HCTCO.,LTD.
74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383.Rep. of KOREA
TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC BT LE REPORT

Certification

Applicant Name:

SAMSUNG Electronics Co., Ltd.
Address:
129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggido, 16677, Rep. of Korea

Date of Issue:

July 04, 2018
Test Site/Location:
HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majang-myeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA
Report No.: HCT-RF-1807-FC006

FCC ID: A3LSMJ260G
 APPLICANT: SAMSUNG Electronics Co., Ltd.

```
Model:
    SM-J260G/DS
Additional Model:
    SM-J260Y/DS, SM-J260Y
EUT Type:
    Mobile Phone
    4.2 LE: 37 Byte: 5.104 dBm (3.239 mW)
    4.2 LE: 255 Byte: 5.236 dBm (3.339 mW)
Frequency Range:
    2402 MHz -2480 MHz
Modulation type
    GFSK
FCC Classification:
    Digital Transmission System(DTS)
FCC Rule Part(s):
    Part 15.247
```

Engineering Statement:
The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Approved by : Jong Seok Lee
Manager of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

HCTCO,ITD.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-1807-FC006	July 04, 2018	- First Approval Report

Table of Contents

1. GENERAL INFORMATION 4
2. EUT DESCRIPTION 4
3. TEST METHODOLOGY 5
3.1 EUT CONFIGURATION 5
3.2 EUT EXERCISE 5
3.3 GENERAL TEST PROCEDURES 5
3.4 DESCRIPTION OF TEST MODES 5
4. INSTRUMENT CALIBRATION 6
5. FACILITIES AND ACCREDITATIONS 6
5.1 FACILITIES 6
5.2 EQUIPMENT 6
6. ANTENNA REQUIREMENTS 6
7. MEASUREMENT UNCERTAINTY 7
8. SUMMARY TEST OF RESULTS 8
9. TEST RESULT 9
9.1 DUTY CYCLE 9
9.26 dB BANDWIDTH MEASUREMENT 12
9.3 OUTPUT POWER MEASUREMENT 17
9.4 POWER SPECTRAL DENSITY 29
9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS 35
9.6 RADIATED MEASUREMENT. 54
9.6.1 RADIATED SPURIOUS EMISSIONS 54
9.6.2 RADIATED RESTRICTED BAND EDGES 69
9.7 POWERLINE CONDUCTED EMISSIONS 75
10. LIST OF TEST EQUIPMENT 80
10.1 LIST OF TEST EQUIPMENT(Conducted Test) 80
10.2 LIST OF TEST EQUIPMENT(Radiated Test) 81
11. APPENDIX A_TEST SETUP PHOTO 82

1. GENERAL INFORMATION

Applicant:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMJ260G
EUT Type:	Mobile Phone
Model:	SM-J260G/DS
Additional Model:	SM-J260Y/DS, SM-J260Y
Date(s) of Tests:	June 12, 2018~ July 02, 2018
Place of Tests:	HCT Co., Ltd.
	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

2. EUT DESCRIPTION

Model	SM-J260G/DS
Additional Model	SM-J260Y/DS, SM-J260Y
EUT Type	Mobile Phone
Power Supply	DC 3.80 V
Battery Information	SM-J260G/DS: Model: EB-BG530CBN / Type: Li-ion Battery SM-J260Y/DS, SM-J260Y: Model: EB-BG530CBE / Type: Li-ion Battery
Travel Adapter Information	Model: ETA0U84IWE Input: 100-240V Output: 5.0V, 1.0A Manufacture: SALCOMP
Frequency Range	TX: 2402 MHz ~ 2480 MHz RX: 2402 MHz ~ 2480 MHz
Max. RF Output Power	Peak 4.2 LE: 37 Byte: $5.104 \mathrm{dBm}(3.239 \mathrm{~mW})$ 4.2 LE: 255 Byte: $5.236 \mathrm{dBm}(3.339 \mathrm{~mW})$
	Average 4.2 LE: 37 Byte: $4.560 \mathrm{dBm}(2.857 \mathrm{~mW})$ 4.2 LE: 255 Byte: $4.750 \mathrm{dBm}(2.983 \mathrm{~mW})$
BT Operating Mode	BT _Low Energy Mode
Modulation Type	GFSK
Number of Channels	40 Channels
Antenna Specification	Antenna type: INTENNA Peak Gain : 0.60 dBi

нст $\mathbf{C O}, \mathrm{LTR}$

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v04 dated April 5, 2017 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz . Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074 v04)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.
Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.
*The E.U.T Complies with the requirement of $\S 15.203$

HCTCO_LTD.

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the $U_{\text {CISPR }}$ measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty ($\pm \mathrm{dB}$)
Conducted Disturbance $(150 \mathrm{kHz} \sim 30 \mathrm{MHz})$	1.82
Radiated Disturbance $(9 \mathrm{kHz} \sim 30 \mathrm{MHz})$	3.40
Radiated Disturbance $(30 \mathrm{MHz} \sim 1 \mathrm{GHz})$	4.80
Radiated Disturbance $(1 \mathrm{GHz} \sim 18 \mathrm{GHz})$	5.70
Radiated Disturbance $(18 \mathrm{GHz} \sim 40 \mathrm{GHz})$	5.71

HCTOANTD.

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz	CONDUCTED	PASS
Conducted Maximum Peak Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	$<8 \mathrm{dBm} / 3 \mathrm{kHz}$ Band		PASS
Band Edge(Out of Band Emissions)	§15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 9.7		PASS
Radiated Spurious Emissions	§15.205, 15.209	cf. Section 9.6.1	RADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 9.6.2		PASS

9. TEST RESULT

9.1 DUTY CYCLE

■ TEST PROCEDURE

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are $>50 / \mathrm{T}$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz , then the zero-span method of measuring duty cycle shall not be used if $\mathrm{T} \leq 16.7$ microseconds.)

■ TEST CONFIGURATION

- TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested according to the zerospan measurement method, 6.0)b) in KDB 558074 v04.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz . The zero-span method of measuring duty cycle shall not be used if $\mathrm{T} \leq 6.25$ microseconds. ($50 / 6.25=8$)
The zero-span method was used because all measured T data are >6.25 microseconds and both RBW and VBW are > 50/T.

1. $\mathrm{RBW}=8 \mathrm{MHz}$ (the largest availble value)
2. $\mathrm{VBW}=8 \mathrm{MHz}(\geq \mathrm{RBW})$
3. $\operatorname{SPAN}=0 \mathrm{~Hz}$
4. Detector $=$ Peak
5. Number of points in sweep >100
6. Trace mode = Clear write
7. Measure $T_{\text {total }}$ and $T_{\text {on }}$
8. Calculate Duty Cycle $=T_{\text {on }} / T_{\text {total }}$ and Duty Cycle Factor $=10 * \log (1 /$ Duty Cycle)

HCTOANTD.
Report No.: HCT-RF-1807-FC006
FCC ID: A3LSMJ260G

LE Mode	$\mathrm{T}_{\text {on }}$ (ms)	$\mathrm{T}_{\text {total }}$ (ms)	Duty Cycle	Duty Cycle Factor (dB)
Bluetooth Version : 4.2 LE: 37 Byte	0.3889	0.6257	0.6215	2.07
Bluetooth Version : 4.2 LE: 255 Byte	2.1350	2.5000	0.8540	0.69

■ 4.2 LE: 37 Byte Duty Cycle RESULT PLOTS

■ 4.2 LE: 255 Byte Duty Cycle RESULT PLOTS

9.26 dB BANDWIDTH MEASUREMENT

Test Requirements and limit, §15.247(a)(2)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.
The minimum permissible 6 dB bandwidth is 500 kHz .

■ TEST CONFIGURATION

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.
The Spectrum Analyzer is set to (Procedure 8.1 in KDB 558074 v04)

> RBW $=100 \mathrm{kHz}$
> VBW $\geq 3 \times \mathrm{RBW}$
> Detector $=$ Peak

Trace mode = max hold
Sweep = auto couple
Allow the trace to stabilize

Note : We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. XdB is set 6 dB .

- TEST RESULT

Mode	Channel	6 dB Bandwidth (kHz)	$\begin{aligned} & \text { Limit } \\ & \text { (kHz) } \end{aligned}$	Pass/Fail
4.2 LE: 37 Byte	0	751.0	> 500	Pass
	19	752.5		Pass
	39	751.4		Pass
4.2 LE: 255 Byte	0	711.1	> 500	Pass
	19	714.9		Pass
	39	721.6		Pass

■ 4.2 LE: 37 Byte RESULT PLOTS
6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)

■ 4.2 LE: 255 Byte RESULT PLOTS
6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)

9.3 OUTPUT POWER MEASUREMENT

Test Requirements and limit, §15.247(b)(3)

A transmitter antenna terminal of EUT is connected to the input of a Spectrum Analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.
The maximum permissible conducted output power is 1 Watt.

■ TEST CONFIGURATION

- TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function.

This EUT TX condition is actual operating mode by BT LE mode test program.

The Spectrum Analyzer is set to

- Peak Power (Procedure 9.1.1 in KDB 558074 v04)

RBW \geq DTS Bandwidth
VBW $\geq 3 \times$ RBW
SPAN $\geq 3 \times$ RBW
Detector Mode $=$ Peak
Sweep = auto couple
Trace Mode $=$ max hold
Allow trace to fully stabilize.
Use peak marker function to determine the peak amplitude level

- Average Power (Procedure 9.2.2.4 in KDB 558074 v04)

Measure the duty cycle
Set span to at least 1.5 times the OBW
RBW = 1-5 \% of the OBW, not to exceed 1 MHz .
VBW $\geq 3 \times$ RBW.
Number of points in sweep $\geq 2 \times$ span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

Sweep time = auto.
Detector $=$ RMS(i.e., power averaging)
Do not use sweep triggering. Allow the sweep to "free run".
Trace average at least 100 traces in power averaging(RMS) mode.
Compute power by integrating the spectrum across the OBW of the signal using the instrument's band
HCT CO.,LTD.
hct co, ith.
power measurement function with band limits set equal to the OBW band edges.
Add $10 \log (1 / x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.
\square Sample Calculation

Output Power $=$ Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor
Output Power $=10 \mathrm{dBm}+10 \mathrm{~dB}+0.8 \mathrm{~dB}+0.2 \mathrm{~dB}=21.0 \mathrm{dBm}$

Note :

1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the attenuator and cable combination.
2. Spectrum offset $=$ Attenuator loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB . So, 10.7 dB is offset for 2.4 GHz Band.

HCTEO,LTD.

- 4.2 LE: 37 Byte TEST RESULTS-Peak

Conducted Output Power Measurements

LE Mode		Measured Power(dBm)	Limit (dBm)
Frequency[MHz]	Channel No.		30
2402	0	5.104	30
2440	19	4.952	30
2480	39		

■ 4.2 LE: 37 Byte TEST RESULTS-Average

Conducted Output Power Measurements

LE Mode		Measured Fower(dBm)	Duty Cycle Factor (dB)	Measured Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)
2402	0		2.07	3.85	30
2440	19	2.49	2.07	4.56	30
2480	39	2.41	2.07	4.48	30

HCT CO,ITD.

■ 4.2 LE: 255 Byte TEST RESULTS-Peak

Conducted Output Power Measurements

LE Mode		Measured Power(dBm)	Limit (dBm)
Frequency[MHz]	Channel No.		30
2402	0	5.236	30
2440	19	4.970	30
2480	39		

■ 4.2 LE: 255 Byte TEST RESULTS-Average

Conducted Output Power Measurements

LE Mode		Measured Fower(dBm)	Duty Cycle Factor (dB)	Measured Power(dBm) +	Limit Duty Cycle (dBm)
2402	0		0.69	4.05	30
2440	19	4.06	0.69	4.75	30
2480	39	3.82	0.69	4.50	30

- 4.2 LE: 37 Byte RESULT PLOTS-Peak

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Conducted Output Power (High-CH 39)

回 4.2 LE: 37 Byte RESULT PLOTS-Average
Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Conducted Output Power (High-CH 39)

■ 4.2 LE: 255 Byte RESULT PLOTS-Peak
Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Conducted Output Power (High-CH 39)

- 4.2 LE: 255 Byte RESULT PLOTS-Average

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Conducted Output Power (High-CH 39)

9.4 POWER SPECTRAL DENSITY

Test Requirements and limit, §15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.
Minimum Standard - The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any $\mathbf{3 k H z}$ BW.

■ TEST CONFIGURATION

- TEST PROCEDURE

We tested according to Procedure 10.2 in KDB 558074, issued 04/05/2017

The spectrum analyzer is set to :
Set analyzer center frequency to DTS channel center frequency.
Span $=1.5$ times the DTS channel bandwidth.
RBW $=3 \mathrm{kHz} \leq R B W \leq 100 \mathrm{kHz}$.
$V B W \geq 3 \times R B W$.
Sweep = auto couple
Detector $=$ peak
Trace Mode $=$ max hold
Allow trace to fully stabilize.
Use the peak marker function to determine the maximum amplitude level within the RBW.
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

- Sample Calculation

PSD = Reading Value + ATT loss + Cable loss(1 ea)
Output Power $=-5 \mathrm{dBm}+10 \mathrm{~dB}+0.8 \mathrm{~dB}=5.8 \mathrm{dBm}$
Note :

1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
2. Spectrum offset $=$ Attenuator loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB . So, 10.7 dB is offset for 2.4 GHz Band.

HCTEO,LTD.

回 TEST RESULTS

Conducted Power Density Measurements

Frequency (MHz)	Channel No.	Mode	Test Result		
				Limit (dBm)	Pass/ Fail
2402	0	$\begin{gathered} \text { 4.2 LE: } 37 \\ \text { Byte } \end{gathered}$	-11.326	8	Pass
2440	19		-10.597	8	Pass
2480	39		-10.788	8	Pass
2402	0	4.2 LE: 255 Byte	-11.167	8	Pass
2440	19		-10.680	8	Pass
2480	39		-10.785	8	Pass

- 4.2 LE: 37 Byte RESULT PLOTS

Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Power Spectral Density (High-CH 39)

■ 4.2 LE: 255 Byte RESULT PLOTS
Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Power Spectral Density (High-CH 39)

9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in § 15.209 (a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit : $\mathbf{2 0}$ dBc
■ TEST CONFIGURATION

■ TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074 v04)
RBW $=100 \mathrm{kHz}$
VBW $\geq 3 \times$ RBW
Set span to encompass the spectrum to be examined
Detector = Peak
Trace Mode = max hold
Sweep time = auto couple
Ensure that the number of measurement points $\geq 2^{*}$ Span/RBW
Allow trace to fully stabilize.
Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to $10^{\text {th }}$ harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note :

1. The maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1 (KDB558074 v04), so the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

HCT OA,LTD.
2. The band edge results in plot is already including the actual values of loss for the attenuator and cable combination.
3. Spectrum offset $=$ Attenuator loss + Cable loss
4. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB . So, 10.7 dB is offset for 2.4 GHz Band.
5. In case of conducted spurious emissions test, please check factors blow table.
6. In order to simplify the report, attached plots were only the worst case channel and data rate.

- FACTORS FOR FREQUENCY

Freq(MHz)	Factor(dB)
30	11.30
100	9.83
200	10.19
300	10.13
400	10.23
500	10.25
600	10.32
700	10.35
800	10.35
900	10.34
1000	10.39
2000	10.64
2400*	10.65
2500*	10.67
3000	10.68
4000	10.89
5000	11.07
6000	11.06
7000	11.35
8000	11.32
9000	11.48
10000	11.56
11000	11.56
12000	11.68
13000	11.83
14000	11.90
15000	11.98
16000	12.04

HCT OA,LTD.

17000	12.02
18000	12.08
19000	12.07
20000	12.14
21000	12.17
22000	12.31
23000	12.60
24000	12.34
25000	12.53

Note : 1. '*' is fundamental frequency range.
2. Factor $=$ Cable loss + Attenuator loss

- 4.2 LE: 37 Byte RESULT PLOTS

BandEdge (Low-CH 0)

BandEdge (High-CH 39)

$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

1 GHz ~ 3 GHz
Conducted Spurious Emission (Mid-CH 19)

$3 \mathrm{GHz} \sim 5 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

$5 \mathrm{GHz} \sim 7 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

7 GHz ~ 9 GHz
Conducted Spurious Emission (Mid-CH 19)

$9 \mathrm{GHz} \sim 11 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

11 GHz ~ 13 GHz
Conducted Spurious Emission (Mid-CH 19)

13 GHz ~ 15 GHz
Conducted Spurious Emission (Mid-CH 19)

15 GHz ~ 17 GHz
Conducted Spurious Emission (Mid-CH 19)

17 GHz ~ 19 GHz
Conducted Spurious Emission (Mid-CH 19)

19 GHz ~ 21 GHz
Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz

Conducted Spurious Emission (Mid-CH 19)

23 GHz ~ 25 GHz

Conducted Spurious Emission (Mid-CH 19)

■ 4.2 LE: 255 Byte RESULT PLOTS
BandEdge (Low-CH 0)

BandEdge (High-CH 39)

$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

1 GHz ~ 3 GHz
Conducted Spurious Emission (Mid-CH 19)

$3 \mathrm{GHz} \sim 5 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

$5 \mathrm{GHz} \sim 7 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

7 GHz ~ 9 GHz
Conducted Spurious Emission (Mid-CH 19)

$9 \mathrm{GHz} \sim 11 \mathrm{GHz}$
Conducted Spurious Emission (Mid-CH 19)

11 GHz ~ 13 GHz
Conducted Spurious Emission (Mid-CH 19)

13 GHz ~ 15 GHz
Conducted Spurious Emission (Mid-CH 19)

15 GHz ~ 17 GHz
Conducted Spurious Emission (Mid-CH 19)

17 GHz ~ 19 GHz
Conducted Spurious Emission (Mid-CH 19)

19 GHz ~ 21 GHz
Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz

Conducted Spurious Emission (Mid-CH 19)

23 GHz ~ 25 GHz

Conducted Spurious Emission (Mid-CH 19)

9.6 RADIATED MEASUREMENT.

9.6.1 RADIATED SPURIOUS EMISSIONS.

Test Requirements and limit, §15.205, §15.209

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	

HCT OA,LTD.

Test Configuration

Below 30 MHz

30 MHz - 1 GHz

HCT OA,LTD.

Above 1 GHz

TEST PROCEDURE USED

Method 12.1 in KDB 558074 v04

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:
RBW = cf. Table 1.
VBW $\geq 3 \times$ RBW.
Detector $=$ Peak.
Sweep time = auto.
Trace mode $=\max$ hold .
Allow sweeps to continue until the trace stabilizes.
(Note that the required measurement time may be longer for low duty cycle applications).

Table 1 -RBW as a function of frequency

Frequency	RBW
$9-150 \mathrm{kHz}$	$200-300 \mathrm{~Hz}$
$0.15-30 \mathrm{MHz}$	$9-10 \mathrm{kHz}$
$30-1000 \mathrm{MHz}$	$100-120 \mathrm{kHz}$
$>1000 \mathrm{MHz}$	1 MHz

HCT OR,LTD.

- Average (duty cycle < 98\%, duty cycle variations are less than $\pm 2 \%$)

Set RBW $=1 \mathrm{MHz}$
Set VBW $\geq 3 \times$ RBW
Detector $=$ RMS .
Averaging type = power (i.e., RMS).
Sweep time = auto.
Trace mode = average (at least 100 traces).
A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

Note :

1. We are performed the RSE and radiated band edge using standard radiated method(RMS).
2. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
3. Distance extrapolation factor $=20$ log (test distance $/$ specific distance $)(\mathrm{dB})$

LE Mode	$\mathrm{T}_{\text {on }}$ (ms)	$\mathrm{T}_{\text {total }}$ (ms)	Duty Cycle	Duty Cycle Factor (dB)
Bluetooth Version : 4.2 LE: 37 Byte	0.3889	0.6257	0.6215	2.07
Bluetooth Version : 4.2 LE: 255 Byte	2.1350	2.5000	0.8540	0.69

TEST RESULTS

9 kHz - 30 MHz
Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBm} / \mathrm{m}$	dBm	$(\mathrm{H} / \mathrm{V})$	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB
No Critical peaks found							

Notes:

1. Measuring frequencies from 9 kHz to the 30 MHz .
2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
3. Distance extrapolation factor $=40 \log$ (specific distance $/$ test distance) (dB)
4. Limit line $=$ specific Limits $(\mathrm{dBuV})+$ Distance extrapolation factor
5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
6. The test results for below 30 MHz is correlated to an open site.

The result on OATS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

HET EO_ITD.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBm} / \mathrm{m}$	dBm	$(\mathrm{H} / \mathrm{V})$	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB
No Critical peaks found							

Notes:

1. Measuring frequencies from 30 MHz to the 1 GHz .
2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Above 1 GHz

Model : SM-J260G/DS

Operation Mode: CH. 0

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.-A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
4804	48.31	0.00	0.62	V	48.93	73.98	25.05	PK
4804	36.65	2.09	0.62	V	39.36	53.98	14.62	AV
7206	45.32	0.00	10.05	V	55.37	73.98	18.61	PK
7206	34.08	2.09	10.05	V	46.22	53.98	7.76	AV
4804	48.54	0.00	0.62	H	49.16	73.98	24.82	PK
4804	36.90	2.09	0.62	H	39.61	53.98	14.37	AV
7206	45.48	0.00	10.05	H	55.53	73.98	18.45	PK
7206	34.16	2.09	10.05	H	46.3	53.98	7.68	AV

*A.F. : Antenna Factor / C.L. : Cable Loss / A.G. : Amplifier Gain / D.F. : Distance Factor

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Distance Factor + Duty Cycle Factor
5. Distance extrapolation factor $=20 \log$ (test distance $/$ specific distance) (dB)
6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
7. 4.2 LE: 37 Byte
8. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

Operation Mode: CH. 19

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
4880	48.31	0.00	1.61	V	49.92	73.98	24.06	PK
4880	37.02	2.09	1.61	V	40.72	53.98	13.26	AV
7320	45.74	0.00	10.02	V	55.76	73.98	18.22	PK
7320	34.11	2.09	10.02	V	46.22	53.98	7.76	AV
4880	48.56	0.00	1.61	H	50.17	73.98	23.81	PK
4880	37.13	2.09	1.61	H	40.83	53.98	13.15	AV
7320	46.01	0.00	10.02	H	56.03	73.98	17.95	PK
7320	34.29	2.09	10.02	H	46.4	53.98	7.58	AV

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
```
4. Total \(=\) Reading Value + Antenna Factor + Cable Loss - Amp Gain + Distance Factor
    + Duty Cycle Factor
```

5. Distance extrapolation factor $=20 \log$ (test distance $/$ specific distance) (dB)
6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
7. 4.2 LE: 37 Byte
8. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

Operation Mode: CH. 39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
4960	48.61	0.00	1.69	V	50.30	73.98	23.68	PK
4960	37.65	2.09	1.69	V	41.43	53.98	12.55	AV
7440	47.18	0.00	11.43	V	58.61	73.98	15.37	PK
7440	34.55	2.09	11.43	V	48.07	53.98	5.91	AV
4960	49.43	0.00	1.69	H	51.12	73.98	22.86	PK
4960	37.79	2.09	1.69	H	41.57	53.98	12.41	AV
7440	47.34	0.00	11.43	H	58.77	73.98	15.21	PK
7440	34.79	2.09	11.43	H	48.31	53.98	5.67	AV

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Distance Factor + Duty Cycle Factor
5. Distance extrapolation factor $=20 \log$ (test distance $/$ specific distance) (dB)
6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
7. 4.2 LE: 37 Byte
8. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Additional Model : SM-J260Y/DS

Operation Mode: CH. 39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L-A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
7440	47.75	0.00	11.43	H	59.18	73.98	14.80	PK
7440	36.12	2.09	11.43	H	49.64	53.98	4.34	AV

Note:

1. All modes of operation were investigated and the RSE result for SM-J260Y/DS are worst case in all bandwidth \& channel.

Additional Model : SM-J260Y

Operation Mode: CH. 39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.-A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
7440	47.55	0.00	11.43	H	58.98	73.98	15.00	PK
7440	35.79	2.09	11.43	H	49.31	53.98	4.67	AV

Note:

1. All modes of operation were investigated and the RSE result for SM-J260Y are worst case in all bandwidth \& channel.
2. SM-J260Y and SM-J260Y/DS are same hardware, but for different only number of SIM card slot.

- SM-J260Y : Single SIM
- SM-J260Y/DS : Dual SIM

Model : SM-J260G/DS

Operation Mode: CH. 0

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.-A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
4804	48.65	0.00	0.62	V	49.27	73.98	24.71	PK
4804	36.45	0.69	0.62	V	37.76	53.98	16.22	AV
7206	46.55	0.00	10.05	V	56.6	73.98	17.38	PK
7206	35.14	0.69	10.05	V	45.88	53.98	8.10	AV
4804	49.07	0.00	0.62	H	49.69	73.98	24.29	PK
4804	36.84	0.69	0.62	H	38.15	53.98	15.83	AV
7206	46.88	0.00	10.05	H	56.93	73.98	17.05	PK
7206	35.29	0.69	10.05	H	46.03	53.98	7.95	AV

*A.F. : Antenna Factor / C.L. : Cable Loss / A.G. : Amplifier Gain / D.F. : Distance Factor

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Distance Factor

+ Duty Cycle Factor

5. Distance extrapolation factor $=20$ log (test distance / specific distance) (dB)
6. We have done $\mathrm{x}, \mathrm{y}, \mathrm{z}$ planes in EUT and horizontal and vertical polarization in detecting antenna.

7. 4.2 LE: 255 Byte

8. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

Operation Mode: CH. 19

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.-A.G.+D.F. [dBm]	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
4880	49.62	0.00	0.19	V	49.81	73.98	24.17	PK
4880	37.01	0.69	0.19	V	37.89	53.98	16.09	AV
7320	45.48	0.00	8.85	V	54.33	73.98	19.65	PK
7320	34.11	0.69	8.85	V	43.65	53.98	10.33	AV
4880	49.48	0.00	0.19	H	49.67	73.98	24.31	PK
4880	37.08	0.69	0.19	H	37.96	53.98	16.02	AV
7320	46.42	0.00	8.85	H	55.27	73.98	18.71	PK
7320	34.26	0.69	8.85	H	43.8	53.98	10.18	AV

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
```
4. Total \(=\) Reading Value + Antenna Factor + Cable Loss - Amp Gain + Distance Factor + Duty Cycle Factor
```

5. Distance extrapolation factor $=20 \log$ (test distance $/$ specific distance) (dB)
6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
7. 4.2 LE: 255 Byte
8. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

Operation Mode: CH. 39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.A.G.+D.F. $[\mathrm{dBm}]$	ANT. POL $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
4960	48.65	0.00	1.69	V	50.34	73.98	23.64	PK
4960	37.50	0.69	1.69	V	39.88	53.98	14.10	AV
7440	45.38	0.00	11.43	V	56.81	73.98	17.17	PK
7440	33.49	0.69	11.43	V	45.61	53.98	8.37	AV
4960	50.07	0.00	1.69	H	51.76	73.98	22.22	PK
4960	37.73	0.69	1.69	H	40.11	53.98	13.87	AV
7440	46.59	0.00	11.43	H	58.02	73.98	15.96	PK
7440	33.78	0.69	11.43	H	45.9	53.98	8.08	AV

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Distance Factor + Duty Cycle Factor
5. Distance extrapolation factor $=20 \log$ (test distance $/$ specific distance) (dB)
6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
7. 4.2 LE: 255 Byte
8. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

■ RESULT PLOTS (Worst case : Y-H)_4.2 LE: 37 Byte

Radiated Spurious Emissions plot - Average Reading (Ch. 39 3rd Harmonic)

Date: 26.JUN.2018 16:28:10

Radiated Spurious Emissions plot - Peak Reading (Ch. 39 3rd Harmonic)

Date: 26.JUN.2018 16:30:56

回 RESULT PLOTS (Worst case : Y-H)_4.2 LE: 255 Byte

Radiated Spurious Emissions plot - Average Reading (Ch. 0 3rd Harmonic)

Date: 26.JUN.2018 16:41:07

Radiated Spurious Emissions plot - Peak Reading (Ch. 0 3rd Harmonic)

Date: 26.JUN.2018 16:42:12

Note: Only the worst case plots for Radiated Spurious Emissions.

9.6.2 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\$ 15.209(\mathrm{a})$ is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Model : SM-J260G/DS

Operation Mode	BT_LE
Operating Frequency	2402 MHz
Channel No.	0

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.+D.F. $[\mathrm{dB}]$	Ant. Pol. $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
2390.0	21.44	0.00	33.30	H	54.74	73.98	19.24	PK
2390.0	9.65	2.09	33.30	H	45.04	53.98	8.94	AV
2390.0	21.56	0.00	33.30	V	54.86	73.98	19.13	PK
2390.0	9.78	2.09	33.30	V	45.17	53.98	8.81	AV

Notes:

1. Frequency range of measurement $=2310 \mathrm{MHz} \sim 2390 \mathrm{MHz}$
2. Total = Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor
3. Distance extrapolation factor $=20 \log$ (test distance $/$ specific distance) (dB)
4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
5. 4.2 LE: 37 Byte
6. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

Operation Mode
Operating Frequency
Channel No.

BT_LE
2480 MHz
39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.+D.F. $[\mathrm{dB}]$	Ant. Pol. $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
2483.5	29.89	0.00	33.41	H	63.30	73.98	10.68	PK
2483.5	10.12	2.09	33.41	H	45.62	53.98	8.36	AV
2483.5	30.24	0.00	33.41	V	63.65	73.98	10.33	PK
2483.5	10.47	2.09	33.41	V	45.97	53.98	8.02	AV

Notes:

1. Frequency range of measurement $=2483.5 \mathrm{MHz} \sim 2500 \mathrm{MHz}$
2. Total $=$ Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor
3. Distance extrapolation factor $=20 \log$ (test distance / specific distance) (dB)
4. We have done $\mathrm{x}, \mathrm{y}, \mathrm{z}$ planes in EUT and horizontal and vertical polarization in detecting antenna.
5. 4.2 LE: 37 Byte
6. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Additional Model : SM-J260Y/DS

Operation Mode
Operating Frequency
Channel No.

BT_LE
2480 MHz
39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.+.D.F. $[\mathrm{dB}]$	Ant. Pol. $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
2483.5	29.17	0.00	33.41	V	62.58	73.98	11.41	PK
2483.5	9.71	2.09	33.41	V	45.21	53.98	8.77	AV

Note:

1. All modes of operation were investigated and the restricted bandedge result for SM-J260Y/DS are worst case in all bandwidth \& channel.

Additional Model : SM-J260Y

Operation Mode
Operating Frequency
Channel No.
$\frac{\text { BT_LE }}{2480 \mathrm{MHz}}$

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Outy Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.+.D.F. $[\mathrm{dB}]$	Ant. Pol. $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
2483.5	30.74	0.00	33.41	V	64.15	73.98	9.83	PK
2483.5	9.76	2.09	33.41	V	45.26	53.98	8.72	AV

Note:

1. All modes of operation were investigated and the restricted bandedge result for SM-J260Y are worst case in all bandwidth \& channel.
2. SM-J260Y and SM-J260Y/DS are same hardware, but for different only number of SIM card slot.

- SM-J260Y : Single SIM
- SM-J260Y/DS : Dual SIM

Model : SM-J260G/DS

Operation Mode
Operating Frequency
Channel No.
BT_LE
2402 MHz
0

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Outy Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.+D.F. $[\mathrm{dB}]$	Ant. Pol. $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
2390.0	20.88	0.00	33.30	H	54.18	73.98	19.80	PK
2390.0	9.65	0.69	33.30	H	43.64	53.98	10.34	AV
2390.0	21.30	0.00	33.30	V	54.60	73.98	19.39	PK
2390.0	9.73	0.69	33.30	V	43.72	53.98	10.26	AV

Notes:

1. Frequency range of measurement $=2310 \mathrm{MHz} \sim 2390 \mathrm{MHz}$
2. Total $=$ Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor
3. Distance extrapolation factor $=20 \log$ (test distance / specific distance) (dB)
4. We have done $\mathrm{x}, \mathrm{y}, \mathrm{z}$ planes in EUT and horizontal and vertical polarization in detecting antenna.

5. 4.2 LE: 255 Byte

6. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

Operation Mode
Operating Frequency
Channel No.

BT_LE
2480 MHz
39

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV} / \mathrm{m}]$	Duty Cycle Factor $[\mathrm{dB}]$	A.F.+C.L.+D.F. $[\mathrm{dB}]$	Ant. Pol. $[\mathrm{H} / \mathrm{V}]$	Total $[\mathrm{dBuV} / \mathrm{m}]$	Limit $[\mathrm{dBuV} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Measurement Type
2483.5	29.31	0.00	33.41	H	62.72	73.98	11.26	PK
2483.5	9.46	0.69	33.41	H	43.56	53.98	10.42	AV
2483.5	29.53	0.00	33.41	V	62.94	73.98	11.04	PK
2483.5	9.73	0.69	33.41	V	43.83	53.98	10.15	AV

Notes:

1. Frequency range of measurement $=2483.5 \mathrm{MHz} \sim 2500 \mathrm{MHz}$
2. Total $=$ Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor
3. Distance extrapolation factor $=20 \log$ (test distance / specific distance) (dB)
4. We have done $\mathrm{x}, \mathrm{y}, \mathrm{z}$ planes in EUT and horizontal and vertical polarization in detecting antenna.

5. 4.2 LE: 255 Byte

6. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone+ external accessories(earphone, etc)
- Worstcase : Stand alone

Model : SM-J260G/DS

■ RESULT PLOTS (Worst case : Z-V) _4.2 LE: 37 Byte
Radiated Restricted Band Edges plot - RMS Average Reading (Ch.39)

Radiated Restricted Band Edges plot - MAX Peak Reading (Ch.39)

Note : Only the worst case plots for Radiated Restricted Band Edges.

9.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBuV)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
2. The EUT is connected via LISN to a test power supply.
3. The measurement results are obtained as described below:
4. Detectors - Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

[NOTE]

All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone+Earphone+Travel Adapter, Stand alone+Travel Adapter
- Worstcase : Stand alone+Travel Adapter

RESULT PLOTS

Conducted Emissions (Line 1)

HCT TEST Report

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.438000	32.2	9.000	Off	N	9.7	24.9	57.1
0.442000	34.5	9.000	Off	N	9.7	22.5	57.0
0.446000	32.6	9.000	Off	N	9.7	24.3	56.9
0.454000	34.7	9.000	Off	N	9.7	22.1	56.8
0.458000	32.5	9.000	Off	N	9.7	24.3	56.7
0.464000	34.0	9.000	Off	N	9.7	22.6	56.6
1.078000	37.8	9.000	Off	N	9.8	18.2	56.0
1.112000	38.6	9.000	Off	N	9.8	17.4	56.0
1.132000	38.6	9.000	Off	N	9.8	17.4	56.0
1.142000	39.4	9.000	Off	N	9.8	16.6	56.0
1.148000	38.8	9.000	Off	N	9.8	17.2	56.0
1.158000	38.7	9.000	Off	N	9.8	17.3	56.0
7.490000	19.8	9.000	Off	N	10.1	40.2	60.0
8.622000	20.3	9.000	Off	N	10.2	39.7	60.0
9.064000	21.5	9.000	Off	N	10.2	38.5	60.0
9.082000	20.8	9.000	Off	N	10.2	39.2	60.0
9.212000	19.8	9.000	Off	N	10.2	40.2	60.0
9.906000	21.1	9.000	Off	N	10.2	38.9	60.0

Final Result 2

Frequency (MHz)	CAverage $(\mathrm{dBuV}$	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.426000	25.4	9.000	Off	N	9.7	21.9	47.3
0.434000	26.3	9.000	Off	N	9.7	20.8	47.2
0.438000	26.1	9.000	Off	N	9.7	21.0	47.1
0.442000	26.4	9.000	Off	N	9.7	20.6	47.0
0.446000	26.6	9.000	Off	N	9.7	20.3	46.9
0.464000	25.6	9.000	Off	N	9.7	21.1	46.6
1.112000	32.1	9.000	Off	N	9.8	13.9	46.0
1.116000	31.9	9.000	Off	N	9.8	14.1	46.0
1.132000	32.1	9.000	Off	N	9.8	13.9	46.0
1.140000	32.4	9.000	Off	N	9.8	13.6	46.0
1.146000	32.0	9.000	Off	N	9.8	14.0	46.0
1.158000	31.7	9.000	Off	N	9.8	14.3	46.0
7.490000	13.2	9.000	Off	N	10.1	36.8	50.0
8.214000	12.9	9.000	Off	N	10.2	37.1	50.0
8.622000	12.6	9.000	Off	N	10.2	37.4	50.0
9.064000	12.6	9.000	Off	N	10.2	37.4	50.0
9.212000	12.8	9.000	Off	N	10.2	37.2	50.0
9.906000	12.7	9.000	Off	N	10.2	37.3	50.0

Conducted Emissions (Line 2)

HCT TEST Report

Common Information

EUT:
Manufacturer:
Test Site:
Operating Conditions:

SM-J260G/DS
 SAMSUNG
 SHIELD ROOM
 BT(LE)

FCC CLASS B_Exten Cable

$\times \quad \begin{gathered}\text { Preview Result 1-PK+ } \\ \text { Final Result 2-CAV }\end{gathered}$ Final Result 2-CAV

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	38.1	9.000	Off	L1	9.7	27.8	65.9
0.168000	36.7	9.000	Off	L1	9.7	28.4	65.1
0.172000	36.4	9.000	Off	L1	9.7	28.5	64.9
0.198000	33.7	9.000	Off	L1	9.7	30.0	63.7
0.426000	31.1	9.000	Off	L1	9.7	26.2	57.3
0.452000	33.9	9.000	Off	L1	9.7	22.9	56.8
1.082000	37.2	9.000	Off	L1	9.8	18.8	56.0
1.116000	38.4	9.000	Off	L1	9.8	17.6	56.0
1.124000	38.7	9.000	Off	L1	9.8	17.3	56.0
1.140000	39.5	9.000	Off	L1	9.8	16.5	56.0
1.14600	39.3	9.000	Off	L1	9.8	16.7	56.0
1.168000	37.1	9.000	Off	L1	9.8	18.9	56.0
7.830000	22.6	9.000	Off	L1	10.1	37.4	60.0
8.202000	22.9	9.000	Off	L1	10.1	37.1	60.0
8.264000	22.8	9.000	Off	L1	10.1	37.2	60.0
8.828000	23.3	9.000	Off	L1	10.1	36.7	60.0
9.092000	24.0	9.000	Off	L1	10.1	36.0	60.0
9.242000	23.2	9.000	Off	L1	10.1	36.8	60.0

Final Result 2

Frequency (MHz)	CAverage $(\mathrm{dBuL}$	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	21.1	9.000	Off	L1	9.7	34.8	55.9
0.168000	23.0	9.000	Off	L1	9.7	32.1	55.1
0.198000	18.7	9.000	Off	L1	9.7	34.9	53.7
0.422000	25.7	9.000	Off	L1	9.7	21.7	47.4
0.432000	26.9	9.000	Off	L1	9.7	20.3	47.2
0.452000	27.7	9.000	Off	L1	9.7	19.1	46.8
1.082000	31.5	9.000	Off	L1	9.8	14.5	46.0
1.120000	32.0	9.000	Off	L1	9.8	14.0	46.0
1.138000	32.5	9.000	Off	L1	9.8	13.5	46.0
1.146000	32.0	9.000	Off	L1	9.8	14.0	46.0
1.152000	31.7	9.000	Off	L1	9.8	14.3	46.0
1.162000	31.9	9.000	Off	L1	9.8	14.1	46.0
8.202000	15.0	9.000	Off	L1	10.1	35.0	50.0
8.264000	14.8	9.000	Off	L1	10.1	35.2	50.0
8.644000	14.9	9.000	Off	L1	10.1	35.1	50.0
8.666000	14.5	9.000	Off	L1	10.1	35.5	50.0
8.828000	15.4	9.000	Off	L1	10.1	34.6	50.0
9.476000	15.2	9.000	Off	L1	10.1	34.8	50.0

10. LIST OF TEST EQUIPMENT

10.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration		
Date			Calibration	Interval
:---:				

* AC Power Line Conducted Emission Test Date : 06/29/2018

10.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde \& Schwarz	Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	05/02/2017	Biennial	9120D-937
Schwarzbeck	BBHA9170 / Horn Antenna($15 \mathrm{GHz} \sim 40 \mathrm{GHz}$)	12/04/2017	Biennial	BBHA9170541
Rohde \& Schwarz	FSP(9 kHz ~ 30 GHz) / Spectrum Analyzer	09/06/2017	Annual	100688
Rohde \& Schwarz	FSV40-N / Spectrum Analyzer	09/27/2017	Annual	101068-SZ
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	06/07/2018	Annual	8
Wainwright Instruments	WHFX7.0/18G-8SS / High Pass Filter	05/09/2018	Annual	29
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	06/29/2018	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/03/2018	Annual	2
Api tech.	18B-03 / Attenuator (3 dB)	06/07/2018	Annual	1
Agilent	8493C-10 / Attenuator(10 dB)	07/19/2017	Annual	08285
CERNEX	CBLU1183540 / Power Amplifier	07/11/2017	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	07/11/2017	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	01/10/2018	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/29/2018	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/27/2018	Annual	3000C000276

11. APPENDIX A_TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1807-FC006-P
2	HCT-RF-1807-FC007-P
3	HCT-RF-1807-FC008-P

