

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 Bluetooth

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 9/21 - 10/22/2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1809210181-07.A3L

FCC ID:

A3LSMJ260T1

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: Max. RF Output Power: Frequency Range: Type of Modulation: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification SM-J260T1 Portable Handset 9.55 mW (9.8 dBm) Peak Conducted 2402 - 2480MHzGFSK, $\pi/4$ -DQPSK, 8DPSK FCC Part 15 Spread Spectrum Transmitter (DSS) Part 15 Subpart C (15.247) ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 1 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 1 of 57
© 2018 PCTEST Engineering La	horatory Inc			V/ 8 5 08/20/2018

TABLE OF CONTENTS

1.0	INTF	RODUCTION	. 3
	1.1	Scope	3
	1.2	PCTEST Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PRO	DUCT INFORMATION	. 4
	2.1	Equipment Description	4
	2.2	Device Capabilities	4
	2.3	Test Configuration	4
	2.4	EMI Suppression Device(s)/Modifications	4
3.0	DES	CRIPTION OF TESTS	. 5
	3.1	Evaluation Procedure	5
	3.2	AC Line Conducted Emissions	5
	3.3	Radiated Emissions	6
	3.4	Environmental Conditions	6
4.0	ANT	ENNA REQUIREMENTS	. 7
5.0	MEA	SUREMENT UNCERTAINTY	. 8
6.0	TES	T EQUIPMENT CALIBRATION DATA	. 9
7.0	TES	T RESULTS	10
	7.1	Summary	.10
	7.2	20dB Bandwidth Measurement	.11
	7.3	Output Power Measurement	.17
	7.4	Band Edge Compliance	.28
	7.5	Carrier Frequency Separation	.31
	7.6	Time of Occupancy	.33
	7.7	Number of Hopping Channels	.35
	7.8	Conducted Spurious Emissions	.37
	7.9	Radiated Spurious Emission Measurements – Above 1GHz	.41
	7.10	Radiated Restricted Band Edge Measurements	49
	7.11	Radiated Spurious Emissions Measurements – Below 1GHz	.50
	7.12	Line Conducted Measurement Data	54
8.0	CON	CLUSION	57

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 2 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST is an ISO 17025-2005 accredited test facility under the National Voluntary Laboratory Accreditation Program (NVLAP) with lab code 100431-0 for Specific Absorption (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 3 of 57
2018 PCTEST Engineering Laboratory. Inc.			V 8.5 08/29/2018	

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMJ260T1**. The test data contained in this report pertains only to the emissions due to the EUT's Bluetooth transmitter.

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - A) The hopping sequence is pseudorandom
 - B) All channels are used equally on average
 - C) The receiver input bandwidth equals the transmit bandwidth
 - D) The receiver hops in sequence with the transmit signal
- 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.
- 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

Test Device Serial No.: 17909, 18048, 24723, 18006, 14602

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE)

Ch.	Frequency (MHz)				
00	2402				
:					
39	2441				
:	:				
78	2480				

Table 2-1. Frequency/ Channel Operations

Note: This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the 2400 – 2483.5MHz band.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was also used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 4 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that the cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.12. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 5 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 5 of 57
© 2018 PCTEST Engineering La	V 8 5 08/29/2018			

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 6 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 6 of 57
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.5 08/29/2018

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 7 of 57
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.5 08/29/2018

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 9 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 8 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	BT1	Bluetooth Cable Set	1/23/2018	Annual	1/23/2019	BT1
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
Amplifier Research	PM2002	Power Meter	11/29/2017	Annual	11/29/2018	324153
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	6/7/2018	Triennial	6/7/2021	9203-2178
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
Keysight Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	3/20/2018	Annual	3/20/2019	MY49430494
Keysight Technologies	N9030A	PXA Signal Analyzer	8/6/2018	Annual	8/6/2019	MY54490576
Mini Circuits	TVA-11-422	RF Power Amp		N/A		
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		836536/0005
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/9/2018	Annual	8/9/2019	100348
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/25/2018	Annual	6/25/2019	102133
Rohde & Schwarz	SMB100A03	SMB100A Signal Generator	5/30/2018	Annual	5/30/2019	180862
Rohde & Schwarz	TC-TA18	Cross-Pol Antenna 400MHz-18GHz	10/30/2017	Annual	10/30/2018	101058
Rohde & Schwarz	TC-TA18	Cross Polarized Vivaldi Test Antenna	7/16/2018	Biennial	7/16/2020	101073
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	8/17/2018	Biennial	8/17/2020	101072
Rohde & Schwarz	TS-PR18	Shielded Filter Unit	7/2/2018	Annual	7/2/2019	102131
Rohde & Schwarz	TS-PR8	Preamplifier-Antenna SYS; 30MHz-8GHz	10/19/2017	Annual	10/19/2018	102324
Seekonk	NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	N/A
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Notes:

1. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 9 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMJ260T1
Method/System:	Frequency Hopping Spread Spectrum (FHSS)
Number of Channels:	<u>79</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(1)(iii)	RSS-247 [5.1(1)]	20dB Bandwidth	N/A		PASS	Section 7.2
15.247(b)(1)	RSS-247 [5.4(2)]	Peak Transmitter Output Power	< 1 Watt if <u>></u> 75 non- overlapping channels used		PASS	Section 7.3
15.247(a)(1)	RSS-247 [5.1(2)]	Channel Separation	> 2/3 of 20 dB BW for systems with Output Power < 125mW	CONDUCTED	PASS	Section 7.5
15.247(a)(1)(iii)	RSS-247 [5.1(4)]	Number of Channels	> 15 Channels		PASS	Section 7.7
15.247(a)(1)(iii)	RSS-247 [5.1(4)]	Time of Occupancy	< 0.4 sec in 31.6 sec period		PASS	Section 7.6
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	Conducted > 20dBc		PASS	Section 7.4, Section 7.8
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-247 limits)	RADIATED	PASS	Section 7.9, Section 7.10, Section 7.11
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen [8.8] limits)	LINE CONDUCTED	PASS	Section 7.12

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "BT Auto," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 0.2.16.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 10 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

7.2 20dB Bandwidth Measurement §15.247 (a.1.iii); RSS-247 [5.1(1)]

Test Overview and Limit

The bandwidth at 20dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2

Test Settings

- The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 20dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 20. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% OBW
- 3. VBW \geq 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep = auto couple
- 8. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 11 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

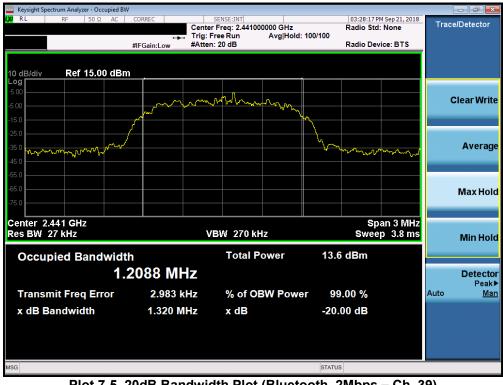
Frequency [MHz]	Data Rate [Mbps]	Mod.	Channel No.	20dB Bandwidth Test Results [kHz]
2402	1.0	GFSK	0	1031.00
2441	1.0	GFSK	39	1019.00
2480	1.0	GFSK	78	1035.00
2402	2.0	π/4-DQPSK	0	1323.00
2441	2.0	π/4-DQPSK	39	1320.00
2480	2.0	π/4-DQPSK	78	1351.00
2402	3.0	8DPSK	0	1276.00
2441	3.0	8DPSK	39	1343.00
2480	3.0	8DPSK	78	1315.00

Table 7-2. Conducted 20dB Bandwidth Measurements


Plot 7-1. 20dB Bandwidth Plot (Bluetooth, 1Mbps - Ch. 0)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 12 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 12 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

Plot 7-2. 20dB Bandwidth Plot (Bluetooth, 1Mbps - Ch. 39)


Plot 7-3. 20dB Bandwidth Plot (Bluetooth, 1Mbps - Ch. 78)

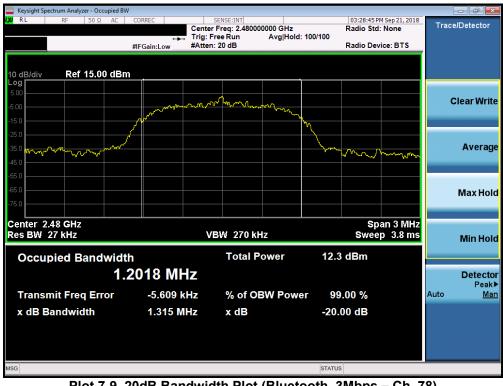
FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 13 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

Plot 7-4. 20dB Bandwidth Plot (Bluetooth, 2Mbps - Ch. 0)

Plot 7-5. 20dB Bandwidth Plot (Bluetooth, 2Mbps – Ch. 39)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 14 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018


Plot 7-6. 20dB Bandwidth Plot (Bluetooth, 2Mbps - Ch. 78)


Plot 7-7. 20dB Bandwidth Plot (Bluetooth, 3Mbps – Ch. 0)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 15 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

Plot 7-8. 20dB Bandwidth Plot (Bluetooth, 3Mbps - Ch. 39)

Plot 7-9. 20dB Bandwidth Plot (Bluetooth, 3Mbps – Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 16 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

7.3 Output Power Measurement §15.247 (b.1); RSS-247 [5.4(2)]

Test Overview and Limits

Measurement is made while the EUT is operating in non-hopping transmission mode. The powers shown below were measured using a spectrum analyzer with a Bluetooth signaling test set (Agilent Model: N4010A) used only to maintain a Bluetooth link with the EUT. Average power measurements are performed using the analyzer's "burst power" function with RBW = 3MHz. The burst power function triggers on a single set burst set to maximum power and measures the maximum average power on the on-time.

The maximum permissible output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 7.8.5 ANSI C63.10-2013 – Section 11.9.2.3.2 method AVGPM-G

Test Settings

Peak Power Measurement

- 1. Span = approximately 5x 20dB bandwidth, centered on hopping channel
- 2. RBW > 20dB bandwidth of emission being measured
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

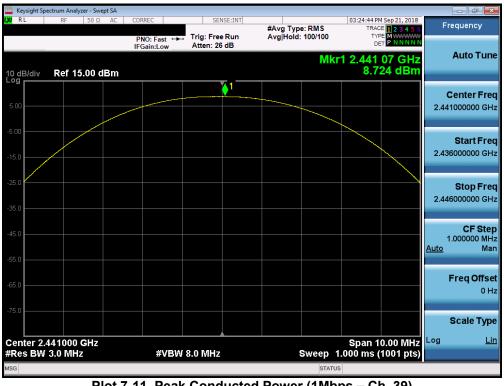
<u>Note</u>

This unit was tested with all possible data rates and the highest peak power is reported with the unit transmitting at 3Mbps. Final results were obtained using calibrated couplers, attenuators and cables. The following formula was used:

FCC ID: A3LSMJ260T1	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 17 of 57
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

Output Power (dBm) = Raw Analyzer Level (dBm) + Cable Loss (dB) + Loss in Directional Coupler/Insertion Loss (dB)

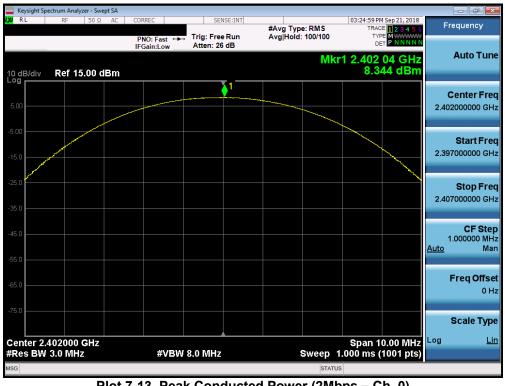
	Data				nducted wer	-	nducted wer
Frequency [MHz]	Rate [Mbps]	Mod.	Channel No.	[dBm]	[mW]	[dBm]	[mW]
2402	1.0	GFSK	0	8.02	6.343	7.33	5.413
2441	1.0	GFSK	39	8.72	7.454	8.13	6.502
2480	1.0	GFSK	78	6.96	4.969	6.33	4.296
2402	2.0	π/4-DQPSK	0	8.34	6.830	5.75	3.759
2441	2.0	π/4-DQPSK	39	9.08	8.084	6.59	4.562
2480	2.0	π/4-DQPSK	78	7.33	5.405	4.84	3.045
2402	3.0	8DPSK	0	9.14	8.198	5.83	3.826
2441	3.0	8DPSK	39	9.80	9.550	6.66	4.634
2480	3.0	8DPSK	78	7.99	6.289	4.90	3.094


Table 7-3. Conducted Output Power Measurements

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 18 of 57
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.5 08/29/2018

	pectrum Analyze											
L <mark>XI</mark> RL	RF	50Ω A	AC CO	RREC		ENSE:INT	#Avg Type		TRAC	E 1 2 3 4 5 6	Fr	equency
				NO:Fast • Gain:Low	Trig: Fr Atten:		Avg Hold:	100/100	TYF			
				Gam.Eow				Mkr	1 2.402	04 GHz		Auto Tune
10 dB/div	Ref 15.0	00 dBr	m						8.0	23 dBm		
						V 1						enter Fred
5.00												2000000 GHz
5.00												
-5.00												Start Fred
-15.0											2.397	7000000 GHz
-25.0										`		Stop Free
-35.0											2.40	7000000 GHz
-35.0												
-45.0											1	CF Step .000000 MH;
											<u>Auto</u>	Mar
-55.0												
-65.0											I	=req Offse
												0 Hz
-75.0												
												Scale Type
	.402000 G	Hz							Span 1	0.00 101112	Log	Lin
	/ 3.0 MHz			#VB	W 8.0 MH	Z	5			1001 pts)		
MSG								STATUS	3			

Plot 7-10. Peak Conducted Power (1Mbps - Ch. 0)


Plot 7-11. Peak Conducted Power (1Mbps - Ch. 39)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 19 of 57
© 2018 PCTEST Engineering La	boratory, Inc.	·		V 8.5 08/29/2018

	pectrum Analyze											
X/RL	RF	50 Ω AC		:C ∣ :Fast ⊶⊷			#Avg Typ Avg Hold:		TRAC	E 1 2 3 4 5 6 E M F P NNNN	Fre	equency
	_			n:Low	Atten: 26							A
10 dB/div Log	Ref 15.	00 dBn	n					Mkr	1 2.479 6.9	79 GHz 63 dBm		Auto Tune
					• 1	1					C	enter Fred
5.00											2.480	000000 GH:
-5.00												Start Free
-15.0											2.475	000000 GH
/												
-25.0											0.400	Stop Fre
-35.0											2.485	000000 GH
-45.0												CF Ste
10.0											1 <u>Auto</u>	.000000 MH Ma
-55.0												
-65.0											F	req Offse 0 H
75.0												JH
-75.0											:	Scale Typ
	.480000 G	Hz							Span 1	0.00 191112	Log	Lii
	/ 3.0 MHz			#VBW	8.0 MHz				.000 ms (1001 pts)		
ISG								STATUS	5			

Plot 7-12. Peak Conducted Power (1Mbps - Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 20 of 57
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.5 08/29/2018

	pectrum Analyz		t SA										
LXI RL	RF	50 Ω	AC	CORREC		SEI	NSE:INT	#Avg Typ	e: RMS	TRAC	4 Sep 21, 2018 E 1 2 3 4 5 6	Fr	equency
				PNO: F	ast ↔→→	Trig: Free Atten: 26		Avg Hold	: 100/100	TYF DE			
				II Oumit					Mki	1 2.441	06 GHz		Auto Tune
10 dB/div	Ref 15	.00 dE	3m							9.0	76 dBm		
) 1						enter Fred
5.00													1000000 GHz
-5.00													Start Fred
-15.0												2.43	5000000 GHz
-13.0											a second		
-25.0													Stop Free
												2.446	5000000 GH
-35.0													
-45.0													CF Step
												1 Auto	.000000 MH Mar
-55.0													
												I	req Offse
-65.0													он:
-75.0													
												:	Scale Type
Center 2	.441000 (GH7								Span 1	0.00 MHz	Log	Lir
	/ 3.0 MHz			;	#VBW	8.0 MHz			Sweep 1	.000 ms (1001 pts)		
MSG									STATU	S			

Plot 7-14. Peak Conducted Power (2Mbps - Ch. 39)

Plot 7-15. Peak Conducted Power (2Mbps - Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 01 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 21 of 57
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 8.5 08/29/2018

	pectrum Analyze		: SA										
LXI RL	RF	50 Ω	AC	CORREC		SEI	NSE:INT	#Avg Typ	e: RMS		M Sep 21, 2018 CE 1 2 3 4 5 6	F	requency
				PNO: Fa	ast 🔸	Trig: Free Atten: 26		Avg Hold	100/100	TYI Di			
				ii Gain.t	.0₩				Mk	r1 2 401	90 GHz		Auto Tune
10 dB/div Log	Ref 15.	.00 dB	3m							9.1	37 dBm		
							1						Center Fred
5.00								Name and a second second					2000000 GHz
-5.00													Start Fred
-15.0												2.39	7000000 GHz
-25.0													Stop Fred
												2.40	7000000 GHz
-35.0													
-45.0													CF Step
												Auto	1.000000 MHz Mar
-55.0													
													Freq Offse
-65.0													0 Hz
-75.0													
													Scale Type
Center 2	.402000 G	SHz								Span 1	0.00 MHz	Log	Lin
	/ 3.0 MHz			\$	#VBW	8.0 MHz			Sweep	1.000 ms ((1001 pts)		
MSG									STATU	IS			

Plot 7-16. Peak Conducted Power (3Mbps - Ch. 0)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 22 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 22 of 57
© 2018 PCTEST Engineering La	boratory, Inc.	·		V 8.5 08/29/2018

	ectrum Analyzer - S	Swept SA					
X/RL	RF 50	Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	03:25:45 PM Sep 21, 2018 TRACE 1 2 3 4 5 6	Frequency
			PNO: Fast +> IFGain:Low	 Trig: Free Run Atten: 26 dB 	Avg Hold: 100/100	TYPE MWWWWW DET PNNNNN	
			in outline on		Mk	r1 2.479 81 GHz	Auto Tune
10 dB/div	Ref 15.00	dBm				7.986 dBm	
				1			Center Fred
5.00							2.480000000 GH;
-5.00							Start Fred
-15.0							2.475000000 GHz
-25.0							Stop Free
-35.0							2.485000000 GH
-35.0							
-45.0							CF Step 1.000000 MH
							Auto Mar
-55.0							
-65.0							Freq Offse
							0 H:
-75.0							
							Scale Type
	480000 GH	Z				Span 10.00 MHz	Log <u>Lir</u>
	3.0 MHz		#VBV	/ 8.0 MHz	-	1.000 ms (1001 pts)	
ASG					STATU	S	

Plot 7-18. Peak Conducted Power (3Mbps - Ch. 78)


Plot 7-19. Average Conducted Power (1Mbps - Ch. 0)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 23 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

5.00 2.441000000 G 150 1500 G 160 1500 G 170 2.400 ms 170 16000 ms	Keysight Spectr	rum Analyzer - B RF 50 9	Ω AC	CORREC			0000 GHz Avg Hold:	100/100	03:26:26 Radio Sto	² M Sep 21, 2018 I: None	Frequency
250	5.00	Ref 15.0	00 dBm								Center Fred 2.441000000 GHz
65.0	-25.0 -35.0 -45.0										
ResBw 3.00 MHz Sweep 4.00 ms (60001 pt) Output Power (Above Threshold Lvi) Abs Amplitude Threshold -6.239 dBm 8.1305 dBm Current Data Output Pwr Max Pt Min Pt 0 1316 dBm 8.7607 dBm -106 13 dBm	-65.0 -75.0									4.00 mag	
Output Pwr Max Pt Min Pt 8 1316 dBm 8 7607 dBm -106 13 dBm	ResBw 3.00 Output Po (Above Thre	ower eshold Lvl)	1		Rel	Amplitude	e Thresho	old	-6.239 dE	60001 pt) 3m	CF Step 3.000000 MH: <u>Auto</u> Mar Freq Offse
	Above Th	reshold Pt	s 4326	9	Outp	ut Pwr					0 H;

Plot 7-20. Average Conducted Power (1Mbps - Ch. 39)

Plot 7-21. Average Conducted Power (1Mbps - Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	NG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 24 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Keysight Spo LXI R L	ectrum Analyz RF	er - Burs 50 Ω		CORREC		Center F Trig: RF	Burst	000000 GHz Avg Hc	ld: 100/100	Rad	::26:45 PM dio Std:	Sep 21, 2018 None	Frequenc	
10 dB/div Log	Ref	15.00) dBm	IFGain:	Low	#Atten: 1	14 dB							
-5.00	din yala kala ya	(adda 6-di	<mark>naja, kia kide</mark> a	ldel lde mille	<mark>ligg þila jand</mark>	<mark>itiladak talka</mark> la	<mark>cia kalkalakal</mark> i. Ingel	l Nakolelakika da	<mark>lite tallen g</mark> itte a				Center 2.402000000	
-25.0														
-55.0 -65.0														
0.00 s ResBw 3	.00 MHz							Sw	veep 4.00	ms	(60	4.00 ms 1001 pt)	CF : 3.000000	мн
	Power hreshold L 7509 d						Amplitu	ide Thres de Thresi			57 dBn 00 dB	n	<u>Auto</u> Freq O	Mar ffse
Above 1	Threshold	d Pts	4335	50		Outp	out Pwr 7541 dB		//ax Pt 3434 dE	ßm	Min -104.	Pt 01 dBm		0 Ha
ISG									ST/	TUS				

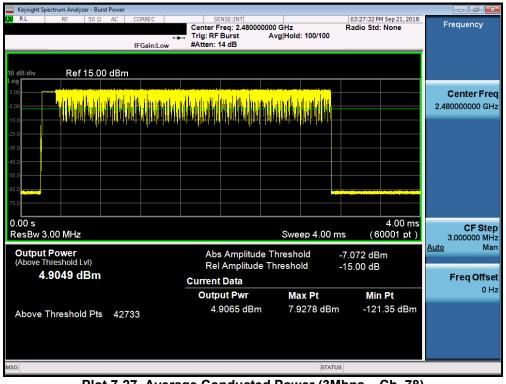
Plot 7-22. Average Conducted Power (2Mbps - Ch. 0)


Plot 7-23. Average Conducted Power (2Mbps - Ch. 39)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 25 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Keysight Sp	RF	er - Burs 50 Ω	AC	CORREC		Center F		00000 GHz Avg Hold	I: 100/100		7:03 PM Sep 21, 20: Std: None	8	Juency
10 dB/div Log 5.00	-) dBm									Ce	nter Freq
-5.00 -15.0 -25.0	in the second		in <u>Air, ins Al</u> f		hiyi biyi bi	lij nje seke steri	tiy kille eldiri i tiy dedi	i in the state of the	i dadila di ju <mark>nta da</mark>			2.4800	00000 GHz
-35.0 -45.0 -55.0													
-65.0 -75.0											4.00 m		
ResBw 3 Output		vl)						Swe le Thresh e Thresho		ms -7.754 -15.00	(60001 pt dBm		CF Step 00000 MHz Man
	.8363 d					Current Outp		Ма	ax Pt 2460 dB		Min Pt -107.62 dBn		e q Offset 0 Hz
Above	Threshold	l Pts	433	52		4.	8345 aBh	1.2	2460 dB	m -	-107.62 dBn		
ISG									STA	TUS			

Plot 7-24. Average Conducted Power (2Mbps - Ch. 78)


Plot 7-25. Average Conducted Power (3Mbps – Ch. 0)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 26 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Keysight Spectrui	m Analyzer - Bi RF 50 S	Ω AC	CORREC	- - - T		00000 GHz Avg Hold	1: 100/100		03:27:23 Pf adio Std:	M Sep 21, 2018 : None	Freque	ency
10 dB/div Log	Ref 15.(00 dBm				terrele das Mitures andre					Cart	
-5.00 1 -15.0 1			10 <u>, 1</u> 1, 10, 10 11, 11, 11, 10, 10 11, 11, 11, 11, 11								2.441000	er Freq 000 GHz
-25.0												
-55.0 -65.0												
0.00 s ResBw 3.00							ep 4.00	ms	(6	4.00 ms 0001 pt)		CF Ste 000 MH Ma
Output Por (Above Thres 6.65		1		Cı	Amplitud	le Thresh e Thresho			167 dB .00 dB			qOffse
Above Thre	eshold Pt	s 4267	9		ut Pwr 6567 dBn		ix Pt 3325 dB	m	M in -105	9 Pt 5.09 dBm		0 H
ISG							STA	TUS				

Plot 7-26. Average Conducted Power (3Mbps - Ch. 39)

Plot 7-27. Average Conducted Power (3Mbps - Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 27 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 27 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

7.4 Band Edge Compliance §15.247 (d); RSS-247 [5.5]

Test Overview and Limits

EUT operates in hopping and non-hopping transmission mode. Measurement is taken at the highest point located outside of the emission bandwidth. *The maximum permissible out-of-band emission level is 20 dBc.*

Test Procedure Used

ANSI C63.10-2013 – Section 6.10.4

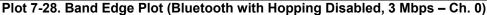
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup


Test Notes

Out of band conducted spurious emissions at the band edge were investigated for all data rates in hopping and non-hopping modes. The worst case emissions were found with the EUT transmitting at 3 Mbps. Band edge emissions were also investigated with the EUT transmitting in all data rates. Plots of the worst case emissions are shown below.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 28 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Plot 7-29. Band Edge Plot (Bluetooth with Hopping Disabled, 3 Mbps - Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 29 of 57
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 8.5 08/29/2018

Keysight Spectrum Analyzer - Swept SA				
KL RF 50Ω AC	CORREC SEM	#Avg Type: R	03:30:56 PM Sep 21, 2018 MS TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide +++ Trig: Free IFGain:Low Atten: 26		D/100 TYPE M NNNN Det P NNNNN ΔMkr1 4.40 MHz 54.911 dB	Auto Tune
10 dB/div Ref 15.00 dBm		- Mr	1Δ2 	Center Freq 2.400000000 GHz
-5.00				Start Freq 2.395000000 GHz
-25.0		March		Stop Freq 2.405000000 GHz
-45.0				CF Step 1.000000 MHz <u>Auto</u> Man
-65.0	mmmmmmm			Freq Offset 0 Hz
-75.0				Scale Type
Center 2.400000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sw	Span 10.00 MHz eep 1.000 ms (1001 pts)	Log <u>Lin</u>
MSG			STATUS	

Plot 7-30. Band Edge Plot (Bluetooth with Hopping Enabled, 3 Mbps)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 30 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

7.5 Carrier Frequency Separation §15.247 (a.1); RSS-247 [5.1(2)]

Test Overview and Limit

Measurement is made with EUT operating in hopping mode. The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.2

Test Settings

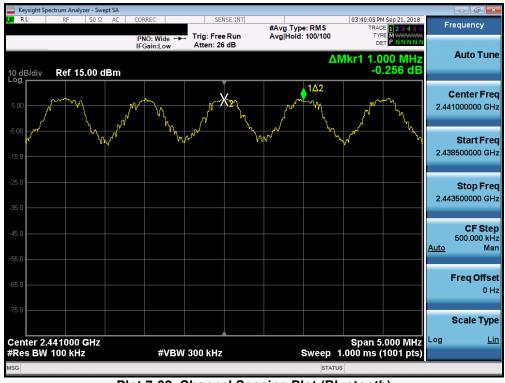
- 1. Span = Wide enough to capture peaks of two adjacent channels
- 2. RBW = 30% of channel spacing. Adjust as necessary to best identify center of each individual channel
- 3. VBW ≥ RBW
- 4. Sweep = Auto
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize.
- 8. Marker-delta function used to determine separation between peaks of the adjacent channels

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes


The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels and when operating in AFH mode using 20 channels.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 31 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Frequency [MHz]	Data Rate [Mbps]	Mod.	Channel No.	Min. Channel Separation [MHz]
2402	1.0	GFSK	0	0.687
2441	1.0	GFSK	39	0.679
2480	1.0	GFSK	78	0.703
2402	2.0	π/4-DQPSK	0	0.882
2441	2.0	π/4-DQPSK	39	0.880
2480	2.0	π/4-DQPSK	78	0.901
2402	3.0	8DPSK	0	0.851
2441	3.0	8DPSK	39	0.895
2480	3.0	8DPSK	78	0.877

Table 7-4. Minimum Channel Separation

Plot 7-32. Channel Spacing Plot (Bluetooth)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 32 of 57
© 2018 PCTEST Engineering L	V 8 5 08/29/2018			

7.6 Time of Occupancy §15.247 (a.1.iii); RSS-247 [5.1(4)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode with the spectrum analyzer set to zero span. *The maximum permissible time of occupancy is 400 ms within a period of 400ms multiplied by the number of hopping channels employed.*

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.4

Test Settings

- 1. Span = zero span, centered on a hopping channel
- 2. RBW \leq channel spacing and >> 1/T, where T is expected dwell time per channel
- 3. Sweep = as necessary to capture entire dwell time. Second plot may be required to demonstrate two successive hops on a channel
- 4. Trigger is set with appropriate trigger delay to place pulse near the center of the plot
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Marker-delta function used to determine transmit time per hop

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 33 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

	ectrum Analyzer - S	wept SA					
lxi RL	RF 50	Ω AC	PNO: Fast ↔→	SENSE:INT Trig Delay-999.0 µs Trig: Video Atten: 26 dB	#Avg Type: RMS	03:39:07 PM Sep 21, 2018 TRACE 1 2 3 4 5 TYPE WWWWW DET P NNNN	Frequency
10 dB/div Log	Ref 15.00	dBm	IFGam:Low	Atten. 20 db		ΔMkr1 2.895 ms -18.44 dB	Auto Tune
5.00						TRIG LVL	Center Freq 2.441000000 GHz
-5.00							Start Freq 2.441000000 GHz
-25.0		X ₂					Stop Freq 2.441000000 GHz
-45.0 -55.0	huyee With a gar	₩ 					CF Step 1.000000 MHz <u>Auto</u> Man
-65.0							Freq Offset 0 Hz
-75.0							Scale Type
Center 2. Res BW 7	441000000 I.0 MHz	GHz	#VBW	3.0 MHz	Sweep	Span 0 Hz 5.000 ms (1001 pts)	
MSG						TUS	

Plot 7-33. Time of Occupancy Plot (Bluetooth)

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s. Since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600 / 6 = 266.67 hops/s/slot

- 400ms x 79 hopping channels = 31.6 sec (Time of Occupancy Limit)
- Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation)
- 266.67 hops/second / 79 channels = 3.38 hops/second (# of hops/second on one channel)
- 3.38 hops/second/channel x 31.6 seconds = 106.67 hops (# hops over a 31.6 second period)
- 106.67 hops x 2.895 ms/channel = 308.80 ms (worst case dwell time for one channel in 1x/EDR modes)

With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800 hops/s. AFH mode also uses 6 total slots so the Bluetooth transmitter hops at a rate of 800 / 6 = 133.3 hops/s/slot

- 400ms x 20 hopping channels = 8 sec (Time of Occupancy Limit)
- Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation)
- 133.3 hops/s / 20 channels = 6.67 hops/second (# of hops/second on one channel)
- 6.67 hops/s / channel x 8 seconds = 53.34 hops (# hops over a 8 second period)
- o 53.34 hops x 2.895 ms/channel = 154.41 ms (worst case dwell time for one channel in AFH mode)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 34 of 57
© 2018 PCTEST Engineering L	V 8.5 08/29/2018			

7.7 Number of Hopping Channels §15.247 (a.1.iii); RSS-247 [5.1(4)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode. *This frequency hopping system must employ a minimum of 15 hopping channels.*

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.3

Test Settings

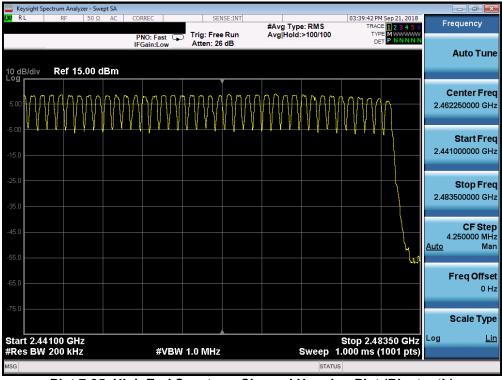
- 1. Span = frequency of band of operation (divided into two plots)
- 2. RBW < 30% of channel spacing or 20dB bandwidth, whichever is smaller.
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-6. Test Instrument & Measurement Setup

Test Notes


The frequency spectrum was broken up into two sub-ranges to clearly show all of the hopping frequencies. In AFH mode, this device operates using 20 channels so the requirement for minimum number of hopping channels is satisfied.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 35 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

	Spectrum A	analyzer - Sw	ept SA								
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC	SEI	ISE:INT	#Avg Typ	e: RMS		Sep 21, 2018	Frequency
				PNO: Fast G	Trig: Free Atten: 26		Avg Hold:		TYPE	M WWWWW P N N N N N	
				IFGain:Low	Atten. 20	ub				_	Auto Tune
10 dB/div Log	Ref	15.00 c	dBm								
-								-			Center Freq
5.00	NAA	AAA			AAAA					<i></i>	2.420500000 GHz
-5.00		¥ I V	4 Y Y	<u> </u>	₽ ₽ ₽ ₽	▞▁ႃᡟ▁ႃᡟ▁ႃ	<u> </u>	ŶŸŢ	╎╽╷╷╷	<u>₹₹₹₹</u>	Start Freq
-15.0											2.400000000 GHz
-25.0											
-35.0											Stop Freq 2.441000000 GHz
-55.0											
-45.0											CF Step 4.100000 MHz
-55.0											<u>Auto</u> Man
											Freq Offset
-65.0											0 Hz
-75.0											
											Scale Type
Start 2.4									Stop 2.44		Log <u>Lin</u>
#Res B\	W 200 I	KHZ		#VBW	1.0 MHz				1.000 ms (1	001 pts)	
MSG								STATU	5		

Plot 7-34. Low End Spectrum Channel Hopping Plot (Bluetooth)

Plot 7-35. High End Spectrum Channel Hopping Plot (Bluetooth)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 36 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

7.8 Conducted Spurious Emissions §15.247 (d); RSS-247 [5.5]

Test Overview and Limit

Conducted out-of-band spurious emissions were investigated from 30MHz up to 25GHz to include the 10th harmonic of the fundamental transmit frequency. *The maximum permissible out-of-band emission level is* 20 dBc.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.8

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz* (See note below)
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup

Test Notes

Out-of-band conducted spurious emissions were investigated for all data rates and the worst case emissions were found with the EUT transmitting at 3Mbps. The display line shown in the following plots is the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, the traces in the following plots are measured with a 1MHz RBW to reduce test time, so the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 37 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Keysight Sp	pectrum Analy	zer - Swept S	SA									
LXI RL	RF	50 Ω A	AC	CORREC PNO: Fa	st 🕟	Trig: Free		#Avg Typ	e:RMS	03:32	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N	Frequency
10 dB/div	Ref 15	i.00 dBi		IFGain:L	ow	Atten: 26	dB			Mkr1 3.	413 5 GHz 44.73 dBm	Auto Tu
5.00												Center Fr 5.015000000 G
-5.00											DL1 -12.49 dBm	Start Fr 30.000000 M
-25.0												Stop Fr 10.000000000 G
-45.0	ta va ta ta ta ta ta ta ta				1 	a di di si superi sa	a a practica de la constante d	Say and a transfer as points	, Letter poster	ndagad yttingad og fr	de novelle en liter printer anni le presi Alexandre anni en liter printer anni en literatione de la presidente de la presidente de la presidente de la pr	CF St 997.000000 M <u>Auto</u> M
-65.0												Freq Offs 0
-75.0	MHz									Stor	o 10.000 GHz	Scale Ty
#Res BW	1.0 MHz				VBW	3.0 MHz		S		18.00 m	s (30001 pts)	
usg 횢 Poir	nts change	d; all trac	ces cle	eared					ST/	ATUS		

Plot 7-36. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 0)

Plot 7-37. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 0)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 38 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Keysight Spect	rum Analyzer - Sv	vept SA									J X
LXU RL	RF 50 Ω	2 AC	CORREC PNO: Fast		NSE:INT	#Avg Typ	e: RMS	TRA	M Sep 21, 2018 DE 1 2 3 4 5 6 PE M WWWWW ET P N N N N N	Frequenc	су
10 dB/div	Ref 15.00	dBm	IFGain:Low	Atten: 20	6 dB		N	/kr1 3.27		Auto	Tune
5.00										Center 5.01500000	
-5.00									DL1 -11.85 dBm	Start 30.00000	t Freq 0 MHz
-25.0										Stop 10.00000000	Freq 0 GHz
-45.0						the state of the s	l ja li Din konto	an han ta she a marka ta shi ka an	i shana shi ka sa sa sa	CF 997.00000 <u>Auto</u>	Step 0 MHz Man
-65.0										Freq C	Offset 0 Hz
-75.0										Scale	Type Lin
Start 30 MH #Res BW 1			#VE	3W 3.0 MHz		s	weep	Stop 10 18.00 ms (3	.000 GHz 0001 pts)		
MSG							STA	TUS			

Plot 7-38. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 39)

Plot 7-39. Conducted Spurious Plot (Bluetooth, 3Mbps – Ch. 39)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 39 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

🔤 Keysight Sp	ectrum Ana	lyzer - Swep	t SA									- 0 ×
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC	ast 🗔		#Avg Typ	e: RMS	TR/	PM Sep 21, 2018 ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N N	Fre	equency
10 dB/div	Ref 1	5.00 di	3m	IFGain:		Atten: 26		N	/kr1 3.57	77 3 GHz .76 dBm		Auto Tune
5.00												enter Fred 000000 GH:
-5.00										DL1 -13.65 dBm	30.	Start Fred 000000 MH;
-25.0											10.000	Stop Free 000000 GH
-45.0	and also all all a	egag naga ging a Dala gang naga ging a Dala		an af fai lea ann an a		terrori de la completa da la complet A de la completa da la	the state of the second se		under an andere and an and a second		997. <u>Auto</u>	CF Step 000000 MH Mar
-65.0											F	r eq Offse 0 H
-75.0 Start 30 M	/IHz					,			Stop 1	0.000 GHz	Log	Scale Type Lir
#Res BW					#VBW	3.0 MHz	S		18.00 ms (30001 pts)		
ısg 칮 Poin	ts chang	ed; all tra	aces o	leared				STAT	TUS			

Plot 7-40. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 78)

Plot 7-41. Conducted Spurious Plot (Bluetooth, 3Mbps - Ch. 78)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 40 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

7.9 Radiated Spurious Emission Measurements – Above 1GHz §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-5 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedure Used

ANSI C63.10-2013 – Section 6.6.4.3

Test Settings Average Field Strength Measurements per Section 4.1.4.2.3 of ANSI C63.10-2013

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 1kHz \ge 1/ τ Hz, where τ = pulse width in seconds
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Peak Field Strength Measurements per Section 4.1.4.2.2 of ANSI C63.10-2013

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW is set depending on measurement frequency, as specified in Table 7-6 below
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 41 of 57
© 2018 PCTEST Engineering La	V 8 5 08/29/2018			

Frequency	RBW				
9 – 150kHz	200 – 300Hz				
0.15 – 30MHz	9 – 10kHz				
30 – 1000MHz	100 – 120kHz				
> 1000MHz	1MHz				
Table 7-6. RBW as a Function of Frequency					

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

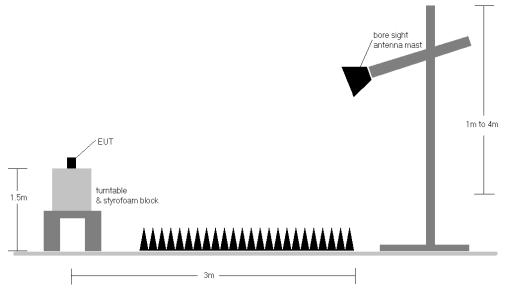


Figure 7-8. Radiated Test Setup >1GHz

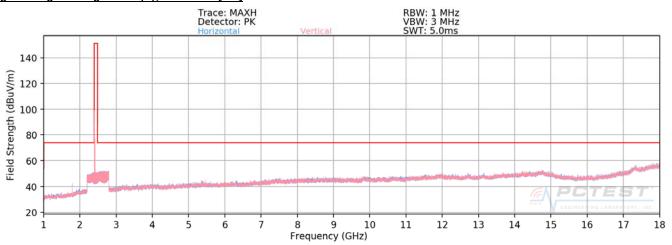
Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-5.
- 2. No significant radiated emissions were found in the 2310 2390MHz restricted band.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
- 6. The duty cycle correction factor was not applied to noise floor measurements.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

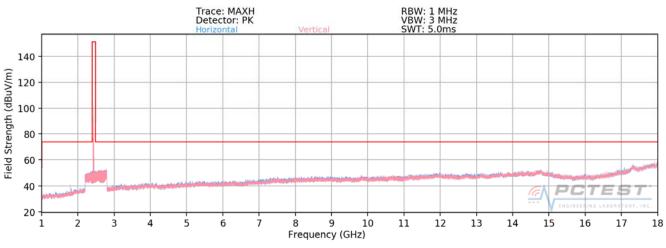
FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 42 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

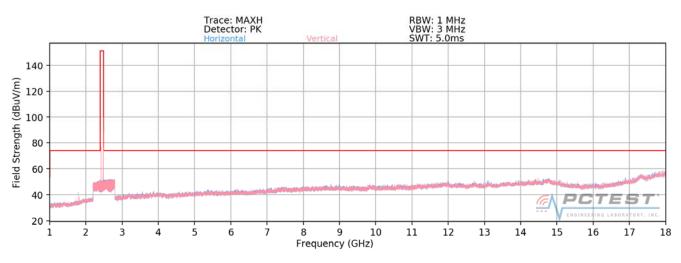
Sample Calculation

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m] + Duty Cycle Correction [dB]
- o AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- o Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

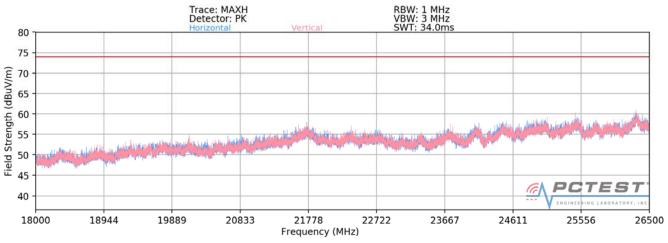

Duty Cycle Correction Factor Calculation

- Channel hop rate = 800 hops/second (AFH Mode)
- Adjusted channel hop rate for DH5 mode = 133.33 hops/second
- Time per channel hop = 1 / 133.33 hops/second = 7.50 ms
- Time to cycle through all channels = 7.50 x 20 channels = 150 ms
- Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)
- Worst case dwell time = 7.5 ms
- Duty cycle correction factor = 20log₁₀(7.5ms/100ms) = -22.5 dB


FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 42 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 43 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			


Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 44 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			



Plot 7-44. Radiated Spurious Plot above 1GHz (BT- Ch. 78)

FCC ID: A3LSMJ260T1	<u>PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 45 of 57
© 2018 PCTEST Engineering La	V 8.5 08/29/2018			

Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-45. Radiated Spurious Plot above 18GHz

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 46 of 57
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.5 08/29/2018

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Worst Case Mode:	Bluetooth
Worst Case Data Rate:	1 Mbps
Measurement Distance:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Avg	V	116	349	-79.02	5.31	-22.50	10.79	53.98	-43.19
4804.00	Peak	V	116	349	-75.93	5.31	0.00	36.38	73.98	-37.60
12010.00	Avg	V	-	-	-82.29	17.79	0.00	42.50	53.98	-11.48
12010.00	Peak	V	-	-	-79.98	17.79	0.00	44.81	73.98	-29.17

Table 7-7. Radiated Measurements

Worst Case Mode: Worst Case Data Rate: Measurement Distance: Operating Frequency: Channel:

Bluetooth
1 Mbps
3 Meters
2441MHz
39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Avg	V	106	21	-79.56	6.04	-22.50	10.98	53.98	-43.00
4882.00	Peak	V	106	21	-75.91	6.04	0.00	37.13	73.98	-36.85
7323.00	Avg	V	-	-	-81.38	10.83	0.00	36.45	53.98	-17.53
7323.00	Peak	V	-	-	-78.28	10.83	0.00	39.55	73.98	-34.43
12205.00	Avg	V	-	-	-82.58	18.30	0.00	42.72	53.98	-11.26
12205.00	Peak	V	-	-	-79.88	18.30	0.00	45.42	73.98	-28.56

Table 7-8. Radiated Measurements

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 47 of 57
© 2018 PCTEST Engineering La	horatory Inc	·		V 8 5 08/29/2018

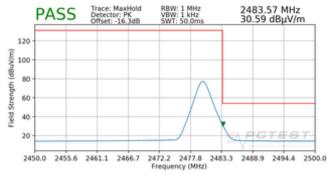
Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Worst Case Mode:	Bluetooth
Worst Case Data Rate:	1 Mbps
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	78

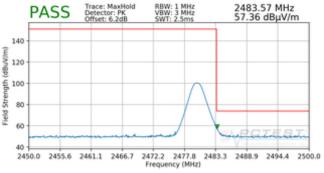
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	V	101	8	-78.92	5.80	-22.50	11.38	53.98	-42.60
4960.00	Peak	V	101	8	-74.36	5.80	0.00	38.44	73.98	-35.54
7440.00	Avg	V	120	323	-80.39	10.44	-22.50	14.55	53.98	-39.43
7440.00	Peak	V	120	323	-77.33	10.44	0.00	40.11	73.98	-33.87
12400.00	Avg	V	-	-	-83.13	18.65	0.00	42.52	53.98	-11.46
12400.00	Peak	V	-	-	-80.49	18.65	0.00	45.16	73.98	-28.82

Table 7-9. Radiated Measurements

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 48 of 57
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.5 08/29/2018


7.10 Radiated Restricted Band Edge Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting. Two different amplitude offsets were used depending on whether peak or average measurements were measured. The average measurements use a duty cycle correction factor (DCCF).


The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain + DCCF

Worst Case Mode:	Bluetooth
Worst Case Data Rate:	1 Mbps
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	78

Plot 7-46. Radiated Restricted Upper Band Edge Measurement (Average)

Plot 7-47. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 49 of 57
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 8.5 08/29/2018

7.11 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-10 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

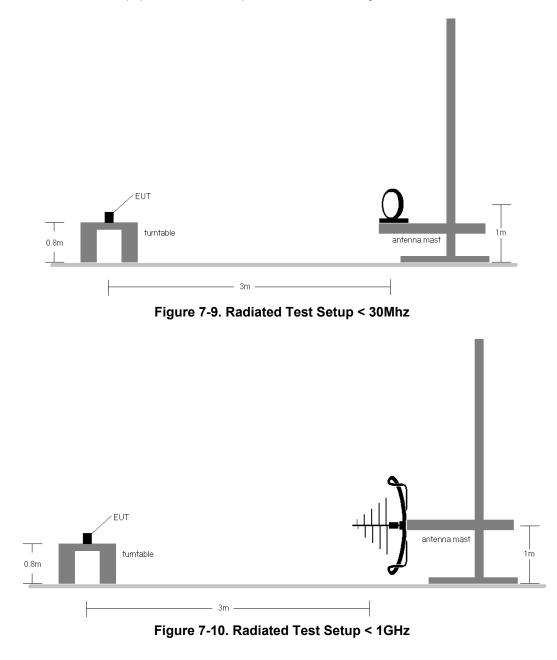
Table 7-10. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

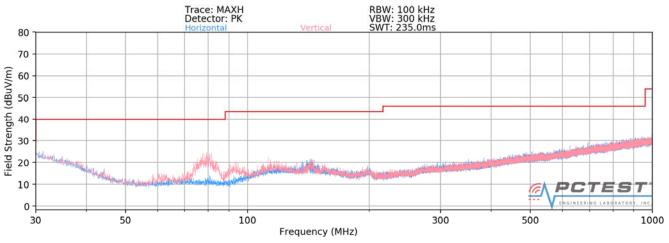

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 50 of 57
© 2018 PCTEST Engineering La	aboratory. Inc.	·		V 8.5 08/29/2018

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 51 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 51 01 57
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.5 08/29/2018



- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-10.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 52 of 57
© 2018 PCTEST Engineering La	horatory Inc			V 8 5 08/29/2018

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-48. Radiated Spurious Plot below 1GHz

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 53 of 57
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.5 08/29/2018

7.12 Line Conducted Measurement Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 – 30	60	50	

Table 7-11. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

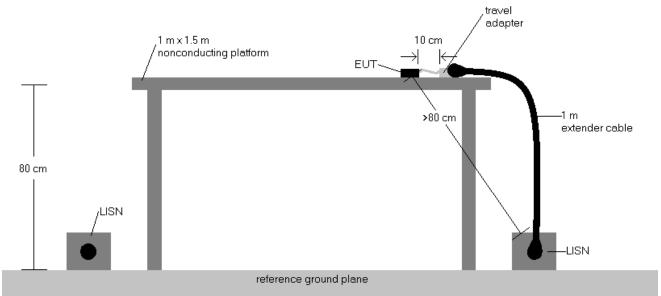
ANSI C63.10-2013, Section 6.2

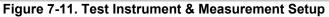
Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

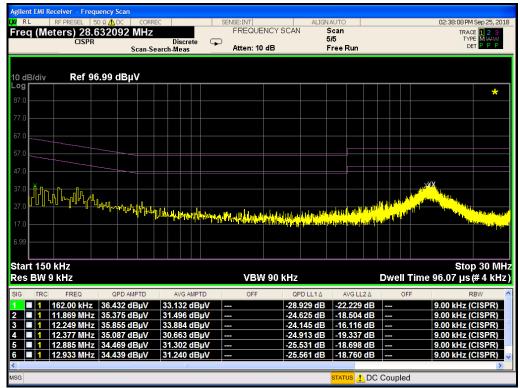

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 54 of 57
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.5 08/29/2018

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes


- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 55 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 55 of 57
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 8.5 08/29/2018

ilent EMI Receiver - Frequency									
RL RF PRESEL 50 Ω		C	SENSE:INT	ALIG	NAUTO				1 Sep 25, 20
req (Meters) 28.632	092 MHz			INCY SCAN	Scan 5/5			TRA	CE 123 PE MWWW
CISPR	Scan-Sea		Atten: 10	dB	Free Run				et <mark>P P P</mark>
	ooun oou								
dB/div Ref 96.99	dBµV								
pg by									*
′.0 									<u> </u>
[′] .0									
U									
.0									
.0									
								Chatter of the second s	
	th the second se					11		There	
	ne affer la <mark>ha</mark> la			no tar delination si	hu ah waka ah	d ha dh	<mark>er ninn</mark>		le contractione de la contractio
	աշանայել <mark>իշա</mark> կոր	Maple weller	unit ^{(u} nd uit (interni	ini penganan ang penganan sida Penganan ang penganan sida	an a	daha adat <mark>adapti k</mark> ati	<mark>en en e</mark>		
	uralleg by the part of the par	llaple, apled by a	ust ^u nust		dag and a black water of the Transf, the graph a subject of	daha adat Maja pan			
.0 .0 .0	www.mayayayayayayayayayayayayayayayayayayay	Napua	unt ^{an} n al thin	Producer and Producer of a producer of the second	dag artis, bly the star is st Tract, it spin the spin of	daha adah Majara			li <u>II. sais</u> e, a
.0 UUVVUVUVA LA	uralle de la	Kapus, ash Madya	uurt un cut letter)	nı, terşinderine dir. Hayar Miller	dan yafa yili di ya ka da di Ina si pisaya di ya sidaya di				1. <u>11. <u>1</u>. 1. 1. <u>1</u></u>
	ww.h.,by ^{ll} lu _y yy	Neghter	unt <mark>uninen</mark> tation	ni , res du tertos etc Provensiones provensiones Provensiones	den portugul (n. 1997) 1949 : Alfred Marine (n. 1997) 1949 : Alfred Marine (n. 1997)				li <u>Jel</u> usta <u>k</u> ara
art 150 kHz	ww.lh.,byl ^{lh} yddy	Neghte		<u>, 1979 - 200 (1), 69 (1), 69 (1)</u>	da parte plin d'instanda d Instanta plin de parte Instanta plin de parte plin de parte			Sto	p 30 MI
، الرسي المرابية معرفي من المرابع م منابع من المرابع من الم	averalle of the second se	htaphs-aphilitisopy		90 KHz	dagart y Watter wat di Unati daga Una seba ji		II Time :		p 30 MI
art 150 kHz		AVG AMPTD		<u>, 1979 - 200 (1), 69 (1), 69 (1)</u>		Dwe	II Time	Sto 96.07 µs	p 30 MI
art 150 kHz	QPD AMPTD		VBM	v 90 kHz	AVG LL2 /	Dwe	OFF	Sto 96.07 µs	p 30 MI (# 4 kH
art 150 kHz s BW 9 kHz	QPD AMPTD .822 dBµV	AVG AMPTD	VBM	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	AVG LL2 2	Dwe	OFF	Sto 96.07 µs	p 30 MI (# 4 kH) RBW CISPR)
art 150 kHz es BW 9 kHz	QPD AMPTD .822 dBµV .788 dBµV	АУG АМРТD 35.739 dBµV	VBW OFF	90 KHz 	AVG LL22 -14.261 dl -13.632 dl	Dwe 3 3	OFF	Sto 96.07 µs 9.00 kHz (p 30 MI (# 4 kH RBW CISPR) CISPR)
art 150 kHz es BW 9 kHz 1 11.561 MHz 38. 1 12.173 MHz 38. 1 12.297 MHz 38. 1 12.389 MHz 40.	орр амртр 822 dBµV 788 dBµV 614 dBµV 464 dBµV	AVG AMPTD 35.739 dBµV 36.368 dBµV 36.368 dBµV 36.761 dBµV	VBW OFF	90 KHz -21.178 dB -21.212 dB	AVG LL2 / -14.261 di -13.632 di -14.167 di	Dwe B B B	OFF	Sto 96.07 µs 9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (p 30 MI (# 4 kH: CISPR) CISPR) CISPR) CISPR)
art 150 kHz s BW 9 kHz TRC FREQ 1 11.561 MHz 38. 1 12.297 MHz 39. 1 12.297 MHz 39.	орр амртр 822 dBµV 788 dBµV 614 dBµV 858 dBµV	AVG AMPTD 35.739 dBµV 36.368 dBµV 36.761 dBµV 36.761 dBµV 34.942 dBµV	VBW OFF	V 90 KHz -21.178 dB -21.212 dB -20.386 dB -19.536 dB -21.142 dB	AVG LL2 / -14.261 di -13.632 di -13.632 di -13.239 di -15.058 di	Dwe B B B B B	OFF	Sto 96.07 µs 9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (p 30 MI (# 4 kH) CISPR) CISPR) CISPR) CISPR) CISPR) CISPR)
art 150 kHz es BW 9 kHz 1 11.561 MHz 38. 1 12.173 MHz 38. 1 12.389 MHz 40.	орр амртр 822 dBµV 788 dBµV 614 dBµV 858 dBµV	AVG AMPTD 35.739 dBµV 36.368 dBµV 36.368 dBµV 36.761 dBµV	VBW OFF	✓ 90 kHz -21.178 dB -21.212 dB -20.386 dB -19.536 dB	AVG LL2 / -14.261 di -13.632 di -13.632 di -13.239 di -15.058 di	Dwe B B B B B B	OFF	Sto 96.07 µs 9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (p 30 MI (# 4 kH) CISPR) CISPR) CISPR) CISPR) CISPR) CISPR)
art 150 kHz es BW 9 kHz 1 11.561 MHz 38. 1 12.277 MHz 38. 1 12.297 MHz 39. 1 12.297 MHz 39. 1 12.297 MHz 39. 1 12.297 MHz 39. 1 12.785 MHz 38. 1 12.785 MHz 38.	орр амртр 822 dBµV 788 dBµV 614 dBµV 858 dBµV	AVG AMPTD 35.739 dBµV 36.368 dBµV 36.761 dBµV 36.761 dBµV 34.942 dBµV	VBW OFF	V 90 KHz -21.178 dB -21.212 dB -20.386 dB -19.536 dB -21.142 dB	AVG LL2 / -14.261 di -13.632 di -13.632 di -13.239 di -15.058 di	Dwe B B B B B B	OFF	Sto 96.07 µs 9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (9.00 kHz (p 30 Mi (# 4 kH: CISPR) CISPR) CISPR) CISPR) CISPR) CISPR)

Plot 7-49. Line-Conducted Test Plot (L1)

Plot 7-50. Line-Conducted Test Plot (N)

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege EG of E7
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 56 of 57
© 2019 DCTEST Engineering La	horoton/ Inc			V/ 9 E 09/20/2019

V 8.5 08/29/2018

© 2018 PCTEST Engineering Laboratory, Inc.

8.0 PCONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMJ260T1** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMJ260T1		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 57
1M1809210181-07.A3L	9/21 - 10/25/2018	Portable Handset		Page 57 of 57
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 8.5 08/29/2018