:06:35 AM Jul 31, 201:	
			PNO: Fast 🕞 IFGain:Low	Trig: Free Ru Atten: 26 dB	in Č	Гуре: RMS	TRACE 12345 TYPE MWWWW DET P N N N N	
0 dB/div	Ref 15	.00 dBm	IFG2IN:LUW	Atten: 20 dB		Mkr	1 19.579 6 GHz -37.36 dBm	Auto Tun
5.00								Center Fre 10.015000000 GH
5.00								Start Fre 30.000000 MH
35.0							-28.67 dBr	Stop Fre 20.00000000 G⊦
45.0 55.0						a <mark>Bila di Kumbu da </mark>	n _{en l} and de la _c uite de la constante de la const La constante de la constante de La constante de la constante d	CF Ste 1.997000000 GF <u>Auto</u> Ma
65.0								Freq Offs 0 F
75.0							Stop 20.000 GHz	
	1.0 MHz	d; all traces		V 3.0 MHz		Sweep 3	4.7 ms (40001 pts	

Plot 6-61. Conducted Spurious Plot (802.11a - Ch. 165)

Plot 6-62. Conducted Spurious Plot (802.11a - Ch. 165)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 52 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset	landset		
© 2013 DCTEST Engineering I	aboratory Inc	·		V 3 10	

6.8 Radiated Spurious Emission Measurements §15.247(d) / §15.205 & §15.209; RSS-210 [A8.5]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 6-11 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 6-11. Radiated Limits

Test Procedures Used

KDB 558074 v03r01 – Section 12.2.5 (average power measurements)

KDB 558074 v03r01 – Section 12.2.4 (peak power measurements)

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 52 af 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset	Page 53 of 67	
© 2013 PCTEST Engineering	aboratory Inc	•		V 3 10

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

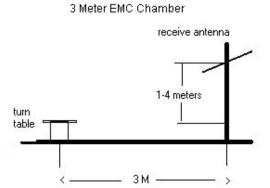


Figure 6-7. Test Instrument & Measurement Setup

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 54 of 67		
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 54 01 67		
© 2013 PCTEST Engineering L	© 2013 PCTEST Engineering Laboratory, Inc.					

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 v03r01 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-10.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. The EUT is supplied with a new/fully-recharged battery. The battery for this model B800BC contains an embedded NFC antenna.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

Sample Calculations

Determining Spurious Emissions Levels

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

Radiated Band Edge Measurement Offset

 The amplitude offset shown in the radiated restricted band edge plots in Section 6.8 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 55 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 55 of 67
© 2013 PCTEST Engineering L	aboratory, Inc.	•		V 3.10

Radiated Spurious Emission Measurements (Cont'd) §15.247(d) / §15.205 & §15.209; RSS-210 [A8.5]

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol. [H/V]	AFCL [dB/m]	Field Strength [dB _µ V/m]	Limit [dB _µ V/m]	Margin [dB]
4824.00	-109.98	Avg	Н	39.98	37.00	53.98	-16.98
4824.00	-100.12	Peak	Н	39.98	46.86	73.98	-27.12
12060.00	-135.00	Avg	Н	52.72	24.72	53.98	-29.26
12060.00	-125.00	Peak	Н	52.72	34.72	73.98	-39.26

Table 6-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol. [H/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	-113.83	Avg	Н	40.01	33.18	53.98	-20.80
4874.00	-101.08	Peak	Н	40.01	45.93	73.98	-28.05
7311.00	-135.00	Avg	Н	45.49	17.49	53.98	-36.49
7311.00	-125.00	Peak	Н	45.49	27.49	73.98	-46.49
12185.00	-135.00	Avg	Н	52.67	24.67	53.98	-29.31
12185.00	-125.00	Peak	Н	52.67	34.67	73.98	-39.31

 Table 6-13. Radiated Measurements

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 56 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 56 01 67
© 2013 PCTEST Engineering L	aboratory, Inc.	•		V 3.10

Radiated Spurious Emission Measurements (Cont'd) §15.247(d) / §15.205 & §15.209; RSS-210 [A8.5]

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol. [H/V]	AFCL [dB/m]	Field Strength [dB _µ V/m]	Limit [dB _µ V/m]	Margin [dB]
4924.00	-105.74	Avg	Н	40.06	41.32	53.98	-12.65
4924.00	-99.05	Peak	Н	40.06	48.01	73.98	-25.96
7386.00	-111.59	Avg	Н	45.81	41.22	53.98	-12.76
7386.00	-99.95	Peak	Н	45.81	52.86	73.98	-21.12
12310.00	-135.00	Avg	Н	52.60	24.60	53.98	-29.37
12310.00	-125.00	Peak	Н	52.60	34.60	73.98	-39.37

Table 6-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5745MHz	
149	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol. [H/V]	AFCL [dB/m]	Field Strength [dB _µ V/m]	Limit [dBµV/m]	Margin [dB]
11490.00	-135.00	Avg	Н	49.17	21.17	53.98	-32.81
11490.00	-125.00	Peak	Н	49.17	31.17	73.98	-42.81
22980.00	-135.00	Avg	Н	61.92	33.92	53.98	-20.06
22980.00	-125.00	Peak	Н	61.92	43.92	73.98	-30.06
		T-LL-04		ad Maaau			

Table 6-15. Radiated Measurements

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 57 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 57 01 67
© 2013 PCTEST Engineering L	aboratory, Inc.	•		V 3.10

06/17/2013

Radiated Spurious Emission Measurements (Cont'd) §15.247(d) / §15.205 & §15.209; RSS-210 [A8.5]

802.11a
6 Mbps
1 & 3 Meters
5785MHz
157

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol. [H/V]	AFCL [dB/m]	Field Strength [dB _µ V/m]	Limit [dBµV/m]	Margin [dB]
11570.00	-135.00	Avg	Н	49.27	21.27	53.98	-32.71
11570.00	-125.00	Peak	Н	49.27	31.27	73.98	-42.71

Table 6-16. Radiated Me	easurements
-------------------------	-------------

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5825MHz
165

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol. [H/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
11650.00	-135.00	Avg	Н	49.40	21.40	53.98	-32.58
11650.00	-125.00	Peak	Н	49.40	31.40	73.98	-42.58

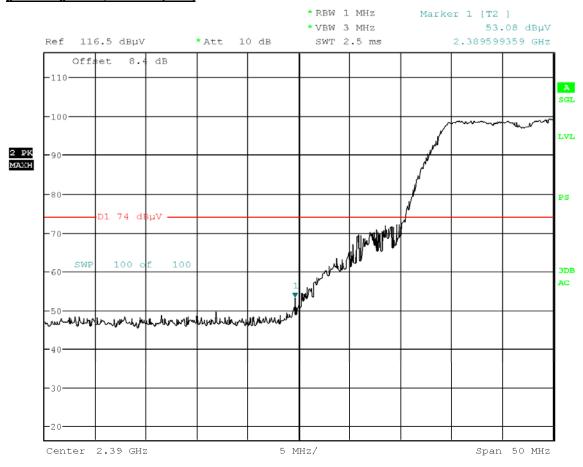
Table 6-17. Radiated Measurements

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dege 59 of 67			
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset	Page 58 of 67				
© 2013 PCTEST Engineering Laboratory, Inc.							

6.9 Radiated Restricted Band Edge Measurements §15.205 / §15.209; RSS-210 [A8.5]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

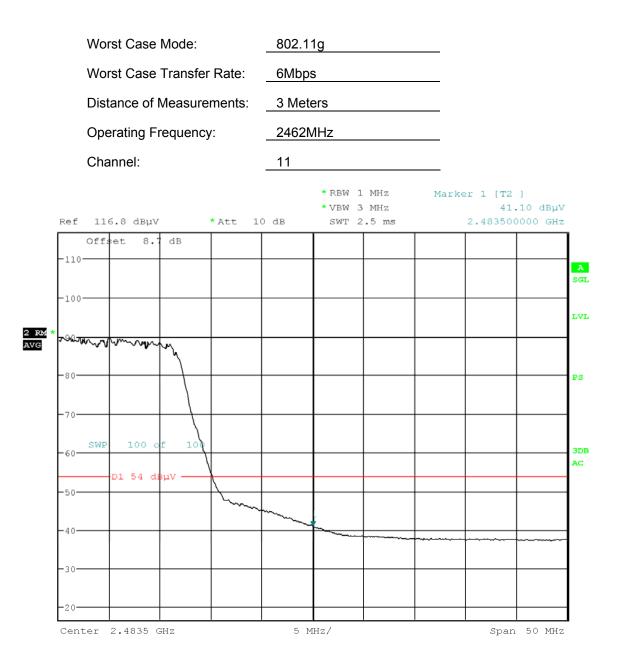
	Worst Case Mode:				802.	11g				
	Worst Case Transfer Rate:					ps				
	Distance of Measurements: Operating Frequency: Channel: Ref 116.5 dBµV *Att					eters				
						2MHz				
	Char	nnel:			1					
Rei	f 11	6.5 dBµ	v	* Att	10 dB	* RBW * VBW SWT		Marke) .71 dBµV 0000 GHz
-11		set 8.	.4 dB							
-10						_				
*-90)					_			-	-
-80)									
-70)									
-60	SWP	100	of 1	00				/		
-50)	DI 54 (dBµV —				and the second s			
-40)									
-30)									
-20)									


Date: 30.JUL.2013 23:41:17

Plot 6-63. Radiated Restricted Lower Band Edge Measurement (Average)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 59 of 67			
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 59 01 67			
© 2013 PCTEST Engineering Laboratory, Inc.							

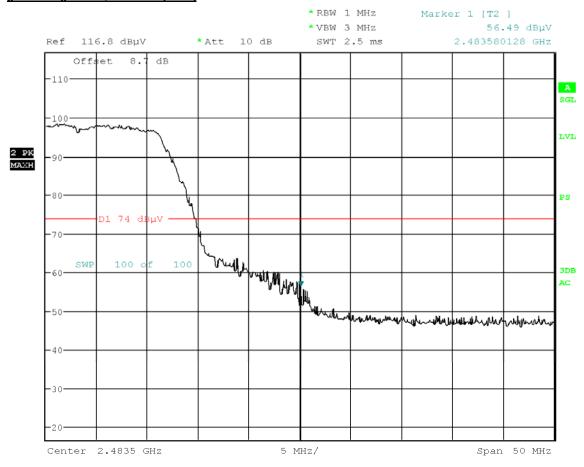
Radiated Restricted Band Edge Measurements (Cont'd) §15.205 / §15.209; RSS-210 [A8.5]


Date: 30.JUL.2013 23:42:32

Plot 6-64. Radiated Restricted Lower Band Edge Measurement (Peak)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dege 60 of 67			
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 60 of 67			
© 2013 PCTEST Engineering Laboratory, Inc.							

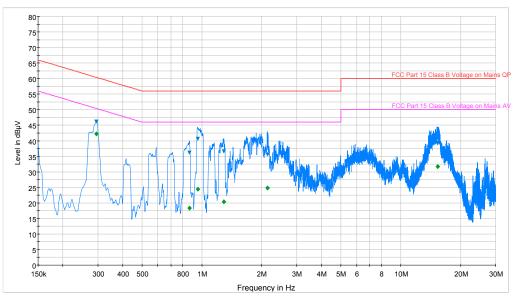
Radiated Restricted Band Edge Measurements (Cont'd) §15.205 / §15.209; RSS-210 [A8.5]


Date: 30.JUL.2013 23:46:39

Plot 6-65. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dege 61 of 67			
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 61 of 67			
© 2013 PCTEST Engineering Laboratory, Inc.							

Radiated Restricted Band Edge Measurements (Cont'd) §15.205 / §15.209; RSS-210 [A8.5]


Date: 30.JUL.2013 23:47:40

Plot 6-66. Radiated Restricted Upper Band Edge Measurement (Peak)

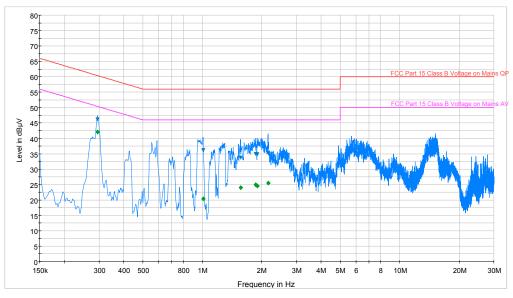
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Daga 62 of 67			
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 62 of 67			
© 2013 PCTEST Engineering Laboratory, Inc.							

6.10 Line-Conducted Test Data §15.207; RSS-Gen [7.2.2]

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+

Plot 6-67. Line Conducted Plot with 802.11b (L1)

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.294	L1	0.1	46.20	60.40	14.20	42.20	50.40	8.20
0.868	L1	0.1	36.20	56.00	19.80	18.30	46.00	27.70
0.953	L1	0.1	40.60	56.00	15.40	24.50	46.00	21.50
1.291	L1	0.2	36.60	56.00	19.40	20.30	46.00	25.70
2.132	L1	0.2	35.70	56.00	20.30	24.80	46.00	21.20
15.367	L1	0.9	39.10	60.00	20.90	31.70	50.00	18.30


Table 6-18. Line Conducted Data with 802.11b (L1)

- 1. All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11b mode using 1Mbps on Channel 6. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3. Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

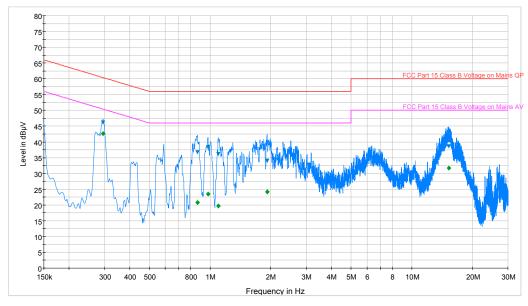
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 63 of 67	
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 63 01 67	
© 2013 PCTEST Engineering Laboratory, Inc.					

Line-Conducted Test Data (Cont'd) §15.207; RSS-Gen [7.2.2]

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+ Final Result 1-QPK Final Result 2-AVG

Plot 6-68. Line Conducted Plot with 802.11b (N)

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.294	Ν	0.1	46.10	60.40	14.30	42.20	50.40	8.20
1.010	Ν	0.2	36.20	56.00	19.80	20.40	46.00	25.60
1.563	Ν	0.2	33.70	56.00	22.30	24.00	46.00	22.00
1.865	Ν	0.2	34.90	56.00	21.10	25.00	46.00	21.00
1.898	Ν	0.2	34.80	56.00	21.20	24.60	46.00	21.40
2.153	Ν	0.2	35.20	56.00	20.80	25.50	46.00	20.50


Table 6-19. Line Conducted Data with 802.11b (N)

- 1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11b mode using 1Mbps on Channel 6. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

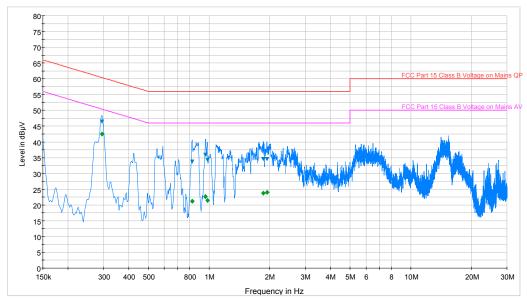
FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 64 of 67
© 2013 PCTEST Engineering	aboratory. Inc.			V 3.10

Line-Conducted Test Data (Cont'd) §15.207; RSS-Gen [7.2.2]

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+

Plot 6-69. Line Conducted Plot with 802.11a (L1)

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.294	L1	0.1	46.10	60.40	14.30	42.60	50.40	7.80
0.866	L1	0.1	36.70	56.00	19.30	20.70	46.00	25.30
0.976	L1	0.1	38.40	56.00	17.60	23.50	46.00	22.50
1.097	L1	0.2	36.10	56.00	19.90	19.70	46.00	26.30
1.916	L1	0.2	34.00	56.00	22.00	24.20	46.00	21.80
15.277	L1	0.9	38.50	60.00	21.50	31.60	50.00	18.40


Table 6-20. Line Conducted Data with 802.11a (L1)

- 1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11a mode using 6Mbps on Channel 157. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 65 of 67
© 2013 PCTEST Engineering	Laboratory, Inc.			V 3.10

Line-Conducted Test Data (Cont'd) §15.207; RSS-Gen [7.2.2]

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+ Final Result 1-QPK Final Result 2-AVG

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.294	Ν	0.1	46.40	60.40	14.00	42.50	50.40	7.90
0.825	Ν	0.1	33.80	56.00	22.20	21.20	46.00	24.80
0.960	Ν	0.1	35.90	56.00	20.10	22.70	46.00	23.30
0.980	Ν	0.1	34.30	56.00	21.70	21.40	46.00	24.60
1.860	Ν	0.2	34.60	56.00	21.40	23.80	46.00	22.20
1.939	Ν	0.2	34.50	56.00	21.50	24.10	46.00	21.90

Table 6-21. Line Conducted Data with 802.11a (N)

- 1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11a mode using 6Mbps on Channel 157. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 66 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 66 of 67
© 2013 PCTEST Engineering	Laboratory, Inc.			V 3.10

7.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMN9009** is in compliance with Part 15C of the FCC Rules.

FCC ID: A3LSMN9009		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 67 of 67
0Y1307261481.A3L	07/29-08/08/2013	Portable Handset		Page 67 01 67
© 2013 PCTEST Engineering Laboratory, Inc.				