

FCC CFR47 PART 15 SUBPART C

Bluetooth

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE , ANT+ and DTS b/g/n

MODEL NUMBER: SM-J810G/DS, SM-J810GF/DS

FCC ID: A3LSMJ810G

REPORT NUMBER: 4788490168-E3V1

ISSUE DATE: JUN 07, 2018

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by
UL Korea, Ltd.
26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	06/07/2018	Initial issue	Hoonpyo Lee

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
1.1.	INTRODUCTION OF TEST DATA REUSE	θ
1.2.	DIFFERENCE	θ
1.3.	SPOT CHECK VERIFICATION DATA	ε
1.4.	REFERENCE DETAIL	7
2. TE	ST METHODOLOGY	8
3. FA	ACILITIES AND ACCREDITATION	8
4. CA	ALIBRATION AND UNCERTAINTY	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	SAMPLE CALCULATION	8
4.3.	MEASUREMENT UNCERTAINTY	9
5. EQ	QUIPMENT UNDER TEST	10
5.1.	DESCRIPTION OF EUT	10
5.1.	MAXIMUM OUTPUT POWER	10
5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.3.	WORST-CASE CONFIGURATION AND MODE	10
5.4.	DESCRIPTION OF TEST SETUP	1
6. ME	EASUREMENT METHODS	13
7. TE	ST AND MEASUREMENT EQUIPMENT	14
8. RE	FERENCE MEASUREMENT RESULTS	15
8.1.	ON TIME AND DUTY CYCLE RESULTS	15
8.2.	20 dB AND 99% BANDWIDTH	
_	2.1. BASIC DATA RATE GFSK MODULATION 2.2. ENHANCED DATA RATE Pi/4-DQPSK MODULATION	
8.2	2.3. ENHANCED DATA RATE 8PSK MODULATION	16
8.2	2.4. 20 dB AND 99% BANDWIDTH PLOTS	17
9. SU	JMMARY TABLE	20
10.	ANTENNA PORT TEST RESULTS	21
10.1.	. HOPPING FREQUENCY SEPARATION	2
10.2.	NUMBER OF HOPPING CHANNELS	22
10.3.	AVERAGE TIME OF OCCUPANCY	24
10.4.	OUTPUT POWER	28
	Page 3 of 80	

UL Korea, Ltd. Suwon Laboratory

FORM ID: FCC_15C

218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

13 SETUP PHOTOS	75
12. AC POWER LINE CONDUCTED EMISSIONS	70
11.3. WORST-CASE BELOW 1 GHz	68
11.2.2. ENHANCED DATA RATE 8PSK MODULATION	
11.2. TRANSMITTER ABOVE 1 GHz11.2.1. BASIC DATA RATE GFSK MODULATION	
11.1. LIMITS AND PROCEDURE	46
11. RADIATED TEST RESULTS	46
10.6.1. BASIC DATA RATE GFSK MODULATION	
10.6. CONDUCTED SPURIOUS EMISSIONS	
10.5.2. DATA RATE PI/4-DQPSK MODULATION	
10.5. AVERAGE POWER 10.5.1. BASIC DATA RATE GFSK MODULATION	32
10.4.4. OUTPUT POWER PLOTS	
10.4.2. ENHANCED DATA RATE PI/4-DPSK MODULATION	
10.4.1. BASIC DATA RATE GFSK MODULATION	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE , ANT+ and DTS b/g/n

MODEL NUMBER: SM-J810G/DS, SM-J810GF/DS

SERIAL NUMBER: R38K30RGB8V (RADIATED, Original);

R38K30RGGYN (CONDUCTED, Original);

R38K30TBTFF, R38K30TBTBM (RADIATED, Spot check)

DATE TESTED: APR 30, 2018 - MAY 09, 2018 (Original);

MAY 24, 2018 (Spot check)

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Korea, Ltd. By:

Tested By:

SungGil Park Suwon Lab Engineer UL Korea, Ltd. Hoonpyo Lee Suwon Lab Engineer UL Korea, Ltd.

Page 5 of 80

DATE: JUN 07, 2018

1.1. INTRODUCTION OF TEST DATA REUSE

This report referenced from the FCC ID: A3LSMJ810Y DSS BT(FCC CFR 47 Part 15C). And the applicant takes full responsibility that the test data as referenced in this report represent compliance for this FCC ID.

1.2. DIFFERENCE

The FCC ID: A3LSMJ810G shares the same enclosure and circuit board as FCC ID: A3LSMJ810Y. The BT antennas and surrounding circuitry and layout are identical between these two units.

After confirming through preliminary radiated emissions that the performance of the FCC ID: A3LSMJ810Y remains representative of FCC ID: A3LSMJ810G. The test data of FCC ID: A3LSMJ810Y being submitted for this application to cover BT features.

1.3. SPOT CHECK VERIFICATION DATA

	Band	Test Item	Mode	Frequency	Test Limit	Original model SM-J810Y/DS Results FCC ID : A3LSMJ810Y	Spot check model SM-J810G/DS Results FCC ID : A3LSMJ810G		Remark
	DSS BT	Band Edge	GFSK	2480 MHZ	54 dBuV/m	39.65 dBuV/m	39.09 dBuV/m	-0.56 dB	
(2.4GHz)	RSE	GFSK	2441 MHz	54 dBuV/m	44.46 dBuV/m	42.52 dBuV/m	-1.94 dB	2nd Harmonic	

Comparison of two models, upper deviation is within 3dB range and all test results are under FCC Technical Limits.

1.4. **REFERENCE DETAIL**

Reference application that contains the reused reference data.

Equipment Class	Reference FCC ID	Type Grant/Permissive Change	Reference Application	Folder Test/RF Exposure	Report Tittle / Section
DTS	A3LSMJ810Y	Grant	4788468750- E1V2	Test	FCC Report DTS WLAN / All sections
DIS	ASLSIVIJOTOT	Grant	4788468750- E2V2	Test	FCC Report BLE All sections
DSS	A3LSMJ810Y	Grant	4788468750- E3V2	Test	FCC Report BT / All sections
DXX	A3LSMJ810Y	Grant	4788468750- E4V2	Test	FCC Report ANT+ / All sections
PCE	A3LSMJ810Y	Grant	4788468750- E5V2	Test	FCC Report WWAN / All sections for GSM, WCDMA, LTE Band 5/41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 15.
- 3. FCC DA 00-705 Filling and measurement guidelines for FHSS systems
- 4. ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Mae	yeong-ro
	mber 1
☐ Cha	mber 2
☐ Cha	mber 3

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.32 dB
Radiated Disturbance, Below 1GHz	3.86 dB
Radiated Disturbance, Above 1 GHz	5.97 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, ANT+ and DTS b/g/n. This test report addresses the DSS (BT) operational mode.

5.1. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range [MHz]	Frequency Range [MHz] Mode		Output Power [dBm]	Output Power [mW]
	Basic GFSK	Average	11.971	15.743
	Dasic Gran	Peak	12.501	17.787
2402 - 2480	Enhanced Pi/4-DPSK	Average	10.767	11.932
2402 - 2400	Ellianced Fi/4-DF3K	Peak	13.116	20.493
	Enhanced 8PSK	Average	10.778	11.962
	EIIIIaiiceu opsk	Peak	13.508	22.428

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal antenna, with a maximum gain of 1.1 dBi.

5.3. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Radiated emission above 1GHz was performed with the EUT set to transmit low/mid/high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

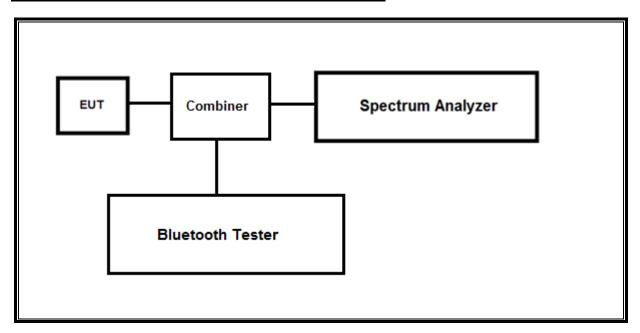
Note: GFSK, Pi/4-DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on this mode to showing compliance. For average power data please refer to section 9.5. All radiated and power line conducted tests were performed connected with earphone and charger for evaluation of worst case mode.

DATE: JUN 07, 2018

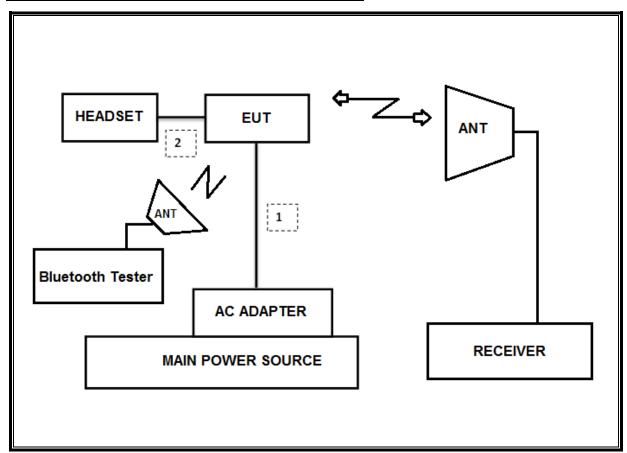
5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC II							
Charger	SAMSUNG	EP-TA50IWE	RC3J329DS-A- E	N/A			
Data Cable	SAMSUNG	ECB-DU68WE	N/A	N/A			
Earphone	SAMSUNG	EHS61ASFWE	N/A	N/A			


I/O CABLES

	I/O Cable List								
Cable	Cable Port # of identical Connector Cable Type Cable Remarks								
No		ports	Туре		Length (m)				
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A			
2	Audio	2	Mini-Jack	Unshielded	1.2m	N/A			


TEST SETUP

The EUT is continuously communicating to the Bluetooth tester during the tests. Test software enable BT communications.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. MEASUREMENT METHODS

20dB BW : ANSI C63.10, Section 6.9.2

99% BW : ANSI C63.10, Section 6.9.3

HOPPING FREQUENCY SEPARATION: ANSI C63.10, Section 7.8.2

NUMBER OF HOPPING CHANNELS: ANSI C63.10, Section 7.8.3

AVERAGE TIME OF OCCUPANCY: ANSI C63.10, Section 7.8.4

OUTPUT POWER: ANSI C63.10, Section 7.8.5.

Out-of-band EMISSIONS (Conducted): ANSI C63.10, Section 7.8.6, 7.8.8

Out-of-band EMISSIONS IN NON-RESTRICTED BANDS: ANSI C63.10, Section 6.

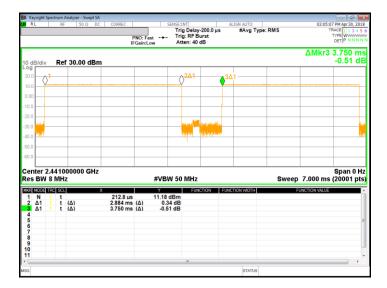
Out-of-band EMISSIONS IN RESTRICTED BANDS: ANSI C63.10, Section 6.

AC Power Line Conducted Emission: ANSI C63.10-2013, Section 6.2.

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test	Equipment List		
Description	Manufacturer	Model	S/N	Cal Due
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-31-19
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	09-14-19
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-31-19
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-26-19
Antenna, Horn, 18 GHz	ETS	3115	00167211	10-14-18
Antenna, Horn, 18 GHz	ETS	3115	00161451	03-10-19
Antenna, Horn, 18 GHz	ETS	3117	00168724	05-31-19
Antenna, Horn, 18 GHz	ETS	3117	00168717	05-31-19
Antenna, Horn, 18 GHz	ETS	3117	00205959	11-29-18
Antenna, Horn, 40 GHz	ETS	3116C	00166155	12-04-19
Antenna, Horn, 40 GHz	ETS	3116C	00168645	12-04-19
Antenna, Horn, 40 GHz	ETS	3116C-PA	00168841	11-13-19
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-09-18
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-07-18
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-10-18
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-08-18
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-08-18
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-11-18
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54170614	08-08-18
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-08-18
Spectrum Analyzer, 43.5 GHz	R&S	FSW43	104089	08-11-18
Average Power Sensor	Agilent / HP	U2000	MY54270007	08-08-18
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	08-08-18
Combiner	WEINCHEL	1575	2152	08-08-18
Attenuator	PASTERNACK	PE7087-10	A001	08-08-18
Attenuator	PASTERNACK	PE7087-10	A008	08-08-18
Attenuator	PASTERNACK	PE7087-10	2	08-10-18
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-08-18
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-08-18
EMI Test Receive, 44 GHz	R&S	ESW44	101590	08-09-18
EMI Test Receive, 3 GHz	R&S	ESR3	101832	08-07-18
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	009	08-08-18
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	015	08-08-18
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	020	08-11-18
High Pass Filter 3GHz	Micro-Tronics	HPM17543	010	08-08-18
High Pass Filter 3GHz	Micro-Tronics	HPM17543	015	08-08-18
High Pass Filter 3GHz	Micro-Tronics	HPM17543	020	08-11-18
High Pass Filter 6GHz	Micro-Tronics	HPS17542	009	08-08-18
High Pass Filter 6GHz	Micro-Tronics	HPS17542	016	08-08-18
High Pass Filter 6GHz	Micro-Tronics	HPS17542	021	08-11-18
LISN	R&S	ENV-216	101837	08-09-18
		UL Software		
Description	Manufacturer	Model	Vei	rsion
Radiated software	UL	UL EMC	Ve	r 9.5


8. REFERENCE MEASUREMENT RESULTS

8.1. ON TIME AND DUTY CYCLE RESULTS

LIMITS

None: for reporting purposes only.

	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
Mode	В		х	Cycle	Correction Factor	Minimum VBW
	[msec]	[msec]	[linear]	[%]	[dB]	[kHz]
	2400MHz Bands					
BT	2.884	3.750	0.769	76.9%	1.14	0.347

8.2. 20 dB AND 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

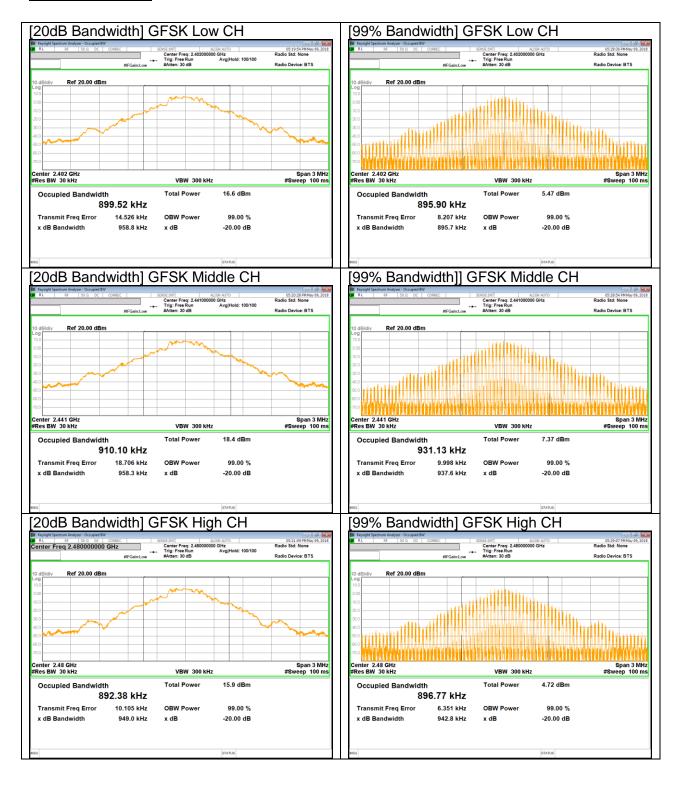
The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

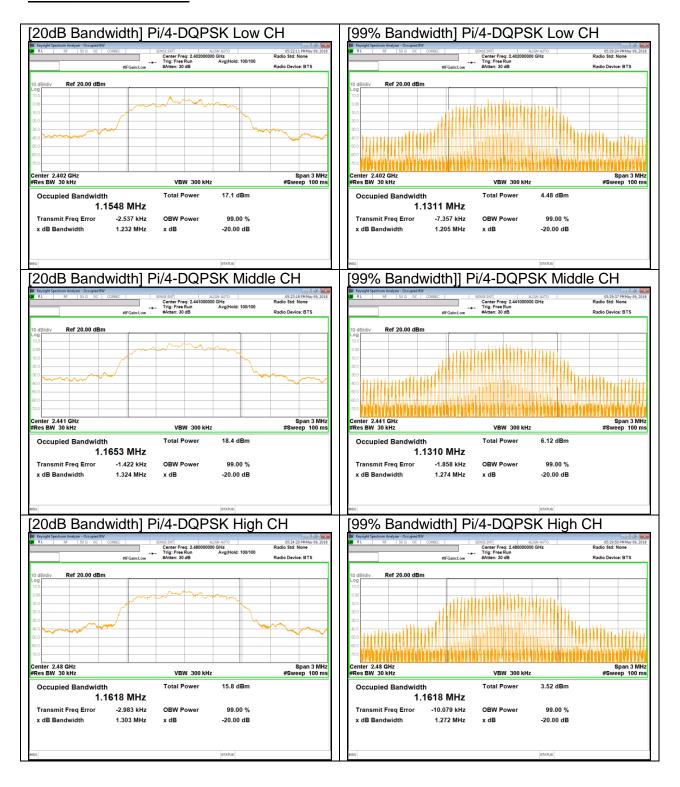
8.2.1. BASIC DATA RATE GFSK MODULATION

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
Chamilei	[MHz]	[MHz]	[kHz]
Low	2402	0.960	895.900
Mid	2441	0.958	931.130
High	2480	0.949	896.770
	Worst	0.960	931.130

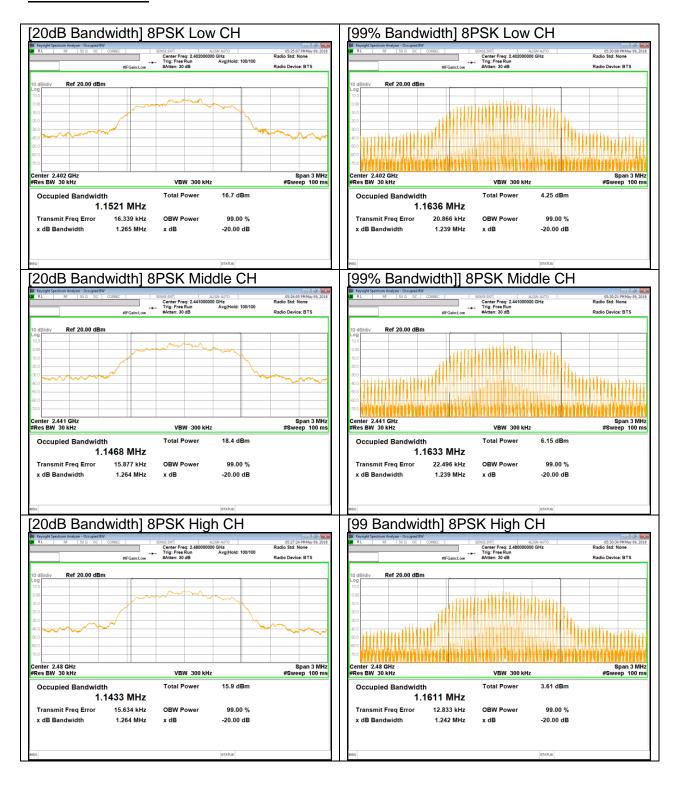
8.2.2. ENHANCED DATA RATE PI/4-DQPSK MODULATION


Channel	Frequency	20 dB Bandwidth	99% Bandwidth
Channel	[MHz]	[MHz]	[MHz]
Low	2402	1.232	1.131
Mid	2441	1.324	1.131
High	2480	1.303	1.162
	Worst	1.324	1.162

8.2.3. ENHANCED DATA RATE 8PSK MODULATION


Channel	Frequency	20 dB Bandwidth	99% Bandwidth
Channel	[MHz]	[MHz]	[MHz]
Low	2402	1.265	1.164
Mid	2441	1.264	1.163
High	2480	1.264	1.161
	Worst	1.265	1.164

8.2.4. 20 dB AND 99% BANDWIDTH PLOTS


GFSK BANDWIDTH

Pi/4-DQPSK BANDWIDTH

8PSK BANDWIDTH

9. SUMMARY TABLE

FCC Part Section	Test Description Test Limit		Test Condition	Test Result
2.1051, 15.247 (d)	Band Edge / Conducted Spurious Emission	-200BC		Pass
15.247 (b)(1)	TX conducted output power	<30dBm		Pass
15.247 (a)(1)	Hopping frequency separation	> two-thirds of the 20 dB bandwidth		Pass
15.247 (a)(1)(iii)	Number of Hopping channels	More than 15 non- overlapping channels		Pass
15.247 (a)(1)(iii)	Avg Time of Occupancy	< 0.4sec		Pass
15.207 (a)	AC Power Line conducted emissions	Section 10	Power Line conducted	Pass
15.205, 15.209	Radiated Spurious Emission	< 54dBuV/m	Radiated	Pass

10. ANTENNA PORT TEST RESULTS

10.1. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION PLOT

DATE: JUN 07, 2018

10.2. NUMBER OF HOPPING CHANNELS

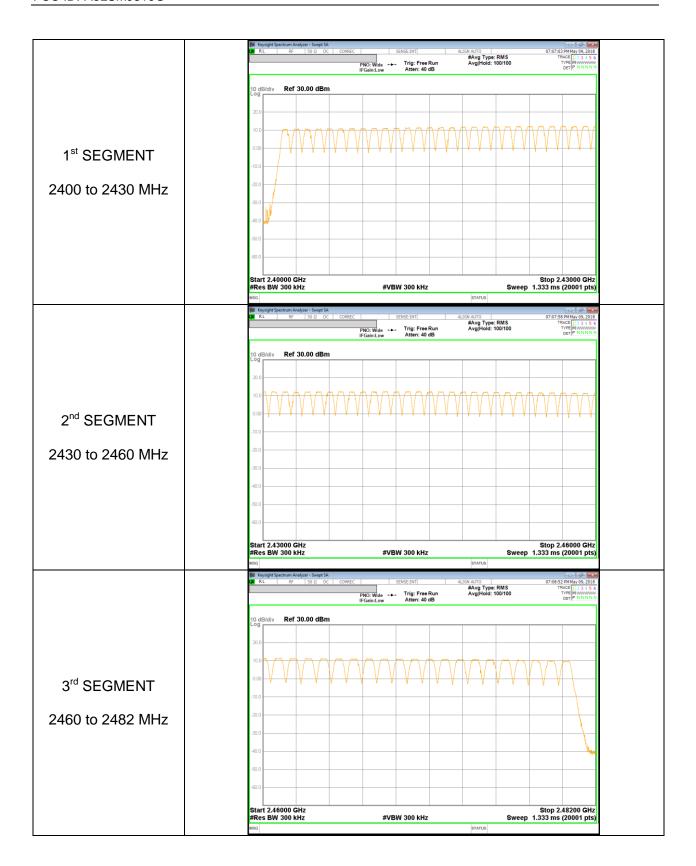
LIMIT

FCC §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

Normal Mode: 79 Channels observed.

NUMBER OF HOPPING CHANNELS PLOTS

NUMBER OF HOPPING CHANNELS (100 MHZ SPAN)

DATE: JUN 07, 2018

10.3. AVERAGE TIME OF OCCUPANCY

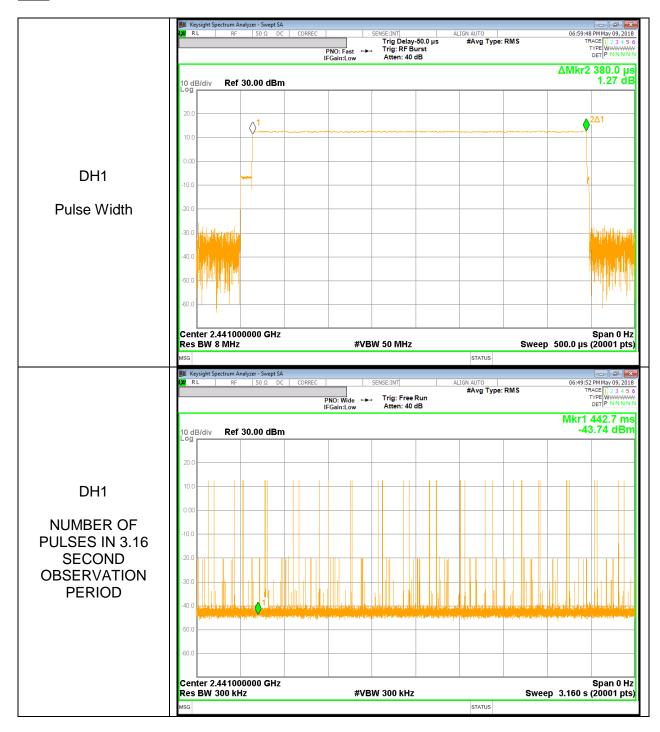
LIMIT

FCC §15.247 (a) (1) (iii)

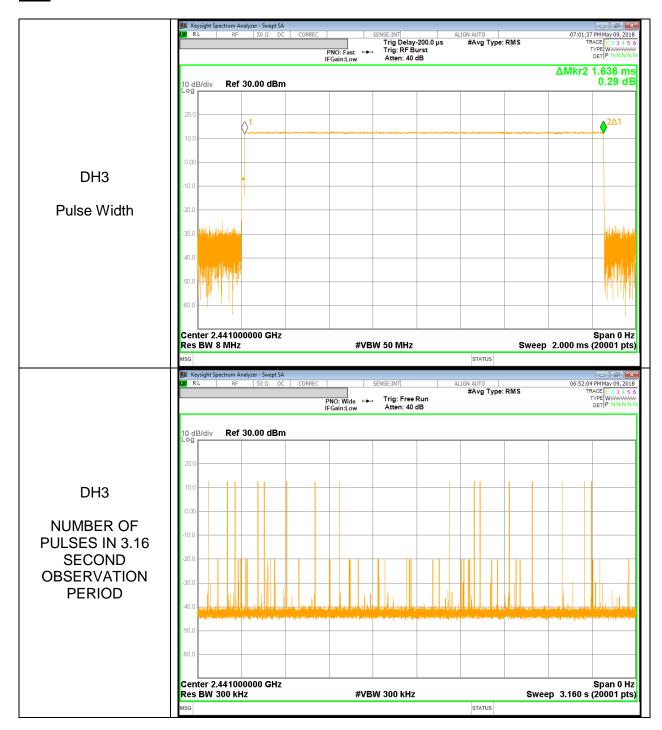
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

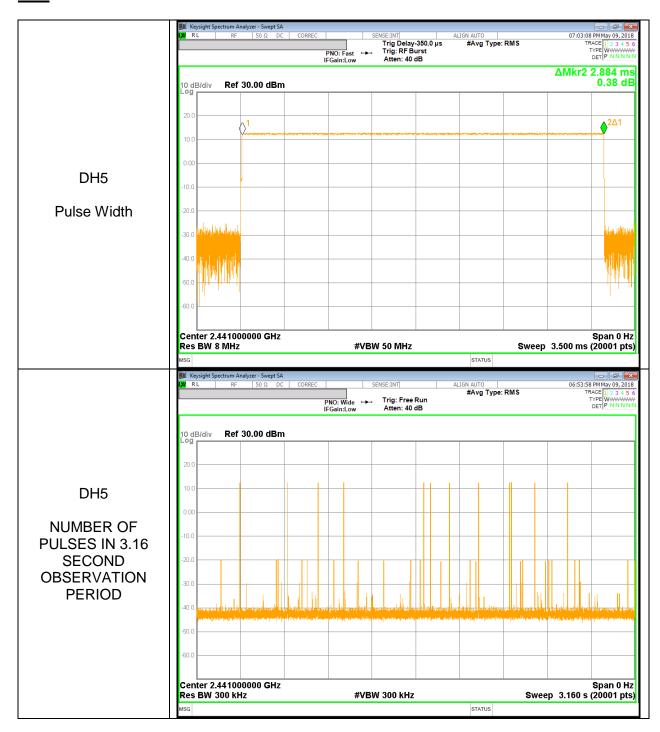
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.


RESULTS[GFSK]

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	3.16	[sec]	[sec]	[sec]
		seconds			
		GFSK N	ormal		
DH1	0.380	32	0.121600	0.4	-0.2784
DH3	1.636	16	0.261760	0.4	-0.1382
DH5	2.884	12	0.346080	0.4	-0.0539
		-			
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	0.8 seconds	[sec]	[sec]	[sec]
GFSK AFH					
DH1	0.380	8	0.030400	0.4	-0.3696
DH3	1.636	4	0.065440	0.4	-0.3346
DH5	2.884	3	0.086520	0.4	-0.3135


DH1

DH3

DH5

OUTPUT POWER 10.4.

LIMIT

§15.247 (b) (1)

The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

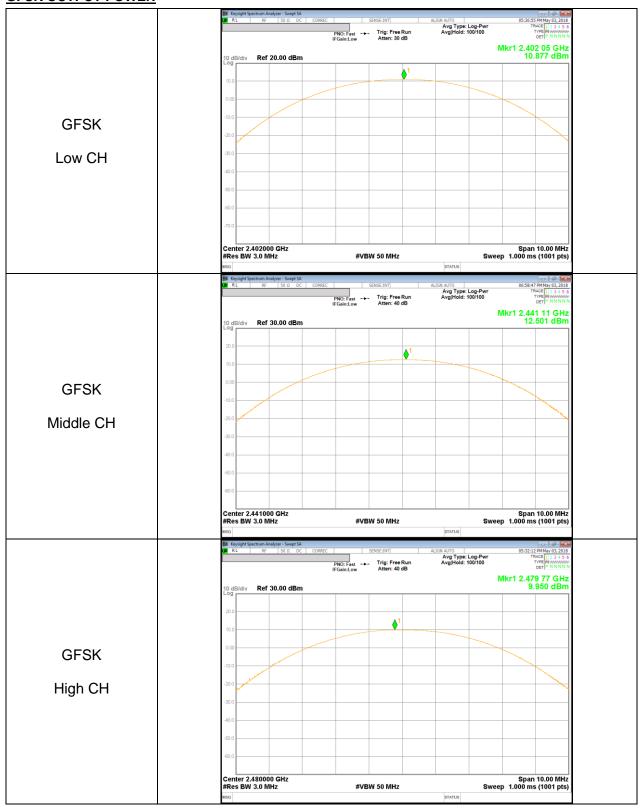
The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

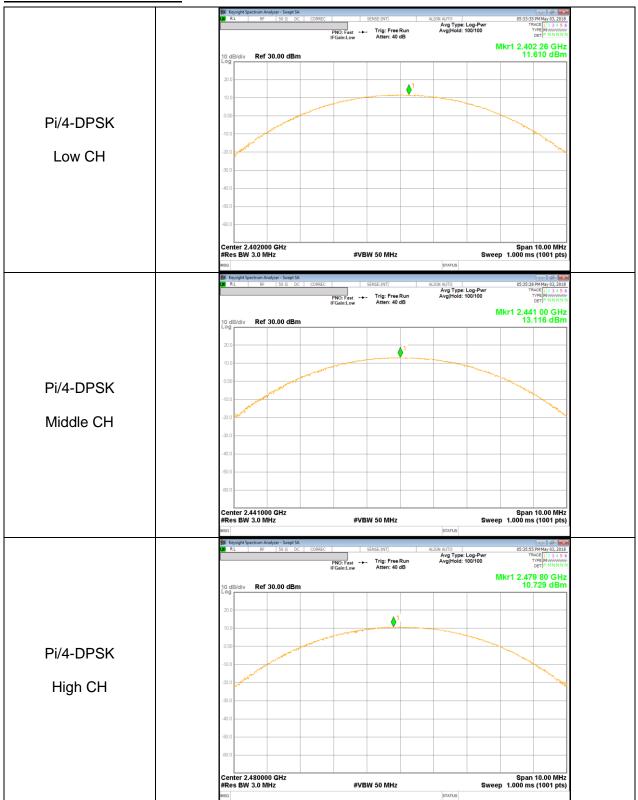
BASIC DATA RATE GFSK MODULATION 10.4.1.

Channel	Frequency	Output Power	Limit	Margin
Channel	[MHz]	[dBm]	[dBm]	[dB]
Low	2402	10.877	21	-10.123
Middle	2441	12.501	21	-8.499
High	2480	9.950	21	-11.05
Worst		12.501	21	-8.499

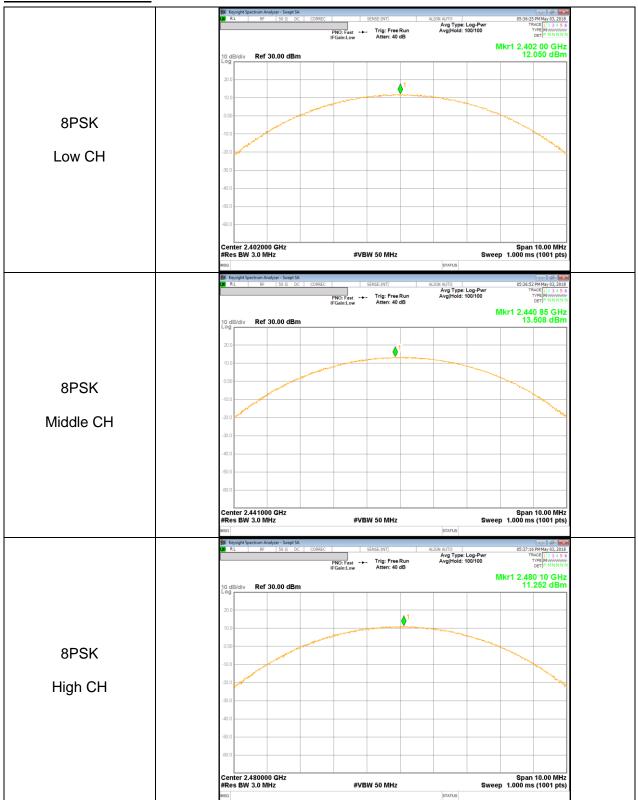
10.4.2. ENHANCED DATA RATE PI/4-DPSK MODULATION


Channal	Frequency	Output Power	Limit	Margin
Channel	[MHz]	[dBm]	[dBm]	[dB]
Low	2402	11.610	21	-9.390
Middle	2441	13.116	21	-7.884
High	2480	10.729	21	-10.271
Worst		13.116	21	-7.884

10.4.3. **ENHANCED DATA RATE 8PSK MODULATION**


Channel	Frequency	Output Power	Limit	Margin
Channel	[MHz]	[dBm]	[dBm]	[dB]
Low	2402	12.050	21	-8.950
Middle	2441	13.508	21	-7.492
High	2480	11.252	21	-9.748
Wo	orst	13.508	21	-7.492

10.4.4. OUTPUT POWER PLOTS


GFSK OUTPUT POWER

Pi/4-DPSK OUTPUT POWER

8PSK OUTPUT POWER

10.5. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss was entered as an offset in the power meter to allow for direct reading of power.

10.5.1. BASIC DATA RATE GFSK MODULATION

Channel	Frequency	AV power	AV power
Chainei	[MHz]	[dBm]	[mW]
Low	2402	10.471	11.15
Middle	2441	11.971	15.74
High	2480	9.490	8.89

10.5.2. DATA RATE PI/4-DQPSK MODULATION

Channel	Frequency	AV power	AV power
Chainei	[MHz]	[dBm]	[mW]
Low	2402	9.162	8.25
Middle	2441	10.767	11.93
High	2480	8.155	6.54

10.5.3. ENHANCED DATA RATE 8PSK MODULATION

Channel	Frequency	AV power	AV power
Chamie	[MHz]	[dBm]	[mW]
Low	2402	9.172	8.26
Middle	2441	10.778	11.96
High	2480	8.181	6.58

10.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Limit = -20 dBc

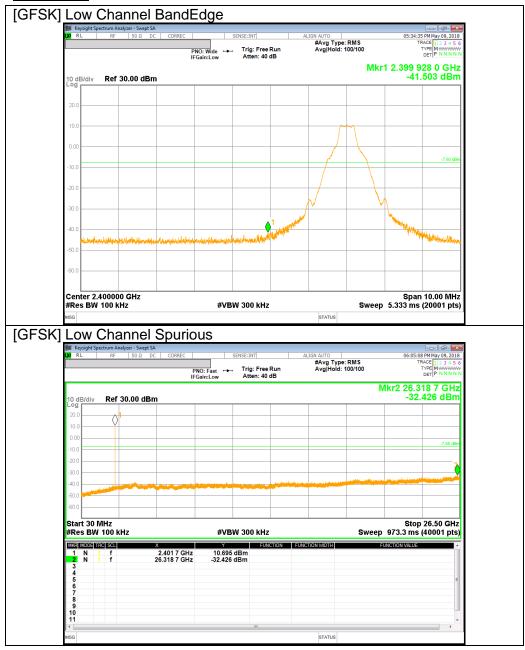
TEST PROCEDURE

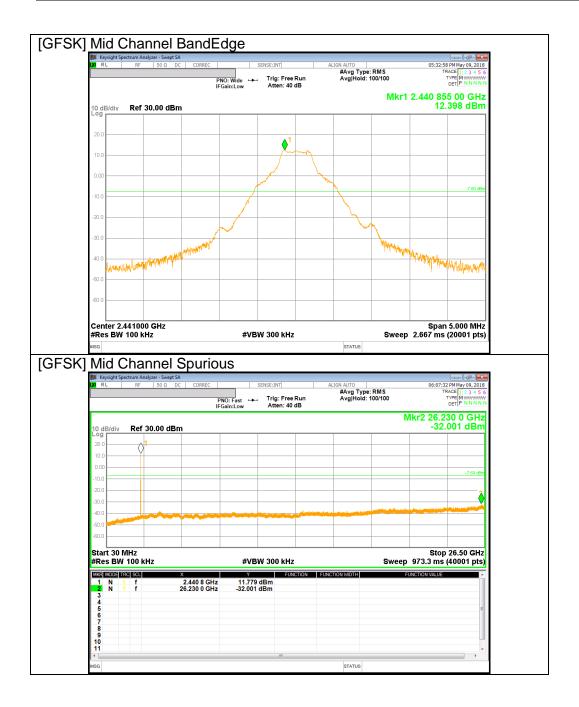
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

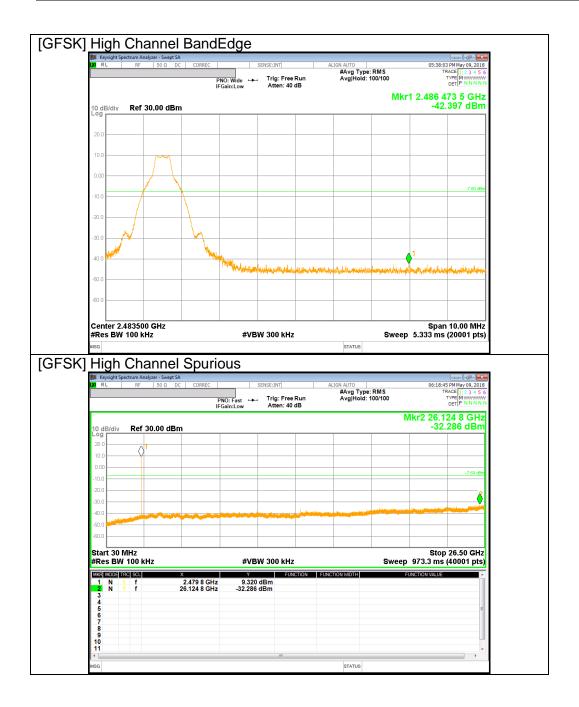
For out-of-band emissions, it was tested with RBW = 1 MHz, VBW = 3 MHz, peak detector, and max hold.

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then retest is required using RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold to get accurate emission level within 100 kHz BW.

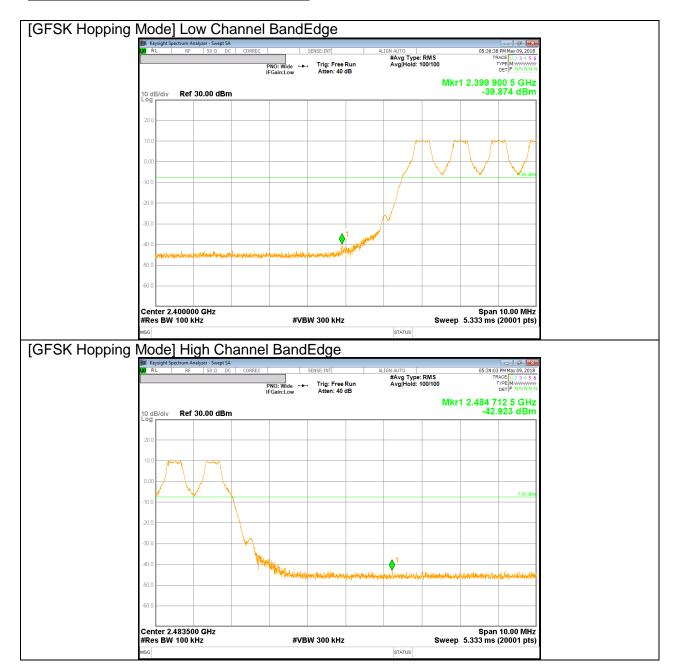
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.


RESULTS


DATE: JUN 07, 2018

10.6.1. BASIC DATA RATE GFSK MODULATION


GFSK Mode

BandEdge Emission at GFSK Hopping Mode

