### CERTIFICATE OF CALIBRATION

#### ISSUED BY UL VS LTD

DATE OF ISSUE: 31/May/2020 CERTIFICATE NUMBER: 13252593JD01B



5240

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com



Page 1 of 10

**APPROVED SIGNATORY** 

Masee

Naseer Mirza

**Customer:** 

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

#### **Equipment Details:**

Description: Dipole Validation Kit Date of Receipt: 07/May/2020

Manufacturer: Speag

Type/Model Number: D835V2

Serial Number: 4d117

Calibration Date: 29/May/2020

Calibrated By: Masood Khan

Test Engineer

Monas

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

| UL No.     | Instrument                      | Manufacturer    | Туре No.      | Serial No. | Date Last Calibrated  | Cal.<br>Interval<br>(Months) |
|------------|---------------------------------|-----------------|---------------|------------|-----------------------|------------------------------|
| PRE0178317 | Data Acquisition<br>Electronics | SPEAG           | DAE4          | 1542       | 17 Mar 2020           | 12                           |
| PRE0178314 | Probe                           | SPEAG           | EX3DV4        | 7496       | 24 Mar 2020           | 12                           |
| PRE0134199 | Dipole                          | SPEAG           | D900V2        | 035        | 11 Feb 2020           | 12                           |
| PRE0151451 | Power Monitoring Kit            | Art-Fi          | ART 100850-01 | 0001       | Cal as part of System | -                            |
| PRE0151441 | Power Sensor                    | Rhode & Schwarz | NRP8S         | 102481     | 27 Mar 2020           | 12                           |
| M2052      | Vector Network Analyser         | Rhode & Schwarz | ZNB 8         | 106625     | 1 Aug 2019            | 12                           |
| PRE0151877 | Calibration Kit                 | Rhode & Schwarz | ZV-Z135       | 102947     | 17 Oct 2019           | 12                           |
| PRE0178154 | Signal Generator                | HP              | 8648C         | 3537A01598 | 22 Jan 2020           | 12                           |

NUMBER : 13252593JD01B

CERTIFICATE

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

**SAR System Specification** 

| Robot System Positioner: | Stäubli Unimation Corp. Robot Model: TX60L |
|--------------------------|--------------------------------------------|
| Robot Serial Number:     | F17/5ENYG1/A/01                            |
| DASY Version:            | DASY 52 (v52.10.0.1446)                    |
| Phantom:                 | Flat section of SAM Twin Phantom           |
| Distance Dipole Centre:  | 15 mm (with spacer)                        |
| Frequency:               | 835 MHz                                    |

**Dielectric Property Measurements – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Frequency | Room    | Temp    | Liqui  | d Temp | Parameters  | Target | Measured | Uncertainty |
|-----------------|-----------|---------|---------|--------|--------|-------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start   | End     | Start  | End    | i arameters | Value  | Value    | (%)         |
| Head            | 835       | 20.4 °C | 20.6 °C | 19.8°C | 20.0°C | εr          | 41.50  | 41.24    | ± 5%        |
| пеац            | 033       | 20.4 C  | 20.0 C  | 19.0 C | 20.0 C | σ           | 0.90   | 0.93     | ± 5%        |

**SAR Results – Head Simulating Liquid (HSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Head            | SAR averaged over 1g  | 2.44 W/Kg          | 9.71 W/Kg            | ± 17.57%           |
| пеац            | SAR averaged over 10g | 1.59 W/Kg          | 6.32 W/Kg            | ± 17.32%           |

**Antenna Parameters – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Parameter   | Measured Level                 | Uncertainty<br>(%)                  |
|-----------------|-------------|--------------------------------|-------------------------------------|
| Head            | Impedance   | $47.291 \Omega + 0.17 j\Omega$ | $\pm 0.28 \Omega \pm 0.044 j\Omega$ |
| пеац            | Return Loss | 28.76                          | ± 2.03 dB                           |

CERTIFICATE NUMBER: 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

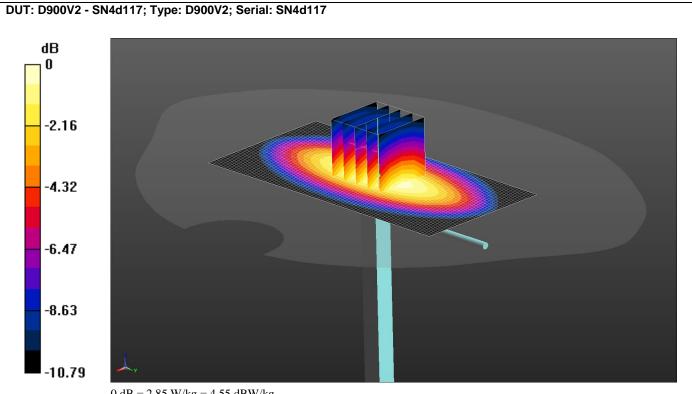
**Dielectric Property Measurements – Body Simulating Liquid (MSL)** 

| Simulant Liquid | Frequency | Room    | Temp    | Liquio | d Temp | Parameters  | Target | Measured | Uncertainty |
|-----------------|-----------|---------|---------|--------|--------|-------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start   | End     | Start  | End    | i arameters | Value  | Value    | (%)         |
| Body            | 835       | 20.4 °C | 20.0 °C | 21.7°C | 21.6°C | εr          | 55.20  | 54.18    | ± 5%        |
| Бойу            | 033       | 20.4 C  | 20.0 C  | 21.7 C | 21.0 C | σ           | 0.97   | 1.02     | ± 5%        |

**SAR Results – Body Simulating Liquid (MSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Body            | SAR averaged over 1g  | 2.60 W/Kg          | 10.35 W/Kg           | ± 18.06%           |
| Бойу            | SAR averaged over 10g | 1.71 W/Kg          | 6.80 W/Kg            | ± 17.44%           |

**Antenna Parameters – Body Simulating Liquid (MSL)** 


| Simulant Liquid | Parameter   | Measured Level   | Uncertainty<br>(%)  |
|-----------------|-------------|------------------|---------------------|
| Body            | Impedance   | 46.38 Ω +5.10 jΩ | ± 0.28 Ω ± 0.044 jΩ |
| Бойу            | Return Loss | 24.85            | ± 2.03 dB           |

**CERTIFICATE NUMBER:** 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

### DASY Validation Scan for Head Stimulating Liquid (HSL)



0 dB = 2.85 W/kg = 4.55 dBW/kg

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1;

Medium: Site65 28May2020 160250 Head - 750 835 900 5%; Medium parameters used (interpolated): f = 835 MHz;  $\sigma = 0.927$ 

S/m;  $\varepsilon_r = 41.244$ ;  $\rho = 1000 \text{ kg/m}^3$ ; Phantom section: Flat Section:

**DASY5** Configuration:

- Probe: EX3DV4 SN7496; ConvF(9.9, 9.9, 9.9); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 8.0; Serial: SN1949;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

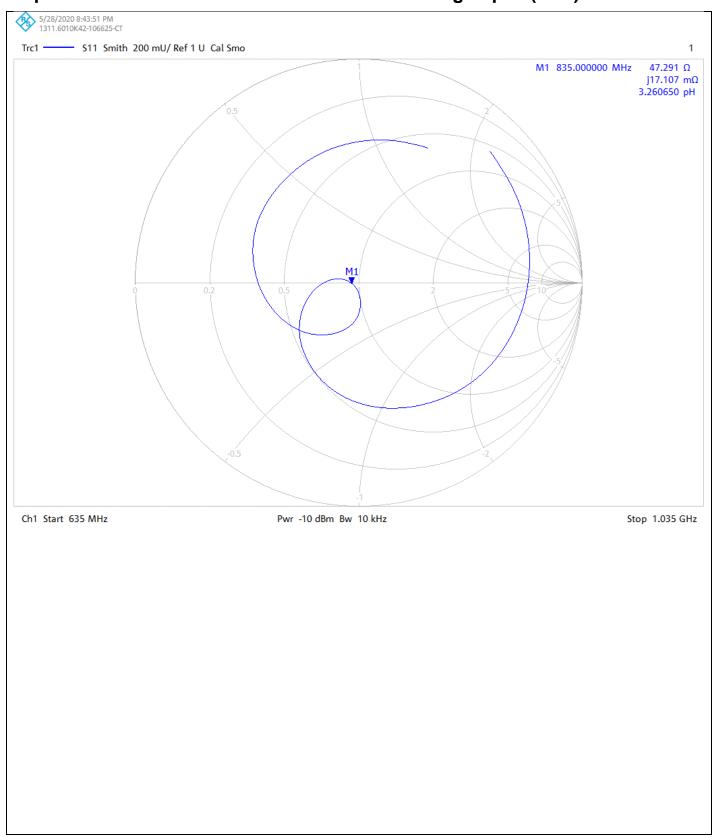
SAR/d=10mm, Pin=50 mW 2/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.83 W/kg

SAR/d=10mm, Pin=50 mW 2/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=4mm

Reference Value = 55.87 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.65 W/kg

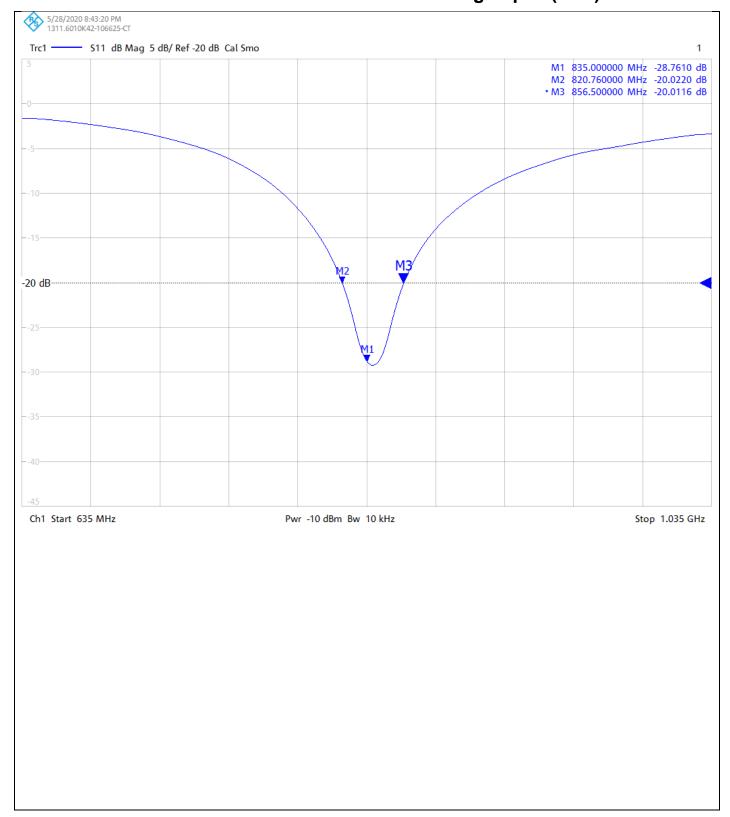

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 2.85 W/kg

CERTIFICATE NUMBER: 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

### Impedance Measurement Plot for Head Stimulating Liquid (HSL)

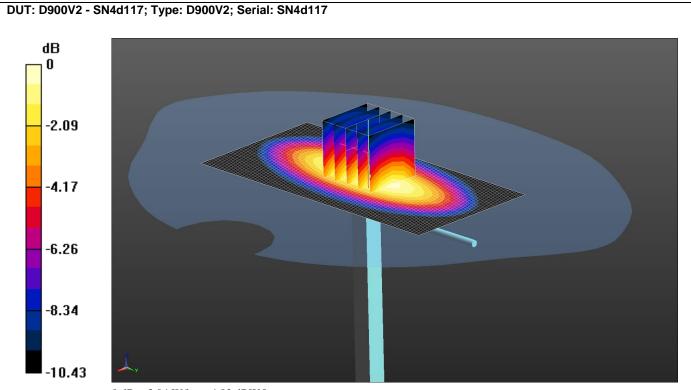



CERTIFICATE NUMBER: 13252593JD01B

Page 7 of 10

UKAS Accredited Calibration Laboratory No. 5248

### Return Loss Measurement Plot for Head Stimulating Liquid (HSL)




CERTIFICATE NUMBER: 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

### **DASY Validation Scan for Body Stimulating Liquid (MSL)**



0 dB = 3.04 W/kg = 4.83 dBW/kg

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1;

Medium: Site65\_28May2020\_162340\_Body - 750 835 900 5%; Medium parameters used (interpolated): f = 835 MHz;  $\sigma = 1.016$ 

S/m;  $\epsilon_r$  = 54.175;  $\rho$  = 1000 kg/m<sup>3</sup>; Phantom section: Flat Section;

**DASY5** Configuration:

- Probe: EX3DV4 SN7496; ConvF(9.81, 9.81, 9.81); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

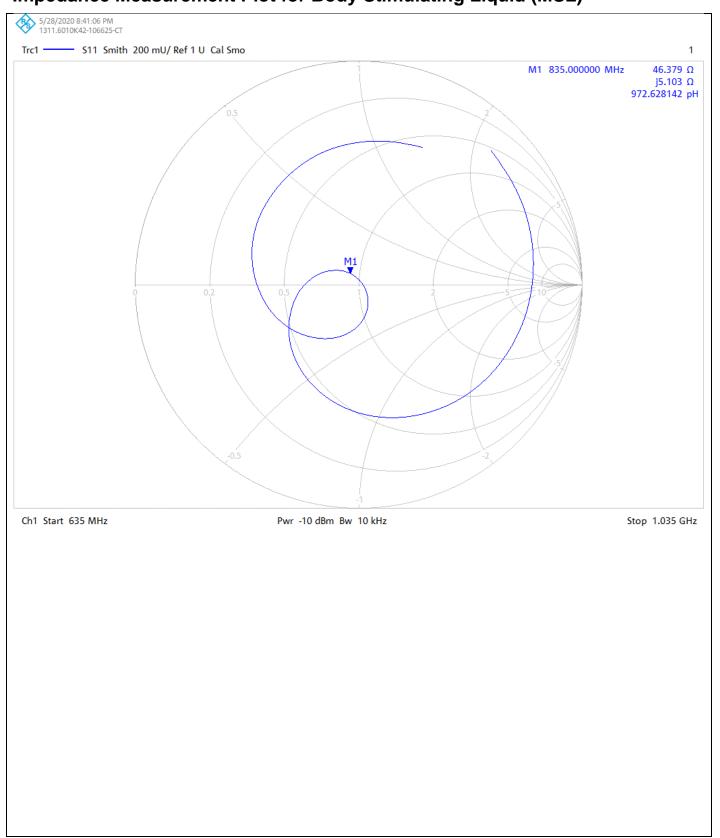
SAR/d=10mm, Pin=50 mW 2/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.03 W/kg

SAR/d=10mm, Pin=50 mW 2/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=4mm

Reference Value = 54.80 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.88 W/kg

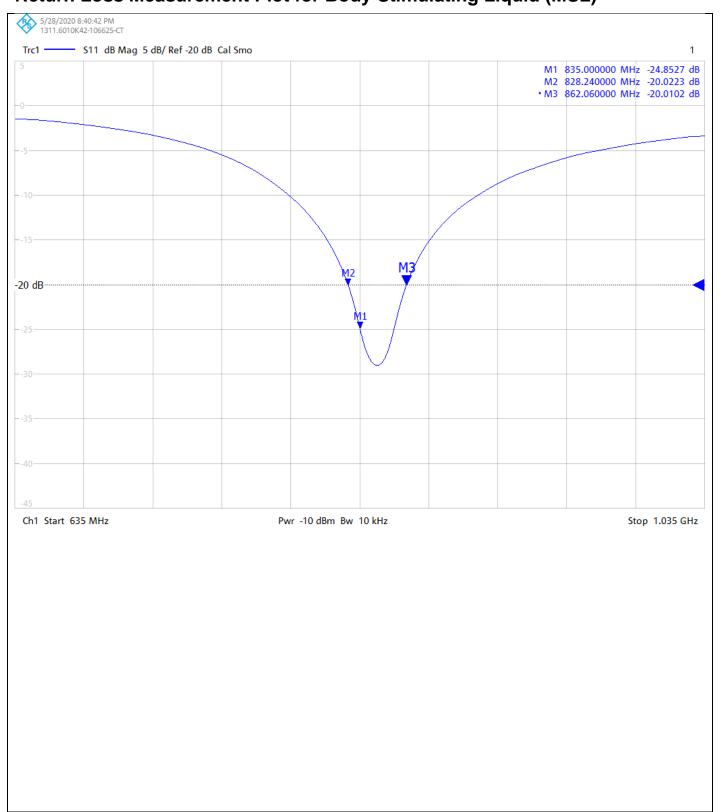

SAR(1 g) = 2.6 W/kg; SAR(10 g) = 1.71 W/kg Maximum value of SAR (measured) = 3.04 W/kg

CERTIFICATE NUMBER: 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

### Impedance Measurement Plot for Body Stimulating Liquid (MSL)




CERTIFICATE NUMBER: 13252593JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

### Return Loss Measurement Plot for Body Stimulating Liquid (MSL)



#### **Calibration Certificate Label:**



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252593JD01B

Instrument ID: 4d117

Calibration Date: 29/May/2020

Calibration Due Date:



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252593JD01B

Instrument ID: 4d117

Calibration Date: 29/May/2020

Calibration Due Date:



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252593JD01B

Instrument ID: 4d117

Calibration Date: 29/May/2020

Calibration Due Date:

### CERTIFICATE OF CALIBRATION

#### ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 29/Oct/2020 CERTIFICATE NUMBER: 13252590JD01D





UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

Page 1 of 10

**APPROVED SIGNATORY** 

Harmohan Sahota

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

#### **Equipment Details:**

Description: Dipole Validation Kit Date of Receipt: 15/Oct/2020

Manufacturer: Speag

Type/Model Number: D1900V2

Serial Number: 5d163

Calibration Date: 22/Oct/2020

Calibrated By: Kaan Corbacioglu

Laboratory Technician

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 13252590JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY5/6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

| UL No.     | Instrument                      | Manufacturer    | Type No.      | Serial No. | Date Last Calibrated  | Cal.<br>Interval<br>(Months) |
|------------|---------------------------------|-----------------|---------------|------------|-----------------------|------------------------------|
| PRE0135115 | Data Acquisition<br>Electronics | SPEAG           | DAE4          | 1438       | 14 Apr 2020           | 12                           |
| PRE0178314 | Probe                           | SPEAG           | EX3DV4        | 7496       | 24 Mar 2020           | 12                           |
| PRE0134198 | Dipole                          | SPEAG           | D1900V2       | 537        | 12 Feb 2020           | 12                           |
| PRE0151451 | Power Monitoring Kit            | Art-Fi          | ART 100850-01 | 0001       | Cal as part of System | -                            |
| PRE0151441 | Power Sensor                    | Rhode & Schwarz | NRP8S         | 102481     | 27 Mar 2020           | 12                           |
| PRE0151154 | Vector Network Analyser         | Rhode & Schwarz | ZNB 8         | 100151     | 15 Jun 2020           | 12                           |
| PRE0158684 | Calibration Kit                 | Rhode & Schwarz | ZV-Z135       | 102144     | 27 May 2020           | 12                           |
| PRE0178154 | Signal Generator                | Rhode & Schwarz | SMB100A       | 175325     | 10 Jun 2020           | 12                           |

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13252590JD01D

Page 3 of 10

**SAR System Specification** 

| Robot System Positioner: | Stäubli Unimation Corp. Robot Model: TX60L |
|--------------------------|--------------------------------------------|
| Robot Serial Number:     | F17/5ENYG1/A/01                            |
| DASY Version:            | cDASY6.14.0.959                            |
| Phantom:                 | Flat section of SAM Twin Phantom           |
| Distance Dipole Centre:  | 10 mm (with spacer)                        |
| Frequency:               | 1900 MHz                                   |

**Dielectric Property Measurements – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Frequency | Room    | Temp    | Liqui   | d Temp | Parameters  | Target | Measured | Uncertainty |
|-----------------|-----------|---------|---------|---------|--------|-------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start   | End     | Start   | End    | i arameters | Value  | Value    | (%)         |
| Head            | 1900      | 20.1 °C | 20.3 °C | 20.0 °C | 20.0 ℃ | εr          | 40.00  | 39.61    | ± 5%        |
| пеац            | 1900      | 20.1 C  | 20.5 C  | 20.0 C  | 20.0 C | σ           | 1.40   | 1.43     | ± 5%        |

**SAR Results – Head Simulating Liquid (HSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Head            | SAR averaged over 1g  | 10.00 W/Kg         | 39.81 W/Kg           | ± 17.57%           |
| пеац            | SAR averaged over 10g | 5.20 W/Kg          | 20.70 W/Kg           | ± 17.32%           |

**Antenna Parameters – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Parameter   | Measured Level     | Uncertainty<br>(%)  |
|-----------------|-------------|--------------------|---------------------|
| Heed            | Impedance   | 49.832 Ω - 3.79j Ω | ± 0.28 Ω ± 0.044 jΩ |
| Head            | Return Loss | 28.42              | ± 2.03 dB           |

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13252590JD01D

Page 4 of 10

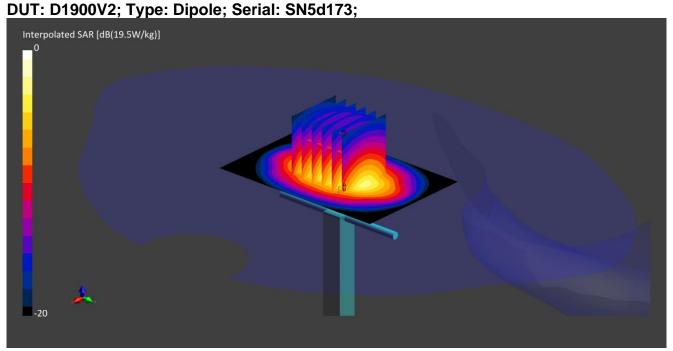
**Dielectric Property Measurements – Body Simulating Liquid (MSL)** 

| Simulant Liquid | Frequency | Room    | Temp    | Liquio  | d Temp  | Parameters  | Target | Measured | Uncertainty |
|-----------------|-----------|---------|---------|---------|---------|-------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start   | End     | Start   | End     | i arameters | Value  | Value    | (%)         |
| Body            | 1900      | 20.1 °C | 20.3 °C | 20.1 °C | 20.2 °C | εr          | 53.30  | 54.78    | ± 5%        |
| Бойу            | 1900      | 20.1 C  | 20.5 C  | 20.1 C  | 20.2 C  | σ           | 1.52   | 1.59     | ± 5%        |

**SAR Results – Body Simulating Liquid (MSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Body            | SAR averaged over 1g  | 10.40 W/Kg         | 41.40 W/Kg           | ± 18.06%           |
| Бойу            | SAR averaged over 10g | 5.48 W/Kg          | 21.82 W/Kg           | ± 17.44%           |

**Antenna Parameters – Body Simulating Liquid (MSL)** 


| Simulant Liquid | Parameter   | Measured Level    | Uncertainty<br>(%)  |
|-----------------|-------------|-------------------|---------------------|
| Dody            | Impedance   | 53.77 Ω - 6.42j Ω | ± 0.28 Ω ± 0.044 jΩ |
| Body            | Return Loss | 22.90             | ± 2.03 dB           |

CERTIFICATE NUMBER: 13252590JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 10

### DASY Validation Scan for Head Stimulating Liquid (HSL)



Communication System: CW UID: 0; Frequency: 1900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65\_21Oct2020\_085903\_Head - 900 1900 2300 5%; Medium parameters used: f = 1900.0 MHz;  $\sigma$  = 1.43 S/m;  $\epsilon_r$  = 39.6;  $\rho$  = 1000 kg/m3;  $\Delta\epsilon_r$  = -0.97 %;  $\Delta\sigma$  = 2.14 %; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.53, 8.53, 8.53); Calibrated: 24 Mar 2020

- Sensor-Surface: 1.4 mm; VMS + 6p

Electronics: DAE4 - SN1438; Calibrated: 14 Apr 2020Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY6.14.0.959

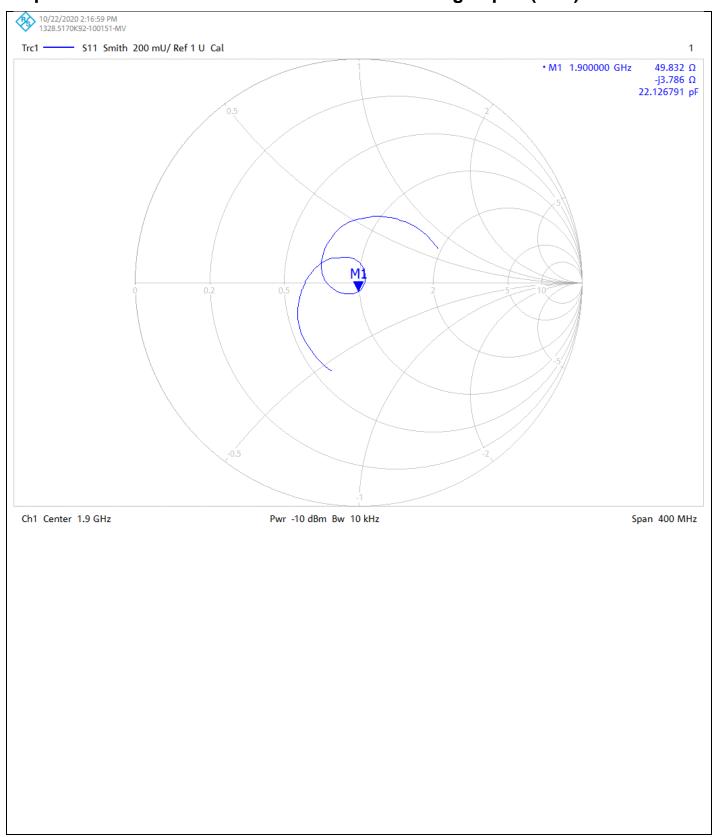
Area Scan (60x90):Interpolated grid: dx=15 mm, dy=15 mm

**Zoom Scan1(30x30x30):**Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 12.900 V/m; Power Drift = -0.09 dB

Minimum horizontal 3dB distance: 9.6 mm;

Vertical M2/M1 Ratio: 81.2 %;

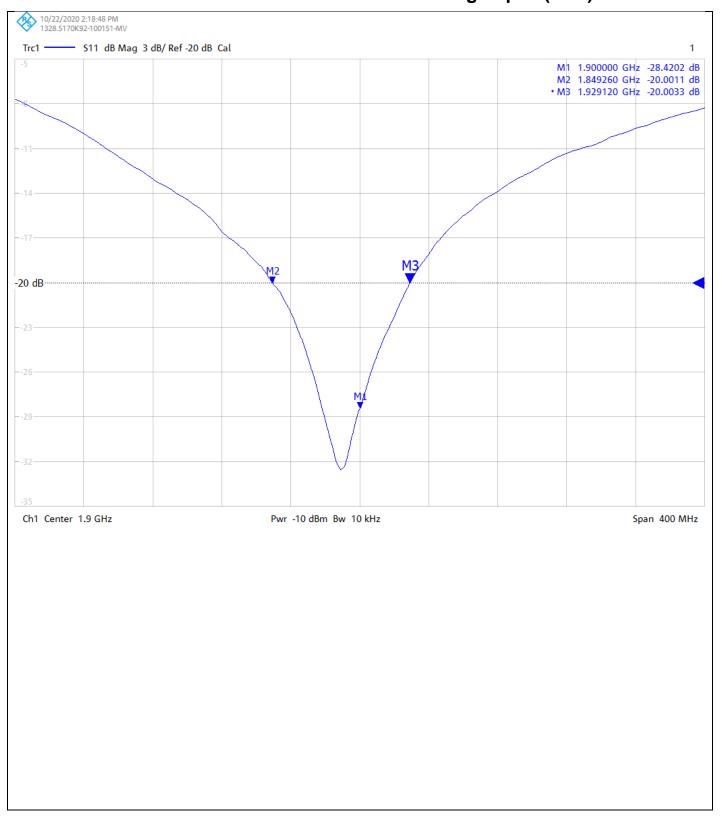

SAR(1 g) = 10.000 W/kg; SAR(10 g) = 5.200 W/kg

CERTIFICATE NUMBER: 13252590JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 10

### Impedance Measurement Plot for Head Stimulating Liquid (HSL)

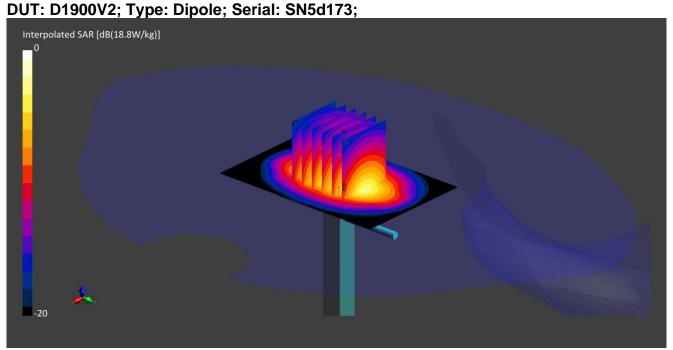



CERTIFICATE NUMBER: 13252590JD01D

Page 7 of 10

UKAS Accredited Calibration Laboratory No. 5772

### **Return Loss Measurement Plot for Head Stimulating Liquid (HSL)**




CERTIFICATE NUMBER: 13252590JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 8 of 10

### **DASY Validation Scan for Body Stimulating Liquid (MSL)**



Communication System: CW UID: 0; Frequency: 1900.0 MHz; Duty Cycle: 1;

Medium: MSL; Site65\_21Oct2020\_162814\_Body - 1900 5%; Medium parameters used: f = 1900.0 MHz;  $\sigma = 1.59 \text{ S/m}$ ;  $\epsilon_r = 54.8$ ;  $\rho = 1000 \text{ kg/m3}$ ;  $\Delta \epsilon_r = 2.77 \text{ %}$ ;  $\Delta \sigma = 4.38 \text{ %}$ ; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.03, 8.03, 8.03); Calibrated: 24 Mar 2020

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 14 Apr 2020

- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818

- Measurement SW: cDASY6.14.0.959

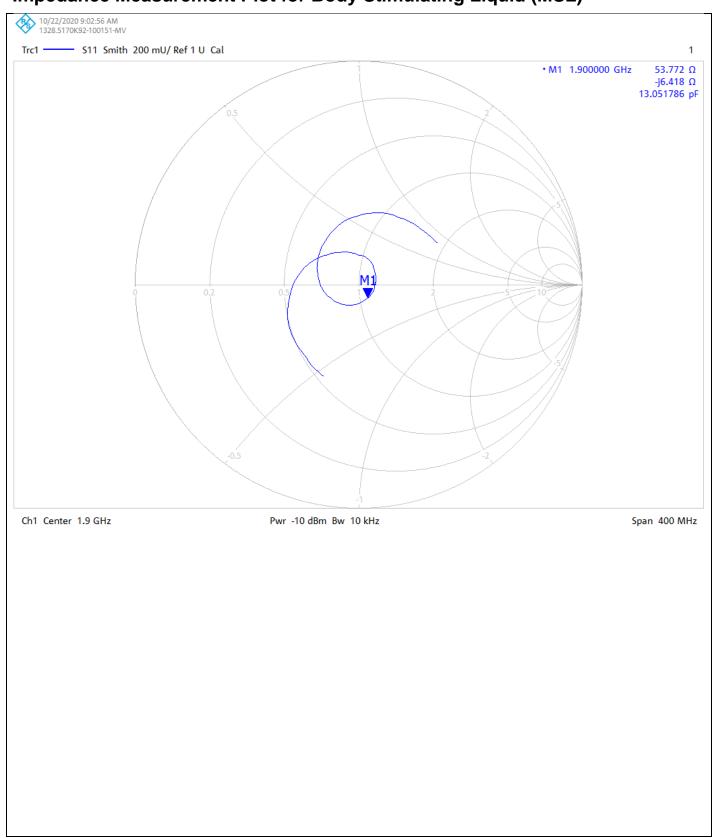
Area Scan (60x90):Interpolated grid: dx=15 mm, dy=15 mm

**Zoom Scan1(30x30x30):**Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 13.030 V/m; Power Drift = 0.00 dB

Minimum horizontal 3dB distance: 9.6 mm;

Vertical M2/M1 Ratio: 84.7 %;

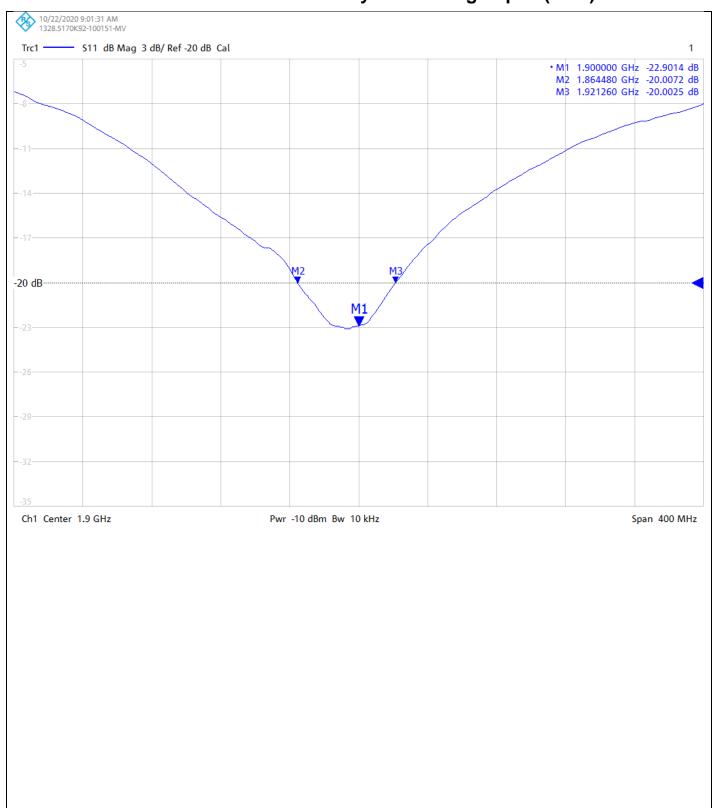

SAR(1 g) = 10.400 W/kg; SAR(10 g) = 5.480 W/kg

CERTIFICATE NUMBER: 13252590JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 9 of 10

### Impedance Measurement Plot for Body Stimulating Liquid (MSL)




CERTIFICATE NUMBER: 13252590JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 10 of 10

### Return Loss Measurement Plot for Body Stimulating Liquid (MSL)



#### **Calibration Certificate Label:**



### UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01D

Instrument ID: 5d163

Calibration Date: 22/Oct/2020

Calibration Due Date:



### UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01D

Instrument ID: 5d163

Calibration Date: 22/Oct/2020

Calibration Due Date:



### UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01D

Instrument ID: 5d163

Calibration Date: 22/Oct/2020

Calibration Due Date:

### **CERTIFICATE OF CALIBRATION**

#### ISSUED BY UL VS LTD

DATE OF ISSUE: 20/Apr/2020 CERTIFICATE NUMBER: 13252595JD01C



**UL VS LTD UNIT 1-3 HORIZON** KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer:

**UL VS Inc** 47173 Benicia Street Fremont, CA 94538, USA

#### **Equipment Details:**

Description: Dipole Validation Kit Date of Receipt: 14/Apr/2020

Manufacturer: Speag

Type/Model Number: D2450V2

Serial Number: 899

17/Apr/2020 Calibration Date:

Calibrated By: Masood Khan

Test Engineer

Monay

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.
Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

| UL No.     | Instrument                      | Manufacturer    | Type No. | Serial No.  | Date Last<br>Calibrated | Cal.<br>Interval<br>(Months) |
|------------|---------------------------------|-----------------|----------|-------------|-------------------------|------------------------------|
| PRE0178317 | Data Acquisition<br>Electronics | SPEAG           | DAE4     | 1542        | 17 Mar 2020             | 12                           |
| PRE0178314 | Probe                           | SPEAG           | EX3DV4   | 7496        | 24 Mar 2020             | 12                           |
| PRE0134944 | Dipole                          | SPEAG           | D2440V2  | 701         | 14 Feb 2020             | 12                           |
| PRE0131118 | Power Sensor                    | Rhode & Schwarz | NRV-Z1   | 826515/015  | 27 Jan 2020             | 12                           |
| PRE0134023 | Power Sensor                    | Rhode & Schwarz | NRV-Z1   | 860462/016  | 27 Jan 2020             | 12                           |
| PRE0151154 | Vector Network Analyser         | Rhode & Schwarz | ZND      | 100151      | 30 Jan 2020             | 12                           |
| PRE0151877 | Calibration Kit                 | Rhode & Schwarz | ZV-Z135  | 102947      | 17 Oct 2019             | 12                           |
| PRE0178154 | Signal Generator                | Rhode & Schwarz | SMIQ 03B | 1125.555.03 | 23 Jan 2020             | 12                           |

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

**SAR System Specification** 

| Robot System Positioner: | Stäubli Unimation Corp. Robot Model: TX60L |
|--------------------------|--------------------------------------------|
| Robot Serial Number:     | F17/5ENYG1/A/01                            |
| DASY Version:            | DASY 52 (v52.8.8.1258)                     |
| Phantom:                 | Flat section of SAM Twin Phantom           |
| Distance Dipole Centre:  | 10 mm (with spacer)                        |
| Frequency:               | 2450 MHz                                   |

**Dielectric Property Measurements – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Frequency | Room    | Temp    | Liqui  | d Temp | Parameters  | Target | Measured | Uncertainty |
|-----------------|-----------|---------|---------|--------|--------|-------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start   | End     | Start  | End    | i arameters | Value  | Value    | (%)         |
| Head            | 2450      | 20.5 °C | 21.0 °C | 20.9°C | 21.1℃  | εr          | 39.20  | 40.15    | ± 5%        |
| пеаи            | 2450      | 20.5 C  | 21.0 C  | 20.9 C | 21.16  | σ           | 1.80   | 1.82     | ± 5%        |

**SAR Results – Head Simulating Liquid (HSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Head            | SAR averaged over 1g  | 13.00 W/Kg         | 51.75 W/Kg           | ± 17.57%           |
| пеац            | SAR averaged over 10g | 6.06 W/Kg          | 24.12 W/Kg           | ± 17.32%           |

**Antenna Parameters – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Parameter   | Measured Level   | Uncertainty<br>(%)                  |
|-----------------|-------------|------------------|-------------------------------------|
| Head            | Impedance   | 43.662 Ω 1.47 jΩ | $\pm 0.28 \Omega \pm 0.044 j\Omega$ |
| пеао            | Return Loss | -23.19           | ± dB                                |

NUMBER: 13252595JD01C

CERTIFICATE

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

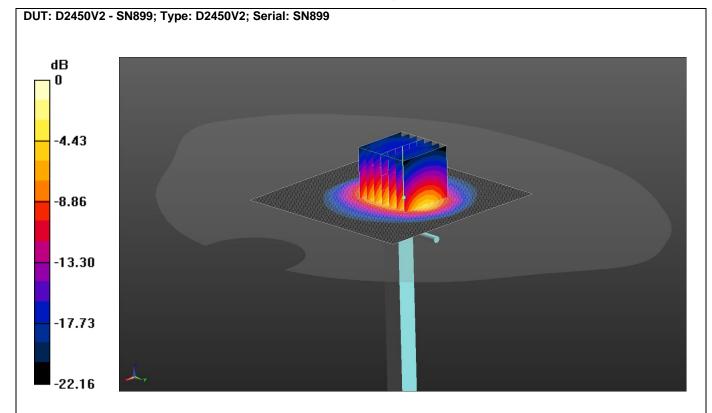
**Dielectric Property Measurements – Body Simulating Liquid (MSL)** 

| Similiant Liquid | Frequency | Room Temp |        | Liquid Temp |        | Parameters   | Target | Measured | Uncertainty |
|------------------|-----------|-----------|--------|-------------|--------|--------------|--------|----------|-------------|
| Simulant Liquid  | (MHz)     | Start     | End    | Start       | End    | raiailleleis | Value  | Value    | (%)         |
| Body             | 2450      | 21 5 ℃    | 21.1 % | 21.0°C      | 21.0°C | εr           | 52.70  | 52.22    | ± 5%        |
| Бойу             | 2430      | 21.5 C    | 21.1 C | 21.0 C      | 21.0 C | σ            | 1.95   | 1.99     | ± 5%        |

**SAR Results – Body Simulating Liquid (MSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Dody            | SAR averaged over 1g  | 13.00 W/Kg         | 51.75 W/Kg           | ± 18.06%           |
| Body            | SAR averaged over 10g | 6.03 W/Kg          | 24.00 W/Kg           | ± 17.44%           |

**Antenna Parameters – Body Simulating Liquid (MSL)** 


| Simulant Liquid | Parameter   | Measured Level    | Uncertainty<br>(%)  |
|-----------------|-------------|-------------------|---------------------|
| Dody            | Impedance   | 43.82 Ω -0.368 jΩ | ± 0.28 Ω ± 0.044 jΩ |
| Body            | Return Loss | -23.63            | ± 2.03 dB           |

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

### **DASY Validation Scan for Head Stimulating Liquid (HSL)**



0 dB = 21.6 W/kg = 13.34 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1;

Medium: Site65\_14Apr2020\_180909\_Head - 750 2300 2450 2600; Medium parameters used: f = 2450 MHz;  $\sigma = 1.818$  S/m;  $\epsilon_r = 40.149$ ;  $\rho = 1000$  kg/m³;

Phantom section: Flat Section;

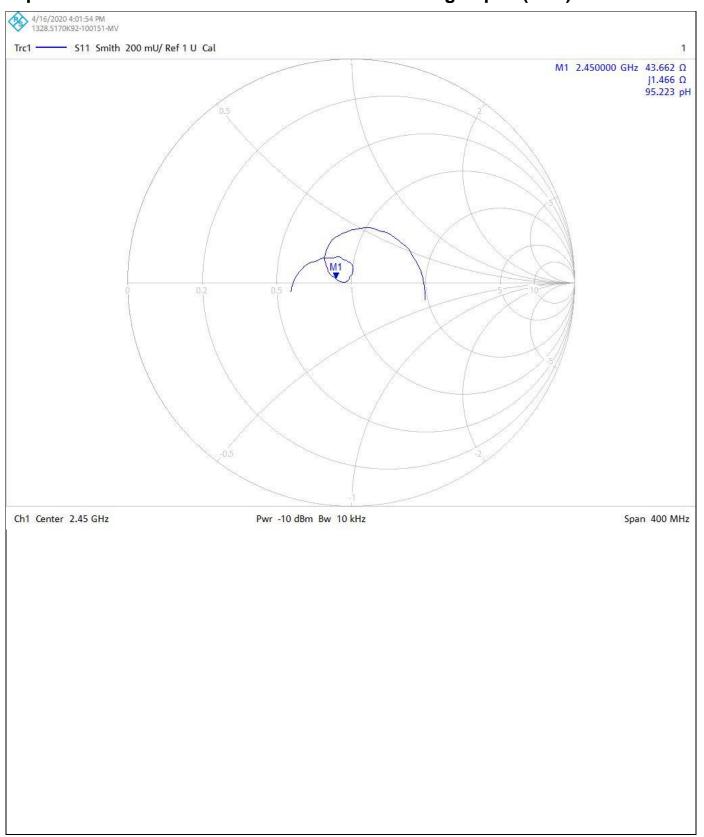
**DASY5** Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.78, 7.78, 7.78); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin-SAM B (Site 65); Type: QD 000 P40 CC; Serial: 1945;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

Configuration/d=10mm, Pin=250mW 2/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.7 W/kg

Configuration/d=10mm, Pin=250mW 2/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm Reference Value = 89.18 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 26.8 W/kg

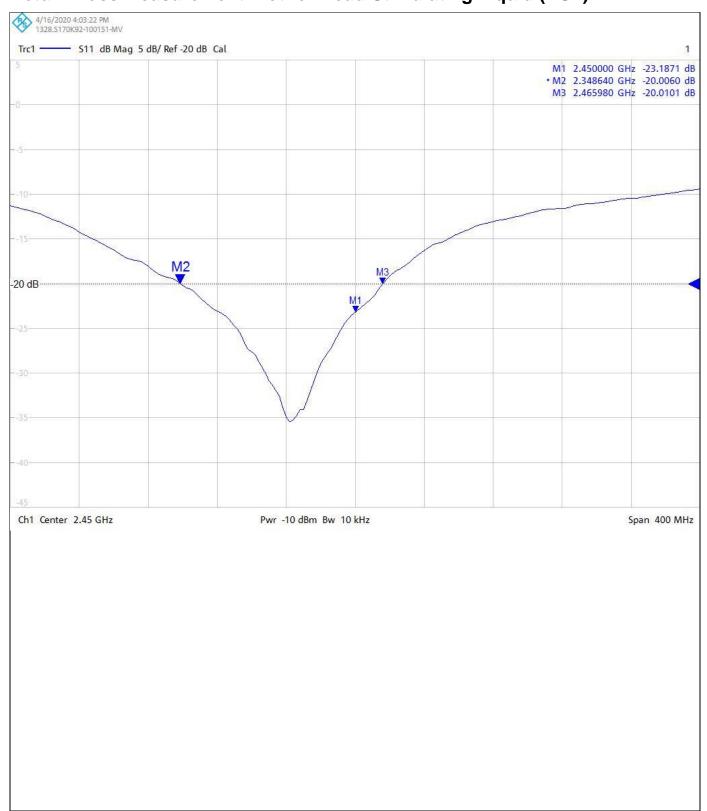

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 21.6 W/kg

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

### Impedance Measurement Plot for Head Stimulating Liquid (HSL)

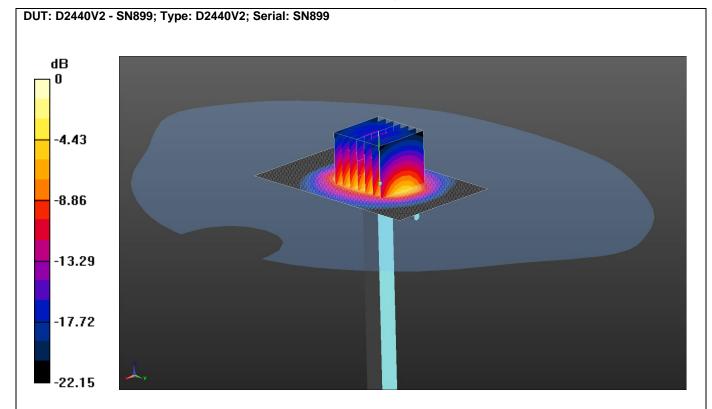



CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

### Return Loss Measurement Plot for Head Stimulating Liquid (HSL)




CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

### **DASY Validation Scan for Body Stimulating Liquid (MSL)**



0 dB = 21.5 W/kg = 13.32 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1;

Medium: Site65\_15Apr2020\_140023\_Body - 750 2300 2450 2600 5%; Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.993 S/m;  $\epsilon_r$  = 52.221;  $\rho$  = 1000 kg/m³;

Phantom section: Flat Section;

**DASY5** Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.75, 7.75, 7.75); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

**2450/d=10mm, Pin=250mW/Area Scan (51x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm

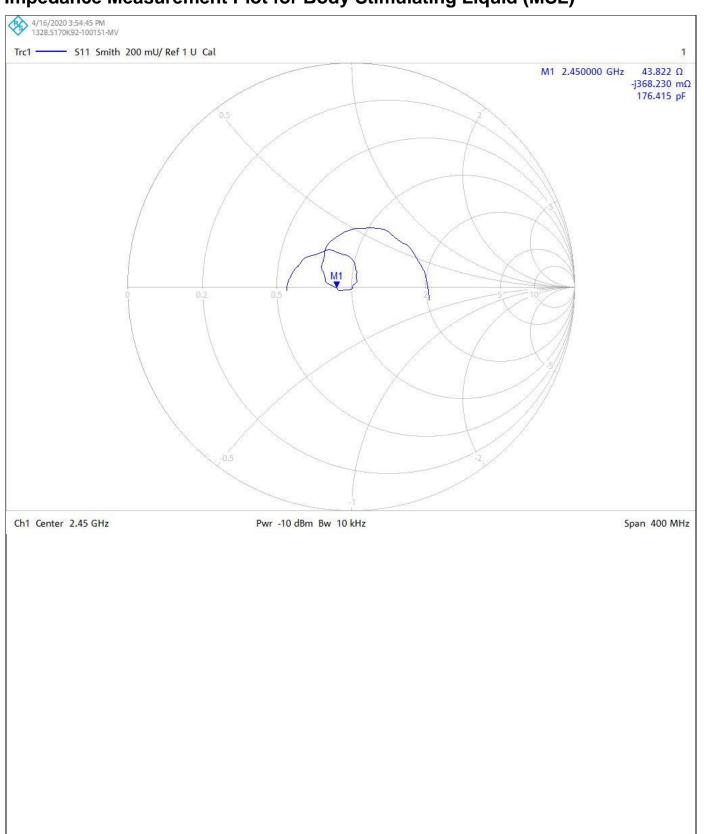
Maximum value of SAR (interpolated) = 18.4 W/kg

2450/d=10mm, Pin=250mW/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 86.25 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

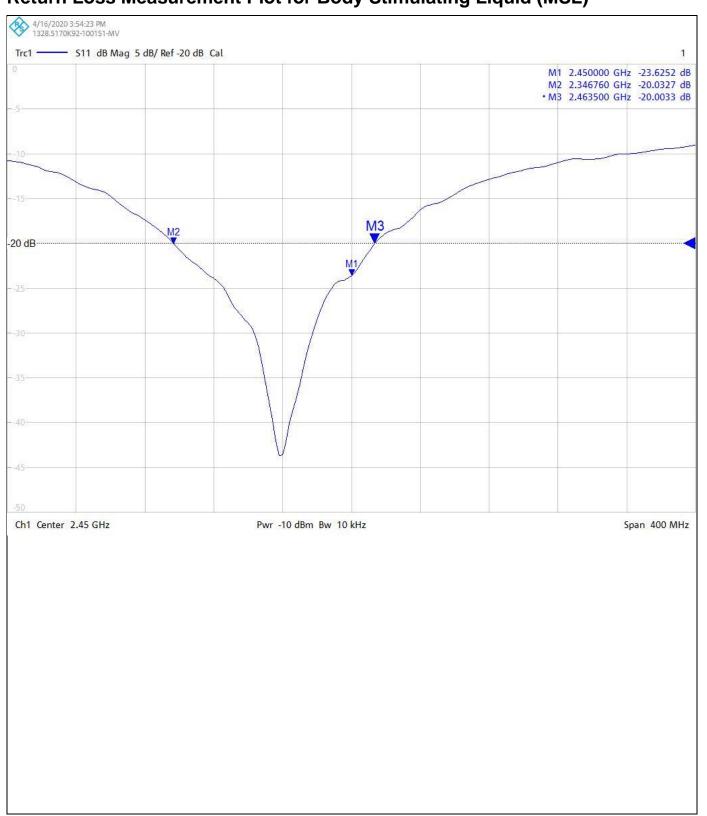

Maximum value of SAR (measured) = 21.5 W/kg

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

### Impedance Measurement Plot for Body Stimulating Liquid (MSL)




CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

### Return Loss Measurement Plot for Body Stimulating Liquid (MSL)



#### **Calibration Certificate Label:**



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01C

Instrument ID: 899

Calibration Date: 17/Apr/2020

Calibration Due Date:



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01C

Instrument ID: 899

Calibration Date: 17/Apr/2020

Calibration Due Date:



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01C

Instrument ID: 899

Calibration Date: 17/Apr/2020

Calibration Due Date:

# 32CERTIFICATE OF CALIBRATION

#### ISSUED BY UL VS LTD

DATE OF ISSUE: 17/Apr/2020 CERTIFICATE NUMBER: 13252595JD01D



UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com



Page 1 of 10

**APPROVED SIGNATORY** 

M. Masec

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

#### **Equipment Details:**

Description: Dipole Validation Kit Date of Receipt: 14/Apr/2020

Manufacturer: Speag

Type/Model Number: D2600V2

Serial Number: 1036

Calibration Date: 17/Apr/2020

Calibrated By: Masood Khan

**Test Engineer** 

Signature: Modal

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

| UL No.     | Instrument                      | Manufacturer    | Type No. | Serial No.  | Date Last Calibrated | Cal.<br>Interval<br>(Months) |
|------------|---------------------------------|-----------------|----------|-------------|----------------------|------------------------------|
| PRE0178317 | Data Acquisition<br>Electronics | SPEAG           | DAE4     | 1542        | 17 Mar 2020          | 12                           |
| PRE0178314 | Probe                           | SPEAG           | EX3DV4   | 7496        | 24 Mar 2020          | 12                           |
| PRE0135603 | Dipole                          | SPEAG           | D2600V2  | 1109        | 14 Feb 2020          | 12                           |
| PRE0131118 | Power Sensor                    | Rhode & Schwarz | NRV-Z1   | 826515/015  | 27 Jan 2020          | 12                           |
| PRE0134023 | Power Sensor                    | Rhode & Schwarz | NRV-Z1   | 860462/016  | 27 Jan 2020          | 12                           |
| PRE0151154 | Vector Network Analyser         | Rhode & Schwarz | ZND      | 100151      | 30 Jan 2020          | 12                           |
| PRE0151877 | Calibration Kit                 | Rhode & Schwarz | ZV-Z135  | 102947      | 17 Oct 2019          | 12                           |
| PRE0178154 | Signal Generator                | Rhode & Schwarz | SMIQ 03B | 1125.555.03 | 23 Jan 2020          | 12                           |

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

CERTIFICATE NUMBER:

13252595JD01D

**SAR System Specification** 

| Robot System Positioner: | Stäubli Unimation Corp. Robot Model: TX60L |
|--------------------------|--------------------------------------------|
| Robot Serial Number:     | F17/5ENYG1/A/01                            |
| DASY Version:            | DASY 52 (v52.10.0.1446)                    |
| Phantom:                 | Flat section of SAM Twin Phantom           |
| Distance Dipole Centre:  | 10 mm (with spacer)                        |
| Frequency:               | 2600 MHz                                   |

**Dielectric Property Measurements – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Frequency | Room    | Temp   | Liqui  | d Temp | Parameters | Target | Measured | Uncertainty |
|-----------------|-----------|---------|--------|--------|--------|------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start   | End    | Start  | End    | Farameters | Value  | Value    | (%)         |
| Head            | 2600      | 20.5 °C | 21 ∩ ℃ | 20.9°C | 21.1°C | εr         | 39.00  | 39.88    | ± 5%        |
| пеац            | 2000      | 20.5 C  | 21.0 C | 20.9 C | 21.1 6 | σ          | 1.96   | 1.93     | ± 5%        |

**SAR Results – Head Simulating Liquid (HSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Head            | SAR averaged over 1g  | 14.20 W/Kg         | 56.53 W/Kg           | ± 17.57%           |
| пеаи            | SAR averaged over 10g | 6.34 W/Kg          | 25.23 W/Kg           | ± 17.32%           |

**Antenna Parameters – Head Simulating Liquid (HSL)** 

| Simulant Liquid | Parameter   | Measured Level      | Uncertainty<br>(%)  |
|-----------------|-------------|---------------------|---------------------|
| Head            | Impedance   | 51.234 Ω ± -4.85 jΩ | ± 0.28 Ω ± 0.044 jΩ |
|                 | Return Loss | -26.09              | ± 2.03 dB           |

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

**Dielectric Property Measurements – Body Simulating Liquid (MSL)** 

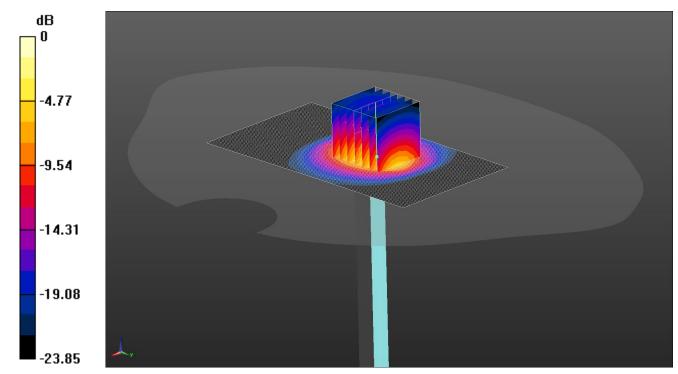
| Simulant Liquid | Frequency | Room   | Temp    | Liquio | d Temp | Parameters  | Target | Measured | Uncertainty |
|-----------------|-----------|--------|---------|--------|--------|-------------|--------|----------|-------------|
| Simulant Liquid | (MHz)     | Start  | End     | Start  | End    | i arameters | Value  | Value    | (%)         |
| Body            | 2600      | 21.5 ℃ | 21 ∩ °C | 21.0°C | 21.1°C | εr          | 52.50  | 52.07    | ± 5%        |
| Бойу            | 2000      | 21.5 C | 21.0 C  | 21.0 C | 21.1 6 | σ           | 2.16   | 2.12     | ± 5%        |

**SAR Results – Body Simulating Liquid (MSL)** 

| Simulant Liquid | SAR Measured          | 250 mW input Power | Normalised to 1.00 W | Uncertainty<br>(%) |
|-----------------|-----------------------|--------------------|----------------------|--------------------|
| Pody            | SAR averaged over 1g  | 14.30 W/Kg         | 56.92 W/Kg           | ± 18.06%           |
| Body            | SAR averaged over 10g | 6.33 W/Kg          | 25.20 W/Kg           | ± 17.44%           |

**Antenna Parameters – Body Simulating Liquid (MSL)** 

| Simulant Liquid | Parameter   | Measured Level     | Uncertainty<br>(%)  |
|-----------------|-------------|--------------------|---------------------|
| Body            | Impedance   | 47.60 Ω ± -4.39 jΩ | ± 0.28 Ω ± 0.044 jΩ |
|                 | Return Loss | -25.81             | ± 2.03 dB           |


CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

### **DASY Validation Scan for Head Stimulating Liquid (HSL)**

DUT: D2600V2 - SN1036; Type: D2600V2; Serial: SN1036



0 dB = 24.5 W/kg = 13.89 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1;

Medium: Site65\_14Apr2020\_180909\_Head - 750 2300 2450 2600; Medium parameters used: f = 2600 MHz;  $\sigma = 1.935$  S/m;  $\epsilon_r = 39.884$ ;  $\rho = 1000$  kg/m³;

Phantom section: Flat Section;

DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.6, 7.6, 7.6); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin-SAM B (Site 65); Type: QD 000 P40 CC; Serial: 1945;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

2600/d=10mm, Pin=250 mW 2/Area Scan (61x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

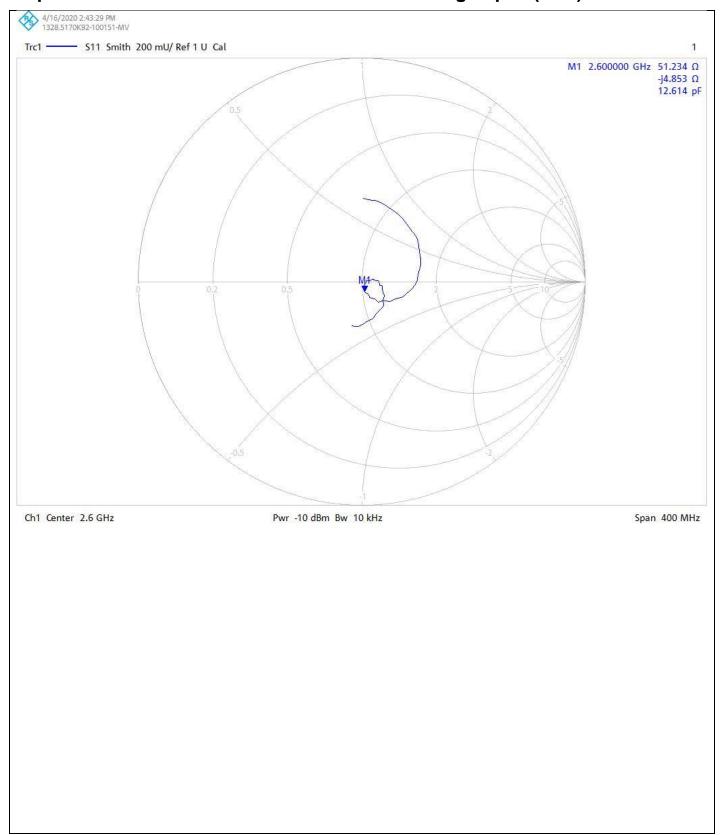
Maximum value of SAR (interpolated) = 19.4 W/kg

2600/d=10mm, Pin=250 mW 2/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 87.99 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.34 W/kg

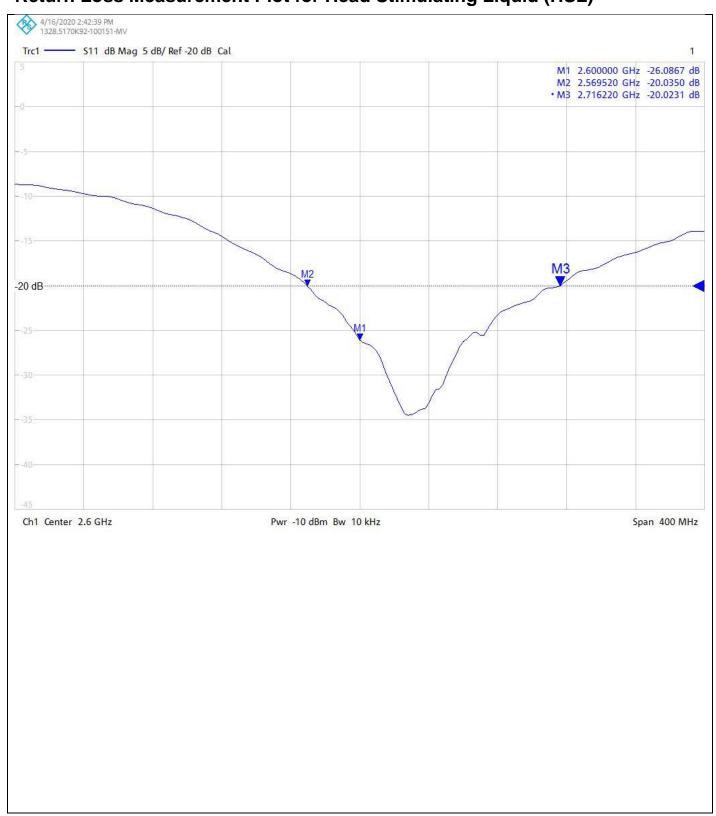

Maximum value of SAR (measured) = 24.5 W/kg

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

### Impedance Measurement Plot for Head Stimulating Liquid (HSL)



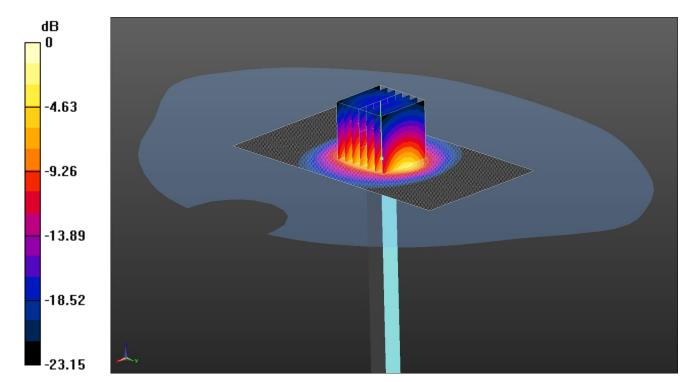

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

### Return Loss Measurement Plot for Head Stimulating Liquid (HSL)




CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

### **DASY Validation Scan for Body Stimulating Liquid (MSL)**

DUT: D2600V2 - SN1036; Type: D2600V2; Serial: SN1036



0 dB = 24.6 W/kg = 13.91 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1;

Medium: Site65\_15Apr2020\_140023\_Body - 750 2300 2450 2600 5%; Medium parameters used: f = 2600 MHz;  $\sigma$  = 2.125 S/m;  $\epsilon_r$  = 52.07;  $\rho$  = 1000 kg/m³;

Phantom section: Flat Section;

#### DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.58, 7.58, 7.58); Calibrated: 24/03/2020;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

2600/d=10mm, Pin=250 mW 2/Area Scan (61x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

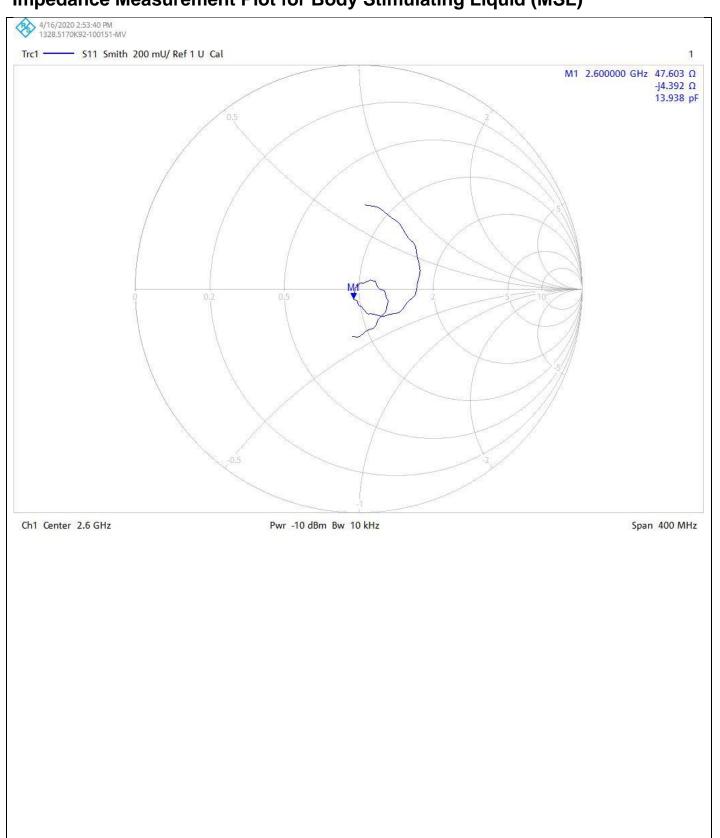
Maximum value of SAR (interpolated) = 26.1 W/kg

2600/d=10mm, Pin=250 mW 2/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 111.4 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.33 W/kg

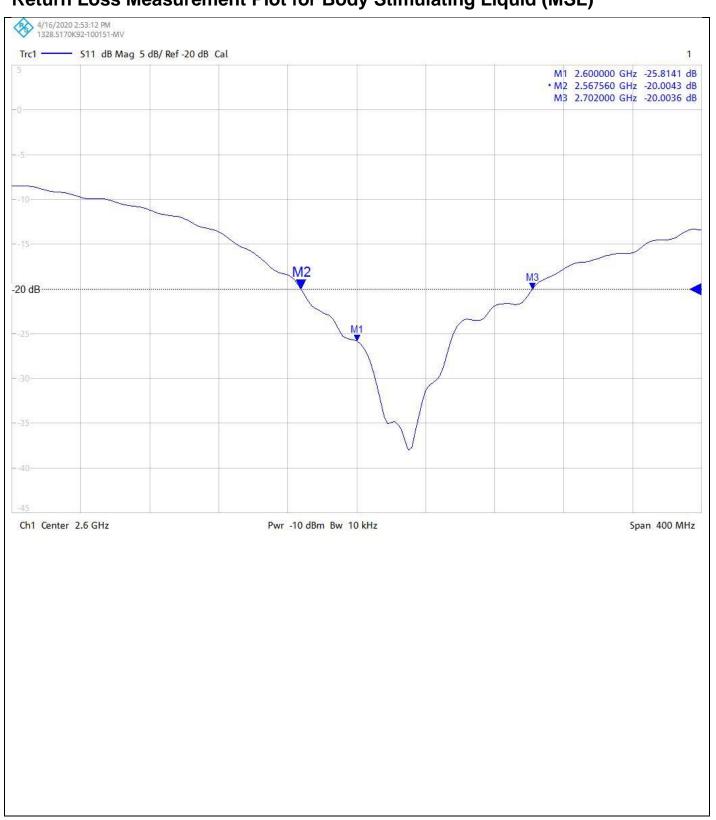

Maximum value of SAR (measured) = 24.6 W/kg

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

### Impedance Measurement Plot for Body Stimulating Liquid (MSL)




CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

### Return Loss Measurement Plot for Body Stimulating Liquid (MSL)



#### **Calibration Certificate Label:**



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01D

Instrument ID: 1036

Calibration Date: 17/Apr/2020

Calibration Due Date:



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01D

Instrument ID: 1036

Calibration Date: 17/Apr/2020

Calibration Due Date:



UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01D

Instrument ID: 1036

Calibration Date: 17/Apr/2020

Calibration Due Date: