

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

SAR EVALUATION REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS b/g/n and NFC

MODEL NUMBER: SM-J600L, SM-J600N

FCC ID: A3LSMJ600KOR

REPORT NUMBER: 4788452485-S1V1

ISSUE DATE: 5/11/2018

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev.	Date	Revisions	Revised By	
V1	5/11/2018	Initial Issue	Sunghoon Kim	

Table of Contents

1.		Attestation of Test Results	5
2.		Test Specification, Methods and Procedures	6
3.		Facilities and Accreditation	6
4.		SAR Measurement System & Test Equipment	7
	4.1.	SAR Measurement System	
	4.2.	SAR Scan Procedures	8
	4.3.	Test Equipment	10
5.		Measurement Uncertainty	10
6.		Device Under Test (DUT) Information	11
	6.1.	DUT Description	11
	6.2.	Wireless Technologies	11
	6.3.	Nominal and Maximum Output Power	12
	6.4.	General LTE SAR Test and Reporting Considerations	13
	6.5.	LTE (TDD) Considerations	14
	6.6.	Power Reduction by Proximity Sensing	15
	6.0	6.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)	15
	6.0	6.2. Proximity Sensor Coverage (KDB 616217 §6.3)	17
	6.0	6.3. Tilt angle of the front side	17
	6.0	6.4. Resulting test positions for SAR measurements	17
7.		RF Exposure Conditions (Test Configurations)	18
8.		Dielectric Property Measurements & System Check	19
	8.1.	Dielectric Property Measurements	19
	8.2.	System Check	22
9.		Conducted Output Power Measurements	
	9.1.	GSM	
	9.2.	W-CDMA	
	9.3.	LTE	
	9.4.	Wi-Fi 2.4 GHz (DTS Band)	
	9.5.	Bluetooth	39
10		Measured and Reported (Scaled) SAR Results	40
	10.1	. GSM1900	42
	10.2		
	10.3	8. W-CDMA Band V	43

10.4.	. LTE Band 5 (10MHz Bandwidth)	43
10.5.	. LTE Band 17 (10MHz Bandwidth)	44
10.6.	. LTE Band 41 (20MHz Bandwidth)	44
10.7.	. Wi-Fi (DTS Band)	45
10.8.	. Bluetooth	46
11. \$	SAR Measurement Variability	47
12. I	DUT Holder Perturbations	48
13.	Simultaneous Transmission SAR Analysis	49
13.1.	. Sum of the SAR for GSM1900 & Wi-Fi & BT	50
13.2.	. Sum of the SAR for WCDMA Band II & Wi-Fi & BT	50
13.3.	. Sum of the SAR for WCDMA Band V & Wi-Fi & BT	51
13.4.	. Sum of the SAR for LTE Band 5 & Wi-Fi & BT	51
13.5.	. Sum of the SAR for LTE Band 17 & Wi-Fi & BT	51
13.6.	. Sum of the SAR for LTE Band 41 & Wi-Fi & BT	52
Appen	dixes	53
4788	3452485-S1V1 FCC Report SAR_App A_Photos & Ant. Locations	53
4788	3452485-S1V1 FCC Report SAR_App B_Highest SAR Test Plots	53
4788	3452485-S1V1 FCC Report SAR_App C_System Check Plots	53
4788	3452485-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients	53
4788	3452485-S1V1 FCC Report SAR_App E_Probe Cal. Certificates	53
<i>4</i> 788	RA52485-S1V1 FCC Report SAR App F Dipole Cal Certificates	53

1. Attestation of Test Results

	Published RF exposure KDB procedures IEEE Std 1528-2013
	1 00 11 01 11 3 21 1000
Applicable Standards	FCC 47 CFR § 2.1093
Model Number	SM-J600L and SM-J600N
FCC ID	A3LSMJ600KOR
Applicant Name	SAMSUNG ELECTRONICS CO.,LTD.

SAR Limits (W/Kg)

Exposure Category	Peak spatial-average(1g of tissue)	
General population / Uncontrolled exposure	1.6	

The Highest Reported SAR (W/kg)

		Equipment Class			
RF Exposure Con	iditions	Licensed	DTS	DSS(BT)	
Head		0.47	0.49	0.30	
Body-worn		0.42	0.21		
Hotspot		1.30	0.44		
	Head	0.96		0.77	
Simultaneous TX	Body-worn	0.63			
	Hotspot	1.07			
Date Tested		4/18/2018 to 4/30/2018			
Test Results		Pass			

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
-flex	2/40
Justin Park	Sunghoon Kim
Lead Test Engineer	Associate Test Engineer
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 648474 D04 Handset SAR v01r03
- o 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05
- 941225 D06 Hotspot Mode v02r01

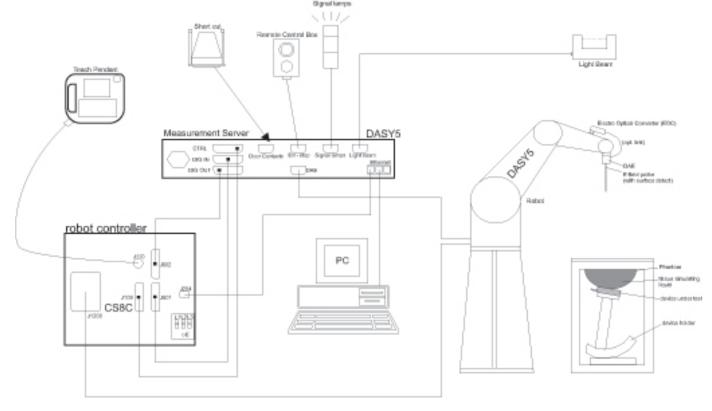
In addition to the above, the following information was used:

- TCB workshop October, 2014; Page 37, RF Exposure Procedures Update (Other LTE Considerations)
- TCB workshop October, 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 1 Room
SAR 2 Room
SAR 3 Room


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion,
 offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with
 standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤ 3 GHz	> 3 GHz		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	ion,	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid $\Delta z_{Z_{00m}}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E5071C	MY46522054	8-8-2018
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	8-2-2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	8-11-2018
Thermometer	Lutron	MHB-382SD	AH.91478	8-10-2018

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY50145882	8-7-2018
Power Sensor	Agilent	U2000A	MY54260010	8-8-2018
Power Sensor	Agilent	U2000A	MY54260007	8-8-2018
Power Amplifier	EXODUS	1410025-AMP2027-10003	10003	8-8-2018
Directional Coupler	Agilent	772D	MY52180193	8-7-2018
Directional Coupler	Agilent	778D	MY52180432	8-7-2018
Low Pass Filter	MICROLAB	LA-15N	03943	8-7-2018
Low Pass Filter	FILTRON	L14012FL	1410003S	8-7-2018
Attenuator	Agilent	8491B/003	MY39269292	8-7-2018
Attenuator	Agilent	8491B/010	MY39269315	8-7-2018
Attenuator	Agilent	8491B/020	MY39269298	8-7-2018
E-Field Probe (SAR1)	SPEAG	EX3DV4	7376	8-22-2018
E-Field Probe (SAR2)	SPEAG	EX3DV4	7330	1-22-2019
E-Field Probe (SAR3)	SPEAG	EX3DV4	7314	9-28-2018
Data Acquisition Electronics (SAR1)	SPEAG	DAE4	1468	8-22-2018
Data Acquisition Electronics (SAR2)	SPEAG	DAE4	1447	3-15-2019
Data Acquisition Electronics (SAR3)	SPEAG	DAE4	1494	7-20-2018
System Validation Dipole	SPEAG	D750V3	1122	2-19-2019
System Validation Dipole	SPEAG	D835V2	4d194	7-19-2018
System Validation Dipole	SPEAG	D1900V2	5d190	9-20-2018
System Validation Dipole	SPEAG	D2450V2	939	9-19-2018
System Validation Dipole	SPEAG	D2600V2	1097	1-17-2019
Thermometer (SAR1)	Lutron	MHB-382SD	AH.91463	8-10-2018
Thermometer (SAR2)	Lutron	MHB-382SD	AH.50215	2-9-2019
Thermometer (SAR3)	Lutron	MHB-382SD	AH.50213	8-16-2018

Others

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMW500	150313	12-08-2018
Base Station Simulator	R&S	CMW500	150314	12-05-2018
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	8-7-2018

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 10 of 53

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Overall Diago	Overall (Length x Width): 149.3 mm x 70.7 mm Overall Diagonal: 155.5 mm Display Diagonal: 142.8 mm							
Back Cover		Cover is not removable.							
Battery Options		geable battery is not user accessible							
Wireless Router (Hotspot)		Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices. ☑ Mobile Hotspot (Wi-Fi 2.4 GHz)							
Wi-Fi Direct		Wi-Fi Direct enabled devices transfer data directly between each other ⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz)							
Test Sample Information	No.	S/N	Notes						
	1	5200874F4E6015E7	Wi-Fi/BT conduction						
	2	RD50337M	Main conduction						
	3	R39K30VMWSK	SAR						
	4	R39K30VN42F	SAR						

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing	
GSM	1900	Voice (GMSK) GPRS (GMSK) □ Class 8 - 1 Up, 4 Down □ Class 10 - 2 Up, 4 Down □ Class 12 - 4 Up, 4 Down □ Class 33 - 4 Up, 5 Down		GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%
	Does this device suppo	rt DTM (Dual Transfer Mode)?	? □ Yes ⊠ No	
W-CDMA (UMTS)	Band II Band V	UMTS Rel. 99 (Voice & Dat HSDPA (Release.5) HSUPA (Release.6) HSPA+ (Release.7)	a)	100%
LTE	FDD Band 5 FDD Band 17 TDD Band 41 Does this device suppo	QPSK 16QAM ☑ Rel. 10 Does not suppor rt SV-LTE (1xRTT-LTE)? ☐ Y	33 S	100%(FDD) 63.3%(TDD) ¹
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n (HT20)	802.11g 96.9% (802.11g)	
Bluetooth	2.4 GHz	Version 4.2 LE		77.0% (DH5)

Notes:

The Bluetooth protocol is considered source-based averaging. Bluetooth GFSK (DH5) was verified to have the highest duty cycle of 77.0% and was considered and used for SAR Testing.

^{2.} Duty cycle for Wi-Fi is referenced from the DTS report.

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

RF Air interface	Mode	Time Slots	Max. RF Ou		
			Tune-up Limit	Frame Pw r	
	Voice	1	30.5	21.5	
	GPRS	1	30.5	21.5	
	GPRS	2	28.0	22.0	
	GPRS	3	26.5	22.2	
GSM1900	GPRS	4	25.0	22.0	
	EGPRS	1	27.5	18.5	
	EGPRS	2	25.5	19.5	
	EGPRS	3	24.3	20.0	
	EGPRS	4	23.1	20.1	

RF Air interface	Mode	Max. RF Output Pow er (dBm)			
W-CDMA	R99	24.5			
Band II	HSDPA	22.0			
Danu II	HSUPA	23.5			
W-CDMA	R99	25.0			
Band V	HSDPA	23.0			
Dailu V	HSUPA	23.0			

RF Air interface	Mode	Max. RF Output Pow er (dBm)
LTE Band 5	QPSK	25.0
LTE Band 17	QPSK	25.0
LTE Band 41	QPSK	24.0

Notes:

1. LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

RF Air interface	Mode	Max. RF Output Power (dBm)	Reduced RF Output Power (dBm)
MET: O. A. O.L.	802.11b	18.0	13.0
WiFi 2.4 GHz (Ch. 1~Ch. 10)	802.11g	17.0	13.0
(GII. 1~GII. 10)	802.11n HT20	17.0	13.0
M/IT: O. A. O. I.	802.11b	18.0	13.0
WiFi 2.4 GHz (Ch. 11)	802.11g	15.5	13.0
(01. 11)	802.11n HT20	15.0	13.0
M/IT: O. A. O.L.	802.11b	8.5	
WiFi 2.4 GHz (Ch. 12)	802.11g	8.5	
(01. 12)	802.11n HT20	8.5	
MET: O. A. O.L.	802.11b	3.0	
WiFi 2.4 GHz (Ch. 13)	802.11g	3.0	
(01. 13)	802.11n HT20	3.0	
Blu	ietooth	11.0	
Blue	tooth LE	9.5	

Note(s):

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

6.4. General LTE SAR Test and Reporting Considerations

Item	Description									
Frequency range, Channel Bandwidth,		Frequency range: 824 - 849 MHz								
Numbers and Frequencies	Band 5				Cha	annel Ban	dwidth			
Numbers and Frequencies		20 MHz		15 MHz	10 N	lHz	5 MHz	3 MHz	1.4 MHz	
					204		20425/	20415/	20407/	
	Low				82	9	826.5	825.5	824.7	
	N 41 -1				2052	25/	20525/	20525/	20525/	
	Mid				836	.5	836.5	836.5	836.5	
	Lliab				2060	00/	20625/	20635/	20643/	
	High				84	4	846.5	847.5	848.3	
				Fr	equency	range: 7	04 - 716 MI	Hz		
	Band 17				Cha	annel Ban	dwidth			
		20 MHz		15 MHz	10 N	lHz	5 MHz	3 MHz	1.4 MHz	
					2378		23755/			
	Low				70		706.5			
					2379		23790/			
	Mid				71	0	710			
					2380		23825/			
	High				71	1	713.5			
				Fre	quency	range: 24	96 - 2690 N	ЛHz		
	Band 41					annel Ban				
		20 MHz		15 MHz	10 N	lHz	5 MHz	3 MHz	1.4 MHz	
	Low	Low 39750 / 2506.0								
	Low-Mid	w-Mid 40185 / 2549.5								
	Mid	40620 / 2593.0								
	Mid-High	41055 / 2636.5								
	High	41490 / 2680.0								
LTE transmitter and antenna implementation	Refer to App	endix A.								
	Table Modulat		6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3 on Channel bandwidth / Transmission bandwidth (N _{RB}) MPR							
	Modulat		.4	3.0	5	10	15	20	MPR (dB)	
			Hz	MHz	MHz	MHz	MHz	MHz		
	QPSk		5	> 4	> 8	> 12	> 16	> 18	≤ 1	
	16 QA		5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
Mariana and discount of the control	16 QAI 64 QAI		5	> 4 ≤ 4	> 8 ≤ 8	> 12 ≤ 12	> 16 ≤ 16	> 18 ≤ 18	≤ 2 ≤ 2	
Maximum power reduction (MPR)	64 QA		5	> 4	> 8	> 12	> 16	> 18	≤ 2 ≤ 3	
	256 QA					· <u>-</u> ≥1	1	1	≤ 5	
		cturer MPR		-	/s within	the 3GPI	o maximum	MPR allowa	nce but may	
	not follow the									
	A-MPR (add	itional MPF	R) was	disabled d	uring SA	R testing				
Power reduction	No									
Spectrum plots for RB configurations								nd power mea ion are not in		

Notes:

^{1.} SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.5. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

	Nori	mal cyclic prefix in	downlink	Extended cyclic prefix in downlink				
Special	DwPTS		PTS	DwPTS UpPTS				
subframe configuration		Normal cyclic Extended cyclic prefix in uplink prefix in uplink			Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$				
1	$19760 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	\rightarrow 2192· T_{-}	$2560 \cdot T_{\rm s}$		
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$	$23040 \cdot T_{\rm s}$				
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$				
4	$26336 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$				
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	5120 T		
6	$19760 \cdot T_{\rm s}$			$23040 \cdot T_{\rm s}$	4364·1 ₈	$5120 \cdot T_{\rm s}$		
7	$21952 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_{\rm s}$				
8	$24144 \cdot T_{\rm s}$			-	-	-		
9	$13168 \cdot T_{\rm s}$			-	-	-		

Calculated Duty Cycle

Liebale	Downlink-to-				Sub	frame	e Num	ber				
Uplink- Downlink Configuration	Uplink Switch-point Periodicity	0	1	2	3	4	5	6	7	8	9	Calculated Duty Cycle (%)
0	5 ms	D	S	U	J	כ	D	S	U	U	J	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

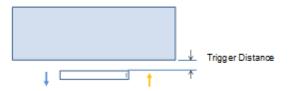
Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $5120 \times [1/(15000 \times 2048)] \times 2 + 6 \text{ ms} = 63.33\%$ where

 $T_s = 1/(15000 \times 2048)$ seconds

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle and Special Subframe 7.


6.6. Power Reduction by Proximity Sensing

6.6.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

Front of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

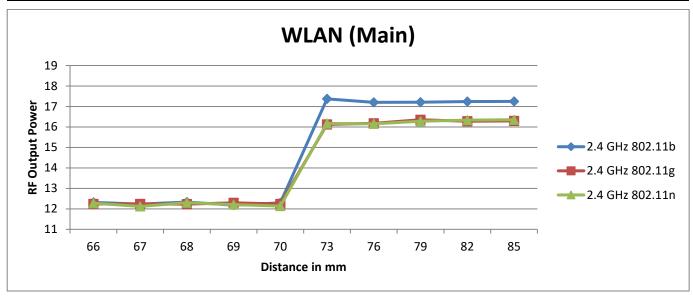
It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

Proximity Sensor Trigger Distance Assessment KDB 616217 §6.2, Front

LEGEND

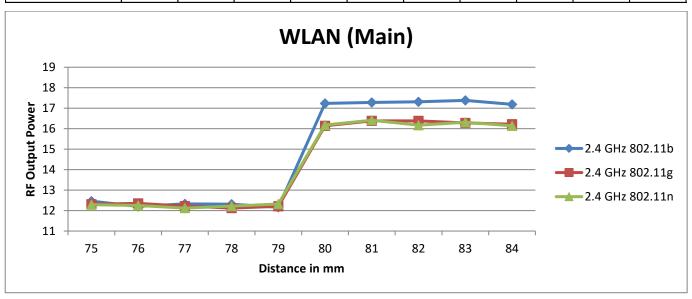
- Direction of DUT travel for determination of power reduction triggering point
- Direction of DUT travel for determination of full power resumption triggering point

Summary of Trigger Distances


Tissue	Trigger dista	ance - Front
simulating	Moving	Moving
liquid	toward	from
iiquia	phantom	phantom
2450 Head	70 mm	79 mm

Proximity Sensor Triggering Distance Measurement Results

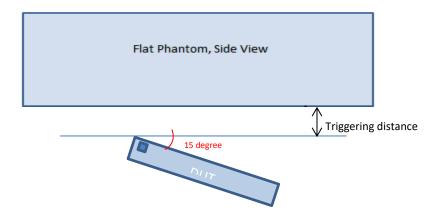
WLAN 2.4 GHz


Front, DUT Moving Toward (Trigger) from the Phantom

	Distance to DUT vs. Output Power in dBm											
Distance	66	67	68	69	70	73	76	79	82	85		
2.4 GHz 802.11b	12.3	12.2	12.3	12.2	12.3	17.4	17.2	17.2	17.2	17.3		
2.4 GHz 802.11g	12.2	12.2	12.2	12.3	12.2	16.1	16.2	16.4	16.3	16.3		
2.4 GHz 802.11n	12.3	12.1	12.3	12.2	12.1	16.2	16.2	16.3	16.3	16.4		

Front, DUT Moving Away (Release) from the Phantom

	Distance to DUT vs. Output Power in dBm												
Distance	75	76	77	78	79	80	81	82	83	84			
2.4 GHz 802.11b	12.5	12.2	12.3	12.3	12.2	17.2	17.3	17.3	17.4	17.2			
2.4 GHz 802.11g	12.3	12.4	12.2	12.1	12.2	16.1	16.4	16.4	16.3	16.2			
2.4 GHz 802.11n	12.3	12.3	12.1	12.2	12.3	16.2	16.4	16.2	16.3	16.1			


6.6.2. Proximity Sensor Coverage (KDB 616217 §6.3)

This device uses a proximity senor that is triggering in any conditions the user may use the device in proximity of the sensor in the device. Therefore, no further sensor coverage assessments were required according to KDB 616217 §6.3.

6.6.3. Tilt angle of the front side

Proximity sensor is triggering at 70mm on front side according to KDB 616217 Sec 6.2.

For tilt angle (15 degree) of the front side, Power is reduced at 70mm according to operate Proximity sensor. So All head exposure tests are evaluated using reduced power.

Summary of Tilt Angle of the front side to Proximity Sensor Triggering

Band	Minimum trigger distance measured	Minimum distance at which	Power reduc	tion status
(MHz)	according to KDB 616217 §6.2	power reduction was maintained at +15°	0°	15°
2450	70 mm	70 mm	On	On

6.6.4. Resulting test positions for SAR measurements

Wireless technologies	DUT Position	Sec.6.6.1 Triggering Distance	Sec.6.6.2 Coverage	Sec.6.6.3 Tilt Angle at 15 degree	Worst case distance for SAR
WLAN	Front	70 mm	N/A	70 mm	69 mm

Notes:

- 1. Worst case distance for SAR is not considered for body exposure condition. Because Power reduction is applied only voice or VoIP held to ear scenarios.
- 2. This proximity sensor is only operating in Head exposure condition. So tilt (15 degree) position of Head exposure was additional verified.

Page 17 of 53

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	пеац	O IIIIII	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
WWAN	Войу	13 111111	Front	N/A	Yes	
VVVVAIN			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Hotspot	10 mm	Edge 1 (Top)	> 25 mm	No	1
	Ποιδροί	10 111111	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	i icau	O IIIIII	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Dody	13 111111	Front	N/A	Yes	
WLAN			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Hotspot /	10 mm	Edge 1 (Top)	< 25 mm	Yes	
	Wi-Fi Direct	10 111111	Edge 2 (Right)	> 25 mm	No	1
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	< 25 mm	Yes	

Notes:

^{1.} SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hotspot SAR.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	Н	ead	Be	ody
raiget Frequency (MHZ)	$\epsilon_{\rm r}$	σ (S/m)	€ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR 1 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Dody 2450	e'	51.8500	Relative Permittivity (ε_r):	51.85	52.70	-1.61	5
	Body 2450	e"	14.9400	Conductivity (σ):	2.04	1.95	4.37	5
4-18-2018	Body 2410	e'	51.9300	Relative Permittivity (ε_r):	51.93	52.76	-1.57	5
4-10-2010	Body 2410	e"	14.8400	Conductivity (σ):	1.99	1.91	4.25	5
	Body 2480	e'	51.7600	Relative Permittivity (ε_r):	51.76	52.66	-1.71	5
	Body 2460	e"	15.0300	Conductivity (σ):	2.07	1.99	4.04	5
	Body 2600	e'	51.4100	Relative Permittivity (ε_r):	51.41	52.51	-2.10	5
	B00y 2000	e"	15.3400	Conductivity (σ):	2.22	2.16	2.63	5
4-18-2018	Body 2500	e'	51.7100	Relative Permittivity (ε_r):	51.71	52.64	-1.76	5
4-10-2010	Body 2500	e"	15.0800	Conductivity (σ):	2.10	2.02	3.76	5
	Body 2700	e'	51.1100	Relative Permittivity (ε_r):	51.11	52.38	-2.43	5
	Body 2700	e"	15.6000	Conductivity (σ):	2.34	2.30	1.77	5
	Body 750	e'	53.6200	Relative Permittivity (ε_r):	53.62	55.55	-3.47	5
		e"	23.0400	Conductivity (σ):	0.96	0.96	-0.23	5
4-20-2018	Body 700	e'	54.1700	Relative Permittivity (ε_r):	54.17	55.74	-2.81	5
4-20-2010		e"	23.4200	Conductivity (σ):	0.91	0.96	-4.97	5
		e'	53.1700	Relative Permittivity (ε_r):	53.17	55.39	-4.01	5
	Body 790	e"	22.7700	Conductivity (σ):	1.00	0.97	3.52	5
	Body 2450	e'	52.4700	Relative Permittivity (ε_r):	52.47	52.70	-0.44	5
	Body 2430	e"	14.3900	Conductivity (σ):	1.96	1.95	0.53	5
4-27-2018	Body 2400	e'	52.5700	Relative Permittivity (ε_r):	52.57	52.77	-0.38	5
4-27-2010	Body 2400	e"	14.3100	Conductivity (σ):	1.91	1.90	0.61	5
	Body 2480	e'	52.3900	Relative Permittivity (ε_r):	52.39	52.66	-0.52	5
	Dody 2400	e"	14.4700	Conductivity (σ):	2.00	1.99	0.16	5
	Body 2450	e'	52.4400	Relative Permittivity (ε_r):	52.44	52.70	-0.49	5
4-30-2018	Body 2450	e"	14.7400	Conductivity (σ):	2.01	1.95	2.97	5
	Body 2400	e'	52.5100	Relative Permittivity (ε_r):	52.51	52.77	-0.50	5
	Body 2400	e"	14.6500	Conductivity (σ):	1.96	1.90	3.00	5
	Body 2480	e'	52.3900	Relative Permittivity (ε_r):	52.39	52.66	-0.52	5
l	Body 2480	e"	14.8100	Conductivity (σ):	2.04	1.99	2.51	5

SAR 2 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 835	e'	40.3200	Relative Permittivity (ε_r):	40.32	41.50	-2.84	5
	neau oss	e"	19.5200	Conductivity (σ):	0.91	0.90	0.70	5
4-18-2018	Head 820	e'	40.4900	Relative Permittivity (ε_r):	40.49	41.60	-2.67	5
4-10-2016	Fleau 620	e"	19.5800	Conductivity (σ):	0.89	0.90	-0.64	5
	Head 850	e'	40.1500	Relative Permittivity (ε_r):	40.15	41.50	-3.25	5
	rieau 650	e"	19.4800	Conductivity (σ):	0.92	0.92	0.62	5
	Body 1900	e'	51.8900	Relative Permittivity (ε_r):	51.89	53.30	-2.65	5
	600y 1900	e"	14.9100	Conductivity (σ):	1.58	1.52	3.63	5
4-19-2018	Body 1850	e'	51.9900	Relative Permittivity (ε_r):	51.99	53.30	-2.46	5
4-19-2016	600y 1650	e"	14.8600	Conductivity (σ):	1.53	1.52	0.56	5
	Body 1910	e'	51.8600	Relative Permittivity (ε_r):	51.86	53.30	-2.70	5
	Body 1910	e"	14.9300	Conductivity (σ):	1.59	1.52	4.32	5
	Head 2600	e'	37.4800	Relative Permittivity (ε_r):	37.48	39.01	-3.92	5
		e"	14.0400	Conductivity (σ):	2.03	1.96	3.44	5
4-19-2018	Head 2500	e'	37.8100	Relative Permittivity (ε_r):	37.81	39.14	-3.39	5
4-19-2016		e"	13.8100	Conductivity (σ):	1.92	1.85	3.54	5
		e'	37.0900	Relative Permittivity (ε_r):	37.09	38.88	-4.62	5
	rieau 2700	e"	14.2800	Conductivity (σ):	2.14	2.07	3.55	5
	Head 2450	e'	38.4100	Relative Permittivity (ε_r):	38.41	39.20	-2.02	5
	Fleau 2450	e"	13.5300	Conductivity (σ):	1.84	1.80	2.40	5
4-27-2018	Head 2400	e'	38.5900	Relative Permittivity (ε_r):	38.59	39.30	-1.80	5
4-27-2016	Fleau 2400	e"	13.4200	Conductivity (σ):	1.79	1.75	2.24	5
	Head 2480	e'	38.3100	Relative Permittivity (ε_r):	38.31	39.16	-2.18	5
	Fleau 2460	e"	13.6000	Conductivity (σ):	1.88	1.83	2.34	5
	Head 2450	e'	38.2400	Relative Permittivity (ε_r):	38.24	39.20	-2.45	5
4-30-2018	rieau 2450	e"	13.7600	Conductivity (σ):	1.87	1.80	4.14	5
	Head 2400	e'	38.3700	Relative Permittivity (ε_r):	38.37	39.30	-2.36	5
	1 leau 2400	e"	13.6400	Conductivity (σ):	1.82	1.75	3.91	5
	Head 2480	e'	38.1600	Relative Permittivity (ε_r):	38.16	39.16	-2.56	5
	Head 2480	e"	13.8200	Conductivity (σ):	1.91	1.83	4.00	5

SAR 3 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 1900	e'	38.6100	Relative Permittivity (ε_r):	38.61	40.00	-3.48	5
	Head 1900	e"	13.8000	Conductivity (σ):	1.46	1.40	4.14	5
4-18-2018	Head 1850	e'	38.8000	Relative Permittivity (ε_r):	38.80	40.00	-3.00	5
	Head 1050	e"	13.6900	Conductivity (σ):	1.41	1.40	0.59	5
	Head 1910	e'	38.5600	Relative Permittivity (ε_r):	38.56	40.00	-3.60	5
	Tieau 1910	e"	13.8100	Conductivity (σ):	1.47	1.40	4.76	5
	Head 750	e'	41.8600	Relative Permittivity (ε_r):	41.86	41.96	-0.24	5
	Tieau 750	e"	21.5000	Conductivity (σ):	0.90	0.89	0.39	5
4-18-2018	Head 700	e'	42.5500	Relative Permittivity (ε_r):	42.55	42.22	0.79	5
4-10-2010		e"	21.8300	Conductivity (σ):	0.85	0.89	-4.45	5
	Head 790	e'	41.3100	Relative Permittivity (ε_r):	41.31	41.76	-1.07	5
	Head 790	e"	21.2300	Conductivity (σ):	0.93	0.90	4.06	5
	Body 835	e'	54.0400	Relative Permittivity (ε_r):	54.04	55.20	-2.10	5
	Body 633	e"	21.7800	Conductivity (σ):	1.01	0.97	4.25	5
4-20-2018	Body 820	e'	54.2000	Relative Permittivity (ε_r):	54.20	55.28	-1.95	5
4-20-2010	Dody 620	e"	21.8500	Conductivity (σ):	1.00	0.97	2.87	5
	Body 850	e'	53.9000	Relative Permittivity (ε_r):	53.90	55.16	-2.28	5
	Body 630	e"	21.7100	Conductivity (σ):	1.03	0.99	3.94	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Ta	arget SAR Values (W/kg	a)
System Dipole	Sellar No.	Cai. Date	1 16q. (IVII 12)	1g/10g	Head	Body
D750V3	1122	2-19-2018	750	1g	8.22	8.63
D730V3	2.00.0		730	10g	5.35	5.72
D835V2	4d194	7-19-2017	835	1g	9.33	9.30
D033 V2 4013	40154	7 10 2017	033	10g	6.03	6.09
D1900V2	5d190	9-20-2017	1900	1g	38.30	40.00
D1900V2	34190	9-20-2017	3 20 2017		20.10	21.10
D2450V2	939	9-19-2017	2450	1g	52.30	50.70
D2430 V2	939 9-19-2017		2430	10g	24.60	23.90
D2600V2	1097	2018-01-17	2600	1g	56.40	54.40
D2000 V2	1091	2010 01-17	2000	10g	25.30	24.20

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 1 Room

	System	Dipole	т.с		Measured	d Results	Tanast	Dalta	Dist
Date Tested	Туре	Serial #	T.S. Liquid			Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
4-18-2018	D2450V2	939	Body	1g	5.27	52.70	50.70	3.94	1, 2
4-10-2010	D2430 V 2	939	Войу	10g	2.41	24.10	23.90	0.84	1, 2
4-18-2018	D2600V2	1097	Body	1g	5.62	56.20	54.40	3.31	
4-10-2016	D2000V2	1097	Бойу	10g	2.45	24.50	24.20	1.24	
4-20-2018	D750V3	1122	Body	1g	0.86	8.57	8.63	-0.70	
4-20-2010	D730V3	1122	Бойу	10g	0.57	5.72	5.72	0.00	
4-27-2018	D2450V2	939	Body	1g	4.99	49.90	50.70	-1.58	
4-27-2010	D2430 V 2	959	Войу	10g	2.29	22.90	23.90	-4.18	
4-30-2018	D2450\/2	020	939 Body	1g	5.02	50.20	50.70	-0.99	
4-30-2010	D2450V2	939	Body	10g	2.30	23.00	23.90	-3.77	

SAR 2 Room

	System	Dipole	т.о.	T.S.		l Results	Towart	Dalta	Plot
Date Tested	Type Serial #		Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
4-18-2018	D835V2	4d194	Head	1g	0.99	9.88	9.33	5.89	3, 4
4-10-2016	D033V2	40194	пеац	10g	0.65	6.49	6.03	7.63	3, 4
4-19-2018	D1900V2	5d190	Body	1g	4.29	42.90	40.00	7.25	5, 6
4-19-2010	D1900V2	30190	Body	10g	2.19	21.90	21.10	3.79	5, 0
4-19-2018	D2600V2	1097	Head	1g	5.95	59.50	56.40	5.50	7, 8
4-19-2010	D2000 V2	1097	Head	10g	2.61	26.10	25.30	3.16	7,0
4-27-2018	D2450V2	939	Head	1g	5.53	55.30	52.30	5.74	9, 10
4-27-2010	D2430 V Z	353	riead	10g	2.51	25.10	24.60	2.03	9, 10
4-30-2018	D2450V2	030	Head	1g	5.42	54.20	52.30	3.63	
4-30-2010	2018 D2450V2 939	Head	10g	2.47	24.70	24.60	0.41		

SAR 3 Room

	System	Dipole	TC	T.S.		d Results	Townst	Delta	Dist
Date Tested	Type	Serial #	Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	±10 %	Plot No.
4-18-2018	D1900V2	5d190	Head	1g	3.61	36.10	38.30	-5.74	
4-10-2016	D1900V2	30190	Head	10g	1.88	18.80	20.10	-6.47	
4-18-2018	D750V3	1122	Head	1g	0.79	7.93	8.22	-3.53	11, 12
4-10-2016	D730V3	1122	Head	10g	0.53	5.25	5.35	-1.87	11, 12
4-20-2018	D835V2	4d194	Body	1g	0.98	9.79	9.30	5.27	
4-20-2018	D033 V Z	40134	Бойу	10g	0.64	6.43	6.09	5.58	

9. Conducted Output Power Measurements

9.1. **GSM**

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

GSM1900 Measured Results

Full Power

Mode	Coding	Time	Ch No.	Freq.	Burst Pwr	Frame Pwr	Max. Frame
iviode	Scheme	Slots	CIT NO.	(MHz)	(dBm)	(dBm)	Pwr (dBm)
GSM			512	1850.2	29.3	20.3	
	CS1	1	661	1880.0	29.2	20.2	21.5
(Voice)			810	1909.8	28.9	19.9	
			512	1850.2	29.1	20.1	
		1	661	1880.0	29.0	20.0	21.5
			810	1909.8	28.7	19.6	
			512	1850.2	27.3	21.3	
		2	661	1880.0	27.2	21.2	22.0
GPRS	CS1		810	1909.8	26.9	20.9	
(GMSK)	031		512	1850.2	26.0	21.7	
		3	661	1880.0	25.6	21.3	22.2
			810	1909.8	25.3	21.0	
			512	1850.2	24.5	21.5	
		4	661	1880.0	24.4	21.4	22.0
			810	1909.8	24.1	21.1	
			512	1850.2	25.9	16.9	
		1	661	1880.0	25.8	16.8	18.5
			810	1909.8	25.3	16.3	
			512	1850.2	24.0	18.0	
		2	661	1880.0	24.0	18.0	19.5
EGPRS	MCS5		810	1909.8	23.6	17.6	
(8PSK)	IVICOS		512	1850.2	22.8	18.5	
		3	661	1880.0	22.5	18.3	20.0
			810	1909.8	22.3	18.0	
			512	1850.2	21.0	18.0	
		4	661	1880.0	21.0	18.0	20.1
			810	1909.8	20.8	17.8	

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 3 time slots for Max power and 3 time slots based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

9.2. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
MCDMA Conoral Sottings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA
	Subtest	1	2	3	4
	Loopback Mode	Test Mode 1			
	Rel99 RMC	12.2kbps RMC			
	HSDPA FRC	H-Set 1			
M CDMA	Power Control Algorithm	Algorithm 2			
W-CDMA General	βc	2/15	11/15	15/15	15/15
Settings	βd	15/15	15/15	8/15	4/15
Settings	Bd (SF)	64			
	βc/βd	2/15	11/15	15/8	15/4
	βhs	4/15	24/15	30/15	30/15
	MPR (dB)	0	0	0.5	0.5
	D _{ACK}	8			
	D _{NAK}	8			
HSDPA	DCQI	8			
Specific	Ack-Nack repetition factor	3			
Settings	CQI Feedback (Table 5.2B.4)	4ms			
	CQI Repetition Factor (Table 5.2B.4)	2			
	Ahs=βhs/βc	30/15			

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in table C,11.1.3 of 3GPP TS 34.121-1 v13.

A summary of these settings are illustrated below:

	Mode	HSPA				
	Subtest	1	2	3	4	5
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2 kbps RM	1C			
	HSDPA FRC	H-Set 1				
	HSUPA Test	HSPA				
	Power Control Algorithm	Algorithm 2				Algorithm 1
WCDMA	βc	11/15	6/15	15/15	2/15	15/15
General	βd	15/15	15/15	9/15	15/15	0
Settings	βec	209/225	12/15	30/15	2/15	5/15
•	βc/βd	11/15	6/15	15/9	2/15	-
	βhs	22/15	12/15	30/15	4/15	5/15
	βed	1309/225	94/75	47/15	56/75	47/15
	CM (dB)	1	3	2	3	1
	MPR (dB)	0	2	1	2	0
	DACK	8		11	.	0
	DNAK	8				0
HSDPA	DCQI	8				0
Specific	Ack-Nack repetition factor	3				1.
Settings	CQI Feedback (Table 5.2B.4)	4ms				
Ü	CQI Repetition Factor (Table 5.2B.4)	2				
	Ahs = βhs/βc	30/15				
	E-DPDCCH	6	8	8	5	0
	DHARQ	0	0	0	0	0
	AG Index	20	12	15	17	12
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	67
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9
	Reference E-TFCIs	5	5	2	5	1
	Reference E-TFCI	11	11	11	11	67
HSUPA	Reference E-TFCI PO	4	4	4	4	18
Specific	Reference E-TFCI	67	67	92	67	67
Settings	Reference E-TFCI PO	18	18	18	18	18
Ū	Reference E-TFCI	71	71	71	71	71
	Reference E-TFCI PO	23	23	23	23	23
	Reference E-TFCI	75	75	75	75	75
	Reference E-TFCI PO	26	26	26	26	26
	Reference E-TFCI	81	81	81	81	81
	Reference E-TFCI PO	27	27	27	27	27
	Maximum Channelization Codes	2xSF2	<u> </u>	<u> </u>		SF4

<u> HSPA+</u>

Since 16QAM is not used for uplink, the uplink Category and release is same as HSUPA, i.e., Rel. 7 Therefore, the RF conducted power is not measured.

W-CDMA Band II Measured Results

W-CDMA	Band II M	easured Resu	ılt <u>s</u>			
Band		Mode	UL Ch No.	Freq. (MHz)	MPR (dB)	Max. Meas. Avg Pwr (dBm)
			9262	1852.4	N/A	22.9
	Rel 99	RMC, 12.2 kbps	9400	1880.0	N/A	22.5
			9538	1907.6	N/A	22.7
			9262	1852.4		21.3
		Subtest 1	9400	1880.0	0	21.2
			9538	1907.6		21.6
			9262	1852.4		21.2
		Subtest 2	9400	1880.0	0	21.2
	HSDPA		9538	1907.6		21.5
	ПОДРА		9262	1852.4		20.9
		Subtest 3	9400	1880.0	0.5	20.9
			9538	1907.6		21.2
			9262	1852.4		21.0
		Subtest 4	9400	1880.0	0.5	20.9
W-CDMA			9538	1907.6		21.2
Band V			9262	1852.4	2	19.5
		Subtest 1	9400	1880.0		19.4
			9538	1907.6		20.1
			9262	1852.4		18.1
		Subtest 2	9400	1880.0	4	17.9
			9538	1907.6		18.3
			9262	1852.4		21.0
	HSUPA	Subtest 3	9400	1880.0	1	20.9
			9538	1907.6		21.1
			9262	1852.4		17.8
		Subtest 4	9400	1880.0	4	17.7
			9538	1907.6		17.9
			9262	1852.4		22.3
		Subtest 5	9400	1880.0	0	22.3
			9538	1907.6	1	22.5

W-CDMA Band V Measured Results

Band		Mode	UL Ch No.	Freq. (MHz)	MPR (dB)	Max. Meas. Avg Pwr (dBm)
			4132	826.4	N/A	24.1
	Rel 99	RMC, 12.2 kbps	4183	836.6	N/A	24.1
			4233	846.6	N/A	24.1
			4132	826.4		21.6
		Subtest 1	4183	836.6	0	21.6
			4233	846.6		21.6
			4132	826.4		21.6
		Subtest 2	4183	836.6	0	21.5
	HSDPA		4233	846.6	1	21.5
	HODPA		4132	826.4		21.1
		Subtest 3	4183	836.6	0.5	21.0
			4233	846.6	1	21.1
			4132	826.4		21.1
		Subtest 4	4183	836.6	0.5	21.0
W-CDMA			4233	846.6		21.0
Band V			4132	826.4	0	22.0
		Subtest 1	4183	836.6		22.0
			4233	846.6		22.0
			4132	826.4		20.2
		Subtest 2	4183	836.6	2	20.2
			4233	846.6	1	20.1
			4132	826.4		21.1
	HSUPA	Subtest 3	4183	836.6	1	21.0
			4233	846.6	1	21.1
			4132	826.4		20.2
		Subtest 4	4183	836.6	2	20.1
			4233	846.6	1	20.1
			4132	826.4		23.0
		Subtest 5	4183	836.6	0	23.0
			4233	846.6	1	23.0

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	nnel bandw	idth / Tra	ansmission	bandwidth (N _{RB})	MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM				≥ 1			≤ 5

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		2, 4,10, 23, 25,	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36, 66, 70	10	>6	≤ 1
		30, 30, 00, 70	15	>8	≤ 1
			20	>10	≤1
NS_04	6.6.2.2.2, 6.6.3.3.19	41	5, 10, 15, 20	Table 6.2.4-4	, Table 6.2.4-4a
		1	10,15,20	≥ 50 (NOTE1)	≤ 1 (NOTE1)
NS_05	6.6.3.3.1		15, 20	Table 6.2.4	-18 (NOTE2)
_		65 (NOTE 3)	10,15,20	≥ 50	≤ 1 (NOTE 1)
		05 (NOTE 3)	15,20	Table 6.2.4	-18 (NOTE 2)
NS 06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS 08	6.6.3.3.3	19	10, 15	> 44	≤ 3
		24		> 40	≤ 1
NS_09	6.6.3.3.4	21	10, 15	> 55	≤ 2
NS 10		20	15, 20		6.2.4-3
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20		6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table	6.2.4-6
NS 13	6.6.3.3.6	26	5	Table	6.2.4-7
NS 14	6.6.3.3.7	26	10, 15		6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table	6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10	Table 6.2.4-11	, Table 6.2.4-12 6.2.4-13
NS 17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
			5	≥ 2	≤ 1
NS_18	6.6.3.3.11	28	10, 15, 20	≥ 1	≤ 4
NS 19	6.6.3.3.12	44	10, 15, 20	Table	6.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20	Table	6.2.4-15
NS_21	6.6.2.2.1 6.6.3.3.15	30	5, 10	Table	6.2.4-16
NS_22	6.6.3.3.16	42, 43	5, 10, 15, 20	Table	6.2.4-17
NS 23	6.6.3.3.17	42, 43	5, 10, 15, 20		VA
NS 24	6.6.3.3.20	65 (NOTE 4)	5, 10, 15, 20		6.2.4-19
NS 25	6.6.3.3.21	65 (NOTE 4)	5, 10, 15, 20		6.2.4-20
NS 26	6.6.3.3.22	68	10, 15		6.2.4-21
NS_27	6.6.2.2.5, 6.6.3.3.23	48	5, 10, 15, 20		6.2.4-22
NS_28	6.2.2A, 6.6.3.3.24	46 (NOTE 5)	20	Table	6.2.4-23
NS_29	6.2.2A, 6.6.2.3.1a, 6.6.3.3.25	46 (NOTE 5)	20	Table	6.2.4-24
NS_30	6.2.2A, 6.6.3.3.26	46 (NOTE 5)	20	Table	6.2.4-25
NS_31	6.2.2A, 6.6.3.3.27	46 (NOTE 5)	20	Table	6.2.4-26
NS 32	-	lower edge of the as		III abay 11	-

the channel BW assigned, where channel BW is as defined in subclause 5.6. A-MPR for

LTE Band 5 Measured Results

	BW		Results	RB		Max. Meas	. Avg Pwr (dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	829 MHz	836.5 MHz	844 MHz
			1	0	0		24.0	
			1	25	0		24.0	
			1	49	0		23.9	
		QPSK	25	0	1		22.8	
			25	12	1		22.8	
			25	25	1		22.8	
LTE	40		50	0	1		22.8	
Band 5	10		1	0	1		22.9	
			1	25	1		22.8	
			1	49	1		22.8	
		16QAM	25	0	2		21.6	
			25	12	2		21.6	
			25	25	2		21.6	
			50	0	2		21.6	
Devid	BW	NA. I	RB	RB		Max. Meas	. Avg Pwr (dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	826.5 MHz	836.5 MHz	846.5 MHz
			1	0	0	23.8	23.8	23.9
			1	12	0	23.8	23.8	23.9
			1	24	0	23.8	23.8	23.8
		QPSK	12	0	1	22.9	22.8	23.0
			12	7	1	22.8	22.8	23.0
			12	13	1	22.8	22.8	22.9
LTE	-		25	0	1	22.8	22.8	23.0
Band 5	5		1	0	1	22.6	22.7	23.0
			1	12	1	22.6	22.7	23.0
			1	24	1	22.6	22.7	23.1
		16QAM	12	0	2	21.5	21.6	21.7
			12	7	2	21.6	21.6	21.7
			12	13	2	21.6	21.6	21.7
			25	0	2	21.7	21.6	21.7
Dond	BW	Mode	RB	RB		Max. Meas	. Avg Pwr (dBm)
Band	(MHz)	ivioue	Allocation	offset	MPR	825.5 MHz	836.5 MHz	847.5 MHz
			1	0	0	23.9	24.0	24.0
			1	8	0	23.8	24.0	24.0
			1	14	0	23.8	24.0	24.1
		QPSK	8	0	1	22.8	22.8	23.0
			8	4	1	22.8	22.8	22.9
			8	7	1	22.8	22.8	23.0
LTE	3		15	0	1	22.8	22.8	23.0
Band 5			1	0	1	22.9	23.1	23.4
			1	8	1	22.8	23.1	23.3
			1	14	1	22.8	22.8	23.5
		16QAM	8	0	2	21.7	21.6	21.7
			8	4	2	21.7	21.6	21.7
			8	7	2	21.7	21.6	21.7
			15	0	2	21.6	21.5	21.7

LTE Band 5 Measured Results (continued)

Band	BW	Mode	RB	RB		Max. Meas	. Avg Pwr (dBm)
Dariu	(MHz)	IVIOGE	Allocation	offset	MPR	824.7 MHz	836.5 MHz	848.3 MHz
			1	0	0	23.8	23.9	24.0
			1	3	0	23.8	23.8	23.9
			1	5	0	23.8	23.9	24.0
		QPSK	3	0	0	23.9	23.9	24.0
			3	1	0	23.9	23.9	24.0
			3	3	0	24.0	23.9	24.0
LTE	1.4 MHz		6	0	1	22.8	22.8	22.9
Band 5	1.4 WII IZ		1	0	1	23.1	23.0	22.8
			1	3	1	23.2	22.9	22.9
			1	5	1	23.1	23.0	23.0
		16QAM	3	0	1	22.9	22.8	23.1
			3	1	1	22.9	22.8	23.1
			3	3	1	22.9	22.9	23.1
			6	0	2	21.5	21.6	21.8

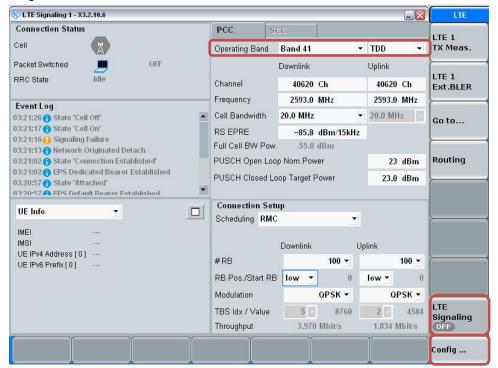
Note(s):

10 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

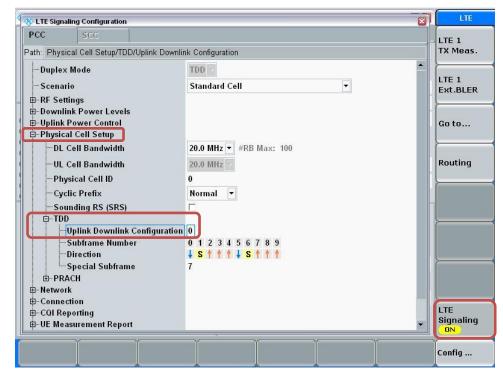
LTE Band 17 Measured Results

	BW		RB	RB		Max. Meas. Avg Pwr (dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	710 MHz
			1	0	0	23.9
			1	25	0	23.9
			1	49	0	23.9
		QPSK	25	0	1	22.7
			25	12	1	22.7
			25	25	1	22.7
LTE	10		50	0	1	22.7
Band 17	10		1	0	1	22.7
			1	25	1	22.7
			1	49	1	22.7
		16QAM	25	0	2	21.7
			25	12	2	21.7
			25	25	2	21.7
			50	0	2	21.7
Band	BW	Mode	RB	RB		Max. Meas. Avg Pwr (dBm)
Dana	(MHz)	ouo	Allocation	offset	MPR	710 MHz
			1	0	0	23.8
			1	0 12	0	23.8 23.8
			_			
		QPSK	1	12	0	23.8
		QPSK	1	12 24	0	23.8 23.8
		QPSK	1 1 12	12 24 0	0 0 1	23.8 23.8 22.7
LTE	5	QPSK	1 1 12 12	12 24 0 7	0 0 1 1	23.8 23.8 22.7 22.7
LTE Band 17	5	QPSK	1 1 12 12 12	12 24 0 7 13	0 0 1 1	23.8 23.8 22.7 22.7 22.8
	5	QPSK	1 1 12 12 12 12 25	12 24 0 7 13	0 0 1 1 1	23.8 23.8 22.7 22.7 22.8 22.7
	5	QPSK	1 1 12 12 12 12 25	12 24 0 7 13 0	0 0 1 1 1 1	23.8 23.8 22.7 22.7 22.8 22.7 22.8
	5	QPSK	1 1 12 12 12 12 25 1	12 24 0 7 13 0 0	0 0 1 1 1 1 1	23.8 23.8 22.7 22.7 22.8 22.7 22.8 22.9
	5		1 1 12 12 12 12 25 1 1	12 24 0 7 13 0 0 12 24	0 0 1 1 1 1 1 1	23.8 23.8 22.7 22.7 22.8 22.7 22.8 22.9
	5		1 1 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24	0 0 1 1 1 1 1 1 1 1	23.8 23.8 22.7 22.7 22.8 22.7 22.8 22.9 21.7

Note(s):

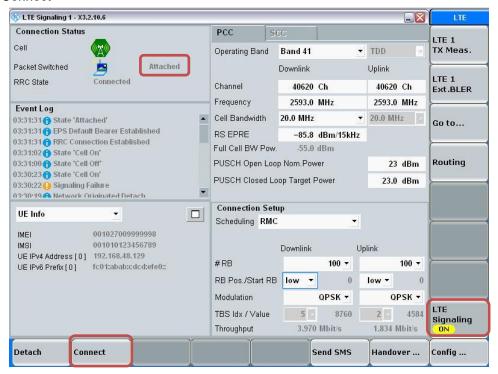

10/5 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

LTE Band TDD Measured Results

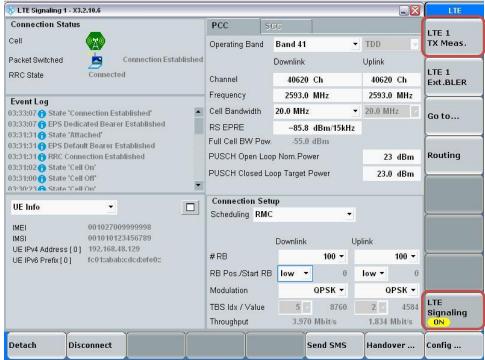

Procedure used to establish SAR test signal for LTE TDD Band

Set to CMW-500 with following parameters:

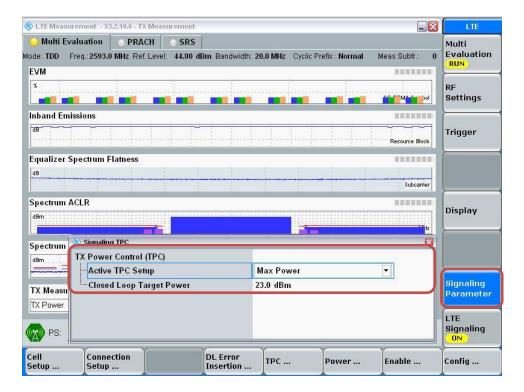
- Turn the LTE Signaling off using "ON | OFF" key
- Operating Band: Select Band 41 and TDD
- Go to "Config...."



- Go to "Physical Cell Setup"
- Select "TDD" and Set "Uplink Downlink Configuration" to "0"
- Turn the cell on using "ON | OFF" key

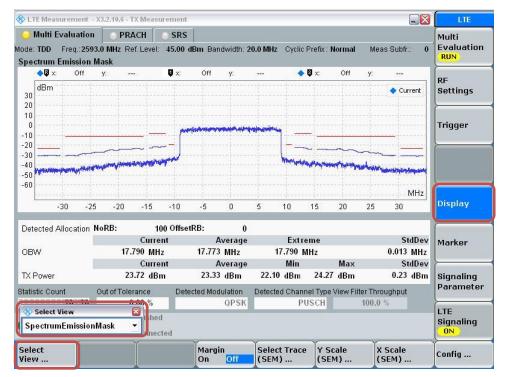

Connect to EUT

- Turn the cell on using "ON | OFF" key
- After EUT is Attached
- Select "Connect"



Max Power Setting

- Select "LTE 1 TX Meas."
- Press "RESTART | STOP" Soft key



- Select "Signaling Parameter"
- Select "TX Power Control (TPC)" > Select "Active TPC Setup" to "Max Power" > Set "Closed Loop Target Power" to "23 dBm"

View TX Power

- Go to "Display"
- Select "Select View..."
- Select "Spectrum Emission Mask"

LTE Band 41 Measured Results

Dond	BW (MHz)	Mode	RB Allocation	RB	Target MPR	Max. Meas. Avg Pwr (dBm)				
Band				offset		2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
LTE Band 41	20	QPSK	1	0	0	23.1	23.3	23.0	23.0	22.9
			1	49	0	23.2	23.4	22.9	23.1	22.9
			1	99	0	23.1	23.3	22.9	23.0	22.9
			50	0	1	22.1	22.4	21.8	21.9	21.9
			50	24	1	22.1	22.3	21.9	21.9	21.9
			50	50	1	22.1	22.3	21.8	21.9	21.9
			100	0	1	22.1	22.3	21.8	21.9	21.9
		16QAM	1	0	1	21.6	22.5	21.8	21.8	22.0
			1	49	1	21.8	22.6	21.7	21.9	21.6
			1	99	1	22.0	22.4	21.7	21.6	21.9
			50	0	2	21.1	21.3	20.8	20.9	20.8
			50	24	2	21.1	21.3	20.8	20.9	20.8
			50	50	2	21.1	21.3	20.8	20.9	20.8
			100	0	2	21.1	21.3	20.8	20.9	20.8
Band	BW	Mode	RB	RB	Target		Max. M	leas. Avg Pwr	(dBm)	
Dana	(MHz)	Wode	Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
LTE Band 41	15	QPSK	1	0	0	23.2	23.5	23.0	23.0	23.0
			1	37	0	23.1	23.4	22.9	23.0	23.0
			1	74	0	23.2	23.4	22.9	23.0	23.0
			36	0	1	22.1	22.4	21.9	21.9	21.9
			36	20	1	22.1	22.3	21.9	21.9	21.9
			36	39	1	22.1	22.3	21.9	21.9	21.9
			75	0	1	22.1	22.4	21.9	21.9	21.9
		16QAM	1	0	1	21.8	22.7	21.6	21.9	21.9
			1	37	1	21.7	22.5	21.7	21.6	21.7
			1	74	1	22.0	22.2	21.8	21.9	22.0
			36	0	2	21.0	21.4	20.9	20.9	20.9
			36	20	2	21.1	21.3	20.9	20.9	20.9
			36	39	2	21.1	21.3	20.8	21.0	20.9
			75	0	2	21.1	21.3	20.8	20.9	20.9
Band	BW	Mode	RB	RB	Target	Max. Meas. Avg Pwr (dBm)				
	(MHz)		Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
LTE Band 41	10	QPSK	1	0	0	23.2	23.0	22.9	23.0	23.0
			1	25	0	23.2	23.0	22.9	23.0	23.0
			1	49	0	23.2	23.0	22.9	23.0	23.0
			25	0	1	22.1	21.9	21.9	21.9	21.9
			25	12	1	22.1	21.9	21.9	21.9	21.9
			25	25	1	22.1	21.9	21.9	21.9	21.9
			50	0	1	22.1	21.9	21.9	21.9	21.9
		16QAM	1	0	1	22.0	22.2	21.6	21.8	22.1
			1	25	1	22.0	22.2	21.5	21.8	22.2
			1	49	1	22.0	22.1	21.5	21.9	22.2
			25	0	2	21.0	20.9	20.9	20.9	20.9
			25	12	2	21.0	20.9	20.9	20.8	20.9
			25	25	2	21.0	20.9	20.8	20.9	20.9
			50	0	2	21.0	20.9	20.8	20.9	20.8

LTE Band 41 Measured Results (continued)

Band	BW	Mode	RB	RB	Target		Max. M	leas. Avg Pwr	(dBm)																							
Danu	(MHz)	ivioue	Allocation	offset	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz																						
		QPSK	1	0	0	23.1	23.0	23.0	22.9	22.9																						
			1	12	0	23.1	23.0	23.0	22.9	22.9																						
			1	24	0	23.1	23.0	23.0	22.9	23.0																						
			12	0	1	22.1	21.9	21.9	21.9	21.9																						
			12	7	1	22.1	21.9	21.8	21.9	21.9																						
			12	13	1	22.1	21.9	21.9	21.9	21.9																						
LTE Band	5		25	0	1	22.1	21.9	21.9	21.9	21.9																						
41	3	16QAM	1	0	1	21.7	21.7	21.9	21.6	21.5																						
			16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	1	12	1	21.7	21.6	21.9	21.7	21.5					
																				16QAM	16QAM	16QAM	16QAM	16QAM	1	24	1	21.8	21.6	21.9	21.6	21.5
																									12	0	2	21.1	20.8	20.8	20.9	20.7
		1																		12	2 7 2 21.1 20.8 20.8	20.8	20.9	20.7								
			12	13	2	21.1	20.8	20.8	20.9	20.7																						
			-	25	0	2	21.0	20.9	20.9	20.9	20.9																					

9.4. Wi-Fi 2.4 GHz (DTS Band)

Measured Results (Max power)

Mode	Data Rate	Ch#	Freq. (MHz)	Meas. Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)				
		1	2412	17.2						
		6	2437	17.2	18.0	Yes				
802.11b	1 Mbps	11	2462	17.3						
		12	2467	8.0	8.5	No				
		13	2472	2.7	3.0	INO				
		1	2412		17.0					
	g 6 Mbps					6	2437		17.0	
802.11g		Mbps 11 2462 Not Require	15.5	No						
		12	2467		8.5					
		13	2472		3.0					
		1	2412		17.0					
000 44:		6	2437		17.0					
802.11n (HT20)	6.5 Mbps	11	2462	Not Require	15.0	No				
(11120)	· [12	2467		8.5	_				
		13 2472			3.0	1				

Measured Results (Reduced power)

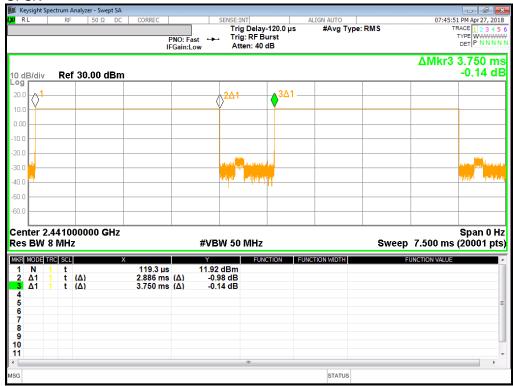
Mode	Data Rate	Ch#	Freq. (MHz)	Meas. Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)															
		1	2412	12.5																	
		6	2437	12.5	13.0	Yes															
802.11b	1 Mbps	11	2462	12.3																	
		12	2467	8.0	8.5	No															
		13	2472	2.7	3.0	INU															
		1	2412	12.6																	
	2.11g 6 Mbps	6 Mbps	6	2437	12.6	13.0															
802.11g			6 Mbps	6 Mbps	11	2462	12.5		No												
		12	2467	8.2	8.5																
		13	2472	2.9	3.0																
		1	2412	12.4																	
000 44		6	2437	12.5	13.0																
802.11n (HT20)	65 Mhns	11	2462	12.4		No															
(11120)			· [Ė	12	2467	8.0	8.5	
		13	2472	2.7	3.0																

Note(s):

- 1. SAR is not required for 802.11g/n modes when the adjusted SAR for 802.11b is < 1.2 W/kg.
- 2. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.
- 3. Additionally, SAR is not required for Channels 12 and 13 because the tune-up limit and the measured output power for these two channels are no greater than those for the default test channels. Refer to §6.3.

9.5. Bluetooth

Average Power Measured Results


Band (GHz)	Mode	Ch#	Freq. (MHz)	Meas. Avg Pwr (dBm)
		0	2402	9.1
	GFSK	39	2441	10.8
		78	2480	8.6
	EDD	0	2402	4.7
	EDR, π/4 DQPSK	39	2441	6.6
2.4	11/4 DQF3K	78	2480	5.3
2.4	500	0	2402	4.7
	EDR, 8-DPSK	39	2441	6.6
	0-DF3K	78	2480	5.3
		0	2402	6.9
	LE, GFSK	19	2440	9.5
	OI SK	39	2480	7.6

Duty Factor Measured Results

Mode	Туре	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	DH5	2.886	3.750	77.0%	1.30

Duty Cycle plots

GFSK

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

Reported SAR(W/kg) for WWAN= Measured SAR *Tune-up Scaling Factor

Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

Page 40 of 53

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported SAR</u> for the <u>initial test position</u> is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to
 measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the
 highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII
 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not
 required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has
 the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤
 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands
 independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the <u>Maximum Value of SAR</u> (measured). The position that produced the highest <u>Maximum Value of SAR</u> is considered the worst case position; thus used as the <u>initial test position</u>.

10.1. GSM1900

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot											
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.											
			Left Touch	512	1850.2	26.5	26.0	0.336	0.381	1											
Head	GPRS	0	Left Tilt	512	1850.2	26.5	26.0	0.137	0.155												
Heau	3 Slot		Right Touch	512	1850.2	26.5	26.0	0.175	0.199												
			Right Tilt	512	1850.2	26.5	26.0	0.145	0.165												
Body-worn	GPRS	15	Rear	512	1850.2	26.5	26.0	0.222	0.252	2											
Body-worth	3 Slot	13	Front	512	1850.2	26.5	26.0	0.147	0.167												
			Rear	512	1850.2	26.5	26.0	0.547	0.621												
	CDDC	10	Front	512	1850.2	26.5	26.0	0.215	0.244												
Hotspot	GPRS 3 Slot		10	10	10	10	10	10	10	10	10	10	10	Edge 2	512	1850.2	26.5	26.0	0.041	0.047	
	3 5101		Edge 3	512	1850.2	26.5	26.0	0.604	0.685	3											
			Edge 4	512	1850.2	26.5	26.0	0.285	0.323												

10.2. W-CDMA Band II

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	9400	1880.0	24.5	22.5	0.301	0.473	4
Head	Rel 99 RMC	0	Left Tilt	9400	1880.0	24.5	22.5	0.115	0.181	
Head	Kei 99 KIVIC		Right Touch	9400	1880.0	24.5	22.5	0.145	0.228	
			Rightt Tilt	9400	1880.0	24.5	22.5	0.117	0.184	
Pod worn	Bod-worn Rel 99 RMC	15	Rear	9400	1880.0	24.5	22.5	0.264	0.415	5
Bou-worn	Bod-worn Rei 99 RIVIC	15	Front	9400	1880.0	24.5	22.5	0.166	0.261	
				9262	1852.4	24.5	22.9	0.902	1.304	6
			Rear	9400	1880.0	24.5	22.5	0.648	1.018	
				9538	1907.6	24.5	22.7	0.568	0.866	
			Front	9400	1880.0	24.5	22.5	0.365	0.573	
Hotspot	Rel 99 RMC	10	Edge 2	9400	1880.0	24.5	22.5	0.033	0.051	
				9262	1852.4	24.5	22.9	0.757	1.094	
			Edge 3	9400	1880.0	24.5	22.5	0.578	0.908	
				9538	1907.6	24.5	22.7	0.505	0.770	
			Edge 4	9400	1880.0	24.5	22.5	0.265	0.416	

Note(s):

Adjusted SAR is not over 1.2 W/kg for HSDPA, HSUPA. So additional tests are not required.

10.3. W-CDMA Band V

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot										
Conditions	Mode	(mm)	Test Position Ch	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.										
			Left Touch	4183	836.6	25.0	24.1	0.198	0.246											
Head	Rel 99 RMC	0	Left Tilt	4183	836.6	25.0	24.1	0.129	0.161											
Heau	IXEI 99 IXIVIC	U	Right Touch	4183	836.6	25.0	24.1	0.217	0.270	7										
			Rightt Tilt	4183	836.6	25.0	24.1	0.141	0.175											
Body-worn	Rel 99 RMC	15	Rear	4183	836.6	25.0	24.1	0.300	0.373	8										
Body-worn	Kei 33 Kivic	13	Front	4183	836.6	25.0	24.1	0.196	0.244											
			Rear	4183	836.6	25.0	24.1	0.379	0.472	9										
			Front	4183	836.6	25.0	24.1	0.288	0.358											
Hotspot	Rel 99 RMC	10	10	10	10	10	10	10	10	10	10	10	Edge 2	4183	836.6	25.0	24.1	0.158	0.197	
			Edge 3	4183	836.6	25.0	24.1	0.103	0.128											
			Edge 4	4183	836.6	25.0	24.1	0.178	0.222											

10.4. LTE Band 5 (10MHz Bandwidth)

RF Exposure		Dist.	Test	01. "	Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot												
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.												
			Left Touch	20525	836.5	1	0	25.0	24.0	0.209	0.260													
			Leit Touch	20020	030.3	25	0	24.0	22.8	0.157	0.205													
			Left Tilt	20525	836.5	1	0	25.0	24.0	0.097	0.121													
Head	QPSK	0	Len Tin	20020	030.3	25	0	24.0	22.8	0.070	0.091													
Tieau	QI SIN	U	Right Touch	20525	836.5	1	0	25.0	24.0	0.223	0.278	10												
			Right Touch	20020	030.3	25	0	24.0	22.8	0.171	0.223													
			Right Tilt	20525	836.5	1	0	25.0	24.0	0.110	0.137													
	I I I I I	Night The	20020	030.3	25	0	24.0	22.8	0.081	0.105														
			Rear	20525	836.5	1	0	25.0	24.0	0.222	0.277	11												
Body-worn		Real	20020	030.3	25	0	24.0	22.8	0.164	0.214														
Body-Wolli	ly-worn QPSK 15	Front	20525	836.5	1	0	25.0	24.0	0.192	0.239														
			TTOTIC	20020	030.3	25	0	24.0	22.8	0.144	0.188													
			Rear	20525	836.5	1	0	25.0	24.0	0.410	0.511	12												
			rteal	20020	000.0	25	0	24.0	22.8	0.329	0.430													
			Front	20525	836.5	1	0	25.0	24.0	0.262	0.326													
			Front	Front	Front	Front	Front	Front	Front	Front	Front	Front	Front	Front	Front	20020	000.0	25	0	24.0	22.8	0.209	0.273	
Hotenot	OPSK	10	Edge 2	20525	836.5	1	0	25.0	24.0	0.169	0.211													
Hotspot QPSK 10	10	Luge 2	20020	030.5	25	0	24.0	22.8	0.127	0.166														
			Edge 3	20525	836.5	1	0	25.0	24.0	0.094	0.117													
			Edge 3	20020	000.0	25	0	24.0	22.8	0.075	0.098													
			Edge 4 2	20525	836.5	1	0	25.0	24.0	0.144	0.179													
			Luge +	20020	000.0	25	0	24.0	22.8	0.113	0.148													

10.5. LTE Band 17 (10MHz Bandwidth)

RF Exposure		Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	23790	710.0	1	0	25.0	23.9	0.071	0.090	13
			Len Touch	23790	710.0	25	25	24.0	22.7	0.064	0.085	
			Left Tilt	23790	710.0	1	0	25.0	23.9	0.044	0.056	
Head	QPSK	0	Left Till	23730	710.0	25	25	24.0	22.7	0.041	0.054	
Tieau	QI SIN	U	Right Touch	23790	710.0	1	0	25.0	23.9	0.069	0.087	
			Tagrit Touch	23730	710.0	25	25	24.0	22.7	0.061	0.082	
			Right Tilt	23790	710.0	1	0	25.0	23.9	0.044	0.056	
	Tright the	Night The	23790	710.0	25	25	24.0	22.7	0.038	0.051		
			Rear	23790	710.0	1	0	25.0	23.9	0.157	0.200	14
Body-worn	Body-worn QPSK 15	Real	20700	7 10.0	25	25	24.0	22.7	0.137	0.184		
Body-Wolli	dy-worn QPSK 15	Front	23790	710.0	1	0	25.0	23.9	0.107	0.136		
			TIOIL	20700	710.0	25	25	24.0	22.7	0.099	0.132	
			Rear	23790	710.0	1	0	25.0	23.9	0.191	0.243	15
			rtear	23730	710.0	25	25	24.0	22.7	0.162	0.217	
			Front	23790	710.0	1	0	25.0	23.9	0.119	0.152	
			TTOTIC	23730	710.0	25	25	24.0	22.7	0.105	0.141	
Hotenot	OPSK	10	Edge 2	23790	710.0	1	0	25.0	23.9	0.080	0.101	
riotspot	Hotspot QPSK 10	10	Luge 2	23730	710.0	25	25	24.0	22.7	0.077	0.103	
		Edge 3	23790	710.0	1	0	25.0	23.9	0.017	0.022		
		Edge 3	20790	7 10.0	25	25	24.0	22.7	0.017	0.022		
			Edge 4	23790	710.0	1	0	25.0	23.9	0.130	0.166	
			Luge 7	20100	710.0	25	25	24.0	22.7	0.122	0.164	

10.6. LTE Band 41 (20MHz Bandwidth)

RF Exposure		Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	40185	2549.5	1	49	24.0	23.4	0.198	0.229	
			Len Touch	40100	2049.0	50	0	23.0	22.4	0.158	0.182	
			Left Tilt	40185	2549.5	1	49	24.0	23.4	0.158	0.183	
Head	QPSK	0	Len IIII	40100	2049.0	50	0	23.0	22.4	0.124	0.143	
rieau	QI SIN	U	Right Touch	40185	2549.5	1	49	24.0	23.4	0.300	0.348	16
			Right Touch	40100	2049.0	50	0	23.0	22.4	0.235	0.271	
			Right Tilt	40185	2549.5	1	49	24.0	23.4	0.082	0.095	
			Night The	40103	2049.0	50	0	23.0	22.4	0.065	0.074	
			Rear	40185	2549.5	1	49	24.0	23.4	0.158	0.183	
Body-worn	QPSK	15	ixeai	40100	2049.0	50	0	23.0	22.4	0.124	0.143	
Body-Wolli	QI OIX	10	Front	40185	2549.5	1	49	24.0	23.4	0.199	0.231	17
			TIOIL	40100	2040.0	50	0	23.0	22.4	0.156	0.180	
			Rear	40185	2549.5	1	49	24.0	23.4	0.340	0.394	18
			Real	40100	2040.0	50	0	23.0	22.4	0.267	0.308	
			Front	40185	2549.5	1	49	24.0	23.4	0.305	0.353	
			TIOIL	40100	2040.0	50	0	23.0	22.4	0.239	0.276	
Hotspot	QPSK	10	Edge 2	40185	2549.5	1	49	24.0	23.4	0.226	0.262	
riotopot	Qi Oit	10	Luge 2	40100	2040.0	50	0	23.0	22.4	0.183	0.211	
			Edge 3	40185	2549.5	1	49	24.0	23.4	0.241	0.279	
			Luge 5	- 1 0100	2070.0	50	0	23.0	22.4	0.194	0.224	
			Edge 4	40185	2549.5	1	49	24.0	23.4	0.050	0.058	
			Luge 4	+0100	2049.0	50	0	23.0	22.4	0.040	0.046	

10.7. Wi-Fi (DTS Band)

Frequency		RF Exposure	PWR	Dist.			Freq.	Area Scan	Power	(dBm)	Duty	1-g SAI	R (W/kg)	Plot
Band	Mode	Conditions	Back-off	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Cycle (%)	Meas.	Scaled	No.
					Left Touch	6	2437.0	0.513	13.0	12.5	99.5%			
	.	Haad	0.5	0	Left Tilt	6	2437.0	0.474	13.0	12.5	99.5%			
	Head	On	0	Right Touch	6	2437.0	0.606	13.0	12.5	99.5%	0.428	0.487	19	
					Rightt Tilt	6	2437.0	0.563	13.0	12.5	99.5%	0.413	0.470	
0.4011	802.11b	Body-worn	/-worn Off	15	Rear	11	2462.0	0.212	18.0	17.3	99.5%	0.176	0.210	20
2.4GHz	1 Mbps		Oil	13	Front	11	2462.0	0.205	18.0	17.3	99.5%			
		Hotspot & Wi-Fi Direct		10	Rear	11	2462.0	0.434	18.0	17.3	99.5%	0.372	0.444	21
			Off		Front	11	2462.0	0.377	18.0	17.3	99.5%			
					Edge 1	11	2462.0	0.378	18.0	17.3	99.5%	0.353	0.422	
					Edge 4	11	2462.0	0.073	18.0	17.3	99.5%			

Note(s):

- 1. When the 802.11b reported SAR of the highest measured maximum output power channel is ≤ 0.8 W/kg, no further SAR testing is required. If SAR is > 0.8 W/kg and ≤ 1.2 W/kg, SAR is required for the next highest measured output power channel. Finally, if SAR is > 1.2 W/kg, SAR is required for the third channel.
- 2. SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

10.8. Bluetooth

Frequency		RF Exposure	Dist.			Freq.	Duty	Power	(dBm)	1-g SAF	1-g SAR (W/kg)	
Band Mode	Mode	Conditions	(mm)	Test Position	Ch #.	(MHz)	Cycle (%)	Tune-up limit	Meas.	Meas.	Scaled	Plot No.
	GFSK	Head		Left Touch	39	2441.0	77.0%	11.0	10.8	0.181	0.247	
2.4047			0	Left Tilt	39	2441.0	77.0%	11.0	10.8	0.168	0.229	
2.4GHz				Right Touch	39	2441.0	77.0%	11.0	10.8	0.217	0.296	22
				Rightt Tilt	39	2441.0	77.0%	11.0	10.8	0.217	0.296	23

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

	RF Air interface Bluetooth	RF Exposure	Frequency	Max. tune-up tolerance Pow er		Min. test separation	SAR test exclusion	Estimated	
		Conditions	(GHz)	(dBm)	(mVV)	distance (mm)	Result*	1-g SAR (W/kg)	
ſ		Body-w orn	2.480	11.0	13	15	1.4	0.182	
L		Hotspot	2.480	11.0	13	10	2.0	0.273	

Conclusion:

*: The computed value is ≤ 3; therefore, this qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Peak spatial-average (1g of tissue)

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
700	LTE Band 17	Hotspot	Rear	No	0.191	N/A	N/A
850	WCDMA Band V	Hotspot	Rear	No	0.379	N/A	N/A
650	LTE Band 5	Hotspot	Rear	No	0.410	N/A	N/A
1900	GSM 1900	Hotspot	Edge 3	No	0.604	N/A	N/A
1900	WCDMA Band II	Hotspot	Rear	Yes	0.902	0.897	1.01
2400	Wi-Fi 802.11b/g/n	Head	Right Touch	No	0.428	N/A	N/A
2400	Bluetooth	Head	Right Touch	No	0.217	N/A	N/A
2600	LTE Band 41	Hotspot	Rear	No	0.340	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. DUT Holder Perturbations

In accordance with published DUT Holder Perturbations in Oct.2016 TCB workshop,

When Highest reported SAR is over 1.2 W/kg, Holder perturbation verification is required for each antenna, using the highest configuration among all applicable frequency bands.

Both Head test and Body test (Edge 1-4 sides) are evaluated with DUT holder. Both Front and Rear sides are evaluated without DUT holder. (Details of test setup are refer to Appendix A.)

So we are only consider about Head test and Body test (Edge 1-4 sides).

Main Antenna

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	DUTHolder Perturbation(Yes/No)	Highest Reported SAR (W/kg)	SAR test without holder Measured SAR (W/kg)	Deviation (%)
700	LTE Band 17	Hotspot	Rear	No	0.243	N/A	N/A
850	WCDMA Band V	Hotspot	Rear	No	0.472	N/A	N/A
630	LTE Band 5	Hotspot	Rear	No	0.511	N/A	N/A
1900	GSM 1900	Hotspot	Edge 3	No	0.685	N/A	N/A
1900	WCDMA Band II	Hotspot	Rear	No	1.304	N/A	N/A
2600	LTE Band 41	Hotspot	Rear	No	0.394	N/A	N/A

WLAN Antenna

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	DUTHolder Perturbation(Yes/No)		SAR test without holder Measured SAR (W/kg)	Deviation (%)
2400	Wi-Fi 802.11b/g/n	Head	Right Touch	No	0.487	N/A	N/A
2400	Bluetooth	Head	Right Touch	No	0.296	N/A	N/A

Note(s):

Both deviation should be within measurement uncertainty (22%).

13. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR_1 + SAR_2)^{1.5}/Ri < 0.04$$

Simultaneous Transmission Condition

RF Exposure Condition	Item		Capab	le Transmit Configurations	
	1	GSM(Voice/GPRS)	+	DTS	
	2	GSM(Voice/GPRS)	+	BT	
Head	3	W-CDMA	+	DTS	
rieau	4	W-CDMA	+	BT	
	5	LTE	+	DTS	
	6	LTE	+	BT	
	7	GSM(Voice/GPRS)	+	DTS	
	8	GSM(Voice/GPRS)	+	BT	
Body-w orn	9	W-CDMA	+	DTS	
Body-w offi	10	W-CDMA	+	BT	
	11	LTE	+	DTS	
	12	LTE	+	BT	
	13	GSM(GPRS)	+	DTS	
	14	GSM(GPRS)	+	BT	
Hotspot	15	WCDMA	+	DTS	•
ι ισισμοί	16	WCDMA	+	BT	•
	17	LTE	+	DTS	
	18	LTE	+	BT	_

Notes:

- 1. DTS supports Wi-Fi Direct, Hotspot and VolP.
- 2. GPRS, W-CDMA, LTE supports Hotspot and VolP.
- 3. DTS Radio cannot transmit simultaneously with Bluetooth Radio.
- 4. BT tethering is consider about each RF exposure conditions

13.1. Sum of the SAR for GSM1900 & Wi-Fi & BT

RF Exposure	Test Position	1	2	3	① + ②) WWAN + DTS		① + ③ WWAN + BT	
conditions	Test Position	WWAN	DTS	ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	All positions	0.381	0.487	0.296	0.868	No	0.677	No
Body-worn	All positions	0.252	0.210	0.182	0.462	No	0.434	No
	Rear	0.621	0.444	0.273	1.065	No	0.894	No
	Front	0.244	0.444	0.273	0.688	No	0.517	No
Hotspot	Edge 1		0.422	0.273	0.422	No	0.273	No
поіѕроі	Edge 2	0.047			0.047	No	0.047	No
	Edge 3	0.685			0.685	No	0.685	No
•	Edge 4	0.323	0.444	0.273	0.767	No	0.596	No

13.2. Sum of the SAR for WCDMA Band II & Wi-Fi & BT

10:2: Gail of the CARTOI WODINA Bana ii a Willia Bi												
RF Exposure	Test Position	1	② DTS	3	Ŭ.	+ ② + DTS	① + ③ WWAN + BT					
conditions	Test Fosition	WWAN		ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)				
Head	All positions	0.473	0.487	0.296	0.960	No	0.769	No				
Body-worn	All positions	0.415	0.210	0.182	0.625	No	0.597	No				
	Rear	1.304	0.444	0.273	1.748	Yes	1.577	No				
	Front	0.573	0.444	0.273	1.017	No	0.846	No				
Hotspot	Edge 1		0.422	0.273	0.422	No	0.273	No				
Ποιδροί	Edge 2	0.051			0.051	No	0.051	No				
	Edge 3	1.094			1.094	No	1.094	No				
	Edge 4	0.416	0.444	0.273	0.860	No	0.689	No				

SAR to Peak Location Separation Ratio (SPLSR)

Test Position	Standalone SAR (W/ka)		∑1-g SAR		Calculated distance	SPLSR	Volume Scan	Figure
Test Fosition	① WWAN	② DTS	(W/kg)		(mm)	(≤ 0.04)	(Yes/No)	
Rear	1.304	0.444	1 + 2	1.748	139.8	0.02	No	1

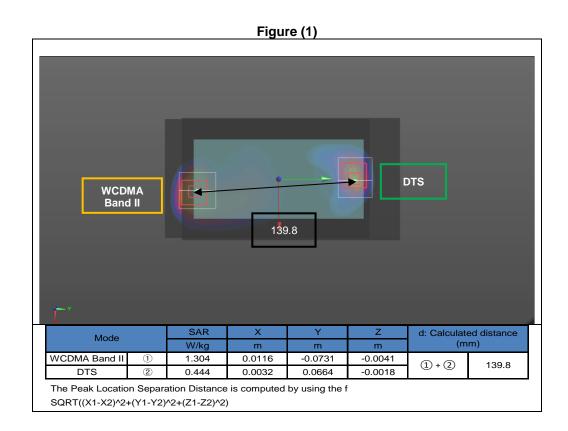
13.3. Sum of the SAR for WCDMA Band V & Wi-Fi & BT

RF Exposure	Test Position	1 2	3		① + ② WWAN + DTS		① + ③ WWAN + BT	
conditions	Test Position	WWAN	DTS	ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	All positions	0.270	0.487	0.296	0.757	No	0.566	No
Body-worn	All positions	0.373	0.210	0.182	0.583	No	0.555	No
	Rear	0.472	0.444	0.273	0.916	No	0.745	No
	Front	0.358	0.444	0.273	0.802	No	0.631	No
Hotspot	Edge 1		0.422	0.273	0.422	No	0.273	No
поізроі	Edge 2	0.197			0.197	No	0.197	No
	Edge 3	0.128			0.128	No	0.128	No
•	Edge 4	0.222	0.444	0.273	0.666	No	0.495	No

13.4. Sum of the SAR for LTE Band 5 & Wi-Fi & BT

RF Exposure	Test Position	1	② DTS	3	① + ② WWAN + DTS		① + ③ WWAN + BT	
conditions	Test Position	WWAN		ВТ	∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	All positions	0.278	0.487	0.296	0.765	No	0.574	No
Body-worn	All positions	0.277	0.210	0.182	0.487	No	0.459	No
	Rear	0.511	0.444	0.273	0.955	No	0.784	No
	Front	0.326	0.444	0.273	0.770	No	0.599	No
Hotspot	Edge 1		0.422	0.273	0.422	No	0.273	No
поізроі	Edge 2	0.211			0.211	No	0.211	No
	Edge 3	0.117			0.117	No	0.117	No
	Edge 4	0.179	0.444	0.273	0.623	No	0.452	No

13.5. Sum of the SAR for LTE Band 17 & Wi-Fi & BT


RF Exposure	Test Position	1	② DTS	3	① + ② WWAN + DTS		① + ③ WWAN + BT	
conditions	Test Fosition	WWAN		ВТ	∑ 1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	All positions	0.090	0.487	0.296	0.577	No	0.386	No
Body-worn	All positions	0.200	0.210	0.182	0.410	No	0.382	No
	Rear	0.243	0.444	0.273	0.687	No	0.516	No
	Front	0.152	0.444	0.273	0.596	No	0.425	No
Hotspot	Edge 1		0.422	0.273	0.422	No	0.273	No
ноіѕроі	Edge 2	0.103			0.103	No	0.103	No
	Edge 3	0.022			0.022	No	0.022	No
	Edge 4	0.166	0.444	0.273	0.610	No	0.439	No

13.6. Sum of the SAR for LTE Band 41 & Wi-Fi & BT

RF Exposure conditions	Test Position	① WWAN	② DTS	③ BT	① + ② WWAN + DTS		① + ③ WWAN + BT	
					∑1-g SAR (mW/g)	SPLSR (Yes/ No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Head	All positions	0.348	0.487	0.296	0.835	No	0.644	No
Body-worn	All positions	0.231	0.210	0.182	0.441	No	0.413	No
Hotspot	Rear	0.394	0.444	0.273	0.838	No	0.667	No
	Front	0.353	0.444	0.273	0.797	No	0.626	No
	Edge 1		0.422	0.273	0.422	No	0.273	No
	Edge 2	0.262			0.262	No	0.262	No
	Edge 3	0.279			0.279	No	0.279	No
	Edge 4	0.058	0.444	0.273	0.502	No	0.331	No

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Appendixes

Refer to separated files for the following appendixes.

4788452485-S1V1 FCC Report SAR_App A_Photos & Ant. Locations
4788452485-S1V1 FCC Report SAR_App B_Highest SAR Test Plots
4788452485-S1V1 FCC Report SAR_App C_System Check Plots
4788452485-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients
4788452485-S1V1 FCC Report SAR_App E_Probe Cal. Certificates
4788452485-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates

END OF REPORT