

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 UNII 802.11a/n/ac

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 3/8-4/5/2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1803150042-05.A3L

FCC ID:

A3LSMJ737T

Certification

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: Frequency Range: FCC Classification: FCC Rule Part(s): Test Procedure(s):

SM-J737T Portable Handset 5180 – 5825MHz Unlicensed National Information Infrastructure (UNII) Part 15 Subpart C (15.247) ANSI C63.10-2013, KDB 789033 D02 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 1 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DESC	CRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANTE	ENNA REQUIREMENTS	9
5.0	MEAS	SUREMENT UNCERTAINTY	10
6.0	TEST	EQUIPMENT CALIBRATION DATA	11
7.0	TEST	RESULTS	12
	7.1	Summary	12
	7.2	26dB Bandwidth Measurement – 802.11a/n/ac	13
	7.3	6dB Bandwidth Measurement – 802.11a/n/ac	
	7.4	UNII Output Power Measurement – 802.11a/n/ac	
	7.5	Maximum Power Spectral Density – 802.11a/n/ac	
	7.6	Radiated Spurious Emission Measurements – Above 1GHz	60
		7.7.1 Radiated Spurious Emission Measurements	63
		7.7.2 Radiated Band Edge Measurements (20MHz BW)	73
		7.7.3 Radiated Band Edge Measurements (40MHz BW)	75
		7.7.4 Radiated Band Edge Measurements (80MHz BW)	77
	7.7	Radiated Spurious Emissions Measurements – Below 1GHz	79
	7.8	Line-Conducted Test Data	83
8.0	CON	CLUSION	

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dawa 0 af 00	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 2 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

MEASUREMENT REPORT

	Ohannal		Conducted Power		
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	
1		5180 - 5240	43.152	16.35	
2A	20	5260 - 5320	41.210	16.15	
2C		5500 - 5720	38.548	15.86	
3		5745 - 5825	39.446	15.96	
1		5190 - 5230	23.442	13.70	
2A	40	5270 - 5310	22.961	13.61	
2C	40	5510 - 5710	28.054	14.48	
3		5755 - 5795	25.586	14.08	
1		5210	7.328	8.65	
2A	80	5290	7.328	8.65	
2C	00	5530 - 5690	25.704	14.10	
3		5775	23.067	13.63	

EUT Overview

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 3 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 4 of 89
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSMJ737T. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 19712, 16544, 16676, 19712

2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC, ANT+

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	•••	
42	5210	56	5280	120	5600	157	5785
:	:	:	:	:	:	•••	
48	5240	64	5320	144	5720	165	5825

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

Band	1
Dana	

Ch.

54

1

62

Frequency (MHz)

5190

5230

Ch.

38

1 46 Band 2A

Frequency (MHz)

5270

5310

Band 2C			
Ch.	Frequency (MHz)		
102	5510		
:	:		

5590

:

5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

118

:

142

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
42	5210	58	5290	106	5530	155	5775
				:	:		
				138	5690		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 5 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 5 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Notes:

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles				
802.11 M	Duty Cycle [%]			
	а	98.6		
	n (HT20)	98.5		
ECU-	ac (HT20)	98.5		
5GHz	n (HT40)	96.9		
	ac (HT40)	97.0		
	ac (HT80)	94.1		

Table 2-4. Measured Duty Cycles

Data Rate(s) Tested: 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a) 6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n – 20MHz) 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n – 40MHz BW) 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac – 80MHz BW)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 6 of 89
© 2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dege 7 of 90
1M1803150042-05.A3L	3/8-4/5/2018			Page 7 of 89
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 8 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 0 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 9 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 10 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	6/21/2017	Annual	6/21/2018	RE1
-	WL40-1	Conducted Cable Set (40GHz)	6/14/2017	Annual	6/14/2018	WL40-1
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	8/28/2017	Annual	8/28/2018	MY49432391
Agilent	N9038A	MXE EMI Receiver	4/26/2017	Annual	4/26/2018	MY51210133
COM-Power	AL-130R	Active Loop Antenna	6/5/2017	Annual	6/5/2018	121085
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
EMCO	3160-10	Small Horn (26.5 - 40GHz)	8/23/2016	Biennial	8/23/2018	130993
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	5/19/2017	Annual	5/19/2018	251425001
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	5/31/2017	Annual	5/31/2018	NMLC-1
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	4/19/2017	Annual	4/19/2018	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102135
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102134
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100037
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	8/14/2017	Biennial	8/14/2019	310233
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol Sciences	JB6	JB6 Antenna	9/27/2016	Biennial	9/27/2018	A082816

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMJ737T	MEASUREMENT REPORT (CERTIFICATION)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 11 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMJ737T
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral Density Maximum power spectral density must (RSS-247 [6.2])		PASS	Section 7.5	
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6, 7.7
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.8

Notes:

Table 7-1. Summary of Test Results

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.5.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)		SAMSING		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 90		
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 12 of 89		
© 2018 PCTEST Engineering La	V 7.5 2/26/2018					

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

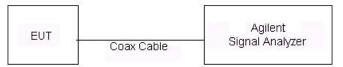
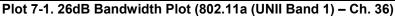


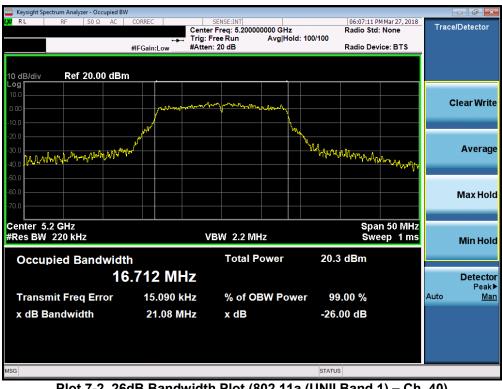
Figure 7-1. Test Instrument & Measurement Setup

Test Notes

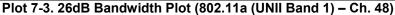
None.

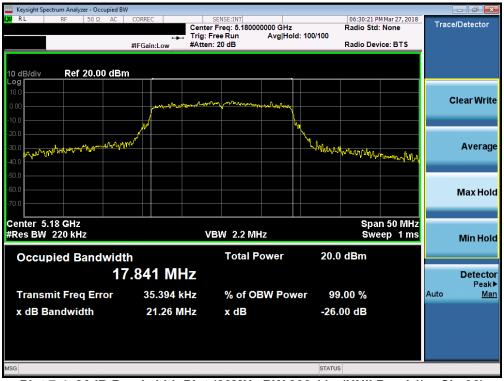
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 13 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	21.22
	5200	40	а	6	21.08
	5240	48	а	6	21.11
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.26
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	21.25
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	21.38
	5190	38	n (40MHz)	13.5/15 (MCS0)	39.72
	5230	46	n (40MHz)	13.5/15 (MCS0)	39.43
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	82.18
	5260	52	а	6	21.18
	5280	56	а	6	21.11
	5320	64	а	6	21.16
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	21.14
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	22.51
Ва	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.46
	5270	54	n (40MHz)	13.5/15 (MCS0)	39.98
	5310	62	n (40MHz)	13.5/15 (MCS0)	39.89
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	80.27
	5500	100	а	6	23.00
	5600	120	а	6	21.28
	5720	144	а	6	21.80
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	27.33
с	5600	120	n (20MHz)	6.5/7.2 (MCS0)	24.16
q 2	5720	144	n (20MHz)	6.5/7.2 (MCS0)	25.13
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	39.48
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	55.86
	5710	142	n (40MHz)	13.5/15 (MCS0)	57.06
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.11
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	108.20
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	95.82

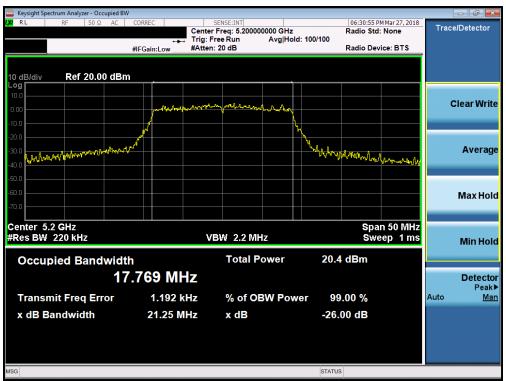

Table 7-2. Conducted Bandwidth Measurements

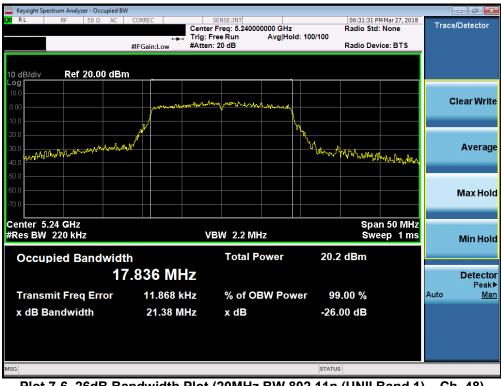
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 14 of 89
© 2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018



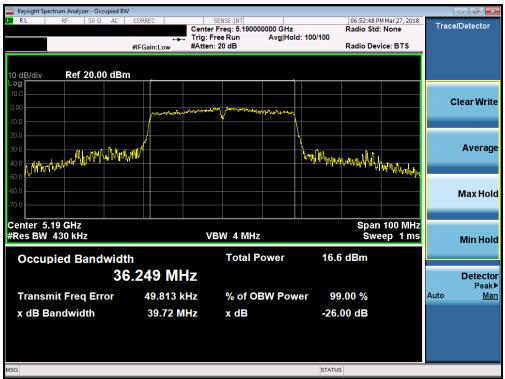

Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

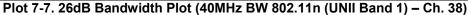
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 15 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

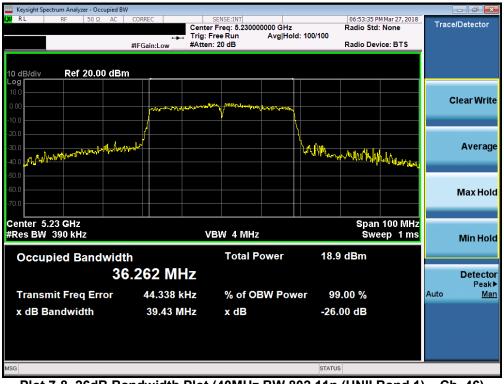



Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

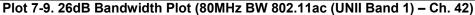
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 16 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018


Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)




Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 48)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 17 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			



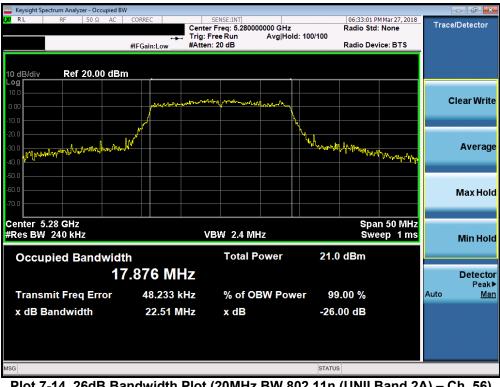
Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 18 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

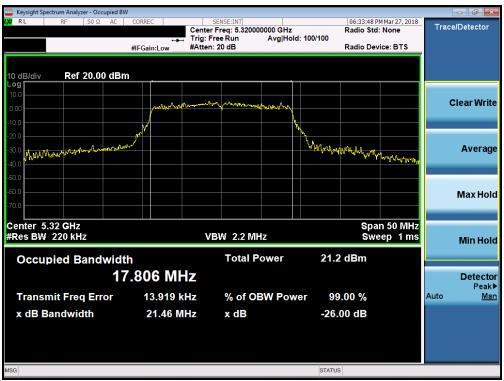

Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

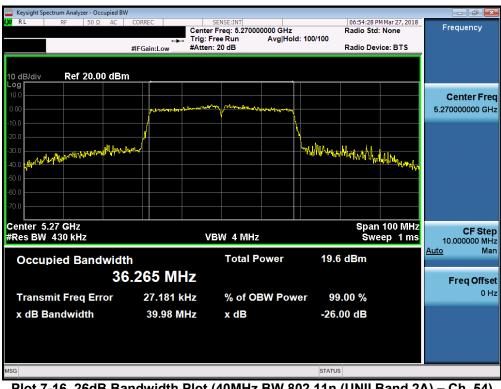
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 19 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

Plot 7-11. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 56)


Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 20
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 20 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018


Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)


Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 21 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

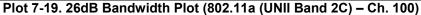
Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

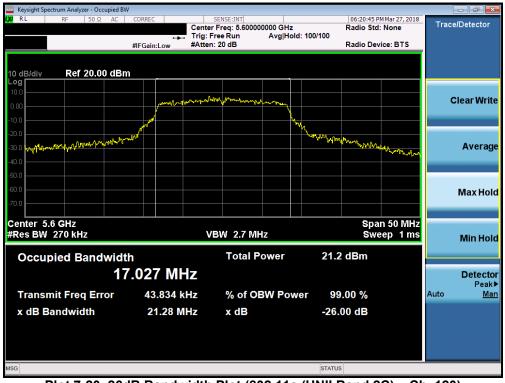
Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 20
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 22 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

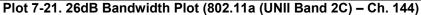
Keysight Spectrum Analyzer - Occupied BW			- 5 💌
XX RL RF 50 Ω AC CORREC	SENSE:INT Center Freg: 5.310000000 GHz	06:55:51 PM Mar 27, 2018 Radio Std: None	Trace/Detector
	📕 Trig: Free Run 🛛 Avg Hold: 1	100/100	
#IFGain:Low	#Atten: 20 dB	Radio Device: BTS	
10 dB/div Ref 20.00 dBm			
10.0			
0.00	alle and a contraction of the second		Clear Write
-10.0	Myanaman Milling man share share		
-20.0			
-30.0	\ \ \		Average
-40.0		the state of the	
-40.0 -50.0 montally 11/10/10/10/10/10/10/10/10/10/10/10/10/1		M. M. M. M. M. M. Martin Martin Contraction of the	
-60.0			Max Hold
-70.0			Wax Holu
Center 5.31 GHz #Res BW 390 kHz	VBW 4 MHz	Span 100 MHz	
#Res BW 390 KHZ		Sweep 1 ms	Min Hold
Occupied Bandwidth	Total Power	15.2 dBm	
36.283 M			Detector
J0.20J W	112		Peak►
Transmit Freq Error 66.458	kHz % of OBW Power	99.00 %	Auto <u>Man</u>
x dB Bandwidth 39.89	MHz xdB	-26.00 dB	
MSG		STATUS	

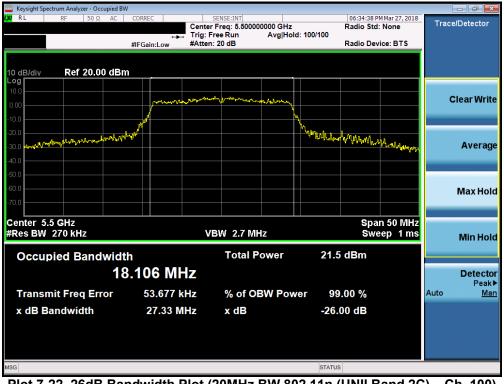
Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 62)



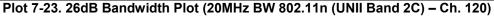

Plot 7-18. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

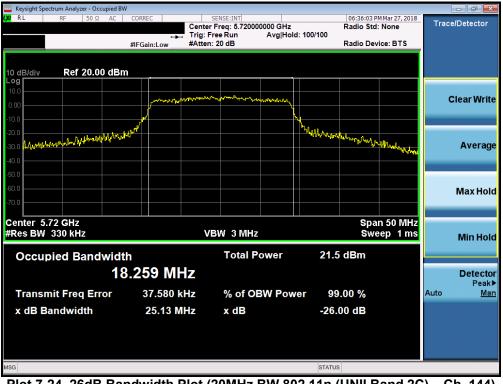
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 23 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			



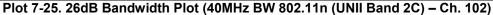

Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 120)

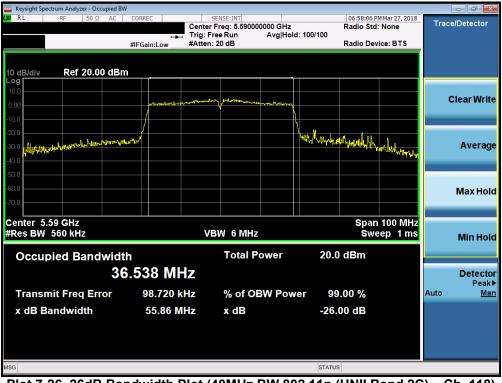
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 24 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018



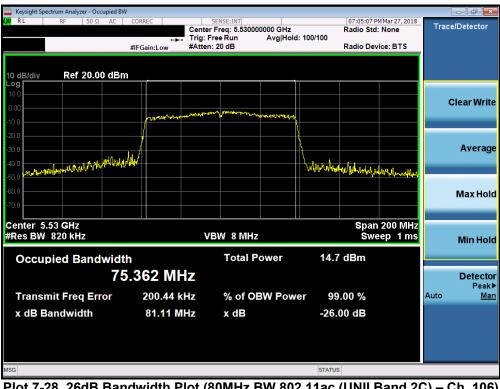

Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 25 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018



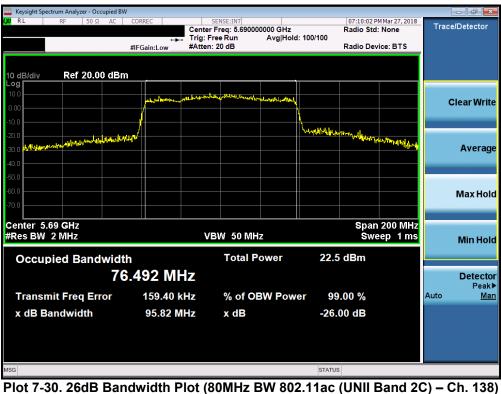

Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 20
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 26 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018


Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 27 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)


Plot 7-28. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 28 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

Keysight Spectrum Analyzer - Occupied	BW					_	
LXI RL RF 50Ω AC	CORREC	SENSE:INT Center Freg: 5.61000	0000 GH7	07:09:15 PM Radio Std:	4 Mar 27, 2018	Trace	Detector
		Trig: Free Run	Avg Hold: 100/1	00			
	#IFGain:Low	#Atten: 20 dB		Radio Devi	ce: BTS		
10 dB/div Ref 20.00 dB	im						
Log							
0.00	سيبيد عدار	an second and the second date	-			С	ear Write
-10.0							
-20.0	about		P Barbing	hunder the forthe dealler	1		Average
what a way way a way of the second se					A STATEMENT OF THE STAT		Average
-40.0							
-50.0							
-60.0							Max Hold
-70.0							
Center 5.61 GHz				Enan	200 MHz		
#Res BW 820 kHz		VBW 8 MHz			ep 1 ms		Min Hald
					-p		Min Hold
Occupied Bandwid	lth	Total P	ower	21.3 dBm			
	5.815 MH	7					Detector
							Peak►
Transmit Freq Error	282.09 kH	z % of O	BW Power	99.00 %		Auto	<u>Man</u>
x dB Bandwidth	108.2 MH	z x dB		-26.00 dB			
MSG				STATUS			
MSG				STATUS			

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)

1 1017-50.2000 Dahawath 1 101 (000012 DW 002.11ac (0101) Daha 20) = 011.150)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 20
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 29 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

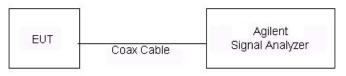


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

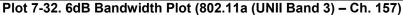
None.

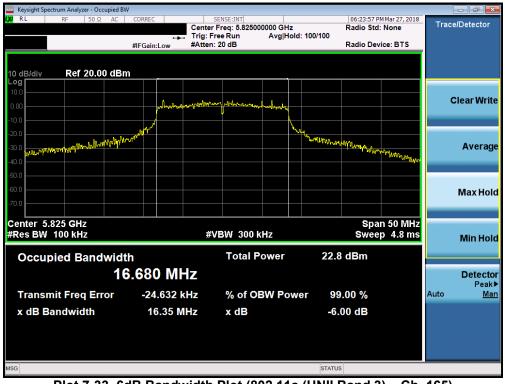
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 30 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

Antenna-1 6 dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.32
	5785	157	а	6	16.07
	5825	165	а	6	16.35
ო	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.31
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	16.96
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.19
	5755	151	n (40MHz)	13.5/15 (MCS0)	35.76
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.65
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.39

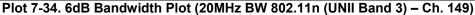
Table 7-3. Conducted Bandwidth Measurements




Plot 7-31. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

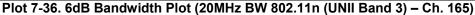
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 20
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset	Page 31 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018		

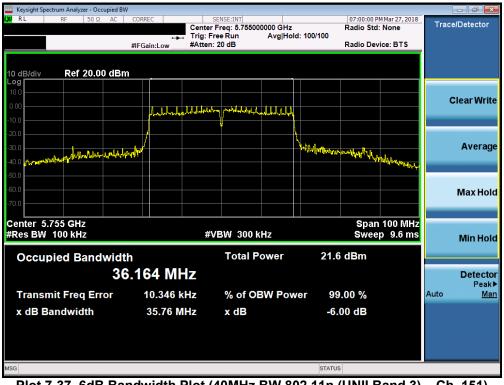




Plot 7-33. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 32 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			




Plot 7-35. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 33 of 89	
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018	

Plot 7-37. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 34 of 89	
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018	

🔤 Keysight Spectrum Analyzer - Occupied BW 💦 🕞 💽						
Ι,ΧΙ RF 50 Ω		SENSE:INT nter Freq: 5.795000000 GHz g: Free Run Avg Hol	07:00:32 P Radio Std d: 100/100	M Mar 27, 2018 : None	Trace/Detector	
#IFGain:Low #Atten: 20 dB Radio Device: BTS				vice: BTS		
10 dB/div Ref 20.00						
10.0					Clear Write	
-10.0	l.p.labolabor (words)	leladore produces for the lase, had a left at a				
-20.0	Revielation of		and hold with the		Average	
-40.0 Aphythelian and the second				AN VI MARANEINA		
-60.0					Max Hold	
Center 5.795 GHz			Span	100 MHz		
#Res BW 100 kHz		#VBW 300 kHz		p 9.6 ms	Min Hold	
Occupied Bandw	Occupied Bandwidth Total Power 22.2 dBm					
36.121 MHz					Detector Peak▶	
Transmit Freq Erro	r 20.289 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Man</u>	
x dB Bandwidth	35.65 MHz	x dB	-6.00 dB			
MSG			STATUS			

Plot 7-38. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-39. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 35 of 89	
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018	

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.11) = 24.24dBm$.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10log_{10}(26dB BW) = 11 dBm + <math>10log_{10}(21.28) = 24.28dBm$.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

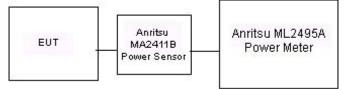


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 36 of 89	
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018	

	Freq [MHz]	Channel	Detector	IEEE Transmission Mode [dBm]		Conducted Power Limit	Conducted Power	
<u> </u>				802.11a	802.11n	802.11ac	[dBm]	Margin [dB]
È	5180	36	AVG	16.35	16.18	16.08	23.98	-7.63
ž	5200	40	AVG	16.33	16.05	15.90	23.98	-7.65
ndwidth	5220	44	AVG	16.17	15.90	15.84	23.98	-7.81
ğ	5240	48	AVG	16.10	15.89	15.71	23.98	-7.88
Ba	5260	52	AVG	16.15	15.62	15.64	23.98	-7.83
N	5280	56	AVG	16.01	15.63	15.57	23.98	-7.97
	5300	60	AVG	15.99	15.63	15.53	23.98	-7.99
Σ	5320	64	AVG	15.98	15.49	15.43	23.98	-8.00
(20	5500	100	AVG	15.86	15.60	15.56	23.98	-8.12
) Z	5600	120	AVG	15.68	15.46	15.47	23.98	-8.30
Ï	5620	124	AVG	15.73	15.51	15.35	23.98	-8.25
Ċ	5720	144	AVG	15.61	15.49	15.47	23.98	-8.37
СI I	5745	149	AVG	15.81	15.77	15.70	30.00	-14.19
	5785	157	AVG	15.78	15.90	15.85	30.00	-14.10
	5825	165	AVG	15.84	15.89	15.96	30.00	-14.04

Table 7-4. 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]		Detector	IEEE Transm [dE	nission Mode 8m]	Conducted Power Limit	Conducted Power
				802.11n	802.11ac	[dBm]	Margin [dB]
₽ ⊂	5190	38	AVG	11.28	11.38	23.98	-12.60
0MH idth)	5230	46	AVG	13.62	13.70	23.98	-10.28
(40M Iwidtl	5270	54	AVG	13.61	13.52	23.98	-10.37
	5310	62	AVG	8.83	8.89	23.98	-15.09
Hz	5510	102	AVG	10.99	10.81	23.98	-12.99
Ва Ва	5590	118	AVG	13.49	13.51	23.98	-10.47
50	5630	126	AVG	14.30	13.50	23.98	-9.68
	5710	142	AVG	14.48	13.50	23.98	-9.50
	5755	151	AVG	13.82	13.83	30.00	-16.17
	5795	159	AVG	14.04	14.08	30.00	-15.92

Table 7-5. 40MHz BW (UNII) Maximum Conducted Output Power

(80MHz dwidth)	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
oM	5210	42	AVG	8.65	23.98	-15.33
z (80MH; dwidth)	5290	58	AVG	8.65	23.98	-15.33
5GHz Band	5530	106	AVG	8.05	23.98	-15.93
B G	5610	122	AVG	14.00	23.98	-9.98
	5690	138	AVG	14.10	23.98	-9.88
	5775	155	AVG	13.63	30.00	-16.37

Table 7-6. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 27 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 37 of 89
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

EUT	Coax Cable	Agilent Signal Analyzer
-----	------------	----------------------------

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

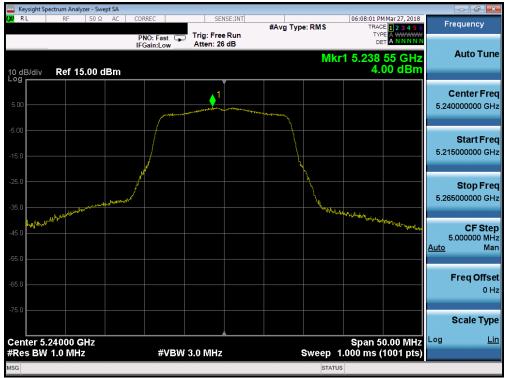
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 90		
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset	Page 38 of 89			
© 2018 PCTEST Engineering La	© 2018 PCTEST Engineering Laboratory, Inc.					

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	3.92	11.0	-7.08
	5200	40	а	6	3.77	11.0	-7.23
	5240	48	а	6	4.00	11.0	-7.00
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	3.28	11.0	-7.72
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	3.32	11.0	-7.68
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	3.52	11.0	-7.48
	5190	38	n (40MHz)	13.5/15 (MCS0)	-3.17	11.0	-14.17
	5230	46	n (40MHz)	13.5/15 (MCS0)	-1.02	11.0	-12.02
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-8.19	11.0	-19.19
	5260	52	а	6	4.68	11.0	-6.32
	5280	56	а	6	4.94	11.0	-6.06
	5320	64	а	6	4.92	11.0	-6.08
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	4.25	11.0	-6.75
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	4.52	11.0	-6.48
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	4.55	11.0	-6.45
	5270	54	n (40MHz)	13.5/15 (MCS0)	0.01	11.0	-11.00
	5310	62	n (40MHz)	13.5/15 (MCS0)	-4.75	11.0	-15.75
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-7.69	11.0	-18.69
	5500	100	а	6	4.97	11.0	-6.03
	5600	120	а	6	4.83	11.0	-6.17
	5720	144	а	6	5.44	11.0	-5.56
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	4.66	11.0	-6.34
с	5600	120	n (20MHz)	6.5/7.2 (MCS0)	4.64	11.0	-6.36
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	4.76	11.0	-6.24
an	5510	102	n (40MHz)	13.5/15 (MCS0)	-3.83	11.0	-14.83
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	0.02	11.0	-10.98
	5710	142	n (40MHz)	13.5/15 (MCS0)	1.75	11.0	-9.25
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-9.00	11.0	-20.00
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-2.46	11.0	-13.46
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.33	11.0	-15.33

Table 7-7. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 90		
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 39 of 89		
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory. Inc.					

	ectrum Analyzer	- Swept SA					
XI RL	RF	50 Ω AC	CORREC PNO: Fast	SENSE:INT Trig: Free Run Atten: 26 dB	#Avg Type: RMS	06:06:31 PM Mar 27, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Frequency
10 dB/div	Ref 15.0	00 dBm	I Guill.Low		Mk	r1 5.181 15 GHz 3.92 dBm	Auto Tune
5.00				1			Center Freq 5.180000000 GHz
-5.00							Start Fred 5.155000000 GHz
-25.0	L.b. scherreburnete	and the second	Jack Contraction of the second			the ball and the second s	Stop Freq 5.205000000 GHz
-45.0						Marydro	CF Step 5.000000 MH: <u>Auto</u> Mar
65.0							Freq Offse 0 H:
-75.0							Scale Type
Center 5. #Res BW	18000 GH 1.0 MHz	Z	#VBW	3.0 MHz	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)	
MSG					STATU	JS	


Plot 7-40. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)

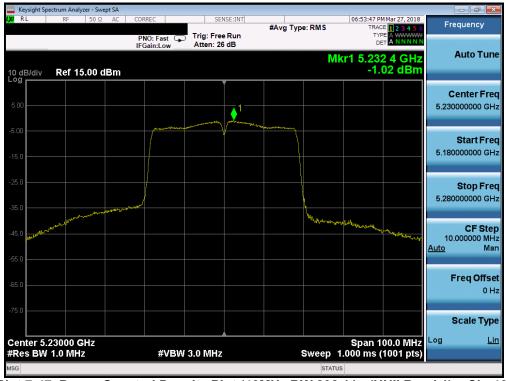


FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 40 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Plot 7-42. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

Plot 7-43. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

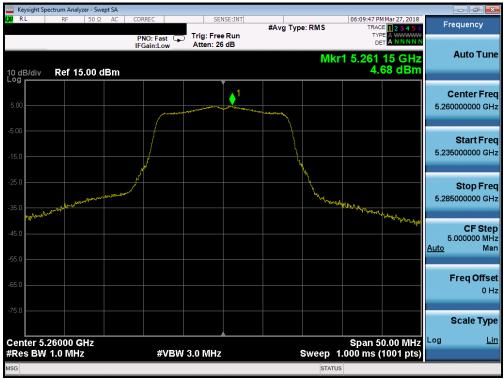
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 90		
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 41 of 89		
© 2018 PCTEST Engineering La	© 2018 PCTEST Engineering Laboratory. Inc.					


Plot 7-45. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 42 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 42 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Keysight S RL	pectrum Analyze	er - Swept SA 50 Ω AC	CORREC		CENCETNE			06,53,54.0	4 Mar 27, 2018	
KL	KF	50 52 AC	PNO: Fast		SENSE:INT	#Avg Typ	e:RMS	TRAC	E 1 2 3 4 5 6 A MANNAN A NNNN	Frequency
0 dB/div og	Ref 15.	00 dBm	IFGam:Lov		1. 20 00		M	kr1 5.19 [.]		Auto Tui
5.00					↓ 1					Center Fre 5.190000000 GI
5.0				Manage and Belleville and Belleville						Start Fre 5.140000000 GI
5.0										Stop Fr 5.240000000 G
5.0 المبالعمر 5.0		Then Were and the second	whot				huyhmy	enter and the second	welling	CF Ste 10.000000 Mi <u>Auto</u> Mi
5.0										Freq Offs 0
5.0										Scale Ty
	.19000 GH / 1.0 MHz	Iz	#V	BW 3.0 M	ЛНz		Sweep ′	Span 1 1.000 ms (00.0 191112	Log <u>L</u>
SG							STATU	S		

Plot 7-46. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)


Plot 7-47. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 43 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 7.5 2/26/2018

Keysight Sp R L	pectrum Analyzer - S RF 50		CORREC	SENSE:INT		07:03:02 PM Mar 27, 2018	
			PNO: Fast G	Trig: Free Run Atten: 26 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
) dB/div	Ref 15.00	dBm			I	/kr1 5.212 0 GHz -8.19 dBm	Auto Tur
5.00				. 1			Center Fre 5.210000000 GH
5.0							Start Fre 5.110000000 GI
5.0							Stop Fr 5.310000000 G
5.0	and a star of the start of the	no and a start	,			and grades and a start and a	CF Ste 20.000000 M <u>Auto</u> M
5.0							Freq Offs 0
5.0							Scale Typ
	.2100 GHz / 1.0 MHz		#VBV	V 3.0 MHz	Sweep	Span 200.0 MHz 1.000 ms (1001 pts)	Log <u>L</u>
G					STA	TUS	

Plot 7-48. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 1) – Ch. 42)

Plot 7-49. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 44 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 7.5 2/26/2018

	Spectrum Analy	zer - Swept S	5A									
I <mark>XU</mark> RL	RF	50 Ω A	Р	RREC NO: Fast (Gain:Low			#Avg Typ	e: RMS	TRAC	M Mar 27, 2018 DE 1 2 3 4 5 6 DE A WWWWW ET A N N N N N	Frequ	iency
10 dB/div Log	Ref 1	5.00 dBi						Mkr	1 5.279 4.	20 GHz 94 dBm	Au	ito Tune
5.00					R. durante and the second s	1						ter Frec 0000 GH:
-5.00												art Free 0000 GH
-25.0	in lager to former	and the second second	an and a second					N. Northernet	an fraging with the fall of the			t op Free 0000 GH
-45.0										a and and the second		CF Stej DOOO MH Ma
65.0											Fre	q Offse 0 H
-75.0	5.28000 G	Hz							Span 5	0.00 MHz	Sca Log	ale Typ <u>Li</u>
	V 1.0 MH			#VB	W 3.0 MH	z		Sweep 1	.000 ms ((1001 pts)		
ISG								STATUS	5			

Plot 7-50. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-51. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 45 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Keysight Spectrum Analyzer -					
XI RL RF 5	0 Ω AC CORREC	SENSE:INT	#Avg Type: RMS	06:32:28 PM Mar 27, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 26 dB		DET A WWWWW	
10 dB/div Ref 15.0	0 dBm		Mkr	1 5.259 15 GHz 4.25 dBm	Auto Tune
5.00		and the second s	n martine f		Center Fred 5.260000000 GH;
-15.0					Start Free 5.235000000 GH
-25.0			and the second s	er frond yn llynewydd fran y llynewydd raw yn fran yw yn gan ar yn gan gan gan gan gan gan gan gan gan ga	Stop Fre 5.285000000 GH
45.0					CF Ste 5.000000 MH <u>Auto</u> Ma
65.0					Freq Offse 0 H
-75.0					Scale Typ
Center 5.26000 GHz #Res BW 1.0 MHz		3.0 MHz	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	Log <u>Lir</u>
MSG			STATUS		

Plot 7-52. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

Plot 7-53. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset	Page 46 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

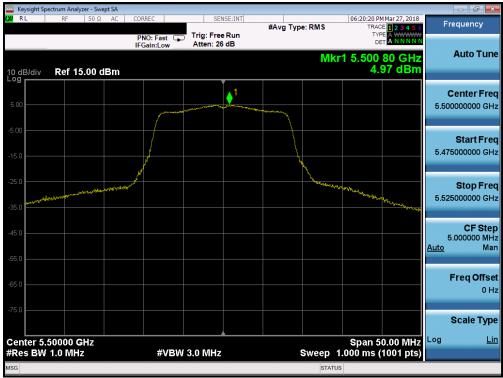
	pectrum Analyze						
LX/ RL	RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	06:33:55 PM Mar 27, 2018 TRACE 1 2 3 4 5 6	Frequency
			PNO: Fast G	Trig: Free Run Atten: 26 dB		DET A WWWWW	
10 dB/div	Ref 15.	.00 dBm			Mk	r1 5.319 00 GHz 4.55 dBm	Auto Tune
5.00				1 1	No		Center Fred 5.320000000 GHz
-5.00							
-15.0							Start Freq 5.295000000 GHz
-25.0	want	مهر بهر المراسم	where the second		har here here here here here here here h	hid.	Stop Fred 5.345000000 GH:
-35.0 -45.0	Mr. March					Ing Annow when the product of	CF Step 5.000000 MH
-55.0							<u>Auto</u> Mar
-65.0							Freq Offse 0 H
-75.0							Scale Type
	.32000 GI 1.0 MHz		#VBV	/ 3.0 MHz	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)	Log <u>Lir</u>
MSG					STATU	JS	

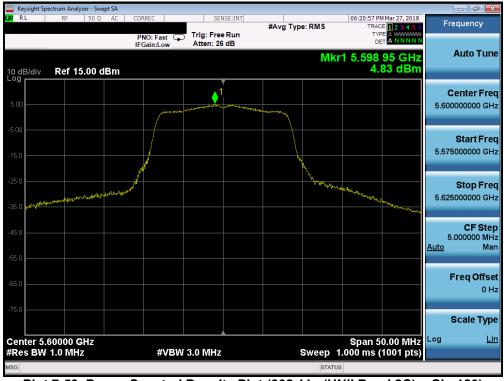
Plot 7-54. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-55. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

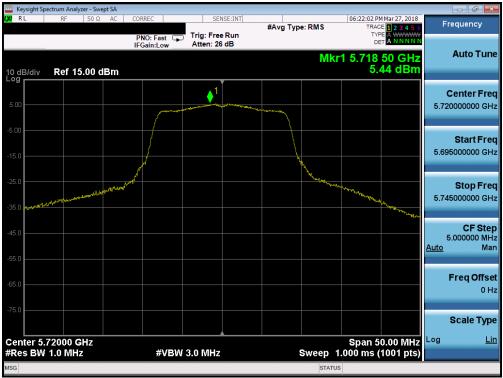
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 90			
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset	Page 47 of 89				
© 2018 PCTEST Engineering Laboratory, Inc. V							

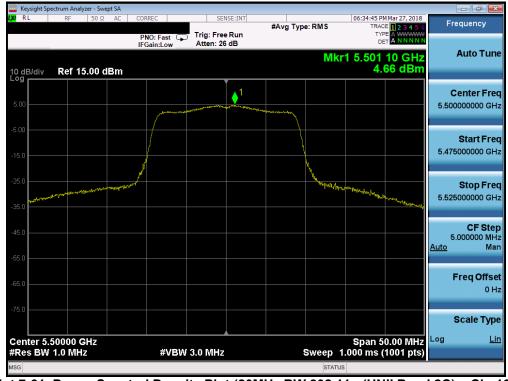
	pectrum Analyz											J X
X/RL	RF	50 Ω AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		M Mar 27, 2018 CE 1 2 3 4 5 6	Freque	псу
			PNO: F IFGain:		Trig: Free Atten: 26				T) [A	-
10 dB/div Log	Ref 15	.00 dBm						Μ	kr1 5.30 -4	7 5 GHz 75 dBm	Auto	o Tune
5.00											Cente	
					♦ ¹						5.3100000	00 GH
-5.00			ſ	and the second		(Sta 5.2600000	nt Free
-15.0											5.200000	00 611
-25.0											Sto 5.3600000	р Fre 00 GH
-35.0								l l				F Ster
45.0	morrowante	And an and a start	and the second second					Law mar 10	alle manage the state	menunan	10.0000 <u>Auto</u>	
55.0											Freq	Offse
65.0												0 H
-75.0											Scal	е Туре
	.31000 G 1.0 MHz			# VBW 3	.0 MHz			Sweep	Span 1.000 ms	100.0 MHz (1001 pts)	Log	Lir
ISG								STATU				


Plot 7-56. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

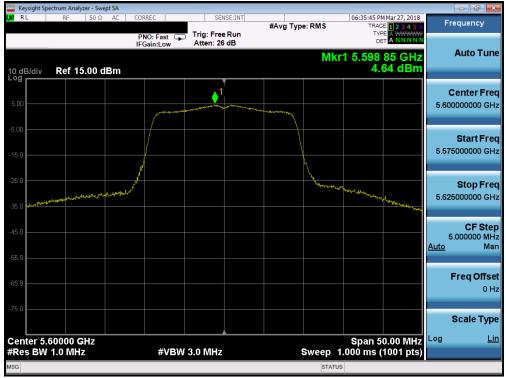

Plot 7-57. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 90			
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset	Page 48 of 89				
© 2018 PCTEST Engineering Laboratory, Inc.							


Plot 7-58. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 100)

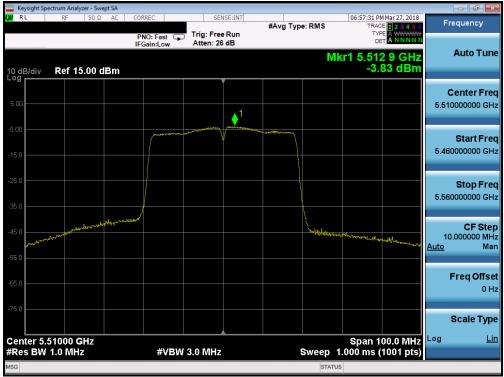

Plot 7-59. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 120)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 49 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 7.5 2/26/2018


Plot 7-60. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 144)

Plot 7-61. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 50 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 50 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			


Plot 7-62. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) – Ch. 120)

Plot 7-63. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 51 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 51 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-64. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

Plot 7-65. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 52 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	pectrum Analyz						
L <mark>XI</mark> RL	RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	06:59:28 PM Mar 27, 2018 TRACE 1 2 3 4 5 6	Frequency
	_		PNO: Fast 🕞	Trig: Free Run Atten: 26 dB	• /	TYPE A WWWW DET A NNNN	
10 dB/div Log	Ref 15	.00 dBm			N	lkr1 5.711 3 GHz 1.75 dBm	Auto Tune
							Center Fred
5.00			mune	/	an production of the second		5.710000000 GHz
-5.00							Start Fred
-15.0							5.66000000 GH
-25.0					handhan	Ny Rupper L	Stop Free
-35.0	non many marine	policy and the second second	penell			and an and a second and a second	5.760000000 GH
45.0						and the second se	CF Step
-55.0							10.000000 MH <u>Auto</u> Mai
65.0							Freq Offse
							0 H
-75.0							Scale Type
	.71000 G					Span 100.0 MHz	Log <u>Lir</u>
#Res BW	1.0 MHz		#VBW	3.0 MHz	Sweep	1.000 ms (1001 pts)	

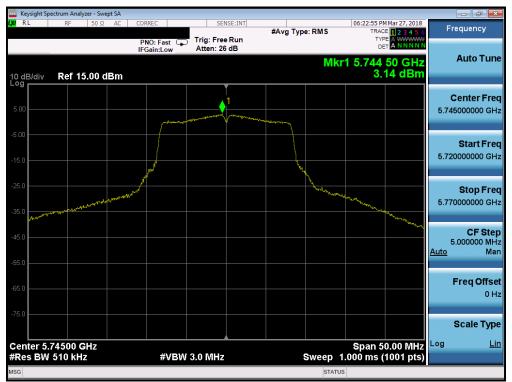
Plot 7-66. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-67. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 53 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

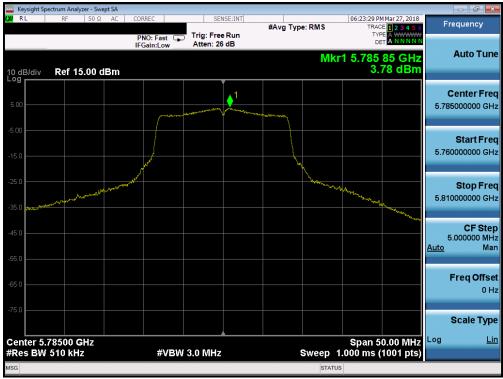
	ectrum Analyz											
X/RL	RF	50 Ω A	AC COF	RREC	SE	ISE:INT	#Avg Typ	e: RMS		M Mar 27, 2018	Frequer	ncy
			PI IF(NO: Fast 🕞 Gain:Low	Trig: Free Atten: 26				TY D			_
10 dB/div Log	Ref 15	.00 dBı	m					N	lkr1 5.61 -2.	6 6 GHz 46 dBm	Auto	o Tune
											Cente	er Fred
5.00						↓ ¹					5.6100000	00 GH:
5.00				Francis	and a second and a s		Marine and				Sta	rtFre
15.0											5.5100000	00 GH
25.0												p Fre
.35.0			waarad					John Marting	* the show to be the		5.7100000	00 GH
manne	an addie of the grow									Marken Sonapagara	C	F Stej
55.0											20.0000 <u>Auto</u>	00 MH Ma
65.0											Freq	Offse
												0 H
75.0											Scal	е Тур
Center 5.0 Res BW				#VBV	V 3.0 MHz			Sweep	Span 2 1.000 ms	200.0 MHz (1001 pts)	Log	Lii
ISG								STAT				

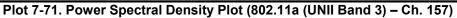
Plot 7-68. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)


Plot 7-69. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 54 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 54 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

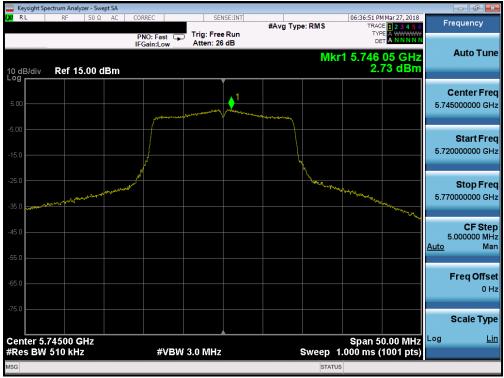
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	3.14	30.0	-26.86
	5785	157	а	6	3.78	30.0	-26.22
	5825	165	а	6	3.63	30.0	-26.37
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	2.73	30.0	-27.27
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.33	30.0	-26.67
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	3.14	30.0	-26.86
	5755	151	n (40MHz)	13.5/15 (MCS0)	-1.72	30.0	-31.72
	5795	159	n (40MHz)	13.5/15 (MCS0)	-1.30	30.0	-31.30
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-1.48	30.0	-31.48


Table 7-8. Band 3 Conducted Power Spectral Density Measurements



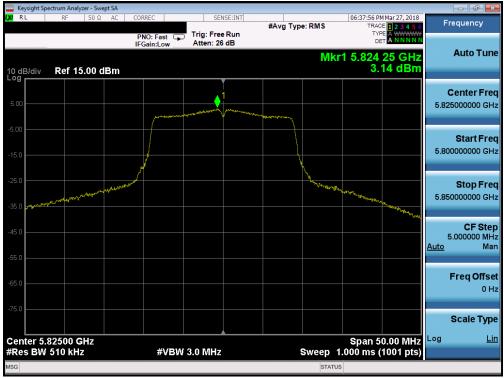
Plot 7-70. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

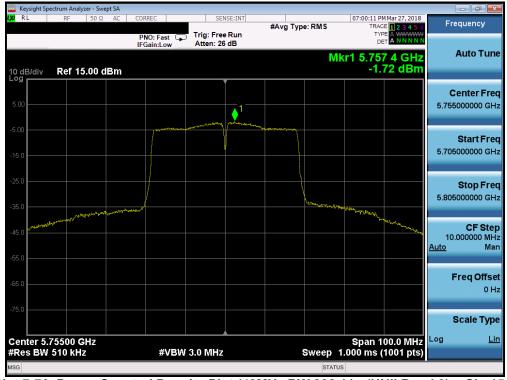
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 55 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 55 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			



Plot 7-72. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 56 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 56 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 7.5 2/26/2018


Plot 7-73. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-74. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 57 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-75. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

Plot 7-76. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 59 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 58 of 89	
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 7.5 2/26/2018	

	pectrum Ana												di 💌
RL	RF	50 Ω	AC	PNO: F	ast 🖵	Trig: Fre Atten: 2		#Avg Typ	oe: RMS	TRA	PM Mar 27, 2018 CE 1 2 3 4 5 6 PE A WWWWW DET A NNNNN	Frequ	ency
0 dB/div	Ref 1	5.00 d	Bm	IFGain:	LOW	Atten. 2	u u u u u u u u u u u u u u u u u u u		Μ		6 0 GHz .30 dBm	Au	to Tun
5.00						and the state of the	1					Cen 5.795000	ter Fre 0000 GH
5.00												St 5.745000	art Fre 0000 G⊦
35.0		MAN	www.wordth.W	\sim						mundhedy		St 5.845000	op Fre 0000 G⊦
5.0	who main and a										Margare Car		CF Ste 1000 MH Ma
5.0												Fre	q Offs 0 ⊦
*5.0	.79500 (GH7								Span 7	100.0 MHz		ale Typ
	V 510 kH				#VBW	3.0 MHz			Sweep	1.000 ms	(1001 pts)		
G									STATU	IS			

Plot 7-77. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-78. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 59 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-9 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-9. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 60 of 89	
© 2018 PCTEST Engineering La	V 7 5 2/26/2018				

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

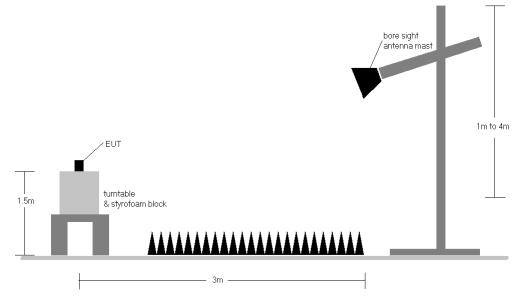


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 61 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Test Notes

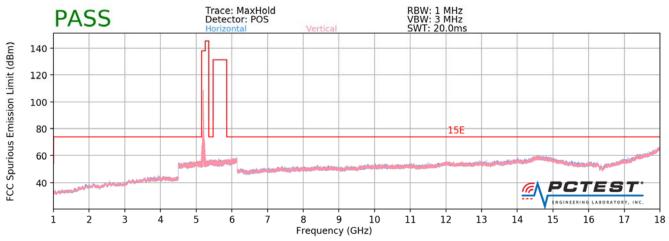
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

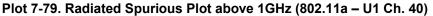
Sample Calculations

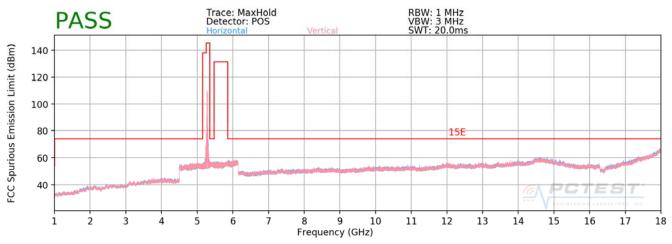
Determining Spurious Emissions Levels

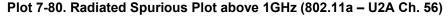
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

Radiated Band Edge Measurement Offset

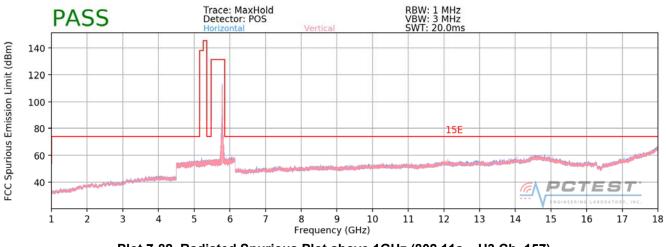

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.6 was calculated using the formula:


Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama (0) of 00	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 62 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				



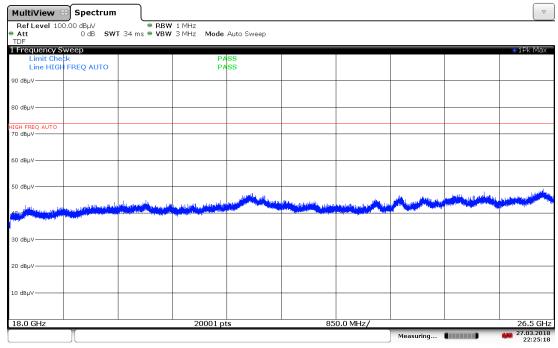

7.7.1 Radiated Spurious Emission Measurements



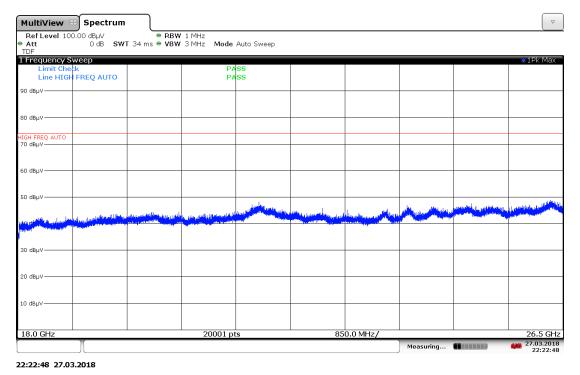


Plot 7-81. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 120)

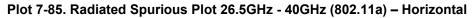
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 63 of 89	
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 7.5 2/26/2018	

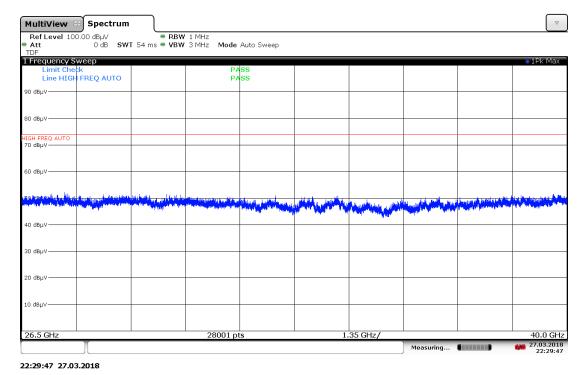


FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 64 of 89	
© 2018 PCTEST Engineering La	boratory. Inc.			V 7.5 2/26/2018	



Radiated Spurious Emissions Measurements (Above 18GHz)


Plot 7-84. Radiated Spurious Plot 18GHz - 26.5GHz (802.11a) – Vertical


FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 65 of 89	
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 7.5 2/26/2018	

MultiView 8	Spectrum								
RefLevel 100 Att TDF	0.00 dBµV 0 dB SW 1	● RBV 「 54 ms ● VBW	/ 1 MHz / 3 MHz Mode	Auto Sweep					
1 Frequency Sv	weep								
Limit Che	:k			SS					
Line HIGH	FREQ AUTO		PA	SS					
90 dBµV									
30 dBµ∨									
IGH FREQ AUTO									
70 dBµV									
60 dBµV									
do di bili di bibili di cita	يقافيك والمحصين	and the second			the form		a dada da		فأرفعها يسترجه فألله
	and a stand and a stand of the stand	and a set of the set of	The second s		and the state of the state			A second probably all the start	white and a second street
				Mar Har		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
40 dBµV									
30 dBµV									
20 dBµV									
LO dBµV									
26.5 GHz		1	28001 pt	is	1.	.35 GHz/	1	I	40.0 GH
							Measuring		27.03.2018 22:33:43

22:33:43 27.03.2018

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset	Page 66 of 8	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5180MHz			
Channel:	36			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	Н	-	-	-66.58	13.34	0.00	53.76	68.20	-14.44
*	15540.00	Average	Н	-	-	-80.22	17.06	0.00	43.84	53.98	-10.14
*	15540.00	Peak	Н	-	-	-67.35	17.06	0.00	56.71	73.98	-17.27
*	20720.00	Average	Н	-	-	-71.72	7.94	-9.54	33.68	53.98	-20.30
*	20720.00	Peak	Н	-	-	-59.34	7.94	-9.54	46.06	73.98	-27.92
	25900.00	Peak	Н	-	-	-57.71	8.46	-9.54	48.21	68.20	-19.99

Table 7-10. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	Н	-	-	-67.23	14.77	0.00	54.54	68.20	-13.66
*	15600.00	Average	Н	-	-	-80.26	17.09	0.00	43.83	53.98	-10.15
*	15600.00	Peak	Н	-	-	-66.97	17.09	0.00	57.12	73.98	-16.86
*	20800.00	Average	Н	-	-	-71.63	7.95	-9.54	33.78	53.98	-20.20
*	20800.00	Peak	Н	-	-	-60.45	7.95	-9.54	44.96	73.98	-29.02
	26000.00	Peak	Н	-	-	-58.55	8.60	-9.54	47.51	68.20	-20.69

Table 7-11. Radiated Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 67 of 89
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

802.11a		
6Mbps		
1 & 3 Meters		
5240MHz		
48		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	-	-	-66.46	12.09	0.00	52.63	68.20	-15.57
*	15720.00	Average	Н	-	-	-80.29	18.13	0.00	44.84	53.98	-9.14
*	15720.00	Peak	Н	-	-	-67.71	18.13	0.00	57.42	73.98	-16.56
*	20960.00	Average	Н	-	-	-71.93	7.91	-9.54	33.44	53.98	-20.54
*	20960.00	Peak	Н	-	-	-60.71	7.91	-9.54	44.66	73.98	-29.32
	26200.00	Peak	Н	-	-	-57.08	8.62	-9.54	49.00	68.20	-19.20

Table 7-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	Н	-	-	-67.14	14.15	0.00	54.01	68.20	-14.19
*	15780.00	Average	Н	-	-	-80.16	17.68	0.00	44.52	53.98	-9.46
*	15780.00	Peak	Н	-	-	-67.51	17.68	0.00	57.17	73.98	-16.81
*	21040.00	Average	Н	-	-	-71.25	7.92	-9.54	34.13	53.98	-19.85
*	21040.00	Peak	Н	-	-	-60.46	7.92	-9.54	44.92	73.98	-29.06
	26300.00	Peak	Н	-	-	-56.65	8.73	-9.54	49.54	68.20	-18.66

Table 7-13. Radiated Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 69 of 90
M1803150042-05.A3L 3/8-4/5/2018		Portable Handset		Page 68 of 89
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5280MHz		
Channel:	56		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	-	-	-66.95	13.17	0.00	53.22	68.20	-14.98
*	15840.00	Average	Н	-	-	-80.04	18.08	0.00	45.04	53.98	-8.94
*	15840.00	Peak	Н	-	-	-67.28	18.08	0.00	57.80	73.98	-16.18
*	21120.00	Average	Н	-	-	-71.03	7.96	-9.54	34.39	53.98	-19.59
*	21120.00	Peak	н	-	-	-59.78	7.96	-9.54	45.64	73.98	-28.34
	26400.00	Peak	н	-	-	-57.35	8.94	-9.54	49.05	68.20	-19.15

Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	-	-	-79.97	12.77	0.00	39.80	53.98	-14.18
*	10640.00	Peak	Н	-	-	-66.84	12.77	0.00	52.93	73.98	-21.05
*	15960.00	Average	Н	-	-	-80.30	19.13	0.00	45.83	53.98	-8.15
*	15960.00	Peak	Н	-	-	-66.72	19.13	-9.54	49.86	73.98	-24.12
*	21280.00	Average	Н	-	-	-70.74	8.04	-9.54	34.76	53.98	-19.22
*	21280.00	Peak	Н	-	-	-59.22	8.04	-9.54	46.28	73.98	-27.70
	26600.00	Peak	Н	-	-	-47.70	-8.30	-9.54	41.45	68.20	-26.75

Table 7-15. Radiated Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 90	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 69 of 89	
© 2018 PCTEST Engineering La	V 7 5 2/26/2018				

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5500MHz		
Channel:	100		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
ł	11000.00	Average	Н	-	-	-79.84	12.68	0.00	39.84	53.98	-14.13
ł	11000.00	Peak	Н	-	-	-67.68	12.68	0.00	52.00	73.98	-21.97
	16500.00	Peak	н	-	-	-69.11	18.76	0.00	56.65	68.20	-11.55
	22000.00	Peak	н	-	-	-58.53	8.43	-9.54	47.35	68.20	-20.85
	27500.00	Peak	Н	-	-	-46.02	-8.80	-9.54	42.64	68.20	-25.56

Table 7-16. Radiate	d Measurements
---------------------	----------------

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 600MHz 120

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
11200.00	Average	н	-	-	-79.86	14.08	0.00	41.22	53.98	-12.76
11200.00	Peak	Н	-	-	-68.65	14.08	0.00	52.43	73.98	-21.55
16800.00	Peak	н	-	-	-69.08	18.51	0.00	56.43	68.20	-11.77
22400.00	Average	н	-	-	-70.79	8.11	-9.54	34.78	53.98	-19.20
22400.00	Peak	н	-	-	-60.02	8.11	-9.54	45.55	73.98	-28.43
28000.00	Peak	н	-	-	-47.08	-9.26	-9.54	41.12	68.20	-27.08

Table 7-17. Radiated Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 90
1M1803150042-05.A3L 3/8-4/5/2018		Portable Handset	Page 70 of 89	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5720MHz			
Channel:	144			

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
11440.00	Average	Н	-	-	-80.21	15.18	0.00	41.97	53.98	-12.01
11440.00	Peak	Н	-	-	-69.90	15.18	0.00	52.28	73.98	-21.70
17160.00	Peak	Н	-	-	-69.17	19.05	0.00	56.88	68.20	-11.32
22880.00	Average	Н	-	-	-70.88	8.28	-9.54	34.86	53.98	-19.12
22880.00	Peak	Н	-	-	-59.51	8.28	-9.54	46.23	73.98	-27.75
28600.00	Peak	Н	-	-	-46.53	-9.08	-9.54	41.85	68.20	-26.35

 Table 7-18. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	н	-	-	-80.28	13.64	0.00	40.36	53.98	-13.62
*	11490.00	Peak	Н	-	-	-69.73	13.64	0.00	50.91	73.98	-23.07
	17235.00	Peak	Н	-	-	-70.08	19.90	0.00	56.82	68.20	-11.38
*	22980.00	Average	н	-	-	-71.33	8.16	-9.54	34.29	53.98	-19.69
*	22980.00	Peak	н	-	-	-60.21	8.16	-9.54	45.41	73.98	-28.57
	28725.00	Peak	н	-	-	-45.25	-9.24	-9.54	42.97	68.20	-25.23

Table 7-19. Radiated Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 71 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 71 of 89
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

802.11a			
6Mbps			
1 & 3 Meters			
5785MHz			
157			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	-	-	-80.01	14.42	0.00	41.41	53.98	-12.57
*	11570.00	Peak	Н	-	-	-69.12	14.42	0.00	52.30	73.98	-21.68
	17355.00	Peak	Н	-	-	-69.87	21.88	0.00	59.01	68.20	-9.19
	23140.00	Peak	Н	-	-	-60.09	8.37	-9.54	45.74	68.20	-22.46
	28925.00	Peak	Н	-	-	-45.95	-9.65	-9.54	41.86	68.20	-26.34

Table 7-20. Radiated Measurements

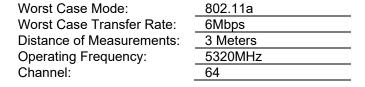
Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	-	-	-80.19	15.67	0.00	42.48	53.98	-11.50
*	11650.00	Peak	Н	-	-	-69.92	15.67	0.00	52.75	73.98	-21.23
	17475.00	Peak	Н	-	-	-69.53	20.05	0.00	57.52	68.20	-10.68
	23300.00	Peak	Н	-	-	-60.42	8.50	-9.54	45.53	68.20	-22.67
	29125.00	Peak	Н	-	-	-44.90	-9.87	-9.54	42.69	68.20	-25.51

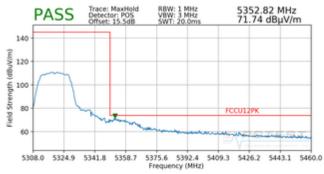
Table 7-21. Radiated Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 89	
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

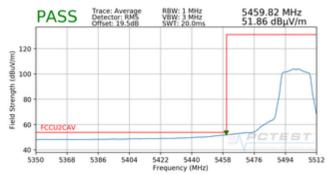
7.7.2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]

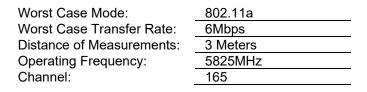

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

Plot 7-87. Radiated Lower Band Edge Plot (Average – UNII Band 1)

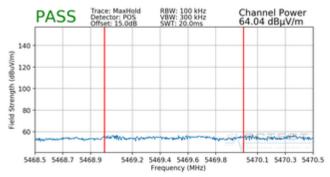


Plot 7-88. Radiated Lower Band Edge Plot (Peak – UNII Band 1)




FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 73 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 7.5 2/26/2018	

Worst Case Mode:802.11aWorst Case Transfer Rate:6MbpsDistance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100

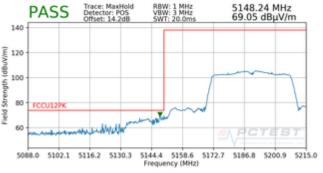


Plot 7-91. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

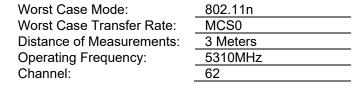
Plot 7-93. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

Plot 7-92. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

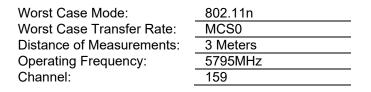
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 74 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 74 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

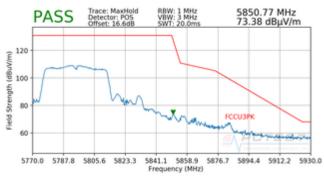


7.7.3 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

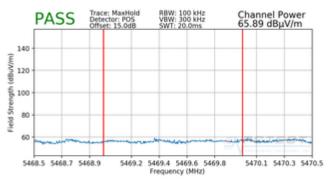

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38

Plot 7-94. Radiated Lower Band Edge Plot (Average – UNII Band 1)

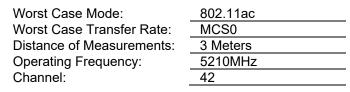

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 75 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 75 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 7.5 2/26/2018	

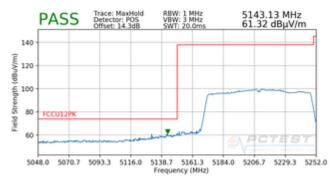


Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5510MHzChannel:102

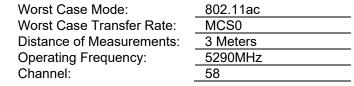

Plot 7-98. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

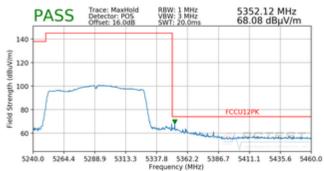
Plot 7-100. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

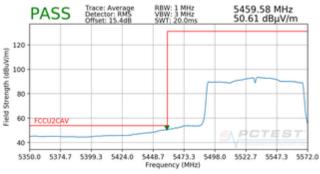


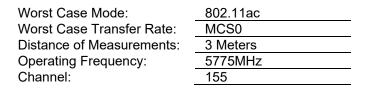


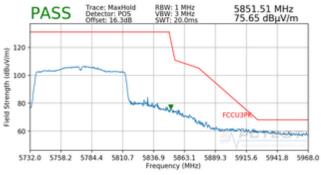
7.7.4 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]



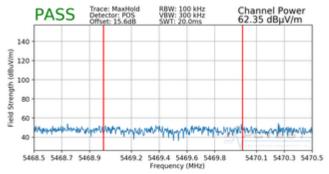

Plot 7-101. Radiated Lower Band Edge Plot (Average – UNII Band 1)




FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 77 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 77 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 7.5 2/26/2018	



Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5530MHzChannel:106



Plot 7-105. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

Plot 7-107. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

Plot 7-106. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 70 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 78 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-22 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-22. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 70 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 79 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

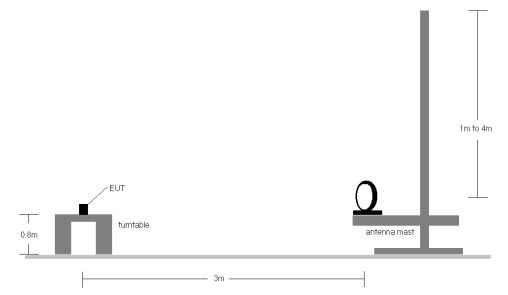
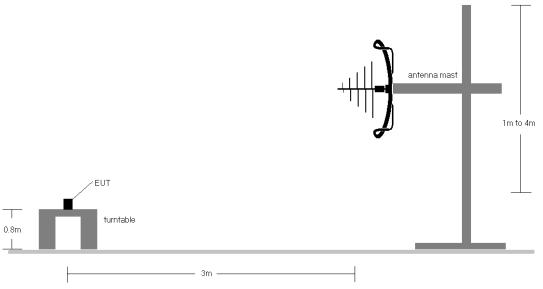
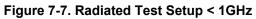
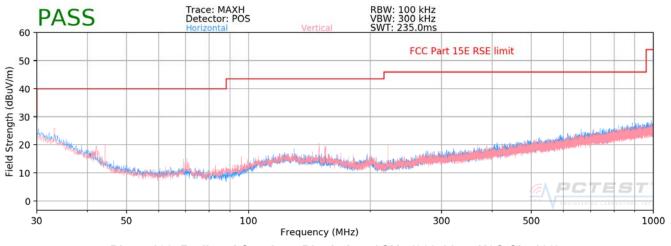




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 80 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	


Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-22.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 91 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 81 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 7 5 2/26/2018	

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-108. Radiated Spurious Plot below 1GHz (802.11a – U2C Ch. 120)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 82 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 7.5 2/26/2018	

7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-23. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

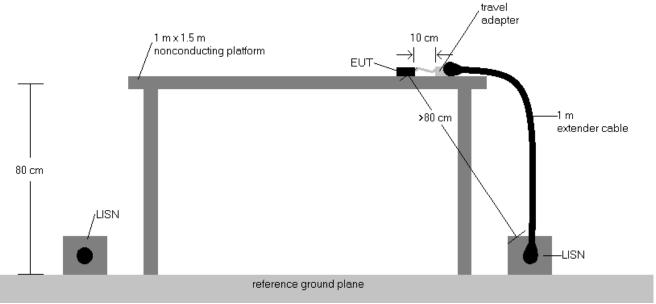
ANSI C63.10-2013, Section 6.2

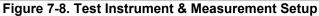
Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

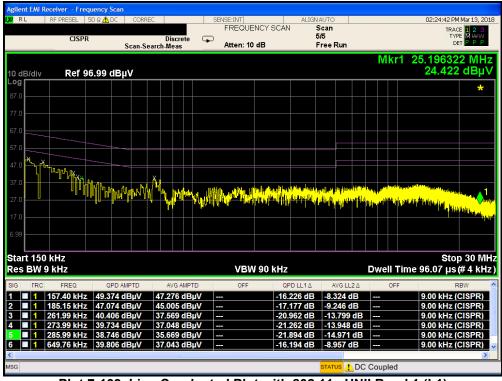
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

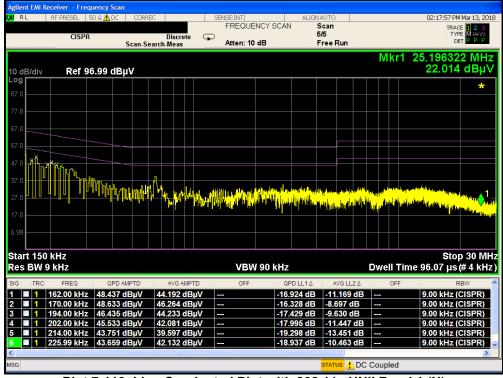

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 83 of 89
© 2018 PCTEST Engineering La	boratory Inc	•		V 7 5 2/26/2018

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

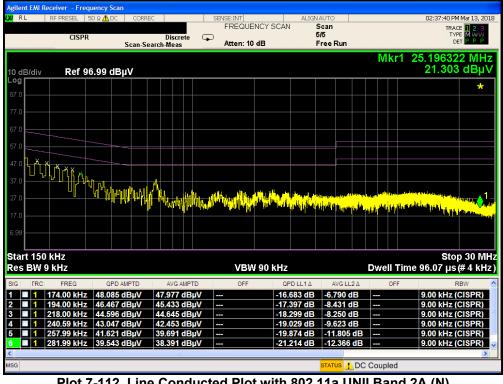


Test Notes


- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 94 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 84 of 89
© 2018 PCTEST Engineering La	aboratory, Inc.	·		V 7.5 2/26/2018

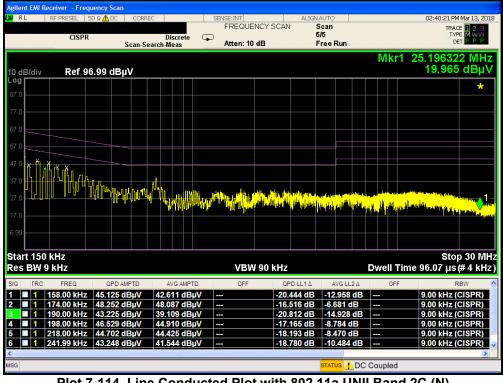
Plot 7-109. Line Conducted Plot with 802.11a UNII Band 1 (L1)


Plot 7-110. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 95 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 85 of 89
© 2018 PCTEST Engineering La	aboratory. Inc.	·		V 7.5 2/26/2018

Agilent EMI Re X/ RL	ceiver - Free RF PRESEL			-			SENSE:INT	NCY SC		NAUTO Scan					PM Mar 13, 2018
	CISPR	!	Scan-Sea		crete as	Ŧ				5/5 Free R	lun			1	ACE 1 2 3 YPE M WW DET P P P
10 dB/div	Ref 9	6.99 di	ЗμV									N	lkr1	25.1963 26.43	22 MHz 8 dBµV
87.0															*
77.0															
67.0															
57.0															
47.0 47.0	Ň ľ ľ ľ			h.											
27.0		⁻ Upwyył	KYYM A LAN		曲	Ward	i lui thui		n de la contra da si Le salat da filmana			lan _a n d	nteritaria. <mark>Contractoria</mark>		
17.0				ľ	<u> </u>	11	. 141	ю. П		- atto		a second a second			All North Hand Street, Long, St.
6.99															
Start 150															op 30 MH
Res BW 9								/ 90 kH				Dw		me 96.07 µ	
SIG TRC	FREQ		AMPTD		g amp'		OFF		QPD LL1 A		/G LL2 ∆		OFF	0.00111	RBW
	154.00 kHz 170.00 kHz			45.04 46.97					8.689 dB 6.505 dB		<u>735 dB</u> 81 dB				(CISPR) (CISPR)
	178.00 kHz			40.43					8.966 dB		144 dB				(CISPR)
	190.00 kHz	46.491	dBµV	44.15	2 dB	μV		-1	7.545 dB	-9.8	85 dB				(CISPR)
	202.00 kHz			41.00					9.494 dB		525 dB				(CISPR)
6 🗌 1 🛛 2	214.00 kHz	44.489	dBµV	41.27	2 dB	μV		-1	8.559 dB	-11.	776 dB			9.00 kHz	(CISPR)
					101	_				_		_			>
SG											IS 🚺 DO				

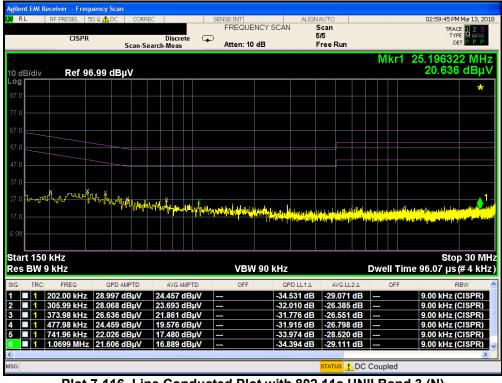
Plot 7-111. Line Conducted Plot with 802.11a UNII Band 2A (L1)


Plot 7-112. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 96 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 86 of 89
© 2018 PCTEST Engineering La	boratory, Inc.			V 7.5 2/26/2018

ilent EMI Red R L	RF PRESEL 5	50 Ω <u>Λ</u> DO	: 00	ORREC				SENSE:I		CY SCAI	N	NAUTO Scan						02:48	TRACE	Mar 13, 20
	CISPR		Scar	n-Seai		screte eas	Ģ	Atte	en: 10 d	в		5/5 Free	Run						TYPE DE1	MW-W PPP
dB/div	Ref 9	6.99 dl	Βμ٧												Μ	lkr'	1 2			2 MH: dBµ\
7.0																				*
7.0																				
7.0																\square				
7.0	·				+										+	H				
	×X																			
7.0		L			Į															
7.0 		ի Միլել	n. 14]	un d		11, II				() ⁽ () ₍	hille der	(₁₁ .42),(11	a de la composition de la comp	<mark>9)60.44</mark>	n a the	w i p	an ju j	helptetere	Yana ya	1
┟║║╢		^t /µ, _{k,}	n.(1/11),u	ullu ¹	h Uili	n hu ll					koltin diret Ny tany dia	kopista o kr 11. juli - pre	ayler <mark>Ny tal</mark>	ellenen webber		n da <mark>, Lul,</mark>	an itei <mark>Ispyr</mark> i	indenter <mark>heteraalis</mark>	naturality Martination	
7.0		Mux	⊪,∦/∦, µ	un ur	h With					i <mark>dinati</mark> Manak	h pilo di si Ingens (Pilo	landerska <mark>Ittelse</mark> ka	e de la	alenen <mark>natit</mark> a		n () v , <mark>, , , ,</mark> ,	an lini <mark>I ja p</mark> il		n an	ili or in 🔥
7.0 7.0 99	<u>ੑ</u> <u></u> ׀	Mux	n.∦/¶µ	₩.	h, M,					ky j <mark>kilisedi</mark> Proposi	la pilo, di su <mark>Ingene, pilo</mark>	ka se da <mark>1140 - 144</mark>	andrei <mark>(* jan</mark> t	919-ya 1991 <mark>1</mark> 99	n de Hild Inception	, , ¹	antoi <mark>Ling</mark> t		a ann an Ann Ann an Ann an	
7.0 7.0 99 tart 150	KHz		₽₩ ₽₽	µî ₩								ka se a ka <mark>11. jul</mark> e y ka	ing (1996 <mark>(1997) - Andread (1997) - Andread (1997) (1997) - Andread (1997) - A</mark>			,	ime			30 MI
7.0 7.0 99 art 150 es BW 9	kHz kHz								VBW	90 kHz									′µs (#4 kH
7.0 7.0 99 cart 150 es BW 9	KHz	QPC				/G AMF				90 kHz		A	WG LL	2 Δ		off		96.07	μs (# 4 kH ®W
7.0 99 tart 150 es BW 9 G IRC	KHZ KHZ KHZ FREQ 58.00 KHZ 70.00 KHZ	QPI 29.20/ 28.53	D AMPTC 2 dBµ\ 9 dBµ\	v v	23.7		BμV		VBW	90 kHz	PD LL1 A	A -31	VG LL	2∆ dB	Dwe			96.07 9.00 k	ζ μs (RE (Hz (C	#4 kH
7.0 99 tart 150 es BW 9 G TRC 1 1 1 1 1 1	KHZ KHZ KHZ 58.00 KHZ 770.00 KHZ 78.00 KHZ	29.207 28.539 28.185	D AMPTC 2 dBµ\ 9 dBµ\ 3 dBµ\	V V V	23.7 23.6 23.7	05 dE 44 dE 39 dE	BμV BμV BμV		VBW	90 kHz -36 -36 -36	PD LL1A .366 dB .421 dB .396 dB	-31 -31 -30	WG LL .864 .316 .839	2 A dB dB dB	Dwe			96.07 9.00 k 9.00 k 9.00 k	μs (RE (Hz (C (Hz (C (Hz (C	# 4 kH sw :ISPR) :ISPR) :ISPR)
7.0	KHZ KHZ 58.00 kHZ 170.00 kHZ 178.00 kHZ 178.00 kHZ 190.00 kHZ	29.207 28.539 28.185 27.667	D AMPTD 2 dBµ\ 9 dBµ 3 dBµ\ 2 dBµ\	V V V V	23.7 23.6 23.7 23.7	05 dE 44 dE 39 dE 97 dE	3μV 3μV 3μV 3μV		VBW	90 kHz -36 -36 -36 -36 -36	PD LL1A .366 dB .421 dB .396 dB .374 dB	A -31 -31 -30 -31	WG LLL .864 .316 .839 .140	2∆ dB dB dB dB	Dwe			96.07 9.00 k 9.00 k 9.00 k 9.00 k	² μs (RE (Hz (C) (Hz (C) (Hz (C) (Hz (C)	# 4 kH ISPR) ISPR) ISPR) ISPR)
r.0 r.0 gag r.0 gag r.0 tart 150 l es BW 9 G IRC I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1	KHZ KHZ 58.00 KHZ 70.00 KHZ 70.00 KHZ 90.00 KHZ 90.00 KHZ	29.207 28.533 28.185 27.667 28.580	D AMPTC 2 dBµ\ 9 dBµ\ 3 dBµ\ 2 dBµ\ 0 dBµ\	V V V V	23.7 23.6 23.7 22.8 24.6	05 dE 44 dE 39 dE 97 dE 37 dE	3μV 3μV 3μV 3μV 3μV		VBW	90 kHz -36 -36 -36 -36 -36 -34	PD LL1A .366 dB .421 dB .396 dB .374 dB .374 dB	-31 -31 -30 -31 -28	WG LL .864 .316 .839 .140 .891	2 A dB dB dB dB dB	Dwe			96.07 9.00 k 9.00 k 9.00 k 9.00 k 9.00 k	μs (RE (Hz (C (Hz (C (Hz (C (Hz (C	# 4 kH <u>(ISPR)</u> (ISPR) (ISPR) (ISPR) (ISPR)
art 150 l as BW 9 3 TRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KHZ KHZ 58.00 kHZ 170.00 kHZ 178.00 kHZ 178.00 kHZ 190.00 kHZ	29.207 28.533 28.185 27.667 28.580	D AMPTC 2 dBµ\ 9 dBµ\ 3 dBµ\ 2 dBµ\ 0 dBµ\	V V V V	23.7 23.6 23.7 22.8 24.6	05 dE 44 dE 39 dE 97 dE	3μV 3μV 3μV 3μV 3μV		VBW	90 kHz -36 -36 -36 -36 -36 -34	PD LL1A .366 dB .421 dB .396 dB .374 dB	-31 -31 -30 -31 -28	WG LLL .864 .316 .839 .140	2 A dB dB dB dB dB	Dwe			96.07 9.00 k 9.00 k 9.00 k 9.00 k 9.00 k	μs (RE (Hz (C (Hz (C (Hz (C (Hz (C	# 4 kH ISPR) ISPR) ISPR) ISPR)
r.0 r.0 gag r.0 gag r.0 tart 150 l es BW 9 G IRC I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1	KHZ KHZ 58.00 KHZ 70.00 KHZ 70.00 KHZ 90.00 KHZ 90.00 KHZ	29.207 28.533 28.185 27.667 28.580	D AMPTC 2 dBµ\ 9 dBµ\ 3 dBµ\ 2 dBµ\ 0 dBµ\	V V V V	23.7 23.6 23.7 22.8 24.6	05 dE 44 dE 39 dE 97 dE 37 dE	3μV 3μV 3μV 3μV 3μV		VBW	90 kHz -36 -36 -36 -36 -36 -34	PD LL1A .366 dB .421 dB .396 dB .374 dB .374 dB	A -31 -31 -30 -31 -28 -31	WG LL .864 .316 .839 .140 .891 .619	2 A dB dB dB dB dB dB dB	Dwe	OFF		96.07 9.00 k 9.00 k 9.00 k 9.00 k 9.00 k	μs (RE (Hz (C (Hz (C (Hz (C (Hz (C	# 4 kH 3W (ISPR) (ISPR) (ISPR) (ISPR)

Plot 7-113. Line Conducted Plot with 802.11a UNII Band 2C (L1)


Plot 7-114. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 97 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 87 of 89
© 2018 PCTEST Engineering La	boratory, Inc.	·		V 7.5 2/26/2018

Agilent EMI Re <mark>XI</mark> RL	ceiver - Free RF PRESEL			CORRE	EC				SENSE	EINT REQU	ENCY	SCAN		in AUTO Scan						02:5		M Mar 13, 20	
	CISPE	ł	S	can-Se] earch-l	Discı Mea:		Ģ	A	tten: 1) dB			5/5 Free	Run							CE 123 PE M WW ET P P P	
10 dB/div	Ref 9	6.99	dBµ\	,													N	1kı	1 2			22 MH I dBµ	
87.0																						*	
77.0																							
67.0																							
57.0																		╞					
47.0																		+					
37.0	ŢŢŢŢŢŢ	Ա			. NM																		
27.0		^V Mr	J lywy	hor (~" W	W	L.			, UI	h in				hipunju Ingeniti	<u>Keri</u> r	and the	des l		and a second	I PROVIDE	-	1_
17.0							. Vali	W		hir di	101.	1.	e 11	- digiti	. Ward	r In I _I	a ^{ta} dh'	<mark>wi</mark> hi	" " " "	alline,	an a fi	interest of the second s	
6.99																							
Start 150	kH2																				Sto	p 30 M	
Res BW 9										٧B	V 90	kHz					Dwe	ell 1	Fime	96.0		(#4 kH	
SIG TRC	FREQ		PD AMP				AMP'		[OFF			D LL1∆		AVG LL			OF	F			RBW	1
	174.00 kHz 190.00 kHz				44.								327 dE 175 dE		867 c							CISPR) CISPR)	
	190.00 KHZ 198.00 kHz				22. 41.								175 dE 989 dE		1.088 1.951							CISPR)	
	218.64 kHz				21.								668 dE		0.919							CISPR)	
	241.99 kHz		50 dE		38.								078 dE		3.070							CISPR)	
6 🔲 1 🛛 2	265.99 kHz	29.3	82 dE	βµV	25.	172	dB	μV				-31.	860 dE	3 -20	6.070	dB				9.00	kHz	CISPR)	
<						Ш	li -															3	>

Plot 7-115. Line Conducted Plot with 802.11a UNII Band 3 (L1)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 99 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 88 of 89
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 7.5 2/26/2018

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMJ737T** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 90
1M1803150042-05.A3L	3/8-4/5/2018	Portable Handset		Page 89 of 89
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 7.5 2/26/2018