

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

SAR EVALUATION REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS b/g/n and ANT+

MODEL NUMBER: SM-J810G/DS, SM-J810GF/DS

FCC ID: A3LSMJ810G

REPORT NUMBER: 4788490168-S1V1

ISSUE DATE: 6/5/2018

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev.	Date	Revisions	Revised By
V1	6/5/2018	Initial Issue	SangHwa, Lee

Table of Contents

1.		Atte	station of Test Results	5
2.		Test	Specification, Methods and Procedures	6
3.		Faci	lities and Accreditation	6
4.		SAR	Measurement System & Test Equipment	7
	4.1.	SA	AR Measurement System	7
	4.2.	SA	AR Scan Procedures	8
	4.3.	Te	est Equipment	10
5.		Mea	surement Uncertainty	10
6.		Devi	ce Under Test (DUT) Information	11
	6.1.	DU	UT Description	11
	6.2.	W	ireless Technologies	11
	6.3.	No	ominal and Maximum Output Power	12
	6.4.	Ge	eneral LTE SAR Test and Reporting Considerations	13
	6.5.	L7	FE Carrier Aggregation	13
	6.6.	L7	TE (TDD) Considerations	14
	6.7.	Po	ower Reduction by Proximity Sensing	15
	6.	7.1.	Proximity Sensor Triggering Distance (KDB 616217 §6.2)	15
	6.	7.2.	Proximity Sensor Coverage (KDB 616217 §6.3)	22
	6.	7.3.	Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)	22
	6.	7.4.	Resulting test positions for SAR measurements	22
7		RF E	Exposure Conditions (Test Configurations)	23
8		Diele	ectric Property Measurements & System Check	24
	8.1	Di	electric Property Measurements	24
	8.2	Sy	vstem Check	26
9		Con	ducted Output Power Measurements	28
	9.1	G	SM	28
	9.2	W	-CDMA	30
	9.3	L7	^r E	35
	9.3.	1	LTE Rel.10 Carrier Aggregation	
	9.4	W	i-Fi 2.4 GHz (DTS Band)	
	9.5	Bl	uetooth	44
10).	Mea	sured and Reported (Scaled) SAR Results	45
	10.1	GS	SM 850	47

1	0.2	GSM1900	47
1	0.3	W-CDMA Band II	48
1	0.4	W-CDMA Band V	48
1	0.5	LTE Band 5 (10MHz Bandwidth)	49
1	0.6	LTE Band 41 (20MHz Bandwidth)	49
1	0.7	Wi-Fi (DTS Band)	50
1	0.8	Bluetooth	51
11.	S	AR Measurement Variability	52
12.	D	UT Holder Perturbations	53
13.	Si	imultaneous Transmission SAR Analysis	54
1	3.1	Sum of the SAR for GSM 850 & Wi-Fi & BT	55
1	3.2	Sum of the SAR for GSM 1900 & Wi-Fi & BT	55
1	3.3	Sum of the SAR for WCDMA Band II & Wi-Fi & BT	55
1	3.4	Sum of the SAR for WCDMA Band V & Wi-Fi & BT	56
1	3.5	Sum of the SAR for LTE Band 5 & Wi-Fi & BT	56
1	3.6	Sum of the SAR for LTE Band 41 & Wi-Fi & BT	56
Αp	pendi	ixes	58
4	7884	90168-S1V1 FCC Report SAR_App A_Photos & Ant. Locations	58
4	7884	90168-S1V1 FCC Report SAR_App B_Highest SAR Test Plots	58
4	7884	90168-S1V1 FCC Report SAR_App C_System Check Plots	58
4	7884	90168-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients	58
4	7884	90168-S1V1 FCC Report SAR_App E_Probe Cal. Certificates	58
4	7884	90168-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates	58

1. Attestation of Test Results

SAD Limite (M/Ka)	
	IEEE Std 1528-2013
	Published RF exposure KDB procedures
Applicable Standards	FCC 47 CFR § 2.1093
Model Number	SM-J810G/DS, SM-J810GF/DS
FCC ID	A3LSMJ810G
Applicant Name	SAMSUNG ELECTRONICS CO.,LTD.

SAR Limits (W/Kg)

Exposure Category	Peak spatial-average(1g of tissue)	Phablet (10g of tissue)	
General population / Uncontrolled exposure	1.6	4.0	

The Highest Reported SAR (W/kg)

RF Exposure Conditions		Equipment Class			
		Licensed	DTS	DSS(BT)	
Head		0.90	1.03	0.34	
Body-worn		1.33	0.11		
Hotspot		0.99	0.24	N/A	
Phablet-10g		1.32	N/A		
	Head	1.46		1.18	
Simultaneous	Body-worn	1.44			
TX	Hotspot	1.23		N/A	
	Phablet-10g	N/A			
Date Tested		5/24/2018 to 6/2/2018			
Test Results		Pass			

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
- fres	이상화
Justin Park	SangHwa Lee
Lead Test Engineer	Laboratory Technician
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- 648474 D04 Handset SAR v01r03
- 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02

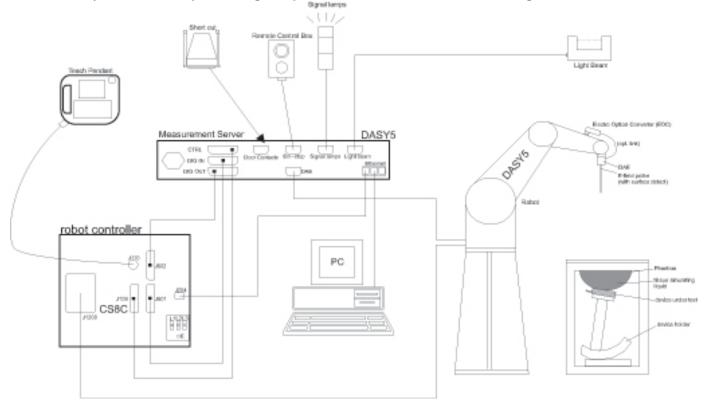
In addition to the above, the following information was used:

- o <u>TCB workshop</u> October, 2014; Page 36, RF Exposure Procedures Update (Overlapping LTE Bands)
- o TCB workshop October, 2014; Page 37, RF Exposure Procedures Update (Other LTE Considerations)
- TCB workshop October, 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon	
SAR 1 Room	
SAR 2 Room	
SAR 3 Room	


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution is x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be ≤ the corresponding device with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤ 3 GHz > 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: ô is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E5071C	MY46522054	8-8-2018
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	8-2-2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	8-11-2018
Thermometer	Lutron	MHB-382SD	AH.91478	8-10-2018

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY50145882	8-7-2018
Power Sensor	Agilent	U2000A	MY54260010	8-8-2018
Power Sensor	Agilent	U2000A	MY54260007	8-8-2018
Power Amplifier	EXODUS	1410025-AMP2027-10003	10003	8-8-2018
Directional Coupler	Agilent	772D	MY52180193	8-7-2018
Directional Coupler	Agilent	778D	MY52180432	8-7-2018
Low Pass Filter	MICROLAB	LA-15N	03943	8-7-2018
Low Pass Filter	FILTRON	L14012FL	1410003S	8-7-2018
Attenuator	Agilent	8491B/003	MY39269292	8-7-2018
Attenuator	Agilent	8491B/010	MY39269315	8-7-2018
Attenuator	Agilent	8491B/020	MY39269298	8-7-2018
E-Field Probe (SAR1)	SPEAG	EX3DV4	7376	8-22-2018
E-Field Probe (SAR2)	SPEAG	EX3DV4	7330	1-22-2019
E-Field Probe (SAR3)	SPEAG	EX3DV4	7314	9-28-2018
Data Acquisition Electronics (SAR1)	SPEAG	DAE4	1468	8-22-2018
Data Acquisition Electronics (SAR2)	SPEAG	DAE4	1447	11-22-2018
Data Acquisition Electronics (SAR3)	SPEAG	DAE4	1494	7-20-2018
System Validation Dipole	SPEAG	D835V2	4d194	7-19-2018
System Validation Dipole	SPEAG	D1900V2	5d190	9-20-2018
System Validation Dipole	SPEAG	D2450V2	939	9-19-2018
System Validation Dipole	SPEAG	D2600V2	1097	1-17-2019
Thermometer (SAR1)	Lutron	MHB-382SD	AH.91463	8-10-2018
Thermometer (SAR2)	Lutron	MHB-382SD	AH.50215	2-9-2019
Thermometer (SAR3)	Lutron	MHB-382SD	AH.50213	8-16-2018

Others

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date	
Base Station Simulator	R&S	CMW500	150313	12-08-2018	
Base Station Simulator	R&S	CMW500	150314	12-05-2018	
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	8-7-2018	

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension		h x Width): 159.4 mm x 75.6 mm									
	Overall Diagon										
	Display Diagor	nal: 151.7 mm									
Back Cover		☑ The Back Cover is not removable.									
Battery Options	☑ The rechargeable battery is not user accessible										
Accessory	Headset	Headset									
Wireless Router (Hotspot)	-	Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices. ☑ Mobile Hotspot (Wi-Fi 2.4 GHz)									
Wi-Fi Direct		Wi-Fi Direct enabled devices transfer data directly between each other ⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz)									
Test Sample Information	No.	S/N	Notes								
	1	R38K30X237A	Wi-Fi/BT Conduction								
	2	R38K30TBXQF	Main Conduction								
	3	R38K30TBTBM	SAR								
	4	R38K30TBTFF	SAR								
	5	R38K30TBXPR	SAR								

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode		Duty Cycle used for SAR testing							
GSM	850	Voice (GMSK)	GPRS Multi-Slot Class:	GSM Voice: 12.5%							
	1900	GPRS (GMSK)	☐ Class 8 - 1 Up, 4 Down	(E)GPRS: 1 Slot: 12.5%							
		EGPRS (8PSK)	☐ Class 10 - 2 Up, 4 Down	2 Slots: 25%							
		,	☐ Class 12 - 4 Up, 4 Down	3 Slots: 37.5%							
			⊠ Class 33 - 4 Up, 5 Down	4 Slots: 50%							
	Does this device suppo	rt DTM (Dual Transfer Mode)	DTM (Dual Transfer Mode)? □ Yes ⊠ No								
W-CDMA (UMTS)	Band II	UMTS Rel. 99 (Voice & Dat	100%								
	Band V	HSDPA (Release.9)	HSDPA (Release.9)								
		HSUPA (Release.9)									
		DC-HSDPA (Release 8)									
		HSPA+ (Release.8)									
LTE	FDD Band 5	QPSK		100% (FDD)							
	TDD Band 41	16QAM		63.3% (TDD)							
		⊠ Rel. 12 Carrier Aggregat	ion (1 Uplink and 2 Downlinks)								
	Does this device suppo	rt SV-LTE (1xRTT-LTE)? □ Y	'es ⊠ No								
Wi-Fi		802.11b		99.7% _(802.11b)							
	2.4 GHz	802.11g		98.2% _(802.11g)							
		802.11n (HT20)		98.1% (802.11n 20MHz BW)							
Bluetooth	2.4 GHz	Version 4.2 LE		76.9% (DH5)							

Notes:

- 1. This device supports uplink-downlink configuration 0-6. The configuration with the highest duty cycle was used (Subframe Number 0 at 63.3%).
- 2. The Bluetooth protocol is considered source-based averaging. Bluetooth GFSK (DH5) was verified to have the highest duty cycle of 76.9% and was considered and used for SAR Testing.
- 3. Duty cycle for Wi-Fi is referenced from the DTS report.

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Antenna RF Air interface		Mode	Time Slots	Max. RF Outpu	t Power (dBm)	Reduced. RF Hotspot		Reduced. RF Output Pow er Proximity sensor back-off (dBm)	
				Tune-up Limit	Frame Pw r	Tune-up Limit	Frame Pw r	Tune-up Limit	Frame Pw r
		Voice/GPRS	1	33.5	24.5				
		GPRS	2	31.5	25.5				
	GPRS	3	28.5	24.2					
	GSM850	GPRS	4	27.5	24.5				
	GSIVIOSU	EGPRS	1	27.0	18.0				
		EGPRS	2	25.0	19.0				
		EGPRS	3	24.0	19.7				
Main Ant.1		EGPRS	4	23.0	20.0				
IVIAIN ANI. I		Voice/GPRS	1	31.0	22.0	28.0	19.0	28.0	19.0
		GPRS	2	28.5	22.5	25.5	19.5	25.5	19.5
		GPRS	3	26.5	22.2	23.5	19.2	23.5	19.2
	COMMOOO	GPRS	4	25.0	22.0	22.0	19.0	22.0	19.0
	GSM1900	EGPRS	1	26.0	17.0	23.0	14.0	23.0	14.0
		EGPRS	2	24.0	18.0	21.0	15.0	21.0	15.0
		EGPRS	3	23.5	19.2	20.5	16.2	20.5	16.2
		EGPRS	4	22.0	19.0	19.0	16.0	19.0	16.0

Antenna	RF Air interface	Mode	Max. RF Output Power (dBm)	Reduced. RF Output Pow er Hotspot back-off (dBm)	Reduced. RF Output Power Proximity sensor back-off (dBm)
		R99	24.0	19.5	19.5
	W-CDMA	HSDPA	22.5 18.5		18.5
	Band II	HSUPA	22.5	18.5	18.5
Main Ant.1		DC-HSDPA	22.5	18.5	18.5
IVIAIN ANL.1		R99	25.0		
	W-CDMA	HSDPA	23.5		
	Band V	HSUPA	23.5		
		DC-HSDPA	23.5		

Antenna	RF Air interface	Mode	Max. RF Output Pow er (dBm)
Main Ant.1	LTE Band 5	QPSK	25.5
Main Ant.2	LTE Band 41	QPSK	24.5

RF Air interface	Mode	Max. RF Output Pow er (dBm)
	802.11b	17.0
WiFi 2.4 GHz	802.11g	14.0
	802.11n HT20	14.0
В	uetooth	12.0
Blue	etooth LE	2.0

Notes:

- 1. The device utilizes power reduction under some portable hotspot conditions for SAR compliance. There is power reduction for WWAN (GSM1900, WCDMA Band II). The reduced powers were confirmed via conducted power measurements the RF port. Detailed description of the hotspot power reduction mechanism is included in the operational description.
- WWAN (GSM1900, WCDMA Band II) has support to proximity sensor back-off function. It is operating during extremity (hand-held) use conditions. And This function is apply to phablet 10-g SAR exposure condition. Other Head and Body exposure conditions are performed SAR test at full power. The proximity sensor details explain in SAR report according to Section 6 in KDB 616217.
- 3. Both back-off functions are not operating at the same time.
- 4. LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

Page 12 of 58

6.4. General LTE SAR Test and Reporting Considerations

Item	Description								
Frequency range, Channel Bandwidth,			F	requency rang	je: 824 - 849 M	lHz			
Numbers and Frequencies	Band 5				Bandwidth				
Transcro and Frequencies		20 MHz	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz		
				20450/	20425/	20415/	20407/		
	Low			829	826.5	825.5	824.7		
				20525/	20525/	20525/	20525/		
	Mid			836.5	836.5	836.5	836.5		
	L P acts			20600/	20625/	20635/	20643/		
	High			844	846.5	847.5	848.3		
			Fre	equency range	: 2496 - 2690	MHz			
	Band 41			Channel	Bandwidth				
		20 MHz	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz		
	Low		39750	/ 2506.0	•				
	Low-Mid		40185	/ 2549.5					
	Mid		40620	/ 2593.0					
	Mid-High		41055	/ 2636.5					
	High		41490	/ 2680.0					
implementation	Refer to Ap	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3							
Maximum power reduction (MPR)				•	•				
Maximum power reduction (MPR)	Table Modulat	tion C	hannel bandw	idth / Transmis	ssion bandwidt	h (N _{RB})	and 3 MPR (dB)		
Maximum power reduction (MPR)		tion C	channel bandw	idth / Transmis	ssion bandwidt 0 15	h (N _{RB})			
Maximum power reduction (MPR)	Modulat	tion C	thannel bandw 3.0 MHz	idth / Transmis	ssion bandwidt 0 15 Hz MHz	h (N _{RB}) 20 MHz	MPR (dB)		
Maximum power reduction (MPR)	Modulat	tion C 1.4 MHz	3.0 MHz > 4	idth / Transmis	ssion bandwidt 0 15 Hz MHz 12 > 16	h (N _{RB}) 20 MHz > 18	MPR (dB) ≤ 1		
Maximum power reduction (MPR)	Modulat	tion C 1.4 MHz (> 5 M ≤ 5	thannel bandw 3.0 MHz	idth / Transmis	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16	h (N _{RB}) 20 MHz	MPR (dB)		
Maximum power reduction (MPR)	Modulat	tion C 1.4 MHz ⟨ > 5 M ≤ 5 M > 5 M ≤ 5	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	State Control Contro	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 > 16 12 > 16 12 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2		
Maximum power reduction (MPR)	Modulat	Control Con	3.0 MHz > 4 ≤ 4 > 4	State	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 > 16 12 > 16 12 > 16	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3		
Maximum power reduction (MPR)	Modulat	Control Con	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	State Control Contro	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 > 16 12 > 16 12 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2		
Maximum power reduction (MPR)	Modulat	Control Con	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	State	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 > 16 12 > 16 12 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3		
Maximum power reduction (MPR)	Modulat QPSH 16 QA 16 QA 64 QA 64 QA 256 QA	Continue	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4	idth / Transmis 5	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 > 16 12 > 16 12 > 16	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
Maximum power reduction (MPR)	Modulat QPSI 16 QA 16 QA 64 QA 64 QA 256 QA MPR Built-ii	Continue	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 > 4 alues are alway	idth / Transmis 5	ssion bandwidtl 0 15 Hz MHz 12 > 16 12 ≤ 16 12 > 16 12 > 16 12 > 16 12 > 16	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
Maximum power reduction (MPR)	Modulat QPSI 16 QA 16 QA 64 QA 64 QA 256 QA MPR Built-ii The manufa	Control Con	### 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 ≤ 4 > 4	idth / Transmis	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 S 16	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
Maximum power reduction (MPR) Power reduction	Modulat QPSI 16 QA 16 QA 64 QA 64 QA 256 QA MPR Built-ii The manufa	tion	### 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 ≤ 4 > 4	idth / Transmis	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 S 16	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
	Modulate 16 QA 16 QA 64 QA 256 QA MPR Built-in The manufare not follow the A-MPR (add Yes	tion	### 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 ≤ 4 > 2 ≥ 4 > 4 ≥ 3 ≥ 4 > 4 ≥ 3 ≥ 4 > 4 ≥ 3 ≥ 4 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 7 ≥ 7 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9 ≥ 9	idth / Transmis	ssion bandwidt 0 15 Hz MHz 12 > 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 ≤ 16 12 S 16	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 < 18 → 18 → 18 → 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5 sometimes but may		
Power reduction	Modulat QPSH 16 QA 16 QA 64 QA 64 QA 256 QA MPR Built-ii The manufa not follow th A-MPR (add Yes A properly of	tion 1.4 MHz (>5 M ≤5 M >5 M >5 M >5 M >5 M >6 M	### Shannel bandw 3.0	idth / Transmis	sion bandwidt 10 15 Hz MHz 12 > 16 12 ≤ 16 12 ≤ 16 12 > 16 12 > 16 12 > 16 10 > 16 10 > 16 11	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 < 18 N MPR alloware and power meaning power mea	MPR (dB)		
Power reduction	Modulat QPSH 16 QA 16 QA 64 QA 64 QA 256 QA MPR Built-ii The manufa not follow th A-MPR (add Yes A properly of	tion 1.4 MHz C > 5 M > 5 M > 5 M > 5 M > 5 M > 5 M Standard Stand	### Shannel bandw 3.0	idth / Transmis	ssion bandwidtl 0	h (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 A N MPR alloware and power means	MPR (dB)		

Notes:

6.5. LTE Carrier Aggregation

	CA BCS Reverse				Bandw idth (MHz)											Max
Combination	Combination CA BCS Reverse Configuration COnfiguration Y/N	Reverse Y/N	Carrier 1						Carrier 2						Aggregated BW	
		J		20	15	10	5	3	1.4	20	15	10	5	3	1.4	(MHz)
	contiguous 5B Ye				√	√					√				20	
Intra-Band		1 1	Ves			√							√			20
contiguous		(4)	res					√					√			0
		(1)					√							√		8
Intra-Band	5A-5A	(0)	Yes			√	√					√	√			20
non- contiguous	DA-5A	(1)	162					V					√			8

Note(s):

For supported channels, please refer to §6.4

^{1.} SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.6. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

	Nori	mal cyclic prefix in	downlink	Exte	nded cyclic prefix ir	n downlink	
Special	DwPTS	Upf	PTS	DwPTS	UpP	TS	
subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink	
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$			
1	$19760 \cdot T_{\rm s}$		$2560 \cdot T_{ m s}$	$20480 \cdot T_{\rm s}$	-1 2192 $\cdot T_{-}$	$2560 \cdot T_{\mathrm{s}}$	
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$		$23040 \cdot T_{\rm s}$			
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$			
4	$26336 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$			
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	1291 T	5120 T	
6	$19760 \cdot T_{\rm s}$			$23040 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	
7	$21952 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_{\rm s}$			
8	$24144 \cdot T_{\rm s}$			-	-	-	
9	13168 · T _s			-	-	-	

Calculated Duty Cycle

Uplink-	Downlink-to-				Sub	frame	e Num	ber				
Downlink Configuration	Uplink Switch-point Periodicity	0	1	2	3	4	5	6	7	8	9	Calculated Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

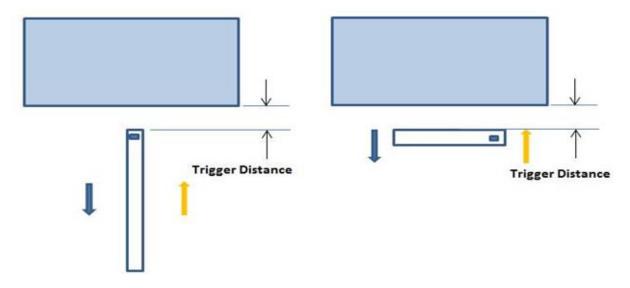
Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $5120 \times [1/(15000 \times 2048)] \times 2 + 6 \text{ ms} = 63.33\%$ where

 $T_s = 1/(15000 \times 2048)$ seconds

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle and Special Subframe 7.


6.7. Power Reduction by Proximity Sensing

6.7.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

Front, Rear and Edge 3 of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

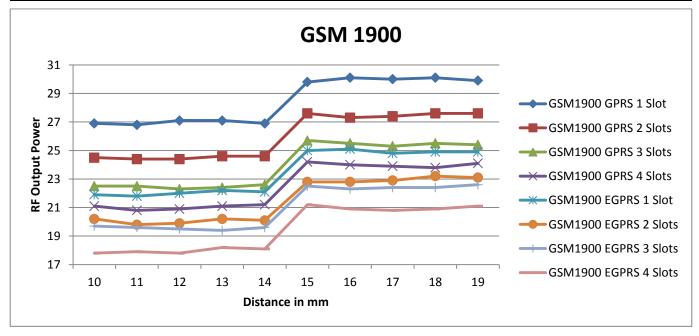
Proximity Sensor Trigger Distance Assessment KDB 616217 §6.2, Edge 3 Proximity Sensor Trigger Distance Assessment KDB 616217 §6.2, Rear, Front

LEGEND

Direction of DUT travel for determination of power reduction triggering point

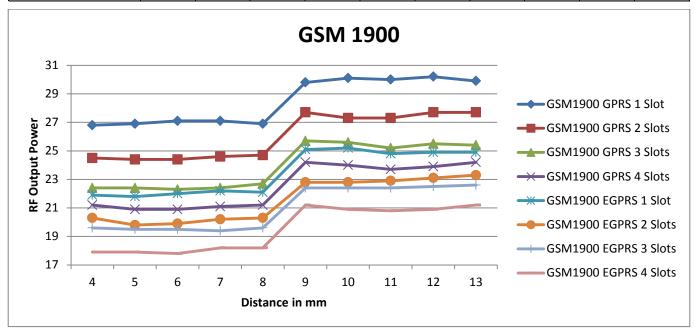
Direction of DUT travel for determination of full power resumption triggering point

Summary of Trigger Distances

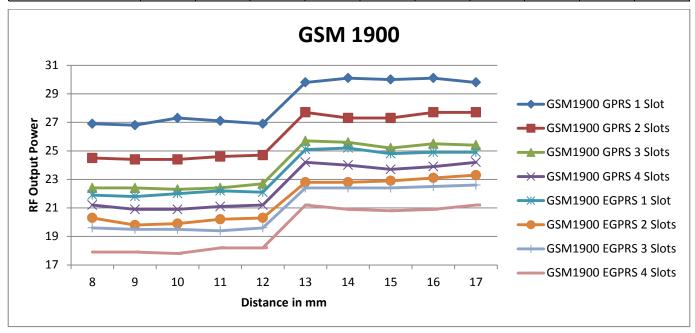

Tissue	Trigger dist	ance - Rear	Trigger dista	ince - Front	Trigger distance – Edge 3		
simulating	Moving	Moving	Moving	Moving	Moving	Moving	
liquid	toward from		toward	from	toward	from	
ilquiu	phantom	phantom	phantom	phantom	phantom	phantom	
1900 Body	14 mm	14 mm	8 mm	8 mm	12 mm	12 mm	

Page 15 of 58

<u>Proximity Sensor Triggering Distance Measurement Results</u> <u>GSM 1900</u>

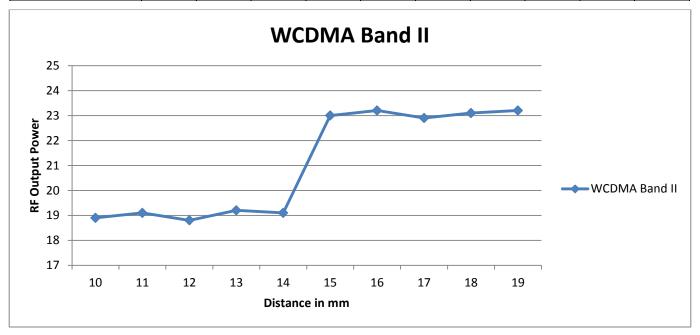

Rear, DUT Moving Toward (Trigger) from the Phantom

	Distance to DUT vs. Output Power in dBm													
Distance (mm)	10	11	12	13	14	15	16	17	18	19				
GSM1900 GPRS 1 Slot	26.9	26.8	27.1	27.1	26.9	29.8	30.1	30.0	30.1	29.9				
GSM1900 GPRS 2 Slots	24.5	24.4	24.4	24.6	24.6	27.6	27.3	27.4	27.6	27.6				
GSM1900 GPRS 3 Slots	22.5	22.5	22.3	22.4	22.6	25.7	25.5	25.3	25.5	25.4				
GSM1900 GPRS 4 Slots	21.1	20.8	20.9	21.1	21.2	24.2	24.0	23.9	23.8	24.1				
GSM1900 EGPRS 1 Slot	21.9	21.8	22.0	22.2	22.1	25.0	25.1	24.8	24.9	24.9				
GSM1900 EGPRS 2 Slots	20.2	19.8	19.9	20.2	20.1	22.8	22.8	22.9	23.2	23.1				
GSM1900 EGPRS 3 Slots	19.7	19.6	19.5	19.4	19.6	22.5	22.3	22.4	22.4	22.6				
GSM1900 EGPRS 4 Slots	17.8	17.9	17.8	18.2	18.1	21.2	20.9	20.8	20.9	21.1				

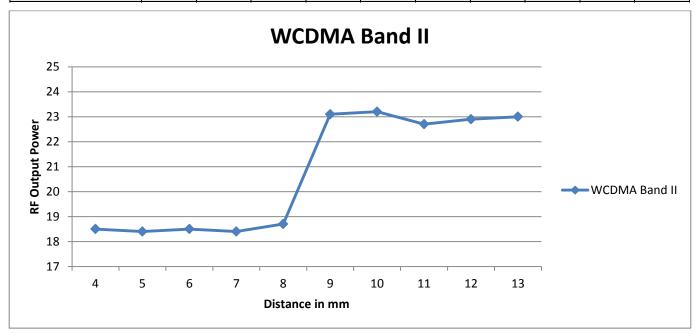

Front, DUT Moving Away (Release) from the Phantom

	Distance to DUT vs. Output Power in dBm													
Distance (mm)	4	5	6	7	8	9	10	11	12	13				
GSM1900 GPRS 1 Slot	26.8	26.9	27.1	27.1	26.9	29.8	30.1	30.0	30.2	29.9				
GSM1900 GPRS 2 Slots	24.5	24.4	24.4	24.6	24.7	27.7	27.3	27.3	27.7	27.7				
GSM1900 GPRS 3 Slots	22.4	22.4	22.3	22.4	22.7	25.7	25.6	25.2	25.5	25.4				
GSM1900 GPRS 4 Slots	21.2	20.9	20.9	21.1	21.2	24.2	24.0	23.7	23.9	24.2				
GSM1900 EGPRS 1 Slot	21.9	21.8	22.0	22.2	22.1	25.1	25.2	24.8	24.9	24.9				
GSM1900 EGPRS 2 Slots	20.3	19.8	19.9	20.2	20.3	22.8	22.8	22.9	23.1	23.3				
GSM1900 EGPRS 3 Slots	19.6	19.5	19.5	19.4	19.6	22.4	22.4	22.4	22.5	22.6				
GSM1900 EGPRS 4 Slots	17.9	17.9	17.8	18.2	18.2	21.2	20.9	20.8	20.9	21.2				

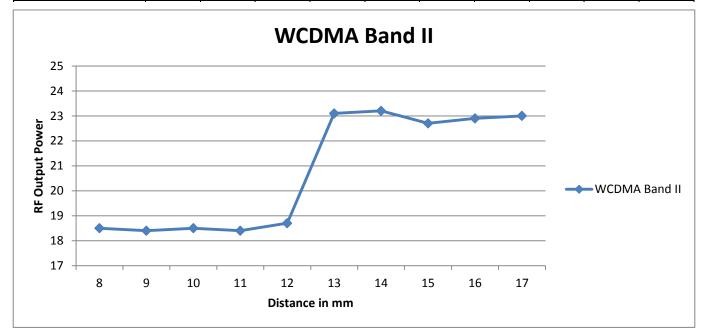
Edge 3, DUT Moving Away (Release) from the Phantom


	Distance to DUT vs. Output Power in dBm													
Distance (mm)	8	9	10	11	12	13	14	15	16	17				
GSM1900 GPRS 1 Slot	26.9	26.8	27.3	27.1	26.9	29.8	30.1	30.0	30.1	29.8				
GSM1900 GPRS 2 Slots	24.5	24.4	24.2	24.6	24.6	27.6	27.4	27.4	27.6	27.7				
GSM1900 GPRS 3 Slots	22.2	22.4	22.1	22.4	22.6	25.7	25.5	25.4	25.4	25.3				
GSM1900 GPRS 4 Slots	21.1	20.8	20.8	21.1	21.2	24.1	24.1	23.9	23.9	24.1				
GSM1900 EGPRS 1 Slot	21.9	21.8	22.0	22.2	22.1	25.1	25.1	24.7	24.9	24.9				
GSM1900 EGPRS 2 Slots	20.3	19.8	19.9	20.2	20.1	22.9	22.9	22.8	23.2	23.1				
GSM1900 EGPRS 3 Slots	19.8	19.6	19.4	19.4	19.6	22.5	22.3	22.4	22.5	22.7				
GSM1900 EGPRS 4 Slots	17.8	17.9	17.8	18.2	18.1	21.2	20.7	20.8	20.7	21.2				

WCDMA Band II


Rear, DUT Moving Toward (Trigger) from the Phantom

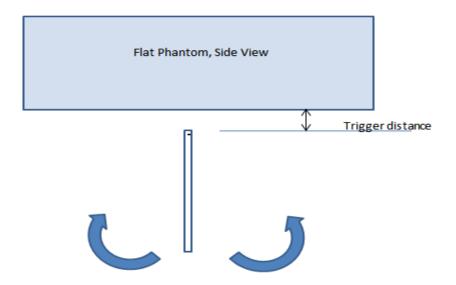
Distance to DUT vs. Output Power in dBm												
Distance (mm) 10 11 12 13 14 15 16 17 18 19												
WCDMA Band II	18.9	19.1	18.8	19.2	19.1	23.0	23.2	22.9	23.1	23.2		


Front, DUT Moving Toward (Trigger) from the Phantom

	Distance to DUT vs. Output Power in dBm												
	Distance (mm) 4 5 6 7 8 9 10 11 12 13												
Γ	WCDMA Band II	18.5	18.4	18.5	18.4	18.7	23.1	23.2	22.7	22.9	23.0		

Edge 3, DUT Moving Toward (Trigger) from the Phantom

Distance to DUT vs. Output Power in dBm												
Distance (mm) 8 9 10 11 12 13 14 15 16 17												
WCDMA Band II 18.7 18.4 18.5 18.4 18.6 23.1 23.2 22.9 22.9 23.1												


6.7.2. Proximity Sensor Coverage (KDB 616217 §6.3)

As there is no spatial offset between the antenna and the proximity sensor element, proximity sensor coverage did not need to be assessed.

6.7.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Edge 3 parallel to the base of the flat phantom for each band.

The EUT was rotated about Edge 3 for angles up to +/- 45°. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to +/- 45°.

Proximity sensor tilt angle assessment (Edge 3) KDB 616217 §6.4

Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering (Edge 3)

Band	Minimum trigger Band distance measured	Minimum distance at which		Power reduction status										
(MHz)	according to KDB 616217 §6.2	power reduction was maintained over +/-45°	-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°	
1900	12 mm	12 mm	On	On	On	On	On	On	On	On	On	On	On	

6.7.4. Resulting test positions for SAR measurements

Wireless technologies	DUT Position	§6.7.1 Triggering Distance	§6.7.2 Coverage	§6.7.3 Tilt Angle	Worst case distance for SAR
	Rear	14 mm	N/A	N/A	13 mm
WWAN	Fornt	8 mm	N/A	N/A	7 mm
	Edge 3	12 mm	N/A	12 mm	11 mm

7 RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR	Note
technologies	Conditions	Separation	Position	edge/surface	Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	rieau	O IIIIII	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Бойу	13 111111	Front	N/A	Yes	
			Rear	< 25 mm	Yes	
WWAN			Front	< 25 mm	Yes	
Main Ant.1	Hotspot	10 mm	Edge 1 (Top)	> 25 mm	No	1
&	Tiotopot	10 111111	Edge 2 (Right)	< 25 mm	Yes	
Main Ant.2			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	4
			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Dhablat 40a	0	Edge 1 (Top)	> 25 mm	No	1
	Phablet-10g	0 mm	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	4
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	пеац	O Milli	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Dody	1E mm	Rear	N/A	Yes	
	Body	15 mm	Front	N/A	Yes	
			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
			Edge 1 (Top)	< 25 mm	Yes	
WLAN	Hotspot	10 mm	Edge 2 (Right)	> 25 mm	No	1
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	> 25 mm	No	1
			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Dhablet 10-	0	Edge 1 (Top)	< 25 mm	Yes	
	Phablet-10g	0 mm	Edge 2 (Right)	> 25 mm	No	1
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	> 25 mm	No	1

Notes:

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. When Hotspot Mode is not supported, 10-g Phablet SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.
- 3. When hotspot mode applies, 10-g Phablet SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg. When hotspot mode does not apply, 10-g Phablet SAR is required for all surfaces and Edges within 25mm of the antenna.
- 4. SAR test of Edge 4 (Left) is not required in Main Ant.2 due to antenna to the edge is > 25mm.

8 Dielectric Property Measurements & System Check

8.1 Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	F	lead	Be	ody
raiget Frequency (MHZ)	٤ _r	σ (S/m)	ε_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR 1 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2600	e'	52.6600	Relative Permittivity (ε_r):	52.66	52.51	0.28	5
	B00y 2000	e"	14.8300	Conductivity (σ):	2.14	2.16	-0.78	5
5-29-2018	Body 2500	e'	52.9100	Relative Permittivity (ε_r):	52.91	52.64	0.52	5
3-29-2016	Body 2500	e"	14.5600	Conductivity (σ):	2.02	2.02	0.18	5
	Body 2700	e'	52.4000	Relative Permittivity (ε_r):	52.40	52.38	0.03	5
	Body 2700	e"	15.0600	Conductivity (σ):	2.26	2.30	-1.76	5
	Body 2450	e'	53.0100	Relative Permittivity (ε_r):	53.01	52.70	0.59	5
	B00y 2430	e"	14.4600	Conductivity (σ):	1.97	1.95	1.02	5
5-29-2018	Body 2400	e'	53.1000	Relative Permittivity (ε_r):	53.10	52.77	0.62	5
3-29-2016	B00y 2400	e"	14.3500	Conductivity (σ):	1.91	1.90	0.89	5
	Body 2480	e'	52.9600	Relative Permittivity (ε_r):	52.96	52.66	0.57	5
	B00y 2400	e"	14.5200	Conductivity (σ):	2.00	1.99	0.51	5
	Head 2450	e'	40.2900	Relative Permittivity (ε_r):	40.29	39.20	2.78	5
	Head 2450	e"	13.2800	Conductivity (σ):	1.81	1.80	0.51	5
5-31-2018	Head 2400	e'	40.5000	Relative Permittivity (ε_r):	40.50	39.30	3.06	5
3-31-2016	116au 2400	e"	13.1100	Conductivity (σ):	1.75	1.75	-0.12	5
	Head 2480	e'	40.1700	Relative Permittivity (ε_r):	40.17	39.16	2.57	5
	Fiedu 2400	e"	13.3800	Conductivity (σ):	1.85	1.83	0.69	5

SAR 2 Room

Date	Freg. (MHz)		Ligu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	,	e'	52.9100	Relative Permittivity (ε_r):	52.91	53.30	-0.73	5
	Body 1900	e"	14.9200	Conductivity (σ):	1.58	1.52	3.70	5
5-30-2018	Dody 1050	e'	53.0300	Relative Permittivity (ε_r) :	53.03	53.30	-0.51	5
5-30-2018	Body 1850	e"	14.9400	Conductivity (σ):	1.54	1.52	1.11	5
	Body 1910	e'	52.8900	Relative Permittivity (ε_r):	52.89	53.30	-0.77	5
	Body 1910	e"	14.9300	Conductivity (σ):	1.59	1.52	4.32	5
	Head 2600	e'	38.1000	Relative Permittivity (ε_r):	38.10	39.01	-2.33	5
	Tieau 2000	e"	14.0100	Conductivity (σ):	2.03	1.96	3.22	5
6-1-2018	Head 2500	e'	38.4800	Relative Permittivity (ε_r) :	38.48	39.14	-1.68	5
0-1-2018	Tieau 2300	e"	13.7600	Conductivity (σ):	1.91	1.85	3.17	5
	Head 2700	e'	37.7100	Relative Permittivity (ε_r) :	37.71	38.88	-3.02	5
	Tieau 2700	e"	14.2300	Conductivity (σ):	2.14	2.07	3.19	5
	Head 835	e'	41.5800	Relative Permittivity (ε_r) :	41.58	41.50	0.19	5
	Flead 055	e"	19.5800	Conductivity (σ):	0.91	0.90	1.01	5
6-1-2018	Head 820	e'	41.7500	Relative Permittivity (ε_r) :	41.75	41.60	0.35	5
0-1-2010	riead 620	e"	19.6400	Conductivity (σ):	0.90	0.90	-0.33	5
	Head 850	e'	41.4100	Relative Permittivity (ε_r):	41.41	41.50	-0.22	5
İ	11044 000	e"	19.5400	Conductivity (σ):	0.92	0.92	0.93	5

SAR 3 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 835	e'	53.3000	Relative Permittivity (ε_r):	53.30	55.20	-3.44	5
	Body 666	e"	21.4000	Conductivity (σ):	0.99	0.97	2.43	5
5-28-2018	5-28-2018 Body 820	e'	53.4600	Relative Permittivity (ε_r) :	53.46	55.28	-3.29	5
3-20-2010	B00y 820	e"	21.4700	Conductivity (σ):	0.98	0.97	1.08	5
	Body 850	e'	53.1500	Relative Permittivity (ε_r) :	53.15	55.16	-3.64	5
	Body 830	e"	21.3400	Conductivity (σ):	1.01	0.99	2.17	5
	Head 1900	e'	40.5100	Relative Permittivity (ε_r):	40.51	40.00	1.28	5
	Tieau 1900	e"	13.6700	Conductivity (σ):	1.44	1.40	3.16	5
5-30-2018	Head 1850	e'	40.8300	Relative Permittivity (ε_r) :	40.83	40.00	2.08	5
3-30-2018	5-30-2018 Head 1850	e"	13.6300	Conductivity (σ):	1.40	1.40	0.15	5
Har	Head 1910	e'	40.4300	Relative Permittivity (ε_r):	40.43	40.00	1.08	5
	Head 1910	e"	13.6800	Conductivity (σ):	1.45	1.40	3.77	5

8.2 System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dinolo	ystem Dipole Serial No. Cal		Freq. (MHz)	Target SAR Values (W/kg)				
System Dipole	Senai No.	Cal. Date	1 16q. (IVII 12)	1g/10g	Head	Body		
D835V2	4d194	7-19-2017	835	1g	9.33	9.30		
D000 V2	40104	7 10 2017	000	10g	6.03	6.09		
D1900V2	5d190	9-20-2017	1900	1g	38.30	40.00		
D1900V2	Ju190	0 20 2017	1000	10g	20.10	21.10		
D2450V2	939	9-19-2017	2450	1g	52.30	50.70		
D2430V2	555	3-13-2017	2430	10g	24.60	23.90		
D2600V2	1097	1-17-2018	2600	1g	56.40	54.40		
D2000V2	1037	1 17 2010	2000	10g	25.30	24.20		

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 1 Room

	System	Dipole	T.S. Liquid		Measured	d Results	Toward	Dalta	Dist
Date Tested	Туре	Serial #			Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
5-29-2018	D2600V2	1097	Body	1g	5.35	53.50	54.40	-1.65	
5-29-2016	D2000V2	1097	Body	10g	2.37	23.70	24.20	-2.07	
5-29-2018	D2450V2	939	Body	1g	4.77	47.70	50.70	-5.92	1, 2
5-29-2016	D2430V2	939	Бойу	10g	2.22	22.20	23.90	-7.11	1, 2
5-31-2018	D2450V2	939	Head	1g	5.44	54.40	52.30	4.02	
3-31-2016	D2430V2	939	Head	10g	2.48	24.80	24.60	0.81	

SAR 2 Room

	System	Dipole	5		Measured	d Results	Taxaat	Delta	Plot No.
Date Tested	Туре	Serial #	T.S. Liquid	-		Normalize to 1 W	Target (Ref. Value)	±10 %	
5-30-2018	D1900V2	5d190	Body	1g	4.04	40.40	40.00	1.00	
3-30-2016	D1900V2	50190	Body	10g	2.02	20.20	21.10	-4.27	
6-1-2018	D2600V2	1097	Head	1g	6.03	60.30	56.40	6.91	3. 4
0-1-2010	D2000V2	1097	Head	10g	2.63	26.30	25.30	3.95	5, 4
6-1-2018	D835V2	4d194	Head	1g	0.94	9.43	9.33	1.07	
0-1-2010	D033V2	70154	rieau	10g	0.62	6.20	6.03	2.82	

SAR 3 Room

	System	System Dipole		T. C		d Results	Tanant	Delte	Diet																		
Date Tested	Type	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.																		
5-28-2018	D835V2	4d194	Body	1g	0.96	9.61	9.30	3.33	5, 6																		
3-26-2016	D63572	40194	Бойу	Бойу	Body	Dody	Воду	Войу	Войу	Бойу	Воду	Бойу	Body	Войу	Войу	Войу	Войу	Войу	Войу	Бойу	Воду	10g	0.63	6.31	6.09	3.61	5, 6
5-30-2018	D1900V2	5d190	Head	1g	4.13	41.30	38.30	7.83	7, 8																		
3-30-2018	D1900V2	30190	Head	10g	2.10	21.00	20.10	4.48	7,0																		

9 Conducted Output Power Measurements

9.1 **GSM**

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

GSM850 Measured Results

Full Power

Mode	Coding	Time	Ch No.	Freq.	Burst Pwr	Frame Pwr	Max. Frame	
····ouo	Scheme	Slots		(MHz)	(dBm)	(dBm)	Pwr (dBm)	
GSM			128	824.4	32.9	23.8		
(Voice)	CS1	1	190	836.6	32.9	23.9	24.5	
(10.00)			251	848.8	32.7	23.6		
			128	824.4	33.1	24.0		
		1	190	836.6	32.8	23.7	24.5	
			251	848.8	32.4	23.4		
			128	824.4	30.8	24.8		
		2	190	836.6	30.7	24.7	25.5	
GPRS	CS1		251	848.8	30.7	24.7		
(GMSK)	001		128	824.4	28.5	24.2		
		3	190	836.6	28.5	24.2	24.2	
			251	848.8	28.5	24.2		
			128	824.4	27.2	24.2		
		4	190	836.6	27.1	24.1	24.5	
			251	848.8	26.8	23.8		
			128	824.4	25.8	16.7		
		1	190	836.6	25.7	16.7	18.0	
			251	848.8	25.5	16.5		
			128	824.4	23.6	17.6		
		2	190	836.6	23.6	17.6	19.0	
EGPRS	MCS5		251	848.8	23.4	17.4		
(8PSK)	IVICOS		128	824.4	22.4	18.1		
		3	190	836.6	22.3	18.1	19.7	
			251	848.8	22.2	17.9		
			128	824.4	22.7	19.7		
		4	190	836.6	23.0	20.0	20.0	
			251	848.8	22.9	19.9		

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 2 time slots for Max power based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

GSM1900 Measured Results

						Full Power	r		duced Pov			duced Pov	
Mode	Coding	Time	Ch No.	Freq.	Burst Pwr		Max. Frame	Burst Pwr	Frame Pwr		Burst Pwr		Max. Frame
Wiode	Scheme	Slots		(MHz)	(dBm)	(dBm)	Pwr (dBm)	(dBm)	(dBm)	Pwr (dBm)	(dBm)	(dBm)	Pwr (dBm)
GSM			512	1850.2	30.0	21.0		27.7	18.6		27.8	18.7	
(Voice)	CS1	1	661	1880.0	30.2	21.2	22.0	27.6	18.6	19.0	27.7	18.7	19.0
(v 0,000)			810	1909.8	30.4	21.4		27.8	18.7		27.9	18.8	
			512	1850.2	30.0	21.0		27.6	18.6		27.7	18.7	
		1	661	1880.0	30.1	21.1	22.0	27.5	18.5	19.0	27.6	18.5	19.0
			810	1909.8	30.3	21.3		27.5	18.5		27.7	18.7	
			512	1850.2	27.7	21.7		24.9	18.8		25.0	18.9	
		2	661	1880.0	27.8	21.8	22.5	24.9	18.9	19.5	25.1	19.0	19.5
GPRS	CS1		810	1909.8	27.7	21.7		24.8	18.8		24.9	18.9	
(GMSK)	001		512	1850.2	25.7	21.5		22.7	18.4		22.8	18.5	1 1
		3	661	1880.0	25.8	21.5	22.2	22.8	18.6	19.2	22.9	18.7	19.2
			810	1909.8	25.7	21.5		22.8	18.5		22.9	18.6	
			512	1850.2	24.2	21.2		21.2	18.2		21.3	18.3	
		4	661	1880.0	24.3	21.3	22.0	21.3	18.3	19.0	21.4	18.4	19.0
			810	1909.8	24.2	21.2		21.2	18.2		21.3	18.3	
			512	1850.2	24.5	15.5		21.6	12.6		21.7	12.7	
		1	661	1880.0	24.6	15.6	17.0	21.6	12.6	14.0	21.7	12.7	14.0
			810	1909.8	24.6	15.5		21.6	12.6		21.7	12.6	
			512	1850.2	22.3	16.3		19.4	13.4		19.4	13.4	
		2	661	1880.0	22.4	16.4	18.0	19.4	13.4	15.0	19.5	13.5	15.0
EGPRS	MCS5		810	1909.8	22.3	16.3		19.4	13.4		19.5	13.4	
(8PSK)	WOOS		512	1850.2	21.5	17.2		18.5	14.3		18.6	14.3	
		3	661	1880.0	21.6	17.3	19.2	18.6	14.4	16.2	18.7	14.4	16.2
			810	1909.8	21.5	17.3		18.6	14.3		18.6	14.4	
			512	1850.2	19.7	16.7		16.7	13.7		16.8	13.8	
		4	661	1880.0	19.8	16.8	19.0	16.8	13.8	16.0	16.9	13.9	16.0
			810	1909.8	19.7	16.7		16.8	13.7		16.8	13.8	

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 2 time slots for Max power and 2 time slots for reduced power, based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

9.2 W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA General Settings	Rel99 RMC	12.2kbps RMC
WCDIMA General Sellings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA			
	Subtest	1	2	3	4			
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2kbps RMC						
	HSDPA FRC	H-Set 1						
W CDMA	Power Control Algorithm	Algorithm 2						
W-CDMA	βс	2/15	11/15	15/15	15/15			
General Settings	βd	15/15	15/15	8/15	4/15			
Settings	Bd (SF)	64						
	βc/βd	2/15	11/15	15/8	15/4			
	βhs	4/15	24/15	30/15	30/15			
	MPR (dB)	0	0	0.5	0.5			
	D _{ACK}	8						
	D _{NAK}	8						
HSDPA	DCQI	8						
Specific	Ack-Nack repetition factor	3						
Settings	CQI Feedback (Table 5.2B.4)	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs=βhs/βc	30/15						

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in table C,11.1.3 of 3GPP TS 34.121-1 v13. A summary of these settings are illustrated below:

	Mode	HSPA								
	Subtest	1	2	3	4	5				
	Loopback Mode	Test Mode 1	Test Mode 1							
	Rel99 RMC	12.2 kbps RM	/IC							
	HSDPA FRC	H-Set 1	H-Set 1							
	HSUPA Test	HSPA	HSPA							
	Power Control Algorithm	Algorithm 2				Algorithm 1				
WCDMA	βc	11/15	6/15	15/15	2/15	15/15				
General	βd	15/15	15/15	9/15	15/15	0				
Settings	βec	209/225	12/15	30/15	2/15	5/15				
	βc/βd	11/15	6/15	15/9	2/15	-				
	βhs	22/15	12/15	30/15	4/15	5/15				
	βed	1309/225	94/75	47/15	56/75	47/15				
	CM (dB)	1	3	2	3	1				
	MPR (dB)	0	2	1	2	0				
	DACK	8		•		0				
	DNAK	8				0				
HSDPA	DCQI	8	0							
Specific	Ack-Nack repetition factor	3				•				
Settings	CQI Feedback (Table 5.2B.4)	4ms								
_	CQI Repetition Factor (Table 5.2B.4)	2								
	Ahs = βhs/βc	30/15								
	E-DPDCCH	6	8	8	5	0				
	DHARQ	0	0	0	0	0				
	AG Index	20	12	15	17	12				
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	67				
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9				
	Reference E-TFCIs	5	5	2	5	1				
	Reference E-TFCI	11	11	11	11	67				
HSUPA	Reference E-TFCI PO	4	4	4	4	18				
Specific	Reference E-TFCI	67	67	92	67	67				
Settings	Reference E-TFCI PO	18	18	18	18	18				
Ü	Reference E-TFCI	71	71	71	71	71				
	Reference E-TFCI PO	23	23	23	23	23				
	Reference E-TFCI	75	75	75	75	75				
	Reference E-TFCI PO	26	26	26	26	26				
	Reference E-TFCI	81	81	81	81	81				
	Reference E-TFCI PO	27	27	27	27	27				
	Maximum Channelization Codes	2xSF2		L	1	SF4				

DC-HSDPA Setup Procedures used to establish the test signals

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value			
Nominal	Avg. Inf. Bit Rate	kbps	60			
Inter-TTI	Distance	TTI's	1			
Number	of HARQ Processes	Proces	6			
		ses	ь			
Informat	ion Bit Payload ($N_{\scriptscriptstyle INF}$)	Bits	120			
Number	Code Blocks	Blocks	1			
Binary C	hannel Bits Per TTI	Bits	960			
Total Av	ailable SML's in UE	SML's	19200			
Number	of SML's per HARQ Proc.	SML's	3200			
Coding F	Rate		0.15			
Number	of Physical Channel Codes	Codes	1			
Modulati	on		QPSK			
Note 1:	The RMC is intended to be used f	or DC-HSD	PA			
	mode and both cells shall transmit	t with identi	cal			
parameters as listed in the table.						
Note 2: Maximum number of transmission is limited to 1, i.e.,						
	retransmission is not allowed. The	e redundan	cy and			
	constellation version 0 shall be us	ed.	-			

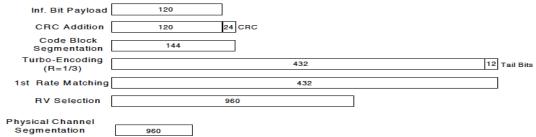


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 8 procedures in section 5.2 of 3GPP TS34.121. A summary of subtest settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set 12							
MCDMA	Power Control Algorithm	Algorithm2							
WCDMA General	βс	2/15	11/15	15/15	15/15				
Settings	βd	15/15	15/15	8/15	4/15				
Settings	βd (SF)	64							
	βc/βd	2/15	11/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	MPR (dB)	0	0	0.5	0.5				
	DACK	8							
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack Repetition factor	3							
Settings	CQI Feedback	4ms							
	CQI Repetition Factor	2							
	Ahs = βhs/ βc	30/15	30/15						

HSPA+

Since 16QAM is not used for uplink, the uplink Category and release is same as HSUPA, i.e., Rel. 7. Therefore, the RF conducted power is not measured.

Page 32 of 58

W-CDMA Band II Measured Results

Band	Mode		UL Ch No.	Freq. (MHz)	MPR (dB)	Max. RF output power (dBm)	Reduced. RF output power Hotspot back-off (dBm)	Reduced. RF output power Proximity sensor back-off (dBm)
				,		Meas. Avg Pwr	Meas. Avg Pwr	Meas. Avg Pwr
			9262	1852.4		22.6	19.0	19.0
	Rel 99	RMC, 12.2 kbps		1880.0	N/A	22.8	19.2	19.2
				1907.6		22.3	18.8	18.8
			9262	1852.4		21.6	18.1	18.1
		Subtest 1	9400	1880.0	0	21.7	18.2	18.2
			9538	1907.6	1 [21.3	17.9	17.9
			9262	1852.4		21.6	18.1	18.1
		Subtest 2	9400	1880.0	0	21.8	18.3	18.3
	HODDA		9538	1907.6	1 1	21.3	17.9	17.9
	HSDPA		9262	1852.4		21.1	17.6	17.6
		Subtest 3	9400	1880.0	0.5	21.3	17.8	17.8
			9538	1907.6	1 1	20.8	17.4	17.4
		Subtest 4	9262	1852.4	0.5	21.1	17.6	17.6
			9400	1880.0		21.3	17.8	17.8
			9538	1907.6	1 1	20.8	17.3	17.3
		Subtest 1	9262	1852.4		21.6	18.0	18.0
			9400	1880.0	0	21.7	18.2	18.2
	HSUPA		9538	1907.6		21.3	17.8	17.8
		Subtest 2	9262	1852.4	2	19.5	16.0	16.0
			9400	1880.0		19.7	16.2	16.2
V-CDMA			9538	1907.6	1 1	19.3	15.8	15.8
Band II		Subtest 3	9262	1852.4	1	20.6	17.1	17.1
			9400	1880.0		20.8	17.2	17.2
			9538	1907.6		20.4	16.8	16.8
		Subtest 4	9262	1852.4	2	19.6	16.0	16.0
			9400	1880.0		19.8	16.2	16.2
			9538	1907.6	1 1	19.3	15.8	15.8
			9262	1852.4		21.5	18.0	18.0
		Subtest 5	9400	1880.0	0	21.7	18.2	18.2
			9538	1907.6	<u>1 </u>	21.3	17.8	17.8
			9262	1852.4	i	21.6	18.1	18.1
		Subtest 1	9400	1880.0	0	21.8	18.3	18.3
			9538	1907.6	1 1	21.3	17.8	17.8
			9262	1852.4		21.6	18.0	18.0
		Subtest 2	9400	1880.0	0	21.7	18.2	18.2
	DO HODDA		9538	1907.6	1 1	21.3	17.8	17.8
	DC-HSDPA		9262	1852.4		21.1	17.5	17.5
		Subtest 3	9400	1880.0	0.5	21.2	17.7	17.7
			9538	1907.6	1 1	20.8	17.3	17.3
			9262	1852.4		21.1	17.5	17.5
		Subtest 4	9400	1880.0	0.5	21.2	17.7	17.7
			9538	1907.6	1 1	20.8	17.3	17.3

W-CDMA Band V Measured Results

W-CDMA Band V Measured Results									
Band	Mode		UL Ch No.	Freq. (MHz)	MPR (dB)	Max. RF output power (dBm)			
						Meas. Avg Pwr			
			4132	826.4		23.9			
	Rel 99	RMC, 12.2 kbps	4183	836.6	N/A	24.0			
			4233	846.6		24.0			
		Subtest 1	4132	826.4	1 1	22.8			
			4183	836.6	0	22.9			
			4233	846.6		23.0			
			4132	826.4		22.9			
		Subtest 2	4183	836.6	0	22.9			
	HSDPA		4233	846.6		23.0			
			4132	826.4	1 1	22.4			
		Subtest 3	4183	836.6	0.5	22.4			
			4233	846.6		22.5			
			4132	826.4		22.4			
		Subtest 4	4183	836.6	0.5	22.5			
			4233	846.6		22.5			
		Subtest 1 Subtest 2 SUPA Subtest 3 Subtest 4 Subtest 5	4132	826.4	0	22.9			
	HSUPA		4183	836.6		23.0			
			4233	846.6		23.1			
			4132	826.4		20.9			
			4183	836.6	2	21.0			
W-CDMA			4233	846.6		21.1			
Band V			4132	826.4	2	21.9			
			4183	836.6		22.0			
			4233	846.6		22.1			
			4132	826.4		20.8			
			4183	836.6		20.9			
			4233	846.6		21.0			
			4132	826.4		22.8			
			4183	836.6	0	22.9			
			4233	846.6	<u>1</u>	23.0			
			4132	826.4		22.8			
		Subtest 1	4183	836.6	0	23.0			
			4233	846.6	1 I	23.0			
			4132	826.4		22.8			
		Subtest 2	4183	836.6	0	22.9			
	DO 11000:		4233	846.6	1 1	23.0			
	DC-HSDPA		4132	826.4		22.3			
		Subtest 3	4183	836.6	0.5	22.4			
			4233	846.6	1 I	22.5			
			4132	826.4		22.3			
		Subtest 4	4183	836.6	0.5	22.4			
			4233	846.6	1	22.5			

9.3 LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

Modulation	Cha	MPR (dB)					
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM		≤ 5					

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		2, 4,10, 23, 25,	5	>6	≤ 1
NS_03	6.6.2.2.1	35, 36, 66, 70	10	>6	≤ 1
			15 20	>8 >10	≤ 1 ≤ 1
	6.6.2.2.2.				
NS_04	6.6.3.3.19	41	5, 10, 15, 20		Table 6.2.4-4a
		1	10,15,20	≥ 50 (NOTE1)	≤ 1 (NOTE1)
NS_05	6.6.3.3.1		15, 20		-18 (NOTE2)
		65 (NOTE 3)	10,15,20		≤ 1 (NOTE 1)
110.00		,	15,20		-18 (NOTE 2)
NS 06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10		6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS 10		20	15, 20		6.2.4-3
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20		6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table 6.2.4-6	
NS 13	6.6.3.3.6	26	5	Table 6.2.4-7	
NS 14	6.6.3.3.7	26	10, 15	Table 6.2.4-8	
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table 6.2.4-9 Table 6.2.4-10	
NS_16	6.6.3.3.9	27	3, 5, 10	Table 6.2.4-11	Table 6.2.4-12, 6.2.4-13
NS 17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS 18	6.6.3.3.11	28	5	≥ 2	≤ 1
NS 19	6.6.3.3.12	44	10, 15, 20 10, 15, 20	≥ 1	≤4
N2_18	6.2.2	44	10, 15, 20	Table	8.2.4-14
NS_20	6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20	Table	8.2.4-15
NS_21	6.6.2.2.1 6.6.3.3.15	30	5, 10	Table	8.2.4-16
NS 22	6.6.3.3.16	42, 43	5, 10, 15, 20	Table	6.2.4-17
NS 23	6.6.3.3.17	42, 43	5, 10, 15, 20		VA
NS 24	6.6.3.3.20	65 (NOTE 4)	5, 10, 15, 20		8.2.4-19
NS 25	6.6.3.3.21	65 (NOTE 4)	5, 10, 15, 20		6.2.4-20
NS_26	6.6.3.3.22	68	10, 15		6.2.4-21
NS_27	6.6.2.2.5, 6.6.3.3.23	48	5, 10, 15, 20	Table	8.2.4-22
NS_28	6.2.2A, 6.6.3.3.24	46 (NOTE 5)	20	Table	6.2.4-23
NS_29	6.2.2A, 6.6.2.3.1a, 6.6.3.3.25	46 (NOTE 5)	20	Table	8.2.4-24
NS_30	6.2.2A, 6.6.3.3.26	46 (NOTE 5)	20	Table	8.2.4-25
NS_31	6.2.2A, 6.6.3.3.27	46 (NOTE 5)	20	Table	6.2.4-26
110.00					
NS 32	- Park I and a second	-	- 15155		4.7.00
fr	equency is larger th	lower edge of the as nan or equal to the up gned, where channe	pper edge of PH	S band (1915.7	MHz) + 4 MHz +

Page 35 of 58

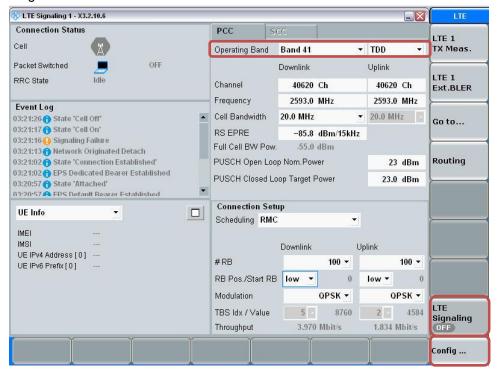
LTE Band 5 Measured Results

LTE Ban	BW		RB		Target	Max. N	leas. Avg Pwr	(dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	829 MHz	836.5 MHz	844 MHz
			1	0	0	24.0	24.0	24.1
			1	25	0	23.7	23.8	23.9
			1	49	0	24.1	24.2	24.1
		QPSK	25	0	1	22.9	22.9	23.0
			25	12	1	22.9	23.0	23.0
			25	25	1	23.0	23.1	23.0
LTE Band			50	0	1	22.9	23.0	23.1
5	10		1	0	1	23.1	23.4	23.0
			1	25	1	22.8	23.2	22.9
			1	49	1	23.2	23.6	23.0
		16QAM	25	0	2	22.0	21.9	22.0
			25	12	2	22.0	22.0	22.1
			25	25	2	22.1	22.1	22.0
			50	0	2	21.9	22.0	22.0
	BW		RB	RB	Target	Max. N	leas. Avg Pwr	(dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	826.5 MHz	836.5 MHz	846.5 MHz
			1	0	0	24.0	23.9	24.0
			1	12	0	23.8	23.8	24.0
			1	24	0	23.8	23.8	23.9
	5	QPSK	12	0	1	23.0	22.9	23.0
			12	7	1	22.9	22.9	23.0
			12	13	1	23.0	22.9	22.8
LTE Band			25	0	1	22.9	22.9	22.9
5			1	0	1	23.0	23.3	23.1
			1	12	1	22.9	23.3	23.0
			1	24	1	22.9	23.4	22.9
		16QAM	12	0	2	22.0	22.0	22.1
			12	7	2	22.0	22.0	22.0
			12	13	2	22.0	22.1	21.9
			25	0	2	21.9	22.0	22.0
	BW		RB	RB	Target	Max. N	leas. Avg Pwr	(dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	825.5 MHz	836.5 MHz	847.5 MHz
			1	0	0	23.9	23.8	24.0
			1	8	0	23.9	23.9	23.7
			1	14	0	23.8	23.8	23.8
		QPSK	8	0	1	22.9	22.9	22.9
			8	4	1	22.9	22.9	22.9
			8	7	1	22.9	22.8	22.9
LTE Band	3		15	0	1	23.0	22.9	22.9
5		16QAM	1	0	1	23.0	23.2	22.9
			1	8	1	22.9	23.3	22.9
			1	14	1	22.8	23.3	22.5
			8	0	2	22.0	22.0	22.0
			8	4	2	22.0	21.9	22.1
			8	7	2	21.9	21.9	22.0
			15	0	2	21.9	21.9	22.0

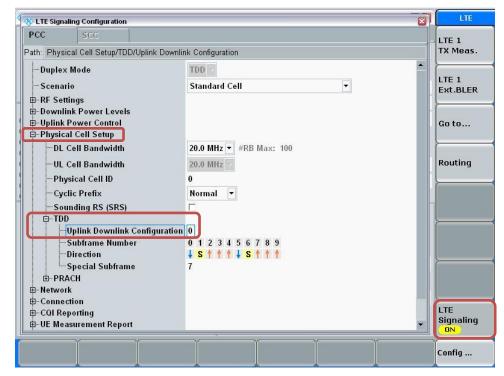
LTE Band 5 Measured Results (continued)

Band	BW	Mode	RB	RB	Target	Max. M	eas. Av g Pwi	r (dBm)									
Dana	(MHz)	Wode	Allocation	offset	MPR	824.7 MHz	836.5 MHz	848.3 MHz									
			1	0	0	23.8	23.8	23.9									
			1	3	0	23.8	23.8	23.9									
			1	5	0	23.9	23.8	23.7									
		QPSK	3	0	0	23.8	23.8	23.7									
			3	1	0	23.8	23.8	23.7									
			3	3	0	23.8	23.8	23.7									
LTE Band	1.4		6	0	1	22.9	22.9	22.8									
5	1.4		1	0	1	22.9	23.3	22.9									
			1	3	1	23.0	23.2	23.0									
			1	5	1	22.9	23.1	22.9									
		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	3	0	1	23.1	23.0	22.7
											3	1	1	23.1	23.0	22.8	
			3	3	1	23.1	23.0	22.8									
			6	0	2	22.1	21.8	21.9									

Note(s):

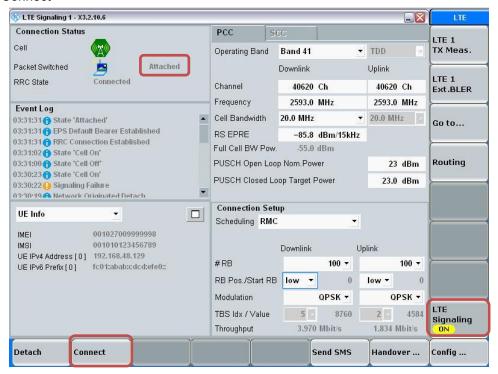

10 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

LTE Band TDD Measured Results

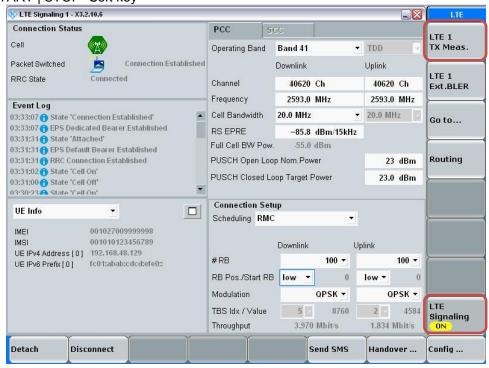

Procedure used to establish SAR test signal for LTE TDD Band

Set to CMW-500 with following parameters:

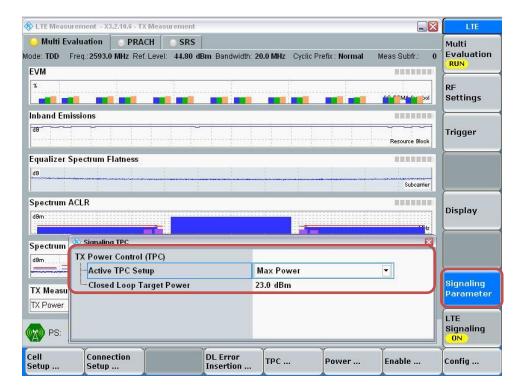
- Turn the LTE Signaling off using "ON | OFF" key
- Operating Band: Select Band 41 and TDD
- Go to "Config...."


- Go to "Physical Cell Setup"
- Select "TDD" and Set "Uplink Downlink Configuration" to "0"
- Turn the cell on using "ON | OFF" key

Page 38 of 58

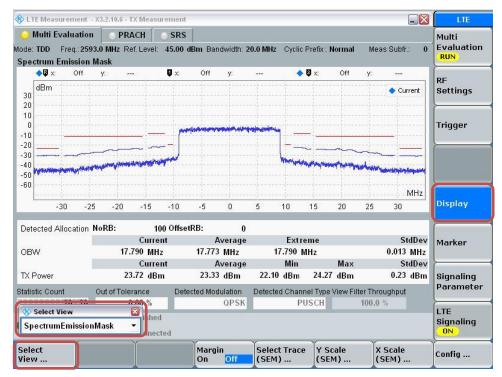

Connect to EUT

- Turn the cell on using "ON | OFF" key
- After EUT is Attached
- Select "Connect"



Max Power Setting

- Select "LTE 1 TX Meas."
- Press "RESTART | STOP" Soft key



- Select "Signaling Parameter"
- Select "TX Power Control (TPC)" > Select "Active TPC Setup" to "Max Power" > Set "Closed Loop Target Power" to "23 dBm"

View TX Power

- Go to "Display"
- Select "Select View..."
- Select "Spectrum Emission Mask"

LTE Band 41 Measured Results

	BW		d Resul	RB			Max. Meas	. Avg Pwr (dBm)	
Band	(MHz)	Mode	Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
			1	0	0	23.5	23.6	23.7	23.5	23.5
			1	49	0	23.5	23.4	23.7	23.6	23.1
			1	99	0	23.6	23.7	23.9	23.7	22.5
		QPSK	50	0	1	22.6	22.8	22.7	22.6	22.7
			50	24	1	22.6	22.6	22.7	22.6	22.5
			50	50	1	22.7	22.7	22.8	22.7	22.5
LTE	20		100	0	1	22.7	22.7	22.8	22.7	22.7
Band 41	20		1	0	1	22.1	22.6	22.5	22.4	22.6
			1	49	1	22.3	22.6	22.4	22.5	22.3
			1	99	1	22.4	22.9	22.6	22.6	21.5
		16QAM	50	0	2	21.7	21.8	21.7	21.7	21.7
			50	24	2	21.6	21.7	21.6	21.6	21.6
			50	50	2	21.7	21.7	21.7	21.7	21.6
			100	0	2	21.7	21.7	21.6	21.6	21.6
Band	BW	Mode	RB	RB			Max. Meas	. Avg Pwr (dBm)	
	(MHz)		Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
			1	0	0	23.7	23.8	23.9	24.0	23.6
			1	37	0	23.4	23.2	23.5	23.5	23.0
			1	74	0	23.9	23.8	23.8	23.9	22.7
		QPSK	36	0	1	22.6	22.7	22.7	22.7	22.6
			36	20	1	22.6	22.6	22.6	22.6	22.6
			36	39	1	22.6	22.6	22.7	22.6	22.6
LTE	15		75	0	1	22.7	22.7	22.7	22.5	22.7
Band 41			1	0	1	22.7	22.9	22.8	22.7	22.7
			1	37	1	22.4	22.6	22.6	22.5	22.1
			1	74	1	22.7	22.8	22.7	22.8	21.8
		16QAM	36	0	2	21.6	21.7	21.7	21.7	21.6
			36	20	2	21.6	21.6	21.6	21.5	21.6
			36	39	2	21.7	21.6	21.6	21.6	21.6
			75	0	2	21.6	21.7	21.7	21.7	21.7
Band	BW (MH=)	Mode	RB Allocation	RB				. Avg Pwr (dBm		
	(MHz)		Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
			1	0	0	23.9	24.0	23.8	23.8	23.2
			1	25	0	23.5	23.6	23.6	23.6	23.0
		OBSIA	1	49	0	23.9	23.9	23.9	23.9	23.1
		QPSK	25	0	1	22.7	22.6	22.7	22.6	22.5
			25	12	1	22.6	22.6	22.7	22.4	22.6
			25	25	1	22.6	22.6	22.7	22.6	22.5
LTE Band 41	10	-	50	0	1	22.6	22.5	22.7	22.6	22.5
200 17			1	0	1	22.6	23.0	22.8	22.8	22.4
			1	25	1	22.5	22.6	22.8	22.5	22.4
		16QAM	1	49	1	22.8	23.1	22.9	23.0	21.5
		IOQAIVI	25	12	2	21.6	21.7	21.7	21.5	21.6
			25	12	2	21.6	21.5	21.7	21.5	21.6
			25	25	2	21.8	21.7	21.7	21.6	21.5
			50	0	2	21.7	21.7	21.6	21.7	21.6

LTE Band 41 Measured Results (continued)

Band	BW	Mode	RB	RB		Max. Meas. Avg Pwr (dBm)							
Danu	(MHz)	Wode	Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz			
			1	0	0	23.6	23.7	23.8	23.5	23.4			
			1	12	0	23.5	23.6	23.7	23.6	23.2			
			1	24	0	23.6	23.6	23.6	23.4	22.8			
		QPSK	12	0	1	22.7	22.7	22.6	22.6	22.5			
			12	7	1	22.6	22.6	22.6	22.5	22.6			
			12	13	1	22.6	22.7	22.6	22.5	22.5			
LTE	5		25	0	1	22.6	22.6	22.6	22.6	22.5			
Band 41	3		1	0	1	22.6	22.6	22.8	22.5	22.3			
			1	12	1	22.4	22.5	22.7	22.6	22.3			
			1	24	1	22.4	22.5	22.7	22.4	21.8			
		16QAM	12	0	2	21.6	21.6	21.7	21.6	21.4			
			12	7	2	21.6	21.6	21.6	21.5	21.4			
			12	13	2	21.6	21.6	21.6	21.5	21.4			
			25	0	2	21.6	21.6	21.6	21.6	21.5			

9.3.1 LTE Rel.10 Carrier Aggregation

LTE Release 10 Carrier Aggregation

The following power measurements were performed with a single carrier uplink; CA for this particular project only supports one (1) uplink and two (2) downlinks.

1) power results

	Ba	nds			UL					D	L			LTE Rel 8 Tx.	LTE Rel 10	
E-UTRA CA	E-UTRA CA PCC SCC configuration (BCS)				PCC				PCC			SCC		Power	Tx. Power	Delta
configuration (BCS)	1st	2nd	Mode	BW (MHz)	Channel	Freq. (MHz)	RB/Offset	BW (MHz)	Channel	Freq. (MHz)	BW (MHz)	Channel	Freq. (MHz)	[dBm]	[dBm]	
CA_5A-5A (0)(1)	5A	5A	QPSK	10	20450	829.0	1/49	10	2540	874.0	10	2600	889.0	24.13	24.15	0.02
CA_5B (0)(1)	5B	5B	QPSK	10	20450	829.0	1/49	10	2540	874.0	10	2549	883.9	24.13	24.12	-0.01

Note(s):

- Per KDB 941225 D05A LTE Rel. 10 KDB inquiry Sheet: SAR is excluded for Carrier Aggregation when measured power doesn't exceed LTE Release 8 by more than a 1/4 dBm.
- When the same frequency band is used for both contiguous and non-contiguous in DL CA Intra band, power was measured
 using the configuration with the largest aggregated bandwidth and maximum output power among the contiguous and noncontiguous in DL CA Intra band configurations.

9.4 Wi-Fi 2.4 GHz (DTS Band)

Measured Results

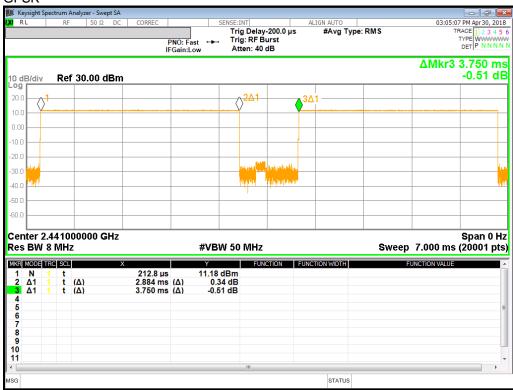
Mode	Data Rate	Ch#	Freq. (MHz)	Meas. Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)
		1	2412	15.3		
802.11b	1 Mbps	6	2437	15.3	17.0	Yes
		11	2462	15.2		
		1	2412			
802.11g	6 Mbps	6	2437	Not Require	14.0	No
		11	2462			
000 115		1	2412			
802.11n (HT20)	6.5 Mbps	6	2437	Not Require	14.0	No
(11120)		11	2462]		

Note(s):

- 1. SAR is not required for 802.11g/n modes when the adjusted SAR for 802.11b is < 1.2 W/kg.
- 2. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

9.5 Bluetooth

Average Power Measured Results


Band (GHz)	Mode	Ch#	Freq. (MHz)	Meas. Avg Pwr (dBm)
		0	2402	10.5
	GFSK	39	2441	12.0
		78	2480	9.5
	EDD	0	2402	9.2
	EDR, π/4 DQPSK	39	2441	10.8
2.4	III + DQI OIX	78	2480	8.2
2.4	EDD	0	2402	9.2
	EDR, 8-DPSK	39	2441	10.8
	o Di Oit	78	2480	8.2
		0	2402	0.8
	LE, GFSK	19	2440	1.8
	3. ok	39	2480	0.3

Duty Factor Measured Results

Mode	Type	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	DH5	2.884	3.750	76.9%	1.30

Duty Cycle plots

GFSK

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

Reported SAR(W/kg) for WWAN= Measured SAR *Tune-up Scaling Factor

Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low,
 Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

Page 45 of 58

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported</u> SAR for the <u>initial test position</u> is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to
 measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the
 highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII
 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not
 required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has
 the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤
 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands
 independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the <u>Maximum Value of SAR</u> (measured). The position that produced the highest <u>Maximum Value of SAR</u> is considered the worst case position; thus used as the <u>initial test position</u>.

10.1 GSM 850

	RF Exposure		PWR	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	190	836.6	31.5	30.7	0.204	0.245	
	Head	GPRS		0	Left Tilt	190	836.6	31.5	30.7	0.129	0.155	
	(VoIP)	2 Slot		Ü	Right Touch	190	836.6	31.5	30.7	0.257	0.308	1
					Right Tilt	190	836.6	31.5	30.7	0.146	0.175	
	Body-worn	GPRS	15	15	Rear	190	836.6	31.5	30.7	0.301	0.361	2
Main Ant.1	Main Ant.1 Body-worn	2 Slot	N/A	10	Front	190	836.6	31.5	30.7	0.251	0.301	
					Rear	190	836.6	31.5	30.7	0.478	0.574	3
		CDDS			Front	190	836.6	31.5	30.7	0.327	0.392	
	Hotspot	Hotspot GPRS 2 Slot		10	Edge 2	190	836.6	31.5	30.7	0.227	0.272	
					Edge 3	190	836.6	31.5	30.7	0.156	0.187	
					Edge 4	190	836.6	31.5	30.7	0.146	0.175	

10.2 GSM1900

	RF Exposure		PWR	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	661	1880.0	28.5	27.8	0.437	0.508	4
	Head	GPRS	Off	0	Left Tilt	661	1880.0	28.5	27.8	0.163	0.190	
	(VoIP)	2 slot	On On	۰	Right Touch	661	1880.0	28.5	27.8	0.221	0.257	
					Right Tilt	661	1880.0	28.5	27.8	0.163	0.190	
						512	1850.2	28.5	27.7	0.747	0.889	5
	Body-worn	GPRS	Off	15	Rear	661	1880.0	28.5	27.8	0.704	0.819	
	Body Wolli	2 slot	On On	15		810	1909.8	28.5	27.7	0.521	0.629	
Main Ant.1					Front	661	1880.0	28.5	27.8	0.462	0.537	
						512	1850.2	25.5	24.9	0.807	0.934	6
					Rear	661	1880.0	25.5	24.9	0.757	0.874	
	Hotspot	GPRS	_	10		810	1909.8	25.5	24.8	0.578	0.675	
	Hotspot	2 slot	On		Front	661	1880.0	25.5	24.9	0.455	0.525	
	Hotspot	2 0.01			Edge 2	661	1880.0	25.5	24.9	0.020	0.023	
					Edge 3	661	1880.0	25.5	24.9	0.553	0.638	
					Edge 4	661	1880.0	25.5	24.9	0.235	0.271	
	RF Exposure		PWR	Dist.			Freq.	Power	(dBm)	10-g SAI	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
				13	Rear	661	1880.0	28.5	27.8	0.435	0.506	
		GPRS		7	Front	661	1880.0	28.5	27.8	0.575	0.669	7
	Main Ant.1 Phablet-10g	2 slot	Off	0	Edge 2	661	1880.0	28.5	27.8	0.045	0.053	
Main Ant 1		2 0.00		11	Edge 3	661	1880.0	28.5	27.8	0.440	0.512	
iviaii i Ant. I				0	Edge 4	661	1880.0	28.5	27.8	0.461	0.536	
		GPRS			Rear	661	1880.0	25.5	25.1	0.567	0.627	
		2 slot	On	0	Front	661	1880.0	25.5	25.1	0.456	0.504	
		2 0101			Edge 3	661	1880.0	25.5	25.1	0.360	0.398	

10.3 W-CDMA Band II

	RF Exposure		PWR	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)		Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Note	No.
						9262	1852.4	24.0	22.6	0.651	0.899		8
					Left Touch	9400	1880.0	24.0	22.8	0.651	0.858		
	Head	Rel 99 RMC	Off	0		9538	1907.6	24.0	22.3	0.539	0.797		
	Head	IXEI 99 IXIVIC	Oii	ľ	Left Tilt	9400	1880.0	24.0	22.8	0.245	0.323		
					Right Touch	9400	1880.0	24.0	22.8	0.335	0.442		
					Rightt Tilt	9400	1880.0	24.0	22.8	0.252	0.332		
						9262	1852.4	24.0	22.6	0.963	1.329		9
	Bod-worn	Rel 99 RMC	Off	15	Rear	9400	1880.0	24.0	22.8	1.000	1.318		
	Bou-woili	Kei 99 KiviC	Oli	13		9538	1907.6	24.0	22.3	0.724	1.071		
Main Ant.1					Front	9400	1880.0	24.0	22.8	0.579	0.763		
	Body-worn With Headset	Rel 99 RMC	Off	15	Rear	9262	1852.4	24.0	22.6	0.948	1.309	1	
						9262	1852.4	19.5	19.0	0.880	0.987		10
					Rear	9400	1880.0	19.5	19.2	0.885	0.948		
						9538	1907.6	19.5	18.8	0.690	0.811		
	Hotspot	Rel 99 RMC	On	10	Front	9400	1880.0	19.5	19.2	0.450	0.482		
					Edge 2	9400	1880.0	19.5	19.2	0.061	0.065		
					Edge 3	9400	1880.0	19.5	19.2	0.740	0.793	1	
					Edge 4	9400	1880.0	19.5	19.2	0.269	0.288		
	RF Exposure		PWR	Dist.			Гтоп	Power	(dBm)	10-g SA	R (W/kg)		Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	Note	No.
				13	Rear	9400	1880.0	24.0	22.8	0.666	0.878		
				7	Front	9400	1880.0	24.0	22.8	1.000	1.318		11
			Off	0	Edge 2	9400	1880.0	24.0	22.8	0.076	0.101		
Main Ant.1 Phablet-10g	Rel 99 RMC		11	Edge 3	9400	1880.0	24.0	22.8	0.697	0.919			
	IVEL 33 KIVIC		0	Edge 4	9400	1880.0	24.0	22.8	0.831	1.095			
					Rear	9400	1880.0	19.5	19.2	0.759	0.813		
			On	0	Front	9400	1880.0	19.5	19.2	0.660	0.707		
					Edge 3	9400	1880.0	19.5	19.2	0.518	0.555		

Note(s):

- 1. When highest reported SAR level is over 1.2 W/kg in body-worn exposure condition, additional test was evaluated with set headset at worst case condition.
- 2. Adjusted SAR is not over 1.2 or 3 W/kg (1-g or 10-g respectively), for HSDPA, HSUPA and DC-HSDPA. So additional tests are not required.

10.4 W-CDMA Band V

	RF Exposure		PWR	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	4183	836.6	25.0	24.0	0.127	0.160	
	Head	Rel 99 RMC		0	Left Tilt	4183	836.6	25.0	24.0	0.081	0.102	
	Head	Kei 99 Kivic		U	Right Touch	4183	836.6	25.0	24.0	0.156	0.196	12
					Rightt Tilt	4183	836.6	25.0	24.0	0.093	0.117	
	Body-worn	Rel 99 RMC		15	Rear	4183	836.6	25.0	24.0	0.182	0.229	13
Main Ant.1	Body-worn	Kei 99 Kivic	N/A	15	Front	4183	836.6	25.0	24.0	0.140	0.176	
					Rear	4183	836.6	25.0	24.0	0.300	0.378	14
					Front	4183	836.6	25.0	24.0	0.203	0.256	
	Hotspot	Rel 99 RMC		10	Edge 2	4183	836.6	25.0	24.0	0.139	Scaled No. 160 0.160 0.102 0.196 1 0.117 0.229 1 0.176 0.378 1 0.256 0.175 0.136	
'				Edge 3	4183	836.6	25.0	limit Meas. Scaled 25.0 24.0 0.127 0.160 25.0 24.0 0.081 0.102 25.0 24.0 0.156 0.196 25.0 24.0 0.093 0.117 25.0 24.0 0.182 0.229 25.0 24.0 0.140 0.176 25.0 24.0 0.300 0.378 25.0 24.0 0.203 0.256 25.0 24.0 0.139 0.175 25.0 24.0 0.108 0.136	0.136			
					Edge 4	4183	836.6	25.0	24.0	0.100	0.126	

10.5 LTE Band 5 (10MHz Bandwidth)

	RF Exposure		PWR	Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	20525	836.5	1	49	25.5	24.2	0.138	0.186	
					Leit Touch	20020	030.3	25	25	24.5	23.1	0.102	0.142	
					Left Tilt	20525	836.5	1	49	25.5	24.2	0.085	0.115	
	Head	QPSK		0	Len Till	20020	030.3	25	25	24.5	23.1	0.067	0.093	
	ricad	QI OIX			Right Touch	20525	836.5	1	49	25.5	24.2	0.162	0.218	15
					Trigiti Touch	20020	000.0	25	25	24.5	23.1	0.126	0.176	
					Right Tilt	20525	836.5	1	49	25.5	24.2	0.089	0.121	
Body-worn C				rtight the 20020	000.0	25	25	24.5	23.1	0.073	0.102			
				Rear	20525	836.5	1	49	25.5	24.2	0.160	0.216	16	
	Body-worn (QPSK	N/A	15	Real	20020	000.0	25	25	24.5	23.1	0.127	0.177	
Main Ant 1		QI OIX			Front	20525	836.5	1	49	25.5	24.2	0.128	0.173	
Widin 7 till.			1471		Front	20020	000.0	25	25	24.5	23.1	0.105	0.146	
					Rear	20525	836.5	1	49	25.5	24.2	0.312	0.421	17
					rtoui	20020	000.0	25	25	24.5	23.1	0.243	0.339	
					Front	20525	836.5	1	49	25.5	24.2	0.216	0.291	
					TIOIL	20020	000.0	25	25	24.5	23.1	0.169	0.236	
	Hotsnot	QPSK		10	Edge 2	20525	836.5	1	49	25.5	24.2	0.174	0.235	
	Hotspot	QI OIX		10	Lugo 2	20020	000.0	25	1 49 25.5 24.2 0.312 0.421 17 25 25 24.5 23.1 0.243 0.339 1 49 25.5 24.2 0.216 0.291 0.226 0.226 0.236					
					Edge 3	20525	836.5	1	49	25.5	24.2	0.115	0.138 0.186 0.102 0.142 0.085 0.115 0.067 0.093 0.162 0.218 15 0.126 0.176 0.089 0.121 0.073 0.102 0.127 0.177 0.128 0.173 0.105 0.146 0.312 0.421 17 0.243 0.339 0.216 0.291 0.169 0.236 0.174 0.235 0.141 0.197 0.115 0.155 0.090 0.126 0.077 0.103	
					Edge 3	20020	000.0	25	25	24.5	23.1	0.090	0.126	
					Edge 4 20525 8	836.5	1	49	25.5	24.2	0.077	0.103		
					Lage 4	20020	000.0	25	25	24.5	23.1	0.063	0.087	

10.6 LTE Band 41 (20MHz Bandwidth)

	RF Exposure		PWR	Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	40620	2593.0	1	99	24.5	23.9	0.177	0.202	
					Leit Toucii	40020	2595.0	50	50	23.5	22.8	0.145	0.171	
					Left Tilt	40620	2593.0	1	99	24.5	23.9	0.190	0.217	
	Head	QPSK		0	LOIT TIIL	70020	2000.0	50	50	23.5	22.8	0.149	0.176	
	ricau	QI OIX		o l	Right Touch	40620	2593.0	1	99	24.5	23.9	0.260	0.297	18
					rtight rodon	40020	2000.0	50	50	23.5	22.8	0.211	0.249	
	Main Ant.2 Body-worn QPSK N/A			Right Tilt	40620	2593.0	1	99	24.5	23.9	0.108	0.124		
					Right filt	70020	2000.0	50	50	23.5	22.8	0.081	0.095	
					Rear 4062	40620	2593.0	1	99	24.5	23.9	0.157	0.180	
Main Ant.2		N/A	15	Neai	40020	2000.0	50	50	23.5	22.8	0.126	0.149		
Wall 7 tilt.2	Body Wolli	QI OIX	14// (10	Front	40620	2593.0	1	99	24.5	23.9	0.168	0.192	19
					Tiont	40020	2000.0	50	50	23.5	22.8	0.129	0.152	
					Rear	40620	2593.0	1	99	24.5	23.9	0.340	0.389	20
					rtoai	40020	2000.0	50	50	23.5	22.8	0.270	0.319	
					Front	40620	2593.0	1	99	24.5	23.9	0.323	0.369	
	Hotspot	QPSK		10	TIOIL	40020	2090.0	50	50	23.5	22.8	0.257	0.304	
	Ποιοροί	QI OIN		10	Edge 2	40620	2593.0	1	99	24.5	23.9	0.215	0.246	
		Edge 2 40620	2000.0	50	50	23.5	22.8	0.170	0.201					
					Edge 3 40620	40620 2593.0	1	99	24.5	23.9	0.277	0.317		
					Lage 3	70020	2000.0	50	50	23.5	22.8	0.220	0.260	

10.7 Wi-Fi (DTS Band)

Frequency		RF Exposure	Dist.			Freq.	Area Scan	Duty	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Band	Mode	Conditions	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Cycle (%)	Tune-up limit	Meas.	Meas.	Scaled	No.
				Left Touch	1	2412.0	0.702	99.7	17.0	15.3	0.528	0.783	
			Lent Touch	6	2437.0	0.788	99.7	17.0	15.3	0.582	0.859		
				Left Tilt	6	2437.0	0.605	99.7	17.0	15.3	0.481	0.710	
		Head	0	Right Touch	1	2412.0	0.779	99.7	17.0	15.3	0.605	0.898	
					6	2437.0	0.886	99.7	17.0	15.3	0.688	1.016	
0.4011	802.11b				1	2412.0	0.662	99.7	17.0	15.3	0.464	0.688	
2.4GHz	1 Mbps				6	2437.0	0.962	99.7	17.0	15.3	0.694	1.025	21
		Rody worn	15	Rear	6	2437.0	0.096	99.7	17.0	15.3	0.074	0.110	22
		Body-worn 15	Front	6	2437.0	0.088	99.7	17.0	15.3				
			Rear	6	2437.0	0.217	99.7	17.0	15.3	0.162	0.239	23	
	Hot	Hotspot	10	Front	6	2437.0	0.183	99.7	17.0	15.3			
				Edge 1	6	2437.0	0.103	99.7	17.0	15.3			

Note(s):

- 1. When the 802.11b reported SAR of the highest measured maximum output power channel is ≤ 0.8 W/kg, no further SAR testing is required. If SAR is > 0.8 W/kg and ≤ 1.2 W/kg, SAR is required for the next highest measured output power channel. Finally, if SAR is > 1.2 W/kg, SAR is required for the third channel.
- 2. SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

10.8 Bluetooth

Frequency		RF Exposure	Dist.			Freq.	Duty Cycle (%)	Power (dBm)		1-g SAR (W/kg)		Plot
Band	Mode	Conditions	(mm)	Test Position	Ch #.	(MHz)		Tune-up limit	Meas.	Meas.	Scaled	No.
				Left Touch	39	2441.0	76.9	12.0	12.0	0.216	0.283	
2.4GHz	CECK	Head	٥	Left Tilt	39	2441.0	76.9	12.0	12.0	0.181	0.237	
2.40П2	.4GHz GFSK		U	Right Touch	39	2441.0	76.9	12.0	12.0	0.261	0.342	24
				Rightt Tilt	39	2441.0	76.9	12.0	12.0	0.248	0.325	

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

RF Air interface	RF Exposure	Frequency	Max. tune-up to	olerance Power	Min. test separation	SAR test exclusion	Estimated
	Conditions	(GHz)	(dBm)	(mW)	distance (mm)	Result*	1-g SAR (W/kg)
Bluetooth	Body-w orn	2.480	12.0	16	15	1.7	0.224
Didetootii	Hotspot	2.480	12.0	16	10	2.5	0.336

Conclusion:

*: The computed value is \leq 3; therefore, this qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Peak spatial-average (1g of tissue)

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
	GSM 850	Hotspot	Rear	No	0.478	N/A	N/A
835	WCDMA Band V	Hotspot	Rear	No	0.300	N/A	N/A
	LTE Band 5	Hotspot	Rear	No	0.312	N/A	N/A
1900	GSM 1900	Hotspot	Rear	Yes	0.807	N/A	N/A
1900	WCDMA Band II	Body	Rear	Yes	1.000	0.981	1.02
2400	Wi-Fi 802.11b/g/n	Head	Right Tilt	No	0.694	N/A	N/A
2400	Bluetooth	Head	Right Touch	No	0.261	N/A	N/A
2600	LTE Band 41	Hotspot	Rear	No	0.340	N/A	N/A

Peak spatial-average (10g of tissue)

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
1900	GSM 1900	Phablet-10g	Front	No	0.575	N/A	N/A
1900	WCDMA Band II	Phablet-10g	Front	No	1.000	N/A	N/A

Note(s)

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. DUT Holder Perturbations

In accordance with published DUT Holder Perturbations in Oct.2016 TCB workshop,

When Highest reported SAR is over 1.2 or 3.0 W/kg (1-g or 10-g respectively), Holder perturbation verification is required for each antenna, using the highest configuration among all applicable frequency bands.

Both Head test and Body test (Edge 1-4 sides) are evaluated with DUT holder. Both Front and Rear sides are evaluated without DUT holder. (Details of test setup are refer to Appendix A.)

So we are only consider about Head test and Body test (Edge 1-4 sides).

Peak spatial-average (1g of tissue)

Frequency Band (MHz)	Antenna	Air Interface	RF Exposure Conditions	Test Position	DUTHolder Perturbation(Yes/No)	Highest Reported SAR (W/kg)	SAR test without holder Measured SAR (W/kg)	Deviation (%)
		GSM 850	Hotspot	Rear	No	0.574	N/A	N/A
850	Main Ant.1	WCDMA Band V	Hotspot	Rear	No	0.378	N/A	N/A
		LTE Band 5	Hotspot	Rear	No	0.421	N/A	N/A
1900		GSM 1900	Hotspot	Rear	No	0.934	N/A	N/A
1900		WCDMA Band II	Body	Rear	No	1.329	N/A	N/A
2400	Wi-Fi & BT	Wi-Fi 802.11b/g/n	Head	Right Tilt	No	1.025	N/A	N/A
2400	WI-FI & DI	Bluetooth	Head	Right Touch	No	0.342	N/A	N/A
2600	Main Ant.2	LTE Band 41	Hotspot	Rear	No	0.389	N/A	N/A

Peak spatial-average (10g of tissue)

Frequency Band (MHz)	Antenna	Air Interface	RF Exposure Conditions	Test Position	DUTHolder Perturbation(Yes/No)	Highest Reported SAR (W/kg)	SAR test without holder Measured SAR (W/kg)	Deviation (%)
1900	Main Ant.1	GSM 1900	Phablet-10g	Front	No	0.669	N/A	N/A
1900	Iviaiii Aiit. i	WCDMA Band II Phablet-10g		Front	No	1.318	N/A	N/A

Note(s):

Both deviation should be within measurement uncertainty (22%).

13. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR_1 + SAR_2)^{1.5}/Ri < 0.04$$

Simultaneous Transmission Condition

RF Exposure Condition	Item		Capa	able Transmit Configurations
	1	GSM(Voice/GPRS)	+	DTS
	2	GSM(Voice/GPRS)	+	ВТ
Head	3	W-CDMA	+	DTS
	4	W-CDMA	+	ВТ
	5	LTE	+	DTS
	6	LTE	+	ВТ
	7	GSM(Voice/GPRS)	+	DTS
	8	GSM(Voice/GPRS)	+	ВТ
Body-w orn	9	W-CDMA	+	DTS
Body-w offi	10	W-CDMA	+	ВТ
	11	LTE	+	DTS
	12	LTE	+	ВТ
	13	GSM(GPRS)	+	DTS
	14	GSM(GPRS)	+	ВТ
Hotspot	15	WCDMA	+	DTS
Ποιδροί	16	WCDMA	+	ВТ
	17	LTE	+	DTS
N	18	LTE	+	ВТ

Notes:

- 1. DTS supports Wi-Fi Direct, Hotspot and VolP.
- 2. GPRS, W-CDMA, LTE supports Hotspot and VoIP.
- 3. DTS cannot transmit simultaneously with Bluetooth Radio.
- 4. BT tethering is consider about each RF exposure conditions

13.1 Sum of the SAR for GSM 850 & Wi-Fi & BT

RF Exposure	Test Position	1	2	3	① - WWAN		① + ③ WWAN + BT		
conditions	Test Position	WWAN	DTS	ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	
	Left Touch	0.245	0.859	0.283	1.104	No	0.528	No	
Head	Left Tilt	0.155	0.710	0.237	0.865	No	0.392	No	
Ticau	Right Touch	0.308	1.016	0.342	1.324	No	0.650	No	
	Right Tilt	0.175	1.025	0.325	1.200	No	0.500	No	
Body-worn	All position	0.361	0.110	0.224	0.471	No	0.585	No	
Hotspot	All position	0.574	0.239	0.336	0.813	No	0.910	No	

13.2 Sum of the SAR for GSM 1900 & Wi-Fi & BT

RF Exposure	Took Doolling	1)	2	3	① - WWAN	+ ② + DTS	① + ③ WWAN + BT		
conditions	Test Position	WWAN	DTS	ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	
	Left Touch	0.508	0.859	0.283	1.367	No	0.791	No	
Head	Left Tilt	0.190	0.710	0.237	0.900	No	0.427	No	
Heau	Right Touch	0.257	1.016	0.342	1.273	No	0.599	No	
	Right Tilt	0.190	1.025	0.325	1.215	No	0.515	No	
Body-worn	All position	0.889	0.110	0.224	0.999	No	1.113	No	
Hotspot	All position	0.934	0.239	0.336	1.173	No	1.270	No	

13.3 Sum of the SAR for WCDMA Band II & Wi-Fi & BT

RF Exposure	Test Position	1	2	3	① - WWAN	+ ② + DTS	① + ③ WWAN + BT		
conditions	Test Position	WWAN	DTS	ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	
	Left Touch	0.899	0.859	0.283	1.758	Yes	1.182	No	
Head	Left Tilt	0.323	0.710	0.237	1.033	No	0.560	No	
Tieau	Right Touch	0.442	1.016	0.342	1.458	No	0.784	No	
	Right Tilt	0.332	1.025	0.325	1.357	No	0.657	No	
Body-worn	All position	1.329	0.110	0.224	1.439	No	1.553	No	
Hotspot	All position	0.987	0.239	0.336	1.226	No	1.323	No	

SAR to Peak Location Separation Ratio (SPLSR)

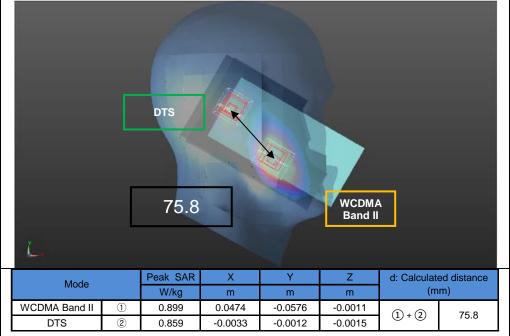
Test Position	Standalone SAR (W/kg)			∑1-g SAR		Calculated distance	SPLSR	Volume Scan	Figure
	① WWAN	② DTS	③ BT	(W/kg)		(mm)	(≤ 0.04)	(Yes/No)	Figure
Left Touch	0.899	0.859		1 + 2	1.758	75.8	0.03	No	1

13.4 Sum of the SAR for WCDMA Band V & Wi-Fi & BT

RF Exposure conditions	Test Position	① WWAN	② DTS	③ BT	① + ② WWAN + DTS		① + ③ WWAN + BT	
					∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	Left Touch	0.160	0.859	0.283	1.019	No	0.443	No
	Left Tilt	0.102	0.710	0.237	0.812	No	0.339	No
	Right Touch	0.196	1.016	0.342	1.212	No	0.538	No
	Right Tilt	0.117	1.025	0.325	1.142	No	0.442	No
Body-worn	All position	0.229	0.110	0.224	0.339	No	0.453	No
Hotspot	All position	0.378	0.239	0.336	0.617	No	0.714	No

13.5 Sum of the SAR for LTE Band 5 & Wi-Fi & BT

RF Exposure conditions	Test Position	① WWAN	② DTS	③ BT	① + ② WWAN + DTS		① + ③ WWAN + BT	
					∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	Left Touch	0.186	0.859	0.283	1.045	No	0.469	No
	Left Tilt	0.115	0.710	0.237	0.825	No	0.352	No
	Right Touch	0.218	1.016	0.342	1.234	No	0.560	No
	Right Tilt	0.121	1.025	0.325	1.146	No	0.446	No
Body-worn	All position	0.216	0.110	0.224	0.326	No	0.440	No
Hotspot	All position	0.421	0.239	0.336	0.660	No	0.757	No


13.6 Sum of the SAR for LTE Band 41 & Wi-Fi & BT

RF Exposure conditions	Test Position	① WWAN	② DTS	③ BT	① + ② WWAN + DTS		① + ③ WWAN + BT	
					∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	Left Touch	0.202	0.859	0.283	1.061	No	0.485	No
	Left Tilt	0.217	0.710	0.237	0.927	No	0.454	No
	Right Touch	0.297	1.016	0.342	1.313	No	0.639	No
	Right Tilt	0.124	1.025	0.325	1.149	No	0.449	No
Body-worn	All position	0.192	0.110	0.224	0.302	No	0.416	No
Hotspot	All position	0.389	0.239	0.336	0.628	No	0.725	No

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg (10-g SAR is < 4.0 W/kg) or the SPLSR is < 1-g 0.04 (10-g 0.10) for all circumstances that require SPLSR calculation.

Figure (1)

The Peak Location Separation Distance is computed by using the formula below: $SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)$

Appendixes

Refer to separated files for the following appendixes.

4788490168-S1V1 FCC Report SAR_App A_Photos & Ant. Locations
4788490168-S1V1 FCC Report SAR_App B_Highest SAR Test Plots
4788490168-S1V1 FCC Report SAR_App C_System Check Plots
4788490168-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients
4788490168-S1V1 FCC Report SAR_App E_Probe Cal. Certificates
4788490168-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates

END OF REPORT