

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 WLAN 802.11b/g/n

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 3/8-4/5/2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1803150042-04.A3L

FCC ID:

APPLICANT:

A3LSMJ737T

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: Frequency Range: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification SM-J737T Portable Handset 2412 – 2462MHz Digital Transmission System (DTS) Part 15 Subpart C (15.247) ANSI C63.10-2013, KDB 558074 D01 v04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v04. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 1 of 51
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory Inc			V 7 5 2/26/2018

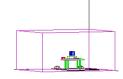


TABLE OF CONTENTS

1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	ODUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DES	SCRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANT	TENNA REQUIREMENTS	9
5.0	MEA	ASUREMENT UNCERTAINTY	10
6.0	TES	ST EQUIPMENT CALIBRATION DATA	11
7.0	TES	ST RESULTS	12
	7.1	Summary	
	7.2	6dB Bandwidth Measurement	
	7.3	Output Power Measurement	19
	7.4	Power Spectral Density	21
	7.5	Conducted Emissions at the Band Edge	27
	7.6	Conducted Spurious Emissions	31
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	
		7.7.1 Radiated Spurious Emission Measurements	
		7.7.2 Radiated Restricted Band Edge Measurements	43
	7.8	Radiated Spurious Emissions Measurements – Below 1GHz	44
	7.9	Line-Conducted Test Data	48
8.0	CON	NCLUSION	51

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 2 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 2 of 51
2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

MEASUREMENT REPORT

		Conducted Power			
		Avg Conducted		Peak Conducted	
Mode	Tx FrequencV (MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
802.11b	2412 - 2462	73.282	18.65	152.757	21.84
802.11g	2412 - 2462	49.431	16.94	251.768	24.01
802.11n	2412 - 2462	59.979	17.78	312.608	24.95

EUT Overview

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 3 of 51
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory. Inc.			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 4 of 51
2018 PCTEST Engineering Laboratory Inc				V 7 5 2/26/2018

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMJ737T**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 19712, 16544, 19712

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC, ANT+

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles			
Duty Cycle [9			
802.11 Mode/Band		ANT1	
2.4GHz	b	98.9	
	g	98.5	
	n	98.5	

 Table 2-2. Measured Duty Cycles

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)

6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 5 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 5 of 51
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 6 of 51
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory, Inc.			

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v04 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 7 of 51
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory Inc			

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 9 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 8 of 51
2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 0 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 9 of 51
© 2018 PCTEST Engineering Laboratory. Inc.			V 7.5 2/26/2018	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 10 of 51
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	6/21/2017	Annual	6/21/2018	RE1
-	WL25-1	Conducted Cable Set (25GHz)	6/14/2017	Annual	6/14/2018	WL25-1
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	8/28/2017	Annual	8/28/2018	MY49432391
Anritsu	MA2411B	Pulse Power Sensor	10/22/2017	Annual	10/22/2018	846215
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
COM-Power	AL-130R	Active Loop Antenna	6/5/2017	Annual	6/5/2018	121085
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
Espec	ESX-2CA	Environmental Chamber	4/11/2017	Annual	4/11/2018	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	12/27/2016	Biennial	12/27/2018	114451
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	5/19/2017	Annual	5/19/2018	251425001
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	5/31/2017	Annual	5/31/2018	NMLC-1
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	4/19/2017	Annual	4/19/2018	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102133
Rohde & Schwarz	TS-PR8	Preamplifier-Antenna SYS; 30MHz-8GHz	10/19/2017	Annual	10/19/2018	102324
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/7/2017	Annual	3/7/2018	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Seekonk	NC-100	Torque Wrench	12/28/2017	Annual	12/28/2018	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 11 of 51
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
oompany Namo.	Carried Electronice Co., Eta.

FCC ID: <u>A3LSMJ737T</u>

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions ≥ 20dBc		PASS	Sections 7.5, 7.6	
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.4.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.5.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 12 of 51
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7.2 6dB Bandwidth Measurement §15.247(a.2); RSS-247 [5.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v04 – Section 8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
 - 2. RBW = 100kHz
 - 3. VBW \geq 3 x RBW
 - 4. Detector = Peak
 - 5. Trace mode = max hold
 - 6. Sweep = auto couple
 - 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

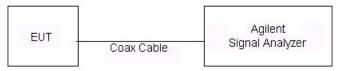
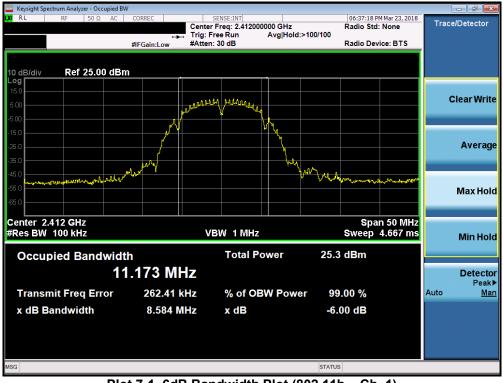


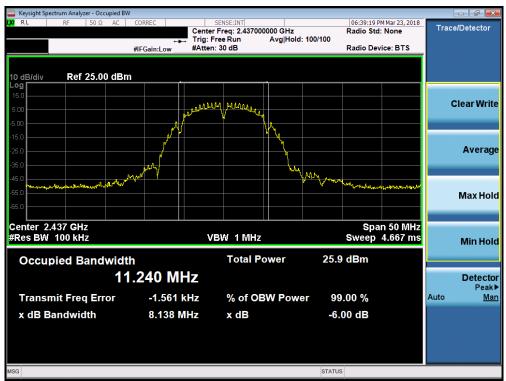
Figure 7-1. Test Instrument & Measurement Setup

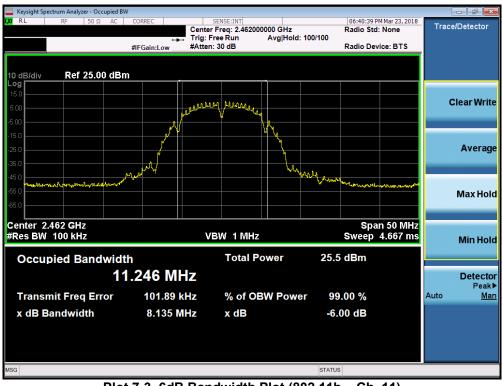
Test Notes


None

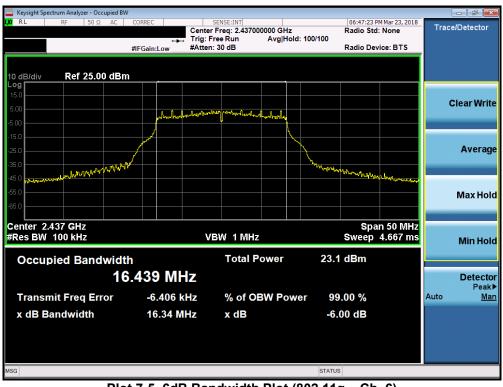
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 13 of 51
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.584	0.500
2437	6	b	1	8.138	0.500
2462	11	b	1	8.135	0.500
2412	1	g	6	16.08	0.500
2437	6	g	6	16.34	0.500
2462	11	g	6	16.33	0.500
2412	1	n	6.5/7.2 (MCS0)	17.16	0.500
2437	6	n	6.5/7.2 (MCS0)	17.55	0.500
2462	11	n	6.5/7.2 (MCS0)	17.30	0.500


Table 7-2. Conducted Bandwidth Measurements

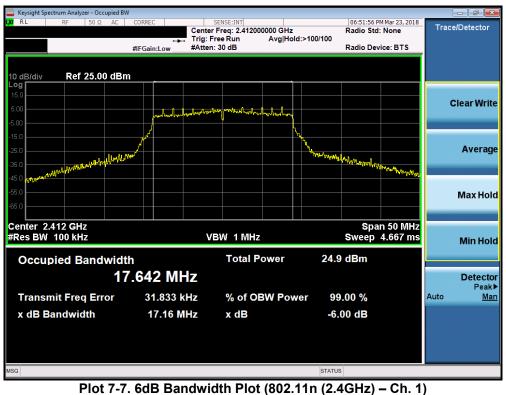

Plot 7-1. 6dB Bandwidth Plot (802.11b - Ch. 1)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 14 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 14 of 51
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

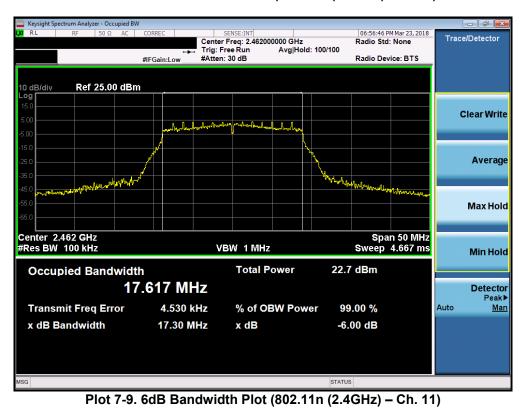

Plot 7-3. 6dB Bandwidth Plot (802.11b - Ch. 11)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 15 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 15 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			




Plot 7-5. 6dB Bandwidth Plot (802.11g - Ch. 6)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset	Page 16 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018		


(002.1 m (2.4012) = 00.1)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 17 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6)

3LSMJ737T MEASUREMENT REPORT Approved by:

FCC ID: A3LSMJ737T		(CERTIFICATION)	SAMSUNG	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Fage 10 01 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.3 Output Power Measurement §15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

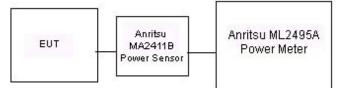
The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v04 – Section 9.1.3 PKPM1 Peak Power Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v04 – Section 9.2.3.2 Method AVGPM-G

Test Settings

Method PKPM1 (Peak Power Measurement)


Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

<u>Test Setup</u>

The EUT and measurement equipment were set up as shown in the diagrams below.

Test Notes

None

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 19 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	Freq [MHz]	Channel	nel Detector Power Limi		IEEE Transmission Mode		Conducted Power Limit	Conducted Power
				802.11b	802.11g	802.11n	[dBm]	Margin [dB]
N	2412	1	AVG	18.42	16.94	17.78	30.00	-11.58
.4GHz			PEAK	21.57	24.01	24.95	30.00	-5.05
Ŭ	2437	6	AVG	18.65	16.14	17.71	30.00	-11.35
7			PEAK	21.84	23.16	24.81	30.00	-5.19
2	2457	10	AVG	18.16	16.02	17.75	30.00	-11.84
			PEAK	21.29	23.14	24.79	30.00	-5.21
	2462	11	AVG	18.13	15.85	15.56	30.00	-11.87
			PEAK	21.26	23.01	22.95	30.00	-6.99

Table 7-3. Conducted Output Power Measurements

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 20 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.4 Power Spectral Density §15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v04 – Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

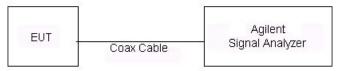


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

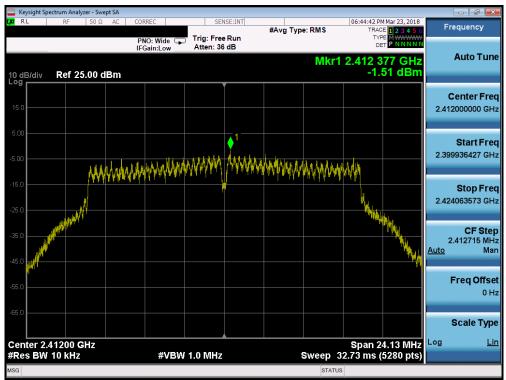
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 21 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	0.95	8.00	-7.05	Pass
2437	6	b	1	0.96	8.00	-7.04	Pass
2462	11	b	1	2.56	8.00	-5.44	Pass
2412	1	g	6	-1.51	8.00	-9.51	Pass
2437	6	g	6	-2.40	8.00	-10.40	Pass
2462	11	g	6	-2.44	8.00	-10.44	Pass
2412	1	n	6.5/7.2 (MCS0)	0.67	8.00	-7.33	Pass
2437	6	n	6.5/7.2 (MCS0)	-0.52	8.00	-8.52	Pass
2462	11	n	6.5/7.2 (MCS0)	-2.35	8.00	-10.35	Pass

Table 7-4. Conducted Power Density Measurements

Plot 7-10. Power Spectral Density Plot (802.11b - Ch. 1)

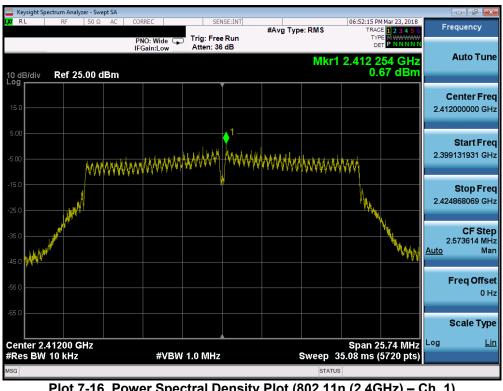
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 22 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			


Plot 7-11. Power Spectral Density Plot (802.11b - Ch. 6)

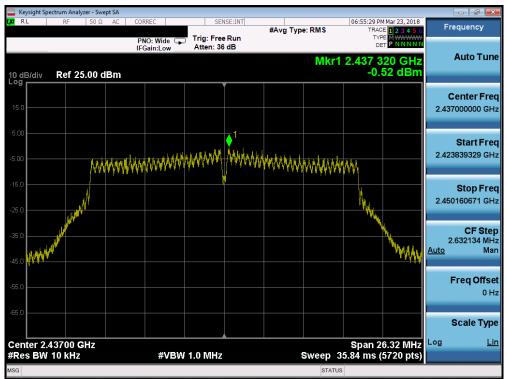
Plot 7-12. Power Spectral Density Plot (802.11b - Ch. 11)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 23 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-13. Power Spectral Density Plot (802.11g - Ch. 1)


Plot 7-14. Power Spectral Density Plot (802.11g - Ch. 6)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 24 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 24 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			


Plot 7-15. Power Spectral Density Plot (802.11g - Ch. 11)

Plot 7-16. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 25 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 25 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 26 of 51
© 2018 PCTEST Engineering La	boratory. Inc.			V 7.5 2/26/2018

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, and 6.5/7.2Mbps for "n" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v04 – Section 11.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

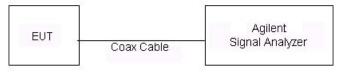
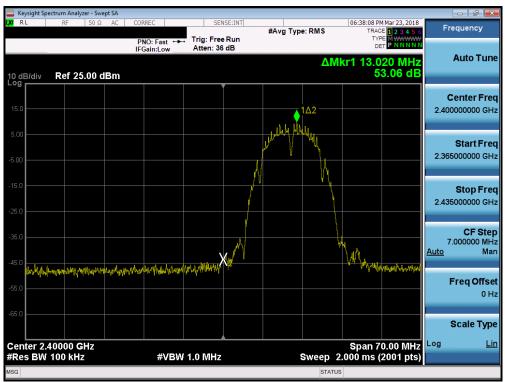
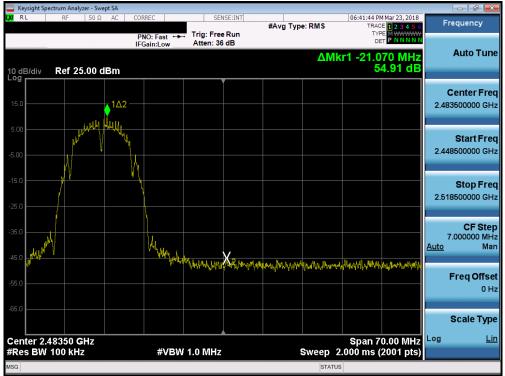


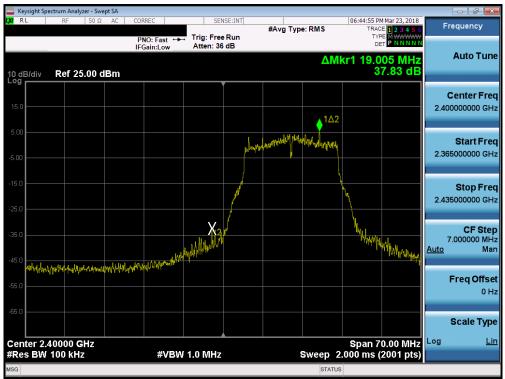
Figure 7-4. Test Instrument & Measurement Setup


Test Notes

None

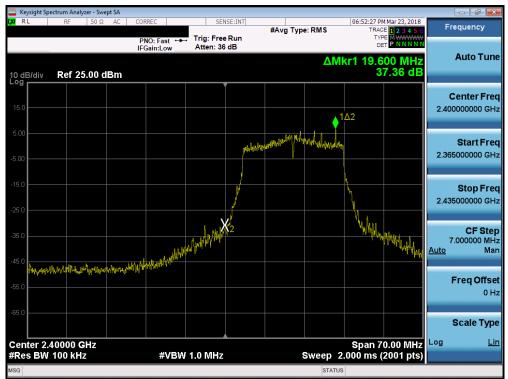

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 27 of 51
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 7.5 2/26/2018

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



Plot 7-20. Band Edge Plot (802.11b - Ch. 11)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 28 of 51
© 2018 PCTEST Engineering La	boratory. Inc.	-		V 7.5 2/26/2018


Plot 7-21. Band Edge Plot (802.11g- Ch. 1)

Plot 7-22. Band Edge Plot (802.11g - Ch. 11)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 29 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Plot 7-23. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

Plot 7-24. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 51		
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 30 of 51		
© 2018 PCTEST Engineering Laboratory, Inc.						

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", and "n" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of ANSI C63.10-2013 and KDB 558074 D01 v04.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v04 – Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

EUT	Coax Cable	Agilent Signal Analyzer
	COax Caple	

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 21 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 31 of 51
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 7.5 2/26/2018

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 32 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Image: Normal system Image: Normal system <th< th=""><th>🔤 Keysight S</th><th>ipectrum A</th><th>nalyzer - Swe</th><th>ept SA</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	🔤 Keysight S	ipectrum A	nalyzer - Swe	ept SA											
Heam 200 Mkr1 9.785 6 GHz -28.40 dBm Auto Tur 100 -28.40 dBm -28.40 dBm -28.40 dBm 100 -28.40 dBm -28.	XU RL	RF	50 Ω	AC	P	NO: Fast		Trig: Free	Run	#Avg Typ	e: RMS	TI	RACE 1 2 3 4 5 6	Fr	equency
15.0 Center Fr 15.0 Center Fr 5.00 Start Fr 5.01 Start Fr <	10 dB/div	Ref	25.00 c	iBm		Gain:Lov	N	Atten: 36	dB			Mkr1 9.7 -23	85 6 GHz		Auto Tune
500 Start Fr 500 Start Fr 150 Start Fr 250 Start Start Fr 250 Start Start Start Fr 250 Start Start Start Start Fr 250 Start Star															Center Fred 5000000 GHz
250 0.1 2009 dem 0.1 2009 dem 10.00000000 G 350 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.00000000 G 450 0.1 2009 dem 0.1 2009 dem 10.000000000 G 450 0.1 2009 dem 0.1 2009 dem 10.000000000 G 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem 0.1 2000 dem 10.0 000 dem 450 0.1 2000 dem														30	Start Fred
35.0 CC 930 45.0 997.00000 M 65.0 Freq Offs 65.0 Stop 10.000 GHz Log L Log L													DL1 -20.09 dBm	10.000	Stop Fred
55.0 55.0		and alternational state			Televiti States							intering teleformation also a second deservation			CF Stej .000000 MH Mai
Start 30 MHz Stop 10.000 GHz															F req Offse 0 H
															Scale Type
MSG STATUS	#Res BV		IHz			#V	/BW	3.0 MHz		s		18.00 ms	(30001 pts)		

Plot 7-25. Conducted Spurious Plot (802.11b - Ch. 1)

Plot 7-26. Conducted Spurious Plot (802.11b – Ch. 1)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 33 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

	pectrum Analy											- • •
X/RL	RF	50 Ω	AC C	ORREC		NSE:INT	#Avg Typ	e: RMS	TRA	M Mar 23, 2018	Free	quency
				PNO:Fast ⊂ FGain:Low	Trig: Fre				TY D	PE MWWWWW ET P NNNNN		
				FGain:Low	Atten: 00			ML	r1 9 61	2 2 GHz	4	Auto Tune
10 dB/div	Ref 25	5.00 dE	3m						-27.	87 dBm		
						Ĭ					C	enter Fred
15.0												000000 GH
5.00												Otes at Ease
												Start Free
-5.00											00.0	
-15.0												
										DL1 -19.77 dBm		Stop Fre 000000 GH
-25.0										↓	10.0000	00000 GH
				an 🏜	dina and a second	منقلمه الإسلام	والروالي وأسريها وروا	a fa tala paka pata sa	ويدادره فالعراطة	In a state of the last of the		CF Step
-35.0	-	(Boolense)	A CONTRACTOR	and industry of the second			1	يلعني والاقتعاد ومع	وروامين والاست	a distanti di seconda d	997.0	000000 MH
-45.0	and the second second	أأت والقري									<u>Auto</u>	Mai
-45.0												
-55.0											F	req Offse
												0 H
-65.0												
											S	cale Type
Start 30									Stop 10	.000 GHz	Log	Lir
#Res B₩	/ 1.0 MH	Z		#VB\	V 3.0 MHz		S	weep 18	.00 ms (3	30001 pts)		
ISG								STATUS				

Plot 7-27. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 7-28. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 24 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 34 of 51
© 2018 PCTEST Engineering La	boratory. Inc.			V 7.5 2/26/2018

	pectrum Analy											_	
RL	RF	50 Ω	AC	PNO:	Fast 🔾			#Avg Typ	e: RMS	TRA	MMar 23, 2018 CE 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Fred	luency
0 dB/div	Ref 25	i.00 dl	3m	IFGair	:Low	Atten: 3	o dB		M	(r1 9.95	7 5 GHz 32 dBm	A	uto Tun
og													nter Fre 00000 G⊦
5.00													Start Fre
5.0											DL1 -20.22 dBm		Stop Fre 00000 GH
5.0	ana daha bashdar Yaratir da pilatan	n al Night a		tooris ^a rtha Normal ^{ar} tha				an feitin a feitin an		ndrede joerde gegerelen. - ^{den} te schild oor daard		997.0 <u>Auto</u>	CF Ste 00000 MI Ma
5.0												Fr	r eq Offs 0 I
tart 30	MHz									Stop 10	.000 GHz	So Log	cale Typ
	/ 1.0 MHz				#\/D\A	/ 3.0 MHz				00	0001 pts)		

Plot 7-29. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 7-30. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 51	
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 35 of 51	
© 2018 PCTEST Engineering Laboratory, Inc.					

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-5 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]		
Above 960.0 MHz	500	3		

Table 7-5. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3 KDB 558074 D01 v04 – Section 12.1, 12.2.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 26 of 51	
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 36 of 51	
© 2018 PCTEST Engineering Laboratory Inc.					

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

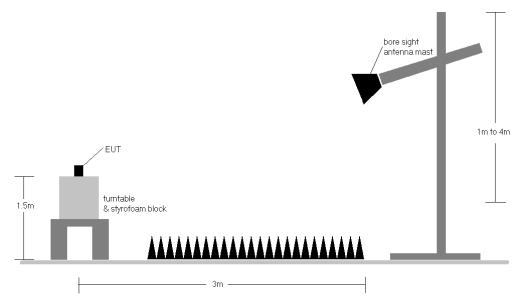


Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v04 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in Section 15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-5.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 37 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

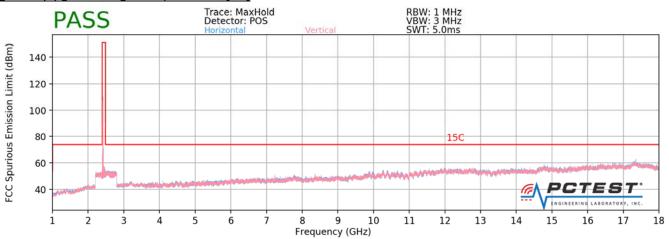
Sample Calculations

Determining Spurious Emissions Levels

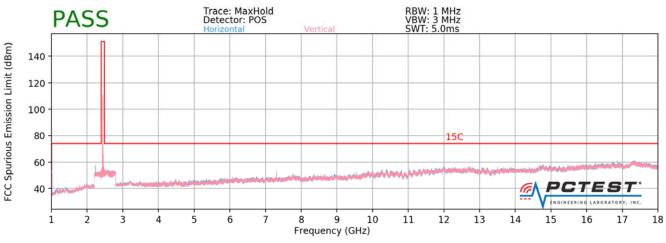
- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- o Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

Radiated Band Edge Measurement Offset

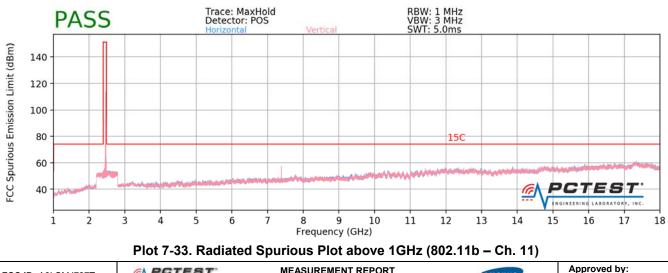
• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

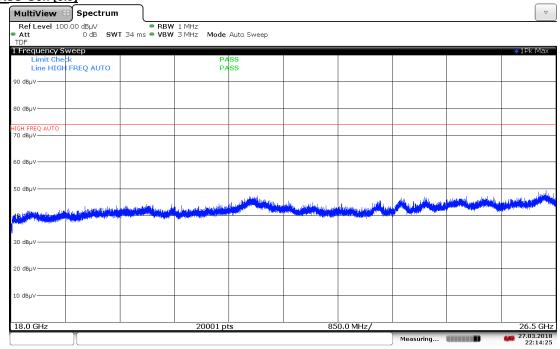

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 51	
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 38 of 51	
© 2018 PCTEST Engineering La	boratory. Inc.	-		V 7.5 2/26/2018	

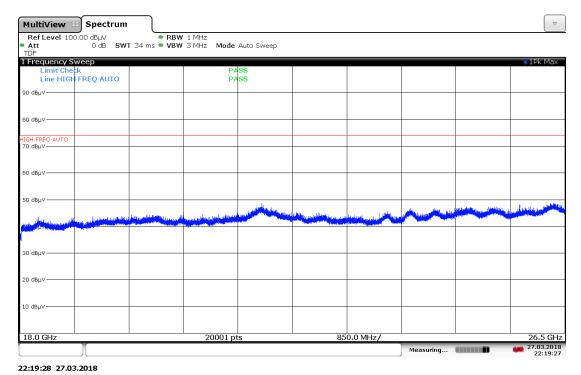


Γ


7.7.1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]



FCC ID: A3LSMJ737T	ERGINEERIES LARDRATORT. INC.	(CERTIFICATION)	SAMSUNG	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Fage 39 01 51
© 2018 PCTEST Engineering La	horatory Inc			V 7 5 2/26/2018



Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-35. Radiated Spurious Plot above 18GHz – Vertical

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset	ble Handset	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

802.11b
1 Mbps
3 Meters
2412MHz
01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	V	375	356	-75.19	4.41	36.22	53.98	-17.76
4824.00	Peak	V	375	356	-66.29	4.41	45.12	73.98	-28.86
12060.00	Avg	V	-	-	-82.05	15.59	40.54	53.98	-13.44
12060.00	Peak	V	-	-	-70.56	15.59	52.03	73.98	-21.95

Table 7-6. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

80	02.11b
1	Mbps
3	Meters
24	437MHz
06	6

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	V	395	65	-76.61	5.59	35.98	53.98	-18.00
4874.00	Peak	V	395	65	-66.57	5.59	46.02	73.98	-27.96
7311.00	Avg	V	278	105	-70.99	8.35	44.36	53.98	-9.62
7311.00	Peak	V	278	105	-64.55	8.35	50.80	73.98	-23.18
12185.00	Avg	V	-	-	-81.79	15.18	40.39	53.98	-13.59
12185.00	Peak	V	-	-	-70.60	15.18	51.58	73.98	-22.40

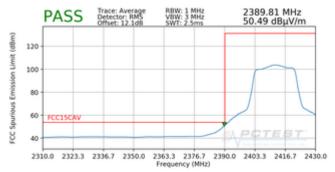
Table 7-7. Radiated Measurements

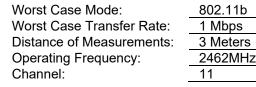
FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 51	
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 41 of 51	
© 2018 PCTEST Engineering La	horatory Inc			V 7 5 2/26/2018	

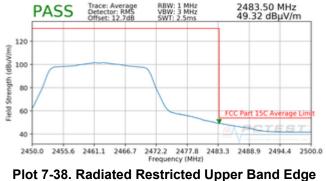
Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	V	332	349	-76.55	4.94	35.39	53.98	-18.59
4924.00	Peak	V	332	349	-66.57	4.94	45.37	73.98	-28.61
7386.00	Avg	V	317	117	-69.41	8.07	45.66	53.98	-8.32
7386.00	Peak	V	317	117	-62.41	8.07	52.66	73.98	-21.32
12310.00	Avg	V	-	-	-81.83	15.65	40.82	53.98	-13.16
12310.00	Peak	V	-	-	-70.08	15.65	52.57	73.98	-21.41

Table 7-8. Radiated Measurements

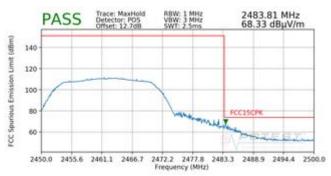

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset	le Handset	
© 2018 PCTEST Engineering La	boratory. Inc.	÷		V 7.5 2/26/2018


7.7.2 Radiated Restricted Band Edge Measurements §15.205 §15.209; RSS-Gen [8.9]


The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:802.11bWorst Case Transfer Rate:1 MbpsDistance of Measurements:3 MetersOperating Frequency:2412MHzChannel:1

Plot 7-36. Radiated Restricted Lower Band Edge Measurement (Average)



Measurement (Average)

Plot 7-37. Radiated Restricted Lower Band Edge Measurement (Peak)

Plot 7-39. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 43 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-9 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-9. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 44 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

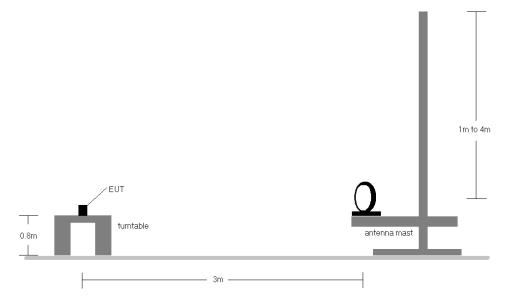
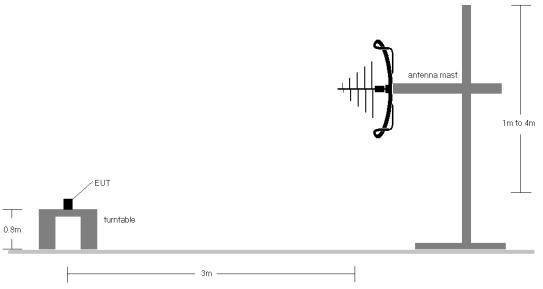
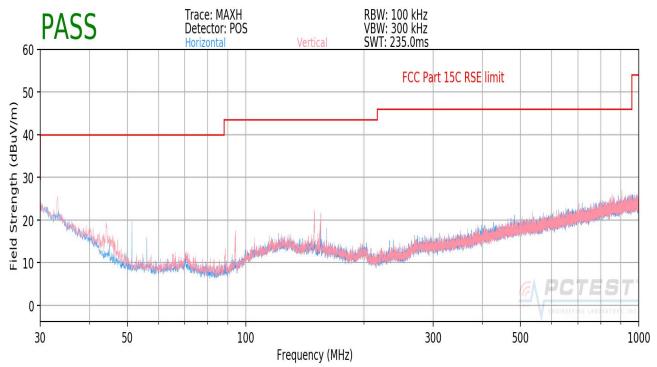



Figure 7-7. Radiated Test Setup < 30Mhz

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 45 of 51
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/2				



- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen(8.10) are below the limit shown in Table 7-9.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 46 of 51
© 2018 PCTEST Engineering Laboratory Inc.				V 7 5 2/26/2018

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-40. Radiated Spurious Plot below 1GHz

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 47 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 47 of 51
© 2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018

7.9 Line-Conducted Test Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-10. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

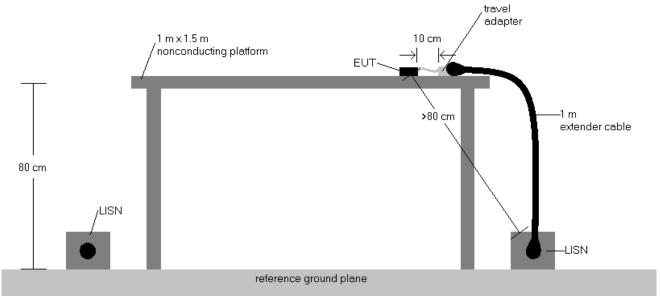
ANSI C63.10-2013, Section 6.2

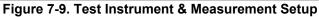
Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

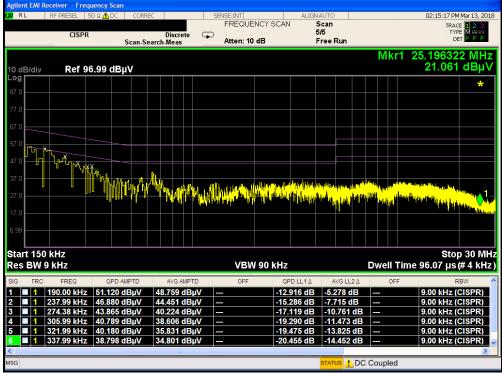

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 48 of 51
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen(8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 40 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 49 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 50 of 51
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMJ737T** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMJ737T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 51
1M1803150042-04.A3L	3/8-4/5/2018	Portable Handset		Page 51 of 51
© 2018 PCTEST Engineering Laboratory, Inc.				