

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 03/25/18 - 04/10/18 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1803190049-01-R1.A3L

FCC ID:

A3LSMJ337V

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model: Portable Handset Certification CFR §2.1093 SM-J337V SM-J337VPP

Equipment	Band & Mode	Band & Mode Tx Frequency		SAR			
Class		TAT TOQUONOY	1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)		
PCE	Cell. CDMA/EVDO	824.70 - 848.31 MHz	0.53	0.92	0.91		
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	1.14	0.79	0.96		
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.36	0.73	1.05		
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.36	0.20	0.29		
PCE	UMTS 850	826.40 - 846.60 MHz	0.43	0.77	0.86		
PCE	UMTS 1900	1852.4 - 1907.6 MHz	1.01	0.51	0.82		
PCE	LTE Band 13	779.5 - 784.5 MHz	0.42	0.54	0.67		
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.57	0.79	0.93		
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.61	0.84	1.02		
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	1.08	0.59	0.89		
PCE	LTE Band 7	2502.5 - 2567.5 MHz	0.60	0.38	1.17		
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.97	0.15	0.32		
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	N/A		
NII	U-NII-2A	5260 - 5320 MHz	0.99	0.35	N/A		
NII	U-NII-2C	5500 - 5720 MHz	0.66	0.31	N/A		
NII	U-NII-3	5745 - 5825 MHz	0.56	0.58	1.05		
DSS/DTS	Bluetooth	2402 - 2480 MHz	N/A	N/A	N/A		
Simultaneou	s SAR per KDB 690783 D	01v01r03:	1.59	1.50	1.49		

Note: This revised Test Report (S/N: 1M1803190049-01-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 1 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

REV 20.09 M 03/16/2018

TABLE OF CONTENTS

1	DEVICE	JNDER TEST	3
2	LTE INFO	PRMATION	11
3	INTRODU		12
4	DOSIME	TRIC ASSESSMENT	13
5	DEFINITI	ON OF REFERENCE POINTS	14
6	TEST CO	NFIGURATION POSITIONS	15
7	RF EXPC	SURE LIMITS	18
8	FCC MEA	SUREMENT PROCEDURES	19
9	RF CONE	DUCTED POWERS	26
10	SYSTEM	VERIFICATION	50
11	SAR DAT	A SUMMARY	53
12	FCC MUL	TI-TX AND ANTENNA SAR CONSIDERATIONS	68
13	SAR MEA	ASUREMENT VARIABILITY	32
14	EQUIPME	ENT LIST	33
15	MEASUR	EMENT UNCERTAINTIES	34
16	CONCLU	SION	35
17	REFERE	NCES	36
APPEN APPEN APPEN APPEN	DIX B: DIX C:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS	
APPEN	DIX E:	SAR SYSTEM VALIDATION	
APPEN	DIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

APPENDIX G: SENSOR TRIGGERING DATA SUMMARY

FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 2 of 87
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

R

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device utilizes a power reduction mechanism for some wireless modes and bands for SAR compliance under portable hotspot conditions and during held-to-ear conditions during voice or VOIP scenarios. All hotspot SAR evaluations for this device were performed at the maximum allowed output power when hotspot is enabled. Held-to-ear exposure conditions were evaluated at reduced power for the applicable modes per FCC guidance. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device uses an independent fixed level power reduction mechanism for WLAN during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

	FCC ID: A3LSMJ337V	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 2 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 3 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M 03/16/2018

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Ma	ximum Output Power
----------	--------------------

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)		Burst Average 8-PSK (dBm)					
Wode / Band	I	1 TX Slot	1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
			Slots	Slots	Slots	Slots	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 850	Maximum	33.2	33.2	31.0	30.0	28.5	26.0	24.5	23.5	22.0
GSIVI/GPRS/EDGE 850	Nominal	32.2	32.2	30.0	29.0	27.5	25.0	23.5	22.5	21.0
GSM/GPRS/EDGE 1900	Maximum	30.2	30.2	28.0	26.0	24.5	25.0	23.5	22.0	21.0
GSIVI/GENS/EDGE 1900	Nominal	29.2	29.2	27.0	25.0	23.5	24.0	22.5	21.0	20.0

	Modulated Average (dBm			
Mode / Band	Mode / Band			3GPP
				HSUPA
UMTS Band 5 (850 MHz)	Maximum	24.0	24.0	24.0
010113 Ballu 5 (650 101HZ)	Nominal	23.0	23.0	23.0
UMTS Band 2 (1900 MHz)	Maximum	24.0	24.0	24.0
	Nominal	23.0	23.0	23.0

Mode / Band	Modulated Average (dBm)	
Cell. CDMA/EVDO	Maximum	25.0
Cell. CDIVIA/EVDO	Nominal	24.0
PCS CDMA/EVDO	Maximum	25.5
	Nominal	24.5

	FCC ID: A3LSMJ337V	CALCENT T	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 4 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		1 age 4 01 07
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.09 M

RE 03/16/2018

Mode / Banc	Modulated Average (dBm)	
LTE Band 13	Maximum	24.5
	Nominal	23.5
LTE Band 5 (Cell)	Maximum	25.0
LTE Ballu 5 (Cell)	Nominal	24.0
LTE Dand 4 (A)A(S)	Maximum	25.0
LTE Band 4 (AWS)	Nominal	24.0
LTE Dand 2 (DCC)	Maximum	25.0
LTE Band 2 (PCS)	Nominal	24.0
LTE Band 7	Maximum	24.5
	Nominal	23.5

Mode / Band	Modulated Average (dBm)			
	Ch. 1-9	Ch. 10	Ch. 11	
	Maximum	19.0		
IEEE 802.11b (2.4 GHz)	Nominal		18.0	
IEEE 802.11g (2.4 GHz)	Maximum	16.0	15.0	11.0
TEEE 802.11g (2.4 GHZ)	Nominal	15.0	14.0	10.0
IEEE 802.11n (2.4 GHz)	Maximum	16.0	14.0	11.0
TEEE 802.1111 (2.4 GHZ)	Nominal	15.0	13.0	10.0

Mode / Band	Modulated Average (dBm)	
Bluetooth	Maximum	9.0
Bluetooth	Nominal	8.0
Bluetooth LE	Maximum	6.0
BIUELOOLII LE	Nominal	5.0

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates: DUT Type:		Dage 5 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 5 of 87
001	9 DCTEST Engineering Leberatory Inc.			DEV/ 20.00 M

Mode / Band		Modulated Average (dBm)						
		20 MHz Bandwidth			40 MHz Bandwidth			
			Ch. 36	Ch. 64	Ch.46-54, Ch.110-159	Ch.38, Ch.62	Ch. 102	
IEEE 802.11a (5 GHz)	Maximum	16.0	13.0	15.0				
IEEE 802.118 (5 GHZ)	Nominal	15.0	12.0	14.0				
IEEE 802.11n (5 GHz)	Maximum	16.0	13.0	15.0	15.0	9.0	12.0	
TEEE 802.11h (5 GHZ)	Nominal	15.0	12.0	14.0	14.0	8.0	11.0	

Reduced Output Power 1.3.2

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 TX Slot	1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
		1 1X 5100	Slots	Slots	Slots	Slots	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 1900 Maximum Nominal	Maximum	28.0	28.0	27.0	25.0	23.0	25.0	23.5	22.0	21.0
	Nominal	27.0	27.0	26.0	24.0	22.0	24.0	22.5	21.0	20.0

Mode / Band		Modulated Average (dBm)			
		3GPP	3GPP	3GPP	
				HSUPA	
UMTS Band 2 (1900 MHz)	Maximum	23.0	23.0	23.0	
	Nominal	22.0	22.0	22.0	

Mode / Band	Modulated Average (dBm)	
	Maximum	24.7
Cell. CDMA/EVDO	Nominal	23.7
PCS CDMA/EVDO	Maximum	24.0
	Nominal	23.0

Mode / Band	Modulated Average (dBm)		
	Maximum	23.5	
LTE Band 4 (AWS)	Nominal	22.5	
LTE Band 2 (PCS)	Maximum	23.5	
LTE Ballu Z (PCS)	Nominal	22.5	

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage C of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 6 of 87
004	9 DOTEST Engineering Leberston/ Inc.				DEV 20.00 M

Mode / Band	Modulated Average (dBm)			
				Ch. 11
	Maximum	16.0		
IEEE 802.11b (2.4 GHz)	Nominal	15.0		
IEEE 802.11g (2.4 GHz)	Maximum	16.0	15.0	11.0
TEEE 802.11g (2.4 GHZ)	Nominal	15.0	14.0	10.0
IEEE 802.11n (2.4 GHz)	Maximum	16.0	14.0	11.0
	Nominal	15.0	13.0	10.0

Mode / Band		Modulated Average (dBm)				
		20 MHz Bandwidth	40 MHz Band	width		
		20 WHZ Bandwidth	Ch.46-54, Ch.102-159	Ch.38, Ch. 62		
IEEE 802.11a (5 GHz)	Maximum	11.0				
	Nominal	10.0				
IEEE 802.11n (5 GHz)	Maximum	11.0	11.0	9.0		
	Nominal	10.0	10.0	8.0		

DUT Antenna Locations 1.4

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is ≤160 mm and the diagonal display is ≤150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1 **Device Edges/Sides for SAR Testing**

Mode	Back	Front	Тор	Bottom	Right	Left
Cell. EVDO	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	Yes	Yes
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 7	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN	Yes	Yes	Yes	No	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-1, U-NII-2A, U-NII-2C operations are disabled. Therefore, U-NII-1, U-NII-2A, U-NII-2C operations are not considered in this section.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 7 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage / 010/
201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

1.5 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

	Simultaneous Transmission Scenarios						
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes		
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A			
2	1x CDMA voice + 5 GHz WI-FI	Yes	Yes	N/A			
3	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^ Bluetooth Tethering is considered		
4	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A			
5	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A			
6	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^ Bluetooth Tethering is considered		
7	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes			
8	UMTS + 5 GHz WI-FI	Yes	Yes	Yes			
9	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^ Bluetooth Tethering is considered		
10	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes			
11	LTE + 5 GHz WI-FI	Yes	Yes	Yes			
12	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^ Bluetooth Tethering is considered		
13	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered		
14	CDMA/EVDO data + 5 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered		
15	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered		
16	GPRS/EDGE + 2.4 GHz WI-FI	N/A	N/A	Yes			
17	GPRS/EDGE + 5 GHz WI-FI	N/A	N/A	Yes			
18	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	N/A	Yes^	^ Bluetooth Tethering is considered		

Table 1-2

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII2A, and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports VOLTE.
- 7. This device supports VoWIFI.
- 8. This device supports Bluetooth Tethering.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 9 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 8 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.	·		REV 20.09 M

03/16/2018

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A & U-NII-2C WIFI, only 2.4 GHz and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

 $\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, head Bluetooth SAR was not required; $[(8/5)^* \sqrt{2.480}] = 2.5 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; [(8/15)* \ddot 2.480] = 0.8< 3.0. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, hotspot Bluetooth SAR was not required; $[(8/10)^* \sqrt{2.480}] = 1.3 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 9 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M 03/16/2018

1.7 **Guidance Applied**

- IEEE 1528-2013 •
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices) .
- FCC KDB Publication 447498 D01v06 (General SAR Guidance) •
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) •
- October 2013 TCB Workshop Notes (GPRS Testing Considerations) •

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 10 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	
© 201	8 PCTEST Engineering Laboratory, Inc.	·		REV 20.09 M

03/16/2018

2 LTE INFORMATION

FCC ID	A3LSMJ337V			
Form Factor		Portable Handset		
Frequency Range of each LTE transmission band		Band 13 (779.5 - 784.5	/	
		and 5 (Cell) (824.7 - 848	/	
		nd 4 (AWS) (1710.7 - 17	,	
		nd 2 (PCS) (1850.7 - 190		
		Band 7 (2502.5 - 2567.5	,	
Channel Bandwidths		TE Band 13: 5 MHz, 10 N		
		(Cell): 1.4 MHz, 3 MHz, 5		
		4 MHz, 3 MHz, 5 MHz, 1		
		4 MHz, 3 MHz, 5 MHz, 10		
		7: 5 MHz, 10 MHz, 15 M		
Channel Numbers and Frequencies (MHz)		Mid	High	
LTE Band 13: 5 MHz	779.5 (23205)	782 (23230)	784.5 (23255)	
LTE Band 13: 10 MHz	N/A	782 (23230)	N/A	
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)	
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)	
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)	
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)	
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)	
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)	
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)	
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)	
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)	
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)	
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)	
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)	
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)	
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)	
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)	
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)	
LTE Band 7: 5 MHz	2502.5 (20775)	2535 (21100)	2567.5 (21425)	
LTE Band 7: 10 MHz	2505 (20800)	2535 (21100)	2565 (21400)	
LTE Band 7: 15 MHz	2507.5 (20825)	2535 (21100)	2562.5 (21375)	
LTE Band 7: 20 MHz	2510 (20850)	2535 (21100)	2560 (21350)	
UE Category		4		
Modulations Supported in UL		QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS				
36.101 section 6.2.3~6.2.5? (manufacturer attestation	on YES			
to be provided)				
A-MPR (Additional MPR) disabled for SAR Testing?		YES		
LTE Additional Information	This device does not support full CA features on 3GPP Release 10. uplink communications are identical to the Release 8 Specifications. following LTE Release 10 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, eICIC, WIFI Offloadi MDH, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.			

FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 11 of 97
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 11 of 87

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 **SAR Mathematical Equation** SAR = -

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

- = mass density of the tissue-simulating material (kg/m^3) ρ
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dece 12 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 12 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

03/16/2018

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

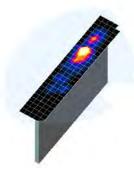


Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

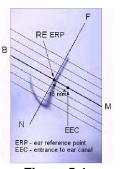
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan Bosolution (mm) Bosolution (mm)		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency		Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Gi	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	Δz _{zoom} (n>1)*	
≤2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤ 4	≤3	≤ 2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 12 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 13 of 87
20	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

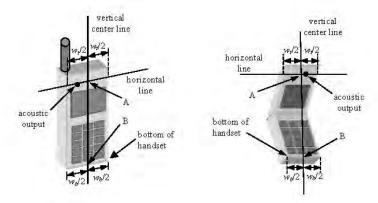


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daria 44 - 6 07
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 14 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

20.09 N REV 03/16/2018

6 **TEST CONFIGURATION POSITIONS**

6.1 **Device Holder**

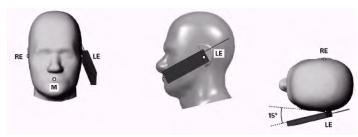
The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

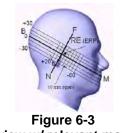
6.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).


6.3 Positioning for Ear / 15° Tilt


With the test device aligned in the "Cheek Position":

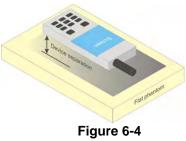
- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manage		
	Document S/N:	Test Dates:	DUT Type:	Dage 45 of 97		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 15 of 87		
© 201	018 PCTEST Engineering Laboratory, Inc.					

03/16/2018

Side view w/ relevant markings

Figure 6-2 Front, Side and Top View of Ear/15º Tilt Position


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dage 16 of 97	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 16 of 87	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

REV 20.09 N 03/16/2018

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Extremity Exposure Configurations 6.6

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Da as 47 st 07		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 17 of 87		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.09 M 03/16/2018

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUN	MAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED EN√IRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:			
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 18 of 87		
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.09 M 03/16/2018

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 **3G SAR Test Reduction Procedure**

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

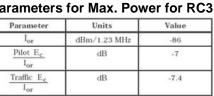
8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 **Output Power Verification**

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

	FCC ID: A3LSMJ337V	PCTEST	SAR EVALUATION REPORT	ING	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 10 of 97	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 19 of 87	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					


03/16/2018

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied. 4.

Table 8-1 Parameters for Max. Power for RC1

Table 8-2					
Parameters	for	Max.	Power	for	RC

Parameter	Units	Value
Î _{or}	dBm/1.23 MHz	-104
Pilot Ec	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 **Body-worn SAR Measurements**

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

	FCC ID: A3LSMJ337V	A PCTEST		G	Approved by:	
		Y PREDITERING OR CORATORY, CH			Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 00 at 07	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 20 of 87	
© 20'	2018 PCTEST Engineering Laboratory, Inc.					

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Laver configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.5 SAR Measurement Conditions for UMTS

8.5.1 **Output Power Verification**

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes. HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.5.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

SAR Measurements with Rel 5 HSDPA 8.5.4

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 21 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Fage 21 01 07
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

REV 20.09 M 03/16/2018

12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode: otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations ii. and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dama 00 af 07	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 22 of 87	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

REV 20.09 M 03/16/2018

- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.7 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.7.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

8.7.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band dap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dage 22 of 97	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 23 of 87	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

03/16/2018

8.7.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.7.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.7.7 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6).

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 24 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Fage 24 01 07
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

REV 20.09 M 03/16/2018

Subsequent Test Configuration Procedures 8.7.8

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 25 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 25 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

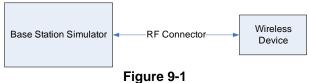
03/16/2018

CDMA Conducted Powers 9.1

	Maximum Conducted Power												
Band	Channel	Frequency	SO55 [dBm]	SO55 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]					
	F-RC	MHz	RC1	RC3	FCH+SCH	FCH	(RTAP)	(RETAP)					
	1013	824.7	24.02	24.04	24.02	24.02	24.13	24.09					
Cellular	384	836.52	23.93	23.92	23.89	23.88	24.02	23.99					
	777	848.31	23.77	23.76	23.74	23.74	23.88	23.83					
	25	1851.25	24.44	24.42	24.40	24.41	24.57	24.63					
PCS	600	1880	24.45	24.42	24.42	24.42	24.63	24.67					
	1175	1908.75	24.52	24.50	24.50	24.49	24.67	24.74					

Table 9-1

Note: RC1 is only applicable for IS-95 compatibility.


	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 26 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

03/16/2018

	Reduced Conducted Power											
Band	and Channel Rule Part F		Frequency	SO55 SO55 ⁻ [dBm] [dBm]		TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]			
	F-RC		MHz	RC1	RC3	FCH+SCH	FCH	(RTAP)	(RETAP)			
	1013	22H	824.7	23.56	23.60	23.61	23.60	23.69	23.72			
Cellular	384	22H	836.52	23.59	23.62	23.60	23.60	23.54	23.59			
	777	22H	848.31	23.49	23.47	23.50	23.45	23.59	23.58			
	25	24E	1851.25	22.77	22.79	22.75	22.77	22.72	22.77			
PCS	600	24E	1880	22.85	22.86	22.83	22.80	22.80	22.84			
	1175	24E	1908.75	22.95	22.96	22.95	22.94	22.89	22.94			

Table 9-2

Note: RC1 is only applicable for IS-95 compatibility.

Power Measurement Setup

FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 27 of 87
© 2018 PCTEST Engineering Laboratory	, Inc.			REV 20.09 M

RE 03/16/2018

9.2 **GSM Conducted Powers**

Maximum Conducted Power													
	Maximum Burst-Averaged Output Power												
		Voice		GPRS/EL (GN	DGE Data ISK)		EDGE Data (8-PSK)						
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot			
	128	31.97	32.08	30.46	29.17	28.01	25.97	24.02	23.12	21.74			
GSM 850	190	31.94	31.99	30.23	29.06	27.93	25.81	23.85	22.96	21.57			
	251	31.95	31.90	30.02	28.97	27.67	25.53	23.55	22.72	21.35			
	512	29.01	29.04	26.86	25.32	23.81	24.25	22.31	21.43	20.06			
GSM 1900	661	29.35	29.41	27.18	25.48	23.97	24.41	22.51	21.61	20.19			
	810	29.36	29.54	27.33	25.66	24.26	24.74	22.79	21.89	20.47			

		Table) 9-3	
Ма	ximu	n Con	ducted P	ower
-				

Calculated Maximum Frame-Averaged Output Power												
		Voice		GPRS/EL (GN	DGE Data ISK)		EDGE Data (8-PSK)					
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	128	22.94	23.05	24.44	24.91	25.00	16.94	18.00	18.86	18.73		
GSM 850	190	22.91	22.96	24.21	24.80	24.92	16.78	17.83	18.70	18.56		
	251	22.92	22.87	24.00	24.71	24.66	16.50	17.53	18.46	18.34		
	512	19.98	20.01	20.84	21.06	20.80	15.22	16.29	17.17	17.05		
GSM 1900	661	20.32	20.38	21.16	21.22	20.96	15.38	16.49	17.35	17.18		
	810	20.33	20.51	21.31	21.40	21.25	15.71	16.77	17.63	17.46		
GSM 850	Frame	23.17	23.17	23.98	24.74	24.49	15.97	17.48	18.24	17.99		
GSM 1900	Avg.Targets:	20.17	20.17	20.98	20.74	20.49	14.97	16.48	16.74	16.99		

FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Da as 00 st 07
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 28 of 87

	Reduced Conducted Power											
	Maximum Burst-Averaged Output Power											
		Voice		GPRS/EL (GN	DGE Data /ISK)		EDGE Data (8-PSK)					
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot				EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	512	26.62	26.56	25.58	23.89	22.36	24.19	22.34	21.32	19.92		
GSM 1900	661	26.65	26.68	25.88	24.17	22.76	24.56	22.62	21.46	20.21		
	810	26.77	26.99	26.02	24.31	22.83	24.61	22.65	21.71	20.33		

	Table 9-4	
Reduced	Conducted	Power

	Calculated Maximum Frame-Averaged Output Power											
		Voice		GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	512	17.59	17.53	19.56	19.63	19.35	15.16	16.32	17.06	16.91		
GSM 1900	661	17.62	17.65	19.86	19.91	19.75	15.53	16.60	17.20	17.20		
	810	17.74	17.96	20.00	20.05	19.82	15.58	16.63	17.45	17.32		
GSM 1900	Frame Avg.Targets:	17.97	17.97	19.98	19.74	18.99	14.97	16.48	16.74	16.99		

Note:

Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was 1. calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B GPRS Multislot class: 33 (Max 4 Tx uplink slots) EDGE Multislot class: 33 (Max 4 Tx uplink slots) DTM Multislot Class: N/A

Figure 9-2 **Power Measurement Setup**

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 20 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 29 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

9.3 **UMTS Conducted Powers**

3GPP Release	Mode	Node 3GPP 34.121 Subtest		Cellular Band [dBm]			S Band [d	3GPP MPR [dB]		
Version		Sublesi	4132	4183	4233	9262	9400	9538	լսեյ	
99	WCDMA	12.2 kbps RMC	23.03	23.01	22.97	23.18	23.21	23.38	-	
99	W CDIVIA	12.2 kbps AMR	22.96	22.97	22.99	23.12	23.20	23.36	-	
6		Subtest 1	23.12	23.08	23.04	23.27	23.18	23.10	0	
6	HSDPA	Subtest 2	22.51	22.43	22.46	23.32	23.24	23.14	0	
6	TIGDEA	Subtest 3	22.54	22.48	22.53	22.48	22.43	22.43	0.5	
6		Subtest 4	21.64	21.51	21.65	22.56	22.46	22.42	0.5	
6		Subtest 1	22.31	22.34	22.32	22.35	22.26	22.21	0	
6		Subtest 2	20.48	20.43	20.51	20.05	20.01	20.02	2	
6	HSUPA	Subtest 3	22.33	22.36	22.31	22.35	22.28	22.24	1	
6		Subtest 4	20.50	20.43	20.58	20.02	20.03	20.04	2	
6		Subtest 5	22.99	22.97	22.96	23.14	23.18	23.16	0	

Table 9-5 Maximum Conducted Power

	Reduced Conducted Power									
3GPP Release	Mode 3GPP 34.121 Subtest		PCS Band [dBm]			3GPP MPR [dB]				
Version		Custoot	9262	9400	9538	[ub]				
99	WCDMA	12.2 kbps RMC	21.91	21.82	21.90	-				
99	WCDINA	12.2 kbps AMR	21.93	21.97	22.02	-				
6		Subtest 1	21.90	21.88	21.86	0				
6		Subtest 2	21.89	21.90	21.88	0				
6	HSDPA	Subtest 3	21.94	21.86	21.87	0.5				
6		Subtest 4	21.95	21.89	21.89	0.5				
6		Subtest 1	21.31	21.21	21.19	0				
6		Subtest 2	19.83	19.78	19.81	2				
6	HSUPA	Subtest 3	21.29	21.22	21.18	1				
6		Subtest 4	19.84	19.77	19.82	2				
6		Subtest 5	21.95	21.87	21.86	0				

Table 9-6

This device does not support DC-HSDPA.

It is expected that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 9-3 **Power Measurement Setup**

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama 00 of 07
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 30 of 87
201	8 PCTEST Engineering Laboratory, Inc.	•		REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

9.4 LTE Conducted Powers

9.4.1 LTE Band 13

	LTE Band 13 10 MHz Bandwidth										
		Mid Channel									
Modulation	RB Size		23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]						
			Conducted Power [dBm]								
	1	0	24.07		0						
	1	25	24.08	0	0						
	1	49	23.99		0						
QPSK	25	0	23.07		1						
	25	12	22.92	0-1	1						
	25	25	23.00	0-1	1						
	50	0	23.03		1						
	1	0	23.06		1						
	1	25	23.05	0-1	1						
	1	49	22.95		1						
16QAM	25	0	22.01		2						
	25	12	21.98	0-2	2						
	25	25	21.94	0-2	2						
	50	0	22.01		2						

Table 9-7 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

Table 9-8 LTE Band 13 Conducted Powers - 5 MHz Bandwidth

	LTE Band 13 5 MHz Bandwidth										
			Mid Channel								
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]						
			Conducted Power [dBm]								
	1	0	23.99		0						
	1	12	23.92	0	0						
	1	24	23.78		0						
QPSK	12	0	22.81		1						
	12	6	22.79	0-1	1						
	12	13	22.75	0-1	1						
	25	0	22.78		1						
	1	0	22.65		1						
	1	12	22.56	0-1	1						
	1	24	23.06		1						
16QAM	12	0	21.91		2						
	12	6	21.87	0-2	2						
	12	13	21.81	0-2	2						
	25	0	21.84		2						

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 21 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 31 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.		·	REV 20.09 M

REV 20.09 M 03/16/2018

LTE Band 5 (Cell) 9.4.2

		-	LTE Band 5 (Cell) 10 MHz Bandwidth	-		
Modulation	RB Size	RB Size RB Offset (836.5 MHz)		MPR Allowed per 3GPP [dB]	MPR [dB]	
			Conducted Power [dBm]			
	1	0	24.02		0	
	1	25	23.97	0	0	
	1	49	23.97		0	
QPSK	25	0	22.95		1	
	25	12	22.88	0-1	1	
	25	25	22.89	0-1	1	
	50	0	22.93		1	
	1	0	23.01		1	
	1	25	22.93	0-1	1	
	1	49	22.92]	1	
16QAM	25	0	22.00		2	
	25	12	21.98	0-2	2	
	25	25	21.99	0-2	2	
	50	0	22.02		2	

Table 9-9

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	Table 9-10
LTE Band 5 (Cell)	Conducted Powers - 5 MHz Bandwidth

				onadotoa i ono								
				LTE Band 5 (Cell)								
	5 MHz Bandwidth											
			Low Channel	Mid Channel	High Channel							
Modulation	RB Size	RB Offset	20425	20525	20625	MPR Allowed per	MPR [dB]					
Wouldton	10 5126	IND Onset	(826.5 MHz)	(836.5 MHz)	(846.5 MHz)	3GPP [dB]						
			(Conducted Power [dBm]							
	1	0	24.27	23.94	24.35		0					
	1	12	24.17	23.91	24.32	0-1	0					
	1	24	24.21	23.91	24.31		0					
QPSK	12	0	23.05	22.98	23.22		1					
	12	6	23.02	23.01	23.20		1					
	12	13	23.04	22.96	23.19		1					
	25	0	23.00	22.97	23.18		1					
	1	0	23.09	22.91	23.18		1					
	1	12	22.93	22.85	23.13	0-1	1					
	1	24	22.93	22.86	23.19		1					
16QAM	12	0	21.98	21.94	22.09		2					
	12	6	21.97	21.88	22.05	0-2	2					
	12	13	22.00	21.86	21.95	0-2	2					
	25	0	22.01	21.97	22.15		2					

FCC	C ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Doc	cument S/N:	Test Dates:	DUT Type:		Daga 22 of 97
1M1	1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 32 of 87
© 2018 PC	TEST Engineering Laboratory, Inc.		÷		REV 20.09 M

				LTE Band 5 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.12	24.07	24.44		0
	1	7	24.09	24.04	24.42	0	0
	1	14	24.10	24.04	24.39		0
QPSK	8	0	23.02	22.96	23.24		1
	8	4	23.03	22.95	23.22		1
	8	7	23.02	22.90	23.19		1
	15	0	23.06	22.99	23.25		1
	1	0	23.19	23.04	23.19		1
	1	7	23.04	22.89	23.15	0-1	1
	1	14	22.96	22.80	23.13		1
16QAM	8	0	21.98	22.01	22.12		2
	8	4	21.94	22.03	22.14	0-2	2
	8	7	21.93	22.05	22.09		2
	15	0	22.00	21.92	22.10		2

Table 9-11 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

Table 9-12 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

	LTE Band 5 (Cell) 1.4 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 20407 (824.7 MHz)	Mid Channel 20525 (836.5 MHz)	High Channel 20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm	. ,					
	1	0	24.18	24.17	24.45		0			
	1	2	24.15	24.18	24.40] [0			
	1	5	24.19	24.17	24.43	0	0			
QPSK	3	0	24.16	24.01	24.29		0			
	3	2	24.18	24.02	24.31		0			
	3	3	24.19	24.06	24.30		0			
	6	0	23.10	22.94	23.30	0-1	1			
	1	0	22.89	22.65	23.04		1			
	1	2	23.00	22.56	23.02] [1			
	1	5	23.07	22.55	23.13	0-1	1			
16QAM	3	0	23.14	22.80	23.24	U-1	1			
	3	2	23.16	22.78	23.22	1 1	1			
	3	3	23.18	22.82	23.20	1	1			
	6	0	22.08	22.03	22.14	0-2	2			

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	ING	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 33 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

REV 20.09 M 03/16/2018

9.4.3

LTE Band 4 (AWS)

LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth										
			LTE Band 4 (AWS)							
	20 MHz Bandwidth Mid Channel									
				-						
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	24.11		0					
	1	50	24.08	0	0					
	1	99	24.09		0					
QPSK	50	0	23.14		1					
	50	25	23.12	0-1	1					
	50	50	23.12		1					
	100	0	23.13		1					
	1	0	22.98		1					
	1	50	23.04	0-1	1					
	1	99	23.15		1					
16QAM	50	0	22.10		2					
	50	25	22.09	0-2	2					
	50	50	22.11	0-2	2					
	100	0	22.13		2					

Table 9-13 MI I Daw duri de

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-14 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

				ondaotoa i onoi					
				LTE Band 4 (AWS) 15 MHz Bandwidth					
Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm]					
	1	0	24.18	24.06	24.15	0	0		
	1	36	24.17	24.06	24.14		0		
	1	74	24.20	24.05	24.12		0		
QPSK	36	0	23.14	23.06	23.00	- 0-1	1		
	36	18	23.11	23.05	23.01		1		
	36	37	23.12	23.02	22.99		1		
	75	0	23.08	23.01	23.00		1		
	1	0	23.08	22.94	22.92		1		
	1	36	23.04	22.93	22.94	0-1	1		
	1	74	23.12	23.03	22.89		1		
16QAM	36	0	22.11	22.05	22.03		2		
	36	18	22.09	22.02	21.99	0.2	2		
	36	37	22.10	22.02	22.01	0-2	2		
	75	0	22.13	22.04	22.00		2		

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 24 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 34 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.09 M

REV 20.09 M 03/16/2018

	LTE Band 4 (AWS)									
	10 MHz Bandwidth Low Channel Mid Channel High Channel									
					High Channel					
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]			
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]				
				Conducted Power [dBm]					
	1	0	24.20	24.00	24.09		0			
	1	25	24.19	24.02	24.07	0	0			
	1	49	24.16	24.03	24.03		0			
QPSK	25	0	23.17	22.99	23.06	- 0-1	1			
	25	12	23.19	22.98	23.07		1			
	25	25	23.16	22.98	23.04		1			
	50	0	23.19	22.97	23.06		1			
	1	0	23.03	23.11	23.08		1			
	1	25	23.10	22.91	22.96	0-1	1			
	1	49	23.15	22.99	22.94		1			
16QAM	25	0	22.20	21.99	22.09	0-2	2			
	25	12	22.21	21.98	22.06		2			
	25	25	22.22	21.96	22.08		2			
	50	0	22.18	22.04	22.09]	2			

Table 9-15 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

Table 9-16
LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

LTE Band 4 (AWS) 5 MHz Bandwidth									
Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm]				
	1	0	24.28	23.96	24.07	0	0		
	1	12	24.33	23.98	24.06		0		
	1	24	24.31	23.95	24.08		0		
QPSK	12	0	23.15	22.99	22.99	0-1	1		
	12	6	23.15	23.01	23.02		1		
	12	13	23.12	23.00	23.00		1		
	25	0	23.15	22.99	23.02		1		
	1	0	23.33	23.06	23.05		1		
	1	12	22.92	22.99	22.95	0-1	1		
	1	24	23.06	22.93	23.09		1		
16QAM	12	0	22.14	21.98	22.01		2		
	12	6	22.08	22.00	21.98	0-2	2		
	12	13	22.10	21.99	22.00		2		
	25	0	22.16	22.06	21.98		2		

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 25 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 35 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

RE 03/16/2018

	LTE Band 4 (AWS)									
	3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	19965	20175	20385	MPR Allowed per	MPR [dB]			
Modulation	ND 5126	IND Onset	(1711.5 MHz)	(1732.5 MHz)	(1753.5 MHz)	3GPP [dB]				
				Conducted Power [dBm]					
	1	0	24.30	24.09	24.00	0	0			
	1	7	24.32	24.06	23.97		0			
	1	14	24.32	24.05	23.99		0			
QPSK	8	0	23.15	22.98	22.93	0-1	1			
	8	4	23.15	22.96	22.93		1			
	8	7	23.14	22.99	22.92		1			
	15	0	23.17	23.02	22.94		1			
	1	0	23.24	23.06	23.05		1			
	1	7	23.28	23.07	23.06	0-1	1			
	1	14	23.25	23.05	23.00		1			
16QAM	8	0	22.11	22.03	21.89	0-2	2			
	8	4	22.09	22.03	21.87		2			
	8	7	22.10	22.01	21.88		2			
	15	0	22.19	22.01	21.90		2			

Table 9-17 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

			and $4(AWS)C$	onducted Power	re -1 4 MHz Bor	adwidth	
			anu 4 (AWS) C	LTE Band 4 (AWS) 1.4 MHz Bandwidth		Idwidth	
Modulation	RB Size	RB Offset	Low Channel 19957 (1710.7 MHz)	Mid Channel 20175 (1732.5 MHz)	High Channel 20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.24	24.19	24.04		0
	1	2	24.19	24.19	24.02	0	0
	1	5	24.27	24.18	24.06		0
QPSK	3	0	24.22	24.01	23.92		0
	3	2	24.20	24.00	23.95		0
	3	3	24.22	23.99	23.97		0
	6	0	23.23	23.01	22.92	0-1	1
	1	0	23.13	22.72	22.76		1
	1	2	23.19	22.70	22.79	1	1
	1	5	23.22	22.69	22.69	0-1	1
16QAM	3	0	23.18	22.85	22.87	1 0-1	1
	3	2	23.19	22.88	22.90		1
	3	3	23.20	22.86	22.89		1
ľ	6	0	22.26	22.08	21.85	0-2	2

Table 9-18

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 36 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

RE 03/16/2018

LTE Band 4 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth									
			LTE Band 4 (AWS)						
			20 MHz Bandwidth						
			Mid Channel						
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per	MPR [dB]				
			Conducted Power [dBm]	3GPP [dB]					
	1	0	22.43		0				
	1	50	22.41	0	0				
	1	99	22.42		0				
QPSK	50	0	21.38		1				
	50	25	21.37	0-1	1				
	50	50	21.33	0-1	1				
	100	0	21.35		1				
	1	0	21.36		1				
	1	50	21.41	0-1	1				
	1	99	21.40		1				
16QAM	50	0	20.34		2				
	50	25	20.43	0-2	2				
	50	50	20.41	0-2	2				
	100	0	20.31		2				

Table 9-19 20 MUL Dondwidth

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-20 LTE Band 4 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth

	LTE Band 4 (AWS) 15 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.80	22.72	22.78	0	0				
	1	36	22.76	22.73	22.77		0				
	1	74	22.77	22.69	22.76		0				
QPSK	36	0	21.72	21.67	21.73	0-1	1				
	36	18	21.75	21.66	21.72		1				
	36	37	21.72	21.68	21.68		1				
	75	0	21.73	21.66	21.69		1				
	1	0	21.53	21.72	21.79		1				
	1	36	21.48	21.65	21.73	0-1	1				
	1	74	21.81	21.61	21.65		1				
16QAM	36	0	20.76	20.71	20.68		2				
	36	18	20.78	20.67	20.70	0-2	2				
	36	37	20.77	20.68	20.69	0-2	2				
	75	0	20.74	20.68	20.71		2				

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	G	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 37 of 87		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Fage 37 01 67		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.09 M 03/16/2018

	LTE Band 4 (AWS) 10 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20000 (1715.0 MHz)	20175 (1732.5 MHz)	20350 (1750.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.77	22.71	22.68	0	0				
	1	25	22.78	22.73	22.72		0				
	1	49	22.82	22.72	22.69		0				
QPSK	25	0	21.65	21.66	21.70	0-1	1				
	25	12	21.69	21.63	21.69		1				
	25	25	21.68	21.64	21.68		1				
	50	0	21.67	21.65	21.71		1				
	1	0	21.72	21.66	21.64		1				
	1	25	21.44	21.65	21.63	0-1	1				
	1	49	21.58	21.67	21.77		1				
16QAM	25	0	20.70	20.58	20.74		2				
	25	12	20.73	20.60	20.75	0-2	2				
	25	25	20.75	20.57	20.72	0-2	2				
	50	0	20.74	20.73	20.76		2				

Table 9-21 LTE Band 4 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

	Table 9-22 LTE Band 4 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth										
	LTE Band 4 (AWS) 5 MHz Bandwidth										
Modulation	RB Size	on RB Size	RB Offset	Low Channel 19975 (1712.5 MHz)	Mid Channel 20175 (1732.5 MHz)	High Channel 20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]						
	1	0	22.75	22.63	22.83	0	0				
	1	12	22.76	22.64	22.85		0				
	1	24	22.79	22.65	22.83		0				
QPSK	12	0	21.71	21.65	21.70	0-1	1				
	12	6	21.72	21.64	21.71		1				
	12	13	21.69	21.66	21.72	0-1	1				
	25	0	21.71	21.67	21.69		1				
	1	0	21.68	21.46	21.55		1				
	1	12	21.68	21.52	21.56	0-1	1				
	1	24	21.63	21.43	21.59		1				
16QAM	12	0	20.60	20.63	20.74		2				
	12	6	20.63	20.56	20.76	0-2	2				
	12	13	20.62	20.61	20.75	0-2	2				
	25	0	20.69	20.66	20.73		2				

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manage		
	Document S/N:	Test Dates:	DUT Type:	Da as 20 at 07	D	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 38 of 87		
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M		

03/16/2018

	LTE Band 4 (AWS) 3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.85	22.76	22.65	0	0				
	1	7	22.88	22.80	22.68		0				
	1	14	22.87	22.76	22.65		0				
QPSK	8	0	21.74	21.65	21.64	0-1	1				
	8	4	21.75	21.67	21.62		1				
	8	7	21.78	21.67	21.63		1				
	15	0	21.77	21.66	21.63		1				
	1	0	21.69	21.58	21.83		1				
	1	7	21.73	21.60	21.82	0-1	1				
	1	14	21.74	21.62	21.80		1				
16QAM	8	0	20.75	20.78	20.70		2				
	8	4	20.72	20.77	20.73	0.2	2				
	8	7	20.76	20.75	20.72	0-2	2				
	15	0	20.84	20.72	20.68]	2				

Table 9-23 LTE Band 4 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

	L	_TE Band	4 (AWS) Reduc	ed Conducted F	owers -1.4 MH	z Bandwidth	
				LTE Band 4 (AWS)			
		-	-	1.4 MHz Bandwidth		-	
			Low Channel	Mid Channel	High Channel	_	
Modulation	RB Size	RB Offset	19957	20175	20393	MPR Allowed per	MPR [dB]
modulation	ND 0120	ND Onset	(1710.7 MHz)	(1732.5 MHz)	(1754.3 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	22.92	22.85	22.67		0
	1	2	22.87	22.87	22.66	0	0
	1	5	22.91	22.86	22.67		0
QPSK	3	0	22.87	22.74	22.73		0
	3	2	22.93	22.75	22.70		0
	3	3	22.94	22.77	22.68		0
	6	0	21.86	21.69	21.62	0-1	1
	1	0	21.74	21.40	21.52		1
	1	2	21.66	21.42	21.53		1
	1	5	21.72	21.45	21.57	0-1	1
16QAM	3	0	21.77	21.59	21.46		1
	3	2	21.74	21.60	21.45]	1
	3	3	21.76	21.61	21.48		1
	6	0	20.79	20.62	20.69	0-2	2

Table 9-24

	FCC ID: A3LSMJ337V	7V CALUATION REPORT		SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 00 (07	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 39 of 87	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M	

RE 03/16/2018

9.4.4

LTE Band 2 (PCS)

				LTE Band 2 (PCS) 20 MHz Bandwidth			
			Low Channel Mid Channel High Cha		High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.04	24.13	24.15		0
	1	50	24.08	24.15	24.13	0	0
	1	99	24.13	24.16	24.28		0
QPSK	50	0	23.13	23.11	23.24	- 0-1	1
	50	25	23.11	23.10	23.25		1
	50	50	23.13	23.09	23.27		1
	100	0	23.15	23.12	23.24		1
	1	0	23.10	23.12	23.43		1
	1	50	23.08	23.25	23.49	0-1	1
	1	99	23.15	23.13	23.42		1
16QAM	50	0	22.07	22.11	22.26		2
	50	25	22.11	22.12	22.28	0-2	2
	50	50	22.16	22.14	22.29		2
	100	0	22.14	22.18	22.28		2

Table 9-25 I TE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

Table 9-26 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

	LTE Band 2 (PCS) 15 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	24.29	24.14	24.37	0	0			
	1	36	24.32	24.15	24.34		0			
	1	74	24.33	24.13	24.40		0			
QPSK	36	0	23.20	23.08	23.20	0-1	1			
	36	18	23.23	23.12	23.23		1			
	36	37	23.24	23.09	23.19		1			
	75	0	23.20	23.02	23.22		1			
	1	0	23.02	22.94	23.02		1			
	1	36	23.12	22.95	23.13	0-1	1			
	1	74	23.13	22.88	23.22		1			
16QAM	36	0	22.24	22.15	22.24		2			
	36	18	22.25	22.16	22.22	0-2	2			
	36	37	22.25	22.20	22.23	0-2	2			
	75	0	22.21	22.15	22.24		2			

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 07
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	04/10/18 Portable Handset		Page 40 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.09 M

03/16/2018

	LTE Band 2 (PCS) 10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	24.26	24.08	24.29		0			
	1	25	24.27	24.07	24.32	0	0			
	1	49	24.26	24.05	24.33		0			
QPSK	25	0	23.24	23.06	23.10		1			
	25	12	23.25	23.08	23.11	0-1	1			
	25	25	23.23	23.08	23.10		1			
	50	0	23.23	23.05	23.09		1			
	1	0	23.20	23.00	22.91		1			
	1	25	23.16	23.02	22.86	0-1	1			
	1	49	23.08	22.98	22.84		1			
16QAM	25	0	22.25	22.11	22.15		2			
	25	12	22.24	22.10	22.16	0-2	2			
	25	25	22.23	22.10	22.13	0-2	2			
	50	0	22.26	22.16	22.11		2			

Table 9-27 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

	Table 9-28
LTE Band 2 (PCS)	Conducted Powers - 5 MHz Bandwidth

	LTE Band 2 (PCS) 5 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm]				
	1	0	24.24	24.08	24.21		0		
	1	12	24.21	24.09	24.19	0	0		
	1	24	24.23	24.06	24.20		0		
QPSK	12	0	23.25	23.07	23.12		1		
	12	6	23.22	23.05	23.10	0-1	1		
	12	13	23.24	23.06	23.09	0-1	1		
	25	0	23.23	23.10	23.11		1		
	1	0	23.18	22.86	23.22		1		
	1	12	23.17	22.85	23.11	0-1	1		
	1	24	23.22	22.82	23.00		1		
16QAM	12	0	22.26	22.06	22.10		2		
	12	6	22.24	22.06	22.13	0-2	2		
	12	13	22.25	22.04	22.11	0-2	2		
	25	0	22.30	22.15	22.15		2		

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 41 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 41 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

	LTE Band 2 (PCS) 3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	24.29	24.18	24.28		0			
	1	7	24.28	24.19	24.28	0	0			
	1	14	24.29	24.20	24.26		0			
QPSK	8	0	23.22	23.07	23.06		1			
	8	4	23.23	23.05	23.07	0-1	1			
	8	7	23.21	23.06	23.05		1			
	15	0	23.24	23.05	23.09		1			
	1	0	23.30	22.95	23.20		1			
	1	7	23.32	22.89	23.22	0-1	1			
	1	14	23.33	22.86	23.21		1			
16QAM	8	0	22.18	22.15	22.06		2			
	8	4	22.16	22.19	22.04	0-2	2			
	8	7	22.17	22.16	22.05	0-2	2			
	15	0	22.25	22.08	22.11		2			

Table 9-29 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

Table 9-30 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 2 (PCS)			
	1	•		1.4 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.36	24.30	24.26		0
	1	2	24.34	24.29	24.24		0
	1	5	24.35	24.31	24.23	0	0
QPSK	3	0	24.33	24.12	24.06	0	0
	3	2	24.31	24.10	24.09		0
	3	3	24.29	24.08	24.05		0
	6	0	23.29	23.07	23.08	0-1	1
	1	0	23.15	22.70	22.84		1
	1	2	23.17	22.73	22.79		1
	1	5	23.14	22.70	22.83	0-1	1
16QAM	3	0	23.11	22.96	23.09		1
	3	2	23.13	22.89	23.06		1
	3	3	23.14	22.94	23.05		1
	6	0	22.28	22.14	22.06	0-2	2

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 42 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	1 490 12 01 01
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

	LTE Band 2 (PCS) 20 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	22.46	22.67	22.56		0			
	1	50	22.42	22.67	22.61	0	0			
	1	99	22.50	22.70	22.71		0			
QPSK	50	0	21.51	21.62	21.59		1			
	50	25	21.53	21.63	21.69	0-1	1			
	50	50	21.48	21.65	21.63		1			
	100	0	21.43	21.61	21.60		1			
	1	0	21.70	21.65	21.66		1			
	1	50	21.69	21.73	21.60	0-1	1			
	1	99	21.61	21.78	21.73		1			
16QAM	50	0	20.43	20.65	20.63		2			
	50	25	20.47	20.65	20.61	0-2	2			
	50	50	20.49	20.67	20.67	0-2	2			
	100	0	20.54	20.69	20.61		2			

Table 9-31 LTE Band 2 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

		LTE Band	2 (PCS) Reduce	Table 9-32	owers - 15 MHz	Bandwidth	
				LTE Band 2 (PCS) 15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18675 (1857.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.61	22.71	22.77		0
	1	36	22.66	22.70	22.75	0	0
	1	74	22.65	22.66	22.76		0
QPSK	36	0	21.56	21.74	21.71		1
	36	18	21.57	21.72	21.69	0-1	1
	36	37	21.61	21.70	21.70	0-1	1
	75	0	21.57	21.71	21.68		1
	1	0	21.26	21.78	21.62		1
	1	36	21.27	21.68	21.61	0-1	1
	1	74	21.36	21.64	21.59		1
16QAM	36	0	20.77	20.74	20.64		2
	36	18	20.61	20.73	20.64	0.2	2
	36	37	20.62	20.71	20.65	0-2	2
	75	0	20.56	20.71	20.63		2

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 40 at 07
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 43 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

REV 20.09 M 03/16/2018

	LTE Band 2 (PCS) 10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	22.69	22.68	22.74		0			
	1	25	22.63	22.64	22.71	0	0			
	1	49	22.68	22.63	22.75		0			
QPSK	25	0	21.57	21.59	21.51		1			
	25	12	21.53	21.58	21.55	0-1	1			
	25	25	21.56	21.58	21.57		1			
	50	0	21.54	21.60	21.56		1			
	1	0	21.51	21.42	21.36		1			
	1	25	21.55	21.48	21.37	0-1	1			
	1	49	21.53	21.57	21.35		1			
16QAM	25	0	20.58	20.57	20.60		2			
	25	12	20.59	20.55	20.58	0-2	2			
	25	25	20.62	20.59	20.61	0-2	2			
	50	0	20.57	20.62	20.52		2			

Table 9-33 LTE Band 2 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

		LTE Band	2 (PCS) Reduce	ed Conducted F	owers - 5 MHz	Bandwidth	
				LTE Band 2 (PCS)		-	
	n	1		5 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18625	18900	19175	MPR Allowed per	MPR [dB]
modulation	112 0120		(1852.5 MHz)	(1880.0 MHz)	(1907.5 MHz)	3GPP [dB]	MPR [dB] 0 0 0 1 1 1 1 1 1 1 1 2
			(Conducted Power [dBm]		
	1	0	22.61	22.68	22.77		0
	1	12	22.60	22.70	22.79	0	0
	1	24	22.65	22.67	22.80		0
QPSK	12	0	21.50	21.67	21.61		1
	12	6	21.51	21.69	21.60	- 0-1	1
	12	13	21.53	21.68	21.64	0-1	1
	25	0	21.54	21.70	21.59		1
	1	0	21.68	21.66	21.58		1
	1	12	21.73	21.61	21.64	0-1	1
	1	24	21.74	21.60	21.63		1
16QAM	12	0	20.51	20.66	20.66		2
	12	6	20.48	20.65	20.59	0-2	2
	12	13	20.47	20.68	20.54	0-2	2
	25	0	20.48	20.71	20.60		2

Table 9-34

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:					
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 44 of 87			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.							

RE 03/16/2018

	LTE Band 2 (PCS) 3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.58	22.75	22.60		0				
	1	7	22.60	22.72	22.63	0	0				
	1	14	22.63	22.70	22.61		0				
QPSK	8	0	21.49	21.64	21.59		1				
	8	4	21.49	21.61	21.57	0-1	1				
	8	7	21.50	21.59	21.59	0-1	1				
	15	0	21.51	21.65	21.60		1				
	1	0	21.56	21.57	21.72		1				
	1	7	21.51	21.49	21.73	0-1	1				
	1	14	21.53	21.50	21.74		1				
16QAM	8	0	20.43	20.62	20.51		2				
	8	4	20.42	20.62	20.52	0-2	2				
	8	7	20.45	20.58	20.52	0-2	2				
	15	0	20.48	20.60	20.60		2				

Table 9-35 LTE Band 2 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

		TE Band	2 (PCS) Reduce	d Conducted P	owers -1 4 MHz	Randwidth	
				LTE Band 2 (PCS)		Danawiath	
		-	r	1.4 MHz Bandwidth		т <u> </u>	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607	18900	19193	MPR Allowed per	MPR [dB]
			(1850.7 MHz)	(1880.0 MHz)	(1909.3 MHz)	3GPP [dB]	
			(Conducted Power [dBm]		
	1	0	22.66	22.80	22.72		0
	1	2	22.59	22.82	22.70	0	0
	1	5	22.64	22.86	22.71		0
QPSK	3	0	22.60	22.67	22.75		0
	3	2	22.67	22.71	22.74		0
	3	3	22.69	22.70	22.73		0
	6	0	21.56	21.64	21.68	0-1	1
	1	0	21.28	21.53	21.53		1
	1	2	21.24	21.26	21.53		1
	1	5	21.43	21.24	21.54	0-1	1
16QAM	3	0	21.45	21.65	21.60		1
	3	2	21.38	21.59	21.61]	1
	3	3	21.44	21.62	21.63		1
	6	0	20.59	20.58	20.71	0-2	2

Table 9-36
LTE Band 2 (PCS) Reduced Conducted Powers -1.4 MHz Bandwidth

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 45 of 87
© 20	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

REV 20.09 M 03/16/2018

9.4.5 LTE Band 7

LTE Band 7 20 MHz Bandwidth										
Modulation	RB Size	RB Offset	Low Channel 20850 (2510.0 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	23.92	Conducted Power [dBm 24.16	23.89		0			
	1	50	23.92	24.10	23.91	0	0			
	1	99	24.06	24.10	23.98	Ť	0			
QPSK	50	0	22.97	23.00	22.92		1			
	50	25	22.95	22.98	22.94	0-1	1			
	50	50	22.98	22.97	22.97	0-1	1			
	100	0	22.95	22.99	22.93		1			
	1	0	23.12	23.12	22.82		1			
	1	50	23.07	23.11	22.87	0-1	1			
	1	99	23.08	23.05	22.95		1			
16QAM	50	0	21.90	21.97	21.88		2			
	50	25	21.86	21.97	21.89	0-2	2			
	50	50	21.90	21.93	21.92	0-2	2			
	100	0	21.93	22.01	21.94		2			

Table 9-37 I TE Band 7 Conducted Powers - 20 MHz Bandwidth

Table 9-38 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

	LTE Band 7 15 MHz Bandwidth											
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21375 (2562.5 MHz)]	MPR Allowed per 3GPP [dB]	MPR [dB]					
	1	0	24.13	24.18	24.19		0					
	1	36	24.17	24.20	24.25	0	0					
	1	74	24.19	24.19	24.31		0					
QPSK	36	0	22.89	22.98	22.99	0-1	1					
	36	18	22.91	22.99	23.01		1					
	36	37	22.92	23.00	23.05		1					
	75	0	22.95	23.02	23.01		1					
	1	0	22.90	22.95	22.92		1					
	1	36	23.08	22.97	22.96	0-1	1					
	1	74	23.11	22.98	23.10		1					
16QAM	36	0	21.90	21.98	21.93		2					
	36	18	21.88	21.99	21.98	0.2	2					
	36	37	21.93	21.97	22.00	0-2	2					
	75	0	21.90	21.98	21.98		2					

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 07
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 46 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

03/16/2018

	LTE Band 7 10 MHz Bandwidth											
Modulation	RB Size	RB Offset	Low Channel 20800 (2505.0 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21400 (2565.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
	1	0	24.07	24.19	24.02		0					
	1	25	24.13	24.23	24.12	0	0					
	1	49	24.15	24.23	24.15		0					
QPSK	25	0	22.86	22.98	22.87	0-1	1					
	25	12	22.85	22.97	22.91		1					
	25	25	22.87	22.99	22.94		1					
	50	0	22.84	22.97	22.89		1					
	1	0	22.89	22.95	22.74		1					
	1	25	22.77	23.02	22.87	0-1	1					
	1	49	22.94	23.06	22.92		1					
16QAM	25	0	21.85	21.92	21.86		2					
	25	12	21.88	21.93	21.88	0.2	2					
	25	25	21.90	21.97	21.90	0-2	2					
	50	0	21.83	21.98	21.89		2					

Table 9-39
LTE Band 7 Conducted Powers - 10 MHz Bandwidth

Table 9-40 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				LTE Band 7 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20775 (2502.5 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.92	24.13	24.18		0
	1	12	23.96	24.11	24.23	0	0
	1	24	23.98	24.12	24.26] [0
QPSK	12	0	22.72	22.95	22.86		1
	12	6	22.75	22.98	22.87	- 0-1	1
	12	13	22.77	22.97	22.89	0-1	1
	25	0	22.73	22.96	22.89] [1
	1	0	22.86	22.95	22.87		1
	1	12	23.06	22.97	22.84	0-1	1
	1	24	23.03	22.84	22.77		1
16QAM	12	0	21.58	21.98	21.84		2
	12	6	21.67	21.99	21.87		2
	12	13	21.68	21.99	21.89	0-2	2
	25	0	21.69	21.98	21.85] [2

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 47 of 87	
© 201	8 PCTEST Engineering Laboratory, Inc.	·	·		REV 20.09 M	

9.5 **WLAN Conducted Powers**

2.4GHz Conducted Power [dBm]									
		IEEE .	Transmission	Mode					
Freq [MHz]	Channel	802.11b	802.11g	802.11n					
		Average	Average	Average					
2412	1	18.67	15.35	15.11					
2437	6	18.68	15.64	15.41					
2457	10	N/A	14.47	13.39					
2462	11	18.31	N/A	N/A					

Table 9-41 2.4 GHz WLAN Maximum Average RF Power

Table 9-42 5 GHz WLAN Maximum Average RF Power

5GHz	5GHz (20MHz) Conducted Power [dBm]									
Freq [MHz]	Channel	IEEE Transmission Mode								
Freq [IMITZ]	Channel	802.11a	802.11n							
5180	36	12.39	12.30							
5200	40	15.04	15.11							
5220	44	14.83	14.95							
5240	48	14.62	14.95							
5260	52	14.72	14.79							
5280	56	14.89	14.99							
5300	60	14.61	14.71							
5320	64	14.12	14.12							
5500	100	15.11	14.78							
5600	120	14.39	14.43							
5620	124	14.49	14.42							
5720	144	14.67	14.32							
5745	149	14.78	14.66							
5785	157	14.77	14.64							
5825	165	14.78	14.59							

	FCC ID: A3LSMJ337V	CAPCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 49 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 48 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.09 M

REV 20.09 M 03/16/2018

2.4GHz Conducted Power [dBm]									
Freq [MHz]	Channel	IEEE Transmission Mode							
	Channel	802.11b	802.11g	802.11n					
2412	1	15.35	15.35	15.11					
2437	6	15.45	15.64	15.41					
2462	11	15.39	10.73	10.44					

Table 9-43 2.4 GHz WLAN Reduced Average RF Power

Table 9-44
5 GHz WLAN Reduced Average RF Power

5GHz (40MHz) Conducted Power [dBm]										
Freq [MHz]	Channel	IEEE Transmission Mode								
		802.11n								
5190	38	8.86								
5230	46	10.12								
5270	54	10.99								
5310	62	8.37								
5510	102	10.85								
5590	118	10.81								
5630	126	10.86								
5710	142	10.42								
5755	151	10.72								
5795	159	10.82								

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for • the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation • and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; • and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

Power Measurement Setup

	FCC ID: A3LSMJ337V	CAPCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dama 40 af 07	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 49 of 87	
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M	

REV 20.09 M 03/16/2018

10.1 Tissue Verification

Measured Head Tissue Properties										
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε	
			740	0.903	41.209	0.893	41.994	1.12%	-1.87%	
4/10/2018	750H	22.0	755	0.909	41.152	0.894	41.916	1.68%	-1.82%	
4/10/2018	70011	22.0	770	0.914	41.098	0.895	41.838	2.12%	-1.77%	
			785	0.919	41.045	0.896	41.760	2.57%	-1.71%	
			820	0.884	41.223	0.899	41.578	-1.67%	-0.85%	
3/25/2018	835H	21.3	835	0.899	41.025	0.900	41.500	-0.11%	-1.14%	
			850	0.914	40.840	0.916	41.500	-0.22%	-1.59%	
			1710	1.367	40.795	1.348	40.142	1.41%	1.63%	
4/4/2018	1750H	22.1	1750	1.408	40.605	1.371	40.079	2.70%	1.31%	
			1790	1.448	40.405	1.394	40.016	3.87%	0.97%	
			1850	1.405	39.627	1.400	40.000	0.36%	-0.93%	
4/10/2018	1900H	21.6	1880	1.437	39.509	1.400	40.000	2.64%	-1.23%	
			1910	1.468	39.386	1.400	40.000	4.86%	-1.53%	
			2400	1.753	40.274	1.756	39.289	-0.17%	2.51%	
3/28/2018	2450H	23.2	2450	1.808	40.109	1.800	39.200	0.44%	2.32%	
			2500	1.866	39.918	1.855	39.136	0.59%	2.00%	
	2600H	22.8	2500	1.900	39.399	1.855	39.136	2.43%	0.67%	
4/9/2018			2550	1.956	39.213	1.909	39.073	2.46%	0.36%	
			2600	2.015	39.023	1.964	39.009	2.60%	0.04%	
			5240	4.659	37.531	4.696	35.940	-0.79%	4.43%	
			5260	4.680	37.538	4.717	35.917	-0.78%	4.51%	
			5280	4.677	37.436	4.737	35.894	-1.27%	4.30%	
			5300	4.706	37.487	4.758	35.871	-1.09%	4.51%	
			5320	4.736	37.336	4.778	35.849	-0.88%	4.15%	
			5500	4.886	37.146	4.963	35.643	-1.55%	4.22%	
			5520	4.942	37.088	4.983	35.620	-0.82%	4.12%	
	500011 500011	00.0	5580	5.031	37.068	5.045	35.551	-0.28%	4.27%	
3/26/2018	5200H-5800H	22.3	5600	5.020	36.954	5.065	35.529	-0.89%	4.01%	
			5620	5.047	36.994	5.086	35.506	-0.77%	4.19%	
			5640	5.086	36.922	5.106	35.483	-0.39%	4.06%	
			5700	5.127	36.883	5.168	35.414	-0.79%	4.15%	
			5745	5.192	36.779	5.214	35.363	-0.42%	4.00%	
			5765	5.201	36.758	5.234	35.340	-0.63%	4.01%	
			5785	5.217	36.796	5.255	35.317	-0.72%	4.19%	
			5800	5.243	36.662	5.270	35.300	-0.51%	3.86%	
			5220	4.488	34.972	4.676	35.963	-4.02%	-2.76%	
			5240	4.506	34.947	4.696	35.940	-4.05%	-2.76%	
	505011	01.1	5260	4.519	34.923	4.717	35.917	-4.20%	-2.77%	
4/5/2018	5250H	21.1	5280	4.541	34.892	4.737	35.894	-4.14%	-2.79%	
			5300	4.564	34.855	4.758	35.871	-4.08%	-2.83%	
			5320	4.581	34.845	4.778	35.849	-4.12%	-2.80%	

Table 10-1

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 50 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Fage 50 01 87
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

REV 20.09 M 03/16/2018

Measured Body Tissue Properties										
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε	
			740	0.984	53.066	0.963	55.570	2.18%	-4.51%	
4/2/2019	750B	21.7	755	0.990	53.033	0.964	55.512	2.70%	-4.47%	
4/3/2018	7300	21.7	770	0.997	52.996	0.965	55.453	3.32%	-4.43%	
			785	1.003	52.946	0.966	55.395	3.83%	-4.42%	
		21.2	820	0.946	54.045	0.969	55.258	-2.37%	-2.20%	
3/28/2018	835B		835	0.964	53.907	0.970	55.200	-0.62%	-2.34%	
			850	0.976	53.775	0.988	55.154	-1.21%	-2.50%	
			820	0.960	53.680	0.969	55.258	-0.93%	-2.86%	
4/3/2018	835B	21.3	835	0.974	53.530	0.970	55.200	0.41%	-3.03%	
			850	0.989	53.387	0.988	55.154	0.10%	-3.20%	
			1710	1.437	51.957	1.463	53.537	-1.78%	-2.95%	
4/3/2018	1750B	22.1	1750	1.480	51.845	1.488	53.432	-0.54%	-2.97%	
			1790	1.525	51.702	1.514	53.326	0.73%	-3.05%	
			1850	1.499	53.721	1.520	53.300	-1.38%	0.79%	
4/9/2018	1900B	22.0	1880	1.532	53.613	1.520	53.300	0.79%	0.59%	
			1910	1.565	53.515	1.520	53.300	2.96%	0.40%	
		21.7	2400	1.996	51.222	1.902	52.767	4.94%	-2.93%	
3/31/2018	2450B		2450	2.047	51.075	1.950	52.700	4.97%	-3.08%	
			2500	2.111	50.898	2.021	52.636	4.45%	-3.30%	
	2450B-2600B	00B 21.6	2400	1.988	51.278	1.902	52.767	4.52%	-2.82%	
			2450	2.043	51.130	1.950	52.700	4.77%	-2.98%	
4/3/2018			2500	2.106	50.978	2.021	52.636	4.21%	-3.15%	
			2550	2.165	50.835	2.092	52.573	3.49%	-3.31%	
			2600	2.225	50.665	2.163	52.509	2.87%	-3.51%	
			2400	1.978	50.898	1.902	52.767	4.00%	-3.54%	
			2450	2.038	50.739	1.950	52.700	4.51%	-3.72%	
4/9/2018	2450B-2600B	22.0	2500	2.098	50.584	2.021	52.636	3.81%	-3.90%	
			2550	2.157	50.438	2.092	52.573	3.11%	-4.06%	
			2600	2.218	50.276	2.163	52.509	2.54%	-4.25%	
			5240	5.478	47.205	5.346	48.960	2.47%	-3.58%	
			5260	5.499	47.203	5.369	48.933	2.42%	-3.54%	
			5280	5.527	47.148	5.393	48.906	2.48%	-3.59%	
			5300	5.563	47.094	5.416	48.879	2.71%	-3.65%	
			5320	5.577	47.086	5.439	48.851	2.54%	-3.61%	
			5500	5.822	46.770	5.650	48.607	3.04%	-3.78%	
			5600	5.955	46.600	5.766	48.471	3.28%	-3.86%	
4/2/2018	5200B-5800B	21.8	5620	5.983	46.596	5.790	48.444	3.33%	-3.81%	
			5700	6.072	46.412	5.883	48.336	3.21%	-3.98%	
			5745	6.153	46.367	5.936	48.275	3.66%	-3.95%	
			5765	6.182	46.318	5.959	48.248	3.74%	-4.00%	
			5785	6.203	46.287	5.982	48.220	3.69%	-4.01%	
			5800	6.226	46.272	6.000	48.200	3.77%	-4.00%	
			5805	6.234	46.255	6.006	48.193	3.80%	-4.02%	
			5825	6.268	46.222	6.029	48.166	3.96%	-4.04%	

Table 10-2 Measured Body Tissue Properties

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 51 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 51 01 67
201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

	System Verification												
SAR System #	System Frequency (MHz) Tissue Type Date: Temp (°C) Temp (°C) Power (W) Source (W) Probe SN SAR ₁₉ Normalized (W/kg) Normalized SAR ₁₉ Deviation ₁₀ (W/kg)												
E	750	HEAD	04/10/2018	23.8	22.0	0.200	1161	3213	1.580	8.170	7.900	-3.30%	
E	835	HEAD	03/25/2018	23.5	21.5	0.200	4d132	3213	1.980	9.360	9.900	5.77%	
D	1750	HEAD	04/04/2018	21.9	22.1	0.100	1148	3318	3.580	36.400	35.800	-1.65%	
н	1900	HEAD	04/10/2018	24.0	21.8	0.100	5d148	7410	3.870	40.100	38.700	-3.49%	
G	2450	HEAD	03/28/2018	22.3	21.5	0.100	797	3332	4.920	52.700	49.200	-6.64%	
G	2600	HEAD	04/09/2018	22.4	22.8	0.100	1126	3332	5.570	56.400	55.700	-1.24%	
н	5250	HEAD	03/26/2018	21.5	20.4	0.050	1120	3589	3.900	81.300	78.000	-4.06%	
н	5250	HEAD	04/05/2018	22.5	21.1	0.050	1191	3589	3.750	78.900	75.000	-4.94%	
н	5600	HEAD	03/26/2018	21.5	20.4	0.050	1120	3589	4.270	84.700	85.400	0.83%	
н	5750	HEAD	03/26/2018	21.5	20.4	0.050	1120	3589	3.900	81.000	78.000	-3.70%	
I	750	BODY	04/03/2018	22.0	20.9	0.200	1054	3287	1.750	8.610	8.750	1.63%	
E	835	BODY	03/28/2018	20.8	21.2	0.200	4d132	3213	2.060	9.710	10.300	6.08%	
E	835	BODY	04/03/2018	22.0	21.3	0.200	4d132	3213	2.070	9.710	10.350	6.59%	
н	1750	BODY	04/03/2018	22.5	22.1	0.100	1148	7410	3.490	37.000	34.900	-5.68%	
J	1900	BODY	04/09/2018	21.9	21.9	0.100	5d148	3914	4.110	39.600	41.100	3.79%	
к	2450	BODY	03/31/2018	21.5	21.7	0.100	797	7406	4.950	51.100	49.500	-3.13%	
к	2450	BODY	04/03/2018	22.4	21.6	0.100	797	3319	5.050	51.100	50.500	-1.17%	
к	2450	BODY	04/09/2018	23.4	22.0	0.100	797	3319	5.150	51.100	51.500	0.78%	
к	2600	BODY	04/03/2018	22.4	21.6	0.100	1126	3319	5.330	54.300	53.300	-1.84%	
к	2600	BODY	04/09/2018	23.4	22.0	0.100	1126	3319	5.560	54.300	55.600	2.39%	
D	5250	BODY	04/02/2018	22.5	20.6	0.050	1237	7308	3.600	76.900	72.000	-6.37%	
D	5600	BODY	04/02/2018	22.5	20.6	0.050	1237	7308	3.800	78.500	76.000	-3.18%	
D	5750	BODY	04/02/2018	22.5	20.6	0.050	1237	7308	3.600	77.100	72.000	-6.61%	

Table 10-3
System Verification Results

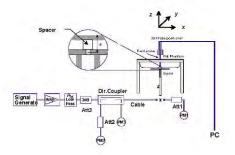


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

	FCC ID: A3LSMJ337V	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 52 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 52 01 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M 03/16/2018

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1	
Cell. CDMA Head S	SAR

					ME	ASURE	EMENT RESULTS								
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)		
836.52	384	Cell. CDMA	RC3 / SO55	24.7	23.62	-0.01	Right	Cheek	18121	1:1	0.410	1.282	0.526	A1	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	23.62	-0.06	Right	Tilt	18121	1:1	0.241	1.282	0.309		
836.52	384	Cell. CDMA	RC3 / SO55	24.7	23.62	0.04	Left	Cheek	18121	1:1	0.379	1.282	0.486		
836.52	384	Cell. CDMA	RC3 / SO55	24.7	23.62	0.00	Left	Tilt	18121	1:1	0.221	1.282	0.283		
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	23.59	0.00	Right	Cheek	18121	1:1	0.390	1.291	0.503		
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	23.59	-0.01	Right	Tilt	18121	1:1	0.233	1.291	0.301		
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	23.59	0.01	Left	Cheek	18121	1:1	0.370	1.291	0.478		
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	23.59	0.04	Left	Tilt	18121	1:1	0.223	1.291	0.288		
			E C95.1 1992 Spatial Pea Exposure/G	ak							Head V/kg (mW/g) jed over 1 gra				

Table 11-2 PCS CDMA Head SAR

					ME	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.	iniouo/Dunu	0011100	Power [dBm]	Power [dBm]	Power [dBm] Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	22.86	-0.07	Right	Cheek	18121	1:1	0.463	1.300	0.602	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	22.86	-0.02	Right	Tilt	18121	1:1	0.178	1.300	0.231	
1851.25	25	PCS CDMA	RC3 / SO55	24.0	22.79	0.04	Left	Cheek	18121	1:1	0.720	1.321	0.951	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	22.86	-0.02	Left	Cheek	18121	1:1	0.763	1.300	0.992	
1908.75	1175	PCS CDMA	RC3 / SO55	24.0	22.96	-0.02	Left	Cheek	18121	1:1	0.835	1.271	1.061	
1880.00	600	PCS CDMA	RC3 / SO55	24.0	22.86	0.15	Left	Tilt	18121	1:1	0.321	1.300	0.417	
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	22.84	-0.01	Right	Cheek	18121	1:1	0.475	1.306	0.620	
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	22.84	-0.06	Right	Tilt	18121	1:1	0.182	1.306	0.238	
1851.25	25	PCS CDMA	EVDO Rev. A	24.0	22.77	0.06	Left	Cheek	18121	1:1	0.769	1.327	1.020	
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	22.84	0.03	Left	Cheek	18121	1:1	0.827	1.306	1.080	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.0	22.94	0.10	Left	Cheek	18121	1:1	0.894	1.276	1.141	A2
1880.00	600	PCS CDMA	EVDO Rev. A	24.0	22.84	-0.10	Left	Tilt	18121	1:1	0.334	1.306	0.436	
			Spatial Pe	2 - SAFETY LI eak General Popul						Head N/kg (mW/g) jed over 1 gra				
	C ID: A	A3LSMJ337V			<u>EST</u>	SAR EVALUATION REPORT							Approved by Quality Manaç	

Document S/N:	Test Dates:	DUT Type:
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset

Page 53 of 87 REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

Table 11-3 GSM 850 Head SAR

					ME	ASURE	EMENT RESULTS								
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)		
836.60	190	GSM 850	GSM	33.2	31.94	0.01	Right	Cheek	17925	1:8.3	0.269	1.337	0.360	A3	
836.60	190	GSM 850	GSM	33.2	31.94	-0.11	Right	Tilt	17925	1:8.3	0.153	1.337	0.205		
836.60	190	GSM 850	GSM	33.2	31.94	0.00	Left	Cheek	17925	1:8.3	0.254	1.337	0.340		
836.60 190 GSM 850 GSM 33.2 31.94 -0.0								Tilt	17925	1:8.3	0.144	1.337	0.193		
		ANSI / IEE	E C95.1 1992		MIT		Head								
			Spatial Pe								N/kg (mW/g)				
		Uncontrolled	I Exposure/G	eneral Popul	ation					averag	ed over 1 gra	am			

Table 11-4 GSM 1900 Head SAR

					ME	ASURE	MENT R	ESULTS							
FREQUE	INCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)		
1880.00	661	GSM 1900	GSM	28.0	26.65	-0.07	Right	Cheek	18170	1:8.3	0.134	1.365	0.183		
1880.00	661	GSM 1900	GSM	28.0	26.65	0.00	Right	Tilt	18170	1:8.3	0.049	1.365	0.067		
1880.00	661	GSM 1900	GSM	28.0	26.65	0.00	Left	Cheek	18170	1:8.3	0.266	1.365	0.363	A4	
1880.00	661	GSM 1900	-0.01	Left	Tilt	18170	1:8.3	0.082	1.365	0.112					
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT		Head								
				1.6 W/kg (mW/g)											
		Uncontrolled	Exposure/G	eneral Popul	ation					averag	jed over 1 gra	am			

Table 11-5 UMTS 850 Head SAR

					ME	EASURE	MENT R	ESULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	24.0	23.01	0.01	Right	Cheek	17925	1:1	0.338	1.256	0.425	A5
836.60	4183	UMTS 850	RMC	24.0	23.01	0.07	Right	Tilt	17925	1:1	0.215	1.256	0.270	
836.60	4183	UMTS 850	RMC	24.0	23.01	0.00	Left	Cheek	17925	1:1	0.330	1.256	0.414	
836.60	4183	UMTS 850	RMC	24.0	23.01	0.09	Left	Tilt	17925	1:1	0.192	1.256	0.241	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe	ak			1.6 W/kg (mW/g)							
		Uncontrolled	Exposure/G	eneral Popul	ation					averag	ed over 1 gra	am		

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 54 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 54 01 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M

							00 1100								
					ME	ASURE	MENT R	ESULTS							
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	Ch.	inouo, Bunu		Power [dBm]	Power [dBm]	Drift [dB]	0100	Position	Number	Cycle	(W/kg)	Factor	(W/kg)		
1880.00	9400	UMTS 1900	RMC	23.0	21.82	-0.05	Right	Cheek	18170	1:1	0.375	1.312	0.492		
1880.00	9400	UMTS 1900	RMC	23.0	21.82	0.00	Right	Tilt	18170	1:1	0.145	1.312	0.190		
1852.40	9262	UMTS 1900	RMC	23.0	21.91	0.01	Left	Cheek	18170	1:1	0.695	1.285	0.893		
1880.00	9400	UMTS 1900	RMC	23.0	21.82	0.01	Left	Cheek	18170	1:1	0.746	1.312	0.979		
1907.60	9538	UMTS 1900	RMC	23.0	21.90	-0.01	Left	Cheek	18170	1:1	0.784	1.288	1.010	A6	
1880.00	9400	UMTS 1900	RMC	23.0	21.82	0.12	Left	Tilt	18170	1:1	0.262	1.312	0.344		
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT		Head								
			Spatial Pe				1.6 W/kg (mW/g)								
		Uncontrolled	I Exposure/G	eneral Popul	ation					averag	ed over 1 gra	m			

Table 11-6 UMTS 1900 Head SAR

Table 11-7 LTE Band 13 Head SAR

										• • • •									
								MEAS	SUREMENT RESULTS										
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	h.				Position				Number	Cycle	(W/kg)	Factor	(W/kg)					
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	-0.09	0	Right	Cheek	QPSK	1	25	21315	1:1	0.381	1.102	0.420	A7
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	0.01	1	Right	Cheek	QPSK	25	0	21315	1:1	0.283	1.104	0.312	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	0.00	0	Right	Tilt	QPSK	1	25	21315	1:1	0.221	1.102	0.244	
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	-0.03	1	Right	Tilt	QPSK	25	0	21315	1:1	0.162	1.104	0.179	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	-0.01	0	Left	Cheek	QPSK	1	25	21315	1:1	0.332	1.102	0.366	
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	0.01	1	Left	Cheek	QPSK	25	0	21315	1:1	0.254	1.104	0.280	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	0.03	0	Left	Tilt	QPSK	1	25	21315	1:1	0.180	1.102	0.198	
782.00	23230	Mid	LTE Band 13	1	Left	Tilt	QPSK	25	0	21315	1:1	0.138	1.104	0.152					
			ANSI / IEEE C	95.1 1992	- SAFETY LI	MIT			Head										
				Spatial Pe	ak				1.6 W/kg (mW/g)										
			Uncontrolled Ex	xposure/G	eneral Popul						ave	eraged over	1 gram						

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 55 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

Table 11-8	
LTE Band 5 (Cell) Head SA	R

								MEAS	UREM	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	-0.06	0	Right	Cheek	QPSK	1	0	18113	1:1	0.452	1.253	0.566	A8
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.05	1	Right	Cheek	QPSK	25	0	18113	1:1	0.317	1.274	0.404	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	0.03	0	Right	Tilt	QPSK	1	0	18113	1:1	0.288	1.253	0.361	
836.50	36.50 20525 Mid LTE Band 5 (Cell) 10 24.0 22.95 0.08 1										QPSK	25	0	18113	1:1	0.190	1.274	0.242	
836.50	.50 20525 Mid LTE Band 5 (Cell) 10 25.0 24.02 0.04 0									Cheek	QPSK	1	0	18113	1:1	0.402	1.253	0.504	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.04	1	Left	Cheek	QPSK	25	0	18113	1:1	0.325	1.274	0.414	
836.50	3.50 20525 Mid LTE Band 5 (Cell) 10 25.0 24.02 -0.01									Tilt	QPSK	1	0	18113	1:1	0.234	1.253	0.293	
836.50	0 20525 Mid LTE Band 5 (Cell) 10 24.0 22.95 0.01									Tilt	QPSK	25	0	18113	1:1	0.187	1.274	0.238	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Head 1.6 W/kg (mW/g) averaged over 1 gram									

Table 11-9 LTE Band 4 (AWS) Head SAR

										ENT RE	SULTS	-							
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	-0.02	0	Right	Cheek	QPSK	1	0	18121	1:1	0.207	1.279	0.265	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.38	-0.02	1	Right	Cheek	QPSK	50	0	18121	1:1	0.184	1.294	0.238	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	0.05	0	Right	Tilt	QPSK	1	0	18121	1:1	0.133	1.279	0.170	
1732.50 20175 Mid LTE Band 4 (AWS) 20 22.5 21.38 0.04 1										Tilt	QPSK	50	0	18121	1:1	0.114	1.294	0.148	
1732.50	1732.50 20175 Mid LTE Band 4 (AWS) 20 23.5 22.43 0.02 0										QPSK	1	0	18121	1:1	0.476	1.279	0.609	A9
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.38	0.01	1	Left	Cheek	QPSK	50	0	18121	1:1	0.355	1.294	0.459	
1732.50 20175 Mid LTE Band 4 (AWS) 20 23.5 22.43 0.00									Left	Tilt	QPSK	1	0	18121	1:1	0.172	1.279	0.220	
1732.50	i0 20175 Mid LTE Band 4 (AWS) 20 22.5 21.38 0.00									Left Tilt QPSK 50 0 18121 1:1 0.161 1.294 0.208									
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Head 1.6 W/kg (mW/g) averaged over 1 gram									

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 56 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

								MEAS	SUREM	ENT RES	SULTS										
FRI	EQUENCY	r	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #		
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)			
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.06	0	Right	Cheek	QPSK	1	99	18121	1:1	0.473	1.199	0.567			
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	-0.07	1	Right	Cheek	QPSK	50	25	18121	1:1	0.391	1.205	0.471			
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.01	0	Right	Tilt	QPSK	1	99	18121	1:1	0.189	1.199	0.227			
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	0.03	1	Right	Tilt	QPSK	50	25	18121	1:1	0.149	1.205	0.180			
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.5	22.50	0.04	0	Left	Cheek	QPSK	1	99	18121	1:1	0.771	1.259	0.971			
1880.00 18900 Mid LTE Band 2 (PCS) 20 23.5 22.70 0.05 0									Left	Cheek	QPSK	1	99	18121	1:1	0.802	1.202	0.964			
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.01	0	Left	Cheek	QPSK	1	99	18121	1:1	0.898	1.199	1.077	A10		
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.5	21.53	-0.02	1	Left	Cheek	QPSK	50	25	18121	1:1	0.591	1.250	0.739			
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	21.65	-0.03	1	Left	Cheek	QPSK	50	50	18121	1:1	0.651	1.216	0.792			
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	0.00	1	Left	Cheek	QPSK	50	25	18121	1:1	0.676	1.205	0.815			
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	21.61	-0.03	1	Left	Cheek	QPSK	100	0	18121	1:1	0.644	1.227	0.790			
1900.00	900.00 19100 High LTE Band 2 (PCS) 20 23.5 22.71 0.11									Tilt	QPSK	1	99	18121	1:1	0.230	1.199	0.276			
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	0.03	1	Left	Tilt	QPSK	50	25	18121	1:1	0.216	1.205	0.260			
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.02	0	Left Cheek QPSK 1 99 18121 1:1 0.859 1.199 1.030									1.030			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT																				
	Spatial Peak Uncontrolled Exposure/General Population									1.6 W/kg (mW/g) averaged over 1 gram											
															5						

Table 11-10 LTE Band 2 (PCS) Head SAR

Note: Blue entry represents variability measurement.

		Table	e '	11-11	
LTE Band 7 Head SAR	LTE	Band	7	Head	SAR

								MEAS	SUREM	ENT RE	SULTS									
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)		
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	0.12	0	Right	Cheek	QPSK	1	0	21315	1:1	0.316	1.081	0.342		
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	0.02	1	Right	Cheek	QPSK	50	0	21315	1:1	0.243	1.122	0.273		
2535.00	2535.00 21100 Mid LTE Band 7 20 24.5 24.16 0.03 0										QPSK	1	0	21315	1:1	0.351	1.081	0.379		
2535.00	2535.00 21100 Mid LTE Band 7 20 23.5 23.00 -0.18 1										QPSK	50	0	21315	1:1	0.284	1.122	0.319		
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	-0.06	0	Left	Cheek	QPSK	1	0	21315	1:1	0.550	1.081	0.595	A11	
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	0.14	1	Left	Cheek	QPSK	50	0	21315	1:1	0.433	1.122	0.486		
2535.00	2535.00 21100 Mid LTE Band 7 20 24.5 24.16 0.18									Tilt	QPSK	1	0	21315	1:1	0.257	1.081	0.278		
2535.00	5.00 21100 Mid LTE Band 7 20 23.5 23.00 -0.01									Left Tilt QPSK 50 0 21315 1:1 0.201 1.122 0.226										
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Head										
	Spatial Peak									1.6 W/kg (mW/g)										
			Uncontrolled E	xposure/G	eneral Popul		averaged over 1 gram													

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 57 of 87
© 20	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

REV 20.09 M 03/16/2018

Table 11-	12
DTS Head S	SAR

							N	IEASUF	REMENT	RESUL	TS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #	
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)		
2412	1	802.11b	DSSS	22	16.0	15.35	0.16	Right	Cheek	18261	1	99.0	0.814	0.721	1.161	1.010	0.845		
2437	6	802.11b	DSSS	22	16.0	15.45	0.14	Right	Cheek	18261	1	99.0	0.989	0.759	1.135	1.010	0.870		
2462	11	802.11b	DSSS	22	16.0	15.39	0.04	Right	Cheek	18261	1	99.0	0.950	0.830	1.151	1.010	0.965	A12	
2437	6	802.11b	DSSS	22	16.0	15.45	0.02	Right	Tilt	18261	1	99.0	0.725	0.515	1.135	1.010	0.590		
2437	6	802.11b	DSSS	22	16.0	15.45	-0.18	Left	Cheek	18261	1	99.0	0.650	0.486	1.135	1.010	0.557		
2437	6	802.11b	DSSS	22	16.0	15.45	0.07	7 Left Tilt 18261 1 99.0 0.438 - 1.135 1.010 -											
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head 1.6 W/kg (mW/g) averaged over 1 gram										

Table 11-13 **NII Head SAR**

							N	IEASUF	REMENT	RESUL	TS									
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #		
MHz	Ch.	Mode	Service	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	FIUL#		
5270	54	802.11n	OFDM	40	11.0	10.99	-0.14	Right	Cheek	18246	13.5	88.8	2.074	0.879	1.002	1.126	0.992	A13		
5310	62	802.11n	OFDM	40	9.0	8.37	-0.18	Right	Cheek	18246	13.5	88.8	1.012	0.406	1.156	1.126	0.528			
5270	54	802.11n	OFDM	40	11.0	10.99	0.13	Right	Tilt	18246	13.5	88.8	1.264	0.536	1.002	1.126	0.605			
5270	54	802.11n	OFDM	40	11.0	10.99	0.19	Left	Cheek	18246	13.5	88.8	0.730	0.369	1.002	1.126	0.416			
5270	54	802.11n	OFDM	40	11.0	10.99	0.13	Left	Tilt	18246	13.5	88.8	0.532	-	1.002	1.126	-			
5270	54	802.11n	OFDM	40	11.0	10.99	-0.16	Right	Cheek	18246	13.5	88.8	2.006	0.864	1.002	1.126	0.975			
5630	126	802.11n	OFDM	40	11.0	10.86	0.15	Right	Cheek	18246	13.5	88.8	1.477	0.564	1.033	1.126	0.656			
5630	126	802.11n	OFDM	40	11.0	10.86	0.13	Right	Tilt	18246	13.5	88.8	0.802	0.317	1.033	1.126	0.369			
5630	126	802.11n	OFDM	40	11.0	10.86	0.12	Left	Cheek	18246	13.5	88.8	0.452	0.244	1.033	1.126	0.284			
5630	126	802.11n	OFDM	40	11.0	10.86	0.14	Left	Tilt	18246	13.5	88.8	0.417	-	1.033	1.126	-			
5795	159	802.11n	OFDM	40	11.0	10.82	0.14	Right	Cheek	18246	13.5	88.8	1.265	0.475	1.042	1.126	0.557			
5795	159	802.11n	OFDM	40	11.0	10.82	0.11	Right	Tilt	18246	13.5	88.8	0.770	0.295	1.042	1.126	0.346			
5795	159	802.11n	OFDM	40	11.0	10.82	0.17	Left	Cheek	18246	13.5	88.8	0.460	0.215	1.042	1.126	0.252			
5795	159 802.11n OFDM 40 11.0 10.82 0.1								Tilt	18246	13.5	88.8	0.434	-	1.042	1.126	-			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Head											
	Spatial Peak Uncontrolled Exposure/General Population							1.6 W/kg (mW/g) averaged over 1 gram												

Note: Blue entry represents variability measurement.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 50 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 58 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M

11.2 Standalone Body-Worn SAR Data

					MEAS	UREME								
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Fower [ubili]	Drift [UB]		Number	Cycle		(W/kg)	Factor	(W/kg)	
824.70	1013	Cell. CDMA	TDSO / SO32	25.0	24.02	-0.03	15 mm	21315	1:1	back	0.585	1.253	0.733	
836.52	384	Cell. CDMA	TDSO / SO32	25.0	23.88	-0.03	15 mm	21315	1:1	back	0.653	1.294	0.845	
848.31	777	Cell. CDMA	TDSO / SO32	25.0	23.74	0.00	15 mm	21315	1:1	back	0.688	1.337	0.920	A14
1851.25	25	PCS CDMA	TDSO / SO32	25.5	24.41	-0.04	15 mm	21315	1:1	back	0.612	1.285	0.786	A16
1880.00	600	PCS CDMA	TDSO / SO32	25.5	24.42	0.12	15 mm	21315	1:1	back	0.570	1.282	0.731	
1908.75	1175	PCS CDMA	TDSO / SO32	25.5	24.49	-0.04	15 mm	21315	1:1	back	0.568	1.262	0.717	
824.20	128	GSM 850	GSM	33.2	31.97	-0.03	15 mm	17925	1:8.3	back	0.436	1.327	0.579	
836.60	190	GSM 850	GSM	33.2	31.94	-0.02	15 mm	17925	1:8.3	back	0.523	1.337	0.699	
848.80	251	GSM 850	GSM	33.2	31.95	-0.01	15 mm	17925	1:8.3	back	0.546	1.334	0.728	A18
1880.00	661	GSM 1900	GSM	30.2	29.35	0.07	15 mm	17925	1:8.3	back	0.165	1.216	0.201	A20
826.40	4132	UMTS 850	RMC	24.0	23.03	0.02	15 mm	17925	1:1	back	0.501	1.250	0.626	
836.60	4183	UMTS 850	RMC	24.0	23.01	0.01	15 mm	17925	1:1	back	0.555	1.256	0.697	
846.60	4233	UMTS 850	RMC	24.0	22.97	-0.01	15 mm	17925	1:1	back	0.606	1.268	0.768	A22
1880.00	9400	UMTS 1900	RMC	24.0	23.21	0.06	15 mm	17925	1:1	back	0.422	1.199	0.506	A24
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT							Body			
			Spatial Peak							1.6	W/kg (mW/g	I)		
		Uncontrolled	Exposure/Gene	eral Populatio	on	_				avera	ged over 1 gr	am		

Table 11-14 GSM/UMTS/CDMA Body-Worn SAR Data

FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 59 of 87
© 2018 PCTEST Engineering Laboratory, Inc		÷		REV 20.09 M

03/16/2018

Table 11-15 LTE Body-Worn SAR

								MEASU	REMENT	RESULT	s								
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	с	h.		[INT IZ]	Power [dBm]	r ower [abili]	Dint[0D]		Number						Cycle	(W/kg)	Tactor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	-0.01	0	21315	QPSK	1	25	15 mm	back	1:1	0.490	1.102	0.540	A26
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	-0.03	1	21315	QPSK	25	0	15 mm	back	1:1	0.367	1.104	0.405	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	0.08	0	21315	QPSK	1	0	15 mm	back	1:1	0.629	1.253	0.788	A28
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.01	1	21315	QPSK	25	0	15 mm	back	1:1	0.508	1.274	0.647	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.11	0.02	0	21315	QPSK	1	0	15 mm	back	1:1	0.687	1.227	0.843	A30
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.14	0.03	1	21315	QPSK	50	0	15 mm	back	1:1	0.536	1.219	0.653	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.13	-0.03	1	21315	QPSK	100	0	15 mm	back	1:1	0.532	1.222	0.650	
1900.00	19100	High	LTE Band 2 (PCS)	20	25.0	24.28	0.09	0	21315	QPSK	1	99	15 mm	back	1:1	0.503	1.180	0.594	A32
1900.00	19100	High	LTE Band 2 (PCS)	20	24.0	23.27	0.04	1	21315	QPSK	50	50	15 mm	back	1:1	0.394	1.183	0.466	
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	0.06	0	21315	QPSK	1	0	15 mm	back	1:1	0.348	1.081	0.376	A34
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	-0.01	1	21315	QPSK	50	0	15 mm	back	1:1	0.255	1.122	0.286	
			ANSI / IEEE C	095.1 1992	- SAFETY LI	MIT								Bo	dy				
		Spatial Peak												1.6 W/kg	(mW/g))			
			Uncontrolled E	xposure/G	eneral Popul	ation							av	eraged o	ver 1 gra	m			

Table 11-16 **DTS Body-Worn SAR**

							MEAS	SUREM	ENT RE	SULTS	;							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]	5	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	19.0	18.68	-0.05	15 mm	18139	1	back	99.0	0.196	0.139	1.076	1.010	0.151	A36
		ANS	SI / IEEE (C95.1 1992 Spatial Pe	- SAFETY LIMIT ak	-								ody (g (mW/g)				
		Unco	ntrolled E	Exposure/G	eneral Populati	on							averaged	over 1 gram				

Table 11-17 **NII Body-Worn SAR**

								MEAS	UREMENT	RESULTS	;							
FREQU	IENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Device Serial Number	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	[dBm]	[dBm]	[aB]		Number	(Mbps)			W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	16.0	14.89	-0.04	15 mm	18246	6	back	98.6	0.637	0.268	1.291	1.014	0.351	
5500	100	802.11a	OFDM	20	16.0	15.11	0.05	15 mm	18246	6	back	98.6	0.554	0.251	1.227	1.014	0.312	
5825	165	802.11a	OFDM	20	16.0	14.78	-0.08	15 mm	18246	6	back	98.6	0.976	0.433	1.324	1.014	0.581	A38
		A	NSI / IEEE	C95.1 199	2 - SAFETY LIM	т							Body					
		Unc	ontrolled	Spatial P Exposure/	'eak General Popula	tion							W/kg (mW/g aged over 1 g					

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 60 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

03/16/2018

11.3 Standalone Hotspot SAR Data

-

Table 11-18 GPRS/UMTS/CDMA Hotspot SAR Data

Image Base Base Series	MEASUREMENT RESULTS															
basis Cat. CDMA EVD Rev.0 24.7 2.00 6.02 10mm 1911 NAA 11 back 0.000 1.020 0.020 645.3 344 Cat. CDMA EVD Rev.0 24.7 23.54 0.01 10mm 1911 NAA 1.1 back 0.660 1.300 0.020 643.31 777 Cat. CDMA EVD Rev.0 24.7 23.54 0.02 10mm 1011 NAA 1.1 back 0.660 1.300 0.680 666.2 344 Cat. CDMA EVD Rev.0 24.7 23.54 0.02 10mm 1011 NA< 1.1 back 0.650 1.300 0.666 666.2 344 Cat. CDMA EVD Rev.0 24.0 22.40 0.001 10mm 1011 NA 1.1 back 0.623 1.310 0.721 18000 60 PCS CDMA EVD Rev.0 24.0 22.80 0.01 10mm 1011 NA 1.1		-	Mode	Service	Allowed			Spacing	Serial	GPRS		Side				Plot #
ALBAI TY Cold Cold TY TY <			Cell. CDMA	EVDO Rev. 0	24.7	23.69	0.02	10 mm	18121	N/A	1:1	back		1.262		
BBE SH Cat CDMA ENOR Rev. 24.7 23.54 -0.02 10 mm 18121 NA 11 from 0.66 1.306 0.308 13552 344 Cat CDMA ENOR Rev. 24.7 23.54 -0.02 10 mm 18121 NA 11 Intit 0.300 1.308 0.665 16552 34 Cat CDMA ENOR Rev. 24.7 23.54 0.00 10 mm 18121 NA 11 Intit 0.30 1.338 0.426 18125 25 PCS CDMA ENOR Rev.0 24.0 22.28 0.01 10 mm 18121 NA 11 Incit 0.33 1.318 0.437 18000 600 PCS CDMA ENOR Rev.0 24.0 22.80 0.02 10 mm 18121 NA 11 Intit 0.31 1.318 0.321 18000 600 PCS CDMA ENOR Rev.0 24.0 22.80 0.121 0.MA 111 Intit			Cell. CDMA	EVDO Rev. 0	24.7	23.54	0.01	10 mm	18121	N/A	1:1	back	0.666	1.306	0.870	
65.82 384 Call CDMA EVOD Rev. 0 24.7 23.54 4.02 10 mm 16121 NA 1.1 bottm 0.055 1.306 0.483 638.2 384 Call CDMA EVOD Rev. 0 24.7 23.54 0.02 10 mm 18121 NA 1.1 but 0.305 1.306 0.426 181.25 25 PCS CDMA EVOD Rev. 0 24.0 22.29 0.01 10 mm 18121 NA 1.1 back 0.426 180.00 600 PCS CDMA EVOD Rev. 0 24.0 22.29 0.01 10 mm 18121 NA 1.1 back 0.47 1.318 0.341 18000 600 PCS CDMA EVOD Rev. 0 24.0 22.29 0.01 10 mm 18121 NA 1.1 back 0.311 1.318 0.321 18000 600 PCS CDMA EVOD Rev. 0 24.0 22.80 0.15 10 mm 1821 NA 1.1			Cell. CDMA	EVDO Rev. 0	24.7	23.59	-0.02	10 mm	18121	N/A	1:1	back	0.707	1.291	0.913	A15
68.52 384 Call. CDMA EVDO Rev. 0 24.7 23.54 0.02 10 mm 18121 NA 1.1 inplt 0.370 1.306 0.483 186.52 394 Call. CDMA EVDO Rev. 0 24.0 22.72 0.07 10 mm 18121 NA 1.1 back 0.635 1.348 0.647 1860.0 600 PCS CDMA EVDO Rev. 0 24.0 22.28 0.01 10 mm 18121 NA 1.1 back 0.377 1.318 0.621 1800.0 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 back 0.371 1.318 0.321 1880.0 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 back 0.696 1.318 0.324 1880.0 600 PCS CDMA EVDO Rev. 0 24.0 22.80 10.21 NA 1.1			Cell. CDMA	EVDO Rev. 0	24.7	23.54	-0.02	10 mm	18121	N/A	1:1	front	0.450	1.306	0.588	
6852 384 Cut COMA EvO Rev. 0 24.7 23.54 0.09 10 mm 18121 NA 1.1 Int 0.325 1.363 0.405 18512 2.5 PCS CDMA EvO Rev. 0 24.0 22.27 0.07 10 mm 18121 NA 1.1 back 0.675 1.343 0.697 1880.0 600 PCS CDMA EvO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 back 0.675 1.316 0.624 1880.0 600 PCS CDMA EvO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 back 0.235 1.318 0.231 1880.0 600 PCS CDMA EvO Rev. 0 24.0 22.80 0.01 10 mm 1821 NA 1.1 back 0.635 1.318 0.231 1880.0 600 PCS CDMA EvO Rev. 0 24.0 22.80 0.01 10 mm 1727 NA			Cell. CDMA	EVDO Rev. 0	24.7	23.54	-0.02	10 mm	18121	N/A	1:1	bottom	0.050	1.306	0.065	
16125 25 PCS CDMA EVDO Rev. 0 24.0 22.72 0.07 10 mm 18121 NA 1.1 back 0.075 1.3.43 0.907 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.10 10 mm 18121 NA 1.1 back 0.633 1.318 0.834 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 bock 0.775 1.318 0.824 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.15 10 mm 18121 NA 1.1 ford 0.575 1.318 0.231 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.15 10 mm 18121 NA 1.1 ford 0.231 1.218 0.402 1.218 0.44 1.242 0.64 1880.0 GSM 850 GFRS 30.0 2.806			Cell. CDMA	EVDO Rev. 0	24.7	23.54	-0.02	10 mm	18121	N/A	1:1	right	0.370	1.306	0.483	
1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.10 10 mm 18121 NA 1.1 back 0.633 1.3.16 0.834 1980.00 600 PCS CDMA EVDO Rev. 0 24.0 22.89 0.02 10 mm 18121 NA 1.1 back 0.77 1.291 0.984 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 betto 0.231 1.318 0.034 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.15 10 mm 18121 NA 1.1 betto 0.231 1.318 0.034 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.11 10 mm 1782 3 12.76 back 0.658 1.918 NA 1.276 back 0.658 1.986 1.927 back 0.658 1.927 back 0.6284			Cell. CDMA	EVDO Rev. 0	24.7	23.54	0.09	10 mm	18121	N/A	1:1	left	0.326	1.306	0.426	
198.75 117.5 PCS CDM EVDO Rev. 0 24.0 22.89 -0.01 10 mm 18121 NA 11.1 back 0.747 1.291 0.984 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.02 10 mm 18121 NA 1.1 front 0.578 1.318 0.304 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.11 10 mm 18121 NA 1.1 front 0.528 1.318 0.304 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.15 10 mm 18121 NA 1.1 std 0.528 1.318 0.683 2420 GSM 850 GPRS 30.0 23.07 0.02 10 mm 17925 3 12.76 back 0.828 1.269 848.00 190 GSM 850 GPRS 30.0 23.06 10.01 17025 3 12.76 back 0.			PCS CDMA	EVDO Rev. 0	24.0	22.72	0.07	10 mm	18121	N/A	1:1	back	0.675	1.343	0.907	
18000 600 PCS CDM EVDO Rev. 0 24.0 22.80 0.02 10 m 18121 NA 11 front 0.578 1.318 0.702 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.01 10 mn 18121 NA 1.11 dott 0.231 1.318 0.304 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.11 10 mn 18121 NA 1.11 dpt 0.175 1.318 0.231 1880.00 600 PCS CDMA EVDO Rev. 0 24.0 22.80 0.15 10 mn 17125 3.1 1.276 back 0.699 1.211 0.86 386.0 190 GSM 850 GPRS 30.0 22.06 0.02 10 mn 1725 3.1 1.276 back 0.828 1.828 0.86 386.0 190 GSM 850 GPRS 30.0 22.06 0.11 10 mn 17725 3.1<			PCS CDMA	EVDO Rev. 0	24.0	22.80	0.10	10 mm	18121	N/A	1:1	back	0.633	1.318	0.834	
18800 600 PCS CDM EVD Rev. 0 24.0 22.80 0.02 10.mn 18121 N/A 11.1 bottom 0.231 1.318 0.304 1880.00 600 PCS CDMA EVD Rev. 0 24.0 22.80 0.11 10 mn 18121 N/A 1.11 inptt 0.175 1.318 0.231 1880.00 600 PCS CDMA EVD Rev. 0 24.0 22.80 0.15 10 mn 18121 N/A 1.11 inptt 0.556 1.318 0.231 1880.00 600 PCS CDMA EVD Rev. 0 24.0 22.80 0.02 10 mn 17925 3 12.76 back 0.699 1.2142 0.681 386.0 190 GSM 850 GPRS 30.0 23.06 0.02 10 mn 17925 3 12.76 back 0.644 12.42 0.664 386.0 190 GSM 850 GPRS 30.0 23.66 10.17 10 mn 17925 <			PCS CDMA	EVDO Rev. 0	24.0	22.89	-0.01	10 mm	18121	N/A	1:1	back	0.747	1.291	0.964	A17
BB0.00 600 PCS CDMA EVDO Rev.0 24.0 22.80 0.11 10mm 19121 NA 1.1 right 0.175 1.318 0.231 188.00 600 PCS CDMA EVDO Rev.0 24.00 22.80 0.15 10mm 19121 NA 1.1 left 0.556 1.318 0.633 242.0 128 GSM 850 GPRS 30.0 29.06 0.02 10mm 17925 3 12.76 back 0.699 1.214 0.864 388.60 190 GSM 850 GPRS 30.0 29.06 0.02 10mm 17925 3 12.76 back 0.434 1.242 0.614 388.60 190 GSM 850 GPRS 30.0 29.06 0.11 10mm 17925 3 12.76 back 0.454 1.242 0.458 386.0 190 GSM 850 GPRS 30.0 29.06 0.17 10mm 17025 3 12.76 <td></td> <td></td> <td>PCS CDMA</td> <td>EVDO Rev. 0</td> <td>24.0</td> <td>22.80</td> <td>0.02</td> <td>10 mm</td> <td>18121</td> <td>N/A</td> <td>1:1</td> <td>front</td> <td>0.578</td> <td>1.318</td> <td>0.762</td> <td></td>			PCS CDMA	EVDO Rev. 0	24.0	22.80	0.02	10 mm	18121	N/A	1:1	front	0.578	1.318	0.762	
188.00 600 PCS CDM4 EVD Rev.0 24.0 22.80 0.15 10 mm 1111 int 0.535 1.318 0.633 824.20 128 GSM 850 GPRS 30.0 29.17 -0.02 10 mm 17925 3 1.276 back 0.699 1.211 0.846 836.60 190 GSM 850 GPRS 30.0 29.06 0.02 10 mm 17925 3 1.276 back 0.698 1.242 0.651 848.60 190 GSM 850 GPRS 30.0 29.06 0.02 10 mm 17925 3 1.276 back 0.494 1.242 0.654 856.0 190 GSM 850 GPRS 30.0 29.06 0.17 10 mm 17925 3 1.276 back 0.454 1.242 0.554 868.0 251 GSM 850 GPRS 30.0 29.06 0.17 10 mm 17925 3 1.276 back 0.394 <td></td> <td></td> <td>PCS CDMA</td> <td>EVDO Rev. 0</td> <td>24.0</td> <td>22.80</td> <td>0.02</td> <td>10 mm</td> <td>18121</td> <td>N/A</td> <td>1:1</td> <td>bottom</td> <td>0.231</td> <td>1.318</td> <td>0.304</td> <td></td>			PCS CDMA	EVDO Rev. 0	24.0	22.80	0.02	10 mm	18121	N/A	1:1	bottom	0.231	1.318	0.304	
B2420 128 GSM 850 GPRS 30.0 29.17 -0.02 10 mm 1725 3 12.76 back 0.69 1.211 0.846 835.60 190 GSM 850 GPRS 30.0 29.06 -0.02 10 mm 1725 3 1.2.76 back 0.755 1.242 0.987 848.60 190 GSM 850 GPRS 30.0 28.06 0.02 10 mm 17255 3 1.2.76 back 0.828 1.242 0.614 836.60 190 GSM 850 GPRS 30.0 28.06 0.02 10 mm 17925 3 1.2.76 back 0.454 1.242 0.654 836.60 190 GSM 850 GPRS 30.0 28.06 0.11 10 mm 17925 3 1.2.76 back 0.784 1.288 0.984 886.60 190 GSM 850 GPRS 30.0 28.07 -0.10 10 mm 17702 3 1.2.76			PCS CDMA	EVDO Rev. 0	24.0	22.80	0.11	10 mm	18121	N/A	1:1	right	0.175	1.318	0.231	
886.60 190 GSM.850 GPRS 30.0 22.06 -0.02 10 mm 17225 3 1.2.76 back 0.755 1.2.42 0.987 848.80 251 GSM.850 GPRS 30.0 28.97 0.05 10 mm 17255 3 1.2.76 back 0.828 1.242 0.614 836.60 190 GSM.850 GPRS 30.0 29.06 0.02 10 mm 17225 3 1.2.76 back 0.454 1.242 0.664 836.60 190 GSM.850 GPRS 30.0 29.06 0.17 10 mm 17225 3 1.2.76 back 0.454 1.242 0.458 836.60 190 GSM.850 GPRS 30.0 29.06 0.13 10 mm 17225 3 1.2.76 back 0.764 1.242 0.458 848.80 251 GSM.850 GPRS 25.0 24.17 0.14 10 mm 18170 3 1.2.76<			PCS CDMA	EVDO Rev. 0	24.0	22.80	0.15	10 mm	18121	N/A	1:1	left	0.526	1.318	0.693	
448.00 251 GSM 850 GPRS 30.0 28.97 0.05 10 m 17255 3 1.2.76 back 0.828 1.2.88 1.0.80 483.60 190 GSM 850 GRRS 30.0 22.06 0.02 10 mm 17255 3 1.2.76 front 0.494 1.242 0.614 438.60 190 GSM 850 GRRS 30.0 22.06 -0.17 10 mm 17225 3 1.2.76 front 0.454 1.242 0.544 438.60 190 GSM 850 GPRS 30.0 22.06 -0.17 10 mm 17225 3 1.2.76 left 0.369 1.242 0.458 48.80 251 GSM 850 GPRS 30.0 22.06 0.11 10 mm 17925 3 1.2.76 lock 0.794 1.288 0.994 188.00 661 GSM 1900 GPRS 25.0 24.17 0.15 10 m 18170 3 12.76			GSM 850	GPRS	30.0	29.17	-0.02	10 mm	17925	3	1:2.76	back	0.699	1.211	0.846	
88.66 199 GSM 850 GPRS 30.0 29.06 0.02 10 mm 17925 3 12.76 front 0.494 1.242 0.614 83.60 190 GSM 850 GPRS 30.0 29.06 0.02 10 mm 17925 3 12.76 bottom 0.045 1.242 0.654 83.60 190 GSM 850 GPRS 30.0 29.06 0.11 10 mm 17925 3 12.76 left 0.369 1.242 0.458 843.60 190 GSM 850 GPRS 30.0 28.97 -0.10 10 mm 17925 3 12.76 left 0.368 1.242 0.458 848.00 661 GSM 1900 GPRS 25.0 24.17 0.14 10 mm 18170 3 12.76 left 0.231 12.11 0.269 180.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 mm 18170 3 12.276 <td></td> <td></td> <td>GSM 850</td> <td>GPRS</td> <td>30.0</td> <td>29.06</td> <td>-0.02</td> <td>10 mm</td> <td>17925</td> <td>3</td> <td>1:2.76</td> <td>back</td> <td>0.795</td> <td>1.242</td> <td>0.987</td> <td></td>			GSM 850	GPRS	30.0	29.06	-0.02	10 mm	17925	3	1:2.76	back	0.795	1.242	0.987	
88.60 190 GSM 850 GPRS 30.0 29.06 0.02 10 m 17925 3 12.76 botom 0.045 12.42 0.066 88.60 190 GSM 850 GPRS 30.0 29.06 -0.17 10 m 17925 3 12.76 ight 0.454 1.242 0.648 88.60 190 GSM 850 GPRS 30.0 29.06 0.13 10 m 17925 3 12.76 left 0.369 1.242 0.458 848.80 251 GSM 850 GPRS 30.0 28.97 -0.10 10 m 19725 3 12.76 back 0.784 1.288 0.994 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.15 10 m 18170 3 12.276 botom 0.990 1.211 0.281 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 m 18170 3 12.76			GSM 850	GPRS	30.0	28.97	0.05	10 mm	17925	3	1:2.76	back	0.828	1.268	1.050	A19
88.60 190 GSM 850 GPRS 30.0 29.06 -0.17 10 mm 17925 3 12.76 right 0.454 1.242 0.564 88.60 190 GSM 850 GPRS 30.0 29.06 0.13 10 mm 17925 3 12.76 left 0.369 1.242 0.458 848.80 251 GSM 850 GPRS 30.0 28.97 -0.10 10 mm 17925 3 12.76 back 0.734 12.88 0.994 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.14 10 mm 18170 3 12.76 back 0.231 1.211 0.286 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.01 10 mm 18170 3 12.76 botom 0.090 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 12.76			GSM 850	GPRS	30.0	29.06	0.02	10 mm	17925	3	1:2.76	front	0.494	1.242	0.614	
836.60 190 GSM 850 GPRS 30.0 23.0 0.13 10 mm 17925 3 12.76 left 0.369 1.242 0.458 848.80 251 GSM 850 GPRS 30.0 28.97 -0.10 10 mm 17925 3 12.76 back 0.784 1.268 0.994 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.14 10 mm 18170 3 12.76 back 0.231 1.211 0.286 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.12 10 mm 18170 3 12.76 forth 0.231 1.211 0.286 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 mm 18170 3 12.76 left 0.960 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 12.			GSM 850	GPRS	30.0	29.06	0.02	10 mm	17925	3	1:2.76	bottom	0.045	1.242	0.056	
848.80 251 GSM 850 GPRS 30.0 28.97 -0.10 10 mm 17925 3 12.76 back 0.784 1268 0.994 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.14 10 mm 18170 3 12.76 back 0.236 1.211 0.286 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.15 10 mm 18170 3 1.2.76 back 0.231 1.211 0.280 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.01 10 mm 18170 3 1.2.76 bottom 0.090 1.211 0.09 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 1.2.76 bottom 0.062 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3			GSM 850	GPRS	30.0	29.06	-0.17	10 mm	17925	3	1:2.76	right	0.454	1.242	0.564	
1880.00 661 GSM 1900 GPRS 25.0 24.17 0.14 10 mm 18170 3 12.76 back 0.236 1.211 0.286 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.15 10 mm 18170 3 12.76 front 0.231 1.211 0.280 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.12 10 mm 18170 3 1.2.76 front 0.231 1.211 0.090 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 mm 18170 3 1.2.76 front 0.062 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 1.2.76 left 0.196 1.211 0.237 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3			GSM 850	GPRS	30.0	29.06	0.13	10 mm	17925	3	1:2.76	left	0.369	1.242	0.458	
1880.00 661 GSM 1900 GPRS 25.0 24.17 0.15 10 mm 18170 3 12.76 front 0.231 1.211 0.280 1880.00 661 GSM 1900 GPRS 25.0 24.17 0.12 10 mm 18170 3 12.76 bottom 0.090 1.211 0.109 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 mm 18170 3 1.2.76 bottom 0.090 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 1.2.76 left 0.196 1.211 0.023 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 1.2.76 left 0.196 1.211 0.023 864.0 4133 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A			GSM 850	GPRS	30.0	28.97	-0.10	10 mm	17925	3	1:2.76	back	0.784	1.268	0.994	
1880.00 661 GSM 1900 GPRS 25.0 24.17 0.12 10 mm 18170 3 12.76 bottom 0.090 1.211 0.109 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 mm 18170 3 12.76 bottom 0.062 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 1.2.76 left 0.196 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 1.2.76 left 0.196 1.211 0.237 264.0 4132 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 back 0.638 1.256 0.801 846.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A			GSM 1900	GPRS	25.0	24.17	0.14	10 mm	18170	3	1:2.76	back	0.236	1.211	0.286	A21
1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.01 10 mm 18170 3 12.76 right 0.062 1.211 0.075 1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 12.76 left 0.196 1.211 0.237 826.40 4132 UMTS 850 RMC 24.0 23.03 0.01 10 mm 17925 N/A 1:1 back 0.566 1.250 0.733 836.60 4163 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 back 0.638 1.256 0.801 846.60 4233 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A 1			GSM 1900	GPRS	25.0	24.17	0.15	10 mm	18170	3	1:2.76	front	0.231	1.211	0.280	
1880.00 661 GSM 1900 GPRS 25.0 24.17 -0.05 10 mm 18170 3 12.76 left 0.196 1.211 0.237 826.40 4132 UMTS 850 RMC 24.0 23.03 0.01 10 mm 17925 N/A 1:1 back 0.586 1.250 0.733 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 back 0.586 1.250 0.733 836.60 4183 UMTS 850 RMC 24.0 22.97 0.04 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1<			GSM 1900	GPRS	25.0	24.17	0.12	10 mm	18170	3	1:2.76	bottom	0.090	1.211	0.109	
826.40 4132 UMTS 850 RMC 24.0 23.03 0.01 10 mm 17925 N/A 1:1 back 0.586 1.250 0.733 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 back 0.638 1.256 0.801 846.60 4233 UMTS 850 RMC 24.0 22.97 0.04 10 mm 17925 N/A 1:1 back 0.638 1.256 0.801 846.60 4233 UMTS 850 RMC 24.0 22.97 0.04 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 botm 0.421 1.256 0.658 836.60 4183 UMTS 850 RMC 24.0 23.01 0.001 10 mm 17925 N/A 1:1 </td <td></td> <td></td> <td>GSM 1900</td> <td>GPRS</td> <td>25.0</td> <td>24.17</td> <td>-0.01</td> <td>10 mm</td> <td>18170</td> <td>3</td> <td>1:2.76</td> <td>right</td> <td>0.062</td> <td>1.211</td> <td>0.075</td> <td></td>			GSM 1900	GPRS	25.0	24.17	-0.01	10 mm	18170	3	1:2.76	right	0.062	1.211	0.075	
836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 back 0.638 1.256 0.801 846.60 4233 UMTS 850 RMC 24.0 22.97 0.04 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 botom 0.042 1.256 0.633 836.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1<			GSM 1900	GPRS	25.0	24.17	-0.05	10 mm	18170	3	1:2.76	left	0.196	1.211	0.237	
846.60 4233 UMTS 850 RMC 24.0 22.97 0.04 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 N/A 1:1 back 0.679 1.268 0.861 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 font 0.451 1.256 0.566 836.60 4183 UMTS 850 RMC 24.0 23.01 0.00 10 mm 17925 N/A 1:1 botom 0.042 1.256 0.653 836.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 inft 0.378 1.256 0.427 836.60 4183 UMTS 1900 RMC 23.0 21.91 0.02 10 mm 18170 N/A 1:1			UMTS 850	RMC	24.0	23.03	0.01	10 mm	17925	N/A	1:1	back	0.586	1.250	0.733	
838.60 4183 UMTS 850 RMC 24.0 23.01 0.01 10 mm 17925 NA 1:1 front 0.451 1.256 0.566 836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 bottom 0.042 1.256 0.053 836.60 4183 UMTS 850 RMC 24.0 23.01 0.00 10 mm 17925 N/A 1:1 bottom 0.042 1.256 0.053 836.60 4183 UMTS 850 RMC 24.0 23.01 0.00 10 mm 17925 N/A 1:1 infth 0.378 1.256 0.475 836.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 left 0.340 1.256 0.427 1852.40 9262 UMTS 1900 RMC 23.0 21.82 0.01 10 mm 18170 N/A <t< td=""><td></td><td></td><td>UMTS 850</td><td>RMC</td><td>24.0</td><td>23.01</td><td>0.02</td><td>10 mm</td><td>17925</td><td>N/A</td><td>1:1</td><td>back</td><td>0.638</td><td>1.256</td><td>0.801</td><td></td></t<>			UMTS 850	RMC	24.0	23.01	0.02	10 mm	17925	N/A	1:1	back	0.638	1.256	0.801	
836.60 4183 UMTS 850 RMC 24.0 23.01 0.02 10 mm 17925 N/A 1:1 bottom 0.042 1.256 0.053 836.60 4183 UMTS 850 RMC 24.0 23.01 0.00 10 mm 17925 N/A 1:1 bottom 0.042 1.256 0.053 836.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 right 0.378 1.256 0.475 836.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 left 0.340 1.256 0.427 1852.40 9262 UMTS 1900 RMC 23.0 21.82 0.01 10 mm 18170 N/A 1:1 back 0.555 1.312 0.728 1907.60 9538 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A			UMTS 850	RMC	24.0	22.97	0.04	10 mm	17925	N/A	1:1	back	0.679	1.268	0.861	A23
836.60 4183 UMTS 850 RMC 24.0 23.01 0.00 10 mm 17925 N/A 1:1 right 0.378 1.256 0.475 836.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 right 0.378 1.256 0.475 836.60 4163 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 left 0.340 1.256 0.427 185240 9262 UMTS 1900 RMC 23.0 21.91 0.02 10 mm 18170 N/A 1:1 back 0.592 1.285 0.761 1880.00 9400 UMTS 1900 RMC 23.0 21.82 0.01 10 mm 18170 N/A 1:1 back 0.555 1.312 0.728 1907.60 9538 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A			UMTS 850	RMC	24.0	23.01	0.01	10 mm	17925	N/A	1:1	front	0.451	1.256	0.566	
R36.60 4183 UMTS 850 RMC 24.0 23.01 -0.01 10 mm 17925 N/A 1:1 left 0.340 1.256 0.427 1852.40 9262 UMTS 1900 RMC 23.0 21.91 0.02 10 mm 18170 N/A 1:1 left 0.340 1.256 0.427 1852.40 9262 UMTS 1900 RMC 23.0 21.82 0.01 10 mm 18170 N/A 1:1 back 0.555 1.312 0.728 1907.60 9538 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 back 0.640 1.288 0.824 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 back 0.640 1.288 0.824 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A			UMTS 850	RMC	24.0	23.01	0.02	10 mm	17925	N/A	1:1	bottom	0.042	1.256	0.053	
1852.40 9262 UMTS 1900 RMC 23.0 21.91 0.02 10 mm 18170 N/A 1:1 back 0.592 1.285 0.761 1880.00 9400 UMTS 1900 RMC 23.0 21.82 0.01 10 mm 18170 N/A 1:1 back 0.592 1.285 0.761 1907.60 9538 UMTS 1900 RMC 23.0 21.90 -0.03 10 mm 18170 N/A 1:1 back 0.640 1.288 0.824 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 back 0.640 1.288 0.824 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 fort 0.546 1.312 0.716 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A		-		-				-								
1880.00 9400 UMTS 1900 RMC 23.0 21.82 0.01 10 mm 18170 N/A 1:1 back 0.555 1.312 0.728 1907.60 9538 UMTS 1900 RMC 23.0 21.90 -0.03 10 mm 18170 N/A 1:1 back 0.555 1.312 0.728 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 back 0.546 1.312 0.716 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A 1:1 font 0.546 1.312 0.716 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A 1:1 bottom 0.197 1.312 0.258			UMTS 850	RMC	24.0	23.01	-0.01	10 mm	17925	N/A	1:1	left		1.256	0.427	
1907.60 9538 UMTS 1900 RMC 23.0 21.90 -0.03 10 mm 18170 N/A 1:1 back 0.640 1.288 0.824 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 front 0.546 1.312 0.716 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A 1:1 front 0.546 1.312 0.716 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A 1:1 bottom 0.197 1.312 0.258		_		-		-		-								
1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.01 10 mm 18170 N/A 1:1 front 0.546 1.312 0.716 1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A 1:1 bottom 0.197 1.312 0.258					23.0			10 mm	18170	N/A	1:1	back		1.312	0.728	
1880.00 9400 UMTS 1900 RMC 23.0 21.82 -0.05 10 mm 18170 N/A 1:1 bottom 0.197 1.312 0.258								-								A25
		-														
1880.00 9400 UMTS 1900 RMC 23.0 21.82 0.00 10 mm 18170 N/A 1:1 right 0.161 1.312 0.211								-								
		-														
1880.00 9400 UMTS 1900 RMC 23.0 21.82 0.02 10 mm 18170 N/A 1:1 left 0.472 1.312 0.619 ANSI / IEEE C95.1 1992 - SAFETY LIMIT	_	1			-0.0		0.02	10 mm	18170	N/A	1:1			1.312	0.619	
Spatial Peak 1.6 W/kg (mW/g)				Spatial Peak								1.6 W/k	g (mW/g)			
Uncontrolled Exposure/General Population averaged over 1 gram Note: Blue entry represents variability measurement.											· · · · · ·					

Note: Blue entry represents variability measurement.

	FCC ID: A3LSMJ337V	CAPCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 61 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 01 01 07
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M

Table 11-19 LTE Band 13 Hotspot SAR

								MEASU		r result	s								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm)	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[WITZ]	Power [dBm]	Power [dBm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	0.00	0	21315	QPSK	1	25	10 mm	back	1:1	0.612	1.102	0.674	A27
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	0.03	1	21315	QPSK	25	0	10 mm	back	1:1	0.464	1.104	0.512	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	-0.05	0	21315	QPSK	1	25	10 mm	front	1:1	0.409	1.102	0.451	
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	-0.02	1	21315	QPSK	25	0	10 mm	front	1:1	0.309	1.104	0.341	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	0.01	0	21315	QPSK	1	25	10 mm	bottom	1:1	0.080	1.102	0.088	
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	-0.01	1	21315	QPSK	25	0	10 mm	bottom	1:1	0.060	1.104	0.066	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	-0.03	0	21315	QPSK	1	25	10 mm	right	1:1	0.376	1.102	0.414	
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	0.00	1	21315	QPSK	25	0	10 mm	right	1:1	0.276	1.104	0.305	
782.00	23230	Mid	LTE Band 13	10	24.5	24.08	0.00	0	21315	QPSK	1	25	10 mm	left	1:1	0.351	1.102	0.387	
782.00	23230	Mid	LTE Band 13	10	23.5	23.07	-0.03	1	21315	QPSK	25	0	10 mm	left	1:1	0.253	1.104	0.279	
		4	ANSI / IEEE C95.		FETY LIMIT									Body					
			Spa	atial Peak								1.6 W	/kg (mV	V/g)					
		Un	controlled Expo	sure/Gener	al Populatio	n						,	average	ed over 1	gram				

Table 11-20 LTE Band 5 (Cell) Hotspot SAR

								MEASU	IREMENT	RESULT	s								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[]	Power [dBm]	i olioi (abili)	5[05]		Number							(W/kg)	1000	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	0.05	0	21315	QPSK	1	0	10 mm	back	1:1	0.739	1.253	0.926	A29
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.03	1	21315	QPSK	25	0	10 mm	back	1:1	0.585	1.274	0.745	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.93	0.00	1	21315	QPSK	50	0	10 mm	back	1:1	0.586	1.279	0.749	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	0.01	0	21315	QPSK	1	0	10 mm	front	1:1	0.547	1.253	0.685	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.04	1	21315	QPSK	25	0	10 mm	front	1:1	0.436	1.274	0.555	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	0.03	0	21315	QPSK	1	0	10 mm	bottom	1:1	0.070	1.253	0.088	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.03	1	21315	QPSK	25	0	10 mm	bottom	1:1	0.054	1.274	0.069	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	-0.06	0	21315	QPSK	1	0	10 mm	right	1:1	0.408	1.253	0.511	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	22.95	0.00	1	21315	QPSK	25	0	10 mm	right	1:1	0.340	1.274	0.433	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.02	0.02	0	21315	QPSK	1	0	10 mm	left	1:1	0.414	1.253	0.519	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	0.00	1	21315	QPSK	25	0	10 mm	left	1:1	0.340	1.274	0.433		
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
	Spatial Peak												1.6 W	//kg (mV	V/g)				
		Ur	ncontrolled Expo	sure/Gener	al Population	n							average	ed over 1	gram				

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 62 of 87
© 201	8 PCTEST Engineering Laboratory, Inc.	•		· · · · · ·	REV 20.09 M

RE\ REV 20.09 M 03/16/2018

	MEASUREMENT RESULTS																		
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	n.		[WH2]	Power [dBm]	Fower [ubili]	Drint [UB]		Number							(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	-0.03	0	18121	QPSK	1	0	10 mm	back	1:1	0.794	1.279	1.016	A31
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.38	0.03	1	18121	QPSK	50	0	10 mm	back	1:1	0.623	1.294	0.806	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.35	0.03	1	18121	QPSK	100	0	10 mm	back	1:1	0.626	1.303	0.816	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	-0.04	0	18121	QPSK	1	0	10 mm	front	1:1	0.686	1.279	0.877	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.38	0.04	1	18121	QPSK	50	0	10 mm	front	1:1	0.541	1.294	0.700	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.35	0.00	1	18121	QPSK	100	0	10 mm	front	1:1	0.551	1.303	0.718	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	0.02	0	18121	QPSK	1	0	10 mm	bottom	1:1	0.147	1.279	0.188	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.38	-0.06	1	18121	QPSK	50	0	10 mm	bottom	1:1	0.131	1.294	0.170	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	-0.04	0	18121	QPSK	1	0	10 mm	right	1:1	0.090	1.279	0.115	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.5	21.38	0.05	1	18121	QPSK	50	0	10 mm	right	1:1	0.073	1.294	0.094	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	22.43	0.00	0	18121	QPSK	1	0	10 mm	left	1:1	0.394	1.279	0.504	
1732.50	1732.50 20175 Mid LTE Band 4 20 22.5 21.38 -0.04						-0.04	1	18121	QPSK	50	0	10 mm	left	1:1	0.307	1.294	0.397	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												average	ed over 1	gram				

Table 11-21 LTE Band 4 (AWS) Hotspot SAR

Table 11-22 LTE Band 2 (PCS) Hotspot SAR

	MEASUREMENT RESULTS																		
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	h.		[]	Power [dBm]	r oli ci [ubiii]	Dinit [db]		Number							(W/kg)		(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.5	22.50	-0.04	0	18121	QPSK	1	99	10 mm	back	1:1	0.613	1.259	0.772	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.5	22.70	0.00	0	18121	QPSK	1	99	10 mm	back	1:1	0.648	1.202	0.779	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.02	0	18121	QPSK	1	99	10 mm	back	1:1	0.738	1.199	0.885	A33
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	-0.02	1	18121	QPSK	50	25	10 mm	back	1:1	0.543	1.205	0.654	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	21.61	0.04	1	18121	QPSK	100	0	10 mm	back	1:1	0.505	1.227	0.620	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.5	22.50	-0.19	0	18121	QPSK	1	99	10 mm	front	1:1	0.601	1.259	0.757	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.5	22.70	-0.11	0	18121	QPSK	1	99	10 mm	front	1:1	0.597	1.202	0.718	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	0.00	0	18121	QPSK	1	99	10 mm	front	1:1	0.701	1.199	0.840	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	-0.06	1	18121	QPSK	50	25	10 mm	front	1:1	0.523	1.205	0.630	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	21.61	-0.12	1	18121	QPSK	100	0	10 mm	front	1:1	0.458	1.227	0.562	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.07	0	18121	QPSK	1	99	10 mm	bottom	1:1	0.276	1.199	0.331	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	-0.11	1	18121	QPSK	50	25	10 mm	bottom	1:1	0.216	1.205	0.260	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.06	0	18121	QPSK	1	99	10 mm	right	1:1	0.187	1.199	0.224	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	-0.05	1	18121	QPSK	50	25	10 mm	right	1:1	0.150	1.205	0.181	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.5	22.50	-0.01	0	18121	QPSK	1	99	10 mm	left	1:1	0.523	1.259	0.658	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.5	22.70	-0.01	0	18121	QPSK	1	99	10 mm	left	1:1	0.595	1.202	0.715	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.5	22.71	-0.03	0	18121	QPSK	1	99	10 mm	left	1:1	0.694	1.199	0.832	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	21.69	-0.01	1	18121	QPSK	50	25	10 mm	left	1:1	0.514	1.205	0.619	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	21.61	0.00	1	18121	QPSK	100	0	10 mm	left	1:1	0.432	1.227	0.530	
			ANSI / IEEE C95.		FETY LIMIT									Body					
	Spatial Peak												1.6 W	//kg (mV	V/g)				
	Uncontrolled Exposure/General Population							averaged over 1 gram											

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 63 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 03 01 87
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M

	MEASUREMENT RESULTS																		
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	0.08	0	21315	QPSK	1	0	10 mm	back	1:1	0.641	1.081	0.693	
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	0.04	1	21315	QPSK	50	0	10 mm	back	1:1	0.503	1.122	0.564	
2510.00	20850	Low	LTE Band 7	20	24.5	24.06	0.03	0	21315	QPSK	1	99	10 mm	front	1:1	1.050	1.107	1.162	
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	0.01	0	21315	QPSK	1	0	10 mm	front	1:1	0.844	1.081	0.912	
2560.00	21350	High	LTE Band 7	20	24.5	23.98	0.04	0	21315	QPSK	1	99	10 mm	front	1:1	0.813	1.127	0.916	
2510.00	20850	Low	LTE Band 7	20	23.5	22.98	0.02	1	21315	QPSK	50	50	10 mm	front	1:1	0.801	1.127	0.903	
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	-0.01	1	21315	QPSK	50	0	10 mm	front	1:1	0.764	1.122	0.857	
2560.00	21350	High	LTE Band 7	20	23.5	22.97	0.04	1	21315	QPSK	50	50	10 mm	front	1:1	0.649	1.130	0.733	
2535.00	21100	Mid	LTE Band 7	20	23.5	22.99	0.03	1	21315	QPSK	100	0	10 mm	front	1:1	0.675	1.125	0.759	
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	-0.01	0	21315	QPSK	1	0	10 mm	bottom	1:1	0.354	1.081	0.383	
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	0.06	1	21315	QPSK	50	0	10 mm	bottom	1:1	0.278	1.122	0.312	
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	-0.15	0	21315	QPSK	1	0	10 mm	right	1:1	0.177	1.081	0.191	
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	0.03	1	21315	QPSK	50	0	10 mm	right	1:1	0.140	1.122	0.157	
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	-0.01	0	21315	QPSK	1	0	10 mm	left	1:1	0.393	1.081	0.425	
2535.00	21100	Mid	LTE Band 7	20	23.5	23.00	0.10	1	21315	QPSK	50	0	10 mm	left	1:1	0.306	1.122	0.343	
2510.00	20850	Low	LTE Band 7	20	24.5	24.06	0.05	0	21315	QPSK	1	99	10 mm	front	1:1	1.060	1.107	1.173	A35
2535.00	21100	Mid	LTE Band 7	20	24.5	24.16	-0.12	0	21315	QPSK	1	0	10 mm	front	1:1	0.763	1.081	0.825	
		1	ANSI / IEEE C95.		FETY LIMIT			Body											
			•	atial Peak										/kg (mV	•				
	Uncontrolled Exposure/General Population							averaged over 1 gram											

Table 11-23 LTE Band 7 Hotspot SAR

Note: Blue entry represents variability measurement.

Table 11-24 WLAN Hotspot SAR

	MEASUREMENT RESULTS																	
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WH2]	[dBm]	[UBII]	[UB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	19.0	18.68	0.15	10 mm	18139	1	back	99.0	0.431	0.291	1.076	1.010	0.316	A37
2437	6	802.11b	DSSS	22	19.0	18.68	0.12	10 mm	18139	1	front	99.0	0.356	-	1.076	1.010	-	
2437	6	802.11b	DSSS	22	19.0	18.68	0.11	10 mm	18139	1	top	99.0	0.308	-	1.076	1.010	-	
2437	6	802.11b	DSSS	22	19.0	18.68	0.08	10 mm	18139	1	left	99.0	0.136	-	1.076	1.010	-	
5745	149	802.11a	OFDM	20	16.0	14.78	-0.04	10 mm	18246	6	back	98.6	1.592	0.722	1.324	1.014	0.969	
5785	157	802.11a	OFDM	20	16.0	14.77	-0.04	10 mm	18246	6	back	98.6	1.931	0.782	1.327	1.014	1.052	A39
5825	165	802.11a	OFDM	20	16.0	14.78	0.12	10 mm	18246	6	back	98.6	1.639	0.697	1.324	1.014	0.936	
5825	165	802.11a	OFDM	20	16.0	14.78	0.03	10 mm	18246	6	front	98.6	0.448	0.200	1.324	1.014	0.269	
5825	165	802.11a	OFDM	20	16.0	14.78	-0.11	10 mm	18246	6	top	98.6	0.507	-	1.324	1.014	-	
5825	165	802.11a	OFDM	0.10	10 mm	18246	6	left	98.6	1.137	0.457	1.324	1.014	0.614				
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body										
	Spatial Peak													g (mW/g)				
	Uncontrolled Exposure/General Population												averaged	over 1 gram				

	FCC ID: A3LSMJ337V			Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 64 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 04 01 07
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M 03/16/2018

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 2. TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 65 of 87
© 20 ⁻	18 PCTEST Engineering Laboratory, Inc.	÷	•		REV 20.09 M

REV 20.09 N 03/16/2018

CDMA Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- 2. Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only, EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Laver configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

	FCC ID: A3LSMJ337V			SAMSUNG	Approved by:
		*** V MEDITER DE CARGEATON, UN			Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 66 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 66 of 87
© 20	8 PCTEST Engineering Laboratory, Inc.				REV 20.09 M

03/16/2018

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.7.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 67 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 07 01 07
© 20′	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

03/16/2018

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR= $\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$

Table 12-1
Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Head)	Separation Distance (Body-worn)	Estimated SAR (Body-worn)	Separation Distance (Hotspot)	Estimated SAR (Hotspot)
	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2480	9.00	5	0.336	15	0.112	10	0.168

Note: Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

		A PCTEST		Approved by:
	FCC ID: A3LSMJ337V	**************************************	SAK EVALUATION REPORT	
	Document S/N:	Test Dates:	DUT Type:	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 68 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.		•	REV 20.09 M

Head SAR Simultaneous Transmission Analysis 12.3

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Exposure Condition			Mode				:G/3G/ AR (W	-	2.4 G WLAN (W/k	SAR	ΣS	Σ SAR (W/kg)										
									1		2		1+2									
				Cell. CDMA/EVDO				0.52	6	0.96	5	1.491										
				Ρ	CS CI	DM/	VEV	00		1.14	1	0.96	65	See	Table Be	low						
			Γ		GS	SM 8	350			0.36)	0.96	65		1.325							
					GS	M 1	900			0.36	3	0.96	65		1.328							
					UM	TS	850			0.42	5	0.96	5		1.390							
		Head	SAR		UM	TS 1	900			1.01)	0.965 Se		See	Table Be	low						
				LTE Band 13				0.42)	0.965 1.		1.385										
				LTE Band			15 (Cell)			0.566 0.965		1.531										
				L٦	TE Ba	nd 4	I (AW	/S)		0.60	9	0.96	5		1.574							
				Ľ	TE Ba	nd 2	2 (PC	S)		1.07	7	0.96	5	See	Table Be	low						
				-	LTE	Ва	nd 7			0.59	5	0.96	65		1.560	-						
Simult Tx	Config		PCS CDM SAR (W/kç	WL	.4 GHz AN SAR W/kg)		SAR //kg)	SPL	SR	Simult	Tx	Configuratio	64	CS EVDC R (W/kg		2	SAR V/kg)	SPLSR				
			1		2	1	+2	1+2	2					1	2		1+2	1+2				
	Right C Righ		0.602		0.965 0.590		.567 .821	N/A			-	Right Chee Right Tilt	k 🛛	0.620	0.965		. 585).828	N/A N/A				
Head SAR	Left C Left		1.061 0.417		0.557).965*		Note 1 382	0.03 N/A	-	Head S		Left Cheek	(1.141 0.436	0.557 0.965*		Note 1	0.03 N/A				
Simult Tx			Configuration				UMTS SAR (V	1900	2.4 G WLAN (W/k	Hz SAR	Σ S. (W/I	AR		nult Tx	Con	figuration	LTE B (PCS) (W/	and 2 SAR V	2.4 GHz /LAN SAR (W/kg)	ΣS	SAR /kg)	SPLSR
			1		2		1+	2					1		2	1-	⊦2	1+2				
		t Cheek	0.49		0.96		1.4					ht Cheek	0.5		0.965		532	N/A				
Head SAR		ght Tilt t Cheek	0.19		0.59		0.7 1.5		Hea			ight Tilt it Cheek	0.2		0.590		Note 1	N/A 0.03				
		eft Tilt	0.34		0.96		1.3					.eft Tilt	0.2		0.965*		241	N/A				

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager			
	Document S/N:	Test Dates: DUT Type:			Dage 60 of 97			
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Page 69 of 87					
© 201	© 2018 PCTEST Engineering Laboratory, Inc.							

REV 20.09 M 03/16/2018

Simultaneous Transmission Scenario with 5 GHz WLAN (I							(He	eld to Ea	i r)														
Exposure Condition						Mode	9			:G/3G. AR (W		5 G WLAN (W/I	SAR	Σ SAR (W/kg)									
								1		2		1+2											
				Ce	ell. C	DMA	/E\	/DO		0.52	6	0.9	92	1.518									
					S C	DMA	/E'	VDO		1.14	1	0.9	92	Se	e Table E	Below							
					GSM 850			0.360 0.992		92	1.352												
					SM 19	M 1900			0.36	3	0.9	92		1.355									
					UN	ITS 8	350			0.42	5	0.9	92		1.417								
		Head SA	١R		UM	TS 1	900)		1.01	0	0.9	92	Se	e Table E	Below							
					LTE	Ban	d 1	3		0.42	0	0.9	92		1.412								
				Ľ	ΈB	and 5	5 (0	Cell)		0.56	6	0.9	92		1.558								
				LTI	E Ba	nd 4	(A	WS)		0.60	9	0.9	92	Se	e Table E	Below							
			LTE Ba		and 2 (PCS)			1.07	77 0.99		92	Se	e Table E	Below									
				LTE		E Band 7			0.595		0.99	0.992		1.587									
	Simult Tx	Configuration		CDMA (W/kg)	5 G WLAN (W/			SAR V/kg)	Sin	nult Tx	Conf	iguration	PCS E\ SAR (W		5 GHz WLAN SAR (W/kg)	Σ SAF (W/kg		SPLSR					
				1	2	2		1+2					1		2	1+2		1+2					
		Right Cheek Right Tilt		.602 .231	0.9 0.6			. 594).836				nt Cheek ght Tilt	0.62		0.992 0.605	See Not 0.843		0.03 N/A					
	Head SAR	Left Cheek	ft Cheek 1.061		0.4	1.477			Hea	ad SAR		t Cheek 1.14		1	0.416	1.557	'	N/A					
	Simult Tx	Left Tilt Configuration	UN		UM		UMTS 1900		W					Simu		eft Tilt Config	0.430 uration	LT	0.992* E Band 4 WS) SAR (W/kg)	5 GH WLAN S (W/kç	z SAR	N/A Σ SAR (W/kg)	
				1		2		1+2							1	2		1+2					
		Right Cheek		0.492		0.992		1.484				Right (0.265	0.992		1.257	_				
H	lead SAR	Right Tilt Left Cheek		<u>0.190</u> 1.010	_	0.605		0.795		Head	SAR	Righ Left C			0.170 0.609	0.605		0.775					
	ł	Left Tilt		0.344		0.992*		1.336				Left			0.220	0.992		1.212					
				Simul	t Tx	Cor	nfig	uration	(PC	E Band CS) SA W/kg) 1	r Wl	5 GHz _AN SAR (W/kg) 2	ΣS (W/	kg)									
				Head \$	SAR	F Le	Righ eft C	Cheek t Tilt Cheek		0.567 0.227 1.077 0.276		0.992 0.605 0.416 0.992*	1.5 0.8 1.4 1.2	32 93									

Table 12-3 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:	Dago 70 of 97			
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 70 of 87			
2018 PCTEST Engineering Laboratory, Inc. REV							

© 2018 PCTEST Engineering Laboratory, Inc.

Simultaneous Transmission Scenario with Bluetooth (Held to Ear)										
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)						
		1	2	1+2						
	Cell. CDMA/EVDO	0.526	0.336	0.862						
	PCS CDMA/EVDO	1.141	0.336	1.477						
	GSM 850	0.360	0.336	0.696						
	GSM 1900	0.363	0.336	0.699						
	UMTS 850	0.425	0.336	0.761						
Head SAR	UMTS 1900	1.010	0.336	1.346						
	LTE Band 13	0.420	0.336	0.756						
	LTE Band 5 (Cell)	0.566	0.336	0.902						
	LTE Band 4 (AWS)	0.609	0.336	0.945						
	LTE Band 2 (PCS)	1.077	0.336	1.413						
	LTE Band 7	0.595	0.336	0.931						

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Held to Far)

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

Body-Worn Simultaneous Transmission Analysis 12.4

n	ultaneous	<u>Transmission Scenario w</u>	ith 2.4 GHz \	NLAN (Body	-Worn at 1.5	cm			
	Exposure Condition	Niode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)				
			1	2	1+2				
		Cell. CDMA	0.920	0.151	1.071				
		PCS CDMA	0.786	0.151	0.937				
		GSM 850	0.728	0.151	0.879				
		GSM 1900	0.201	0.151	0.352				
		UMTS 850	0.768	0.151	0.919				
	Body-Wor	n UMTS 1900	0.506	0.151	0.657				
		LTE Band 13	0.540	0.151	0.691				
		LTE Band 5 (Cell)	0.788	0.151	0.939				
		LTE Band 4 (AWS)	0.843	0.151	0.994				
		LTE Band 2 (PCS)	0.594	0.151	0.745				
		LTE Band 7	0.376	0.151	0.527				
	A								

Table 12-5 -4 4 E Simult . m)

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 71 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage / 1 01 07
201	8 PCTEST Engineering Laboratory, Inc.		· · · · · · · · · · · · · · · · · · ·	REV 20.09 M

© 2018 PCTEST Engineering Laboratory, Inc.

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. CDMA	0.920	0.581	1.501
	PCS CDMA	0.786	0.581	1.367
	GSM 850	0.728	0.581	1.309
	GSM 1900	0.201	0.581	0.782
	UMTS 850	0.768	0.581	1.349
Body-Worn	UMTS 1900	0.506	0.581	1.087
	LTE Band 13	0.540	0.581	1.121
	LTE Band 5 (Cell)	0.788	0.581	1.369
	LTE Band 4 (AWS)	0.843	0.581	1.424
	LTE Band 2 (PCS)	0.594	0.581	1.175
	LTE Band 7	0.376	0.581	0.957

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.5 cm)

Table 12-7

Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.5 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. CDMA	0.920	0.112	1.032
	PCS CDMA	0.786	0.112	0.898
	GSM 850	0.728	0.112	0.840
	GSM 1900	0.201	0.112	0.313
	UMTS 850	0.768	0.112	0.880
Body-Worn	UMTS 1900	0.506	0.112	0.618
	LTE Band 13	0.540	0.112	0.652
	LTE Band 5 (Cell)	0.788	0.112	0.900
	LTE Band 4 (AWS)	0.843	0.112	0.955
	LTE Band 2 (PCS)	0.594	0.112	0.706
	LTE Band 7	0.376	0.112	0.488

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAR EVALUATION REPORT					
	Document S/N:	Test Dates:	DUT Type:		Dege 70 of 97				
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 72 of 87				
© 201	© 2018 PCTEST Engineering Laboratory, Inc.								

03/16/2018

Hotspot SAR Simultaneous Transmission Analysis 12.5

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. EVDO	0.913	0.316	1.229
	PCS EVDO	0.964	0.316	1.280
	GPRS 850	1.050	0.316	1.366
	GPRS 1900	0.286	0.316	0.602
l latan at	UMTS 850	0.861	0.316	1.177
Hotspot SAR	UMTS 1900	0.824	0.316	1.140
5AN	LTE Band 13	0.674	0.316	0.990
	LTE Band 5 (Cell)	0.926	0.316	1.242
	LTE Band 4 (AWS)	1.016	0.316	1.332
	LTE Band 2 (PCS)	0.885	0.316	1.201
	LTE Band 7	1.173	0.316	1.489

Table 12-8 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 73 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

RE 03/16/2018

Sinditaneous Transmission Scenario with 5 Oriz WEAR (notspot				
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. EVDO	0.913	1.052	See Table Below
	PCS EVDO	0.964	1.052	See Table Below
	GPRS 850	1.050	1.052	See Table Below
	GPRS 1900	0.286	1.052	1.338
Listenat	UMTS 850	0.861	1.052	See Table Below
Hotspot SAR	UMTS 1900	0.824	1.052	See Table Below
541	LTE Band 13	0.674	1.052	See Table Below
	LTE Band 5 (Cell)	0.926	1.052	See Table Below
	LTE Band 4 (AWS)	1.016	1.052	See Table Below
	LTE Band 2 (PCS)	0.885	1.052	See Table Below
	LTE Band 7	1.173	1.052	See Table Below

Table 12-9 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	0.913	1.052	See Note 1	0.04		Back	0.964	1.052	See Note 1	0.02
	Front	0.588	0.269	0.857	N/A		Front	0.762	0.269	1.031	N/A
Hotspot	Тор	-	1.052*	1.052	N/A	Hotspot	Тор	-	1.052*	1.052	N/A
SAR	Bottom	0.065	-	0.065	N/A	SAR	Bottom	0.304	-	0.304	N/A
	Right	0.483	-	0.483	N/A		Right	0.231	-	0.231	N/A
	Left	0.426	0.614	1.040	N/A	Left	0.693	0.614	1.307	N/A	
Simult Tx	Configuration	GPRS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR		Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.050	1.052	See Note 1	0.04		Back	0.861	1.052	See Note 1	0.03
	Front	0.614	0.269	0.883	N/A		Front	0.566	0.269	0.835	N/A
Hotspot	Тор	-	1.052*	1.052	N/A	Hotspot	Тор	-	1.052*	1.052	N/A
SAR	Bottom	0.056	-	0.056	N/A	SAR	Bottom	0.053	-	0.053	N/A
	Right	0.564	-	0.564	N/A		Right	0.475	-	0.475	N/A
	Left	0.458	0.614	1.072	N/A		Left	0.427	0.614	1.041	N/A
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	LTE Band 13 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	0.824	1.052	See Note 1	0.02		Back	0.674	1.052	See Note 1	0.03
	Front	0.716	0.269	0.985	N/A		Front	0.451	0.269	0.720	N/A
Hotspot	Тор	-	1.052*	1.052	N/A	Hotspot	Тор	-	1.052*	1.052	N/A
SAR	Bottom	0.258	-	0.258	N/A	SAR	Bottom	0.088	-	0.088	N/A
	Right	0.211	-	0.211	N/A		Right	0.414	-	0.414	N/A
	Left	0.619	0.614	1.233	N/A		Left	0.387	0.614	1.001	N/A

	FCC ID: A3LSMJ337V			Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 74 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage 74 01 07
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)		Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	0.926	1.052	See Note 1	0.04		Back	1.016	1.052	See Note 1	0.03
	Front	0.685	0.269	0.954	N/A		Front	0.877	0.269	1.146	N/A
Hotspot	Тор	-	1.052*	1.052	N/A	Hotspot	Тор	-	1.052*	1.052	N/A
SAR	Bottom	0.088	-	0.088	N/A	SAR	Bottom	0.188	-	0.188	N/A
	Right	0.511	-	0.511	N/A		Right	0.115	-	0.115	N/A
	Left	0.519	0.614	1.133	N/A		Left	0.504	0.614	1.118	N/A
Simult Tx	Configuration	· /	5 GHz WLAN SAR	Σ SAR (W/kg)	SPLSR			LTE Band 7	5 GHz WLAN SAR	ΣSAR	SPLSR
	Configuration	(W/kg)	(W/kg)	(W/Kg)		Simult Tx	Configuration	SAR (W/kg)	(W/kg)	(W/kg)	
	Configuration	(W/kg) 1	(W/kg) 2	1+2	1+2	Simult Tx	Configuration	1	(W/kg) 2	(W/kg) 1+2	1+2
	Back	(0,			1+2	Simult Tx	Configuration Back				1+2 0.02
	_	1	2	1+2		Simult Tx		1	2	1+2	
Hotspot	Back	1 0.885	2 1.052	1+2 See Note 1	0.02	Simult Tx Hotspot	Back	1	2 1.052	1+2 See Note 1	0.02
Hotspot SAR	Back Front	1 0.885	2 1.052 0.269	1+2 See Note 1 1.109	0.02 N/A		Back Front	1 0.693 1.173	2 1.052 0.269	1+2 See Note 1 1.442	0.02 N/A
	Back Front Top	1 0.885 0.840 -	2 1.052 0.269	1+2 See Note 1 1.109 1.052	0.02 N/A N/A	Hotspot	Back Front Top	1 0.693 1.173 -	2 1.052 0.269 1.052*	1+2 See Note 1 1.442 1.052	0.02 N/A N/A

Table 12-10 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G	Bluetooth	Σ SAR (W/kg)
		1	2	1+2
	Cell. EVDO	0.913	0.168	1.081
	PCS EVDO	0.964	0.168	1.132
	GPRS 850	1.050	0.168	1.218
	GPRS 1900	0.286	0.168	0.454
Hotopot	UMTS 850	0.861	0.168	1.029
Hotspot SAR	UMTS 1900	0.824	0.168	0.992
OAN	LTE Band 13	0.674	0.168	0.842
	LTE Band 5 (Cell)	0.926	0.168	1.094
	LTE Band 4 (AWS)	1.016	0.168	1.184
	LTE Band 2 (PCS)	0.885	0.168	1.053
	LTE Band 7	1.173	0.168	1.341

Note:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

2. Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 75 of 97	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 75 of 87	
© 201	3 PCTEST Engineering Laboratory, Inc.		·		REV 20.09 M	

12.6 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is \leq 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (Head)
Distance_{Tx1-Tx2} = R_i = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ (Body)
SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

12.6.1 Head SPLSR Evaluation and Analysis

Peak SAR Locations for Head Right Cheek						
Mode/Band	x (mm)	y (mm)	z (mm)	Reported SAR (W/kg)		
5 GHz WLAN	17.67	-329.96	-174.02	0.992		
PCS EVDO	47.52	-253.97	-173.99	0.62		

Table 12-11

Table 12-12 Head Right Cheek SAR to Peak Location Separation Ratio Calculations

Anten	na Pair		one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
5 GHz WLAN	PCS EVDO	0.992	0.62	1.612	81.64	0.03	1

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 76 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		
© 20′	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.09 M

03/16/2018

Table 12-13 Head Right Cheek SAR to Peak Location Separation Ratio Plots

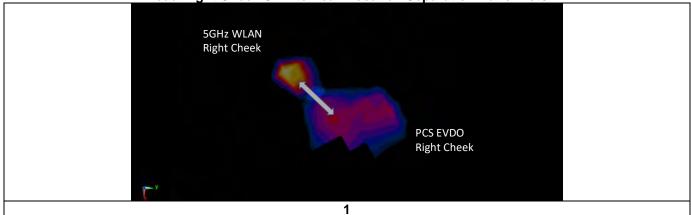
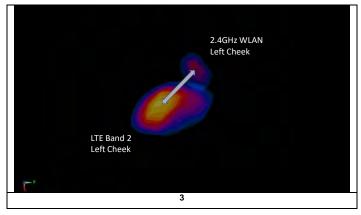


Table 12-14 Peak SAR Locations for Head Left Cheek

Mode/Band	x (mm)	y (mm)	z (mm)	Reported SAR (W/kg)		
2.4 GHz WLAN	1.78	296.22	-169.93	0.557		
PCS CDMA	49.31	251.28	-172.69	1.061		
PCS EVDO	50.03	252.60	-172.68	1.141		
LTE Band 2 (PCS)	46.55	254.49	-173.52	1.077		

Table 12-15 Head Left Cheek SAR to Peak Location Separation Ratio Calculations


Antenna Pair			Standalone SAR (W/kg)		Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN	PCS CDMA	0.557	1.061	1.618	65.47	0.03	1
2.4 GHz WLAN	PCS EVDO	0.557	1.141	1.698	65.10	0.03	2
2.4 GHz WLAN	LTE Band 2 (PCS)	0.557	1.077	1.634	61.31	0.03	3

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 77 of 87
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Fage // 01 0/
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

RE 03/16/2018

Table 12-16 Head Left Cheek SAR to Peak Location Separation Ratio Plots

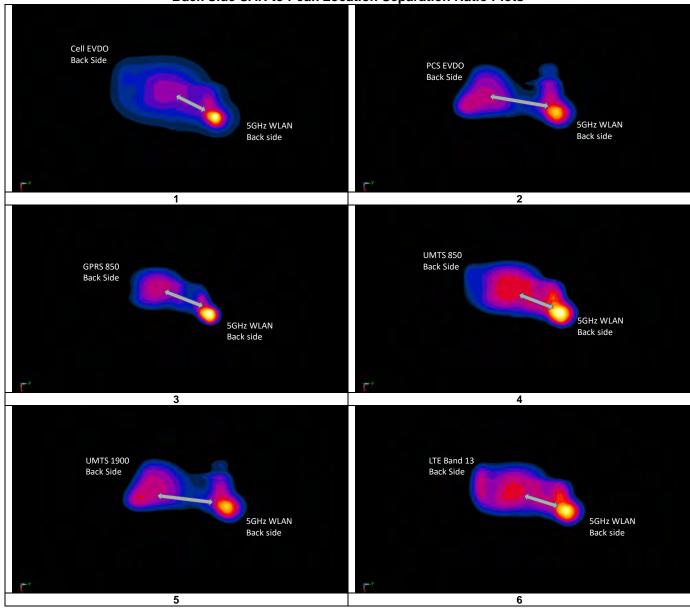
FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 78 of 87
© 2018 PCTEST Engineering Laboratory,	Inc.			REV 20.09 M

03/16/2018

Peak SAR Locati	ons for Bo	dy Back S	Side
Mode/Band	x (mm)	y (mm)	Reported SAR (W/kg)
5 GHz WLAN	14.00	60.00	1.052
Cell. EVDO	-22.00	0.00	0.913
PCS EVDO	-2.50	-54.00	0.964
GPRS 850	-20.00	-2.50	1.05
UMTS 850	-17.00	-9.00	0.861
UMTS 1900	-1.00	-55.50	0.824
LTE Band 13	-17.50	-16.50	0.674
LTE Band 5 (Cell)	-17.00	-9.00	0.926
LTE Band 4 (AWS)	-6.50	-43.50	1.016
LTE Band 2 (PCS)	-2.50	-52.50	0.885
LTE Band 7	-27.40	-65.40	0.693

Table 12-17

12.6.2 Back Side SPLSR Evaluation and Analysis


Table 12-18 Back Side SAR to Peak Location Separation Ratio Calculations

Anten	na Pair		one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
5 GHz WLAN	Cell. EVDO	1.052	0.913	1.965	69.97	0.04	1
5 GHz WLAN	PCS EVDO	1.052	0.964	2.016	115.19	0.02	2
5 GHz WLAN	GPRS 850	1.052	1.05	2.102	71.15	0.04	3
5 GHz WLAN	UMTS 850	1.052	0.861	1.913	75.64	0.03	4
5 GHz WLAN	UMTS 1900	1.052	0.824	1.876	116.47	0.02	5
5 GHz WLAN	LTE Band 13	1.052	0.674	1.726	82.73	0.03	6
5 GHz WLAN	LTE Band 5 (Cell)	1.052	0.926	1.978	75.64	0.04	7
5 GHz WLAN	LTE Band 4 (AWS)	1.052	1.016	2.068	105.51	0.03	8
5 GHz WLAN	LTE Band 2 (PCS)	1.052	0.885	1.937	113.70	0.02	9
5 GHz WLAN	LTE Band 7	1.052	0.693	1.745	132.06	0.02	10

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da as 70 at 07
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 79 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.		-		REV 20.09 M

03/16/2018

Table 12-19 Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: A3LSM	IJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:		Test Dates:	DUT Type:		D
1M1803190049-	01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 80 of 87
© 2018 PCTEST Enginee	ring Laboratory, In	с.			REV 20.09 M

03/16/2018

12.7 **Simultaneous Transmission Conclusion**

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

		A PCTEST		Approved by:
	FCC ID: A3LSMJ337V	THE (HITTING CARSEATON, UN	SAR EVALUATION REPORT	Quality Manager
	Document S/N:	Test Dates:	DUT Type:	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 81 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.	•	•	REV 20.09 M

03/16/2018

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg Table 12-1

			Неа	d SAR Measur	emen	-	ability	Result	ts					
				HEAD V	ARIABIL	ITY RES	ULTS							
Band	FREQUENCY		Mode/Band	Service	Side	Test Position	Data Rate (Mbps)	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1900.00	19100	LTE Band 2 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	Left	Cheek	N/A	0.898	0.859	1.05	N/A	N/A	N/A	N/A
5250	5270.00	54	802.11n, 40 MHz Bandwidth	OFDM	Right	Cheek	13.5	0.879	0.864	1.02	N/A	N/A	N/A	N/A
			I / IEEE C95.1 1992 - SAFETY LI Spatial Peak trolled Exposure/General Popu					а	Hea 1.6 W/kg veraged ov	(mW/g)	n			

Table 13-2

Body SAR Measurement Variability Results

				BOI	DY VAR	IABILIT	Y RES	ULTS							
Band	FREQUE	INCY	Mode	Service	e # of Time Data Rate Side (Mbps)		Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.				(Mbps)			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
835	848.80	251	GSM 850	GPRS	3	N/A	back	10 mm	0.828	0.784	1.06	N/A	N/A	N/A	N/A
2450	2510.00	20850	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	N/A	N/A	front	10 mm	1.050	1.060	1.01	N/A	N/A	N/A	N/A
2600	2535.00	21100	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	N/A	front	10 mm	0.844	0.763	1.11	N/A	N/A	N/A	N/A
			ANSI / IEEE C95.1 1992 - SA	FETY LIMIT							Во	dy			
			Spatial Peak							1	.6 W/kg	ı (mW/g)			
			Uncontrolled Exposure/Gener	al Population						ave	eraged o	ver 1 gram			

13.2 **Measurement Uncertainty**

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 92 of 97
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 82 of 87
© 20′	8 PCTEST Engineering Laboratory, Inc.			REV 20.09 M

REV 20.09 M 03/16/2018

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Numbe
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB44450273
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	1/24/2018	Annual	1/24/2019	MY47420651
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385 GB44400860
Agilent	E5515C 15S1G6	Wireless Communications Test Set	1/24/2018 CBT	Annual N/A	1/24/2019 CBT	433971
Amplifier Research	1551G6	Amplifier	CBT	N/A N/A	CBT	433971 433972
Amplifier Research Amplifier Research	1551G6	Amplifier Amplifier	CBT	N/A N/A	CBT	433972
Amplifier Research	1551G6	Amplifier	CBT	N/A N/A	CBT	433974
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	433976
Amplifier Research	155166	Amplifier	CBT	N/A	CBT	433978
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1231538
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1231535
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1244524
Anritsu	MT8820C	Radio Communication Analyzer	1/30/2018	Annual	1/30/2019	6201300731
Anritsu	MT8820C	Radio Communication Analyzer	3/20/2018	Annual	3/20/2019	6201144419
Anritsu	MA2411B	Pulse Power Sensor	10/16/2017	Annual	10/16/2018	1207470
Anritsu	MT8821C	Radio Communication Analyzer	7/25/2017	Annual	7/25/2018	6201664756
Anritsu	MT8821C	Radio Communication Analyzer	11/17/2017	Annual	11/17/2018	6201381794
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-100
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-00
Control Company	4352	Ultra Long Stem Thermometer	1/8/2018	Annual	1/8/2019	160508097
Control Company	4352	Ultra Long Stem Thermometer	1/8/2018	Annual	1/8/2019	160508122
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/8/2018	Annual	1/8/2019	160574418
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/1/2017	Biennial	3/1/2019	170152009
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	11/3/2017	Annual	11/3/2018	100976
Rohde & Schwarz	CMW500	Radio Communication Tester	10/13/2017	Annual	10/13/2018	102060
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	7/20/2017	Annual	7/20/2018	132885
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/19/2018	Annual	1/19/2019	164948
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
Seekonk	NC-100	Torque Wrench (8" lb)	9/1/2016			
SPEAG	D750V3			Biennial	9/1/2018	21053
SPEAG		750 MHz SAR Dipole	7/13/2016	Biennial	9/1/2018 7/13/2018	21053 1161
69510	D835V2	835 MHz SAR Dipole	7/13/2016 1/15/2018	Biennial Annual	9/1/2018 7/13/2018 1/15/2019	21053 1161 4d132
SPEAG	D1750V2	835 MHz SAR Dipole 1750 MHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017	Biennial Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018	21053 1161 4d132 1148
SPEAG	D1750V2 D1900V2	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018	Biennial Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019	21053 1161 4d132 1148 5d148
SPEAG SPEAG	D1750V2 D1900V2 D2450V2	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017	Biennial Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018	21053 1161 4d132 1148 5d148 797
SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D2600V2	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017	Biennial Annual Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018	21053 1161 4d132 1148 5d148 797 1126
SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D2600V2 D5GHzV2	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018	Biennial Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 2/12/2019	21053 1161 4d132 1148 5d148 797 1126 1120
SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D2600V2 D5GHzV2 D5GHzV2	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 9/21/2016	Biennial Annual Annual Annual Annual Annual Biennial	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 2/12/2019 9/21/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D2600V2 D5GHzV2 D5GHzV2 D750V3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 9/21/2016 3/7/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 2/12/2019 9/21/2018 3/7/2019	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D5GH2V2 D5GH2V2 D5GH2V2 D750V3 D5GH2V2	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 9/21/2016 3/7/2017 8/15/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 2/12/2019 9/21/2018 3/7/2019 8/15/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D5GHzV2 D5GHzV2 D5GHzV2 D750V3 D5GHzV2 ES3DV3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 9/21/2016 3/7/2017 8/15/2017 2/13/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 2/12/2019 9/21/2018 3/7/2019 3/7/2019 2/13/2019	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D5GHzV2 D5GHzV2 D5GHzV2 D5GHzV2 ES3DV3 ES3DV3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 9/21/2016 3/7/2017 8/15/2017 2/13/2018 9/22/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 2/12/2019 9/21/2018 3/7/2019 8/15/2018 2/13/2019 9/22/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D560V2 D56HzV2 D56HzV2 D750V3 D56HzV2 E530V3 E530V3 E530V4	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe SAR Probe	7/13/2016 1/15/2018 2/7/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 3/7/2017 8/15/2017 2/12/2018 9/22/2017 7/11/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 2/12/2019 9/21/2018 3/7/2019 8/15/2018 2/13/2019 9/22/2018 7/17/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D5GHzV2 D5GHzV2 D5GHzV2 D5GHzV2 ES3DV3 ES3DV3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 7/10/2017 2/12/2018 9/21/2016 3/7/2017 2/13/2018 9/22/2017 7/12/2018 9/22/2017 7/12/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 2/12/2019 9/21/2018 3/7/2019 8/15/2018 2/13/2019 9/22/2018 8/14/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D56HzV2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV3 E53DV4 E53DV4	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 3/7/2017 8/15/2017 2/13/2018 9/22/2017 7/13/2017 8/14/2017 8/14/2017	Biennial Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 2/12/2019 8/15/2018 3/7/2019 8/15/2018 2/13/2019 9/22/2018 7/17/2018 8/14/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 3589
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1500V2 D2450V2 D560V2 D56HzV2 D56HzV2 D56HzV2 E530V3 E530V3 E530V3 E530V3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 9/21/2016 3/7/2017 8/15/2017 2/13/2018 9/22/2017 7/17/2017 8/14/2017 1/16/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 2/12/2019 9/21/2018 3/7/2019 8/15/2018 3/7/2019 8/15/2018 7/17/2018 8/14/2018 8/14/2018	21053 1161 4d132 5d148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D560V2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV3 E53DV4 E53DV4 E53DV4 E53DV3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 AR Probe 5 AR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 3/7/2017 8/15/2017 2/13/2018 9/22/2017 7/13/2017 8/14/2017 8/14/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/7/2019 9/11/2018 2/12/2019 8/15/2018 3/7/2019 8/15/2018 2/13/2019 9/22/2018 7/17/2018 8/14/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 3589 3287
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1500V2 D2450V2 D560V2 D56HzV2 D56HzV2 D56HzV2 E530V3 E530V3 E530V3 E530V3 E530V3 E530V3 E530V4 E530V4 E530V4	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 9/21/2016 9/22/2017 8/15/2017 8/15/2017 7/13/2017 8/14/2017 8/14/2017 2/14/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 3/7/2019 9/22/2018 7/17/2018 8/14/2018 2/14/2019 9/18/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 7410 3338 3589 3287 3914 7406
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1260V2 D2450V2 D56HzV2 D56HzV2 D56HzV2 E530V3 E530V3 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2016 9/12/2016 3/7/2017 8/15/2017 8/15/2017 8/14/2017 1/16/2018 9/18/2017 2/14/2018 4/18/2017 3/13/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 8/14/2019 9/18/2018 2/14/2019 4/18/2018 3/13/2019	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 3589 3287 3289 3287 3291
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1500V2 D2450V2 D560V2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV4 E53DV4 E53DV4 E53DV3 E53DV3 E53DV3 E53DV3 E53DV4 E53DV3 E53DV3	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 9/21/2016 9/22/2017 8/15/2017 8/15/2017 7/13/2017 8/14/2017 8/14/2017 2/14/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 3/7/2019 9/22/2018 7/17/2018 8/14/2018 2/14/2019 9/18/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1120 1191 1054 1237 3213 3318 3318 3332 3589 3287 3914 7406 3319
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D56HzV2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV3 E53DV3 E53DV3 E53DV3 E53DV4 E53DV4 E53DV4 E53DV4 E53DV4 E53DV4 E53DV4	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Opole SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/1/2018 9/11/2017 7/10/2017 2/11/2018 9/12/2016 9/21/2018 9/22/2017 2/13/2018 9/22/2017 1/16/2018 9/18/2017 1/16/2018 8/14/2017 1/16/2018 8/14/2017 3/13/2018 8/16/2017 3/13/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 3/7/2019 9/22/2018 8/15/2018 8/14/2018 2/13/2019 9/18/2018 3/13/2019 8/16/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 3589 3287 33914 7406 3319 7308
SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D56HzV2 D56HzV2 D56HzV2 D56HzV2 E530V3 E530V3 E530V4 E5	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 3/7/2017 8/15/2017 8/15/2017 7/10/2017 7/17/2017 8/14/2017 2/14/2018 8/16/2017 2/14/2018	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2019 9/21/2019 9/21/2019 9/21/2019 9/22/2018 8/14/2018 1/16/2019 9/18/2018 2/14/2019 8/16/2018	21053 1161 44132 1148 5d148 797 1120 1120 1120 1121 1054 1237 3213 3318 7410 3332 3589 3287 3914 7406 3319 7308 1272
SPEAG SPEAG	D1750V2 D1260V2 D2450V2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV3 E53DV4 E55DV5 E55	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Probe SAR Probe Dasy Data Acquisition Electronics	7/13/2016 1/15/2018 5/9/2017 2/7/2018 9/11/2017 2/12/2018 9/21/2016 9/21/2016 9/21/2016 9/21/2017 8/14/2017 1/16/2018 9/18/2017 3/13/2017 2/13/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Biennial Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 7/10/2018 2/12/2019 9/21/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 7/17/2018 8/14/2018 3/13/2019 9/13/2018	21053 1161 4d132 5d148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 3589 3287 3914 7406 3319 7308 1277 1334
SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D560V2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV3 E53DV3 E53DV3 E53DV3 E53DV4 E54 E54 E54 E54 E54 E54 E55 E55 E55 E5	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Probe SAR Probe	7/13/2016 1/15/2018 5/9/2017 2/17/2018 9/11/2017 7/10/2017 7/10/2017 7/12/2018 3/7/2017 8/15/2017 8/14/2017 1/15/2018 8/14/2017 3/13/2018 8/14/2017 3/13/2018 8/14/2017 7/13/2017 8/9/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Biennial Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 3/7/2019 9/22/2018 3/13/2019 9/22/2018 3/13/2019 3/13/2019 8/15/2018 3/13/2019 8/16/2018 7/13/2019	21053 1161 4d132 1148 5d148 797 1120 1120 1120 1121 1054 1237 3213 3318 7410 3332 3589 3287 3319 7406 3319 7308 1272 7308 1272 1334 1322
SPEAG SPEAG	D1750V2 D1500V2 D2450V2 D560tV2 D56ft2V2 D56ft2V2 D56ft2V2 E530V3 E530V3 E530V3 E530V3 E530V4 E540 E540 E540 E540 E540 E540 E540 E54	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 1/15/2018 9/11/2017 2/7/2018 9/11/2017 2/12/2016 3/7/2017 8/15/2017 8/15/2017 8/15/2017 7/11/2017 8/14/2017 1/16/2018 8/16/2017 2/14/2018 8/16/2017 2/19/2018 8/16/2017 2/9/2018 8/16/2017 7/13/2017 8/9/2017 8/9/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Annual	9/1/2018 7/13/2018 1/15/2019 5/9/2018 2/1/2019 9/11/2018 2/12/2019 9/21/2018 2/12/2019 9/21/2018 2/13/2019 9/22/2018 8/14/2019 9/18/2018 3/13/2019 9/18/2018 3/13/2019 3/13/2019 3/13/2019 3/13/2019 3/13/2018 8/9/2018 8/9/2018	21053 1161 4d132 1148 5d148 797 1126 1120 1191 1054 1237 3213 3318 7410 3332 3589 3319 7410 3332 3589 33914 7406 3319 7308 1272 1334 1332
SPEAG SPEAG	D1750V2 D1900V2 D2450V2 D560V2 D56HzV2 D56HzV2 D56HzV2 E53DV3 E53DV3 E53DV3 E53DV3 E53DV3 E53DV3 E53DV4 E54 E54 E54 E54 E54 E54 E55 E55 E55 E5	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Probe SAR ProBe SAR P	7/13/2016 1/15/2018 5/9/2017 2/17/2018 9/11/2017 7/10/2017 2/11/2018 9/21/2017 2/13/2018 9/21/2017 2/13/2018 9/22/2017 1/16/2018 8/16/2017 2/13/2018 8/16/2017 2/13/2018 8/9/2017 5/21/2017 6/21/2017 6/21/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Biennial Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 3/7/2019 9/22/2018 3/13/2019 9/22/2018 3/13/2019 3/13/2019 8/15/2018 3/13/2019 8/16/2018 7/13/2019	21053 1161 4d132 1148 5d148 797 1120 1120 1120 1121 1054 1237 3213 3318 7410 3332 3589 3287 3319 7406 3319 7308 1272 7308 1272 1334 1322
SPEAG SPEAG	D1750V2 D1260V2 D2450V2 D56H2V2 D56H2V2 D56H2V2 D56H2V2 E530V3 E530V3 E530V3 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 E530V4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MHz SAR Dipole 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2600 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 1/15/2018 9/11/2017 2/7/2018 9/11/2017 2/12/2016 3/7/2017 8/15/2017 8/15/2017 8/15/2017 7/11/2017 8/14/2017 1/16/2018 8/16/2017 2/14/2018 8/16/2017 2/19/2018 8/16/2017 2/9/2018 8/16/2017 7/13/2017 8/9/2017 8/9/2017	Biennial Annual Annual Annual Annual Annual Biennial Biennial Biennial Biennial Annual	9/1/2018 7/13/2019 5/9/2018 2/7/2019 9/11/2018 7/10/2018 3/7/2019 9/21/2018 3/7/2019 9/21/2018 3/7/2019 9/22/2018 7/17/2018 8/14/2018 2/14/2019 9/18/2018 3/13/2019 9/18/2018 2/14/2019 6/14/2018 2/9/2019 6/21/2019 6/21/2018	21053 1161 4d132 1148 5d148 797 1120 1120 1120 1121 1054 1127 3213 3213 3213 3213 3213 3213 3213

Note: 1) CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

2) Each equipment item was used solely within its respective calibration period.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 00 of 07	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset		Page 83 of 87	
© 2018 PCTEST Engineering Laboratory, Inc.						

RE 03/16/2018

15 **MEASUREMENT UNCERTAINTIES**

				f				k
a	С	d	e=	Т	g	h =	i =	к
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	x
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	x
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	x
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	x
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	x
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	x
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	x
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	×
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	×
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Page 84 of 87		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.09 M

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Qu	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 85 of 87	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset			
© 20 [.]	© 2018 PCTEST Engineering Laboratory, Inc.					

03/16/2018

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dage 96 of 97	
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	Page 86 of 87	
© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.09 M 03/16/2018

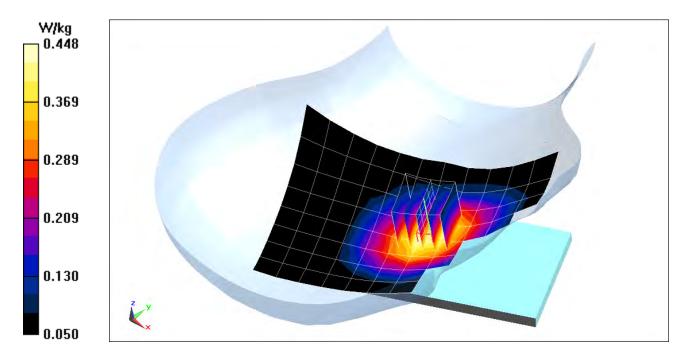
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: A3LSMJ337V		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Page 87 of 87		
	1M1803190049-01-R1.A3L	03/25/18 - 04/10/18	Portable Handset	age of or or		
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.					

03/16/2018

APPENDIX A: SAR TEST DATA

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ \mbox{f} = 836.52 \mbox{ MHz; } \sigma = 0.901 \mbox{ S/m; } \epsilon_r = 41.006; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

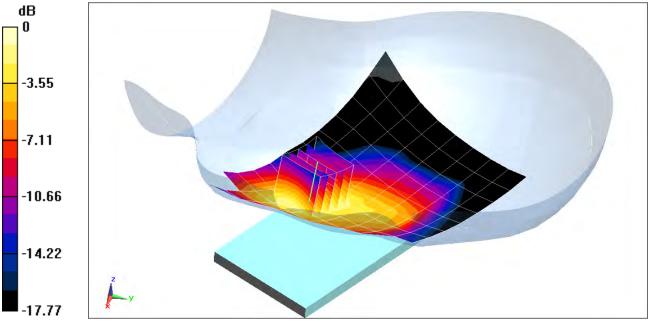
Test Date: 03-25-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. CDMA, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.20 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.508 W/kg SAR(1 g) = 0.410 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


 $\begin{array}{l} \mbox{Communication System: UID 0, PCS CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 1900 Head Medium parameters used (interpolated):} \\ f = 1908.75 \mbox{ MHz; } \sigma = 1.467 \mbox{ S/m; } \epsilon_r = 39.391; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 04-10-2018; Ambient Temp: 24.0°C; Tissue Temp: 21.8°C

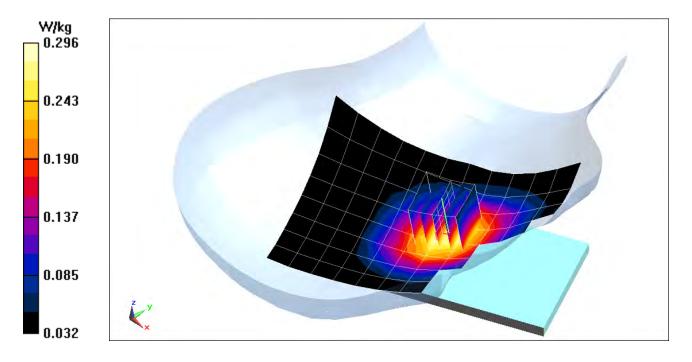
Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: PCS EVDO Rev A, Left Head, Cheek, High.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.75 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.894 W/kg

0 dB = 1.21 W/kg = 0.83 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.901 \mbox{ S/m; } \epsilon_r = 41.005; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

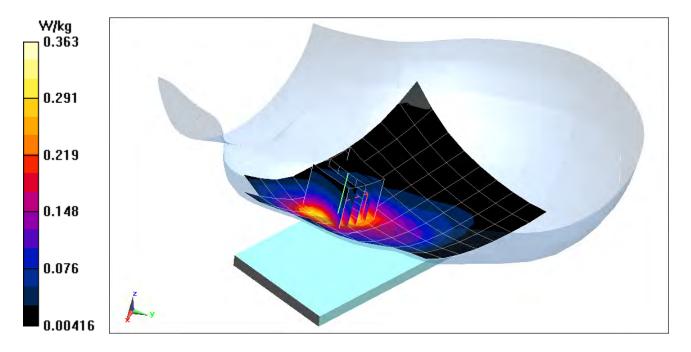
Test Date: 03-25-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GSM 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.90 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.338 W/kg SAR(1 g) = 0.269 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18170


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.3 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.437 \mbox{ S/m; } \epsilon_r = 39.509; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

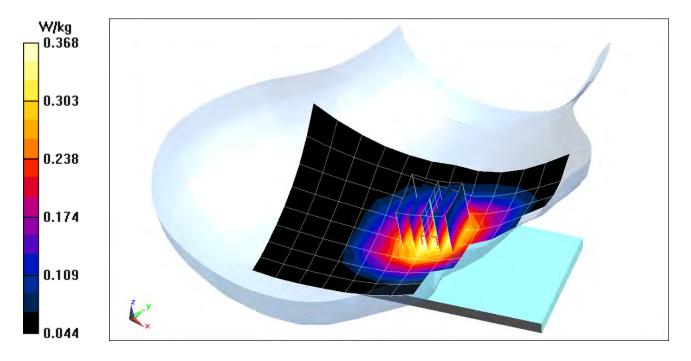
Test Date: 04-10-2018; Ambient Temp: 24.0°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GSM 1900, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.33 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.412 W/kg SAR(1 g) = 0.266 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.901$ S/m; $\epsilon_r = 41.005$; $\rho = 1000$ kg/m³ Phantom section: Right Section

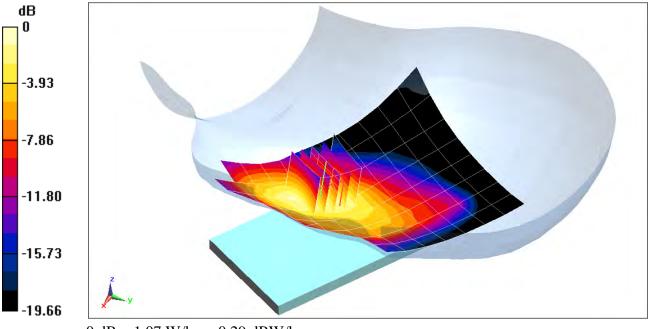
Test Date: 03-25-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.10 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.416 W/kg SAR(1 g) = 0.338 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18170


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 1900 Head Medium parameters used (interpolated):} \\ \mbox{f = 1907.6 MHz; } \sigma = 1.466 \mbox{ S/m; } \epsilon_r = 39.396; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 04-10-2018; Ambient Temp: 24.0°C; Tissue Temp: 21.8°C

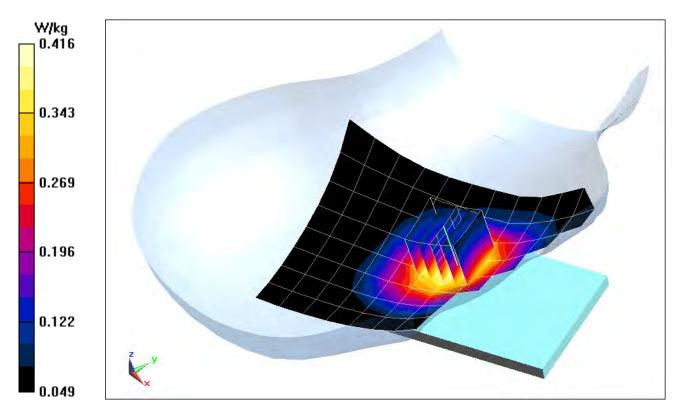
Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Left Head, Cheek, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.28 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.784 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.918$ S/m; $\varepsilon_r = 41.056$; $\rho = 1000$ kg/m³ Phantom section: Right Section

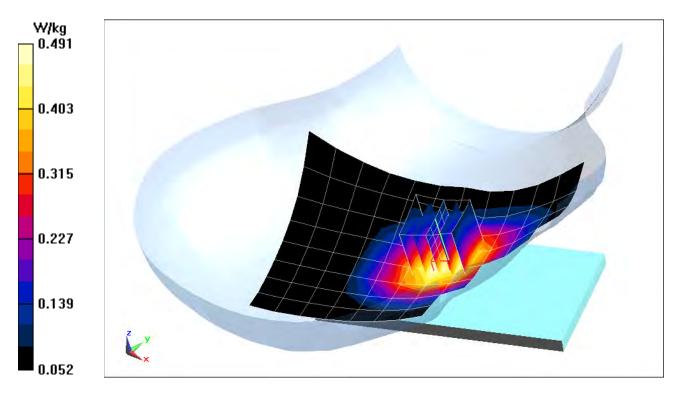
Test Date: 04-10-2018; Ambient Temp: 23.8°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3213; ConvF(6.75, 6.75, 6.75); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.93 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.479 W/kg SAR(1 g) = 0.381 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18113


Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 41.006$; $\rho = 1000$ kg/m³ Phantom section: Right Section

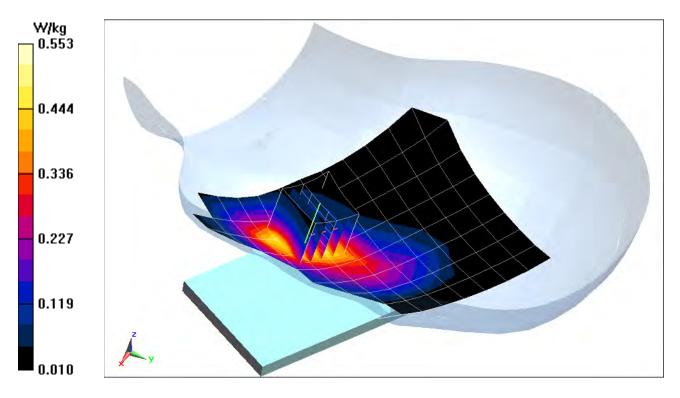
Test Date: 03-25-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.26 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.561 W/kg SAR(1 g) = 0.452 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Head Medium parameters used (interpolated):} \\ f = 1732.5 \mbox{ MHz; } \sigma = 1.39 \mbox{ S/m; } \epsilon_r = 40.688; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

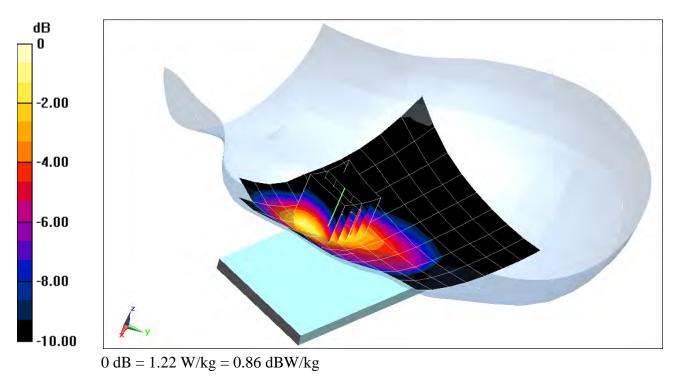
Test Date: 04-04-2018; Ambient Temp: 21.9°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(5.5, 5.5, 5.5); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.71 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.712 W/kg SAR(1 g) = 0.476 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used (interpolated):} \\ f = 1900 \mbox{ MHz; } \sigma = 1.458 \mbox{ S/m; } \epsilon_r = 39.427; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

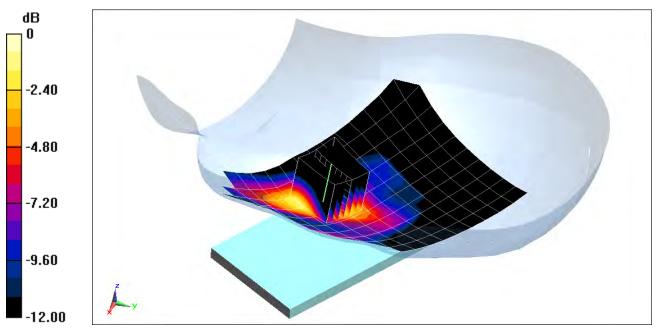
Test Date: 04-10-2018; Ambient Temp: 24.0°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 2 (PCS), Left Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.35 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.898 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{f} = 2535 \mbox{MHz; } \sigma = 1.939 \mbox{ S/m; } \epsilon_r = 39.269; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 04-09-2018; Ambient Temp: 22.4°C; Tissue Temp: 22.8°C

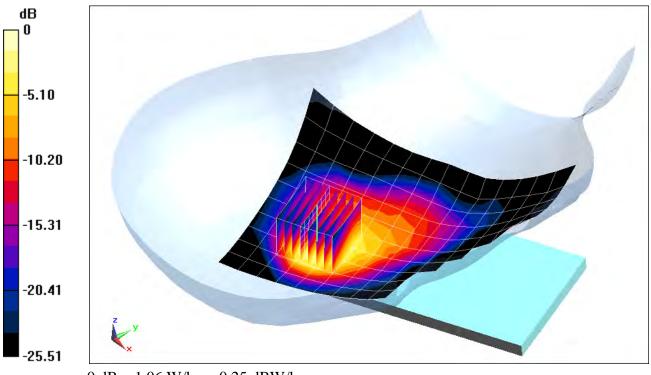
Probe: ES3DV3 - SN3332; ConvF(4.56, 4.56, 4.56); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7, Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.07 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.969 W/kg SAR(1 g) = 0.550 W/kg

0 dB = 0.667 W/kg = -1.76 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18261


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 1.822 \mbox{ S/m; } \epsilon_r = 40.063; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 03-28-2018; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

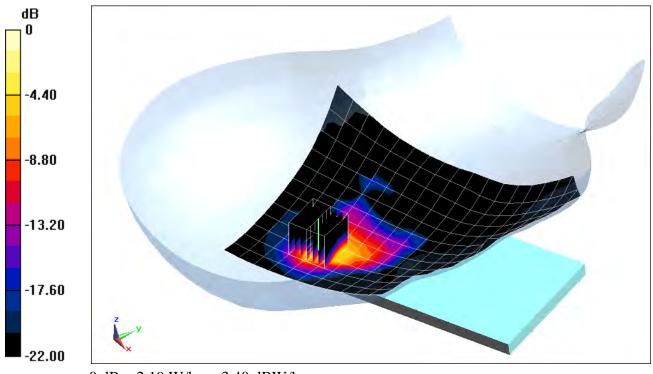
Probe: ES3DV3 - SN3332; ConvF(4.68, 4.68, 4.68); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 11, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.97 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.60 W/kg SAR(1 g) = 0.830 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18246


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5270 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5GHz Head Medium parameters used (interpolated):} \\ \mbox{f} = 5270 \mbox{ MHz; } \sigma = 4.679 \mbox{ S/m; } \epsilon_r = 37.487; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

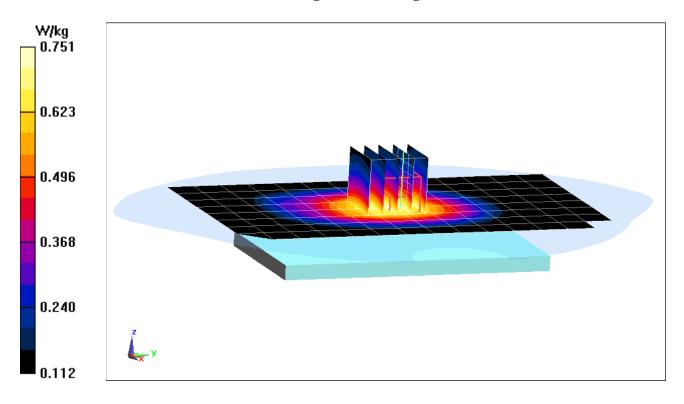
Probe: EX3DV4 - SN3589; ConvF(4.69, 4.69, 4.69); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11n, U-NII-2A, 40 MHz Bandwidth, Right Head, Cheek, Ch 54, 13.5 Mbps

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 3.068 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 3.92 W/kg SAR(1 g) = 0.879 W/kg

0 dB = 2.19 W/kg = 3.40 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 848.31 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 848.31 \mbox{ MHz; } \sigma = 0.987 \mbox{ S/m; } \epsilon_r = 53.403; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

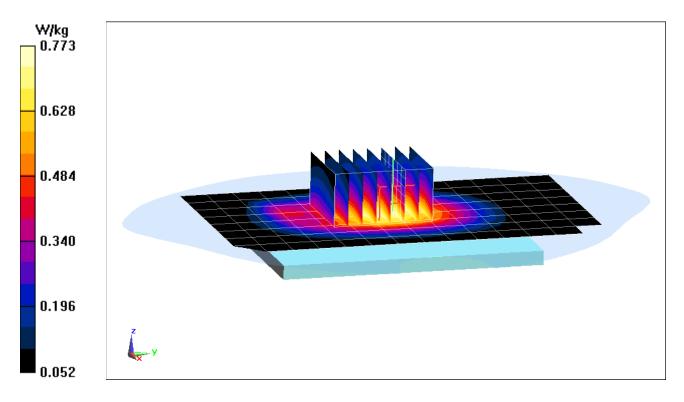
Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. CDMA, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.28 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.864 W/kg SAR(1 g) = 0.688 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


Communication System: UID 0, CDMA; Frequency: 848.31 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.975$ S/m; $\varepsilon_r = 53.79$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

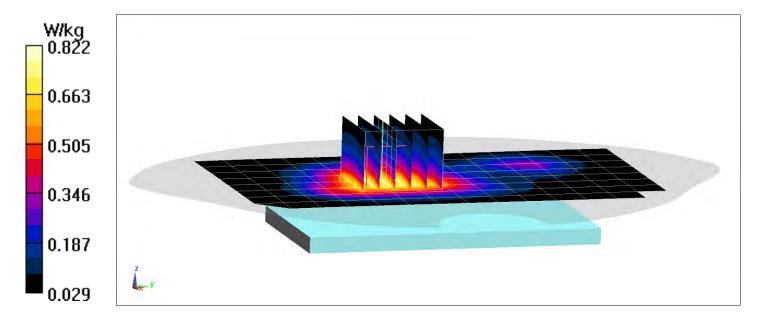
Test Date: 03-28-2018; Ambient Temp: 20.8°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. EVDO, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.61 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.888 W/kg SAR(1 g) = 0.707 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1851.25 \mbox{ MHz; } \sigma = 1.5 \mbox{ S/m; } \epsilon_r = 53.716; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: PCS CDMA, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.34 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.951 W/kg SAR(1 g) = 0.612 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1908.75 MHz; $\sigma = 1.564$ S/m; $\varepsilon_r = 53.519$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

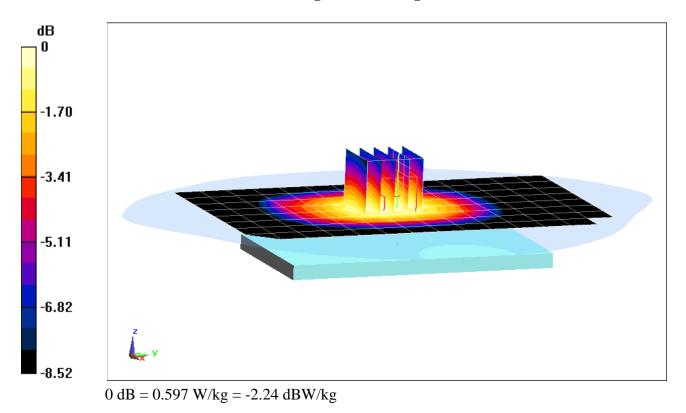
Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: PCS EVDO, Body SAR, Back side, High.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.747 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 848.8 \mbox{ MHz; } \sigma = 0.975 \mbox{ S/m; } \epsilon_r = 53.786; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

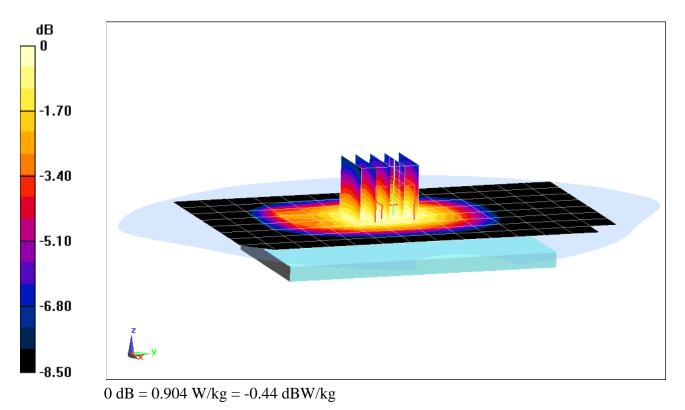
Test Date: 03-28-2018; Ambient Temp: 20.8°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GSM 850, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.42 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.684 W/kg SAR(1 g) = 0.546 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


Communication System: UID 0, _GSM GPRS; 3 Tx slots; Frequency: 848.8 MHz; Duty Cycle: 1:2.76 Medium: 835 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 53.786$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

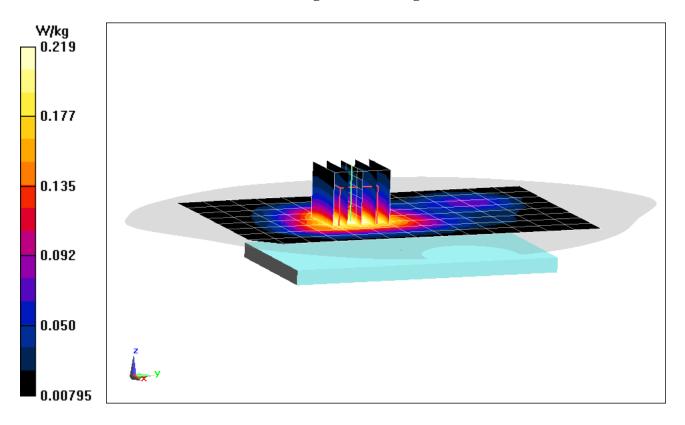
Test Date: 03-28-2018; Ambient Temp: 20.8°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 850, Body SAR, Back side, High.ch, 3 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.83 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.828 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.3 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.532 \mbox{ S/m; } \epsilon_r = 53.613; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

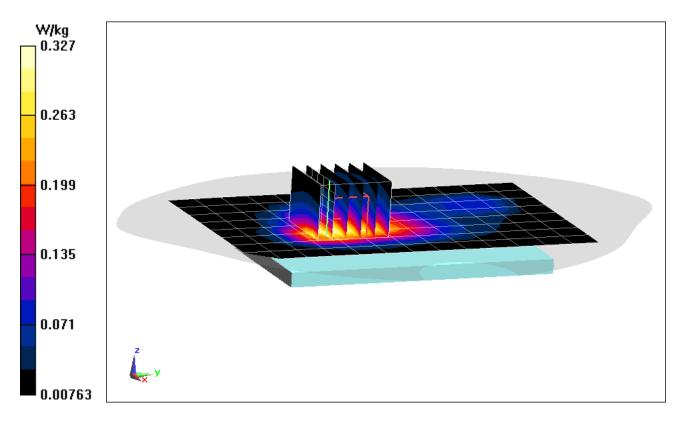
Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GSM 1900, Body SAR, Back side, Mid.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.60 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.250 W/kg SAR(1 g) = 0.165 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18170


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1880 \mbox{ MHz; } \sigma = 1.532 \mbox{ S/m; } \epsilon_r = 53.613; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

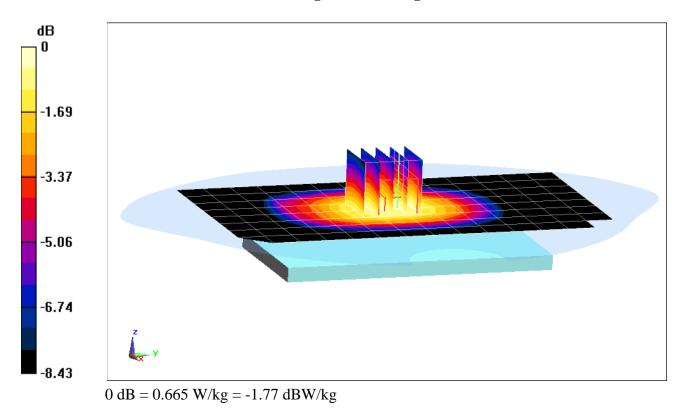
Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 3 Tx Slots

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.49 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.236 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 846.6 \mbox{ MHz; } \sigma = 0.973 \mbox{ S/m; } \epsilon_r = 53.805; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

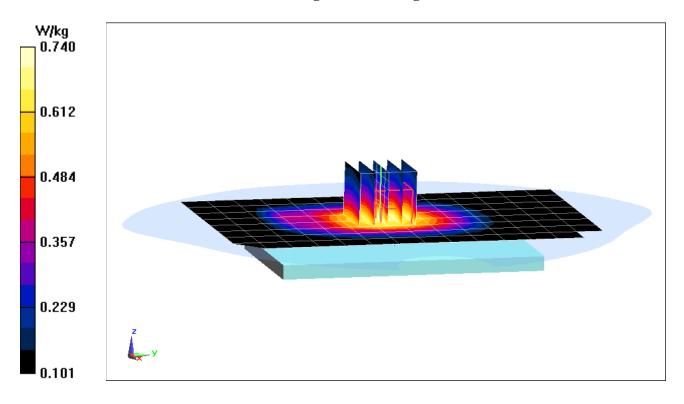
Test Date: 03-28-2018; Ambient Temp: 20.8°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 850, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.77 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.768 W/kg SAR(1 g) = 0.606 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 846.6 \mbox{ MHz; } \sigma = 0.973 \mbox{ S/m; } \epsilon_r = 53.805; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

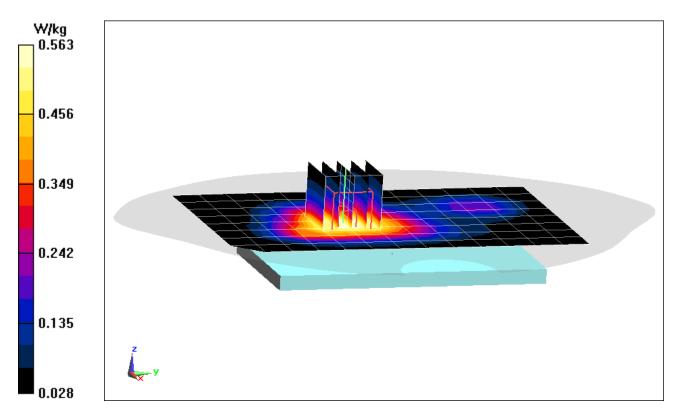
Test Date: 03-28-2018; Ambient Temp: 20.8°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 850, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.19 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.847 W/kg SAR(1 g) = 0.679 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 17925


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.532 \mbox{ S/m; } \epsilon_r = 53.613; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

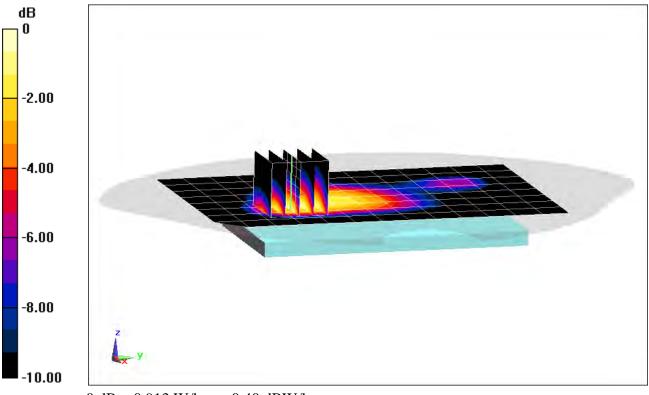
Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.04 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.648 W/kg SAR(1 g) = 0.422 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18170


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1907.6 \mbox{ MHz; } \sigma = 1.562 \mbox{ S/m; } \epsilon_r = 53.523; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

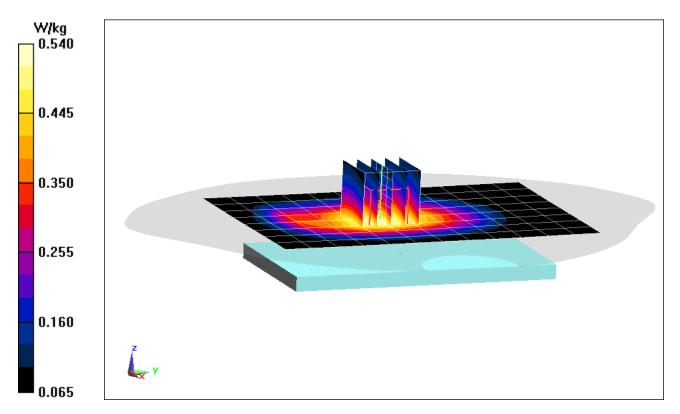
Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Body SAR, Back side, High.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.62 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.640 W/kg

0 dB = 0.913 W/kg = -0.40 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 782 MHz; $\sigma = 1.002$ S/m; $\varepsilon_r = 52.956$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

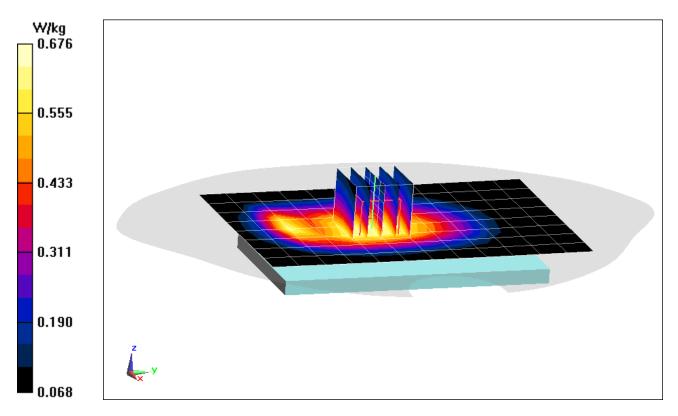
Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3287; ConvF(6.71, 6.71, 6.71); Calibrated: 9/18/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 6/21/2017 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.94 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.636 W/kg SAR(1 g) = 0.490 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 782 MHz; $\sigma = 1.002$ S/m; $\epsilon_r = 52.956$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

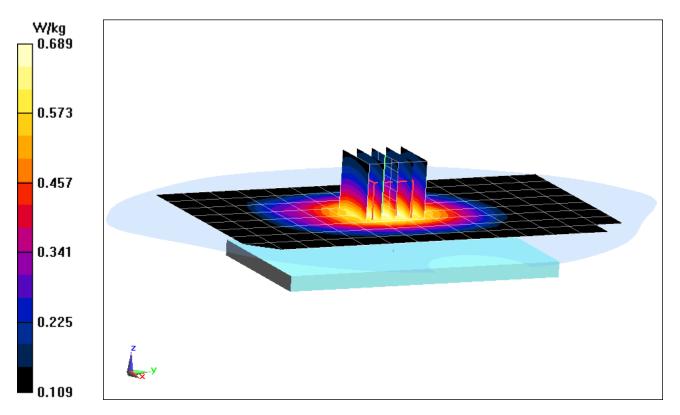
Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3287; ConvF(6.71, 6.71, 6.71); Calibrated: 9/18/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 6/21/2017 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.46 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.782 W/kg SAR(1 g) = 0.612 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 53.516$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

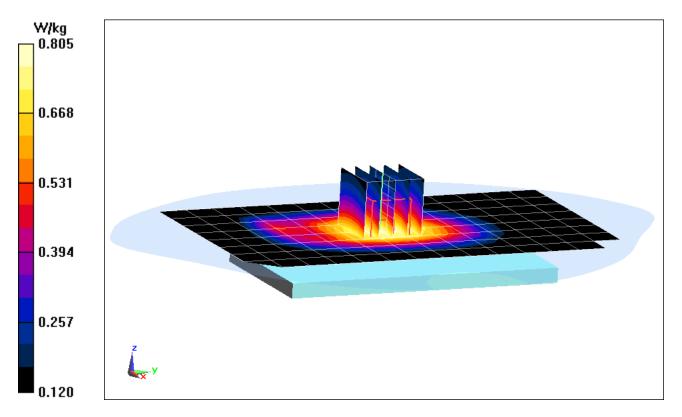
Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.12 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.785 W/kg SAR(1 g) = 0.629 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 53.516$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

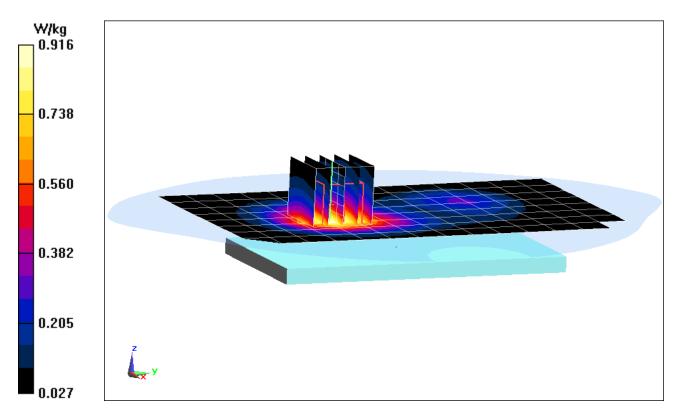
Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.37 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.918 W/kg SAR(1 g) = 0.739 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.5 \mbox{ MHz; } \sigma = 1.461 \mbox{ S/m; } \epsilon_r = 51.894; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

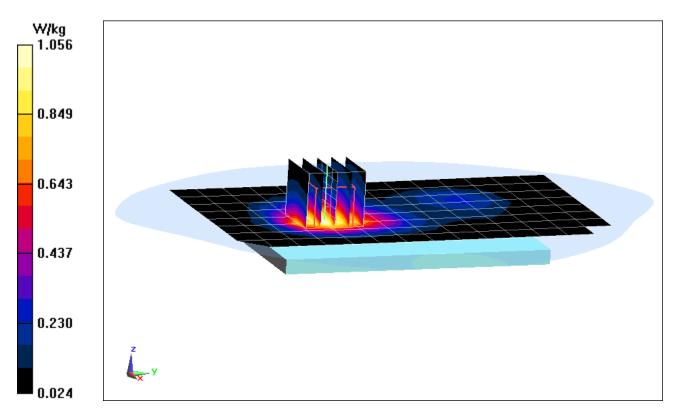
Test Date: 04-03-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7410; ConvF(8.32, 8.32, 8.32); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.687 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.5 \mbox{ MHz; } \sigma = 1.461 \mbox{ S/m; } \epsilon_r = 51.894; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

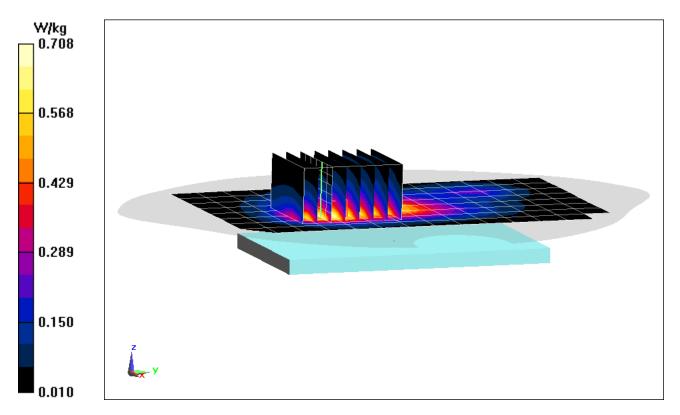
Test Date: 04-03-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7410; ConvF(8.32, 8.32, 8.32); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.09 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.794 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1900 \mbox{ MHz; } \sigma = 1.554 \mbox{ S/m; } \epsilon_r = 53.548; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

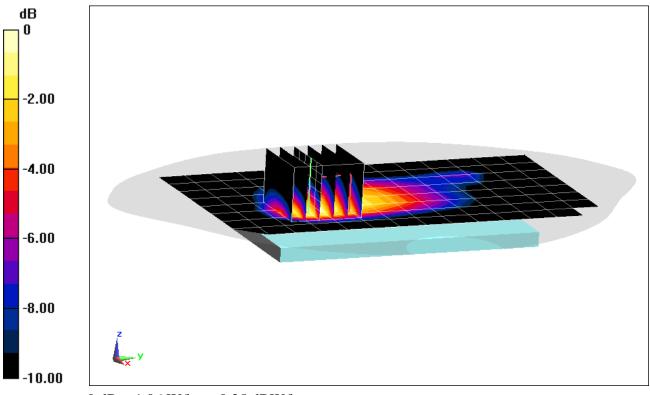
Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.10 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.860 W/kg SAR(1 g) = 0.503 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18121


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1900 \mbox{ MHz; } \sigma = 1.554 \mbox{ S/m; } \epsilon_r = 53.548; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

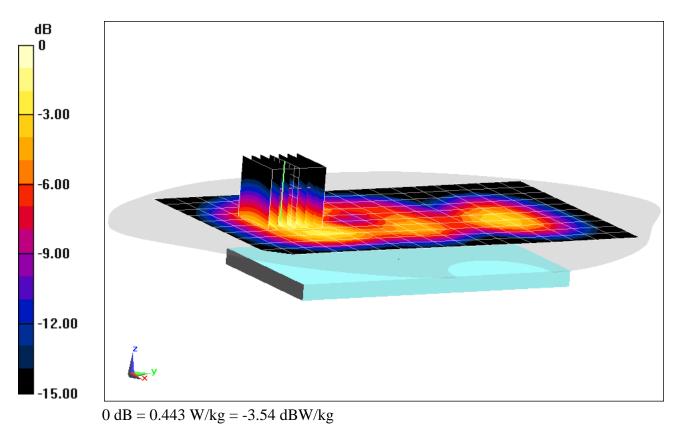
Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.738 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2535 \mbox{ MHz; } \sigma = 2.147 \mbox{ S/m; } \epsilon_r = 50.878; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

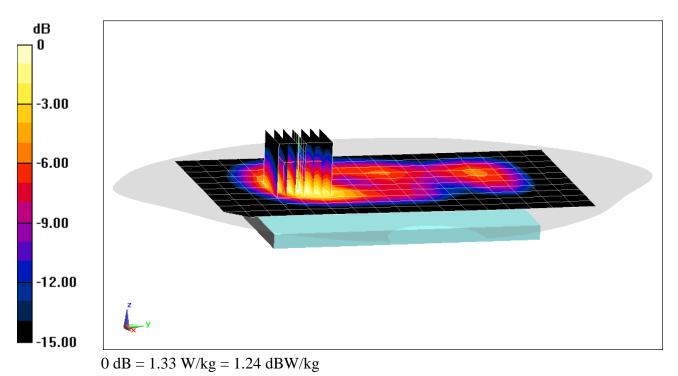
Test Date: 04-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3319; ConvF(4.33, 4.33, 4.33); Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.44 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.699 W/kg SAR(1 g) = 0.348 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 21315


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2510 \mbox{ MHz; } \sigma = 2.11 \mbox{ S/m; } \epsilon_r = 50.555; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

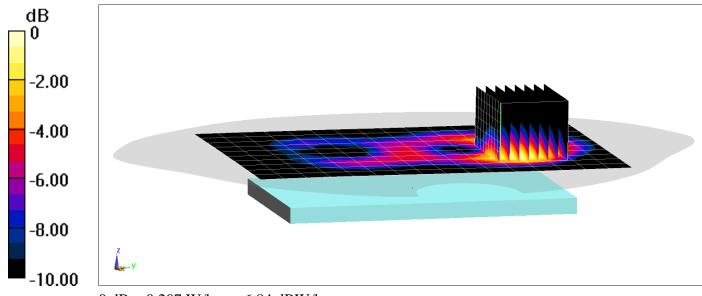
Test Date: 04-09-2018; Ambient Temp: 23.4°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3319; ConvF(4.51, 4.51, 4.51); Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7, Body SAR, Front side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.92 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 1.06 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18139


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2437 \mbox{ MHz; } \sigma = 2.034 \mbox{ S/m; } \epsilon_r = 51.113; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 03-31-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.7°C

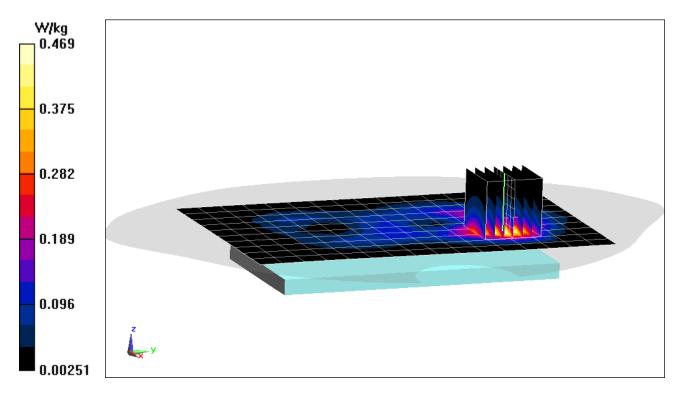
Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (10x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.233 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.259 W/kg SAR(1 g) = 0.139 W/kg

 $^{0 \}text{ dB} = 0.207 \text{ W/kg} = -6.84 \text{ dBW/kg}$

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18139


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2437 \mbox{ MHz; } \sigma = 2.034 \mbox{ S/m; } \epsilon_r = 51.113; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

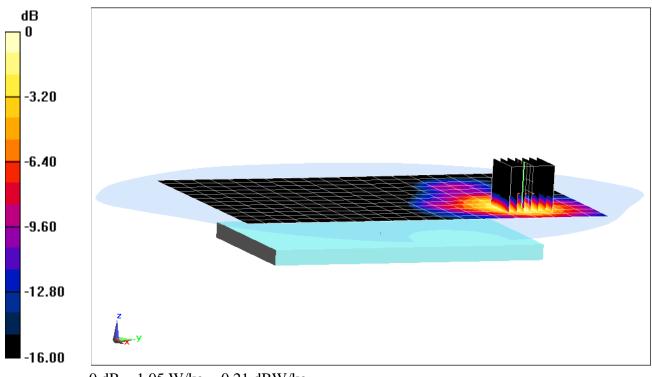
Test Date: 03-31-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 6.380 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.610 W/kg SAR(1 g) = 0.291 W/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18246


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5825 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5 GHz Body Medium parameters used:} \\ f = 5825 \mbox{MHz; } \sigma = 6.268 \mbox{ S/m; } \epsilon_r = 46.222; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 04-02-2018; Ambient Temp: 22.5°C; Tissue Temp: 20.6°C

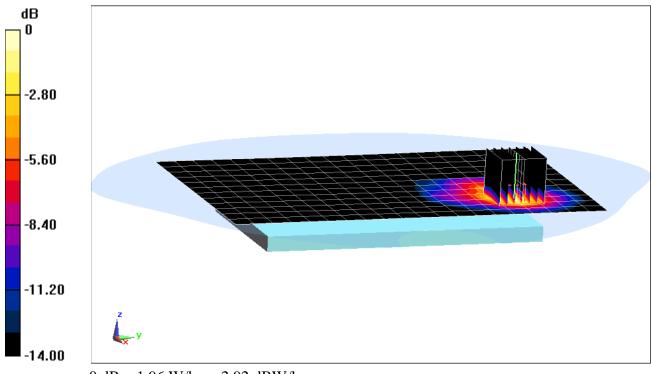
Probe: EX3DV4 - SN7308; ConvF(4.5, 4.5, 4.5); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11a, UNII-3, 20 MHz Bandwidth, Body SAR, Ch 165, 6 Mbps, Back Side

Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 8.327 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 0.433 W/kg

0 dB = 1.05 W/kg = 0.21 dBW/kg

DUT: A3LSMJ337V; Type: Portable Handset; Serial: 18246


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5785 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5 GHz Body Medium parameters used:} \\ f = 5785 \mbox{MHz; } \sigma = 6.203 \mbox{ S/m; } \epsilon_r = 46.287; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 04-02-2018; Ambient Temp: 22.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.5, 4.5, 4.5); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

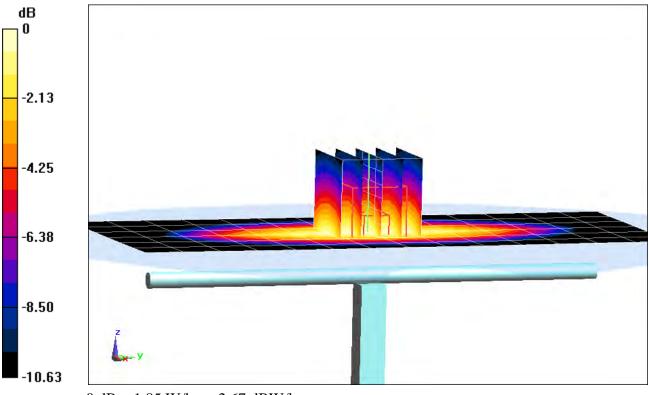
Mode: IEEE 802.11a, UNII-3, 20 MHz Bandwidth, Body SAR, Ch 157, 6 Mbps, Back Side

Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 11.46 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 0.782 W/kg

0 dB = 1.96 W/kg = 2.92 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.907$ S/m; $\epsilon_r = 41.171$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-10-2018; Ambient Temp: 23.8°C; Tissue Temp: 22.0°C

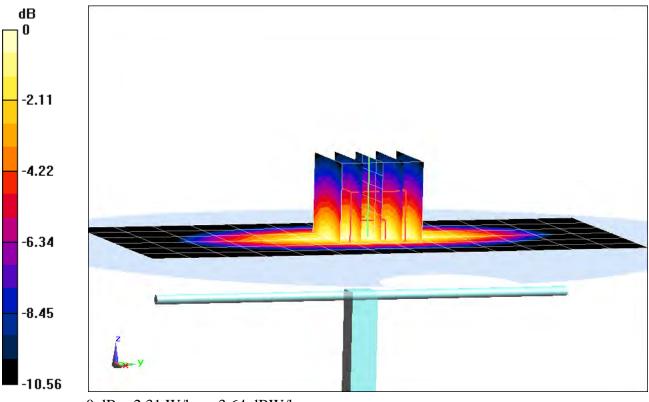
Probe: ES3DV3 - SN3213; ConvF(6.75, 6.75, 6.75); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.39 W/kg SAR(1 g) = 1.58 W/kg Deviation(1 g) = -3.30%

0 dB = 1.85 W/kg = 2.67 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.899$ S/m; $\epsilon_r = 41.025$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 03-25-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

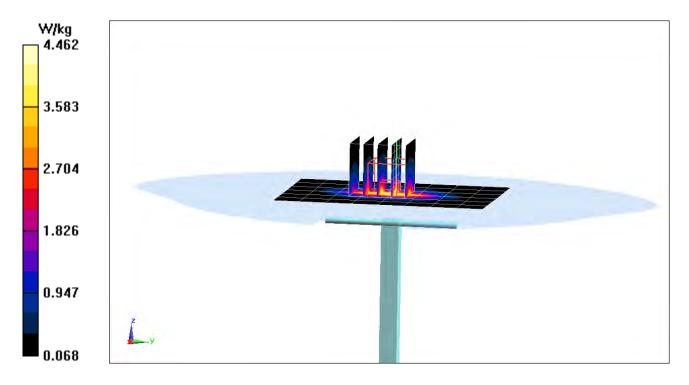
Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 1.98 W/kg Deviation(1 g) = 5.77%

0 dB = 2.31 W/kg = 3.64 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.408$ S/m; $\epsilon_r = 40.605$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

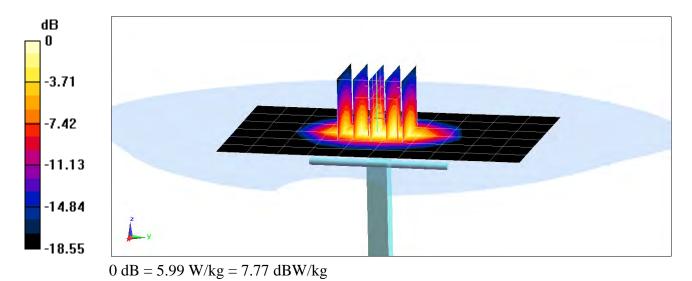
Test Date: 04-04-2018; Ambient Temp: 21.9°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(5.5, 5.5, 5.5); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.48 W/kg SAR(1 g) = 3.58 W/kg Deviation(1 g) = -1.65%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.458$ S/m; $\epsilon_r = 39.427$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

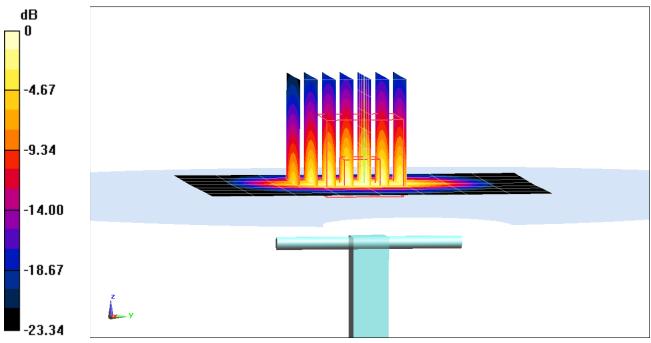
Test Date: 04-10-2018; Ambient Temp: 24.0°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.06 W/kg SAR(1 g) = 3.87 W/kg Deviation(1 g) = -3.49%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.808$ S/m; $\epsilon_r = 40.109$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 03-28-2018; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

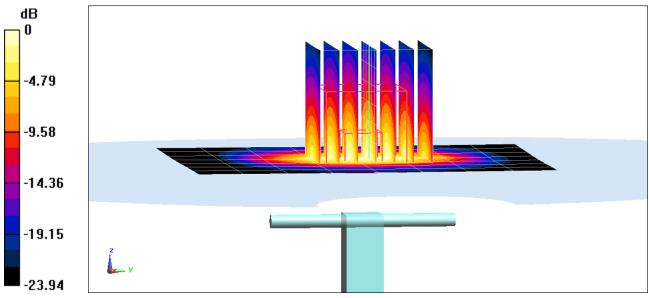
Probe: ES3DV3 - SN3332; ConvF(4.68, 4.68, 4.68); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.1 W/kg SAR(1 g) = 4.92 W/kg Deviation(1 g) = -6.64%

0 dB = 6.49 W/kg = 8.12 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2600 MHz; $\sigma = 2.015$ S/m; $\epsilon_r = 39.023$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2018; Ambient Temp: 22.4°C; Tissue Temp: 22.8°C

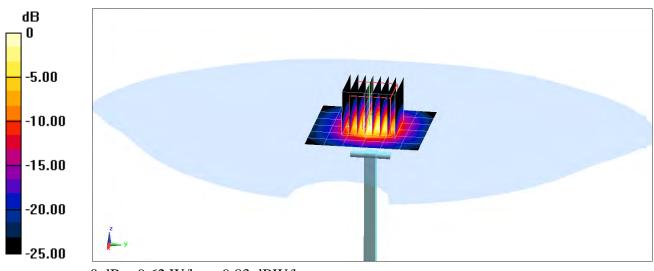
Probe: ES3DV3 - SN3332; ConvF(4.56, 4.56, 4.56); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.57 W/kg Deviation(1 g) = -1.24%

0 dB = 7.24 W/kg = 8.60 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.67$ S/m; $\epsilon_r = 37.535$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

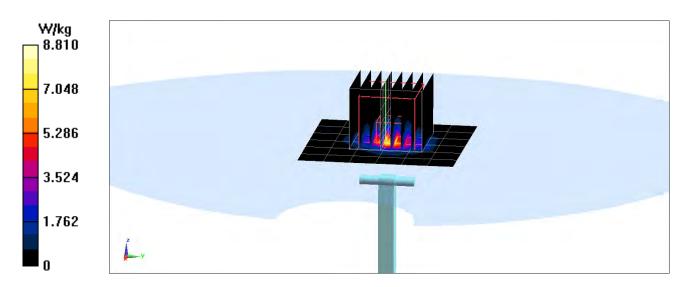
Probe: EX3DV4 - SN3589; ConvF(4.69, 4.69, 4.69); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = -4.06%

0 dB = 9.62 W/kg = 9.83 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.513$ S/m; $\epsilon_r = 34.935$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

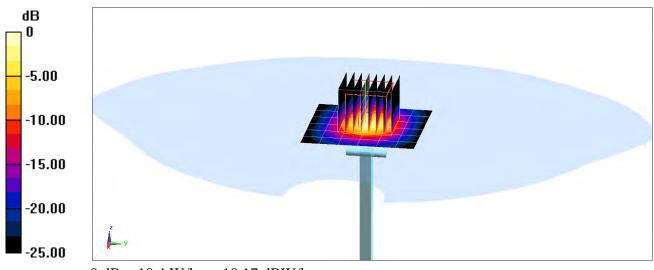
Test Date: 04-05-2018; Ambient Temp: 22.5°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3589; ConvF(4.69, 4.69, 4.69); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.4 W/kg SAR(1 g) = 3.75 W/kg Deviation(1 g) = -4.94%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used: f = 5600 MHz; $\sigma = 5.02$ S/m; $\epsilon_r = 36.954$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(4.17, 4.17, 4.17); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

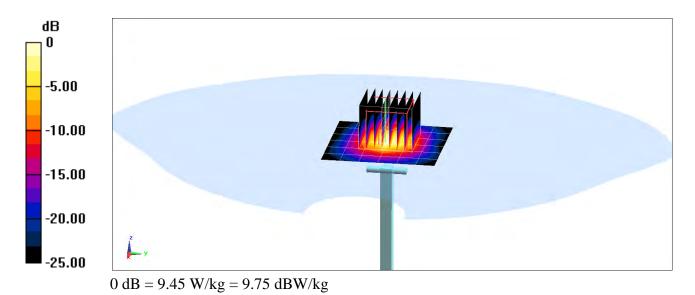
5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 4.27 W/kg Deviation(1 g) = 0.83%

0 dB = 10.4 W/kg = 10.17 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.194$ S/m; $\varepsilon_r = 36.774$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

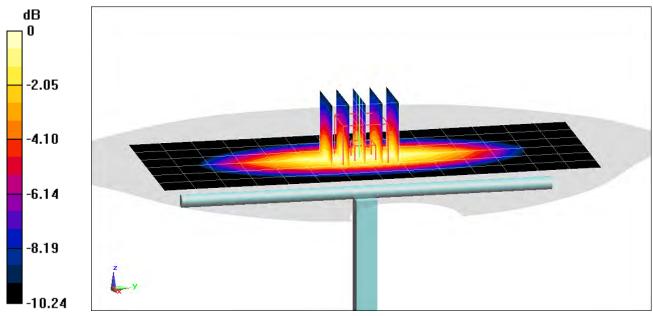
Probe: EX3DV4 - SN3589; ConvF(4.42, 4.42, 4.42); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 3.9 W/kg

Deviation(1 g) = -3.70%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.988$ S/m; $\epsilon_r = 53.044$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 20.9°C

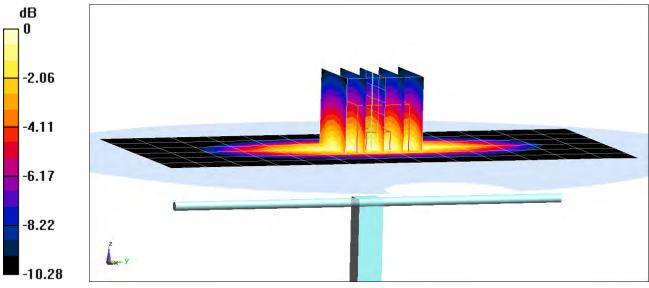
Probe: ES3DV3 - SN3287; ConvF(6.71, 6.71, 6.71); Calibrated: 9/18/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 6/21/2017 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.59 W/kg SAR(1 g) = 1.75 W/kg Deviation(1 g) = 1.63%

0 dB = 2.00 W/kg = 3.01 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used:} \\ f = 835 MHz; \mbox{σ} = 0.964 \mbox{ S/m}; \mbox{ϵ}_r = 53.907; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 03-28-2018; Ambient Temp: 20.8°C; Tissue Temp: 21.2°C

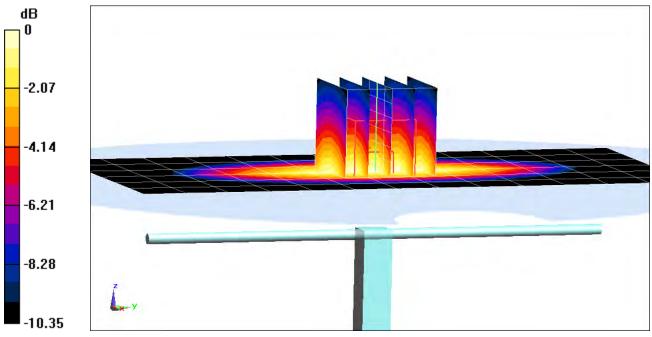
Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.02 W/kg SAR(1 g) = 2.06 W/kg Deviation(1 g) = 6.08%

0 dB = 2.40 W/kg = 3.80 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used:} \\ f = 835 \mbox{MHz; } \sigma = 0.974 \mbox{ S/m; } \epsilon_r = 53.53; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C

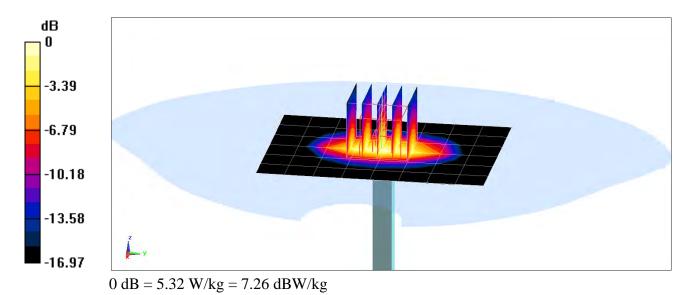
Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.07 W/kg Deviation(1 g) = 6.59%

0 dB = 2.41 W/kg = 3.82 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used:} \\ f = 1750 \mbox{MHz; } \sigma = 1.48 \mbox{ S/m; } \epsilon_r = 51.845; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 04-03-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.1°C

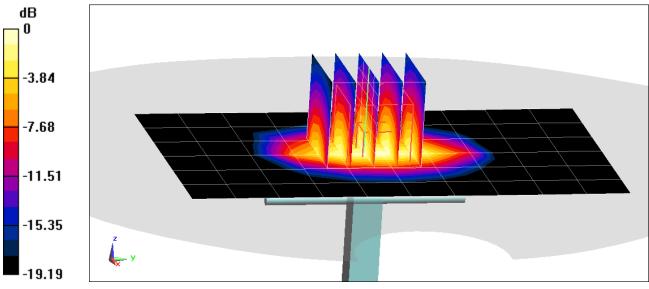
Probe: EX3DV4 - SN7410; ConvF(8.32, 8.32, 8.32); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.23 W/kg SAR(1 g) = 3.49 W/kg Deviation(1 g) = -5.68%

B14

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.554$ S/m; $\epsilon_r = 53.548$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

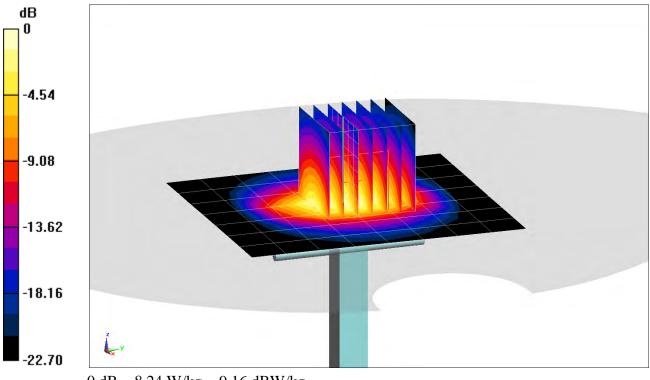
Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.60 W/kg SAR(1 g) = 4.11 W/kg Deviation(1 g) = 3.79%

0 dB = 6.28 W/kg = 7.98 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.047$ S/m; $\epsilon_r = 51.075$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 03-31-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.7°C

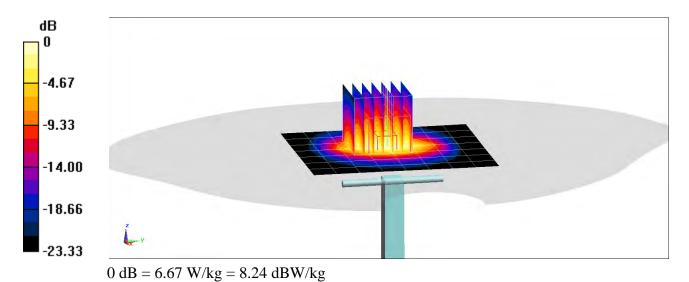
Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 4.95 W/kg Deviation(1 g) = -3.13%

0 dB = 8.24 W/kg = 9.16 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2450 \mbox{ MHz; } \sigma = 2.043 \mbox{ S/m; } \epsilon_r = 51.13; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

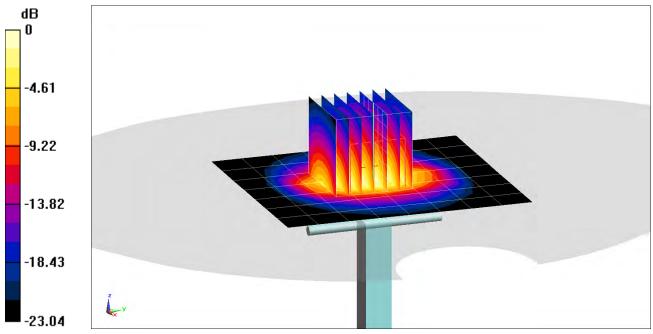
Test Date: 04-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3319; ConvF(4.51, 4.51, 4.51); Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.5 W/kg SAR(1 g) = 5.05 W/kg Deviation(1 g) = -1.17%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.038$ S/m; $\epsilon_r = 50.739$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2018; Ambient Temp: 23.4°C; Tissue Temp: 22.0°C

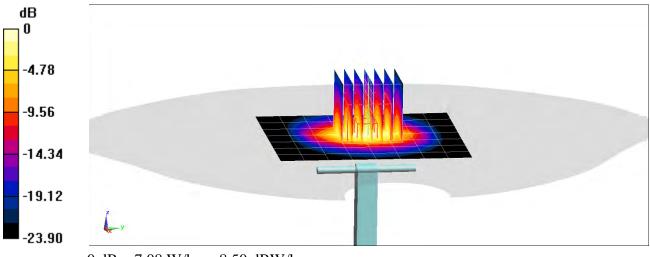
Probe: ES3DV3 - SN3319; ConvF(4.51, 4.51, 4.51); Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.15 W/kg Deviation(1 g) = 0.78%

0 dB = 6.75 W/kg = 8.29 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.225$ S/m; $\epsilon_r = 50.665$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.6°C

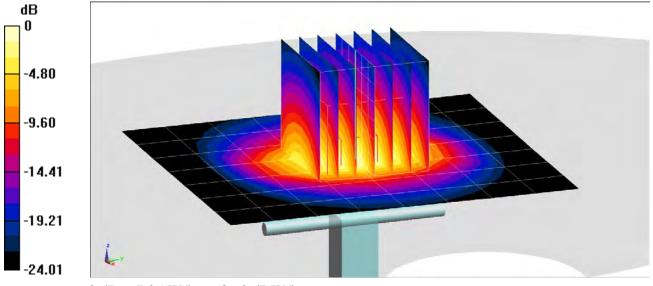
Probe: ES3DV3 - SN3319; ConvF(4.33, 4.33, 4.33); Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.9 W/kg SAR(1 g) = 5.33 W/kg Deviation(1 g) = -1.84%

0 dB = 7.08 W/kg = 8.50 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.218$ S/m; $\epsilon_r = 50.276$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2018; Ambient Temp: 23.4°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3319; ConvF(4.33, 4.33, 4.33); Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/7/2018 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

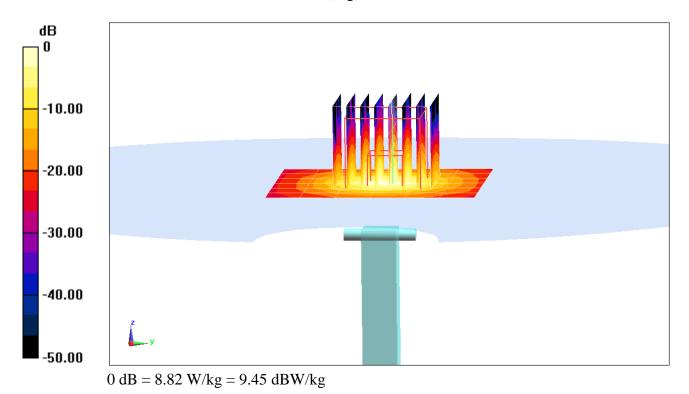
2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.4 W/kg SAR(1 g) = 5.56 W/kg Deviation(1 g) = 2.39%

0 dB = 7.25 W/kg = 8.60 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.488$ S/m; $\epsilon_r = 47.204$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 04-02-2018; Ambient Temp: 22.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.84, 4.84, 4.84); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

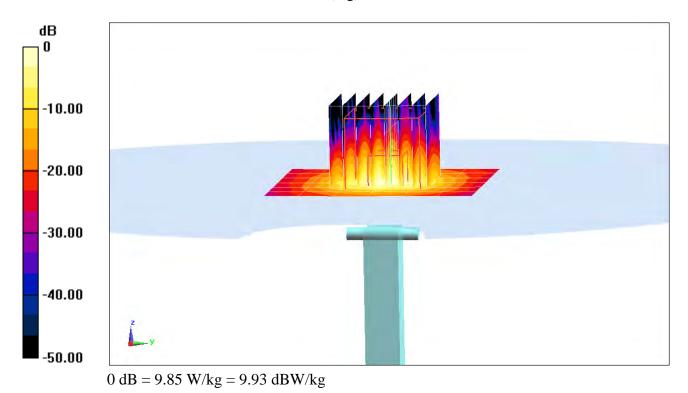
5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 3.6 W/kg

Deviation(1 g) = -6.37%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5 GHz Body Medium parameters used:} \\ f = 5600 \mbox{ MHz; } \sigma = 5.955 \mbox{ S/m; } \epsilon_r = 46.6; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$


Test Date: 04-02-2018; Ambient Temp: 22.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.23, 4.23, 4.23); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

5600 MHz System Verification at 17.0 dBm (50 mW)

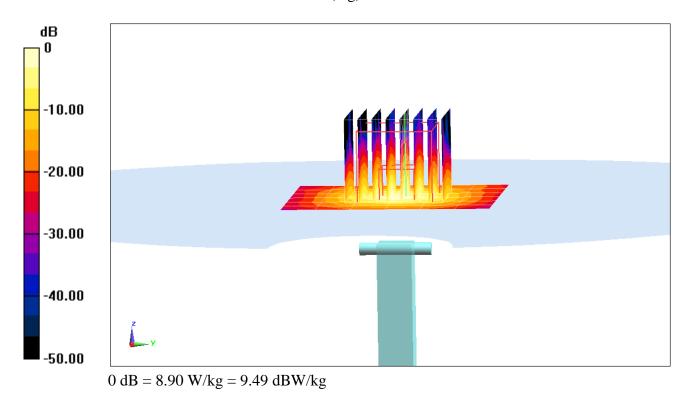
Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 3.8 W/kg

Deviation(1 g) = -3.18%

B22

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.16$ S/m; $\epsilon_r = 46.355$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 04-02-2018; Ambient Temp: 22.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.5, 4.5, 4.5); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 3.6 W/kg

Deviation(1 g) = -6.61%

B23

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

CCREO

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client	PC Test		
	and the second second	1.000	

Certificate No: D750V3-1161_Jul16

Calibration procedure(s) QA CAL-05.v9 Statistics and the state of the stat	Object	D750V3 - SN:11	61 esterentzioneren et en efferte findet e	(ρn
SC This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)			V	
Science Science This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.		Calibration proce	edure for dipole validation kits abov	/e 700 MHz 🛛 🕅	97
Science Science This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				Exte	97 NV
All calibrations and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	July 13, 2016		η	120
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	This calibration certificate docum The measurements and the unce	ients the traceability to nai artainties with confidence r	tional standards, which realize the physical units probability are given on the following pages and	c of measurements (SI).	5C
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02292) Apr-17 Reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02293) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. 217-02293) Apr-17 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02223) In house check: Oct-16 Power sensor HP 8481A SN: WM41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 Power sensor HP 8481A SN: 10972 15-Jun-15 (In house check Oct-15) In house check: Oct-16 Power sensor HP 8481A SN: 100972 15-Jun-15 (In house check Oct-15) <					
Power meter NRP SN: 104778 O6-April 6 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-April 6 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-April 6 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. 217-02295) Apr-17 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Jun-15) In house check: Oct-16 Parenter R&S SMT-06 SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Laboratory Technician Signat			$(22 \pm 3)^{-}$	and humidity < 70%.	
Ower meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Spectral Statematic SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. EX3-7349_Jun16) Jun-17 OAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Jun-15) In house check: Oct-16 SR generator R&S SMT-06 SN: US37390585 18-Oct-01 (in house check Oct-15)		ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Ower sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Ype-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. EX3-7349_Jun16) Jun-17 VAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Recondary Standards ID # Check Date (in house) Scheduled Check rower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 rower sensor HP 8481A SN: WY41092317 07-Oct-15 (No. 217-02222) In house check: Oct-16 rower sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Jun-15) In house check: Oct-16 retwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 railibrated by: Name Function Signature Signature railibrated by: Katja Pokovic Technical Manager		SN: 104778			
Power sensor NRP-Z91 Reference 20 dB AttenuatorSN: 10324506-Apr-16 (No. 217-02289)Apr-17Reference 20 dB AttenuatorSN: 5058 (20k)05-Apr-16 (No. 217-02292)Apr-17SN: 5058 (20k)05-Apr-16 (No. 217-02295)Apr-17Reference Probe EX3DV4SN: 5047.2 / 0632705-Apr-16 (No. 217-02295)Apr-17SN: 60130-Dec-15 (No. DAE4-601_Dec15)Dec-16Recondary StandardsID #Check Date (in house)Scheduled Checkrower meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: WY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16RF generator R&S SMT-06SN: US3739058518-Oct-01 (in house check Jun-15)In house check: Oct-16Retwork Analyzer HP 8753ENameFunctionSignaturerealibrated by:Katja PokovicTechnical ManagerSignature		SN: 103244			
Aeference 20 dB Attenuator type-N mismatch combination leference Probe EX3DV4SN: 5058 (20k)05-Apr-16 (No. 217-02292)Apr-17 Apr-17SN: 5047.2 / 06327 VAAE4SN: 5047.2 / 06327 SN: 734905-Apr-16 (No. 217-02295)Apr-17 Apr-17SN: 5047.2 / 06327 VAAE4SN: 5047.2 / 06327 SN: 734905-Apr-16 (No. 217-02295)Apr-17 Apr-17SN: 5047.2 / 06327 		SN: 103245			
ype-N mismatch combination leference Probe EX3DV4 DAE4SN: 5047.2 / 06327 SN: 734905-Apr-16 (No. 217-02295) SN: 7349 30-Dec-15 (No. DAE4-601_Dec15)Apr-17 Jun-17 Dec-16iecondary StandardsID #Check Date (in house)Scheduled Checkiecondary StandardsID #Check Date (in house)Scheduled Checkower meter EPM-442A ower sensor HP 8481ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16isover sensor HP 8481A ower sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16SN: 10937215-Jun-15 (in house check Jun-15)In house check: Oct-16SN: 100972IF generator R&S SMT-06 letwork Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16NameFunctionSignaturealibrated by:Katja PokovicTechnical ManagerSignature		SN: 5058 (20k)			
In the proved by:SN: 734915-Jun-16 (No. EX3-7349_Jun16)Jun-17JAE4SN: 60130-Dec-15 (No. DAE4-601_Dec15)Dec-16Secondary StandardsID #Check Date (in house)Scheduled Checkrower meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16SN: 10097215-Jun-15 (in house check Jun-15)In house check: Oct-16SN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16alibrated by:NameFunctionSignaturepproved by:Katja PokovicTechnical ManagerManager		SN: 5047.2 / 06327		•	
DAE4SN: 60130-Dec-15 (No. DAE4-601_Dec15)Dec-16Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: WY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Jun-15)In house check: Oct-16RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-15)In house check: Oct-16Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16Calibrated by:NameFunctionSignatureCalibrated by:Katja PokovicTechnical ManagerOfficial Manager		SN: 7349		•	
Power meter EPM-442A Power sensor HP 8481ASN: GB37480704 SN: US37292783 SN: US37292783 Power sensor HP 8481ASN: GB37480704 SN: US37292783 O7-Oct-15 (No. 217-02222)In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 SN: 100972 SN: 100972 SN: US37390585 SN: US37390585	AE4	SN: 601		,	
Power meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: US3739058518-Jun-15 (in house check Jun-15)In house check: Oct-16Power kanalyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16NameFunctionSignaturecalibrated by:Claudio LeublerLaboratory TechnicianSignaturepproved by:Katja PokovicTechnical ManagerMultiple		ID #	Check Date (in house)	Scheduled Check	
Power sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Jun-15)In house check: Oct-16Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16Calibrated by:NameFunctionSignatureCalibrated by:Katja PokovicTechnical ManagerOfficial Manager		SN: GB37480704			
Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Calibrated by: Name Function Signature Caludio Leubler Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager					
IF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Ietwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature Claudio Leubler Laboratory Technician Signature pproved by: Katja Pokovic Technical Manager		SN: MY41092317			
Jetwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Signature upproved by: Katja Pokovic Technical Manager Output		SN: 100972			
Calibrated by: Claudio Leubler Laboratory Technician Signature		SN: US37390585			
Claudio Leubler Laboratory Technician		t i			
e contra a		•	Function	Signaturo	
	letwork Analyzer HP 8753E	Name	Laboratory Technician	Signature	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1161_Jul16

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	· <u> </u>
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.17 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.39 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.53 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 0.9 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω - 4.0 jΩ
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

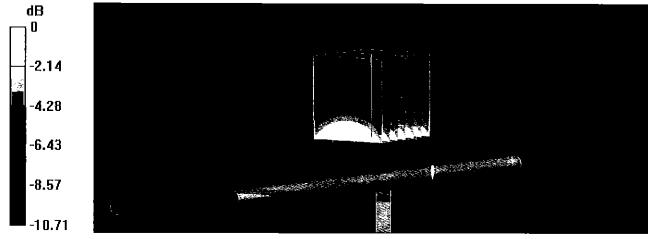
Manufactured by	SPEAG
Manufactured on	November 19, 2015

DASY5 Validation Report for Head TSL

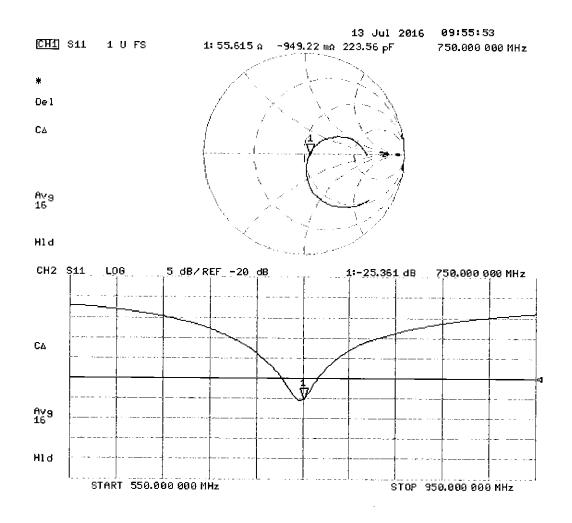
Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.07 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

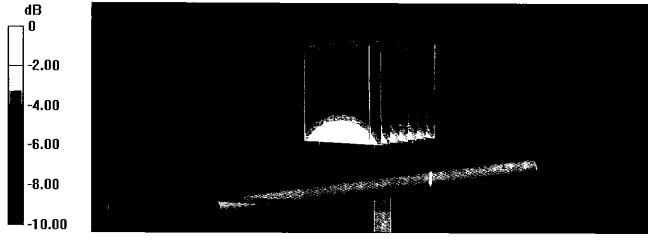
0 dB = 2.80 W/kg = 4.47 dBW/kg

DASY5 Validation Report for Body TSL

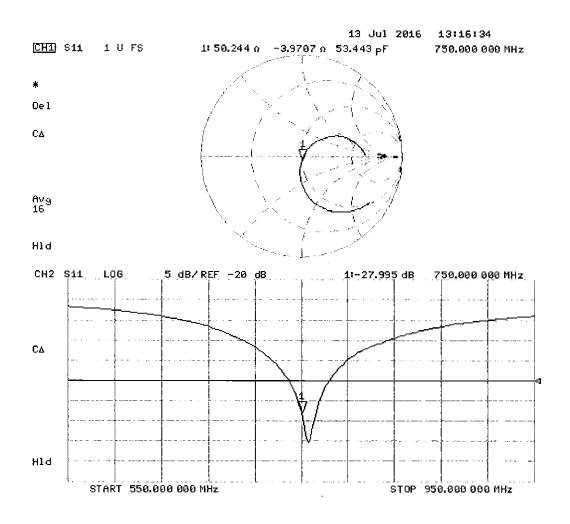
Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.33 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 – SN: 1161

July 12, 2017

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

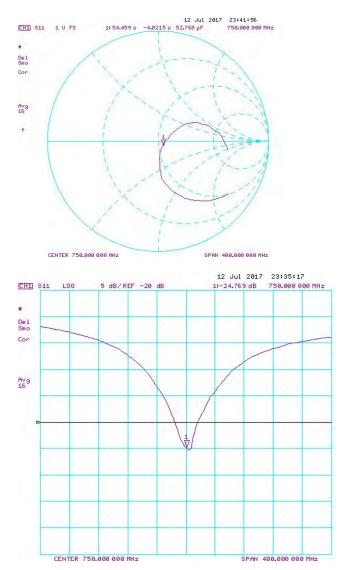
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/8/2017	Annual	3/8/2018	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/14/2017	Annual	6/14/2018	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	11/15/2016	Annual	11/15/2017	3334
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3319
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

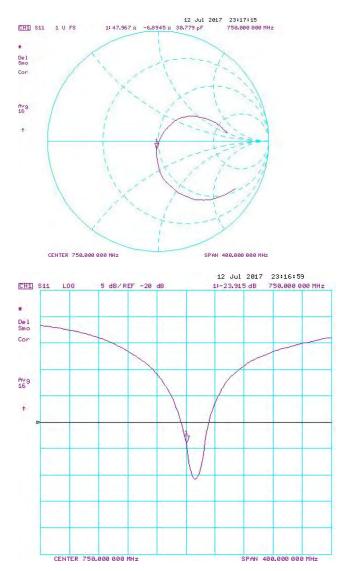
Object:	Date Issued:	Dogo 1 of 4
D750V3 – SN: 1161	07/12/2017	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 23.0 dBm	dBm	(%)	dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/13/2016	7/12/2017	1.033	1.63	1.65	0.98%	1.08	1.09	1.11%	55.6	54.5	1.1	-0.9	-4.0	3.1	-25.4	-24.8	2.40%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 23.0 dBm		Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(40-) 10/0- @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/13/2016	7/12/2017	1.033	1.69	1.75	3.80%	1.11	1.17	5.79%	50.2	48.0	2.2	-4.0	-6.9	2.9	-28.0	-23.9	14.60%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 – SN: 1161	07/12/2017	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D750V3 – SN: 1161	07/12/2017	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dage 4 of 4
D750V3 – SN: 1161	07/12/2017	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svízzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D835V2-4d132_Jan18

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d132					
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz			
			BNV 01-25-2018			
Calibration date:	January 15, 2018	3	01-25-2018			
The measurements and the uncer	tainties with confidence p	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)°	nd are part of the certificate.			
Calibration Equipment used (M&T	E critical for calibration)					
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18			
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18			
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18			
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18			
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18			
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349 Dec17)	Dec-18			
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18			
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18			
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18			
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18			
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18			
o #1	Name	Function	Signature			
Calibrated by:	Leif Klysner	Laboratory Technician	See Alfer			
Approved by:	Katja Pokovic	Technical Manager	Alle-			
-		· ·	Issued: January 15, 2018			
i his calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	<i>I</i> .			

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.36 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.55 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.39 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.9 jΩ
Return Loss	- 29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 5.7 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.41 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
	condition	
SAR measured	250 mW input power	1.58 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.69 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.45 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg

SAR result with SAM Head (Ear)

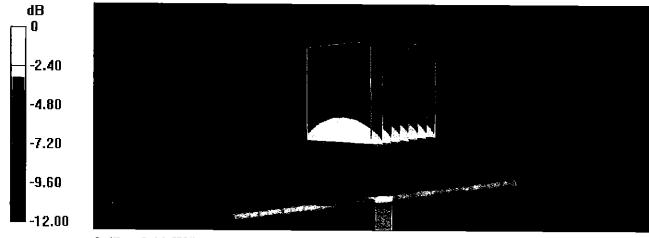
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.96 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
CATT atoraged ofer to one (to g) of flead 15L	contaition	
SAR measured	250 mW input power	1.37 W/kg

DASY5 Validation Report for Head TSL

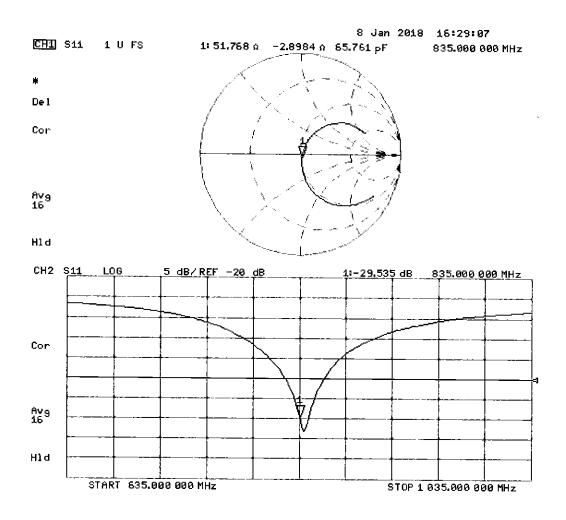
Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.23 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.22 W/kg

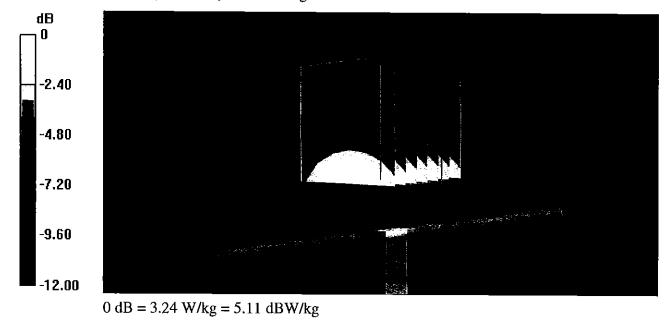
0 dB = 3.22 W/kg = 5.08 dBW/kg

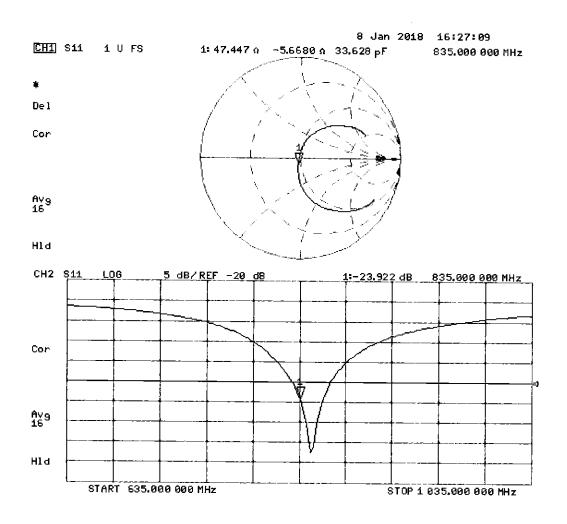
DASY5 Validation Report for Body TSL

Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.24 W/kg

DASY5 Validation Report for SAM Head

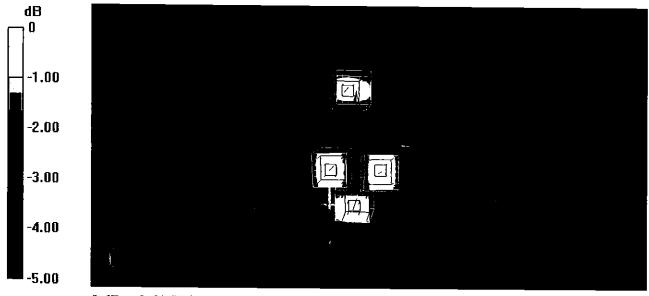
Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 44.1$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.16 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.99 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg Maximum value of SAR (measured) = 3.19 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.20 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.33 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.04 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.03 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.90 W/kg SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test		Certi	Icate No: D1750V2-1148_May17
CALIBRATION C	ERTIFICATE		
Object	D1750V2 - SN:1	148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation k	its above 700 MHz BN 0ડ્-2ર્ઝ-2ગ7
Calibration date:	May 09, 2017		
The measurements and the unce	rtainties with confidence p cted in the closed laborato	ional standards, which realize the ph robability are given on the following ry facility: environment temperature	pages and are part of the certificate.
Primary Standards	[ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522) Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec1	S) Dec-17
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar1	-
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-1	6) In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-1	6) In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-1	6) In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-1	6) In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-1	6) In house check: Oct-17
Calibrated by:	Name Claudio Leubler	Function Laboratory Technicia	n Signatère
Approved by:	Katja Pokovic	Technical Manager	L.U.L.
			Issued: May 11, 2017
This calibration certificate shall n	ot be reproduced except in	n full without written approval of the l	aboratory.

.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 0.7 jΩ
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω - 0.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.223 ns
Electrical Beilay (one allocation)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

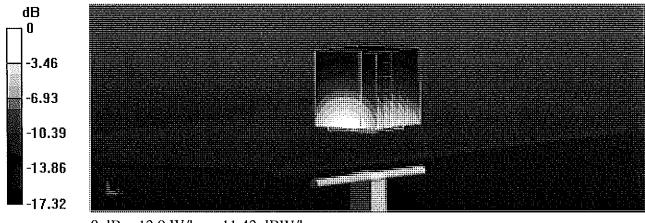
Manufactured by	SPEAG
Manufactured on	September 30, 2014

DASY5 Validation Report for Head TSL

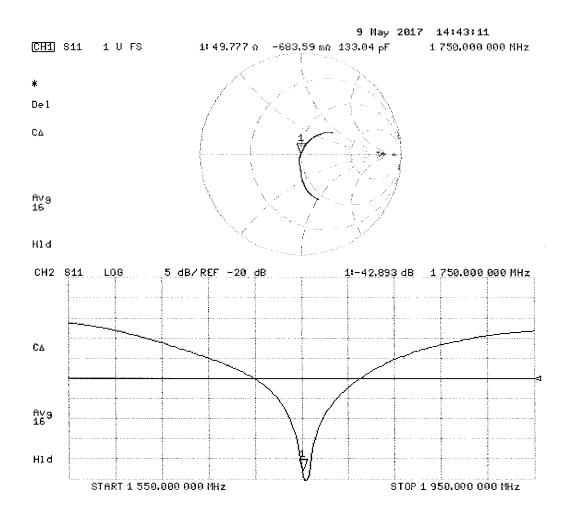
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 13.9 W/kg

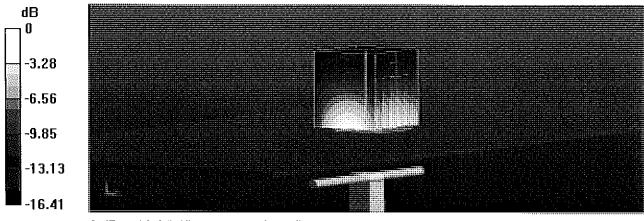
0 dB = 13.9 W/kg = 11.43 dBW/kg

DASY5 Validation Report for Body TSL

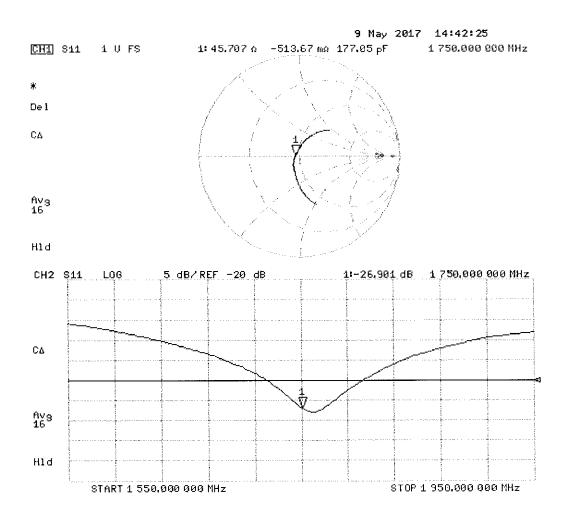
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG

PC Test

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb18

CALIBRATION CERTIFICATE

andar se se an ann an			nin an
Object	D1900V2 - SN:50	1148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz BNV 03-02-2018
Calibration date:	February 07, 201	8	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.			
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Jel 14
This calibration certificate shall no	t be reproduced except ir	n full without written approval of the laboratory	Issued: February 7, 2018

Certificate No: D1900V2-5d148_Feb18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

, .	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.8 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω + 6.5 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (and direction)	
Electrical Delay (one direction)	1.199 ns
	1.100115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

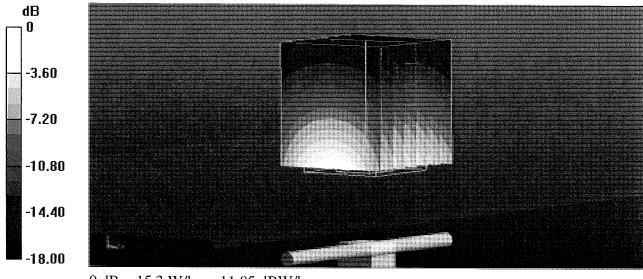
Manufactured by	SPEAG
Manufactured on	March 11, 2011

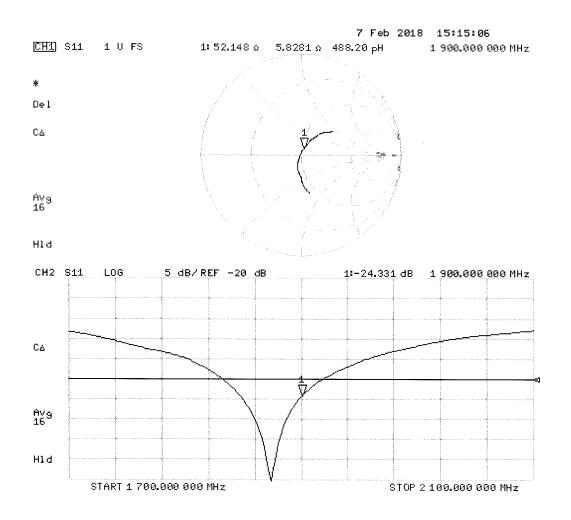
DASY5 Validation Report for Head TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

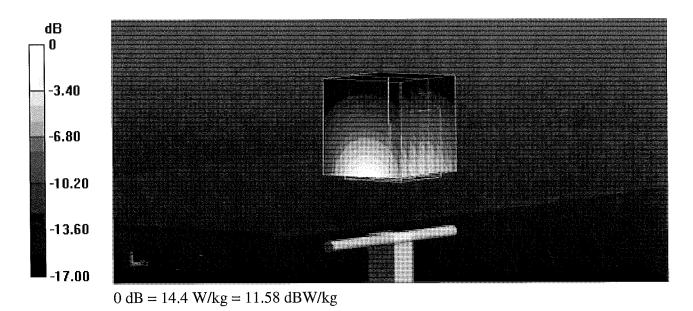
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

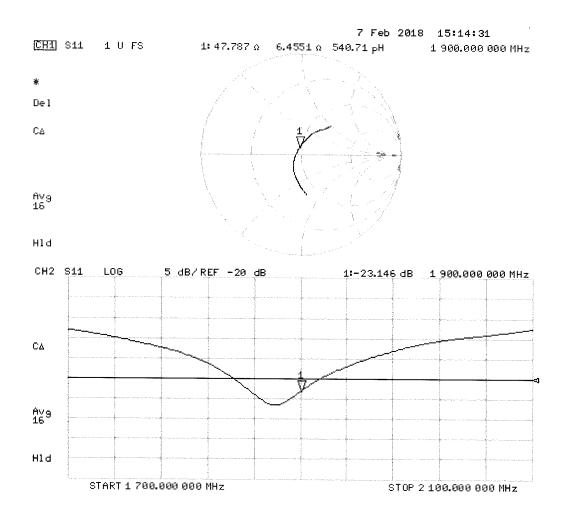
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 15.3 W/kg

DASY5 Validation Report for Body TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.48 S/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 14.4 W/kg

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-797_Sep17

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

CCREDIT

WR/

S

C

S

Dbject	D2450V2 - SN:7	97	
Calibration procedure(s)	QA CAL-05.v9		ove 700 MHz کرک رواها
	Calibration proce	edure for dipole validation kits abo	ove 700 MHz
			(0)03
alibration date:	September 11, 2	017	
his calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical un	its of measurements (SI).
he measurements and the unce	ertainties with confidence p	probability are given on the following pages an	nd are part of the certificate.
Il calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
alibration Equipment used (M&?	TE orition for collibration)		
alibration Equipment used (M&1			
		Cal Data (Cortificato No.)	Sebadulad Calibration
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	ID # SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
rimary Standards	ID # SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	ID # SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 reference 20 dB Attenuator ype-N mismatch combination reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 /AE4 econdary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: 6B37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination teference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power meter Probe EX3DV4 PAE4 Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 <u>econdary Standards</u> ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797_Sep17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	-
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à.

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

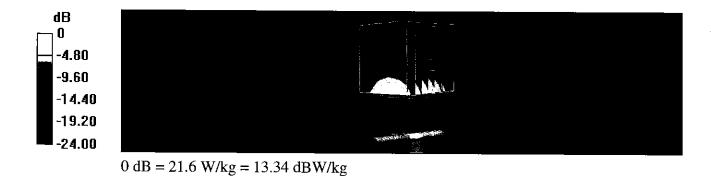
Manufactured by	SPEAG
Manufactured on	January 24, 2006

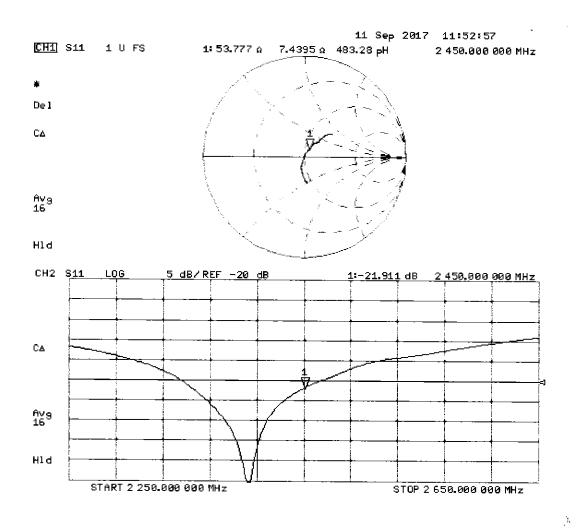
DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

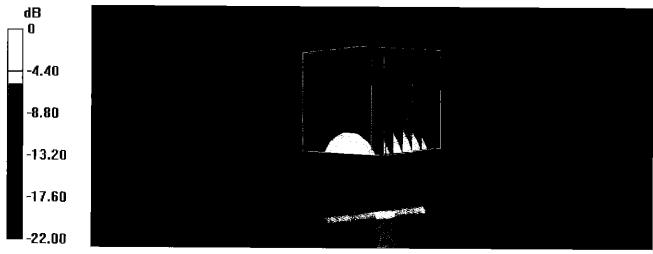
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

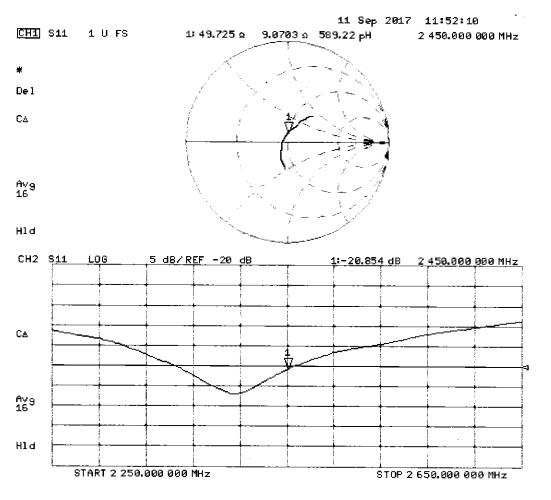
Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

i.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D2600V2-1126_Jul17

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:1	126	PN
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits a	BN 8 3 2017 above 700 MHz
Calibration date:	July 10, 2017		
This calibration certificate docume	ents the traceability to nat	ional standards, which realize the physical	units of monouromonto (CI)
The measurements and the uncer	tainties with confidence p	robability are given on the following pages	and are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm	3)°C and humidity < 70%.
Calibration Equipment used (M&T	E oritical for adibration)		
Cambration Equipment used (MA)	E childar for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Nama		
	Name	Function	Signature
Calibrated by:	Jeton Kastratl	Laboratory Technician	72/2
Approved by:	Kaija Pokovic	Technical Manager	10/11C
			6- 43
			Issued: July 11, 2017
This calibration certificate shall no	t be reproduced except in	full without written approval of the laborat	

Calibration Laboratory of

Gloceary

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8 Ω - 7.7 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 5.8 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 22, 2015

DASY5 Validation Report for Head TSL

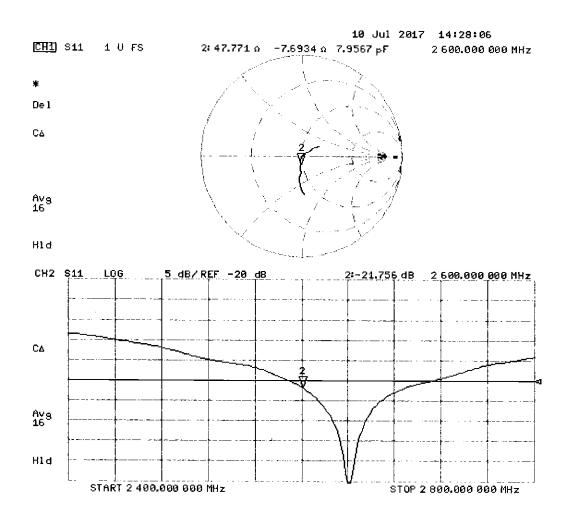
Date: 10.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\varepsilon_r = 37.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.2 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 24.0 W/kg

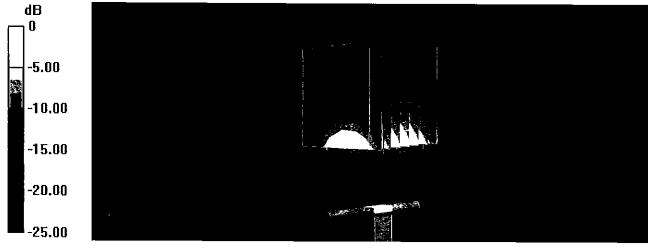
0 dB = 24.0 W/kg = 13.80 dBW/kg

DASY5 Validation Report for Body TSL

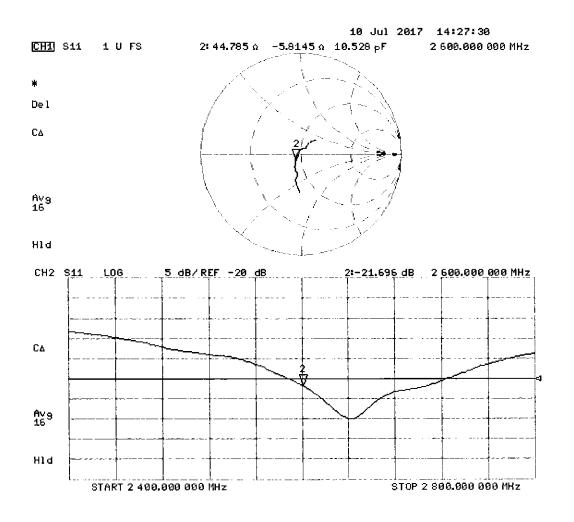
Date: 10.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.8 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test Certificate No: D5GHzV2-1120_Feb18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	120	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	
			GNY
			()3-02-2
Calibration date:	February 12, 201	8	$(\cdot) (\cdot) (\cdot) (\cdot)$
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Calibration Equipment used (M&7	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.N. 25
		Technical Manager	/// W/
Approved by:	Katja Pokovic	i echnical Mahager	Lol Ag

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	×
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

· · · · · · · · · · · · · · · · · · ·	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.0 Ω - 1.3 jΩ
Return Loss	- 32.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.9 Ω + 0.2 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.3 Ω + 5.5 jΩ
Return Loss	- 24.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.4 Ω + 0.3 jΩ
Return Loss	- 36.8 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.1 Ω + 1.6 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	54.0 Ω + 5.9 jΩ
Return Loss	- 23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

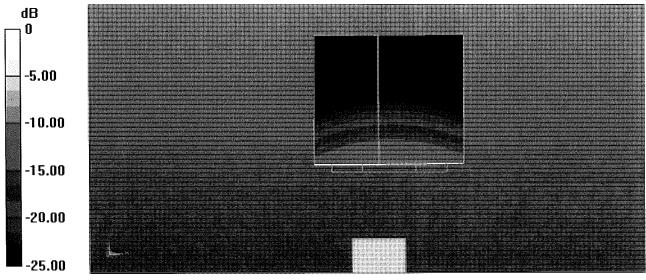
DASY5 Validation Report for Head TSL

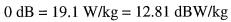
Date: 09.02.2018

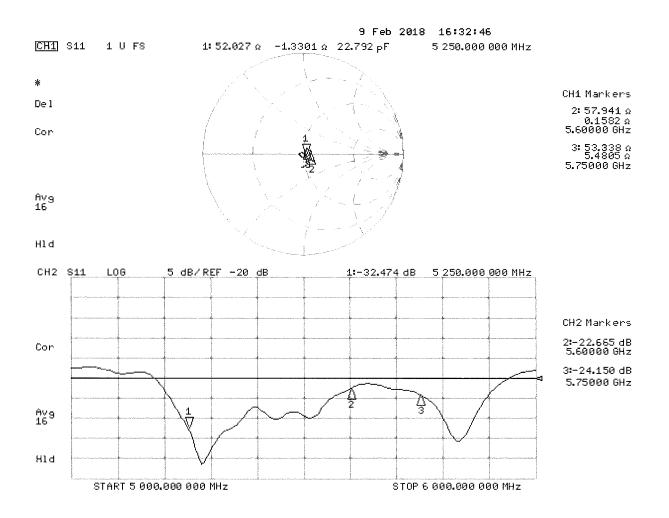
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.09 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.10 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.47 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.73 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.1 W/kg

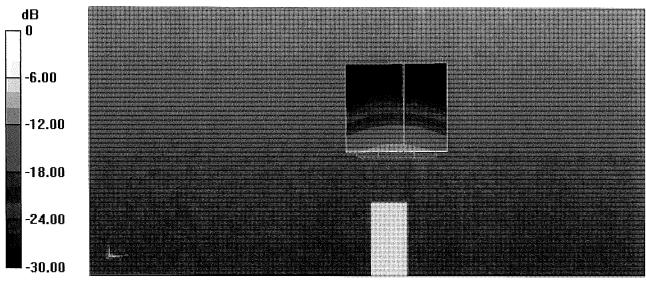
DASY5 Validation Report for Body TSL

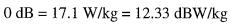
Date: 12.02.2018

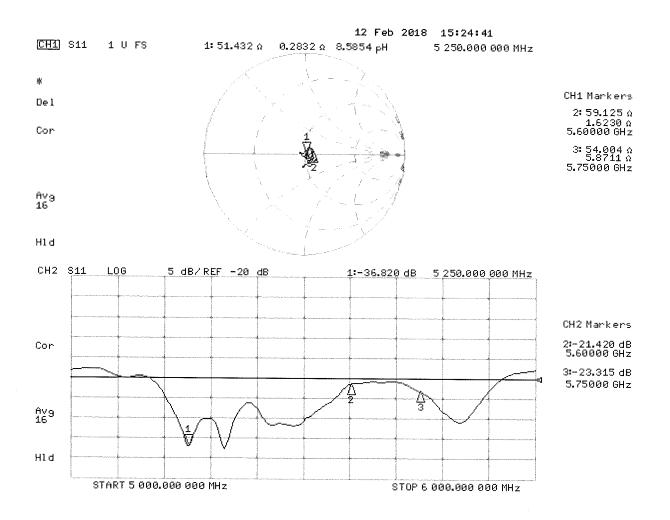
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.48 S/m; ε_r = 47.4; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.95 S/m; ε_r = 46.8; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.15 S/m; ε_r = 46.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.63 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.26 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.56 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1191_Sep16

Object	D5GHzV2 - SN:1	191 <u>as studios se un loss subscribentes a</u>	,
			BNY
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits betv	veen 3-6 GHz 09-28-24
			veen 3-6 GHz 09-28-20 Extende 09/201 56
Calibration date:	September 21, 20	016 [2014] // 1996 // 1906 // 1906 // 1906 // 1906 // 1906 // 1000 /	09/201 5C
This calibration certificate docum	ents the traceability to nati	onal standards, which realize the physical uni	ts of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages and	d are part of the certificate.
All a libertiana have been conduc	tod in the closed isherator	ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
All calibrations have been conduc	sed in the closed aborator	y raciny. Environment temperature (EE 20) e	
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91	0	00-Api-10 (110. 217 02200)	Aprili
	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Reference 20 dB Attenuator		• •	•
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5058 (20k) SN: 5047.2 / 06327	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16)	Apr-17 Apr-17 Jun-17
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Apr-17 Apr-17 Jun-17 Dec-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ٠ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
	5250 MHz ± 1 MHz	
Frequency	5600 MHz ± 1 MHz	
	5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W / kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

OATTaveraged over to ont (to g) of flead for	Contaition	
SAR measured	100 mW input pow e r	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

Ĺ

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)
CAD averaged ever 10 cm ³ (10 m) of Redu TCL		
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ² (10 g) of Body TSL SAR measured	100 mW input power	2.14 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.7 Ω - 4.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.3 Ω - 3.2 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	58.1 Ω + 4.8 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	56.1 Ω - 3.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.9 Ω - 1.7 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	59.5 Ω + 6.9 jΩ
Return Loss	- 19.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.204 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

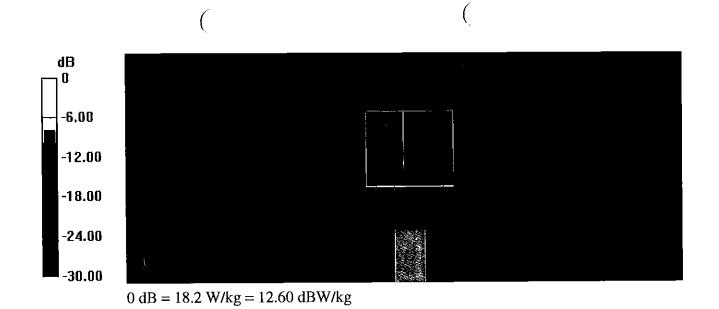
DASY5 Validation Report for Head TSL

Date: 21.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

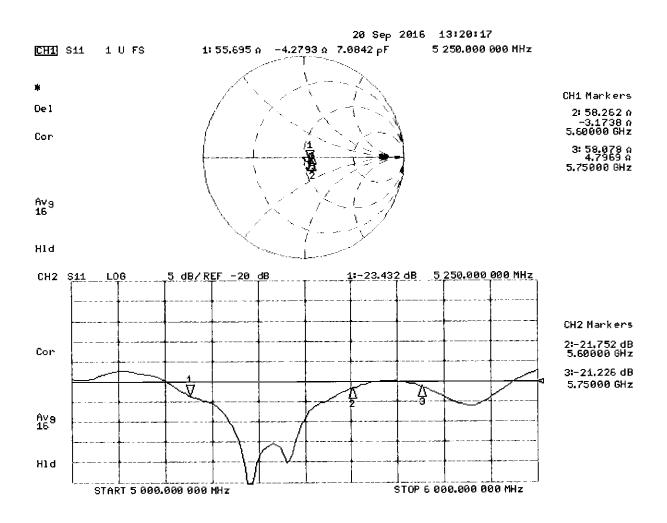
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.49 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.34 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.0 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.15 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Certificate No: D5GHzV2-1191_Sep16

Impedance Measurement Plot for Head TSL

(

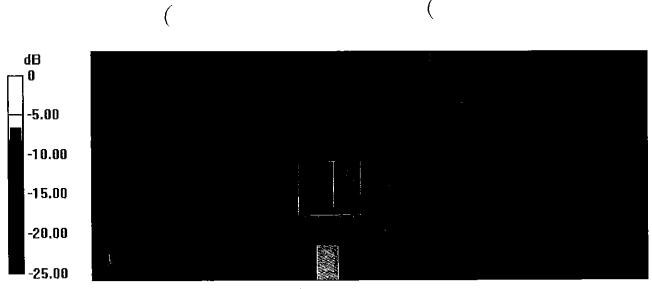
(

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

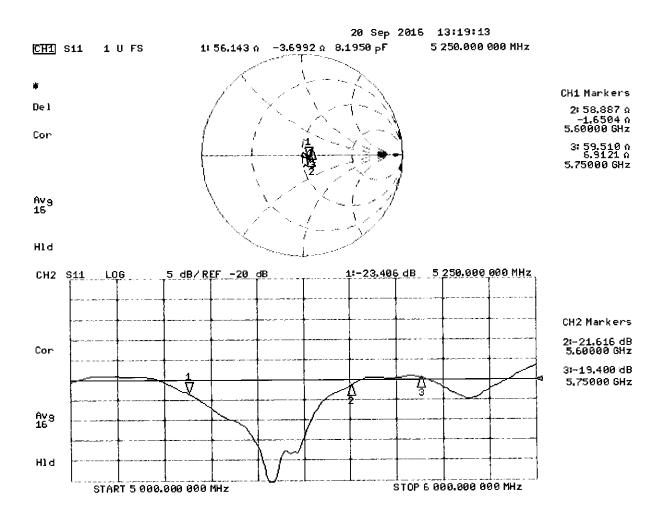

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.49 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.21 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.5 W/kg



(

0 dB = 17.7 W/kg = 12.48 dBW/kg

Impedance Measurement Plot for Body TSL

(

(

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D5GHzV2 - SN: 1191

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 9/19/2017

Description:

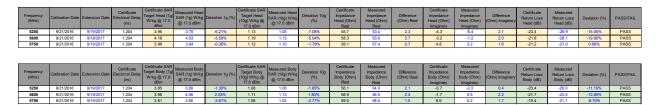
SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

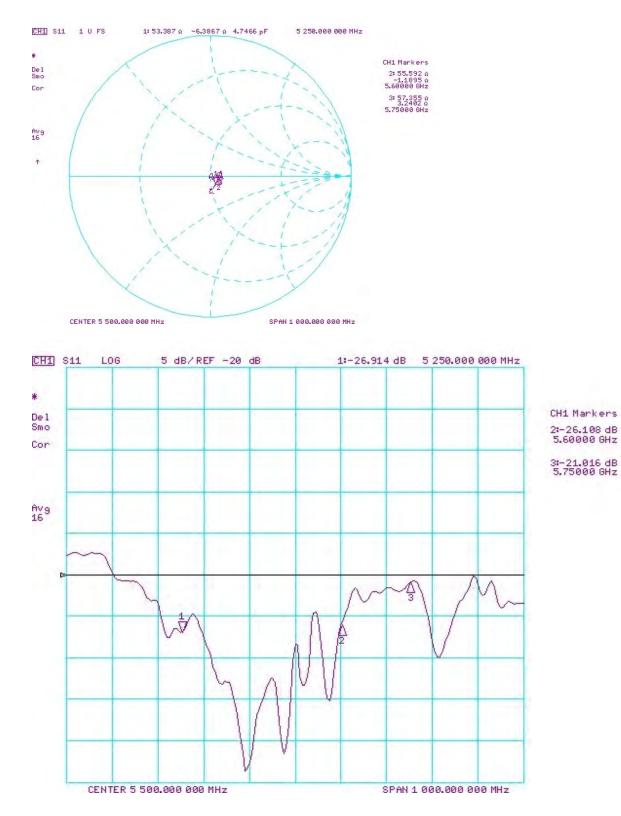
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	EX3DV4	SAR Probe	1/13/2017	Annual	1/13/2018	3589
SPEAG	EX3DV4	SAR Probe	2/13/2017	Annual	2/13/2018	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/16/2017	Annual	1/16/2018	1466
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	665
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

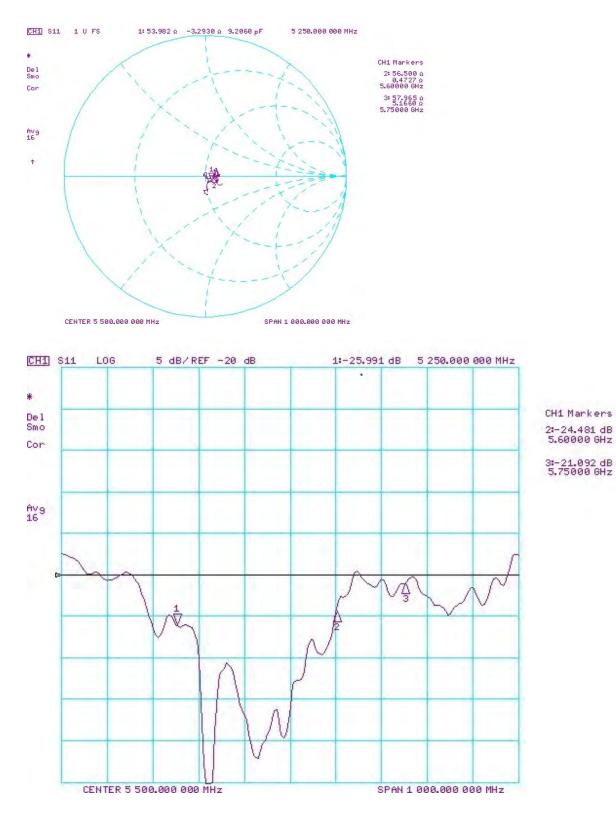

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1191	09/19/2017	raye 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1191	09/19/2017	raye 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1191	09/19/2017	Faye 5 01 4

3:-21.092 dB 5.75000 GHz

Impedance & Return-Loss Measurement Plot for Body TSL

Object: Da	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1191 09	9/19/2017	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Sorvizio svizzero di taratura

Accreditation No.: SCS 0108

BNV 03-27-2017 BNV 04-04-2018

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatorios to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1054_Mar17

CALIBRATION CERTIFICATE Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certilicate No.)	Scheduled Calibration
Power meter NRP	SN; 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Referenco Probo EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oot-18
Power sensor HP 8481A	SN: MY41092317	07-Ocl-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN; US37390585	18-Oct-01 (in house check Oct-18)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	you lean
Approved by:	Kaija Pokovic	Technical Manager	Ally
			Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kelibrierdienst

Service sulsse d'étaionnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
		V02.0.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5,50 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	2 2.0 °C	55 .5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1054_Mar17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω - 0.7 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

General Antenna Parameters and Design

)	<u> </u>
Electrical Delay (one	diraction)	1.033 ns	1
	, 		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

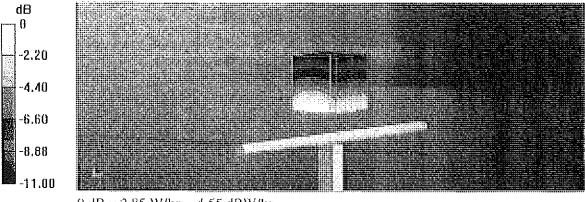
Manufactured by	SPEAG
Manufactured on	November 08, 2011

DASY5 Validation Report for Head TSL

Date: 07.03.2017

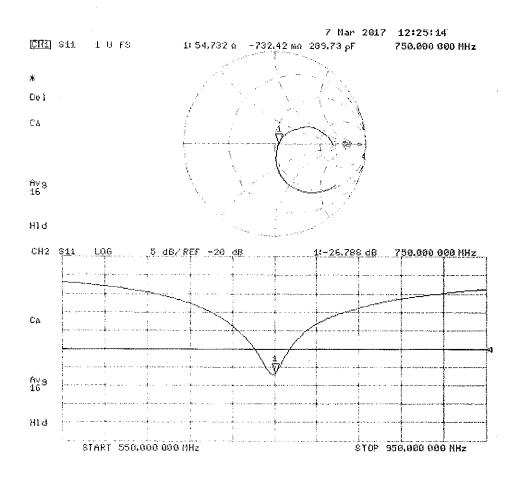
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW ; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31,12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

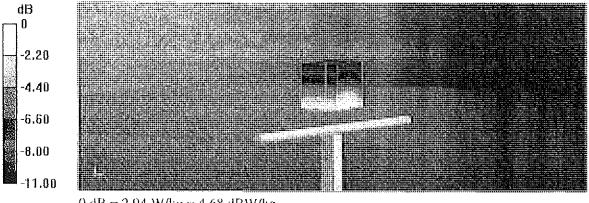
Impedance Measurement Plot for Head TSL

.

DASY5 Validation Report for Body TSL

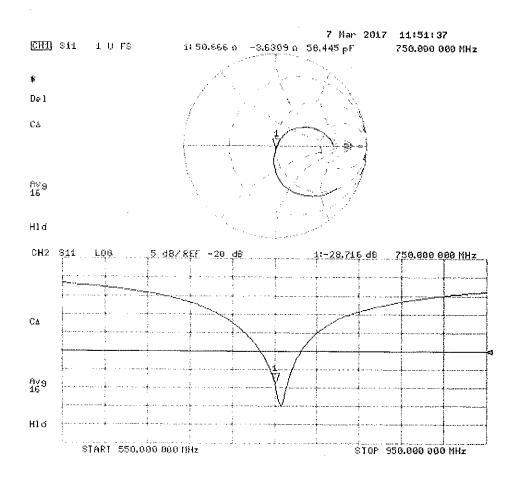
Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW ; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.94 W/kg

+0 dB = 2.94 W/kg = 4.68 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST' Gr ******

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 - SN:1054

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

March 07, 2018

Description:

SAR Validation Dipole at 750 MHz.

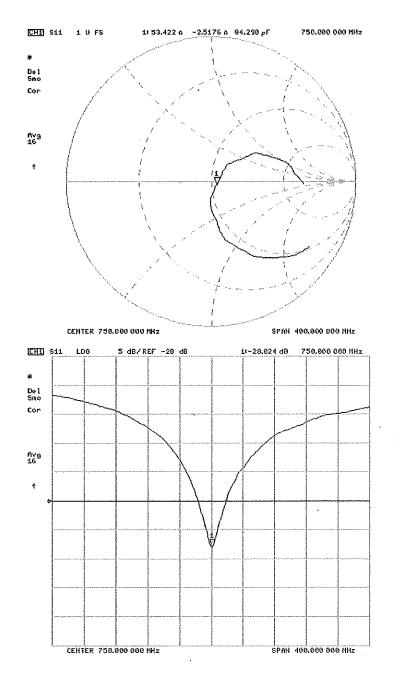
Calibration Equipment used:

	and the second		2007/00/00/00/00/00/00/00	A second statement of the second	version and the second states of the second states of the	
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agllent	8753ES	S-Parameter Network Analyzer	8/3/2017	Annual	8/3/2018	MY40000670
Agilent	N5182A	MXG Vector Signal Generator	1/24/2018	Annual	1/24/2019	MY47420651
Amplifler Research	1551G6	Amplifier	C8T	N/A	CBT	433971
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Puise Power Sensor	10/16/2017	Annual	10/16/2018	1126066
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	8W-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287

Measurement Uncertainty = $\pm 23\%$ (k=2)

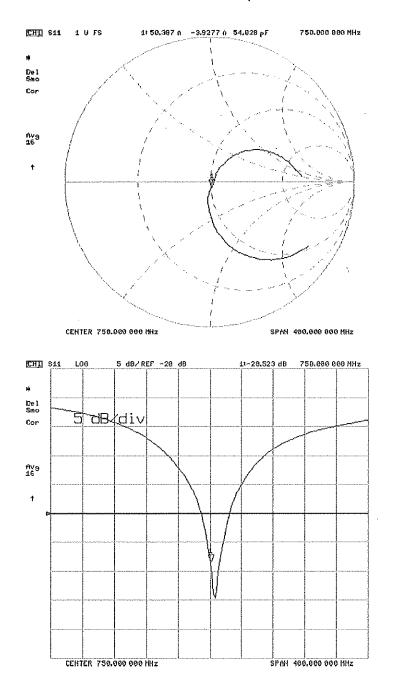
	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date issued:	Page 1 of 4
D750V3 - SN:1054	03/07/2018	


DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Object:	Date Issued:	Page 2 of 4
D750V3 – SN:1054	03/07/2018	Taye 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date issued:	Page 2 of 4
D750V3 – SN:1054	03/07/2018	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Pogo 4 of 4
D750V3 – SN:1054	03/07/2018	Page 4 01 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D5GHzV2-1237_Aug17

CALIBRATION CERTIFICATE

Obje c t	D5GHzV2 - SN:1	237		
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz	PMV 8/27/1
Calibration date:	August 15, 2017			
The measurements and the unce	rtaintles with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°	ed are part of the certificate.	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	n
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	1
Secondary Standards	1D #	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-	18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-	17
Collibrated but	Name	Function	Signature	
Calibrated by:	Johannes Kurikka	Laboratory Technician	Ja la	-
Approved by:	Katja Pokovic	Technical Manager	El 165	-
This calibration certificate shall no	ot be reproduced except in	n full without written approval of the laboratory	Issued: August 16, 20	17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	<u></u>
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 ℃	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR for nominal Body TSL parameters

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg

normalized to 1W

21.4 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.9 Ω - 5.3 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.9 Ω + 2.3 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	55.6 Ω - 0.5 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.9 Ω - 4.2 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.2 Ω + 3.0 jΩ
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.4 Ω + 0.2 jΩ
Return Loss	- 29.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 194 ns
Electrical Delay (one direction)	1.194 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

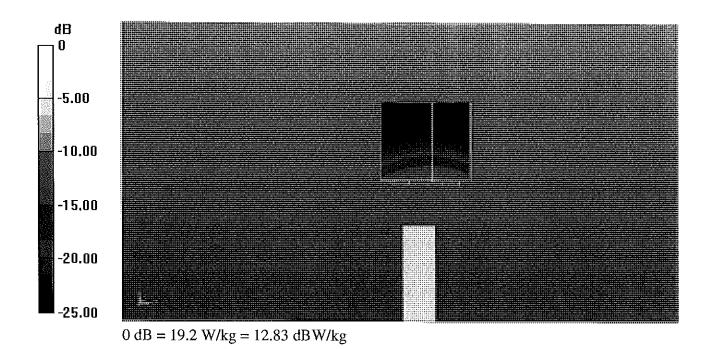
DASY5 Validation Report for Head TSL

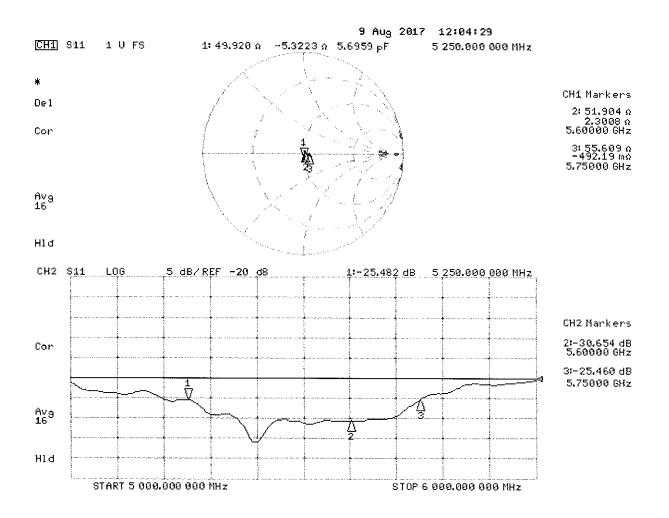
Date: 15.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.49 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 4.99 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.08 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 19.8 W/kg

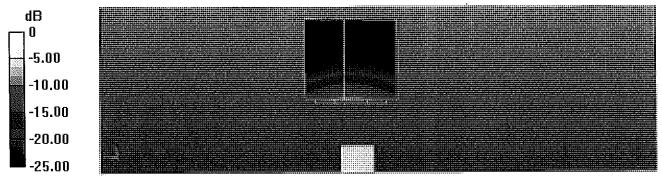
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.11 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Date: 08.08.2017

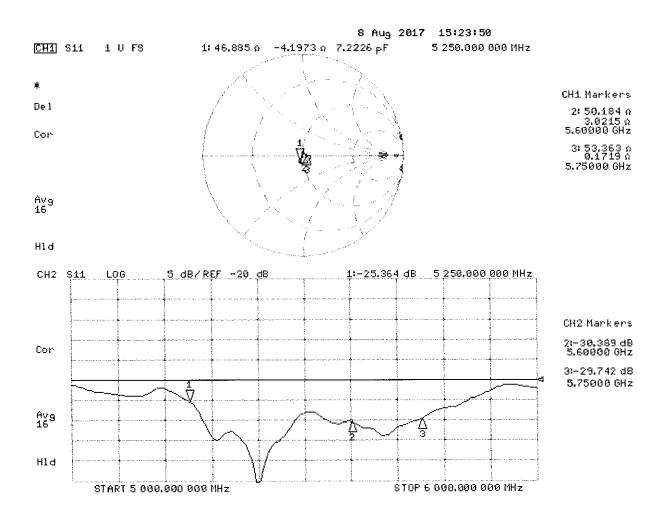
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.46 S/m; ϵ_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.93 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.13 S/m; ϵ_r = 46.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.11 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.64 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: ES3-3213_Feb18

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3213

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

February 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
			MICE
Approved by:	Katja Pokovic	Technical Manager	PILL
			10000
			Issued: February 13, 2018
This calibration certificate	shall not be reproduced except in full	without written approval of the laboratory	4.

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Bru 2018

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D φ rotation around probe axis Polarization ϕ 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3213

Calibrated:

Manufactured: October 14, 2008 February 13, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.43	1.32	1.29	± 10.1 %
DCP (mV) ^B	100.3	104.3	100.0	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊢]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	219.3	±2.7 %
		Y	0.0	0.0	1.0		219.1	
		Z	0.0	0.0	1.0		213.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ^{-₂}	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V⁻¹	Т6
Х	55.43	404.4	36.34	28.23	1.967	5.10	0.398	0.555	1.011
Y	56.36	406.4	35.71	28.34	2.153	5.10	1.040	0.438	1.013
Z	52.80	385.3	36.34	28.19	1.829	5.10	0.000	0.541	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

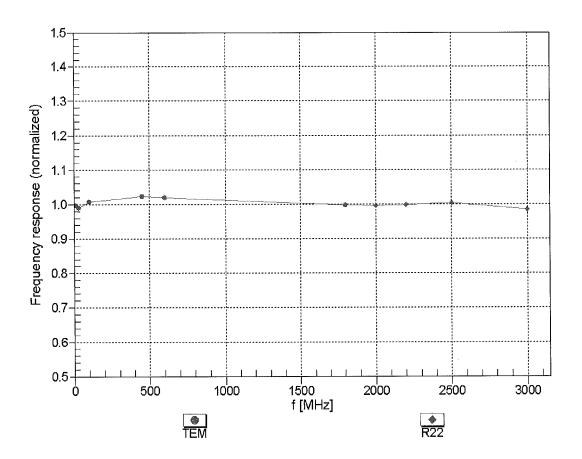
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.75	6.75	6.75	0.64	1.30	± 12.0 %
835	41.5	0.90	6.42	6.42	6.42	0.48	1.50	± 12.0 %
1750	40.1	1.37	5.45	5.45	5.45	0.52	1.41	± 12.0 %
1900	40.0	1.40	5.30	5.30	5.30	0.79	1.17	± 12.0 %
2300	39.5	1.67	4.94	4.94	4.94	0.59	1.37	± 12.0 %
2450	39.2	1.80	4.72	4.72	4.72	0.80	1.21	± 12.0 %
2600	39.0	1.96	4.53	4.53	4.53	0.72	1.33	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

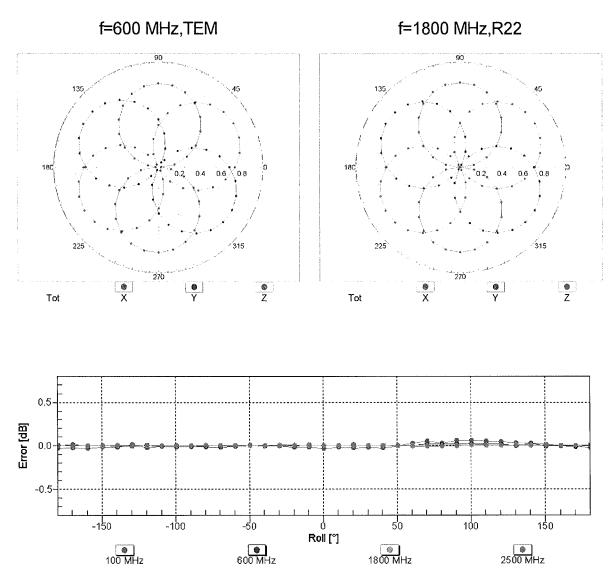
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

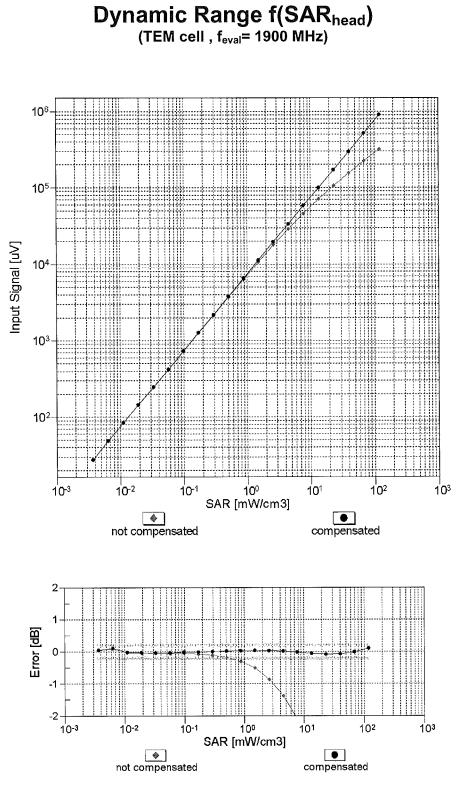

			-		-			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.30	6.30	6.30	0.80	1.13	± 12.0 %
835	55.2	0.97	6.20	6.20	6.20	0.41	1.66	± 12.0 %
1750	53.4	1.49	5.10	5.10	5.10	0.37	1.82	± 12.0 %
1900	53.3	1.52	4.88	4.88	4.88	0.59	1.51	± 12.0 %
2300	52.9	1.81	4.62	4.62	4.62	0.80	1.30	± 12.0 %
2450	52.7	1.95	4.53	4.53	4.53	0.80	1.25	± 12.0 %
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.25	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

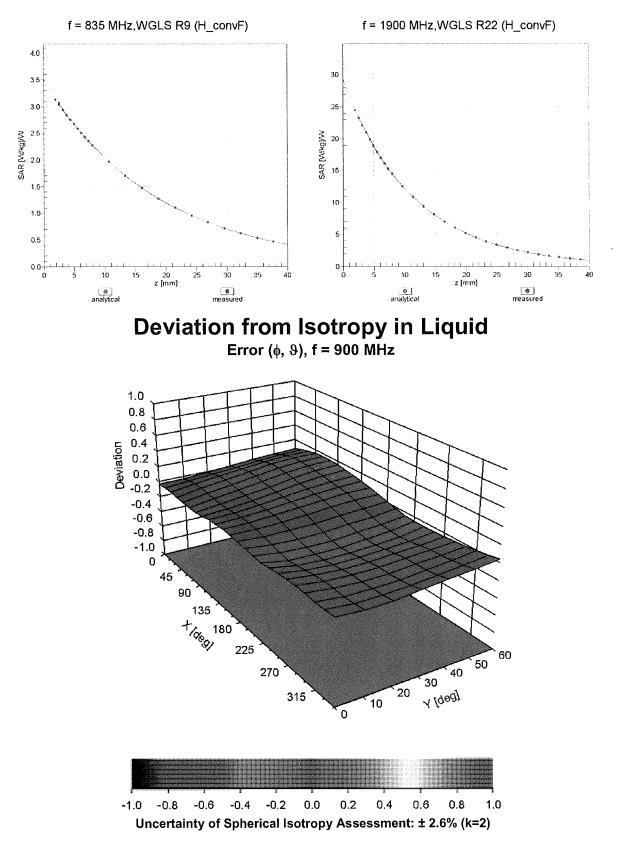
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	100.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ES3DV3-- SN:3213

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	219.3	± 2.7 %
		Y	0.00	0.00	1.00		219.1	
10010		Z	0.00	0.00	1.00	10.00	213.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	7.64	78.36	17.77	10.00	25.0	± 9.6 %
		Y	8.93	80.69	18.99		25.0	
10011-	UMTS-FDD (WCDMA)	Z X	7.43 0.94	77.97 65.73	17.46 13.94	0.00	25.0	100%
CAB						0.00	150.0	± 9.6 %
		Y	1.08	67.98	15.48		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	0.93	65.52 64.18	13.77 15.06	0.44	150.0	
CAB	Mbps)					0.41	150.0	± 9.6 %
		Y	1.29	65.11	15.84		150.0	
40040		Z	1.22	64.10	14.97	A 4-	150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.06	67.01	17.27	1.46	150.0	± 9.6 %
		Y	5.11	67.24	17.46		150.0	
		Z	5.03	67.01	17.25		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	58.23	111.57	29.90	9.39	50.0	± 9.6 %
		Y	38.28	105.54	28.67		50.0	
		Ζ	83.35	116.76	31.01		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	×	42.41	106.55	28.63	9.57	50.0	± 9.6 %
		Y	31.06	102.12	27.76		50.0	
		Ζ	55.17	110.35	29.43		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	116.42	29.15	6.56	60.0	±9.6 %
		Y	100.00	117.64	29.89		60.0	
		Z	100.00	115.95	28.84		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	22.66	114.16	43.61	12.57	50.0	± 9.6 %
		Y	32.36	125.54	47.77		50.0	
		Z	20.92	112.18	42.96		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	×	22.06	107.62	37.21	9.56	60.0	± 9.6 %
		Y	29.09	114.84	39.79		60.0	
		Z	22.32	108.24	37.43		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	114.90	27.59	4.80	80.0	± 9.6 %
		Y	100.00	116.49	28.47		80.0	
		Z	100.00	114.42	27.29		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	114.37	26.58	3.55	100.0	± 9.6 %
		Y	100.00	116.53	27.70		100.0	
		Z	100.00	113.85	26.28		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	×	13.21	95.56	31.98	7.80	80.0	± 9.6 %
		Y	16.23	100.64	33.98		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.05 100.00	95.55 114.59	31.99 27.76	5.30	80.0 70.0	± 9.6 %
CAA		<u>,</u> ,	400.00	110.05	00.00			
		Y	100.00	116.05	28.60		70.0	
10024	IEEE 902 15 1 Plusteeth (OEOK, DU2)	Z	100.00	114.06	27.44	1 0 0	70.0	+060/
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	112.38	24.24	1.88	100.0	± 9.6 %
		Y	100.00	116.66	26.24		100.0	
		Z	100.00	111.54	23.82		100.0	

Certificate No: ES3-3213_Feb18

ES3DV3-- SN:3213

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	112.51	23.27	1.17	100.0	± 9.6 %
UMA		Y	100.00	119.82	26.49		100.0	
		Z	100.00	119.82	20.49		100.0 100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	19.77	98.57	26.87	5.30	70.0	± 9.6 %
		Y	22.51	101.06	27.89		70.0	
		Z	20.62	99.03	26.84		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	5.26	81.87	19.91	1.88	100.0	± 9.6 %
		Y	7.30	87.04	22.01		100.0	
40005		Z	5.17	81.44	19.55		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	2.97	75.56	17.30	1.17	100.0	± 9.6 %
		Y	4.02	80.17	19.40		100.0	
10036-		Z	2.90	75.11	16.93		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	25.61	102.92	28.18	5.30	70.0	± 9.6 %
		Y	28.89	105.33	29.15		70.0	
10037-		Z	27.23	103.63	28.21	4.00	70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	5.03	81.31	19.68	1.88	100.0	± 9.6 %
		Y	7.01	86.52	21.80		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Z	4.92	80.81	19.30		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.05	76.11	17.60	1.17	100.0	± 9.6 %
		Y	4.14	80.86	19.74		100.0	
10020		Z	2.97	75.64	17.22		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.52	68.64	14.11	0.00	150.0	± 9.6 %
		Y	1.86	71.69	15.85		150.0	
10040		Z	1.44	68.18	13.70		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	115.25	28.83	7.78	50.0	± 9.6 %
		Y	100.00	116.43	29.57		50.0	
10044-	IS-91/EIA/TIA-553 FDD (FDMA, FM)	Z	100.00	114.73	28.50	0.00	50.0	
CAA		X	0.00	111.44	0.10	0.00	150.0	± 9.6 %
		Y	0.00	116.05	0.75		150.0	
10049	DECT (TDD TDMA/CDM OFOK Full	Z	0.00	113.36	0.21	10.00	150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	15.69	90.02	25.55	13.80	25.0	± 9.6 %
		Y	13.84	87.79	25.13		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	17.52 19.88	91.95 94.41	25.99 25.54	10.79	25.0 40.0	± 9.6 %
		Y	17.39	92.41	25.24		40.0	
		z	22.32	96.16	25.89		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	15.96	91.92	25.75	9.03	50.0	± 9.6 %
		Y	16.02	92.06	26.04		50.0	
		Z	16.84	92.83	25.91		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	9.21	88.16	28.55	6.55	100.0	± 9.6 %
		Y	10.78	91.87	30.15		100.0	
40055		Ζ	9.04	87.96	28.49		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Х	1.36	66.07	16.00	0.61	110.0	± 9.6 %
		Y	1.46	67.28	16.91		110.0	
10055		_ Z_	1.35	65.96	15.91		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	52.62	119.34	30.14	1.30	110.0	± 9.6 %
		Y	100.00	130.86	33.40		110.0	
		Ζ	47.54	117.73	29.68		110.0	

ES3DV3- SN:3213

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	7.64	91.52	25.20	2.04	110.0	± 9.6 %
		Y	11.51	98.81	27.78		110.0	
		z	7.56	91.41	25.11		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.79	66.76	16.54	0.49	100.0	± 9.6 %
		Y	4.84	66.99	16.73		100.0	
		Z	4.76	66.76	16.52		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.82	66.91	16.68	0.72	100.0	± 9.6 %
		Y	4.87	67.15	16.87		100.0	
		Z	4.79	66.91	16.65		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.14	67.25	16.96	0.86	100.0	± 9.6 %
		Y	5.20	67.49	17.14		100.0	
		Z	5.10	67.24	16.93		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.04	67.27	17.12	1.21	100.0	± 9.6 %
		Y	5.10	67.51	17.31		100.0	
10000		Z	5.00	67.25	17.09		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.09	67.39	17.35	1.46	100.0	± 9.6 %
		Y	5.15	67.65	17.54		100.0	
400		Z	5.06	67.37	17.32		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.41	67.60	17.83	2.04	100.0	± 9.6 %
		Y	5.47	67.85	18.03		100.0	
		Z	5.38	67.60	17.82		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.53	67.90	18.19	2.55	100.0	± 9.6 %
		Y	5.60	68.19	18.41		100.0	
		Z	5.49	67.88	18.16		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.62	67.88	18.39	2.67	100.0	± 9.6 %
		Y	5.69	68.17	18.62		100.0	
		Z	5.57	67.88	18.36		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.20	67.23	17.66	1.99	100.0	± 9.6 %
		Y	5.25	67.48	17.85		100.0	
		Z	5.17	67.24	17.64		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.24	67.75	17.96	2.30	100.0	± 9.6 %
		Y	5.31	68.03	18.18		100.0	
		Z	5.21	67.74	17.94		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.36	68.08	18.38	2.83	100.0	± 9.6 %
		Y	5.44	68.38	18.61		100.0	
		Z	5.33	68.07	18.36		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.39	68.13	18.62	3.30	100.0	± 9.6 %
		Y	5.47	68.45	18.87		100.0	
		Z	5.36	68.12	18.60		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.52	68.55	19.10	3.82	90.0	± 9.6 %
		Y	5.61	68.93	19.38		90.0	
		Z	5.48	68.52	19.07		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.53	68.37	19.24	4.15	90.0	± 9.6 %
		Y	5.62	68.75	19.52		90.0	
		Z	5.50	68.36	19.22		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.57	68.46	19.34	4.30	90.0	± 9.6 %
· · · · · ·		Y	5.66	68.84	19.63		90.0	
		Z	5.54	68.44	19.32		90.0	

ES3DV3- SN:3213

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.76	64.13	11.38	0.00	150.0	± 9.6 %
		Y	0.90	66.35	12.99	-	150.0	<u> </u>
		Z	0.73	63.81	11.00		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	1.73	62.47	7.53	4.77	80.0	± 9.6 %
		Y	1.91	63.29	8.22		80.0	
		Z	1.67	62.23	7.30		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	116.51	29.21	6.56	60.0	± 9.6 %
		Y	100.00	117.72	29.95		60.0	
40007		Z	100.00	116.03	28.90		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X Y	1.73	66.45	14.86	0.00	150.0	± 9.6 %
		Y Z		67.58	15.67		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	X	1.71	66.38	14.75	0.00	150.0	
CAB	UMTS-FDD (HSOFA, Sublest 2)	Y	1.70	66.40	14.82	0.00	150.0	± 9.6 %
		-		67.56	15.65		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z X	1.68 22.00	66.33 107.50	14.71 37.17	0.50	150.0	1000
DAC						9.56	60.0	± 9.6 %
		Y	28.88	114.61	39.71		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	22.27 3.03	108.13	37.40	0.00	60.0	
CAD	MHz, QPSK)	Y	3.03	69.43	16.03	0.00	150.0	± 9.6 %
		Z	2.99	70.56	16.70		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.23	69.29 67.20	15.96 15.61	0.00	150.0 150.0	± 9.6 %
0/10		Y	3.33	67.78	16.01		150.0	
	and the second s	Z	3.20	67.12	15.56		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.34	67.12	15.71	0.00	150.0 150.0	± 9.6 %
		Y	3.42	67.69	16.08		150.0	
		Z	3.31	67.10	15.66		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.49	78.45	21.33	3.98	65.0	± 9.6 %
		Y	8.79	79.00	21.62		65.0	
		Z	8.39	78.42	21.32		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	8.27	76.76	21.53	3.98	65.0	± 9.6 %
		Y	8.57	77.41	21.89		65.0	
		Z	8.21	76.79	21.53		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.13	76.44	21.71	3.98	65.0	± 9.6 %
		Y	7.83	75.63	21.42		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Z X	7.93 2.67	76.10 68.71	21.55 15.86	0.00	65.0 150.0	± 9.6 %
		Y	2.83	60.00	10 55		450.0	
		Z	2.63	69.80 68.57	16.55 15.78		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.89	66.95	15.47	0.00	150.0 150.0	± 9.6 %
		Y	2.98	67.57	15.91		150.0	
		Z	2.86	66.87	15.40		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.17	67.76	15.45	0.00	150.0	± 9.6 %
		Y	2.32	68.94	16.22		150.0	
		Z	2.13	67.62	15.34		150,0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.56	67.34	15.57	0.00	150.0	±9.6 %
		Y	2.66	68.04	16.08		150.0	
		Z	2.53	67.28	15.48		150.0	

ES3DV3-- SN:3213

February 13, 2018

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.02	66.95	15.54	0.00	150.0	± 9.6 %
		Y	3.10	67.51	15.95		150.0	
		Z	2.98	66.88	15.48		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.72	67,49	15.72	0.00	150.0	± 9.6 %
		Y	2.81	68.13	16.19		150.0	
		Z	2.68	67.45	15.64		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	5.17	67.15	16.34	0.00	150.0	± 9.6 %
		Y	5.21	67.35	16.50		150.0	
		Z	5.15	67.16	16.34		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.53	67.49	16.54	0.00	150.0	± 9.6 %
		Y	5.58	67.70	16.70		150.0	
		Ζ	5.48	67.42	16.49		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.30	67.42	16.41	0.00	150.0	± 9.6 %
		Y	5.34	67.62	16.57		150.0	
		Z	5.27	67.41	16.40		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.15	67.08	16.33	0.00	150.0	± 9.6 %
		Y	5.20	67.30	16.50		150.0	
		Ζ	5.12	67.04	16.30		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	Х	5.63	67.73	16.67	0.00	150.0	± 9.6 %
		Y	5.66	67.91	16.81		150.0	
		Z	5.59	67.70	16.64		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	Х	5.27	67.36	16.39	0.00	150.0	± 9.6 %
		Y	5.31	67.56	16.55		150.0	
		Z	5.24	67.35	16.38		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	Х	3.38	67.18	15.64	0.00	150.0	± 9.6 %
		Y	3.47	67.70	16.01		150.0	
		Z	3,35	67.11	15.59		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.50	67.27	15.81	0.00	150.0	± 9.6 %
		Y	3.59	67.74	16.15		150.0	
		Ζ	3.47	67.21	15.77		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.93	67.51	15.04	0.00	150.0	± 9.6 %
		Y	2.09	68.84	15.93		150.0	
		Ζ	1.89	67.35	14.89		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	Х	2.38	67.70	15.18	0.00	150.0	± 9.6 %
		Y	2.51	68.61	15.82		150.0	
		Z	2.34	67.60	15.02		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.24	66.02	13.89	0.00	150.0	± 9.6 %
		Y	2.36	66.87	14.53		150.0	
		Z	2.19	65.88	13.71		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.22	64.47	11.59	0.00	150.0	± 9.6 %
		Y	1.37	66.07	12.76		150.0	
		Z	1.15	64.01	11.10		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	2.40	68.51	13.38	0.00	150.0	± 9.6 %
		Y	3.25	72.57	15.44		150.0	
		Ζ	2.13	67.36	12.68		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	Х	2.86	70.85	14.59	0.00	150.0	± 9.6 %
	i interesting inte	Y	4.17	75.98	16.98		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	2.50	69.50	13.83		150.0	

Certificate No: ES3-3213_Feb18

ES3DV3- SN:3213

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.90	67.00	15.51	0.00	150.0	± 9.6 %
		Y	2.99	67.62	15.95		150.0	
		Z	2.86	66.92	15.44		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.02	66.99	15.58	0.00	150.0	± 9.6 %
		Y	3.11	67.55	15.98		150.0	
		Z	2.99	66.93	15.52		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	8.96	80.66	22.26	3.98	65.0	± 9.6 %
		Y	9.32	81.32	22.60		65.0	
		Z	9.00	80.93	22.35		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	7.88	76.96	21.35	3.98	65.0	± 9.6 %
		Y	8.23	77.73	21.78		65.0	
		Z	7.82	76.98	21.33		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.28	77.78	22.03	3.98	65.0	± 9.6 %
		Y	8.58	78.42	22.39		65.0	
		Z	8.24	77.86	22.04		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.21	68.11	15.68	0.00	150.0	± 9.6 %
		Y	2.36	69.30	16.45		150.0	
		Z	2.17	67.96	15.57		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.56	67.35	15.58	0.00	150.0	± 9.6 %
		Y	2.66	68.05	16.10		150.0	
		Z	2.53	67.29	15.50		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.77	67.43	14.78	0.00	150.0	± 9.6 %
		Y	1.94	68.94	15.78		150.0	
		Z	1.72	67.23	14.58		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.05	66.34	13.82	0.00	150.0	± 9.6 %
		Y	2.19	67.38	14.58		150.0	
		Z	2.00	66.16	13.59		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.72	67.54	15.76	0.00	150.0	± 9.6 %
		Y	2.82	68.17	16.23		150.0	
		Z	2.68	67.50	15.68		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.14	66.71	14.07	0.00	150.0	± 9.6 %
		Y	2.28	67.74	14.81		150.0	
		Z	2.09	66.52	13.84		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.72	68.07	15.82	0.00	150.0	± 9.6 %
		Y	2.84	68.89	16.38		150.0	
		Z	2.69	68.00	15.76		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.91	66.88	15.50	0.00	150.0	± 9.6 %
		Y	3.00	67.45	15.91		150.0	
		Z	2.88	66.82	15.43		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.02	67.01	15.60	0.00	150.0	± 9.6 %
		Y	3.11	67.54	16.00		150.0	
		Z	2.99	66.96	15.54		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.77	69.87	19.29	3.01	150.0	± 9.6 %
		Y	3.99	71.07	20.04		150.0	
		Z	3.62	69.43	19.11		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	4.72	72.88	19.79	3.01	150.0	± 9.6 %
		Y	5.23	74.95	20.86		150.0	
		Z	4.39	72.04	19.48		150.0	

ES3DV3-SN:3213

February 13, 2018

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.18	74.86	20.97	3.01	150.0	± 9.6 %
		Y	5.75	76.97	22.01		150.0	
		Z	4.80	74.00	20.67		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.27	70.16	19.42	3.01	150.0	± 9.6 %
		Y	3.60	72.33	20.65		150.0	
		Z	3.01	68.98	18.94		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	4.60	76.17	21.67	3.01	150.0	± 9.6 %
		Y	5.62	80.32	23.51		150.0	
		Z	3.98	74.14	20.96		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.81	72.17	19.05	3.01	150.0	± 9.6 %
		Y	4.54	75.67	20.74		150.0	
		Ζ	3.36	70.59	18.47		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	30.28	111.82	34.48	6.02	65.0	± 9.6 %
		Y	76.86	130.98	39.85		65.0	
		Z	23.60	107.83	33.49		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	34.72	108.92	31.80	6.02	65.0	± 9.6 %
		Y	74.54	122.99	35.68		65.0	
		Z	31.06	107.91	31.67		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	26.76	102.85	29.55	6.02	65.0	± 9.6 %
		Y	50.48	114.18	32.83		65.0	
		Z	23.63	101.61	29.31		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.23	69.86	19.18	3.01	150.0	± 9.6 %
		Y	3.55	72.01	20.41		150.0	
		Z	2.98	68.71	18.72		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	4.60	76.19	21.68	3.01	150.0	± 9.6 %
		Y	5.63	80.35	23.53		150.0	
		Z	3.98	74.16	20.97		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.26	70.01	19.27	3.01	150.0	± 9.6 %
		Y	3.58	72.16	20.50		150.0	
		Z	3.00	68.84	18.80		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	4.55	75.95	21.56	3.01	150.0	±9.6 %
		Y	5.56	80.06	23.39		150.0	
		Z	3.95	73.96	20.86		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	Х	4.17	74.04	20.23	3.01	150.0	±9.6 %
		Y	5.04	77.87	21.99		150.0	
		Ζ	3.65	72.28	19.60		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.80	72.10	19.00	3.01	150.0	± 9.6 %
		Y	4.52	75.59	20.69		150.0	
		Z	3.36	70.53	18.43		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	×	3.25	69.99	19.27	3.01	150.0	± 9.6 %
		Y	3.58	72.15	20.49		150.0	
		Ζ	3.00	68.83	18.80		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	4.54	75.93	21.54	3.01	150.0	±9.6 %
		Y	5.55	80.04	23.38		150.0	
		Z	3.94	73.93	20.85		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.79	72.07	18.99	3.01	150.0	± 9.6 %
		Y	4.51	75.56	20.68		150.0	
		Z	3.35	70.51	18.42		150.0	

Certificate No: ES3-3213_Feb18

ES3DV3-SN:3213

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.26	70.03	19.29	3.01	150.0	± 9.6 %
		Y	3.59	72,19	20.51		150.0	
		Z	3.01	68.87	18.82		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	4.56	76.00	21.58	3.01	150.0	± 9.6 %
		Y	5.57	80.12	23.42	1	150.0	
		Ζ	3.96	74.00	20.89		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	3.81	72.14	19.03	3.01	150.0	± 9.6 %
		Y	4.54	75.64	20.72	1	150.0	
		Ζ	3.37	70.57	18.45		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.27	70.08	19.34	3.01	150.0	± 9.6 %
		Y	3.60	72.24	20.57		150.0	
		Z	3.02	68.91	18.87		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	4.71	76.65	21.94	3.01	150.0	± 9.6 %
		Y	5.78	80.88	23.80		150.0	
		Z	4.07	74.57	21.23		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	3.89	72.56	19.29	3.01	150.0	± 9.6 %
		Y	4.65	76.13	21.00		150.0	
		Z	3.43	70.95	18.70		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.57	66.50	16.04	0.00	150.0	± 9.6 %
		Y	4.61	66.73	16.23		150.0	
		Z	4.54	66.49	16.01		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	Х	4.75	66.84	16.16	0.00	150.0	± 9.6 %
		Y	4.80	67.09	16.35		150.0	
		Ζ	4.71	66.82	16.14		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.79	66.87	16.18	0.00	150.0	± 9.6 %
		Y	4.84	67.11	16.37		150.0	
		Z	4.76	66.85	16.15		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.58	66.58	16.07	0.00	150.0	± 9.6 %
		Y	4.63	66.82	16.26		150.0	
		Z	4.54	66.56	16.03		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	Х	4.77	66.86	16.18	0.00	150.0	± 9.6 %
		Y	4.82	67.11	16.37		150.0	
		Z	4.73	66.84	16.15		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.80	66.89	16.19	0.00	150.0	± 9.6 %
		Y	4.85	67.13	16.38		150.0	
		Z	4.76	66.87	16.17		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.52	66.58	16.02	0.00	150.0	± 9.6 %
		Y	4.58	66.83	16.22		150.0	
		Z	4.49	66.56	15.99		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.76	66.85	16.17	0.00	150.0	± 9.6 %
		Y	4.81	67.09	16.36		150.0	
		Z	4.72	66.82	16.14		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	Х	4.80	66.82	16.18	0.00	150.0	± 9.6 %
		Y	4.86	67.06	16.37		150.0	
		Ζ	4.77	66.80	16.16		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.13	67.08	16.32	0.00	150.0	±9.6 %
		Y	5.18	67.32	16.50		150.0	
		Z	5.10	67.04	16.29		150.0	

ES3DV3- SN:3213

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.46	67.35	16.49	0.00	150.0	± 9.6 %
0.00		Y	5.51	07.50	40.00		450.0	
		Z		67.58	16.66		150.0	
10224-	IEEE 802.11n (HT Mixed, 150 Mbps, 64-	X	5.42	67.30	16.45	0.00	150.0	
CAC	QAM)		5.17	67.18	16.29	0.00	150.0	± 9.6 %
		1	5.22	67.40	16.46		150.0	
40005		Z	5.14	67.14	16.27		150.0	
10225- CAB	UMTS-FDD (HSPA+)	×	2.80	65.74	15.07	0.00	150.0	± 9.6 %
		Y	2.87	66.19	15.45		150.0	
		Z	2.77	65.70	14.98		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	37.38	110.41	32.30	6.02	65.0	± 9.6 %
		Y	81.50	124.82	36.22		65.0	
		Z	33.47	109.42	32.18		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	29.60	104.69	30.14	6.02	65.0	± 9.6 %
		Y	53.65	115.37	33.21		65.0	
		Z	27.65	104.42	30.19		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	32.41	113.60	35.07	6.02	65.0	± 9.6 %
		Y	69.82	129.54	39.59		65.0	
		Z	28.33	111.82	34.72		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	34.78	108.94	31.81	6.02	65.0	± 9.6 %
		Y	74.32	122.93	35.67		65.0	
		Z	31.14	107.94	31.68		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	27.87	103.54	29.74	6.02	65.0	± 9.6 %
		Y	50.12	114.03	32.79		65.0	
		Z	25.97	103.21	29.78		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	30.34	112.17	34.60	6.02	65.0	± 9.6 %
0/10		Y	64.44	127.76	39.06		65.0	
		Z	26.54	110.39	39.00		65.0	
10232-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-	X	34.78	108.95	31.81	6.02	65.0	± 9.6 %
CAD	QAM)					0.02		1 9.0 %
		Y	74.45	122.97	35.68		65.0	
10233-		Z	31.13	107.95	31.68		65.0	
CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	27.88	103.55	29.75	6.02	65.0	± 9.6 %
		Y	50.22	114.08	32.80		65.0	
10234-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Z X	25.97 28.47	103.22 110.69	29.78 34.07	6.02	65.0 65.0	± 9.6 %
CAD	QPSK)							
		Y	59.28	125.81	38.45		65.0	
1000-		Z	24.97	108.97	33.72		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	34.92	109.04	31.84	6.02	65.0	± 9.6 %
		Y	75.02	123.12	35.72		65.0	
		Ζ	31.25	108.03	31.71		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	28.18	103.71	29.79	6.02	65.0	± 9.6 %
		Y	50.93	114.30	32.85		65.0	
		Z	26.26	103.39	29.82		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	30.66	112.40	34.66	6.02	65.0	± 9.6 %
		Y	65.75	128.19	39.17		65.0	
		Z	26.79	110.61	34.30		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	34.79	108.97	31.82	6.02	65.0	± 9.6 %
		-+		+			····	
		Y	74.62	123.02	35.69		65.0	

ES3DV3-SN:3213

10239-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	27.87	103.57	29.75	6.02	65.0	± 9.6 %
CAD	64-QAM)		50.20	11/ 10	22.00		65.0	
		Y Z	50.30	114.13	32.82		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	25.95 30.53	103.23 112.33	29.78 34.64	6.02	65.0 65.0	± 9.6 %
		Y	65.39	128.09	39.15		65.0	
		Z	26.68	110.54	34.28		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	11.82	86.67	27.53	6.98	65.0	± 9.6 %
		Y	13.66	90.07	29.00		65.0	
		Ζ	11.24	86.07	27.33		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	11.41	85.92	27.17	6.98	65.0	± 9.6 %
		Y	13.45	89.74	28.82		65.0	
		Z	10.57	84.73	26.73		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.24	83.16	27.04	6.98	65.0	± 9.6 %
		L L	10.64	86.64	28.68		65.0	
40011		Z	8.64	81.99	26.56		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	9.03	80.20	20.72	3.98	65.0	± 9.6 %
		×	9.95	81.82	21.52		65.0	
4004-		Z	8.70	79.77	20.42		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	8.84	79.62	20.45	3.98	65.0	± 9.6 %
		Y	9.72	81.20	21.24		65.0	
		Z	8.49	79.13	20.13		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	8.67	82.28	21.37	3.98	65.0	± 9.6 %
		Y	9.40	83.61	22.04		65.0	
		Ζ	8.57	82.11	21.15		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	7.23	77.21	20.08	3.98	65.0	± 9.6 %
		Y	7.59	77.99	20.54		65.0	
		Z	7.13	77.07	19.88		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.20	76.70	19.86	3.98	65.0	± 9.6 %
		Y	7.57	77.51	20.35		65.0	
		Z	7.09	76.52	19.65		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	9.92	84.79	23.00	3.98	65.0	± 9.6 %
		Y	10.62	85.95	23.57		65.0	
		Z	10.01	85.03	22.98		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.21	79.48	22.35	3.98	65.0	± 9.6 %
		Y	8.54	80.13	22.71		65.0	
		Z	8.20	79.60	22.34		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.75	77.32	21.20	3.98	65.0	± 9.6 %
		Y	8.11	78.10	21.64		65.0	
10055		Z	7.70	77.35	21.14		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.77	84.02	23.49	3.98	65.0	± 9.6 %
		Υ	10.31	84.92	23.94		65.0	
10050		Z	9.89	84.42	23.60		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	7.68	76.36	21.13	3.98	65.0	± 9.6 %
		Y	8.00	77.10	21.55		65.0	
100-1		Z	7.63	76.40	21.10		65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.06	77.17	21.76	3.98	65.0	± 9.6 %
		Y	8.36	77.82	22.13		65.0	
		Ζ	8.03	77.25	21.75		65.0	

ES3DV3-SN:3213

February 13, 2018

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.65	80.28	22.35	3.98	65.0	± 9.6 %
		Y	9.02	80.99	22.72		65.0	
		Z	8.68	80.54	22.43		65.0	1
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	7.67	77.22	18.70	3.98	65.0	± 9.6 %
		Y	8.58	78.99	19.61		65.0	
		Z	7.24	76.45	18.22		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	7.44	76.40	18.29	3.98	65.0	± 9.6 %
		Y	8.29	78.12	19.18		65.0	h
		Z	6.99	75.59	17.78		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	7.04	78.52	19.29	3.98	65.0	± 9.6 %
		Y	7.71	79.96	20.05	····	65.0	
		Z	6.74	77.86	18.83		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	7.62	78.03	20.88	3.98	65.0	± 9.6 %
		Y	7.97	78.76	21.31		65.0	
		Z	7.55	78.00	20.76		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	7.62	77.74	20.79	3.98	65.0	± 9.6 %
		Y	7.97	78.46	21.21		65.0	
		Z	7.55	77.69	20.65		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.43	83.76	22.98	3.98	65.0	± 9.6 %
		Y	10.04	84.84	23.52		65.0	
		Z	9.50	84.03	22.99		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.20	79.43	22.31	3.98	65.0	± 9.6 %
		Y	8.53	80.09	22.68		65.0	
		Z	8.18	79.55	22.30		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	7.75	77.31	21.19	3.98	65.0	± 9.6 %
		Y	8.10	78.09	21.64		65.0	
		Z	7.69	77.34	21.14		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	9.70	83.85	23.41	3.98	65.0	± 9.6 %
		Y	10.24	84.77	23.87		65.0	
		Z	9.81	84.24	23.51		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	7.88	76.96	21.35	3.98	65.0	± 9.6 %
		Y	8.22	77.73	21.78		65.0	
		Z	7.82	76.99	21.33		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.27	77.77	22.03	3.98	65.0	± 9.6 %
	-	Y	8.58	78.42	22.39		65.0	
		Z	8,23	77.85	22.03		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.94	80,62	22.25	3.98	65.0	± 9.6 %
		Y	9.31	81.28	22.59		65.0	
		Z	8.98	80.89	22.34		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.36	76.49	21.55	3.98	65.0	± 9.6 %
		Y	8.63	77.08	21.88		65.0	
		Z	8.31	76.53	21.55		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.29	76.07	21.45	3.98	65.0	± 9.6 %
		Y	8.55	76.65	21.78		65.0	
		Z	8.24	76.11	21.45		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.43	77.83	21.33	3.98	65.0	± 9.6 %
		Y	8.69	78.31	21.60		65.0	
		Z	8.42	77.98	21.39		65.0	1

Certificate No: ES3-3213_Feb18

ES3DV3- SN:3213

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.55	65.90	14.85	0.00	150.0	± 9.6 %
		Y	2.63	66.48	15.31		150.0	
		Z	2.53	65.88	14.78		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.52	66.64	14.62	0.00	150.0	± 9.6 %
		Y	1.66	68.17	15.66		150.0	
		Z	1.50	66.49	14.49		150.0	
10277- CAA	PHS (QPSK)	X	4.62	67.49	12.27	9.03	50.0	± 9.6 %
		Y	5.00	68.49	13.05		50.0	
		Z	4.42	66.98	11.81		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	8.56	79.12	19.84	9.03	50.0	± 9.6 %
		Y	9.04	80.04	20.47		50.0	
		Ζ	8.20	78.37	19.32		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	8.72	79.33	19.94	9.03	50.0	± 9.6 %
		Y	9.22	80.28	20.58		50.0	
		Z	8.35	78.58	19.43		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.31	66.62	12.89	0.00	150.0	± 9.6 %
		Y	1.55	69.01	14.40		150.0	
		Z	1.25	66.21	12.49		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	0.75	63.97	11.28	0.00	150.0	± 9.6 %
		Y	0.88	66.12	12.85		150.0	
		Z	0.72	63.66	10.91		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	0.85	66.24	12.81	0.00	150.0	± 9.6 %
		Y	1.08	69.81	15.02		150.0	
		Z	0.81	65.82	12.39		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	1.07	69.43	14.80	0.00	150.0	± 9.6 %
		Y	1.49	74.49	17.52		150.0	
		Z	1.02	68.94	14.36		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.66	86.40	24.85	9.03	50.0	± 9.6 %
		Y	11.94	86.89	25.26		50.0	
		Z	12.14	87.13	24.94		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.68	68.79	15.92	0.00	150.0	± 9.6 %
		Y	2.84	69.89	16.60		150.0	
		Z	2.64	68.65	15.84		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.50	66.36	13.40	0.00	150.0	± 9.6 %
		Y	1.68	68.07	14.56		150.0	
		Z	1.44	66.01	13.05		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	2.99	70.93	15.34	0.00	150.0	± 9.6 %
		Y	3.88	74.74	17.20		150.0	
		Ζ	2.71	70.03	14.84		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.29	66.50	12.57	0.00	150.0	± 9.6 %
		Y	2.73	68.87	13.94		150.0	
	·	Z	2.09	65.76	12.08		150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.48	67.66	18.50	4.17	80.0	± 9.6 %
		Y	5.78	68.84	19.23		80.0	
		Ζ	5.37	67.36	18.28		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.94	68.12	19.14	4.96	80.0	± 9.6 %
		Y	6.22	69.31	19.91		80.0	
		Z	5.87	68.03	19.05		80.0	

ES3DV3-- SN:3213

February 13, 2018

10303-	IEEE 802.16e WiMAX (31:15, 5ms,	X	5.76	68.09	19.15	4.96	80.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC)		0.07		10.00			
		Y Z	<u>6.07</u> 5.69	69.41	19.99		80.0	
10304-	IEEE 802.16e WiMAX (29:18, 5ms,	X	5.43	67.97 67.45	19.02 18.35	4.17	80.0	
	10MHz, 64QAM, PUSC)					4.17	80.0	± 9.6 %
		Y	5.68	68.54	19.05		80.0	
10305-	IEEE 802.16e WiMAX (31:15, 10ms,	Z	5.37	67.37	18.26	0.00	80.0	
AAA	10MHz, 64QAM, PUSC, 15 symbols)	X	7.18	77.42	24.28	6.02	50.0	± 9.6 %
		Y	9.01	83.08	27.04		50.0	
10306-	IEEE 802.16e WiMAX (29:18, 10ms,	ZX	7.00	76.95	23.93		50.0	
AAA	10MHz, 64QAM, PUSC, 18 symbols)		5.96	70.23	20.82	6.02	50.0	± 9.6 %
		Y	6.58	72.76	22.30		50.0	
10307-	IEEE 902 400 WIMAY (20:48, 40m)	Z	5.86	69.99	20.61		50.0	
AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	6.41	73.34	22.47	6.02	50.0	± 9.6 %
		Y	6.70	73.58	22.50		50.0	
10000		Z	6.29	73.03	22.22		50.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.49	73.92	22.75	6.02	50.0	± 9.6 %
		Y	6.78	74.12	22.76		50.0	
		Z	6.37	73.60	22.50		50.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	6.06	70.55	21.00	6.02	50.0	± 9.6 %
		Y	6.71	73.17	22.53		50.0	
		Z	5.95	70.29	20.78		50.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.95	70.41	20.82	6.02	50.0	± 9.6 %
		Y	6.61	73.05	22.35		50.0	
		Z	6.20	72.46	22.04		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.02	68.11	15.62	0.00	150.0	± 9.6 %
		Y	3.19	69.13	16.23		150.0	
		Z	2.98	67.98	15.55		150.0	
10313- AAA	iDEN 1:3	X	6.80	77.50	18.05	6.99	70.0	± 9.6 %
		Y	7.71	79.38	18.97		70.0	
		Z	6.80	77.56	18.00		70.0	
10314- AAA	iDEN 1:6	X	9.17	84.53	23.10	10.00	30.0	± 9.6 %
		Y	10.17	86.19	23.87		30.0	
		Z	9.47	85.21	23.28		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.09	63.63	14.71	0.17	150.0	± 9.6 %
		Y	1.15	64.55	15.51		150.0	
		Z	1.08	63.56	14.63		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.67	66.69	16.26	0.17	150.0	± 9.6 %
		Y	4.72	66.94	16.46		150.0	
		Z	4.64	66.69	16.24		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.67	66.69	16.26	0.17	150.0	± 9.6 %
		Y	4.72	66.94	16.46		150.0	
		Z	4.64	66.69	16.24		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.75	66.92	16.17	0.00	150.0	± 9.6 %
		Y	4.81	67.18	16.37		150.0	
		Z	4.72	66.89	16.14		150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.45	67.19	16.39	0.00	150.0	± 9.6 %
		Y	5.49	67.37	16.55		150.0	
		Z	5.44	67.22	16.40		150.0	1

Certificate No: ES3-3213_Feb18

ES3DV3- SN:3213

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.72	67.54	16.41	0.00	150.0	± 9.6 %
		Y	5.76	67.75	16.56		150.0	
		Z	5.68	67.48	16.38		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	×X	1.31	66.62	12.89	0.00	115.0	± 9.6 %
		Y	1.55	69.01	14.40		115.0	
		Z	1.25	66.21	12.49		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.31	66.62	12.89	0.00	115.0	±9.6 %
		Y	1.55	69.01	14.40		115.0	
		Z	1.25	66.21	12.49		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	25.28	103.83	26.72	0.00	100.0	± 9.6 %
		Y	100.00	122.83	31.28		100.0	
		Z	15.62	98.87	25.67		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	120.77	30.63	3.23	80.0	± 9.6 %
		Y	100.00	121.50	31.09		80.0	
		Z	100.00	121.84	30.99		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.97	62.31	13.89	0.00	150.0	± 9.6 %
		Y	1.01	63.10	14.65		150.0	
		Z	0.96	62.25	13.81		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.57	66.54	16.10	0.00	150.0	± 9.6 %
		Y	4.62	66.78	16.29		150.0	
		Z	4.54	66.53	16.07		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.57	66.54	16.10	0.00	150.0	± 9.6 %
		Y	4.62	66.78	16.29		150.0	
		Z	4.54	66.53	16.07		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.55	66.67	16.10	0.00	150.0	± 9.6 %
		Y	4.61	66.92	16.30		150.0	
		Z	4.53	66.67	16.08		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.58	66.63	16.11	0.00	150.0	± 9.6 %
		Y	4.63	66.88	16.30		150.0	
		Z	4.55	66.63	16.09		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.70	66.66	16.14	0.00	150.0	± 9.6 %
		Y	4.75	66.89	16.33		150.0	
		Z	4.67	66.65	16.12		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.89	67.00	16.27	0.00	150.0	± 9.6 %
		Y	4.94	67.25	16.46		150.0	
		Z	4.85	66.98	16.24		150.0	
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.80	66.94	16.23	0.00	150.0	± 9.6 %
		Y	4.85	67.19	16.42		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps,	Z X	4.76 5.43	66.92 67.40	16.20 16.49	0.00	150.0 150.0	± 9.6 %
	BPSK)		E 40	07.50	40.01		4	
		Y	5.46	67.59	16.64		150.0	
10426		Z	5.40	67.39	16.48		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.43	67.42	16.49	0.00	150.0	± 9.6 %
		Y	5.47	67.60	16.64		150.0	
		Z	5.40	67.41	16.48		150.0	

ES3DV3-SN:3213

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.43	67.37	16.46	0.00	150.0	± 9.6 %
		Y	5.47	67.57	16.62		150.0	
		Z	5.41	67.36	16.45		150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.15	69.76	17.63	0.00	150.0	± 9.6 %
		Y	4.19	69.88	17.76		150.0	
		Z	4.12	69.84	17.60		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.26	67.02	16.07	0.00	150.0	± 9.6 %
		Y	4.33	67.32	16.31		150.0	
		Z	4.22	67.00	16.02		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	×	4.56	66.95	16.16	0.00	150.0	± 9.6 %
		Y	4.62	67.22	16.37		150.0	
		Z	4.52	66.93	16.13		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.81	66.98	16.25	0.00	150.0	± 9.6 %
		Y	4.87	67.22	16.44		150.0	
10/0/		Z	4.78	66.96	16.22		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.20	70.38	17.52	0.00	150.0	± 9.6 %
		Y	4.25	70.53	17.68		150.0	
40.405		Z	4.16	70.46	17.47		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.59	30.55	3.23	80.0	± 9.6 %
		Y	100.00	121.33	31.01		80.0	
		Z	100.00	121.65	30.91		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.54	66.87	15.35	0.00	150.0	± 9.6 %
		Y	3.62	67.29	15.69		150.0	
		Z	3.49	66.83	15.25		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.09	66.78	15.91	0.00	150.0	±9.6 %
		Y	4.15	67.09	16.16		150.0	
		Z	4.05	66.76	15.87		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.36	66.75	16.04	0.00	150.0	±9.6 %
		Y	4.42	67.03	16.26		150.0	
		Z	4.33	66.74	16.01		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.56	66.71	16.09	0.00	150.0	± 9.6 %
		Y	4.61	66.97	16.29		150.0	
		Z	4.53	66.69	16.06		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.43	67.01	14.98	0.00	150.0	± 9.6 %
	n.	Y	3.53	67.50	15.37		150.0	
		Z	3.37	66.93	14.84		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	Х	6.29	67.98	16.66	0.00	150.0	± 9.6 %
		Y	6.32	68.16	16.79		150.0	
		Z	6.26	67.96	16.65		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.79	65.17	15.80	0.00	150.0	±9.6 %
		Y	3.83	65.41	16.01		150.0	
		Z	3.78	65.16	15,77		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.84	69.59	16.93	0.00	150.0	± 9.6 %
		Y	3.91	69.84	17.18		150.0	
		Z	3.81	69.69	16.86		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.05	67.70	17.82	0.00	150.0	± 9.6 %
		Y	5.09	67.77	17.90		150.0	
		Z	5.00	67.75	17.77			

10460-	UMTS-FDD (WCDMA, AMR)	X	0.79	65.91	14.37	0.00	150.0	± 9.6 %
AAA								
		Y	0.92	68.57	16.19		150.0	
10461-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z X	0.78	65,69	14.19	2.00	150.0	100%
AAA	QPSK, UL Subframe=2,3,4,7,8,9)		100.00	124.09	32.24	3.29	80.0	± 9.6 %
		Y	100.00	125.81	33.13		80.0	
10460		Z	100.00	125.28	32.66		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	82.18	106.66	24.50	3.23	80.0	± 9.6 %
		Y	100.00	110.22	25.68		80.0	
10463-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z X	90.90	108.32	24.86	0.00	80.0	
AAA	64-QAM, UL Subframe=2,3,4,7,8,9)		13.11	84.75	18.36	3.23	80.0	± 9.6 %
		Y	100.00	107.13	24.20		80.0	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	Z	11.64	83.97	18.10	0.00	80.0	
AAA	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.05	31.13	3.23	80.0	± 9.6 %
		Y	100.00	123.91	32.10		80.0	
10465		Z	100.00	123.17	31.52	0.00	80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	34.70	96.83	22.08	3,23	80.0	± 9.6 %
		Y	100.00	109.74	25.45		80.0	
10466-		Z	33.97	97.14	22.15	0.55	80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	8.66	80.23	16.95	3.23	80.0	± 9.6 %
		Y	88.88	105.43	23.71		80.0	
10.107		Z	7.53	79.24	16.62		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	122.26	31.23	3.23	80.0	± 9.6 %
		Y	100.00	124.12	32.19		80.0	
		Z	100.00	123.40	31.62		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	42.56	99.17	22.68	3.23	80.0	± 9.6 %
		Y	100.00	109.90	25.52		80.0	
		Z	42.79	99.79	22.82		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	8.79	80.40	17.00	3.23	80.0	± 9.6 %
		Y	94.78	106.12	23.86		80.0	
		Z	7.65	79.43	16.67		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.29	31.23	3.23	80.0	± 9.6 %
		Y	100.00	124.15	32.20		80.0	
		Z	100.00	123.43	31.63		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	42.39	99.09	22.65	3.23	80.0	± 9.6 %
		Y	100.00	109.85	25.49		80.0	
		Z	42.62	99.70	22.79		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	8.75	80.33	16.97	3.23	80.0	± 9.6 %
		Y	95.63	106.16	23.85		80.0	
		Z	7.61	79.36	16.63		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.26	31.22	3.23	80.0	± 9.6 %
		Y	100.00	124.13	32.18		80.0	
		Z	100.00	123.40	31.61		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	41.57	98.89	22.60	3.23	80.0	±9.6 %
		Y	100.00	109.86	25.49		80.0	
		Ζ	41.71	99.48	22.73		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	8.66	80.23	16.94	3.23	80.0	±9.6 %
		Y	92.76	105.86	23.79		80.0	
		Z	7.52	79.25	16.60		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	36.02	97.20	22.15	3.23	80.0	± 9.6 %
		Y	100.00	109.70	25.42		80.0	· · · · · · · · · · · · · · · · · · ·
		Z	35.46	97.58	23.42		80.0	
10478-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-	X	8.55	80.07	16.88	3.23	80.0	± 9.6 %
AAC	QAM, UL Subframe=2,3,4,7,8,9)		0.00	00.01	10.00	0.20	00.0	1 0.0 70
		Y	89.69	105.45	23.69		80.0	
		Ζ	7.42	79.08	16.54		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	12.76	92.36	25.32	3.23	80.0	± 9.6 %
		Y	18.65	98.88	27.57		80.0	· · · · · · · · · · · · · · · · · · ·
		Ζ	13.95	94.12	25.81		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	12.57	87.00	22.01	3.23	80.0	± 9.6 %
		Y	19.95	93.91	24.32		80.0	
		Z	12.93	87.73	22.15		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	10.42	83.70	20.62	3.23	80.0	± 9.6 %
		Y	16.05	89.97	22.81		80.0	
1015-		Ζ	10.45	84.04	20.63		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.39	75.05	18.02	2.23	80,0	± 9.6 %
		Y	5.40	78.13	19.40		80.0	
10.100		Z	4.23	74.62	17.69		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	7.31	79.21	19.52	2.23	80.0	± 9.6 %
		Υ	9.15	82.68	20.99		80.0	
		Z	7.17	79.05	19.31		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.75	77.88	19.05	2.23	80.0	± 9.6 %
		Y	8.31	81.08	20.44		80.0	
		Z	6.55	77.60	18,79		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.80	76.47	19.36	2.23	80.0	± 9.6 %
		Y	5.70	79.15	20.55		80.0	
		Z	4.72	76.35	19.21		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.16	71.40	17.03	2.23	80.0	± 9.6 %
		Y	4.57	72.84	17.80		80.0	
		Z	4.07	71.21	16.82		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.14	70.99	16.86	2.23	80.0	± 9.6 %
		Y	4.52	72.34	17.60		80.0	
40400		Z	4.04	70.79	16.64		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.95	75.43	19.57	2.23	80.0	± 9.6 %
		Y	5.59	77.40	20.48		80.0	
10.100		Ζ	4.87	75.36	19.51		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.39	71.05	17.97	2.23	80.0	± 9.6 %
		Y	4.67	72.07	18.53		80.0	
40400		Z	4.33	71.01	17.90	0.00	80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.47	70.81	17.90	2.23	80.0	± 9.6 %
		Y	4.74	71.76	18.43		80.0	
10404		Z	4.41	70.77	17.83		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.94	73.38	18.92	2.23	80.0	± 9.6 %
		Y	5.38	74.76	19.60		80.0	
10400		Z	4.87	73.32	18.89		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	4.67	70.17	17.91	2.23	80.0	± 9.6 %
		Y	4.91	70.97	18.36		80.0	
		Z	4.62	70.13	17.86		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.74	70.00	17.86	2.23	80.0	± 9.6 %
		Y	4.96	70.77	18.30		80.0	
		Z	4.68	69.97	17.81		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.42	74.96	19.36	2.23	80.0	± 9.6 %
		Y	5.98	76.57	20.11		80.0	
		Z	5.33	74.86	19.31		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.74	70.64	18.10	2.23	80.0	± 9.6 %
		Y	4.99	71.49	18.58		80.0	
		Z	4.68	70.58	18.06		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.80	70.29	18.01	2.23	80.0	± 9.6 %
		Y	5.03	71.08	18.45		80.0	
		Z	4.74	70.24	17.97		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.26	70.91	15,58	2.23	80.0	± 9.6 %
		Y	4.08	73.99	17.07		80.0	
		Z	3.04	70.05	15.01		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.52	65.21	12.20	2.23	80.0	± 9.6 %
		Y	2.96	67.17	13.35		80.0	
		Ζ	2.32	64.31	11.53		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.46	64.66	11.82	2.23	80.0	± 9.6 %
		Y	2.87	66.51	12.93		80.0	
		Z	2,25	63.75	11.14		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.75	75.65	19.32	2.23	80.0	± 9.6 %
		Y	5.48	77.92	20.36		80.0	
		Z	4.68	75.58	19.22		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.26	71.24	17.39	2.23	80.0	± 9.6 %
		Y	4.61	72.46	18.05		80.0	
		Z	4.19	71.15	17.24		, 80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.30	71.03	17.26	2.23	80.0	± 9.6 %
		Y	4.65	72.20	17.90		80.0	
		Z	4.23	70.93	17.11		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.89	75.24	19.48	2.23	80.0	± 9.6 %
		Y	5.52	77.21	20.39		80.0	
		Z	4.81	75.16	19.42		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.37	70.96	17.92	2.23	80.0	± 9.6 %
		Y	4.66	71.99	18.49		80.0	
		Z	4.31	70.92	17.85		80.0	
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.44	70.72	17.85	2.23	80.0	± 9.6 %
		Y	4.72	71.68	18.38		80.0	
		Z	4.39	70.68	17.78		80.0	
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.37	74.82	19.29	2.23	80.0	± 9.6 %
		Y	5.93	76.44	20.05		80.0	
		Ζ	5.29	74.72	19.25		80.0	
10507- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	X	4.72	70.58	18.07	2.23	80.0	± 9.6 %
AAC								
	Subframe=2,3,4,7,8,9)	Y	4.98	71.44	18.54		80.0	

AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.10 10.00 12.0 00.0 13.8 /s Interval Z 6.41 72.94 18.60 80.0 10.0	10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.78	70.23	17.97	2.23	80.0	± 9.6 %
10509- ICS-FDMA, 100% RB, 15 Z 4.72 70.18 17.93 60.0 AAC MHz, QPSK, UL SUbframe=2,3,4,7,8,9) Y 5.87 74,15 18.60 2.23 60.0 ±9.6 % IDS10- AAC LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QM, UL Subframe=2,3,4,7,8,9) Y 5.81 70.13 17.99 2.23 60.0 ±9.6 % AAC MHz, 16-QM, UL Subframe=2,3,4,7,8,9) Y 5.40 70.44 18.59 80.0 10511- LTE-TDD (SC-FDMA, 100% RB, 15 AAC X 5.12 70.07 17.96 80.0 ±9.6 % Subframe=2,3,4,7,8,9) Y 5.40 70.44 18.29 80.0 ±9.6 % Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ±9.6 % AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.45 74.74 19.13 2.23 80.0 ±9.6 % AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.39 76.43 19.09 80.0			Y	5.02	71.02	18.41		80.0	
16509- LTE-TDD (SC-FDMA, 100% RB, 15 X 5.48 73.02 18.63 2.23 60.0 ± 9.6 % MHz, OPSK, UL SUbframe-2.3,4,7,8,9 Y 5.87 74.15 19.19 60.0 ± 9.6 % AC HTz, 10-QM, UL Z 5.41 72.34 18.60 60.0 ± 9.8 % AC HTz, 10-QM, UL X 5.18 70.13 17.99 2.23 80.0 ± 9.8 % Subframe2.3,4,7,8,9 Y 5.40 70.64 18.29 80.0 ± 9.6 % Subframe2.3,4,7,8,9 Y 5.42 70.47 17.92 80.0 ± 9.6 % MHz, CPGK, UL, Subframe2.3,4,7,8,9 Y 5.42 70.49 18.29 80.0 ± 9.6 % MHz, CPSK, UL, Subframe2.3,4,7,8,9 Y 5.42 70.49 18.29 80.0 ± 9.6 % Subframe2.3,4,7,8,9 Y 5.35 74.74 19.13 2.23 80.0 ± 9.6 % 10514 LTE-TDD (SC-FDMA, 100% RB, 20 X 5.10 70.52 18.1			Z						
Z 5.41 72.94 18.60 80.0 AAC MHz, 16-QAM, UL Subframe=2,3.4,7.8.9) Y 5.18 70.13 17.99 2.23 80.0 2.9.6 % Subframe=2,3.4,7.8.9) Y 5.40 70.84 18.39 80.0 2.9.6 % 10511. LTE-TDD (SC-FDMA, 100% RB, 15 X 5.12 70.70 17.96 80.0 19.6 % AAC MHz, 64-OAM, UL X 5.15 69.76 17.89 60.0 19.6 % 10512. LTE-TDD (SC-FDMA, 100% RB, 20 X 5.15 69.76 17.89 60.0 19.6 % MHz, QPSK, UL Subframe=2,3.4,7,8.9) Y 6.38 76.18 19.80 80.0 19.6 % MAC MHz, 16-QAM, UL Z 5.76 74.42 19.09 80.0 19.6 % Subframe=2,3.4,7.8,9) Y 5.34 71.31 18.56 80.0 19.6 % MHz, 16-QAM, UL Subframe=2,3.4,7.8,9) Y 5.29 70.75 18.40 80.0	10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)					2.23		± 9.6 %
Coston LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.18 70.13 17.99 2.23 80.0 ± 9.6 % ACC MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.12 70.07 17.96 80.0 ± 9.6 % 10510- LTE-TDD (SC-FDMA, 100% RB, 15 X 5.12 70.07 17.96 80.0 ± 9.6 % 30bframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % ACC MHz, 64-CAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % AAC MHz, 64-CAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % AAC MHz, 05C-FDMA, 100% RB, 20 X 5.10 70.42 19.09 80.0 ± 9.6 % AAC MHz, 18-GAM, UL Z 5.03 70.43 18.08 80.0 ± 9.6 % AAC MHz, 40-QAM, UL Z 5.03 70.33 18.00 2.23 80.0 ± 9.6 %			Y	5.87	74.15	19.19		80.0	
10510- AAC LTE-TDD (SC-FDMA, 100% RB, 15 SUbframe=2,3,4,7,8,9) X 5.18 70.13 17.99 2.23 80.0 ± 9.6 % AAC MEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.40 70.84 18.29 80.0 ± 9.6 % MIEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MIEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MIEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.60 80.0 ± 9.6 % MAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.30 70.43 18.08 80.0 ± 9.6 % MAC Subframe=2,3,4,7,8,9) Y 5.30 70.33 18.00 2.23 80.0 ± 9.6 % MAC LTE-TDD (SC-FDMA, 100% RB, 20 X 5.08 70.03 18.00 2.23 80.0 0			Z	5.41	72.94				
Z 5.12 70.07 17.96 60.0 AAC LTE-TDD (SC-FDMA, 100% RB, 15 X 5.21 69.83 17.92 2.23 80.0 ± 9.6 % MHz, 64-OAM, UL Y 5.42 70.49 18.29 80.0 ± 9.6 % 10512- LTE-TDD (SC-FDMA, 100% RB, 20 X 5.85 74.74 19.13 2.23 80.0 ± 9.6 % AAC MHz, 04-OAM, UL Subframe=2,3.4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % AAC Subframe=2,3.4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % MLz, 16-CAM, UL Subframe=2,3.4,7,8,9) Y 5.34 71.31 18.56 80.0 ± 9.6 % Mutz, 64-AAM, UL Subframe=2,3.4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % MAC Subframe=2,3.4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % MAC Subframe=2,3.4,7,8,9) Y 5.29	10510- AAC	MHz, 16-QAM, UL				17.99	2.23		± 9.6 %
10611- LTE-TDD (SC-FDMA, 100% RB, 15 AAC X 5.21 60.83 F.2 17.92 2.23 80.0 ± 9.6 % MAC MLz, 64-CAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.45 74.74 19.13 2.23 80.0 ± 9.6 % AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % MAC MHz, 16-CAM, UL Z 5.76 74.62 19.09 80.0 ± 9.6 % MHz, 16-CAM, UL Z 5.03 70.43 18.08 80.0 ± 9.6 % MHz, 16-CAM, UL Z 5.03 70.43 18.08 80.0 ± 9.6 % MHz, 64-CAM, UL Z 5.08 70.03 18.00 2.23 80.0 ± 9.6 % ML2, 64-CAM, UL Z 5.02 69.96 17.96 80.0 ± 9.6 % MD514- ITE-TDD (SC-FDMA, 100% RB, 20 X 5								80.0	
AAC MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 10512- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.30 2.23 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.09 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.56 80.0 10514- MAC Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.00 80.0 ± 9.6 % 10515- MAC Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- MAC LEE 802.11b WIFI 2.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 ± 9.6 % 10515- MAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 10516- MAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 15	10511							80.0	
Construction Z 5.15 69.78 17.89 80.0 AAC ITE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.85 74.74 19.13 2.23 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 5.10 70.52 18.13 2.23 80.0 ± 9.6 % AAC MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.56 80.0 ± 9.6 % AAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.43 18.00 2.23 80.0 ± 9.6 % MAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.31 18.00 2.23 80.0 ± 9.6 % MAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.75 18.40 80.0 150.0 ± 9.6 % AAC MHz, 64-QAM, UL Subframe=2,3,4,7,8,9 Y 0.93 62.23 13.81 150.0 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y	10511- AAC	MHz, 64-QAM, UL			69.83	17.92	2.23	80.0	± 9.6 %
10512- LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.85 74.74 19.13 2.23 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.66 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10514- Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- AAA IEEE 802.11b WiF12.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 16.40 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.70 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80.0</td><td></td></t<>								80.0	
AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) MHz MLX MUZ MZ S.10 70.52 18.13 2.23 80.0 ± 9.6 % AAC MHz, 64-QAM, UL Z 5.03 70.43 18.00 2.03 80.0 150.0 ± 9.6 % MAA Mbps, 99.0 (duty cycle) Y 5.29 70.75 18.40 80.0 150.0 ± 9.6 % MAA Mbps, 99.0 (duty cycle) 2 0.92 62.37 13.81 150.0 150.0 150.0	10515							80.0	
ZE 5.76 74.62 19.09 80.0 AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 5.10 70.52 18.13 2.23 80.0 ±9.6 % AAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.03 70.43 18.08 80.0 . LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.03 18.00 2.23 80.0 ±9.6 % AAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.03 18.00 2.23 80.0 ±9.6 % AAC MHz, 64-QAM, UL Subframe=2,3,4.7,8,9) Y 5.29 70.75 18.40 80.0 . Color Z 5.02 69.96 17.96 80.0 . . AAA Mbps, 99pc duty cycle) Y 0.92 62.37 13.81 150.0 . . 10516- IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 0.48 66.52 14.26 0.00 150.0 ±9.6 % AAA Mbps, 99pc	10512- AAC					19.13	2.23	80.0	± 9.6 %
10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-GMA, UL Subframe=2,3,4,7,8,9) X 5.10 70.52 18.13 2.23 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-GMA, UL Subframe=2,3,4,7,8,9) Y 5.34 77.131 18.06 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MAz, 64-GMA, UL Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- AAA Mbs, 99pc duty cycle) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- MAA Mbs, 99pc duty cycle) Y 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 13.81 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.66 71.79 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y									
AAC MHz, 16-GAM, UL Subframe=2,3,4,7,8,9) No. A.R. B.R.	10540								
Z 5.03 70.43 18.08 80.0 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 5.08 70.03 18.00 2.23 80.0 ± 9.6 % AAC Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 14.26 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 14.01 150.0 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 150.0 ± 9.6 % AAA <	10513- AAC	MHz, 16-QAM, UL					2.23		± 9.6 %
10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 5.08 70.03 18.00 2.23 80.0 ± 9.6 % 0 Y 5.29 70.75 18.40 80.0 105.0 ± 9.6 % 10515- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % 10516- AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 105.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 10517- IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 4.56 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
AAC MHz, 64-QAM, UL Market Ma	10511								
Z 5.02 69.96 17.96 80.0 10515- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.92 62.37 13.81 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) X 0.76 63.81 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) X 0.75 63.68 15.37 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.66 66.61 16.07 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y	10514- AAC	MHz, 64-QAM, UL			70.03	18.00	2.23	80.0	± 9.6 %
10515- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % 10516- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 0.48 66.52 14.26 0.00 150.0 ± 9.6 % 10517- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 0.48 66.52 14.26 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 X 4.56 66.61 16.05 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y					70.75	18.40		80.0	
AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 2 0.92 62.37 13.81 150.0 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.68 66.52 14.26 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.66 71.79 17.60 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ±9.6 % 10517- IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 X 0.76 63.81 14.01 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ±9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.85 16.27 150.0 I0519- IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 4.76 66.88		-	Z					80.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10515- AAA						0.00		± 9.6 %
10516- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) X 0.48 66.52 14.26 0.00 150.0 ± 9.6 % Y 0.65 71.79 17.60 150.0 150.0 150.0 10517- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 X 0.76 63.81 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.85 16.27 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.12									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40540								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AAA	Mbps, 99pc duty cycle)					0.00		± 9.6 %
10517- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) X 0.76 63.81 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Z 0.75 63.68 13.95 150.0 10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 AAB X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB Y 4.61 66.85 16.27 150.0 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.83 16.12 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.									
AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % 10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % 10520- AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 10520- AAB Mbps, 99pc duty cycle) Y 4.61 66.83 16.12 0.00 150.0 ± 9.6 % 10521- AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.54	10517	1555 802 115 W/i5i 2 4 CHz (DSSS_11					0.00		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AAA						0.00		± 9.6 %
10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.85 16.27 150.0 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % IO519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % IO520- AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % IO520- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) X 4.61 66.83 16.12 0.00 150.0 ± 9.6 % IO520- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.61 66.83 16.12 0.00 150.0 ± 9.6 % IO521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % IO522- AAB Mbps, 99pc duty cycle) Y 4.60 67.09 16.31									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10518- AAB						0.00		± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	4.61	66.85	16.27		150.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Z						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10519- AAB		X	4.76	66.88		0.00		± 9.6 %
10520- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) X 4.61 66.83 16.12 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB Y 4.67 66.81 16.09 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB Y 4.60 67.09 16.31 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB Y 4.60 66.79 16.07 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % IO522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) Y 4.65 67.13 16.37 150.0			Y						
AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.57 66.81 16.09 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) Y 4.60 67.09 16.31 150.0 10522- AAB Y 4.60 67.09 16.31 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB Y 4.65 67.13 16.37 150.0						16.18		150.0	
Z 4.57 66.81 16.09 150.0 10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % Y 4.60 67.09 16.31 150.0 ± 16.00 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.65 67.13 16.37 150.0	10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)					0.00		±9.6 %
10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % Y 4.60 67.09 16.31 150.0 ± 9.6 % Z 4.51 66.79 16.07 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 %									
AAB Mbps, 99pc duty cycle) Y 4.60 67.09 16.31 150.0 Image: Constraint of the state of the s	10524						0.00		
Z 4.51 66.79 16.07 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % Y 4.65 67.13 16.37 150.0 ± 150.0	10521- AAB						0.00		± 9.6 %
10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % Y 4.65 67.13 16.37 150.0 ± 9.6 %							-		
AAB Mbps, 99pc duty cycle) Y 4.65 67.13 16.37 150.0	10522						0.00		
	10522- AAB						0.00		± 9.6 %
			Z	4.65	67.13	16.37 16.15		150.0	

10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.47	66.73	16.00	0.00	150.0	± 9.6 %
		Y	4.52	66.99	16.21		150.0	
		Z	4.52	66.72	15.98		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.44	66.81	16.14	0.00	150.0	± 9.6 %
AAD		Y	4.60	67.07	16.35		450.0	
		Z	4.60				150.0	
10525-		$\frac{2}{X}$		66.79	16.12	0.00	150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)		4.52	65.83	15.72	0.00	150.0	± 9.6 %
		Y	4.57	66.08	15.92		150.0	
		Z	4.49	65.82	15.70		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.70	66.21	15.87	0.00	150.0	± 9.6 %
		Y	4.76	66.48	16.07		150.0	
		Z	4.66	66.20	15.85		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.61	66.17	15.81	0.00	150.0	± 9.6 %
		Y	4.67	66.44	16.02		150.0	
		Z	4.58	66.15	15.78		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.63	66.19	15.85	0.00	150.0	± 9.6 %
		Y	4.69	66.46	16.05		150.0	
		Z	4.60	66.17	15.82		150.0	····
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.63	66.19	15.85	0.00	150.0	± 9.6 %
		Y	4.69	66.46	16.05		150.0	
		Z	4.60	66.17	15.82		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.63	66.31	15.86	0.00	150.0	± 9.6 %
		Y	4.69	66.59	16.07		150.0	
		Z	4.59	66.28	15.83		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.48	66.15	15.79	0.00	150.0	± 9.6 %
		Y	4.55	66.44	16.01		150.0	
		Z	4.45	66.12	15.75		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.64	66.22	15.83	0.00	150.0	± 9.6 %
		Y	4.70	66.49	16.03		150.0	
		Z	4.60	66.20	15.80		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.17	66.38	15.95	0.00	150.0	± 9.6 %
		Y	5.22	66.61	16.12		150.0	
			5.14	66.36	15.93		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.24	66.55	16.02	0.00	150.0	± 9.6 %
		Y	5.29	66.77	16.19		150.0	
		z	5.21	66.54	16.01		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.11	66.49	15.97	0.00	150.0	± 9.6 %
		Y	5.16	66.73	16.15		150.0	
		Z	5.07	66.46	15.95		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.17	66.48	15.97	0.00	150.0	± 9.6 %
		Y	5.22	66.71	16.14		150.0	
40500		Z	5.14	66.45	15.95		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.27	66.54	16.05	0.00	150.0	± 9.6 %
		Y	5.32	66.77	16.22		150.0	
		Z	5.23	66.49	16.02		150.0	
10540 . AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.19	66.52	16.05	0.00	150.0	± 9.6 %
		Y	5.24	66.75	16.22		150.0	····
	I COMPANY CONTRACTOR C	Z	5.16					

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	5.16	66.38	15.97	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)							//
		Y	5.21	66.61	16.15		150.0	
		Z	5.13	66.35	15.95		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.32	66.47	16.04	0.00	150.0	± 9.6 %
		Y	5.37	66.69	16.20		150.0	
		Z	5.29	66.44	16.02		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.41	66.52	16.08	0.00	150.0	± 9.6 %
		Y	5.45	66.73	16.24		150.0	
		Z	5.38	66.51	16.07		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	Х	5.47	66.50	15.95	0.00	150.0	± 9.6 %
		Y	5.51	66.71	16.11		150.0	
		Z	5.45	66.47	15.93		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.69	66.97	16.13	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.73	67.17	16.28		150.0	
		Z	5.66	66.95	16.12		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.56	66.76	16.04	0.00	150.0	± 9.6 %
		Y	5.60	66.98	16.21		150.0	
105/-		Z	5.52	66.71	16.02		150.0	
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.64	66.85	16.08	0.00	150.0	± 9.6 %
		Y	5.69	67.07	16.24		150.0	
		Z	5.60	66.78	16.04		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.00	68.11	16.68	0.00	150.0	± 9.6 %
		Y	6.04	68.30	16.83		150.0	
		Z	5.95	68.00	16.63		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.58	66.74	16.04	0.00	150.0	± 9.6 %
		Y	5.62	66.95	16.20		150.0	
		Z	5.55	66.72	16.03		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.58	66.77	16.02	0.00	150.0	± 9.6 %
		Y	5.63	67.00	16.18		150.0	
		Z	5.55	66.74	16.00		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.49	66.55	15.92	0.00	150.0	± 9.6 %
		Y	5.53	66.77	16.08		150.0	
		Z	5.46	66.52	15.90		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.58	66.61	15.98	0.00	150.0	± 9.6 %
		Y	5.63	66.83	16.14		150.0	
		Z	5.55	66.57	15.96		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.88	66.89	16.06	0.00	150.0	± 9.6 %
		Y	5.92	67.10	16.21		150.0	
		Z	5.86	66.86	16.04		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.03	67.23	16.21	0.00	150.0	± 9.6 %
		Y	6.07	67.43	16.35		150.0	
1055-		Z	6.00	67.20	16.19		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.04	67.26	16.21	0.00	150.0	± 9.6 %
		Y	6.08	67.46	16.36		150.0	
1		Z	6.02	67.23	16.20		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.01	67.18	16.19	0.00	150.0	± 9.6 %
		Y	6.06	67.39	16.35		150.0	
		Z	5.98	67.14	16.17		150.0	

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.07	67.37	16.30	0.00	150.0	± 9.6 %
		Y	6.12	67.58	16.46		150.0	
		Z	6.04	67.31	16.27		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.06	67.18	16.25	0.00	150.0	± 9.6 %
		Y	6.10	67.40	16.41		150.0	
		Z	6.03	67.14	16.23		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.98	67.16	16.28	0.00	150.0	± 9.6 %
		Y	6.02	67.38	16.43		150.0	
		Z	5.95	67.13	16.26		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.14	67.65	16.52	0.00	150.0	± 9.6 %
		Y	6.18	67.88	16.69		150.0	
		Z	6.10	67.57	16.48		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.53	68.40	16.85	0.00	150.0	± 9.6 %
		Y	6.57	68.59	17.00		150.0	
		Z	6.44	68.19	16.75		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.91	66.77	16.29	0.46	150.0	± 9.6 %
	····	Y	4.96	67.01	16.49		150.0	
		Z	4.88	66.76	16.26		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	Х	5.15	67.23	16.61	0.46	150.0	± 9.6 %
		Y	5.20	67.46	16.79		150.0	
		Z	5.11	67.20	16.58		150.0	····
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.98	67.08	16.43	0.46	150.0	± 9.6 %
		Y	5.04	67.33	16.62		150.0	
		Z	4.94	67.05	16.40		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.00	67.42	16.74	0.46	150.0	± 9.6 %
		Y	5.05	67.64	16.92		150.0	
		Z	4.96	67.39	16.72		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.90	66.88	16.22	0.46	150.0	± 9.6 %
		Y	4.96	67.15	16.44		150.0	
		Z	4.87	66.87	16.19		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.95	67.46	16.77	0.46	150.0	± 9.6 %
		Y	5.00	67.68	16.94		150.0	
		Z	4.91	67.46	16.76		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.99	67.34	16.73	0.46	150.0	±9.6 %
		Y	5.04	67.57	16.91		150.0	
		Z	4.95	67.33	16.71		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.25	64.93	15.40	0.46	130.0	± 9.6 %
		Y	1.32	65.99	16.25		130.0	
		Z	1.24	64.84	15.31		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.27	65.48	15.72	0.46	130.0	± 9.6 %
		Y	1.35	66.62	16.60		130.0	
		Z	1.26	65.38	15.63		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	2.10	81.92	20.57	0.46	130.0	± 9.6 %
		Y	6.18	99.59	26.88		130.0	
		Z	1.98	81.02	20.18		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.40	70.72	18.14	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.59	73.16	19.61		130.0	
		Z	1.38	70.53	18.01			

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.72	66.64	16.39	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)				10.00	0.40	100.0	1 0.0 78
		Y	4.77	66.88	16.58		130.0	
		Z	4.69	66.63	16.36		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.74	66.78	16.44	0.46	130.0	± 9.6 %
		Y	4.79	67.02	16.63		130.0	
		Z	4.71	66.78	16.41		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.96	67.10	16.62	0.46	130.0	± 9.6 %
		Y	5.01	67.33	16.80		130.0	
		Z	4.92	67.08	16.59		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.85	67.23	16.70	0.46	130.0	± 9.6 %
		Y	4.90	67.46	16.88		130.0	
40570		Z	4.81	67.21	16.67		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.63	66.62	16.07	0.46	130.0	± 9.6 %
	•	Y	4.70	66.91	16.30		130.0	
10590		Z	4.60	66.59	16.04	0.15	130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.68	66.64	16.09	0.46	130.0	± 9.6 %
		Y	4.74	66.93	16.33		130.0	
10501		Z	4.64	66.62	16.06		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.75	67.28	16.64	0.46	130.0	± 9.6 %
		Y	4.81	67.52	16.83		130.0	
10500		Z	4.71	67.26	16.61		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.59	66.41	15.89	0.46	130.0	± 9.6 %
		Y	4.65	66.72	16.14		130.0	
		Z	4.55	66.37	15.85		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.72	66.64	16.39	0.46	130.0	±9.6 %
		Y	4.77	66.88	16.58		130.0	
		Z	4.69	66.63	16.36		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.74	66.78	16.44	0.46	130.0	±9.6 %
		Y	4.79	67.02	16.63		130.0	
		Z	4.71	66.78	16.41		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.96	67.10	16.62	0.46	130.0	± 9.6 %
		Y	5.01	67.33	16.80		130.0	
		Z	4.92	67.08	16.59		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.85	67.23	16.70	0.46	130.0	±9.6 %
		Y	4.90	67.46	16.88		130.0	
10505		Z	4.81	67.21	16.67		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.63	66.62	16.07	0.46	130.0	± 9.6 %
		Y	4.70	66.91	16.30		130.0	
1		Z	4.60	66.59	16.04		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.68	66.64	16.09	0.46	130.0	± 9.6 %
		Y	4.74	66.93	16.33		130.0	
10555		Z	4.64	66.62	16.06		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.75	67.28	16.64	0.46	130.0	±9.6 %
		Y	4.81	67.52	16.83		130.0	
		Z	4.71	67.26	16.61		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.59	66.41	15.89	0.46	130.0	± 9.6 %
		Y	4.65	66.72	16.14		130.0	
		Z	4.55	66.37	15.85		130.0	

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.87	66.69	16.48	0.46	130.0	± 9.6 %
=		Y	4.92	66.92	16.67		130.0	
		Z	4.84	66.69	16.46		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.03	67.03	16.61	0.46	130.0	± 9.6 %
		Y	5.08	67.26	16,79		130.0	
		Z	5.00	67.02	16.59		130.0	
10593-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.96	66.97	16.51	0.46	130.0	± 9.6 %
AAB	MCS2, 90pc duty cycle)	Y	5.01	67.21	16.70	0.40	130.0	10.0 %
		Z	4.92	66.95	16.48		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.01	67.11	16.65	0.46	130.0	± 9.6 %
		Y	5.06	67.34	16.83		130.0	
		Z	4.97	67.10	16.62		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.98	67.08	16.55	0.46	130.0	± 9.6 %
		Y	5.04	67.32	16.74		130.0	
		Z	4.94	67.06	16.53		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.92	67.08	16.55	0.46	130.0	± 9.6 %
		Y	4.98	67.33	16.75		130.0	
		Z	4.88	67.06	16.53		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.87	67.00	16.45	0.46	130.0	± 9.6 %
		Y	4.93	67.26	16.65		130.0	
		Z	4.83	66.97	16.42		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.85	67.21	16.69	0.46	130.0	±9.6 %
		Y	4.90	67.45	16.87		130.0	
		Z	4.81	67.18	16.66		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.55	67.30	16.72	0.46	130.0	± 9.6 %
		Y	5.59	67.50	16.88		130.0	
		Z	5.52	67.28	16.71		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.76	67.97	17.04	0.46	130.0	± 9.6 %
		Y	5.80	68.15	17.19		130.0	
		Z	5.71	67.90	16.99		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.61	67.58	16.85	0.46	130.0	±9.6 %
		Y	5.65	67.77	17.00		130.0	
		Z	5.57	67.54	16.83		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.69	67.58	16.77	0.46	130.0	± 9.6 %
		Y	5.73	67.78	16.94		130.0	
		Z	5.66	67.57	16.76		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.77	67.85	17.03	0.46	130.0	± 9.6 %
		Y	5.81	68.03	17.18		130.0	
		Z	5.73	67.82	17.01		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.55	67.27	16.73	0.46	130.0	± 9.6 %
		Y	5.60	67.47	16.89		130.0	
		Z	5.52	67.24	16.71		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.69	67.68	16.94	0.46	130.0	± 9.6 %
		Y	5.73	67.87	17.10		130.0	
		Z	5.66	67.69	16.94		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.43	67.03	16.48	0.46	130.0	± 9.6 %
		Y'	5.48	67.26	16.66		130.0	
		Z	5.41	67.03	16.47		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.70	65.95	16.07	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		Y	4.75	66.19	16.26		130.0	
10608-		Z	4.67	65.95	16.05	0.40	130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.89	66.37	16.24	0.46	130.0	± 9.6 %
		Y	4.95	66.62	16.43		130.0	
10609-		Z	4.86	66.36	16.22		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.78	66.23	16.09	0.46	130.0	± 9.6 %
		Y	4.84	66.50	16.29		130.0	
10610-	IEEE 802.11ac WiFi (20MHz, MCS3,	Z	4.75	66.21	16.06		130.0	
AAB	90pc duty cycle)	X	4.83	66.38	16.24	0.46	130.0	±9.6 %
· · · · · ·		Y	4.89	66.63	16.43		130.0	
10611-	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.80	66.36	16.22	0.40	130.0	
AAB	90pc duty cycle)	X	4.75	66.21	16.10	0.46	130.0	± 9.6 %
		Y	4.81	66.47	16.30		130.0	
10612-		Z	4.72	66.18	16.07	0.45	130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.77	66.37	16.14	0.46	130.0	± 9.6 %
		Y	4.83	66.65	16.36		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z	4.73	66.35	16.12	0.10	130.0	
10613- AAB	90pc duty cycle)	X	4.78	66.28	16.05	0.46	130.0	±9.6 %
		Y	4.84	66.57	16.26		130.0	
10614-		Z	4.74	66.25	16.02	0.40	130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.71	66.42	16.24	0.46	130.0	± 9.6 %
		Y	4.77	66.68	16.44		130.0	
10015		Z	4.67	66.39	16.22		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.76	66.06	15.90	0.46	130.0	± 9.6 %
		Y	4.82	66.34	16.11		130.0	
10010		Z	4.72	66.04	15.87		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.36	66.52	16.31	0.46	130.0	± 9.6 %
		Y	5.40	66.73	16.47		130.0	
		Z	5.33	66.49	16.29		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.42	66.67	16.35	0.46	130.0	± 9.6 %
		Y	5.47	66.87	16.51		130.0	
		Z	5.40	66.69	16.36		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.31	66.69	16.37	0.46	130.0	± 9.6 %
		Y	5.36	66.91	16.54		130.0	
40010		Z	5.28	66.66	16.36		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.34	66.55	16.24	0.46	130.0	± 9.6 %
		Y	5.39	66.77	16.41		130.0	
10000		Z	5.31	66.53	16.23		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.44	66.61	16.33	0.46	130.0	± 9.6 %
		Y	5.49	66.85	16.50		130.0	
10001			5.40	66.57	16.30		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.41	66.65	16.46	0.46	130.0	± 9.6 %
		Y	5.46	66.85	16.61		130.0	
40000		Z	5.38	66.63	16.44		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.43	66.83	16.54	0.46	130.0	± 9.6 %
		Y	5.47	67.03	16.69		130.0	
		Z	5.41	66.83	16.53		130.0	

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	E 94	66.27	10.00	0.40	100.0	
AAB	90pc duty cycle)		5.31	66.37	16.20	0.46	130.0	± 9.6 %
		Y	5.36	66.60	16.37		130.0	
		Z	5.28	66.35	16.18		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.51	66.60	16.37	0.46	130.0	± 9.6 %
		Y	5.55	66.80	16.53		130.0	
		Z	5.48	66.57	16.35		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.96	67.84	17.04	0.46	130.0	± 9.6 %
		Y	6.00	68.03	17.20		130.0	
		Z	5.91	67.77	17.00		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.63	66.56	16.25	0.46	130.0	± 9.6 %
		Y	5.67	66.76	16.40		130.0	
10007		Z	5.61	66.54	16.24	0.40	130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.91	67.22	16.54	0.46	130.0	± 9.6 %
		Y	5.95	67.40	16.68		130.0	
40000		Z	5.89	67.20	16.54		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.69	66.73	16.24	0.46	130.0	± 9.6 %
		Y	5.74	66.95	16.40		130.0	
10000		Z	5.67	66.70	16.22		130.0	
10629- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.78	66.80	16.27	0.46	130.0	± 9.6 %
		Y	5.82	67.01	16.42		130.0	
40000		Z	5.76	66.81	16.27		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.42	68.87	17.30	0.46	130.0	± 9.6 %
		Y	6.45	69.07	17.46		130.0	
		Z	6.35	68.76	17.24		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.17	68.24	17.17	0.46	130.0	± 9.6 %
		Y	6.22	68.45	17.31		130.0	
		Z	6.11	68.14	17.12		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	×	5.86	67.20	16.67	0.46	130.0	± 9.6 %
		Y	5.89	67.37	16.79		130.0	
		Z	5.84	67.20	16.66		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.75	66.86	16.33	0.46	130.0	± 9.6 %
		Y	5.80	67.09	16.49		130.0	
		Z	5.72	66.81	16.30		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.73	66.86	16.39	0.46	130.0	± 9.6 %
		Y	5.78	67.07	16.54		130.0	
40005		Z	5.70	66.82	16.36		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.63	66.29	15.85	0.46	130.0	± 9.6 %
		Y	5.69	66.55	16.05		130.0	
40000		Z	5.60	66.24	15.82		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.06	66.98	16.37	0.46	130.0	± 9.6 %
		Y	6.09	67.16	16.51		130.0	
40007		Z	6.04	66.95	16.36		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.23	67.40	16.57	0.46	130.0	± 9.6 %
		Y	6.27	67.58	16.70		130.0	
		Z	6.21	67.38	16.55		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.23	67.37	16.53	0.46	130.0	± 9.6 %
		Y	6.27	67.56	16.67		130.0	
		Z	6.21	67.35	16.52		130.0	

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	6.21	67.31	16.55	0.46	130.0	± 9.6 %
AAC	90pc duty cycle)					0.10	100.0	1 0.0 %
····		Y	6.25	67.51	16.69		130.0	
10640-		Z	6.18	67.27	16.52		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.23	67.39	16.53	0.46	130.0	± 9.6 %
· · · · · · · · ·		Y	6.28	67.61	16.69		130.0	
10641-		Z	6.20	67.33	16.50		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.24	67.19	16.45	0.46	130.0	± 9.6 %
		Y	6.28	67.39	16.60		130.0	
10642-		Z	6.22	67.18	16.44		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.29	67.45	16.73	0.46	130.0	± 9.6 %
		Y	6.33	67.63	16.87		130.0	
10643-		Z	6.26	67.41	16.72		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.13	67.18	16.51	0.46	130.0	± 9.6 %
		Y	6.18	67.38	16.66		130.0	
400.1		Z	6.11	67.15	16.49		130.0	
10644- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.35	67.83	16.86	0.46	130.0	± 9.6 %
		Y	6.40	68.06	17.03		130.0	
10015		Z	6.30	67.74	16.80		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.89	68.98	17.38	0.46	130.0	± 9.6 %
		Y	6.90	69.10	17.50		130.0	
		Z	6.83	68.87	17.33		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	Х	48.50	125.76	41.37	9.30	60.0	± 9.6 %
		Y	90.47	140.91	45.72		60.0	
		Z	50.32	127.46	41.96		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	Х	48.77	126.82	41.82	9.30	60.0	±9.6 %
		Y	98.14	143.92	46.67		60.0	
		Z	49.92	128.24	42.34		60.0	
10648- AAA	CDMA2000 (1x Advanced)	Х	0.66	62.51	9.96	0.00	150.0	±9.6 %
		Y	0.73	63.91	11.18		150.0	
		Z	0.63	62.25	9.61		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.17	68.03	16.99	2.23	80.0	±9.6 %
		Y	4.34	68.67	17.39		80.0	
		Z	4.13	68.01	16.93		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	Х	4.68	67.42	17.15	2.23	80.0	±9.6 %
		Y	4.82	67.93	17.48		80.0	
		Z	4.65	67.40	17.11		80.0	
10654-	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1,	X	4.64	67.10	17.16	2.23	80.0	±9.6 %
	Clipping 44%)							
	Clipping 44%)	Y	4.76	67.59	17.48		80.0	
	Clipping 44%)	Y Z	4.76 4.61	67.59 67.07	17.48 17.13		80.0 80.0	
AAB 10655- AAB	Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X	4.76 4.61 4.70	67.59 67.07 67.12	17.48 17.13 17.21	2.23	80.0 80.0 80.0	± 9.6 %
AAB 10655-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,	Z X Y	4.61 4.70 4.82	67.07 67.12 67.61	17.13 17.21 17.53	2.23	80.0 80.0 80.0	± 9.6 %
AAB 10655- AAB 10658-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,	Z X	4.61 4.70	67.07 67.12	17.13 17.21	2.23	80.0 80.0	± 9.6 %
AAB 10655- AAB 10658-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X Y Z	4.61 4.70 <u>4.82</u> 4.67	67.07 67.12 67.61 67.08	17.13 17.21 17.53 17.17		80.0 80.0 80.0 80.0 50.0	
AAB 10655-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X Y Z X Y	4.61 4.70 4.82 4.67 17.27 16.02	67.07 67.12 67.61 67.08 91.20 90.22	17.13 17.21 17.53 17.17 23.98 23.99		80.0 80.0 80.0 50.0 50.0	
AAB 10655- AAB 10658- AAA 10659-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X Y Z X	4.61 4.70 4.82 4.67 17.27	67.07 67.12 67.61 67.08 91.20	17.13 17.21 17.53 17.17 23.98		80.0 80.0 80.0 80.0 50.0	
AAB 10655- AAB 10658- AAA	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%)	Z X Y Z X Y Z	4.61 4.70 4.82 4.67 17.27 16.02 18.59	67.07 67.12 67.61 67.08 91.20 90.22 92.23	17.13 17.21 17.53 17.17 23.98 23.99 24.12	10.00	80.0 80.0 80.0 50.0 50.0 50.0	± 9.6 %

February 13, 2018

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	112.03	25.82	3.98	80.0	± 9.6 %
		Y	100.00	113.99	26.86		80.0	
		Z	100.00	111.43	25.48		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	111.06	24.05	2.22	100.0	± 9.6 %
		Y	100.00	114.62	25.75		100.0	
		Z	100.00	110.31	23.67		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	100.00	108.64	21.32	0.97	120.0	± 9.6 %
		Y	100.00	117.33	25.06		120.0	
		Z	100.00	107.31	20.72		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

· · · · · ·

Certificate No: ES3-3318_Sep17

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3318	···· · ·	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes		36/03/2017
Calibration date:	September 22, 2017		10 (-
This calibration certificate doc The measurements and the u	uments the traceability to national standards, which realize the physical units of mean ncertainties with confidence probability are given on the following pages and are par	asurements (SI). rt of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

-	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	OH-
	····· · · · ·		Je Gra
Approved by:	Katja Pokovic	Technical Manager	PORC
			1205
			Issued: September 22, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

٤.,

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	l rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization & = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

; ; ; ;

Probe ES3DV3

SN:3318

Manufactured: Repaired: Calibrated:

January 10, 2012 September 18, 2017 September 22, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.02	1.12	0.98	± 10.1 %
DCP (mV) ^B	103.7	104.0	102.5	

Modulation Calibration Parameters

UID	Communication System Name		AdB	B dB√μV	C	D dB	VR mV	Unc ^t (k=2)
0	CW	x	0.0	0.0	1.0	0.00	183.4	±3.5 %
		Y	0.0	0.0	1.0		193.5	
		Z	0.0	0.0	1.0		183.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	40.36	285.5	34.97	23.53	0.939	5.100	1.568	0.156	1.011
Y	40.15	284.7	34.96	25.8	1.330	5.092	1.283	0.265	1.008
Z	38.32	269.2	34.28	24.09	0.917	5.100	0.995	0.237	1.007

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E² field uncertainty inside TSL (see Pages 5 and 6).

^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

		ginenia						
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89,	6.72	6.72	6.72	0.80	1.15	± 12.0 %
835	41.5	0.90	6.42	6.42	6.42	0.71	1.26	± 12.0 %
1750	40.1	1.37	5.50	5.50	5.50	0.49	1.50	± 12.0 %
1900	40.0	1.40	5.31	5.31	5.31	0.65	1.29	± 12.0 %
2300	39.5	1.67	4.96	4.96	4.96	0.72	1.27	± 12.0 %
2450	39.2	1.80	4.71	4.71	4.71	0.77	1.26	± 12.0 %
2600	39.0	1.96	4.58	4.58	4.58	0.75	1.32	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

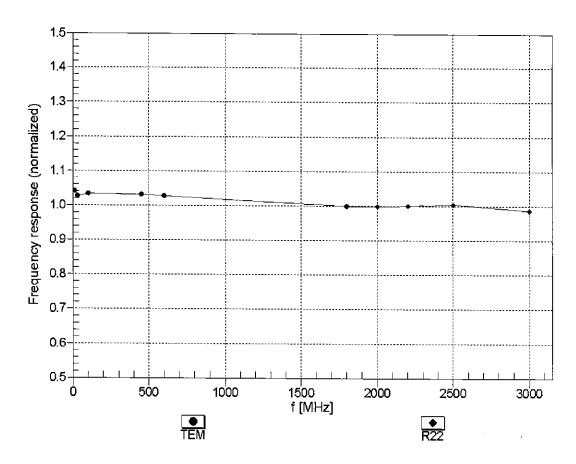
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

¹ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

.....

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

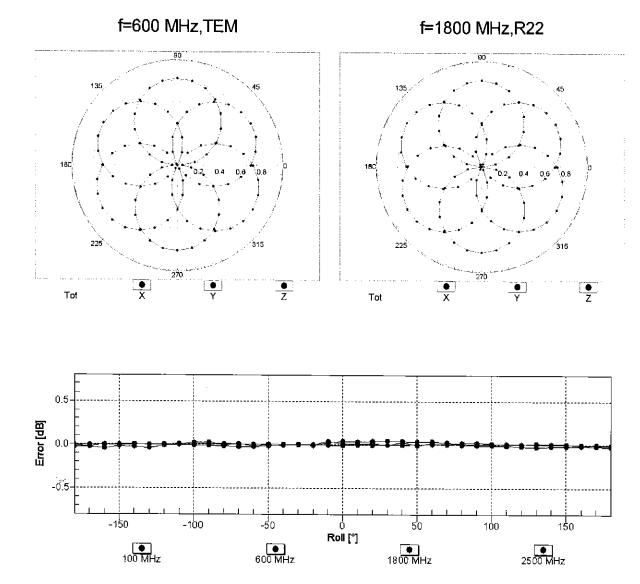

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.46	6.46	6.46	0.80	1.21	± 12.0 %
835	55.2	0.97	6.32	6.32	6.32	0.80	1.20	± 12.0 %
1750	53.4	1.49	5.18	5.18	5.18	0.65	1.36	± 12.0 %
1900	53.3	1.52	4.96	4.96	4.96	0.57	1.49	± 12.0 %
2300	52.9	1.81	4 .71	4.71	4.71	0.73	1.33	± 12.0 %
2450	52.7	1.95	4.55	4.55	4.55	0.80	1.12	± 12.0 %
2600	52.5	2.16	4.34	4.34	4.34	0.80	1.13	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

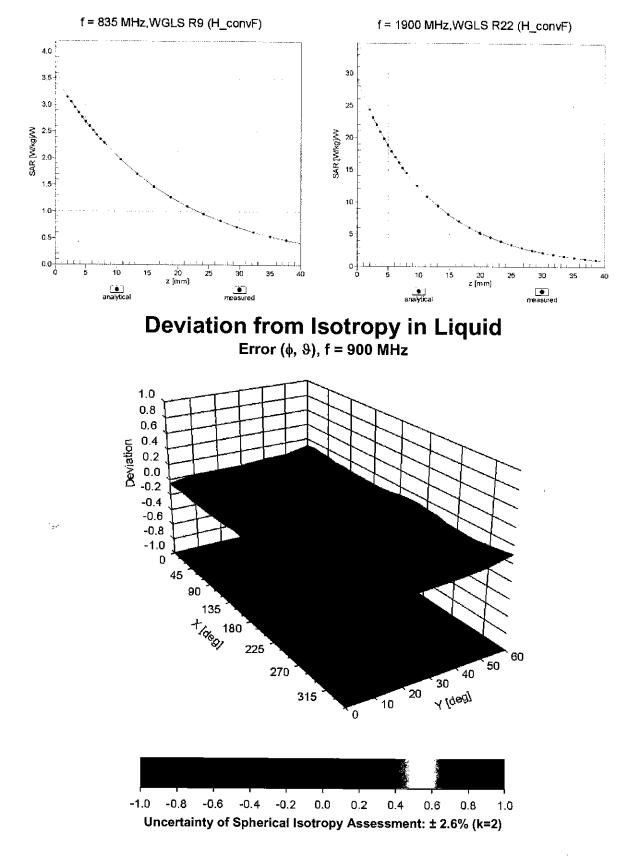
; ; ;

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3318_Sep17

; -; -; -

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

. مو s i Fil

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	80.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

يو آ

Ī

; -; ; ; ;

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	Ċ	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	183.4	± 3.5 %
		Y	0.00	0.00	1.00		193.5	
10010-		Z	0.00	0.00	1.00		183.0	
CAA	SAR Validation (Square, 100ms, 10ms)	X	100.00	113.13	27.11	10.00	25.0	± 9.6 %
		Y	56.27	106.32	26.04		25.0	
10011-	UMTS-FDD (WCDMA)	Z X	48.42	102.92	24.36		25.0	
CAB			2.66	86.53	24.90	0.00	150.0	± 9.6 %
		Y	1.68	77.14	20.67		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	1.29	72.20 68.78	18.01	0.44	150.0	
CAB	Mbps)				18.94	0.41	150.0	± 9.6 %
		<u>Y</u>	1.42	67.66	17.93		150.0	
10013-		<u>Z</u>	1.34	66.38	16.88		150.0	
CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.02	68.02	18.09	1.46	150.0	± 9.6 %
		Y	5.02	67.88	17.89		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z	4.94	67.70	17.67		150.0	
DAC		X	100.00	121.76	31.97	9.39	50.0	±9.6 %
		Y	100.00	121.57	32.33		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	100.00	120.24	31.25		50.0	
DAC		×	100.00	121.43	31.86	9.57	50.0	± 9.6 %
		<u> Y</u>	100.00	121.34	32.26		50.0	
10024-	GPRS-FDD (TDMA, GMSK, TN 0-1)	Z	100.00	119.95	31.15	0.50	50.0	
DAC		X	100.00	120.99	30.63	6.56	60.0	±9.6%
		Y	100.00	119.61	30.34		60.0	
10025-	EDGE-FDD (TDMA, 8PSK, TN 0)	Z	100.00	118.45	29.44		60.0	
DAC		X	27.34	129.78	51.29	12.57	50.0	± 9.6 %
		Y_	16.72	108.51	42.49		50.0	
10026-	EDGE-FDD (TDMA, 8PSK, TN 0-1)	Z X	41.36	141.52	54.29	0.50	50.0	
DAC			51.1 1	136.85	47.83	9.56	60.0	±9.6 %
		<u> </u>	25.23	114.58	40.30		60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z X	34.77	125.06	43.92	4.00	60.0	
DAC			100.00	123.21	30.86	4.80	80.0	±9.6 %
<u> </u>		Y	<u> 100.0</u> 0	120.40	29.90		80.0	
10000		<u>Z</u>	100.00	119.24	29.05		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	100.00	127.88	32.20	3.55	100.0	±9.6 %
		Y	100.00	123.11	30.36		100.0	
10029-		Z	100.00	121.73	29.45		100.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	16.47	106.41	37.26	7.80	80.0	±9.6 %
		Y	13.16	98.31	33.75		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.79 100.00	100.84 120.38	34.87 29.87	5.30	80.0 70.0	± 9.6 %
CAA								
		Y	100.00	118.42	29.28		70.0	
10031-	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Z	100.00 100.00	117.17	28.39	1.00	70.0	
CAA				140.58	36.01	1.88	100.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	129.80	31.70		100.0	
		Z	100.00	126.35	29.95		100.0	

з

September 22, 2017

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	168.14	46.04	1.17	100.0	± 9.6 %
		<u> </u>						
		Y	100.00	146.16	37.32		100.0	
		Z	100.00	139.03	34.08		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	100.00	128.00	34.78	5.30	70.0	± 9.6 %
		Υ	100.00	125.47	33.78		70.0	
		Ζ	100.00	124.94	33.27		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	х	100.00	127.76	32.85	1.88	100.0	±9.6 %
		Y	100.00	124.38	31.40		100.0	
		Z	100.00	122.39	30.30	· · · ·	100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	100.00	129.00	32.88	1.17	100.0	± 9.6 %
		Y	100.00	125.22	31.24		100.0	
		Z	42.89	111.69	27.45		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	x	100.00	128.35	34.94	5.30	70.0	± 9.6 %
		Y	100.00	125.78	33.93		70.0	
		Ż	100.00	125.27	33.42		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	100.00	127.83	32.85	1.88	100.0	± 9.6 %
		Y	100.00	124.40	31.38		100.0	
		z	100.00	122.41	30.28	+	100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	100.00	129.90	33.29	1.17	100.0	± 9.6 %
CAA		Ŷ	100.00	126.04	31.61		100.0	
		Z	46.73	113.50	28.05			
10039-	CDMA2000 (1xRTT, RC1)	X				0.00	100.0	
CAB			100.00	131.54	33.19	0.00	150.0	± 9.6 %
		Y	52.05	119.24	29.67		150.0	
		Z	3.76	82.84	19.15		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	Х	100.00	118.03	29.44	7.78	50.0	±9.6 %
		Y	100.00	117.44	29.54		50.0	
		Ζ	100.00	116.07	28.52		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	105.46	9.85	0.00	150.0	± 9.6 %
		Y	0.03	60.00	39.49		150.0	
		Z	0.02	60.00	28.89		150.0	-
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	100.00	123.25	33.96	13.80	25.0	± 9.6 %
		Ý	100.00	123.00	34.45	1	25.0	
		Ż	100.00	122.08	33.38	ĺ	25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	121.02	31.95	10.79	40.0	±9.6 %
		Y	100.00	121.43	32,63		40.0	
		Ζ	100.00	119.80	31.36	i	40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	100.00	126.02	35.11	9.03	50.0	± 9.6 %
		Y	69.75	118.57	33.24		50.0	i
		Z	100.00	124.37	34.25		50.0	
		~	100.00					
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	9.73	93.83	32.07	6.55	100.0	± 9.6 %
	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X Y	9.73 8.94	93.83 89.89	32.07 29.98	6.55	100.0	±9.6 %
		X Y Z	9.73	93.83		6.55		± 9.6 %
	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X Y	9.73 8.94	93.83 89.89	29.98	0.61	100.0	± 9.6 %
DAC 10059-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	X Y Z	9.73 8.94 8.70 1.70	93.83 89.89 90.23 72.06	29.98 30.24 20.55		100.0 100.0 110.0	
DAC 10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	X Y Z X	9.73 8.94 8.70 1.70 1.64	93.83 89.89 90.23 72.06 70.58	29.98 30.24 20.55 19.34		100.0 100.0 110.0 110.0	
DAC 10059- CAB 10060-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X Y Z X	9.73 8.94 8.70 1.70	93.83 89.89 90.23 72.06	29.98 30.24 20.55		100.0 100.0 110.0	
DAC 10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X Y Z X Y Z	9.73 8.94 8.70 1.70 <u>1.64</u> 1.50	93.83 89.89 90.23 72.06 70.58 68.77	29.98 30.24 20.55 19.34 18.10	0.61	100.0 100.0 110.0 110.0 110.0 110.0	± 9.6 %