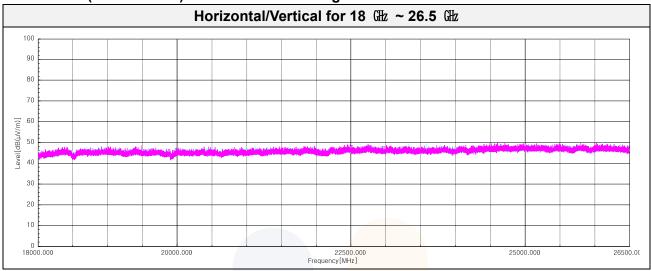

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (53) of (64)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (54) of (64)

Test results (Above 18 (址) - Worst case: 802.11g / 2 412 址

Note: The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (55) of (64)

7.5. Conducted Spurious Emission

<u>Test setup</u>		_	
EUT	Attenuator		Spectrum analyzer

Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be30 dB instead of 20 dB . Attenuation below the general field strength limits specified in RSS-Gen is not required.

Limit: 20 dBc

Test procedure

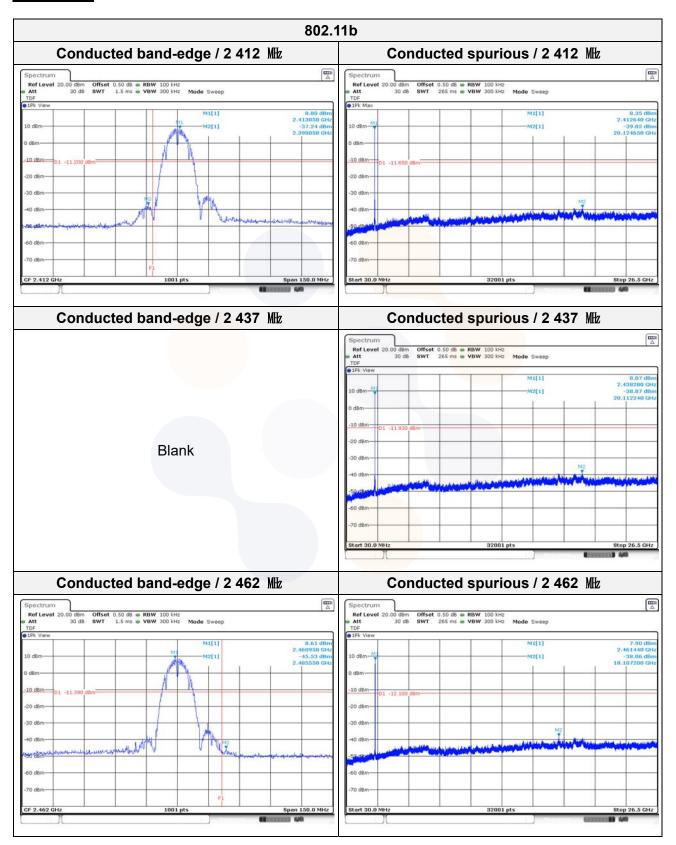
ANSI C63.10 - Section 11.11.3 KDB 558074 D01 v05 - Section 8.5

Test settings

Establish an emission level by using the following procedure:

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz
- 3) Set the VBW \geq [3 x RBW]
- 4) Detector = peak
- 5) Sweep time = auto couple
- 6) Trace mode = max hold
- 7) Allow trace to fully stabilize.
- 8) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (56) of (64)

Test results

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

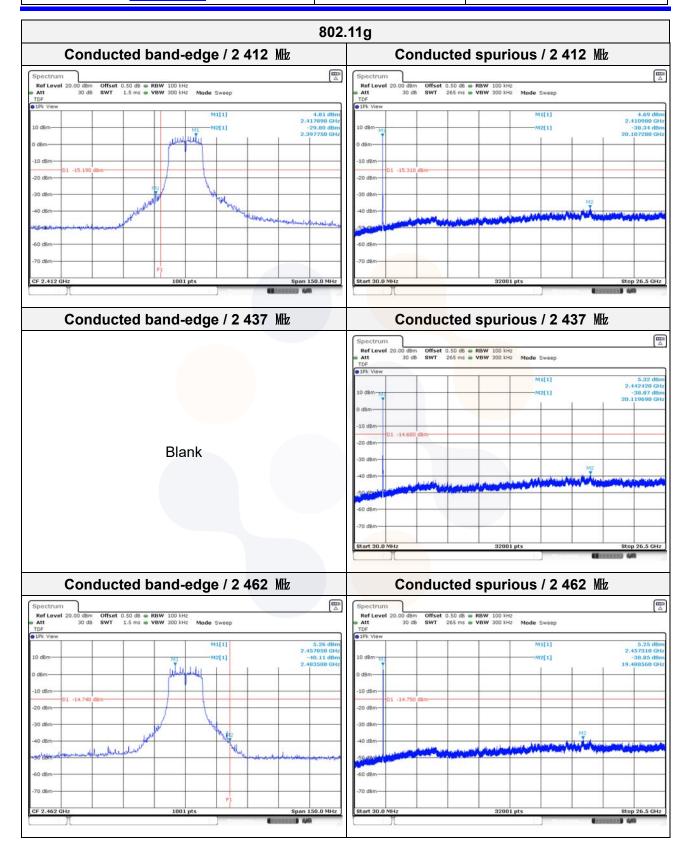
KR24-SRF0065 Page (57) of (64) www.kctl.co.kr

Report No.:

Conducted spurious / 2 467 Mb Conducted band-edge / 2 467 Mb Offset 0.50 dB • RBW 100 kHz SWT 1.5 ms • VBW 300 kHz Mode Sweep Offset 0.50 dB • RBW 100 kHz SWT 265 ms • VBW 300 kHz Mode Sweep Conducted band-edge / 2 472 Mb Conducted spurious / 2 472 Mb
 Ref Level
 10,00 dBm
 Offset
 0.50 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 265 ms
 VBW
 300 kHz

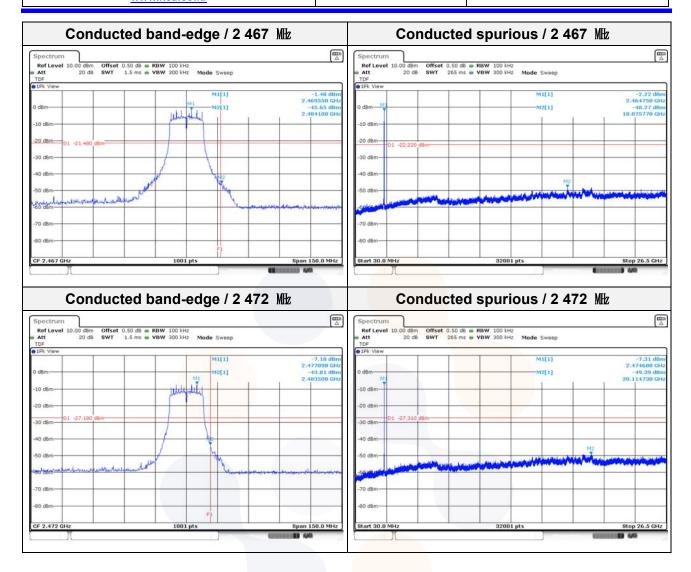
 Ref Level
 10.00 dBm
 Offset
 0.50 dB
 RBW
 100 kHz


 Att
 20 dB
 SWT
 1.5 ms
 VBW
 300 kHz
 Mode
 Sweep
 -0.92 dB 2.473020 GP -48.17 dB 20.103150 GP

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

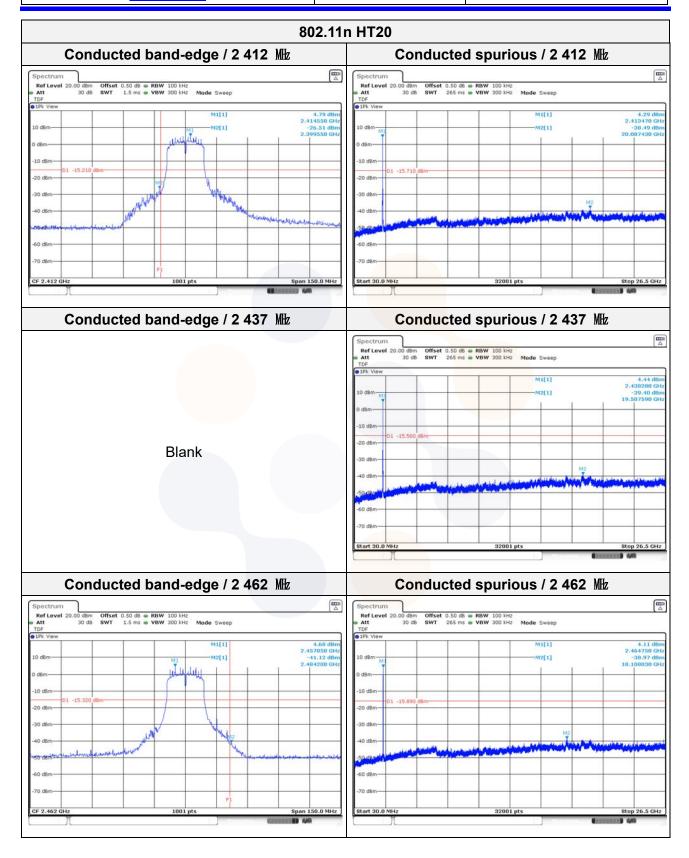
Report No.: KR24-SRF0065 Page (58) of (64)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

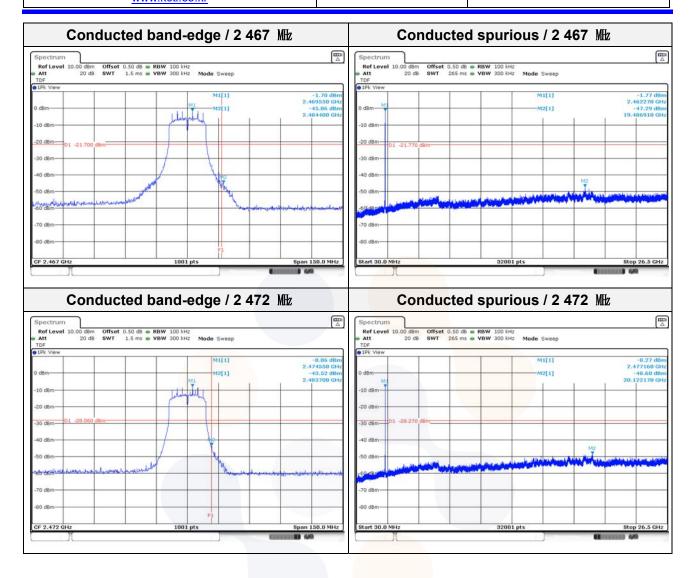
Report No.: KR24-SRF0065 Page (59) of (64)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (60) of (64)

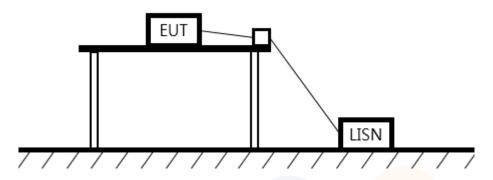


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (61) of (64)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR24-SRF0065 Page (62) of (64)

7.6. AC Conducted emission

Test setup

<u>Limit</u> According to 15.207(a),

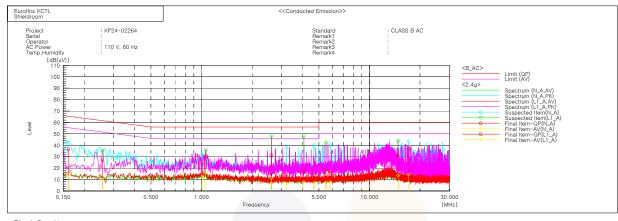
For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 $\,\mathrm{kHz}$ to 30 $\,\mathrm{Mz}$, shall not exceed the limits in the following table, as measured using a 50 $\,\mathrm{\mu H/50}$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Fraguency of Emission (Mk)	Conducted limit (dBµV/m)				
Frequency of Emission (咃)	Quasi-peak	Average			
0.15 – 0.50	66 - <mark>56*</mark>	56 - 46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

Measurement procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 klb or to quasi-peak and average within a bandwidth of 9 klb. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR24-SRF0065 Page (63) of (64)

Test results

Worst case: 802.11n HT20 / 2 437 Mb

Fir	nal Result									
	- N_A Phase - Frequency	 Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
32	3.20863 4.66877 5.84197	[dB(uV)] 26.4 13.9 4.1 5.3 6.6 26.0	[dB(uV)] 3.8 3.4 -3.3 -3.1 -2.3 3.1	[dB] 10.3 10.0 9.9 10.0 10.1	[dB(uV)] 36.7 23.9 14.0 15.3 16.7 37.1	[dB(uV)] 14.1 13.4 6.6 6.9 7.8 14.2	[dB(uV)] 65.4 56.0 56.0 56.0 60.0 60.0	[dB(uV)] 55.4 46.0 46.0 46.0 50.0 50.0	[dB] 28.7 32.1 42.0 40.7 43.3 22.9	[dB] 41.3 32.6 39.4 39.1 42.2 35.8
No.	- L1_A Phase Frequency	 Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
1 2 3 2 5	2.60855 4.06385 5.51083	[dB(uV)] 17.0 20.5 21.5 7.9 8.9 19.6	[dB(uV)] 0.0 6.2 1.4 -2.5 -2.6 2.8	[dB] 10.0 10.0 9.9 10.0 10.0	[dB(uV)] 27.0 30.5 31.4 17.9 18.9 30.5	[dB(uV)] 10.0 16.2 11.3 7.5 7.4 13.7	[dB(uV)] 61.5 56.0 56.0 56.0 60.0 60.0	[dB(uV)] 51.5 46.0 46.0 46.0 50.0	[dB] 34.5 25.5 24.6 38.1 41.1 29.5	[dB] 41.5 29.8 34.7 38.5 42.6 36.3

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR24-SRF0065 Page (64) of (64)

8. Measurement equipment

o. Measurement equipment								
Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date				
Spectrum Analyzer	R&S	FSV30	100807	24.07.03				
Signal Generator	R&S	SMB100A	176206	25.01.18				
DC Power Supply	AGILENT	E3632A	MY40016393	24.07.04				
Attenuator	API Inmet	40AH2W-10	10	24.07.04				
Attenuator	HP	8491A	29738	24.10.12				
Power Sensor	Power Sensor R&S		1137.9009.02- 106225-JM	24.04.25				
Spectrum Analyzer	R&S	FSVA40	101575	24.06.19				
Spectrum Analyzer	R&S	FSV40	100988	24.07.03				
PSA Spectrum Analyzer	Agilent	E4440A	MY44303500	24.07.04				
EMI TEST RECEIVER	R&S	ESCI3	101408	24.08.18				
TWO-LINE V - NETWORK	R&S	ENV216	101358	24.09.27				
Broadband PreAmplifier	SCHWARZBECK	BBV9718D	57	25.01.19				
Low Noise Amplifier	TESTEK	TK-PA18H	220124-L	24.10.12				
Low Noise Amplifier	TESTEK	TK-PA1840H	220133-L	24.10.17				
Amplifier	SONOMA INSTRUMENT	310N	421910	24.10.12				
Bilog Antenna	Teseq GmbH	CBL 6112D	61521	24.11.17				
Loop Antenna	R&S	HFH2-Z2	100355	24.08.10				
Horn Antenna SCHWARZBECK		BBHA9120D	2763	24.10.18				
Horn Antenna	SCHWARZBECK	BBHA9170	1267	24.10.16				
High Pass Filter	Wainwright Instruments GmbH	WHKX12-2805-3000- 18000-40SS	SN58	24.10.16				
High Pass Filter QOTANA TECHNOLOGIES		DBHF <mark>0508004000</mark> A	23041800061	24.07.10				

End of test report