Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | maps. | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.44 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.13 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.2 Ω - 2.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 32.5 dB | | ## General Antenna Parameters and Design | The state of s | | |--|----------| | Electrical Delay (one direction) | 1.389 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D835V2-4d266_Aug20 Page 4 of 7 Report No: HCT-SR-2108-FC002 ## **DASY5 Validation Report for Head TSL** Date: 27.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d266 Communication System: UID 0 - CW; Frequency; 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_c = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated; 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.47 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.57 W/kg ## SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.56 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 67.2% Maximum value of SAR (measured) = 3.19 W/kg 0 dB = 3.19 W/kg = 5.04 dBW/kg Certificate No: D835V2-4d266_Aug20 Page 5 of 7 Report No: HCT-SR-2108-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d266_Aug20 Page 6 of 7 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head1 ## **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| ## SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.97 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.42 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.95 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 7.69 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 5.17 W/kg ± 16.9 % (k=2) | Certificate No: D835V2-4d266_Aug20 Page 7 of 7 Additional assessments outside the current scope of SCS 0108. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 HCT (Dymstec) Certificate No: D1800V2-2d007_Aug20 **CALIBRATION CERTIFICATE** Object D1800V2 - SN:2d007 4 2010 1106 2020 1 10 6 Calibration procedure(s) QA CAL-05.V11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 26, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cail Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr. 21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX30V4 SN: 7349 29-Jun-20 (No. EX3-7349_Jun20) Jun-21 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Secondary Standards Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783
07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20 Name Calibrated by: Led Klysner Laboratory Technician Approved by: Katia Pokovio Technical Manager Issued: August 27, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1800V2-2d007 Aug20 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1800V2-2d007 Aug20 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | | | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.7 W/kg ± 16.5 % (k=2) | Certificate No: D1800V2-2d007_Aug20 Page 3 of 6 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 46.2 Ω - 7.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | -21.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.204 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D1800V2-2d007_Aug20 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 26.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d007 Communication System: UID 0 - CW; Frequency; 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.38, 8.38, 8.38) @ 1800 MHz; Calibrated: 29.06,2020 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.43 W/kg; SAR(10 g) = 4.9 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.8% Maximum value of SAR (measured) = 14.7 W/kg 0 dB = 14.7 W/kg = 11.68 dBW/kg Certificate No: D1800V2-2d007_Aug20 Page 5 of 6 Report No: HCT-SR-2108-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D1800V2-2d007_Aug20 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughsusstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates. | lient HCT (Dymstec) | | PLEO IL | Certificate No: D1900V2-5d032_Jan | | | |--
--|---|---|--|--| | CALIBRATION C | ERTIFICATE | 71 | 담당자 | 확인자 | | | Object | D1900V2 - SN:5 | 재 | DE VIX 3 | 19184
101.01.08 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Valida | | | | | Calibration date: | January 28, 202 | | | | | | The measurements and the uncert
All calibrations have been conducts
Calibration Equipment used (M&TE | ed in the closed laborato | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | <u> </u> | Scheduled Calibration | | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-0310) | W03101) | Apr-21 | | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-0310) | 0) | Apr-21 | | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-0310) | 1) | Apr-21 | | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-0310 | 6) | Apr-21 | | | | SN: 310982 / 06327 | 31-Mar-20 (No. 217-0310 | | Apr-21 | | | Type-N mismatch combination | The second of th | | | | | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349 | | Dec-21 | | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 7349
SN: 601 | 28-Dec-20 (No. EX3-7349
02-Nov-20 (No. DAE4-60 | | Dec-21
Nov-21 | | | Reference Probe EX3DV4 | 12-27 S.CO. T. | | | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 601 | 02-Nov-20 (No. DAE4-60 | 1_Nov20) | Nov-21 | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 | SN: 601 | 02-Nov-20 (No. DAE4-60
Check Date (in house) | 1_Nov20)
k Oct-20) | Nov-21
Scheduled Check | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 02-Nov-20 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec | 1_Nov20)
k Oct-20)
k Oct-20) | Nov-21
Scheduled Check
In house check: Oct-22 | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 02-Nov-20 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec | k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 02-Nov-20 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
07-Oct-15 (in house chec | k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | | Reference Probe EX3DV4
DAE4
Secondary Standards | ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 02-Nov-20 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec | k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 02-Nov-20 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec
31-Mar-14 (in house chec | k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-05 Network Analyzer Agilent E8358A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 02-Nov-20 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec
31-Mar-14 (in house chec | (Nov20)
k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20)
k Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | | Certificate No: D1900V2-5d032_Jan21 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d032_Jan21 Page 2 of 6 Report No: HCT-SR-2108-FC002 ## **Measurement Conditions** DASY system
configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## Head TSL parameters | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 1.39 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | $51.4 \Omega + 7.4 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 22.6 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|---------| | | 01.2310 | Certificate No: D1900V2-5d032_Jan21 Page 4 of 6 Report No: HCT-SR-2108-FC002 ## **DASY5 Validation Report for Head TSL** Date: 28.01.2021 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.17 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg Certificate No: D1900V2-5d032_Jan21 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d032_Jan21 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdionst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT (Dymstec) Certificate No: D2450V2-965_Jun21 | | ERTIFICATE | 경 담당자 | 확인자 | |---|--|--|--| | Object | D2450V2 - SN:96 | 35 M 11/ 45/68 | 22127.25 | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | | | Calibration date: | June 15, 2021 | | | | All calibrations have been conduct
Calibration Equipment used (M&TE | | ry facility: environment temperature (22 \pm 3)*0 | C and humidity < 70% | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | 27.7.7.4.4 | | Ower meet inter- | STATE CONTINUE | 00-140-51 (MO: 511-03591/03595) | Apr-22 | | | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | ower sensor NRP-Z91 | 77 C C C C C | | Control of the Contro | | ower sensor NRP-Z91
ower sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22 | | ower sensor NRP-Z91
ower sensor NRP-Z91
seference 20 dB Attenuator
ype-N mismatch combination
seference Probe EXSDV4 | SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22 | | ower sensor NRP-Z91
lower sensor NRP-Z91
seference 20 dB Attenuator
ype-N mismatch combination
seference Probe EXSDV4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 08327 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22 | | Tower sensor NRP-Z91 Tower sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EXSDV4 AAE4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 08327
SN: 7349 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Tower sensor NRP-Z91 Tower sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AAE4 Recordary Standards | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20) | Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-21
Scheduled Check | | rower sensor
NRP-Z91 rower sensor NRP-Z91 teference 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4 tAE4 secondary Standards rower meter E4419B | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (In house) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Aftenuator type-N mismatch combination Reference Probe EX3DV4 DAE4 Recordary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (In house)
30-Oct-14 (In house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AAE4 Recordary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-21 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AXE4 Recordary Standards Power meter E4419B Power sensor HP 8481A REF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 08327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7348_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power sensor HP 8481A Regenerator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349, Dec-20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RE generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec-20) 02-Nov-20 (No. DAE-4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RE generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID:# SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec-20) 02-Nov-20 (No. DAE-4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standerds Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by: | SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID:# SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec-20) 02-Nov-20 (No. DAE-4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | Certificate No: D2450V2-965_Jun21 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)*, March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-965_Jun21 Page 2 of 6 ## **Measurement Conditions** DASV system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | ne rollowing perameters and careactors were appropriet | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1,87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (erre | **** | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g)
of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW Input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6,30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.8 Ω + 6.6 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.5 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by SPEAG | Manufac | tured by | SPEAG | |-----------------------|---------|----------|-------| |-----------------------|---------|----------|-------| Certificate No: D2450V2-965_Jun21 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 15.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:965 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.30 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50% Maximum value of SAR (measured) = 22,4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg Certificate No: D2450V2-965_Jun21 Page 5 of 6 ## Report No: HCT-SR-2108-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D2450V2-965_Jun21 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION C | ERTIFICATI | E 图 | 당당시 | H 파 의 자 | |--|--|---|---|--| | Object | D2600V2 - SN:10 | 015 | 16 | hi | | | | | 20 10 10 | | | Calibration procedure(s) | QA CAL-05.v11 | (N 7) | 2010 1 10. | 6 200 110.6 | | | Calibration Proce | edure for SAR Valida | tion Source | es between 0.7-3 GHz | | Calibration date: | August 26, 2020 | | 21/22 | | | his callbration certificate documer
he measurements and the uncert | nts the traceability to nati-
ainties with confidence p | onal standards, which realize
robability are given on the fo | s the physical u
flowing pages a | nits of measurements (SI),
and are part of the certificate. | | All calibrations have been conduct | ed in the closed laborator | y facility: environment.lempe | erature (22 ± 3) | °C and humidity < 70%, | | Calibration Equipment used (M&TE | E critical for calibration) | | | | | | | | | | | | ID# | Cal Date (Certificate No.) | | Scheduled Calibration | | Primary Standards | | Cal Date (Certificate No.)
01-Apr-20 (No. 217-0310) | | Scheduled Calibration | | Primary Standards
Power meter NRP | ID# | | 0/03101) | Apr-21 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91 | ID#
SN: 104778 | 01-Apr-20 (No. 217-0310) | 0/03101)
0) | A TOTAL COLUMN TO A STATE OF THE PARTY TH | | Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | ID#
SN: 104778
SN: 103244 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310 | 0/03101)
0)
1) | Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID#
SN: 104778
SN: 103244
SN: 103245 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310 | 0/03101)
0)
1)
6) | Apr-21
Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID#
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310 | 0/03101)
0)
1)
6)
4) | Apr-21
Apr-21
Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID#
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310 | 0/03101)
0)
1)
6)
4)
Jun20) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID#
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349 | 0/03101)
0)
1)
6)
4)
Jun20) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor
NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 JAE4 Secondary Standards Power meter E4419B | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 801 ID# SN: GB39612475 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Dec-19 (No. DAE 4-60 | 0/03101)
0)
1)
6)
4)
1_Jun20)
1_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Dec-19 (No. DAE 4-80
Check Date (in house) | 0003101) 00) 11) 09) 44) 1_Jun20) 1_Dec19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 801 ID# SN: GB39612475 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Dec-19 (No. DAE-4-60
Check Date (in house) | 0/03101) 0) 1) 6) 4) 1_Jun20) 1_Dec19) k Feb-19) k Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A EF generator R&S SMT-08 | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9994 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB38612475 SN: US37292783 SN: MY41092317 SN: 100972 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Deo-19 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec | 0703101) 0) 1) 6) 4) _Jun20) 1_Dec19) k Feb-19) k Oct-18) k Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-08 | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9994 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB38612475 SN: US37292783 SN: MY41092317 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Dec-19 (No. DAE-4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec | 0703101) 0) 1) 6) 4) _Jun20) 1_Dec19) k Feb-19) k Oct-18) k Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer Agilent E8358A | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9994 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB38612475 SN: US37292783 SN: MY41092317 SN: 100972 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Deo-19 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec | 0703101) 0) 1) 6) 4) _Jun20) 1_Dec19) k Feb-19) k Oct-18) k Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | ID# SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB38612475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Dec-19 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec
31-Mar-14 (in house chec | 0/03101) 0) 11) 6) 4) 1_Jun20) 1_Dec19) k Feb-19) k Oct-18) k Oct-18) k Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | ID# SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB39612475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Leif Klysner | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. Ex3-7349
27-Dec-19 (No. DAE4-80
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
07-Oct-15 (in house chec
15-Jun-15 (in house chec
31-Mar-14 (in house chec
Function | 0/03101) 0) 1) 6) 4-Jun20) 1_Dec19) k Feb-19) k Oct-18) k Oct-18) k Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer Agilent E8358A | ID# SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB38612475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
01-Apr-20 (No. 217-0310
31-Mar-20 (No. 217-0310
31-Mar-20 (No. 217-0310
29-Jun-20 (No. EX3-7349
27-Dec-19 (No. DAE4-60
Check Date (in house)
30-Oct-14 (in house chec
07-Oct-15 (in house chec
07-Oct-15 (in house chec
31-Mar-14 (in house chec | 0/03101) 0) 1) 6) 4-Jun20) 1_Dec19) k Feb-19) k Oct-18) k Oct-18) k Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D2600V2-1015_Aug20 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1015 Aug20 Page 2 of 6 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.3 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | - | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.4 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1015_Aug20 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1 Ω - 4.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | -27.7 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.150 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1015_Aug20 Page 4 of 6 Report No: HCT-SR-2108-FC002 ## **DASY5 Validation Report for Head TSL** Date: 26.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1015 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.01 \text{ S/m}$; $\epsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.54, 7.54, 7.54) @ 2600 MHz; Calibrated: 29.06.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.6 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.2% Maximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.8 dBW/kg Certificate No: D2600V2-1015 Aug20 Page 5 of 6 Report No: HCT-SR-2108-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1015_Aug20 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizie svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates client HCT (Dymstec) Certificate No: D5GHzV2-1253_Aug20 | CALIBRATION CE | RTIFICATE | 경기 | 당자 | 확 연 자 | |--|--|---|--
--| | TEIDINATION OF | | 제 | 111 | 1200 | | | D5GHzV2 - SN:1253 | | 00 | 10 | | bject . | DogHZVZ - SN:12 | 411/99 5 W | 1 45 113 | MJ 149.28 | | | | 11 4 707 | 0 / 10,6 | 2020 / 10.6 | | Calibration procedure(s) | QA CAL-22.v5 | CONTRACTOR | and the same | NAME AND ADDRESS OF THE PARTY O | | | Calibration Proce | dure for SAR Validation | n Sources b | etween 3-10 GHz | | | | | | | | alibration date: | August 31, 2020 | | | | | | | | | | | his calibration certificate documen | its the traceability to nation | onal standards, which realize th | ne physical units | of measurements (SI). | | he measurements and the uncertainty | ainties with confidence pr | obability are given on the follow | wing pages and | are part of the certificate. | | | | | | | | All calibrations have been conducte | ed in the closed laborator | y facility: environment tempera | turn (22 ± 3)°C i | and humidity < 70%. | | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | | Primary Standards | ID # | Cal Date (Certificate No.) | | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | | Apr-21 | | ower sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | | Apr-21 | | ower sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | | Apr-21 | | Type-N mismatch combination | SN: 310962 / 06327 | 31-Mar-20 (No. 217-03104) | | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_) | Dec19) | Dec-20 | | | | | | F-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | Secondary Standards | ID# | Check Date (in house) | | Scheduled Check | | | ID #
SN: GB39512475 | 30-Oct-14 (in house check F | | In house check: Oct-20 | | Power meter E4419B | and the second s | - Contract of the | | | | Power meter E4419B
Power sensor HP 8481A | SN: GB39512475 | 30-Oct-14 (in house check F | Oct-18) | In house check: Oct-20 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A | SN: GB39512475
SN: US37292783 | 30-Oct-14 (in house check F
07-Oct-15 (in house check C | Oct-18)
Oct-18) | In house check: Oct-20
In house check: Oct-20 | | Power meter E44196
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: GB39512475
SN: US37292783
SN: MY41092317 | 30-Oct-14 (in house check F
07-Oct-15 (in house check C
07-Oct-15 (in house check C | Oct-18)
Oct-18) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Secondary Standards Power meter E44198 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer Agilent E8358A | SN: GB38512475
SN: US37292783
SN: MY41092317
SN: 100972 | 30-Oct-14 (in house check F
07-Oct-15 (in house check C
07-Oct-15 (in house check C
15-Jun-15 (in house check C | Oct-18)
Oct-18) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Power meter E44196
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: GB38512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 30-Oct-14 (in house check f
07-Oct-15 (in house check C
07-Oct-15 (in house check C
15-Jun-15 (in house check C
31-Mar-14 (in house check C | Oct-18)
Oct-18)
Oct-18)
Oct-19) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer Agilent E8358A Calibrated by: | SN: GB38512475
SN: US37292783
SN: MY41092317
SN: 100872
SN: US41080477
Name
Jeton Kastrati | 30-Oct-14 (in house check f
07-Oct-15 (in house check 0
07-Oct-15 (in house check 0
15-Jun-15 (in house check 0
31-Mar-14 (in house check 0
Function
Laboratory Tect | Det-18) Det-18) Det-18) Det-18) Det-19) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer Agilent E8358A Calibrated by: | SN: GB38512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 30-Oct-14 (in house check f
07-Oct-15 (in house check 0
07-Oct-15 (in house check 0
15-Jun-15 (in house check 0
31-Mar-14 (in house check 0 | Det-18) Det-18) Det-18) Det-18) Det-19) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Power meter E44198 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer Agilent E8358A | SN: GB38512475
SN: US37292783
SN: MY41092317
SN: 100872
SN: US41080477
Name
Jeton Kastrati | 30-Oct-14 (in house check f
07-Oct-15 (in house check 0
07-Oct-15 (in house check 0
15-Jun-15 (in house check 0
31-Mar-14 (in house check 0
Function
Laboratory Tect | Det-18) Det-18) Det-18) Det-18) Det-19) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | Certificate No: D5GHzV2-1253_Aug20 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as
the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1253_Aug20 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 10.0 mm, dz = 10.0 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.48 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | ATTE A | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4,83 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | _ | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1253_Aug20 Page 3 of 8 ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1253_Aug20 Page 4 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 50.2 Ω - 4.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.1 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 52.0 Ω + 1.8 Ω | |--------------------------------------|-----------------| | Return Loss | - 31.6 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 55.8 Ω + 2.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1253_Aug20 Page 5 of 8 ## **DASY5 Validation Report for Head TSL** Date: 31.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1253 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.48$ S/m; $\varepsilon_f = 34.6$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5600 MHz; $\sigma = 4.83$ S/m; $\varepsilon_f = 34.2$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5750 MHz; $\sigma = 4.98$ S/m; $\epsilon_r = 34.0$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.63 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.8 W/kg ## SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 69.8% Maximum value of SAR (measured) = 18.3 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.49 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.3 W/kg ## SAR(1 g) = 8.31 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 19.7 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.13 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.8 W/kg ## SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.3% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1253_Aug20 Page 6 of 8 0 dB = 19.7 W/kg = 12.94 dBW/kg Certificate No: D5GHzV2-1253_Aug20 Page 7 of 8 Report No: HCT-SR-2108-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1253_Aug20 Page 8 of 8