

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC Part 30 5G mmWave

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 8/22 - 9/2/2020 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2007010102-04-R1.A3L

A3LSMH303V

APPLICANT:

FCC ID:

Samsung Electronics Co., Ltd.

Application Type:CertificationModel:SM-H303VEUT Type:Outdoor Customer Premises Equipment (CPE)FCC Classification:Part 30 Transportable Transmitter (5GT)FCC Rule Part(s):30Test Procedure(s):ANSI C63.26-2015, KDB 971168 D01 v03r01,
KDB 842590 D01 v01r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M2007010102-04-R1.A3L) supersedes and replaces the previously issued test report (S/N: 1M2007010102-04.A3L) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	E C	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset		Page 1 of 61
© 2020 PCTEST		·		V1.0

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4				
	1.1	Scope	4				
	1.2	PCTEST Test Location	4				
	1.3	Test Facility / Accreditations	4				
2.0	PRO	DUCT INFORMATION	5				
	2.1	Equipment Description	5				
	2.2	Device Capabilities	5				
	2.3	Test Configuration	5				
	2.4	EMI Suppression Device(s)/Modifications	5				
3.0	DES	CRIPTION OF TESTS	6				
	3.1	Measurement Procedure	6				
	3.2	Radiated Power and Radiated Spurious Emissions	6				
4.0	MEA	SUREMENT UNCERTAINTY	8				
5.0	TES	F EQUIPMENT CALIBRATION DATA	9				
6.0	SAM	PLE CALCULATIONS	10				
7.0	TES	r Results	11				
	7.1	Summary	11				
	7.2	Occupied Bandwidth	12				
	7.3	Equivalent Isotropic Radiated Power	23				
	7.4	Radiated Spurious and Harmonic Emissions	27				
	7.5	Band Edge Emissions	44				
	7.6	Frequency Stability / Temperature Variation	54				
8.0	CONCLUSION						
9.0	APPI	ENDIX A	60				
	9.1	VDI Mixer Verification Certificate	60				

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 61		
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 2 of 61		
© 2020 PCTEST V ¹					

MEASUREMENT REPORT FCC Part 30

					FOO		EI	RP		
Mode	Transmission Scheme	Bandwidth (MHz)	CCs Active	Band	FCC Rule Part	Tx Frequency (MHz)	Max. Power (W)	Max. Power (dBm)	Emission Designator	Modulation
MIMO	CP-OFDM	100	1	n261	30	27500 - 28350	6.776	38.31	93M2G7D	QPSK
MIMO	CP-OFDM	100	1	n261	30	27500 - 28350	6.918	38.40	93M4W7D	16QAM
MIMO	CP-OFDM	100	1	n261	30	27500 - 28350	4.966	36.96	93M7W7D	64QAM
2Tx	DFT-s-OFDM	100	1	n261	30	27500 - 28350	23.878	43.78	90M7G7D	π/2 BPSK
2Tx	DFT-s-OFDM	100	1	n261	30	27500 - 28350	24.044	43.81	93M2G7D	QPSK
2Tx	DFT-s-OFDM	100	1	n261	30	27500 - 28350	18.967	42.78	93M4W7D	16QAM
2Tx	DFT-s-OFDM	100	1	n261	30	27500 - 28350	15.171	41.81	93M7W7D	64QAM
MIMO	CP-OFDM	50	1	n261	30	27500 - 28350	7.079	38.50	45M3G7D	QPSK
MIMO	CP-OFDM	50	1	n261	30	27500 - 28350	7.047	38.48	45M4W7D	16QAM
MIMO	CP-OFDM	50	1	n261	30	27500 - 28350	4.508	36.54	45M2W7D	64QAM
2Tx	DFT-s-OFDM	50	1	n261	30	27500 - 28350	24.210	43.84	45M4G7D	π/2 BPSK
2Tx	DFT-s-OFDM	50	1	n261	30	27500 - 28350	23.988	43.80	45M3G7D	QPSK
2Tx	DFT-s-OFDM	50	1	n261	30	27500 - 28350	16.711	42.23	45M4W7D	16QAM
2Tx	DFT-s-OFDM	50	1	n261	30	27500 - 28350	13.804	41.40	45M2W7D	64QAM

EUT Overview (Band n261)

					FOO		Ell	RP		
Mode	Transmission Scheme	Bandwidth (MHz)	CCs Active	Band	FCC Rule Part	Tx Frequency (MHz)	Max. Pow er (W)	Max. Pow er (dBm)	Emission Designator	Modulation
MIMO	CP-OFDM	100	1	n260	30	37000 - 40000	5.047	37.03	93M5G7D	QPSK
MIMO	CP-OFDM	100	1	n260	30	37000 - 40000	5.309	37.25	93M2W7D	16QAM
MIMO	CP-OFDM	100	1	n260	30	37000 - 40000	4.699	36.72	93M1W7D	64QAM
2Tx	DFT-s-OFDM	100	1	n260	30	37000 - 40000	21.330	43.29	91M3G7D	π/2 BPSK
2Tx	DFT-s-OFDM	100	1	n260	30	37000 - 40000	21.330	43.29	93M5G7D	QPSK
2Tx	DFT-s-OFDM	100	1	n260	30	37000 - 40000	20.941	43.21	93M2W7D	16QAM
2Tx	DFT-s-OFDM	100	1	n260	30	37000 - 40000	16.866	42.27	93M1W7D	64QAM
MIMO	CP-OFDM	50	1	n260	30	37000 - 40000	5.000	36.99	45M4G7D	QPSK
MIMO	CP-OFDM	50	1	n260	30	37000 - 40000	5.023	37.01	45M5W7D	16QAM
MIMO	CP-OFDM	50	1	n260	30	37000 - 40000	4.477	36.51	45M3W7D	64QAM
2Tx	DFT-s-OFDM	50	1	n260	30	37000 - 40000	20.845	43.19	45M5G7D	π/2 BPSK
2Tx	DFT-s-OFDM	50	1	n260	30	37000 - 40000	21.281	43.28	45M4G7D	QPSK
2Tx	DFT-s-OFDM	50	1	n260	30	37000 - 40000	20.512	43.12	45M5W7D	16QAM
2Tx	DFT-s-OFDM	50	1	n260	30	37000 - 40000	16.331	42.13	45M3W7D	64QAM

EUT Overview (Band n260)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 64
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 3 of 61
© 2020 PCTEST		·	V1.0

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 4 of 61
© 2020 PCTEST	-		V1.0

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Outdoor Customer Premises Equipment (CPE) FCC ID: A3LSMH303V**. The test data contained in this report pertains only to the emissions due to the EUT's 5G mmWave function.

The EUT supports both 50MHz bandwidth and 100MHz bandwidth. The EUT supports a subcarrier spacing (SCS) of 120kHz with two transmission schemes, CP-OFDM and DFT-s-OFDM, with $\pi/2$ BPSK, QPSK, 16-QAM, and 64-QAM modulations. Different Beam IDs are supported, each corresponding to a different position in space for each antenna. During testing, FTM (Factory Test Mode) was used to operate the transmitter. MIMO operation was achieved by enabling two Beam IDs at the same time: one is from the list of H Beam IDs and other is from the list of V Beam IDs.

Test Device Serial No.: 13812, 14141

2.2 Device Capabilities

This device contains the following capabilities:

Multi-band LTE, 5G NR (n5, n66, n2, n261, n260), Bluetooth (LE)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 842590 D01 v01r01 and ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated tests.

EIRP Simulation data for all Beam IDs was used to determine the worst case Beam ID for SISO operation and Beam ID pair for MIMO operation. These Beam ID's were used for final measurements.

All testing was performed using FTM (Factory Test Mode) software at continuous Tx operation.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 5 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 5 of 61
© 2020 PCTEST			V1.0

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r01 were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions §30.202, §30.203

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary for radiated emissions measurements in the spurious domain. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m for measurements above 1GHz.

Radiated power (EIRP) measurements were performed in a full anechoic chamber (FAC) conforming to the site validation requirements of CISPR 16-1-4. Radiated spurious emission measurements from 30MHz - 18GHz were performed in a semi anechoic chamber (SAC) conforming to the site validation requirements of CISPR 16-1-4. A positioner was used to manipulate the EUT through several positions in space by rotating about the roll axis as shown in the figure below. The positioner was mounted on top of a turntable bringing the total EUT height to 1.5m.

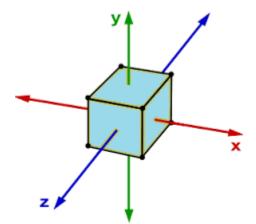


Figure 3-1. Rotation of the EUT Through Three Orthogonal Planes

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage C of C1
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 6 of 61
© 2020 PCTEST	•		V1.0

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable. The measurement antenna is in the far field of the EUT per formula $2D^2/\lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Frequency Range (GHz)	Wavelength(cm)	Far Field Distance (m)	Measurement Distance (m)
18-40	0.749	0.54	1.00
40-60	0.500	1.39	1.50
60-90	0.333	0.91	1.00
90-140	0.214	0.58	1.00
140-200	0.150	0.39	1.00

Table 3-1. Far-Field Distance & Measurment Distance per Frequency Range

Radiated power levels are investigated while the receive antenna was rotated through all angles to determine the worst case polarization/positioning. It was determined that H=0 degree and V=90 degree are the worst case positions when the EUT was transmitting horizontally and vertically polarized beams, respectively.

The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration bandwidth set to the emissions' occupied bandwidth. The EIRP is calculated from the raw power level measured with the spectrum analyzer using the formulas shown below.

Effective Isotropic Radiated Power Sample Calculation

The measured e.i.r.p is converted to E-field in V/m. Then, the distance correction is applied before converting back to calculated e.i.r.p, as explained in KDB 971168 D01.

Field Strength [dB μ V/m]	= Measured Value [dBm] + AFCL [dB/m] + 107
	= - 32.74 dBm + (40.7dB/m + 8.78dB) + 107 = 123.74dBuV/m
	= 10^(123.74/20)/1000000 = 1.54 V/m
e.i.r.p. [dBm]	= 10 * log((E-Field*D _m)^2/30) + 30dB
	= 10*log((1.54V/m * 1.00m)^2/30) + 30dB
	= 18.98 dBm e.i.r.p.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 61		
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 7 of 61		
© 2020 PCTEST					

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 8 of 61
© 2020 PCTEST	•	•	V1.0

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to an accredited ISO/IEC 17025 calibration facility. Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9030A	PXA Signal Analyzer (44GHz)	8/17/2020	Annual	8/17/2021	MY52350166
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2019	Biennial	10/10/2021	121034
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
OML Inc.	M05HWA	140 - 220GHz Mixer/Antenna	10/31/2019	Annual	10/31/2020	G00228-2
OML, Inc.	M08HWA	90 - 140GHz Mixer/Antenna	10/31/2019	Annual	10/31/2020	F00228-1
OML, Inc.	M12HWA	60 - 90GHz Mixer/Antenna	10/31/2019	Annual	10/31/2020	E00228-1
OML, Inc.	M19HWA	40 - 60GHz Mixer/Antenna	10/31/2019	Annual	10/31/2020	U00228-1
OML, Inc.	M28HWA	26 - 40GHz Mixer/Antenna	10/31/2019	Annual	10/31/2020	Ka00310-1
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	7/15/2020	Annual	7/15/2021	100342
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/10/2020	Annual	2/10/2021	102134
Sunol Science	JB5	Bi-Log Antenna (30M - 5GHz)	7/27/2020	Biennial	7/27/2022	A051107
Virginia Diodes Inc	SAX252	SAX Module (60 - 90GHz)	9/30/2019	Annual	9/30/2020	SAX252
Virginia Diodes Inc	SAX253	SAX Module (90 - 140GHz)	9/30/2019	Annual	9/30/2020	SAX253
Virginia Diodes Inc	SAX254	SAX Module (140 - 220GHz)	9/30/2019	Annual	9/30/2020	SAX254
Virginia Diodes Inc	SAX411	SAX Module (40 - 60GHz)	10/2/2019	Annual	10/2/2020	SAX411

Table 5-1. Test Equipment

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 9 of 61
© 2020 PCTEST		·	V1.0

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 800MG7D

BW = 800 MHz

- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 802MW7D

BW = 802 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset		Page 10 of 61
© 2020 PCTEST				V1.0

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMH303V
FCC Classification:	Part 30 Transportable Transmitter (5GT)
Mode(s):	TDD

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
2.1046, 30.202	Equivalent Isotropic Radiated Power Density	75dBm/100MHz		PASS	Section 7.3
2.1051, 30.203	Spurious Emissions	-13dBm/MHz for all out-of-band emissions	RADIATED	PASS	Section 7.4
2.1051, 30.203	Out-of-Band Emissions at the Band Edge	-13dBm/MHz for all out-of- band emissions, -5dBm/MHz from the band edge up to 10% of the channel BW		PASS	Section 7.5
2.1055	Frequency Stability	Fundamental emissions stay within authorized frequency block		PASS	Section 7.6

Table 7-1. Summary of Radiated Test Results

Notes:

- 1) All modes of operation and modulations were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) Per 2.1057(a)(2), spurious emissions were investigated up to 100GHz for n261 and up to 200GHz for n260.
- 3) The radiated RF output power and all out-of-band emissions in the spurious domain are evaluated to the EIRP limits.
- 4) "CC" refers to "Component Carriers".
- 5) Beam IDs were chosed based on which Beam ID produces the highest EIRP during EIRP simulation.
- 6) All testing was performed using FTM (Factory Test Mode) software at continuous Tx operation (100% duty cycle).
- 7) The CP-OFDM and DFT-s-OFDM transmission schemes were investigated fully for each test type and only the worst case data is included.
- 8) The test data in this test report shows that 8 RB configuration is the lowest RB configuration. Per specification in 3GPP, all RB configurations lower than 8 RB show an MPR of 10dB. Due to this reason, the 8 RB configuration is the one that represents the lowest RB configuration with the worst case emissions..

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 11 of 61
© 2020 PCTEST	•		V1.0

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 Section 5.4.3 KDB 842590 D01 v01r01 Section 4.3

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Notes

- 1. The EUT supports CP-OFDM and DFT-s-OFDM. OBW was measured for both waveforms and the worst case has been included in the report.
- 2. Due to similar antenna performance from both patch antennas, the Occupied Bandwidth was only measured on one antenna for each band.

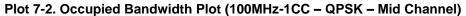
FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 12 of 61
© 2020 PCTEST	-	-	V1.0

Band n261

Channel	Bandwidth	CCs Active	Transmission Scheme	Modulation	OBW [MHz]
			DFT-s-OFDM	π/2 BPSK	90.69
	100	1	CP-OFDM	QPSK	93.16
			CP-OFDM	16QAM	93.39
Mid			CP-OFDM	64QAM	93.69
Wita		1	DFT-s-OFDM	π/2 BPSK	45.37
	50		CP-OFDM	QPSK	45.33
	50	T	DFT-s-OFDM	16QAM	45.38
			CP-OFDM	64QAM	45.20

Table 7-2. Summary of Occupied Bandwidths (n261)

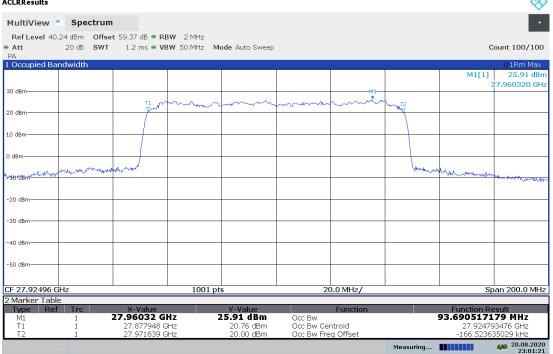
22:58:52 20.08.2020



FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 13 of 61
© 2020 PCTEST			V1.0

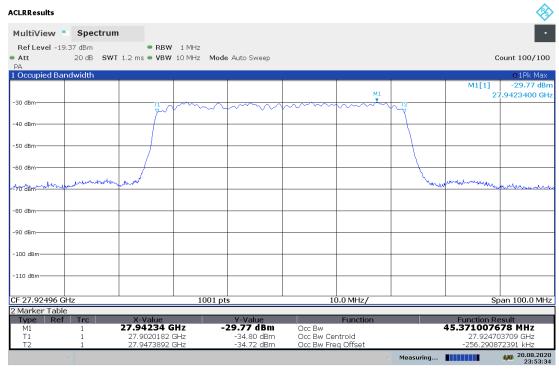
ACLRResults									
MultiView	Spectrun	ı							
Ref Level 40	.24 dBm Offse	et 59.37 dB 🖷 RE	3W 2 MHz						
Att PA	20 dB SWT	1.2 ms 🖷 VE	3W 50 MHz Mo	ode Auto Sweep					Count 100/100
1 Occupied Ba	ndwidth								o1Rm Max
								M1[1]	26.07 dBm 27.962520 GHz
30 dBm						M1			27.962320 GHZ
		T1	mon	mmm	about me	mont			
20 dBm		1 m					8		
10 dBm									
0 dBm									
		a sal							
141brokim ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	merenandelighter	and the second s					man	monwalana	An mar when
10.0011									and the second of the second o
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
CF 27.92496 C	GHz	1	1001 pts	S	20	D.0 MHz/		5	pan 200.0 MHz
2 Marker Tabl									
Type Ref		X-Value 27.96252 G		Y-Value 6.07 dBm	Occ Bw	Function		Function F 93.1644937	
T1	1	27.878125 0		20.66 dBm	Occ Bw Ce	ntroid			07303 GHz
T2	1	27.97129		19.34 dBm	Occ Bw Fre				36517 kHz
							Measuring.		20.08.2020 23:02:15

23:02:15 20.08.2020


23:01:37 20.08.2020

Plot 7-3. Occupied Bandwidth Plot (100MHz-1CC - 16QAM - Mid Channel)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 14 of 61
© 2020 PCTEST		·	V1.0

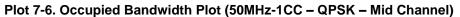


ACLRResults

23:01:22 20.08.2020

23:53:35 20.08.2020

Plot 7-5. Occupied Bandwidth Plot (50MHz-1CC – $\pi/2$ BPSK – Mid Channel)


FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 15 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 15 of 61
© 2020 PCTEST	•	·	V1.0

ACLRResults

23:56:44 20.08.2020

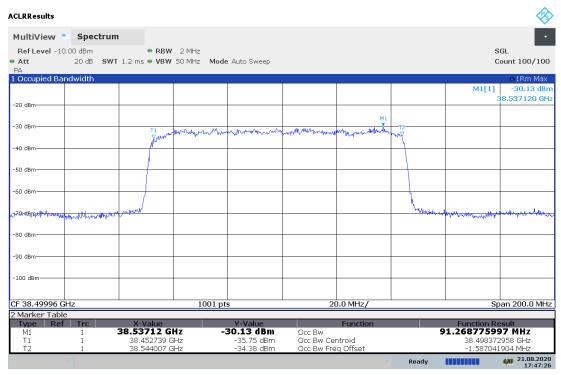
23:55:01 20.08.2020

Plot 7-7. Occupied Bandwidth Plot (50MHz-1CC – 16QAM – Mid Channel)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 16 of 61
© 2020 PCTEST		·	V1.0

ACLRResults ¢\$ MultiView Spectrum Ref Level -19.37 dBm • RBW 1 MHz Att 20 dB SWT 1.2 ms • VBW 10 MHz Mode Auto Sweep Count 100/100 PA 1 Occupied Bandwidth ⊃1Pk Max -31.66 dBr .9090800 GHz 2 М1 30 dBn T1) w MA ~T2 40 dBm -50 dBm -60 dBm montes hana min ¢70 dem'≃ J. -80 dBn -90 dBm -100 dBm -110 dBm-CF 27.92496 GHz 1001 pts 10.0 MHz/ Span 100.0 MHz 2 Marker Table Type Ref Tr K-Vali Y-Value -31.66 dBm Function Result 45.203314145 MHz Occ Bw Occ Bw Centroid Occ Bw Freq Offset 27.90908 GHz M1 -38.47 dBm -38.17 dBm T1 T2 27.9021129 GHz 27.9473163 GHz 27.924714603 GHz 20.08.2020 23:58:26 Measuring...

23:58:27 20.08.2020

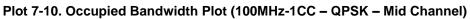

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 47 af 64	
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 17 of 61	
© 2020 PCTEST			V1.0	

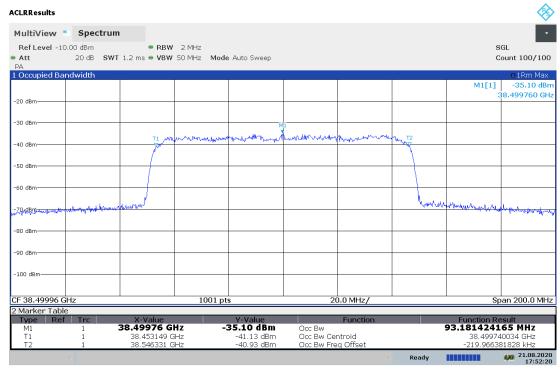
Band n260

Channel	Bandwidth	CCs	Transmission	Modulation	OBW
		Active	Scheme		[MHz]
		1	DFT-s-OFDM	π/2 BPSK	91.27
	100		CP-OFDM	QPSK	93.49
			CP-OFDM	16QAM	93.18
Mid			CP-OFDM	64QAM	93.09
ivitu	50	1	DFT-s-OFDM	π/2 BPSK	45.46
			CP-OFDM	QPSK	45.37
			CP-OFDM	16QAM	45.47
			CP-OFDM	64QAM	45.32

Table 7-3. Summary of Occupied Bandwidths (n260)

17:47:26 21.08.2020

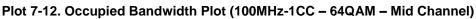


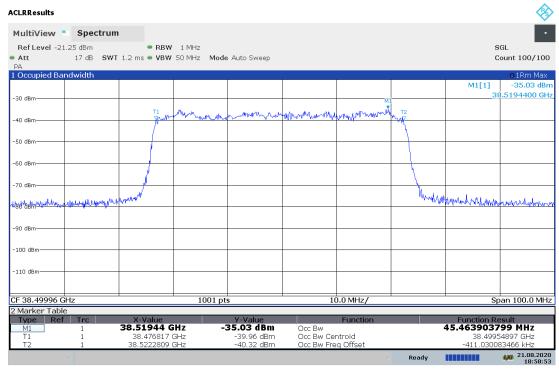

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 19 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 18 of 61
© 2020 PCTEST	•	•	V1.0

ACLRResults MultiView Spectrum Ref Level -10.00 dBm • RBW 2 MHz SGL 20 dB SWT 1.2 ms • VBW 50 MHz Mode Auto Sweep Count 100/100 Att DΔ 1 Occupied Bandwidth ⊃1Rm Max -35.02 dBr M1[1] 8.489570 GHz -20 dBr -30 dBr 40 dBi 50 dBn -60 dBn Murbylouna the show to the same -70.dBm-) -80 dBn -90 dBr -100 dBm CF 38.49996 GHz 1001 pts 20.0 MHz/ Span 200.0 MHz 2 Marker Table Ref Tr Eunction Resu Occ Bw Occ Bw Centroid 93.485171722 MHz 38.48957 GHz -35.02 dBm M1 Τ1 38.452915 GHz 38.5464 GHz -40.66 dBm -41.42 dBm 38.499657131 GHz -302.86909153 kHz Occ Bw Erea Offse 21.08.2020 17:52:41 Readv

17:52:41 21.08.2020

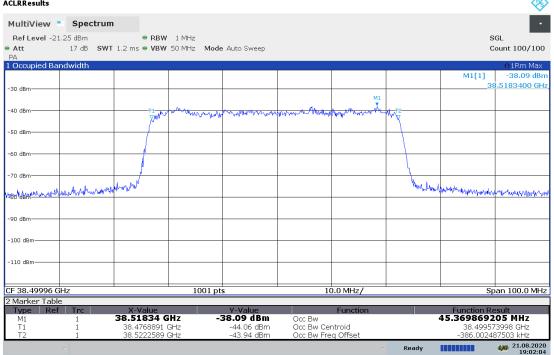
17:52:20 21.08.2020


Plot 7-11. Occupied Bandwidth Plot (100MHz-1CC - 16QAM - Mid Channel)

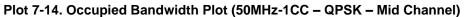

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Bage 10 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 19 of 61
© 2020 PCTEST		·	V1.0

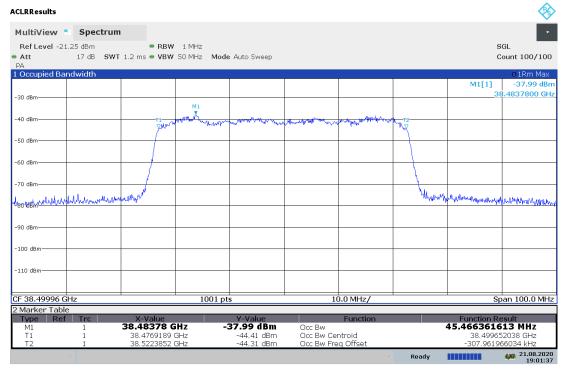
ACLRResults MultiView Spectrum Ref Level -10.00 dBm • RBW 2 MHz SGL 20 dB SWT 1.2 ms • VBW 50 MHz Mode Auto Sweep Count 100/100 Att DΔ 1 Occupied Bandwidth ⊃1Rm Max -35.41 dBr M1[1] 8.493370 GHz -20 dBr -30 dBr Ă. M 40 dBr 50 dBr -60 dBn TO deman -80 dBm -90 dBn -100 dBm CF 38.49996 GHz 1001 pts 20.0 MHz/ Span 200.0 MHz 2 Marker Table Ref Tr Eu nn Resu -35.41 dBm 93.092232129 MHz 38.49337 GHz Occ Bw Occ Bw Centroid M1 Τ1 38.4532 GHz 38.546293 GHz -41.47 dBm -41.79 dBm 38.499746603 GHz Occ. Bw Fred Offce 21.08.2020 17:51:53 Readv

17:51:53 21.08.2020


18:58:53 21.08.2020

Plot 7-13. Occupied Bandwidth Plot (50MHz-1CC – π/2 BPSK – Mid Channel)

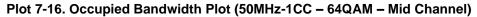

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 20 of 61
© 2020 PCTEST			V1.0



ACLRResults

19:02:04 21.08.2020

19:01:38 21.08.2020


Plot 7-15. Occupied Bandwidth Plot (50MHz-1CC - 16QAM - Mid Channel)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 21 of 61
© 2020 PCTEST		·	V1.0

19:01:15 21.08.2020

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 22 of 61
© 2020 PCTEST			V1.0

7.3 Equivalent Isotropic Radiated Power

<u>§30.202</u>

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The average power of the sum of all antenna elements is limited to a maximum EIRP of +55 dBm.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1 KDB 842590 D01 v01r01 Section 4.2

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 64
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 23 of 61
© 2020 PCTEST	•		V1.0

Test Notes

- The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below. Both H-Beam and V-Beam were investigated and the worst-case measurements were reported below.
- 2) Elements within the same antenna array are correlated to produce beamforming array gain. Antenna arrays cannot be correlated with another antenna array. During testing, only one antenna array was active.
- 3) EIRP measurements were taken at 1m test distance.
- 4) The average EIRP reported below is calculated per section 5.2.7 of ANSI C63.26-2015 which states: EIRP (dBm) = E (dBμV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m. The field strength E is calculated E (dBμV/m) = Spectrum Analyzer Channel Power Level (dBm) + Antenna Factor (dB/m) + Cable Loss (dB) + 107.
- 5) Radiated power levels are investigated while the receive antenna was rotated through all angles to determine the worst case polarization/positioning.
- 6) This device supports transmission of H-polarized and V-polarized beams from the antenna array in both CP-OFDM and DFT-s-OFDM transmission schemes. SISO and MIMO operation is also supported for some configurations. As part of the testing, all modes are investigated fully on the channel showing the highest simulated EIRP using QPSK modulation. The configuration that shows the highest measured EIRP was then used to determine the EIRP for the low and high channels and for the additional modulations.
- 7) Per 30.202(a), the limit for 50MHz limit operation is reduced by 3dB to 72dBm/100MHz

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 af 04	
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 24 of 61	
© 2020 PCTEST			V1.0	

Band n261

CCs active	Frequency [MHz]	Channel	Transmission Scheme	Modulation	Beam Pol.	Ant. Div. Scheme	Bean ID	RB Size/Offset	EIRP [dBm]	Limit [dBm/100MHz]	Margin [dBm/100MHz]
	27550.08	Low	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/22	43.15	75.00	-31.85
	27924.96	Mid	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/22	42.98	75.00	-32.02
	28299.96	High	DFT-s-OFDM	π/2 BPSK	H + V	2Tx	147+19	8/29	43.78	75.00	-31.22
1	28299.96	High	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/22	43.81	75.00	-31.19
	28299.96	High	DFT-s-OFDM	16QAM	H + V	2Tx	147+19	8/22	42.78	75.00	-32.22
	28299.96	High	DFT-s-OFDM	64QAM	H + V	2Tx	147+19	8/22	41.81	75.00	-33.19
	28299.96	High	CP-OFDM	QPSK	H + V	MIMO	147+19	8/29	38.31	75.00	-36.69

Table 7-4. EIRP Data (Band n261 - 100MHz-1CC)

CCs active	Frequency [MHz]	Channel	Transmission Scheme	Modulation	Beam Pol.	Ant. Div. Scheme	Bean ID	RB Size/Offset	EIRP [dBm]	Limit [dBm/100MHz]	Margin [dBm/100MHz]
	27525.00	Low	QPSK	QPSK	H + V	2Tx	147+19	8/12	43.80	72.00	-28.20
	27924.96	Mid	QPSK	QPSK	H + V	2Tx	147+19	8/12	42.63	72.00	-29.37
	28324.92	High	π/2 BPSK	π/2 BPSK	H + V	2Tx	147+19	8/12	43.84	72.00	-28.16
1	28324.92	High	QPSK	QPSK	H + V	2Tx	147+19	8/12	43.80	72.00	-28.20
	28324.92	High	16QAM	16QAM	H + V	2Tx	147+19	8/12	42.20	72.00	-29.80
	28324.92	High	64QAM	64QAM	H + V	2Tx	147+19	8/12	41.40	72.00	-30.60
	28324.92	High	QPSK	QPSK	H + V	MIMO	147+19	8/12	38.50	72.00	-33.50

Table 7-5. EIRP Data (Band n261 - 50MHz-1CC)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 25 of 61
© 2020 PCTEST			V1.0

Band n260

CCs active	Frequency [MHz]	Channel	Transmission Scheme	Modulation	Beam Pol.	Ant. Div. Scheme	Bean ID	RB Size/Offset	EIRP [dBm]	Limit [dBm/100MHz]	Margin [dBm/100MHz]
	37050.00	Low	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/29	40.91	75.00	-34.09
	38499.96	Mid	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/35	42.34	75.00	-32.66
	39949.92	High	DFT-s-OFDM	π/2 BPSK	H + V	2Tx	147+19	8/35	43.29	75.00	-31.71
1	39949.92	High	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/22	43.29	75.00	-31.71
	39949.92	High	DFT-s-OFDM	16QAM	H + V	2Tx	147+19	8/22	43.21	75.00	-31.79
	39949.92	High	DFT-s-OFDM	64QAM	H + V	2Tx	147+19	8/35	42.27	75.00	-32.73
	39949.92	High	CP-OFDM	QPSK	H + V	MIMO	147+19	8/22	37.03	75.00	-37.97

Table 7-6. EIRP Data (Band n260 - 100MHz-1CC)

CCs active	Frequency [MHz]	Channel	Transmission Scheme	Modulation	Beam Pol.	Ant. Div. Scheme	Bean ID	RB Size/Offset	EIRP [dBm]	Limit [dBm/100MHz]	Margin [dBm/100MHz]
	37051.80	Low	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/12	40.76	72.00	-31.24
	38498.88	Mid	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/12	42.28	72.00	-29.72
	39949.92	High	DFT-s-OFDM	π/2 BPSK	H + V	2Tx	147+19	8/12	43.19	72.00	-28.81
1	39949.92	High	DFT-s-OFDM	QPSK	H + V	2Tx	147+19	8/12	43.28	72.00	-28.72
	39949.92	High	DFT-s-OFDM	16QAM	H + V	2Tx	147+19	8/12	43.12	72.00	-28.88
	39949.92	High	DFT-s-OFDM	64QAM	H + V	2Tx	147+19	8/12	42.13	72.00	-29.87
	39949.92	High	CP-OFDM	QPSK	H + V	MIMO	147+19	8/12	36.99	72.00	-35.01

Table 7-7. EIRP Data (Band n260 - 50MHz-1CC)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 26 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 26 of 61
© 2020 PCTEST			V1.0

7.4 Radiated Spurious and Harmonic Emissions

§2.1051, §30.203

Test Overview

The spectrum is scanned from 30MHz to 100GHz for n261 and from 30MHz to 200GHz for n260. All out of band emissions are measured in a radiated test setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The conductive power or total radiated power of any emissions outside a licensee's frequency block shall be -13dBm/1MHz.

Test Procedure Used

ANSI C63.26-2015 Section 5.7.4 KDB 842590 D01 v01r01 Section 4.4.2 and Section 4.4.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 100 GHz for n261 and 200GHz for n260. Several plots are used to show investigations in this entire span.
- 2. Detector = RMS
- 3. Trace mode = trace average
- 4. Sweep time = auto couple
- 5. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 6. The trace was allowed to stabilize
- 7. RBW = 1MHz, VBW = 3MHz

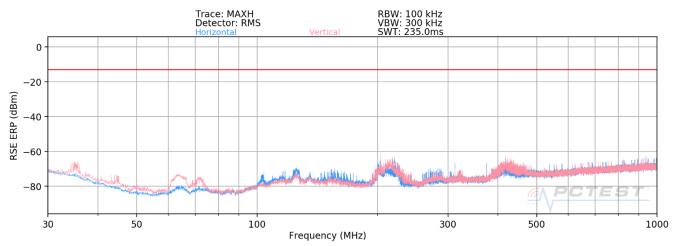
Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) All radiated spurious emissions were measured as EIRP to compare with the §30.203 TRP limits.
- 3) Elements within the same antenna array are correlated to produce beamforming array gain. Antenna arrays cannot be correlated with another antenna array. During testing, only one antenna array was active.
- 4) The plots from 1-200GHz show corrected average EIRP levels. The average EIRP reported below is calculated per section 5.2.7 of ANSI C63.26-2015 which states: EIRP (dBm) = E (dBµV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m. The field strength E is calculated E (dBµV/m) = Spectrum Analyzer Level (dBm) + Antenna Factor (dB/m) + Cable Loss (dB) + Harmonic Mixer Conversion Loss (dB) + 107. All appropriate Antenna Factor and Cable Loss have been applied in the spectrum analyzer for each measurement. For measurements > 40GHz, Harmonic Mixer Conversion Loss was also applied to the spectrum analyzer.
- 5) Emissions below 18GHz were measured at a 3 meter test distance, while emissions above 18GHz were measured at the appropriate far field distance. The far field of the mmWave signal is based on formula: R > 2D^2/wavelength, where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, D is the largest dimension of the measurement antenna.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 64
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 27 of 61
© 2020 PCTEST		·	V1.0

Frequency Range (GHz)	Wavelength(cm)	Far Field Distance (m)	Measurement Distance (m)
18-40	0.749	0.54	1.00
40-60	0.500	1.39	1.50
60-90	0.333	0.91	1.00
90-140	0.214	0.58	1.00
140-200	0.150	0.39	1.00

Table 7-8. Far-Field Distance & Measurement Distance per Frequency Range


- 6) All emissions from 30MHz 40GHz were measured using a spectrum analyzer with an internal preamplifier. Emissions >40GHz were measured using a harmonic mixer with the spectrum analyzer.
- All RSE's were measured with 1CC. It was determined that adding more CC's causes the overall amplitude of just 1CC to decrease, therefore, 1CC is the worst case for the purposes of spurious emissions measurements.
- 8) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9) All RSE's were investigated in EN-DC mode and with 802.11 chipset active. It was determined that there is no new emission introduced by EN-DC mode, or the 802.11 chipset. For EN-DC mode, n261 uses LTE B2, B5, B13, B48, and B66, and n260 uses LTE B2, B5, B13, B48, and B66.
- 10) There was no discernible difference in the spurious emission levels when using different LTE anchor bands. Thus, LTE Band 2 was used as a representative anchor band for EN-DC investigations.
- 11) All modes of operation were investigated for RSE and the 2Tx mode was the worst case.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 28 of 61
© 2020 PCTEST			V1.0

Band n261

30MHz - 1GHz

Plot 7-17. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

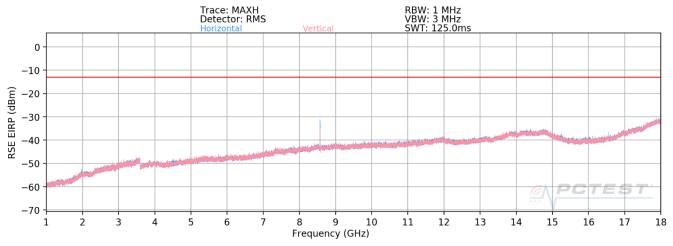
Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meter.

Frequency [MHz]	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Antenna Polarization [H/V]	Mast Height [cm]	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
63.24	50	H+V	QPSK	V	191	126	-69.32	-13.00	-56.32
124.58	50	H+V	QPSK	Н	281	314	-72.26	-13.00	-59.26
212.27	50	H+V	QPSK	V	144	182	-64.53	-13.00	-51.53
312.48	50	H+V	QPSK	V	104	110	-68.51	-13.00	-55.51
375.00	50	H+V	QPSK	V	165	124	-66.65	-13.00	-53.65
430.03	50	H+V	QPSK	V	278	132	-70.19	-13.00	-57.19

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Table 7-9. 2Tx -Spurious Emissions Table (30MHz - 1GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 3 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 29 of 61
© 2020 PCTEST			V1.0

1GHz - 18GHz

Plot 7-18. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

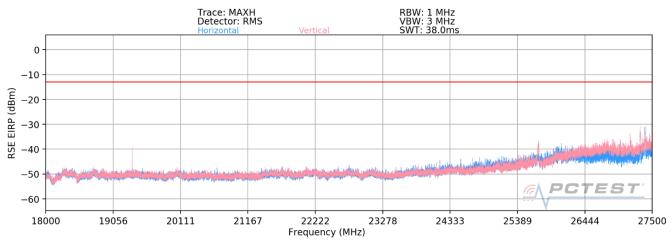
Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Mast Height [cm]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
8806.86	Low	50	H+V	QPSK	143	-32.97	-13.00	-19.97
8575.00	Mid	50	H+V	QPSK	213	-30.10	-13.00	-17.10
8975.26	High	50	H+V	QPSK	152	-27.73	-13.00	-14.73

Table 7-10. 2Tx -Spurious Emissions Table (1GHz - 18GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 3 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 30 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 30 of 61
© 2020 PCTEST		•	V1.0

18GHz - 27.5GHz

Plot 7-19. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor B2)

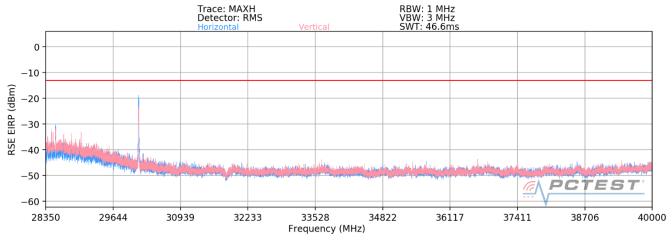
Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Mast Height [cm]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
18713.00	Low	50	H+V	QPSK	150	-53.19	-13.00	-40.19
19353.00	Mid	50	H+V	QPSK	150	-48.61	-13.00	-35.61
19353.00	High	50	H+V	QPSK	150	-49.34	-13.00	-36.34
27214.00	Low	50	H+V	QPSK	150	-39.38	-13.00	-26.38
27392.00	Mid	50	H+V	QPSK	150	-40.14	-13.00	-27.14
27326.25	High	50	H+V	QPSK	150	-45.44	-13.00	-32.44

Table 7-11. 2Tx -Spurious Emissions Table (18GHz - 27.5GHz)


Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 31 of 61
© 2020 PCTEST			V1.0

28.35GHz - 40GHz

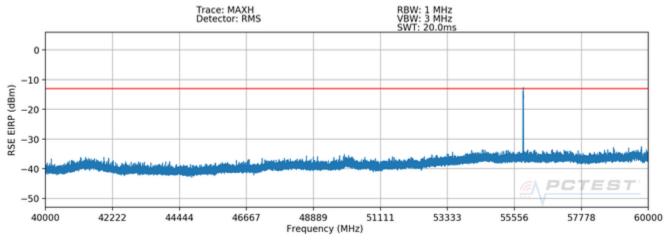
Plot 7-20. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor B2)

Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Mast Height [cm]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
28620.00	Low	50	H+V	QPSK	150	-33.37	-13.00	-20.37
28453.41	Mid	50	H+V	QPSK	150	-40.77	-13.00	-27.77
28627.59	High	50	H+V	QPSK	150	-46.16	-13.00	-33.16
29712.76	Low	50	H+V	QPSK	150	-54.70	-13.00	-41.70
30133.28	Mid	50	H+V	QPSK	150	-26.19	-13.00	-13.19
29740.00	High	50	H+V	QPSK	150	-34.87	-13.00	-21.87


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 32 of 61
© 2020 PCTEST			V1.0

40GHz - 60GHz

Plot 7-21. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor B2)

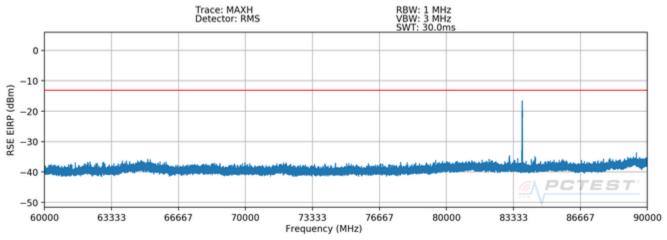
Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1.5 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8 + Harmonic Mixer Conversion Loss [dB]

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
55050.75	Low	50	H+V	QPSK	333	-22.78	-13.00	-9.78
55847.94	Mid	50	H+V	QPSK	335	-19.07	-13.00	-6.07
56650.77	High	50	H+V	QPSK	10	-22.67	-13.00	-9.67

Table 7-13. 2Tx -Spurious Emissions Table (40GHz - 60GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1.5 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 32 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 33 of 61
© 2020 PCTEST	•	•	V1.0

60GHz - 90GHz

Plot 7-22. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor B2)

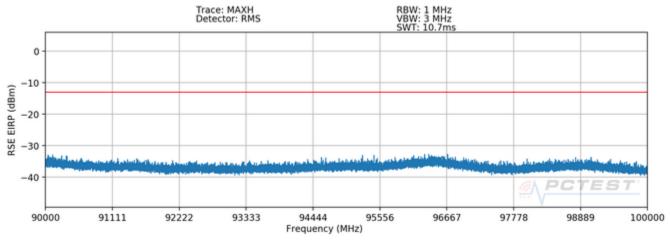
Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8 + Harmonic Mixer Conversion Loss [dB]

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
82572.63	Low	50	H+V	QPSK	299	-23.67	-13.00	-10.67
83773.64	Mid	50	H+V	QPSK	299	-22.19	-13.00	-9.19
84973.89	High	50	H+V	QPSK	301	-24.34	-13.00	-11.34

Table 7-14. 2Tx -Spurious Emissions Table (60GHz - 90GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 64
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 34 of 61
© 2020 PCTEST		·	V1.0

90GHz - 100GHz

Plot 7-23. n261 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor B2)

Spurious Emissions EIRP Sample Calculation (n261)

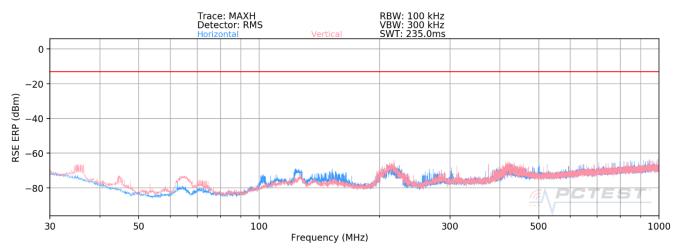
The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8 + Harmonic Mixer Conversion Loss [dB]

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
110106.75	Low	50	H+V	QPSK	164	-45.02	-13.00	-32.02
111700.11	Mid	50	H+V	QPSK	8	-46.07	-13.00	-33.07
113292.21	High	50	H+V	QPSK	128	-45.51	-13.00	-32.51

Table 7-15. 2Tx -Spurious Emissions Table (90GHz - 100GHz)

<u>Notes</u>


The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 35 of 61
© 2020 PCTEST		•	V1.0

Band n260

30MHz - 1GHz

Plot 7-24. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

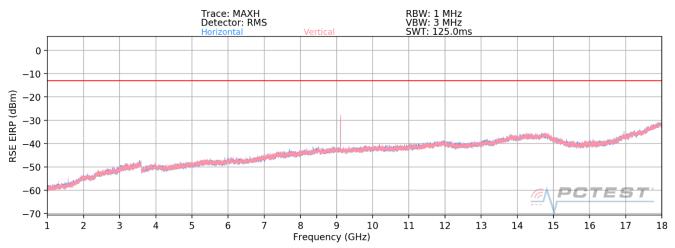
Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Frequency [MHz]	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Antenna Polarization [H/V]	Mast Height [cm]	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
38.41	50	H+V	QPSK	V	245	114	-68.50	-13.00	-55.50
67.45	50	H+V	QPSK	V	155	193	-70.83	-13.00	-57.83
123.08	50	H+V	QPSK	Н	89	194	-70.30	-13.00	-57.30
213.71	50	H+V	QPSK	V	154	185	-62.47	-13.00	-49.47
312.48	50	H+V	QPSK	V	160	121	-68.24	-13.00	-55.24
385.40	50	H+V	QPSK	V	118	124	-72.08	-13.00	-59.08

Table 7-16. 2Tx - Spurious Emissions Table (30MHz - 1GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 3 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	
© 2020 PCTEST			V1.0

1GHz - 18GHz

Plot 7-25. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

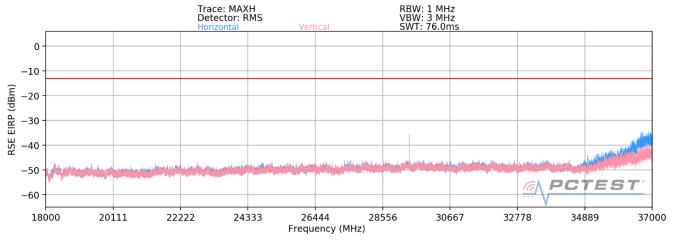
Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Antenna Polarization [H/V]	Mast Height [cm]	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
8399.74	Low	50	H+V	QPSK	V	172	192	-25.11	-13.00	-12.11
9109.05	Mid	50	H+V	QPSK	V	148	185	-26.26	-13.00	-13.26
9157.29	High	50	H+V	QPSK	V	157	181	-20.95	-13.00	-7.95

Table 7-17. 2Tx -Spurious Emissions Table (1GHz - 18GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 3 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 37 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 37 of 61
© 2020 PCTEST		·	V1.0

18GHz – 37GHz

Plot 7-26. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

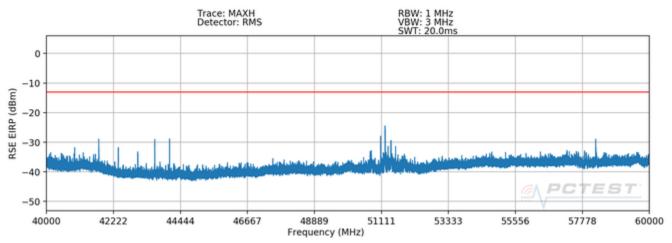
Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Antenna Polarization [H/V]	Mast Height [cm]	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
28620	Low	50	H+V	QPSK	Н	150	15	-44.49	-13.00	-31.49
29388	Mid	50	H+V	QPSK	Н	150	92	-39.63	-13.00	-26.63
30822	High	50	H+V	QPSK	Н	150	15	-38.55	-13.00	-25.55

 Table 7-18. 2Tx - Spurious Emissions Table (18GHz – 37GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 38 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 38 of 61
© 2020 PCTEST			V1.0

40GHz - 60GHz

Plot 7-27. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

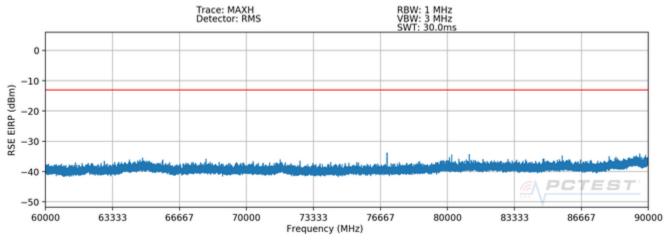
Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1.5 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8 + Harmonic Mixer Conversion Loss [dB]

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
42931.20	Low	50	H+V	QPSK	14	-20.30	-13.00	-7.30
44083.15	Mid	50	H+V	QPSK	19	-31.31	-13.00	-18.31
40527.59	High	50	H+V	QPSK	352	-23.59	-13.00	-10.59
59435.30	Low	50	H+V	QPSK	355	-31.09	-13.00	-18.09
51234.71	Mid	50	H+V	QPSK	354	-32.20	-13.00	-19.20
53044.44	High	50	H+V	QPSK	356	-31.00	-13.00	-18.00

Table 7-19. 2Tx -Spurious Emissions Table (40GHz - 60GHz)


Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1.5 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 39 of 61
© 2020 PCTEST			V1.0

60GHz - 90GHz

Plot 7-28. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

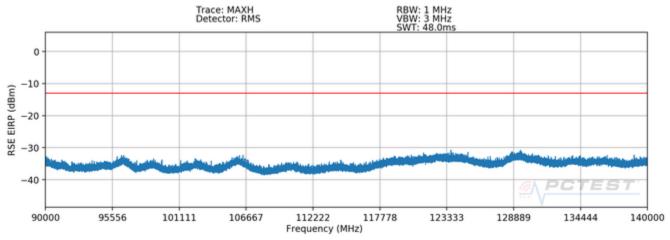
Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8 + Harmonic Mixer Conversion Loss [dB]

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
74048.70	Low	50	H+V	QPSK	341	-47.06	-13.00	-34.06
76999.14	Mid	50	H+V	QPSK	45	-45.19	-13.00	-32.19
79948.77	High	50	H + V	QPSK	298	-46.08	-13.00	-33.08

Table 7-20. 2Tx -Spurious Emissions Table (60GHz - 90GHz)


<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 40 of 61
© 2020 PCTEST			V1.0

90GHz - 140GHz

Plot 7-29. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

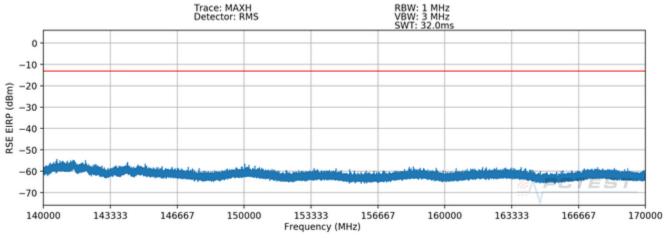
Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meter.

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8 + Harmonic Mixer Conversion Loss [dB]

Frequency [MHz]	Channnel	Bandwidth (MHz)	EUT Beam Pol.	Modulation	Turntable Azimuth [degrees]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
111064.59	Low	50	H+V	QPSK	23	-45.56	-13.00	-32.56
115497.20	Mid	50	H+V	QPSK	355	-43.78	-13.00	-30.78
119925.15	High	50	H+V	QPSK	326	-43.36	-13.00	-30.36

Table 7-21. 2Tx -Spurious Emissions Table (90GHz - 140GHz)

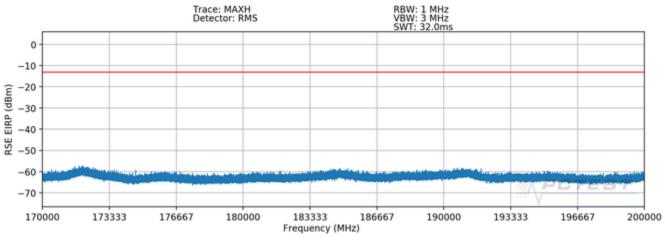

<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, cable losses, and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of 64
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 41 of 61
© 2020 PCTEST		·	V1.0

140GHz - 170GHz

Plot 7-30. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)


<u>Notes</u>

An RSE table for compliance in the 140 - 200GHz ranges is not included since the pre-scan shows all emissions are well below the limit.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 42 of 61
© 2020 PCTEST		·	V1.0

170GHz - 200GHz

Plot 7-31. n260 Radiated Spurious Plot (1CC QPSK Mid Channel H Beam – EN-DC Anchor Band 2)

Note: An RSE table for compliance in the 140 - 200GHz ranges is not included since the pre-scan shows all emissions are well below the limit.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 43 of 61
© 2020 PCTEST	•	·	V1.0

7.5 Band Edge Emissions §2.1051, §30.203

Test Overview

All out of band emissions are measured in a radiated setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is -13dBm/1MHz. However, in the bands immediately outside and adjacent to the licensee's frequency block, having a bandwidth equal to 10 percent of the channel bandwidth, the conductive power or the total radiated power of any emission shall be -5 dBm/MHz or lower.

Test Procedure Used

ANSI C63.26-2015 Section 5 and ANSI C63.26-2015 Section 6.4 KDB 842590 D01 v01r01 Section 4.4.2.5

Test Settings

- 1. Start and stop frequency were set such that both upper and lower band edges are measured.
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 1MHz
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning.
- 2) Band Edge emissions were measured at a 1 meter distance.
- 3) The spectrum analyzer for each measurement shows an offset value that was determined using the measurement antenna factor, cable loss, far field measurement distance. A sample calculation is shown on the following page.
- 4) This device supports transmission of H-polarized and V-polarized beams from the antenna array in both CP-OFDM and DFT-s-OFDM transmission schemes. SISO and MIMO operation is also supported for some configurations. As part of the testing, all modes were fully investigated and only the worst case has been included in this report.
- 5) All combinations of 1CC were fully investigated, and only the worst case has been included in this report.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 44 of 61
© 2020 PCTEST	-	·	V1.0

Sample Analyzer Offset Calculation (at 27.5GHz)

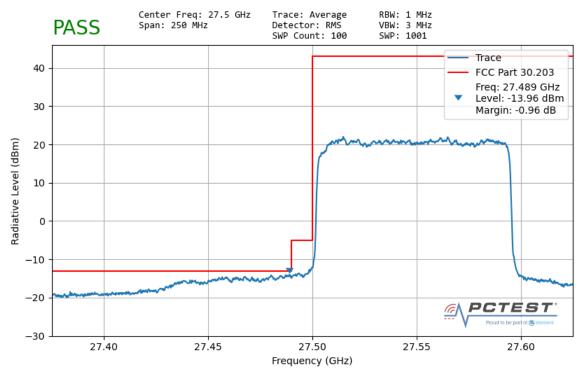
Measurement Antenna Factor = 40.70dB/m

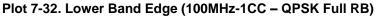
Cable Loss = 8.82dB

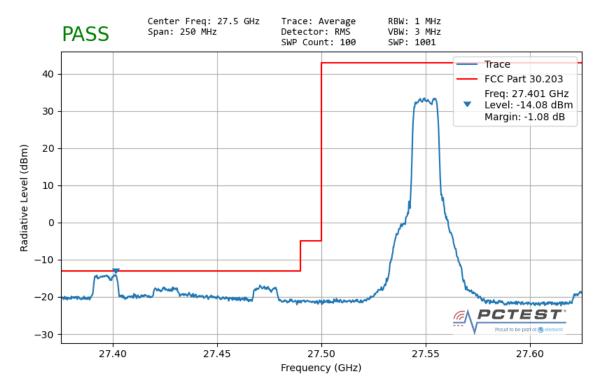
Analyzer Offset (dB) = AF (dB/m) + CL (dB) + 107 + $20\log_{10}(D) - 104.8dB$, where D = 1m

= 40.70dB/m + 8.82dB + 107 + 20log₁₀(1m) - 104.8dB

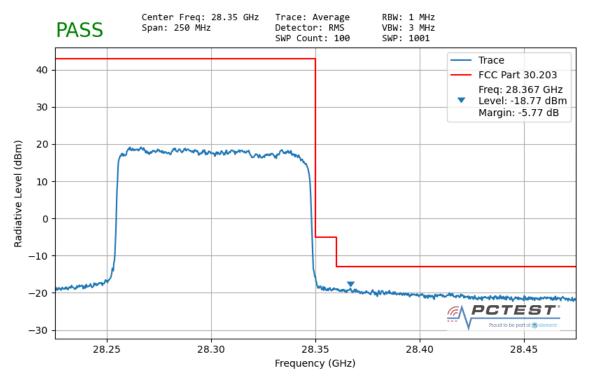
= 51.72dB

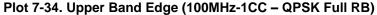

Note:

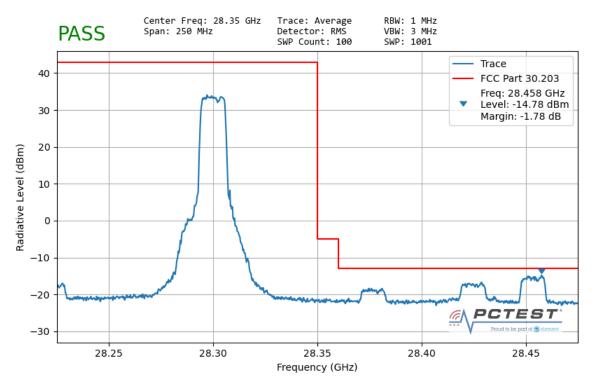

While it is allowed to use the antenna gain subtraction method in the band edge as it is defined in Part 30, the device meets the requirements via early exit condition as specified in KDB publication 842590 D01.

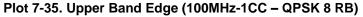

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 45 of 61
© 2020 PCTEST	-		V1.0

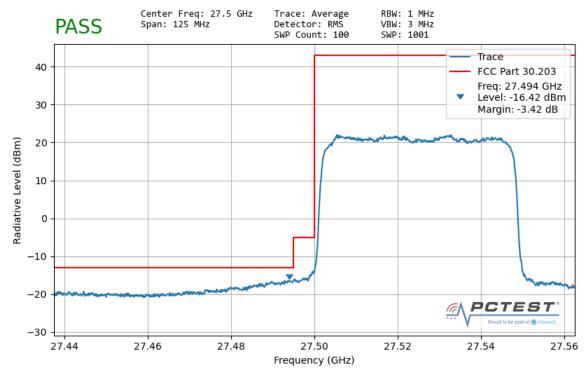
Band n261 – Worst-Case

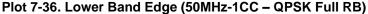


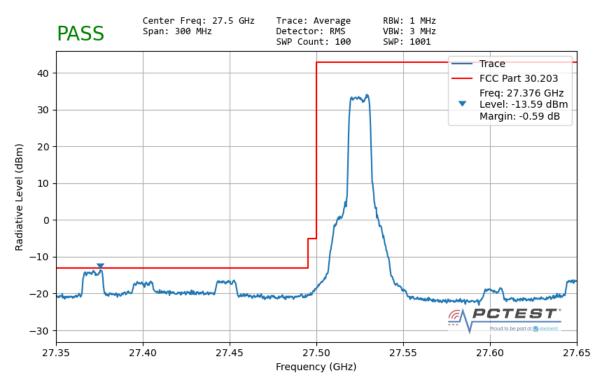



Plot 7-33. Lower Band Edge (100MHz-1CC - QPSK 8 RB)

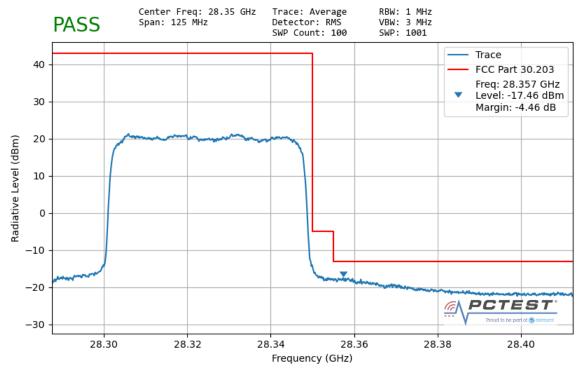

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 ef 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 46 of 61
© 2020 PCTEST	•	•	V1.0

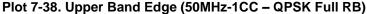


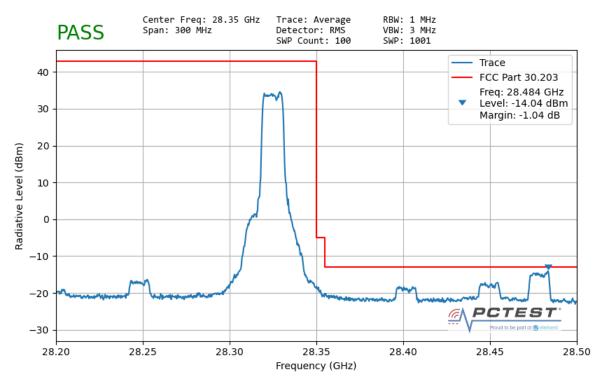




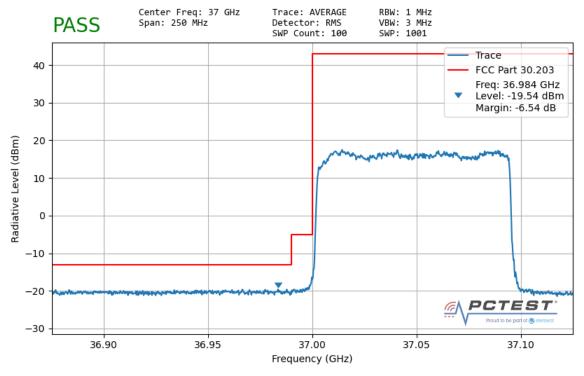
FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 47 of 61
© 2020 PCTEST			V1.0

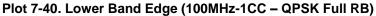


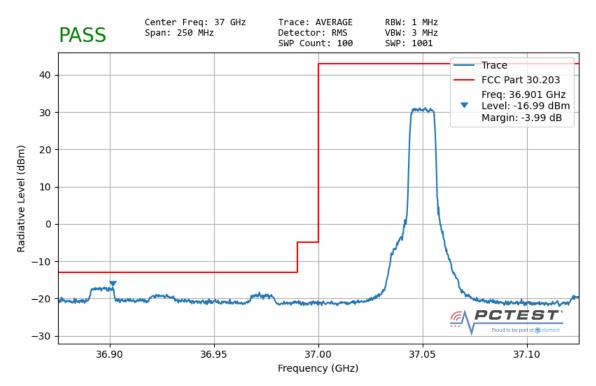




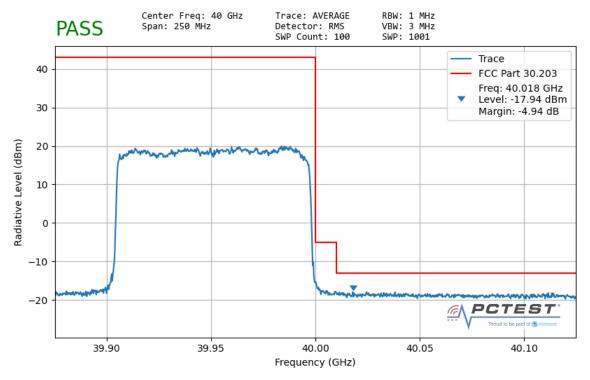
FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset		Page 48 of 61
© 2020 PCTEST				V1.0

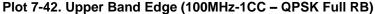


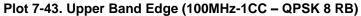


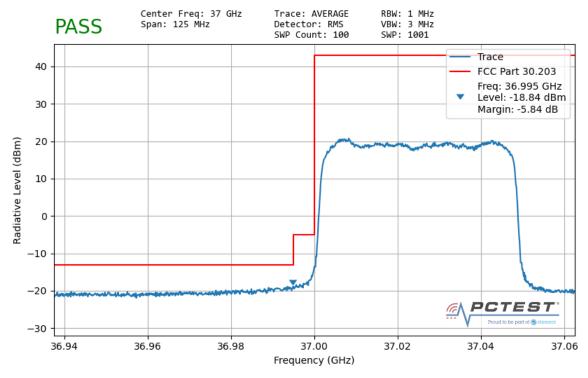

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset		Page 49 of 61
© 2020 PCTEST		•		V1.0

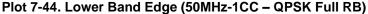
Band n261 – Worst Case

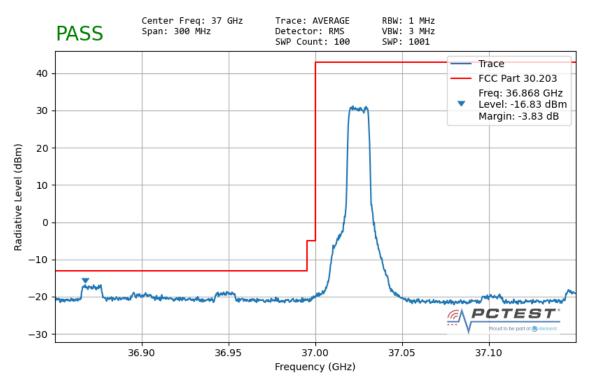




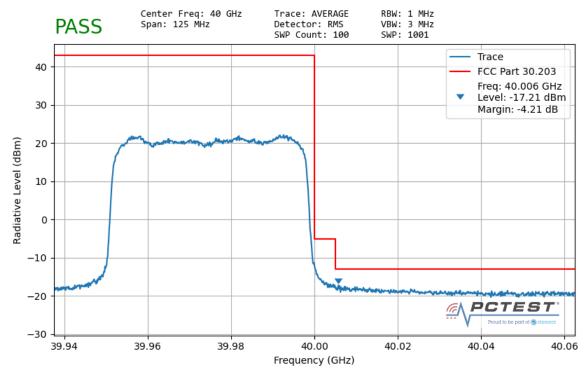

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 50 of 61
© 2020 PCTEST	2020 PCTEST		

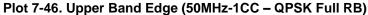


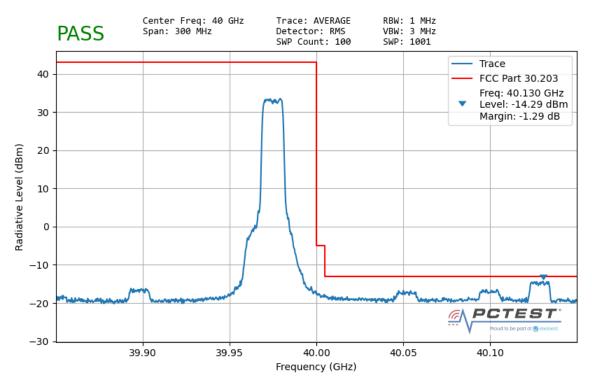




FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 51 of 61
© 2020 PCTEST		-	V1.0







FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset		Page 52 of 61
© 2020 PCTEST				V1.0

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset		Page 53 of 61
© 2020 PCTEST				V1.0

7.6 Frequency Stability / Temperature Variation §2.1055

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Test Procedure Used

ANSI C63.5-2015 Section 5.6 KDB 842590 D01 v01r01 Section 4.5

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was measured using horn antenna connected to a spectrum analyzer. The EUT was placed inside an environmental chamber. Using a foam plug, the horn antenna measured the frequency of the fundamental signal.

Test Notes

The Frequency Deviation column in the table below is the amount of deviation measured from the center frequency of the Reference measurement (first row).

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 54 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 54 of 61
© 2020 PCTEST	•	•	V1.0

Frequency Stability Measurements (Band n261) §2.1055

OPERATING FREQUENCY:	27,922,080,000	Hz
CHANNEL:	2254091	_
REFERENCE VOLTAGE:	56.00	VDC

VOLTAGE	POWER	TEMP	FREQUENCY	Freq. Dev.	Deviation
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)
100 %	56.00	- 30	27,922,085,496	129,932	0.0004653
100 %		- 20	27,922,159,989	55,439	0.0001985
100 %		- 10	27,922,119,908	95,520	0.0003421
100 %		0	27,922,151,064	64,364	0.0002305
100 %		+ 10	27,922,109,601	105,827	0.0003790
100 %		+ 20	27,922,122,816	92,612	0.0003317
100 %		+ 30	27,922,007,827	207,601	0.0007435
100 %		+ 40	27,922,008,867	206,561	0.0007398
100 %		+ 50	27,922,012,890	202,538	0.0007254
85 %	47.60	+ 20	27,922,183,956	31,472	0.0001127
115 %	64.40	+ 20	27,922,163,896	-78,400	-0.0002808

Table 7-22. Frequency Stability Data (n261)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga EE of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 55 of 61
© 2020 PCTEST	•		V1.0

Frequency Stability Measurements (Band n261) §2.1055

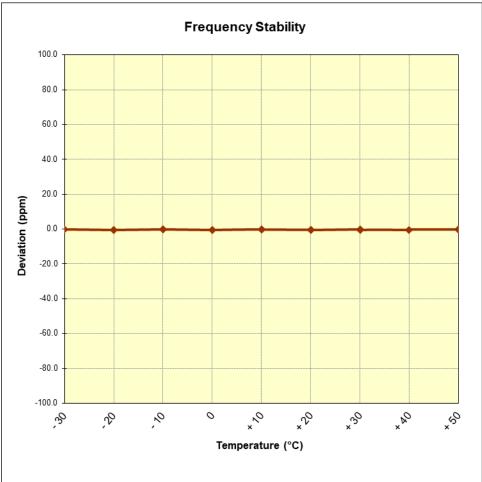


Figure 7-1. Frequency Stability Graph (n261)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage FC of C1
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 56 of 61
© 2020 PCTEST		•	V1.0

Frequency Stability Measurements (Band n260) §2.1055

OPERATING FREQUENCY:	38,495,520,000	Hz
CHANNEL:	2254091	
REFERENCE VOLTAGE:	56.00	VDC

VOLTAGE	POWER	TEMP	FREQUENCY	Freq. Dev.	Deviation
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)
100 %	56.00	- 30	38,495,373,111	331,361	0.0008608
100 %		- 20	38,495,699,100	5,372	0.0000140
100 %		- 10	38,495,632,574	71,898	0.0001868
100 %		0	38,495,685,945	18,527	0.0000481
100 %		+ 10	38,495,725,088	-20,616	-0.0000536
100 %		+ 20	38,495,312,600	391,872	0.0010180
100 %		+ 30	38,495,337,051	367,421	0.0009545
100 %		+ 40	38,495,337,194	367,278	0.0009541
100 %		+ 50	38,495,396,726	307,746	0.0007994
85 %	47.60	+ 20	38,495,548,277	156,195	0.0004057
115 %	64.40	+ 20	38,495,358,401	14,710	0.0000382

Table 7-23. Frequency Stability Data (n260)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 57 of 64
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 57 of 61
© 2020 PCTEST	•		V1.0

Frequency Stability Measurements (Band n260) §2.1055

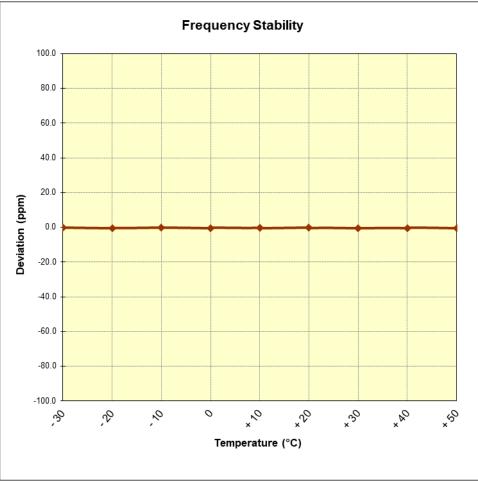


Figure 7-2. Frequency Stability Graph (n260)

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 59 of 61	
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 58 of 61	
© 2020 PCTEST V				

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Outdoor Customer Premises Equipment (CPE) FCC ID: A3LSMH303V** complies with all the requirements of Part 30.

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 59 of 61
© 2020 PCTEST			V1.0

9.0 APPENDIX A

9.1 VDI Mixer Verification Certificate

Virginia Diodes, Inc 979 2nd St. SE Suite 309 Charlottesville, VA 22902 Phone: 434-297-3257 Fax: 434-297-3258

Certificate of Conformance

To: PCTEST Engineering Laboratory 7185 Oakland Mills Road Columbia, MD 21046 United States From: Virginia Diodes, Inc 979 2nd St. SE Suite 309 Charlottesville, VA 22902

Packing List No: 193065

WR19SAX / SN: SAX 411

Today's Date: 10/02/19

Quantity

<u>Shipped</u> <u>Unit</u> <u>Description</u> 1 EA VDIWR19.0SAX Order-Job Number 19329-01

The VDI product(s) in this shipment meet(s) the guidelines for performance specifications established in accordance with the corresponding Purchase Order. Data presented in the User Guide, where applicable, has been obtained in accordance with VDI's Quality Management System. All instruments, used to obtain data, which require calibration have been calibrated with equipment traceable to the National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI).

Authorized Signature Virginia Diodes, Inc

Page 1 of 1

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 60 of 61
© 2020 PCTEST	•	·	V1.0

Virginia Diodes, Inc 979 2nd St. SE Suite 309 Charlottesville, VA 22902

Phone: 434-297-3257 Fax: 434-297-3258

Certificate of Conformance

To: PCTEST Engineering Laboratory 7185 Oakland Mills Road Columbia, MD 21046 United States

From: Virginia Diodes, Inc 979 2nd St. SE Suite 309 Charlottesville, VA 22902

Packing List No: 193037 Shipping Date: 09/30/19 Today's Date: 09/30/19 PO Number: 190719.DP1R

Quantity Shipped 1	<u>Unit</u> EA	Description SAX RETEST-WR12SAX WR12SAX / SN: SAX 252	Nur	ier-Job nber 08-01
1	EA	SAX RETEST-WR8.0SAX WR8.0SAX / SN: SAX 253	194	08-02
1	EA	SAX RETEST-WR5.1SAX WR5.1SAX / SN: SAX 254	194	08-03

The VDI product(s) in this shipment meet(s) the guidelines for performance specifications established in accordance with the corresponding Purchase Order. Data presented in the User Guide, where applicable, has been obtained in accordance with VDI's Quality Management System. All instruments, used to obtain data, which require calibration have been calibrated with equipment traceable to the National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI).

Authorized Signature Virginia Diodes, Inc.

Page 1 of 1

FCC ID: A3LSMH303V		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 61 of 61
1M2007010102-04-R1.A3L	8/22 - 9/2/2020	Portable Handset	Page 61 of 61
© 2020 PCTEST	-		V1.0