

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 Bluetooth (Low Energy)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 4/29 - 8/12/2020 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2004140062-11.A3L

FCC ID:

A3LSMH204V

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: Max. RF Output Power: Frequency Range: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification SM-H204V Indoor Customer Premises Equipment (CPE) 3.438 mW (5.36 dBm) Peak Conducted 2402 – 2480MHz Digital Transmission System (DTS) Part 15 Subpart C (15.247) ANSI C63.10-2013, KDB 558074 D01 v05r02

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNC	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 1 of 41
© 2020 PCTEST				V 9.0 02/01/2019

TABLE OF CONTENTS

1.0	INT	RODUCTION	3
	1.1	Scope	3
	1.2	PCTEST Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PRO	DDUCT INFORMATION	4
	2.1	Equipment Description	4
	2.2	Device Capabilities	4
	2.3	Antenna Description	4
	2.4	Test Configuration	5
	2.5	Software and Firmware	5
	2.6	EMI Suppression Device(s)/Modifications	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	AC Line Conducted Emissions	6
	3.3	Radiated Emissions	7
	3.4	Environmental Conditions	7
4.0	ANT	ENNA REQUIREMENTS	8
5.0	ME	ASUREMENT UNCERTAINTY	9
6.0	TES	T EQUIPMENT CALIBRATION DATA	. 10
7.0	TES	T RESULTS	. 11
	7.1	Summary	11
	7.2	6dB Bandwidth Measurement – Bluetooth (LE)	12
	7.3	Output Power Measurement – Bluetooth (LE)	15
	7.4	Power Spectral Density – Bluetooth (LE)	18
	7.5	Conducted Emissions at the Band Edge	21
	7.6	Conducted Spurious Emissions	23
	7.7	Radiated Spurious Emission Measurements	28
	7.8	Radiated Restricted Band Edge Measurements	33
	7.9	Radiated Spurious Emissions Measurements – Below 1GHz	34
	7.10	Line-Conducted Test Data	38
8.0	CO	NCLUSION	. 41

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		D 0 (44	
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 2 of 41	
© 2020 PCTEST				V 9.0 02/01/2019	

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMH204V	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 3 of 41
© 2020 PCTEST	•	•		V 9.0 02/01/2019

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Indoor Customer Premises Equipment (CPE) FCC ID: A3LSMH204V**. The data found in this test report was taken with the EUT operating in Bluetooth low energy mode. While in low energy mode, the Bluetooth transmitter hops pseudo-randomly between 40 channels, three of which are "advertising channels". When the transmitter is hopping only between the three advertising channels, the EUT does not fall under the category of a "hopper" as defined in 15.247(a)(iii) which states that a "frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels." As operation on only the advertising channels does not qualify the EUT as a hopper, the EUT is certified as a DTS device in this mode. The data found in this report is representative of the device when it transmits on its advertising channels. Typical Bluetooth operation is covered under the DSS report found with this application.

Test Device Serial No.: 18425

2.2 Device Capabilities

This device contains the following capabilities:

Multi-band LTE, 5G NR (n5, n66, n2, n261, n260), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (LE)

Ch. Frequency (MHz	
0	2402
:	:
19	2440
:	:
39	2480

Table 2-1. Frequency / Channel Operations

Note: This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the 2400 – 2483.5MHz band.

2.3 Antenna Description

Following antenna was used for the testing.

Frequency [GHz]	Antenna Gain (dBi)
2.4	2.7

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSONE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 4 of 41
© 2020 PCTEST	•	·		V 9.0 02/01/2019

2.4 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.5 Software and Firmware

The test was conducted with software version H204VVRE0ATG6 installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere E of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 5 of 41
© 2020 PCTEST				V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.10. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 6 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 6 of 41
© 2020 PCTEST				V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element		SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 7 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 7 of 41
© 2020 PCTEST	-			V 9 0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna(s) of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 8 of 41
© 2020 PCTEST				V 9.0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMH204V	Pour lo be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 0 af 44
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 9 of 41
© 2020 PCTEST				V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	BT1	Bluetooth Cable Set	5/1/2020	Annual	5/1/2021	BT1
Agilent	N4010A	Wireless Connectivity Test Set		N/A		GB46170464
Agilent	N4010A	Wireless Connectivity Test Set		N/A		GB44450273
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2019	Biennial	10/10/2021	121034
Emco	3116	Horn Antenna (18 - 40GHz)	8/7/2018	Biennial	8/7/2020	9203-2178
ETS-Lindgren	3115	Double Ridged Guide Horn 750MHz - 18GHz	3/12/2020	Biennial	3/12/2022	150693
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	1/9/2020	Annual	1/9/2021	NMLC-2
Rohde & Schwarz	CMU200	Base Station Simulator	N/A		107826	
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		836536/0005
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/23/2019	Annual	9/23/2020	100348
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/10/2020	Annual	2/10/2021	102134
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	11/1/2019	Annual	11/1/2020	100040
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	10/1/2019	Biennial	10/1/2021	310233
Sunol	DRH-118	Horn Antenna (1-18GHz)	10/3/2019	Biennial	10/3/2021	A050307
Sunol	DRH-118	Horn Antenna (1-18 GHz)	8/27/2019	Biennial	8/27/2021	A042511

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 10 of 41
© 2020 PCTEST	·			V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMH204V
FCC Classification:	Digital Transmission System (DTS)
Number of Channels:	<u>40</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4(4)]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.10

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Bluetooth LE Automation," Version 3.6.
- 5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.1.

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 11 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 11 of 41
© 2020 PCTEST		·		V 9.0 02/01/2019

7.2 6dB Bandwidth Measurement – Bluetooth (LE) §15.247(a.2); RSS-247 [5.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

- The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

None

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 12 of 41
© 2020 PCTEST	·	•		V 9.0 02/01/2019

Frequency [MHz]	Data Rate	Mod.	Channel No.	Bluetooth Mode	Measured Bandwidth [kHz]	Minimum Bandwidth [kHz]	Pass / Fail
2402	1 Mbps	GFSK	0	LE	721.4	500	Pass
2440	1 Mbps	GFSK	19	LE	683.0	500	Pass
2480	1 Mbps	GFSK	39	LE	687.3	500	Pass

Table 7-2. Conducted	Bandwidth	Measurements
----------------------	-----------	--------------


Plot 7-1. 6dB Bandwidth Plot (Bluetooth (LE), 1Mbps - Ch. 0)

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 13 of 41
© 2020 PCTEST				V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occupied BW					
RF 50 Ω AC		SENSE:INT r Freq: 2.440000000 GHz Free Run Avg Hold		5:47:43 PM Jun 29, 2020 idio Std: None	Trace/Detector
NFE		n: 30 dB		idio Device: BTS	
10 dB/div Ref 15.00 dBm					
500					
-5.00		men and the second	\sim		Clear Write
-15.0			m		
25.0				Mr.	
-25.0				Manu	Averag
-45.0					
-55.0					
-65.0					
-75.0					Max Hole
Center 2.440000 GHz			\$	span 2.000 MHz	
#Res BW 100 kHz	#	VBW 300 kHz		Sweep 1 ms	Min Hole
Occupied Bandwidt	า	Total Power	10.3 dl	Bm	
1 (0296 MHz				Detecto
					Peak
Transmit Freq Error	60.013 kHz	% of OBW Pow	er 99.00)%	Auto <u>Ma</u>
x dB Bandwidth	683.0 kHz	x dB	-6.00	dB	
ISG			STATUS		

Plot 7-2. 6dB Bandwidth Plot (Bluetooth (LE), 1Mbps - Ch. 19)

Plot 7-3. 6dB Bandwidth Plot (Bluetooth (LE), 1Mbps - Ch. 39)

FCC ID: A3LSMH204V	Proud to be part of (e) element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 14 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)	Page 14 of 41
© 2020 PCTEST			V 9.0 02/01/2019

7.3 Output Power Measurement – Bluetooth (LE) §15.247(b.3); RSS-247 [5.4(4)]

Test Overview and Limits

The transmitter antenna terminal of the EUT is connected to the input of a spectrum analyzer. Measurements are made while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.1 KDB 558074 D01 v05r02 – Section 8.3.1.1

Test Settings

- 1. RBW = 3MHz
- 2. VBW = 50MHz
- 3. Span \ge 3 x RBW
- 4. Sweep = auto couple
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)	Page 15 of 41
© 2020 PCTEST			V 9.0 02/01/2019

Frequency	Data	Mod.	Channel	Bluetooth	Peak Conducted Power		
[MHz]	Rate [Mbps]	woa.	No. Mode		[dBm]	[mW]	
2402	1 Mbps	GFSK	0	LE	1.81	1.517	
2440	1 Mbps	GFSK	19	LE	4.24	2.657	
2480	1 Mbps	GFSK	39	LE	5.36	3.438	

Table 7-3. Conducted Output Power Measurements (Bluetooth (LE))

Plot 7-4. Peak Power Plot (Bluetooth (LE), 1Mbps - Ch. 0)

FCC ID: A3LSMH204V	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSONE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 16 of 41
© 2020 PCTEST	·	·		V 9.0 02/01/2019

Keysight Spe	ectrum Analyzer - Swe										
L <mark>XI</mark>	RF 50 Ω	AC			SE:INT	#Avg Typ		TRAC	1 Jun 29, 2020	F	requency
			PNO: Fast +++ IFGain:Low	Trig: Free #Atten: 16		Avg Hold:		DE			Auto Tune
10 dB/div Log	Ref Offset 10. Ref 15.00 d						IVIKI	1 2.439 4.24	44 dBm		
				▲ ¹							Center Freq
5.00										2.44	40000000 GHz
-5.00										0.47	Start Freq 35000000 GHz
-15.0										2.43	5000000 GHZ
-25.0											Stop Freq
-35.0										2.44	45000000 GHz
-45.0											CF Step 1.000000 MHz
-55.0										<u>Auto</u>	Man
-65.0											Freq Offset
											0 Hz
-75.0											Scale Type
Center 2.4 #Res BW	40000 GHz		#\/B\M	50 MHz			Buroon 4	Span 1 .000 ms (0.00 MHz	Log	<u>Lin</u>
	3.0 WHZ		#VBVV	30 MHZ			Sweep		roor pis)		

Plot 7-5. Peak Power Plot (Bluetooth (LE), 1Mbps - Ch. 19)

Plot 7-6. Peak Power Plot (Bluetooth (LE), 1Mbps - Ch. 39)

FCC ID: A3LSMH204V	PCTEST*	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dame 17 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)	Page 17 of 41
© 2020 PCTEST			V 9.0 02/01/2019

7.4 Power Spectral Density – Bluetooth (LE) §15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 of 44
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 18 of 41
© 2020 PCTEST		·		V 9.0 02/01/2019

Frequency [MHz]	Data Rate [Mbps]	Mod.	Channel No.	Bluetooth Mode	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density IdBm / 3kHz1	Margin [dB]
2402	1 Mbps	GFSK	0	LE	0.68	8.0	-7.32
2440	1 Mbps	GFSK	19	LE	2.81	8.0	-5.19
2480	1 Mbps	GFSK	39	LE	4.40	8.0	-3.60

Table 7-4. Conducted Power Density Measurements

Plot 7-7. Power Spectral Density Plot (Bluetooth (LE), 1Mbps – Ch. 0)

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 19 of 41
© 2020 PCTEST	•	·		V 9.0 02/01/2019

Plot 7-8. Power Spectral Density Plot (Bluetooth (LE), 1Mbps – Ch. 19)

Plot 7-9. Power Spectral Density Plot (Bluetooth (LE), 1Mbps - Ch. 39)

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 20 of 41
© 2020 PCTEST	·	·		V 9.0 02/01/2019

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

For the following out of band conducted spurious emissions plots at the band edge, the EUT was set to transmit at maximum power with the largest packet size available. These settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

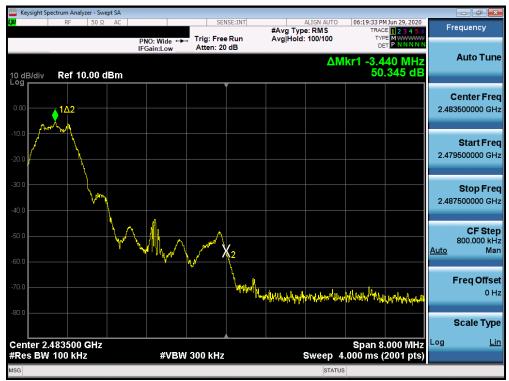
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Indoor Customer Premises Equipment (CPE)		Page 21 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020			
© 2020 PCTEST	-			V 9.0 02/01/2019

Plot 7-11. Band Edge Plot (Bluetooth (LE), 1Mbps - Ch. 39)

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 22 of 41
© 2020 PCTEST				V 9.0 02/01/2019

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

For the following out of band conducted spurious emissions plots, the EUT was set to transmit at maximum power with the largest packet size available. The worst case spurious emissions were found in this configuration.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 8.5 of KDB 558074 D01 v05r02 and Section 11.11.3 of ANSI C63.10-2013.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

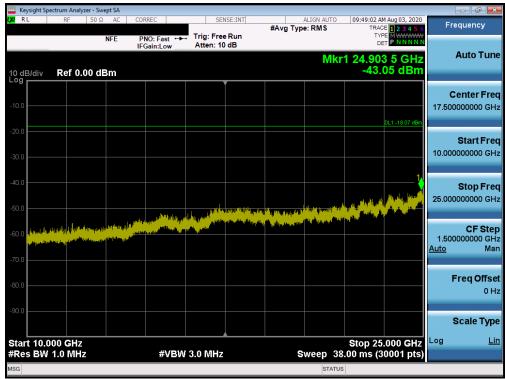
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 23 of 41
© 2020 PCTEST				V 9.0 02/01/2019

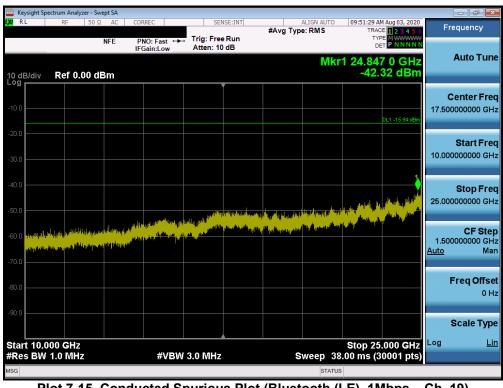
Test Notes


- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNC	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 24 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 24 of 41
© 2020 PCTEST	•			V 9.0 02/01/2019

Keysight S R L	Spectrum Analy											
U RL	RF	50 Ω		CORREC		NSE:INT	#Avg Typ	ALIGN AUTO	TRAC	Aug 03, 2020	Freque	ncy
		N	FE	PNO: Fast ← IFGain:Low	Atten: 1				DE	PNNNN		
0 dB/div	Ref 7.	00 dBr	n					Mk	r1 5.424 -43.8	1 GHz 34 dBm	Aut	o Tun
.09						Ĭ					Cent	er Fre
3.00											5.015000	000 GH
13.0										DL1 -18.07 dBm	Sta	rt Fre
23.0											30.000	000 MH
33.0											Sto	op Fre
43.0						∮ ¹					10.000000	
53.0					and a straight for	AND STREET	hterstaatelteltel	alaming th _{e set} flat state	والمروية والمروية والمروية	لمعادير ويسأله ويله	c	F Ste
3.0 1.00		and the distribution	A. CONTRACTOR			l la static a static de la seconda de la La seconda de la seconda de	n in dia si in dia si in	in the all the filling willing	and the state of the line of the	ng alamanala	997.0000 <u>Auto</u>	000 MH Ma
.5.0											Erec	0.6
73.0											Fred	I Offs 0 H
33.0											Sca	le Tyr
												۲ ۷ ۲ کا _
tart 30 Res BV	MHZ V 1.0 MH:	z		#VB	N 3.0 MHz		\$	weep 18	Stop 10. .00 ms <u>(3</u>		Log	<u> </u>
SG								STATUS				

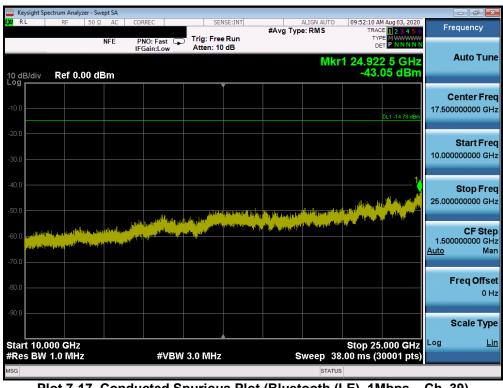
Plot 7-12. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 0)


Plot 7-13. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 0)

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 25 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 25 of 41
© 2020 PCTEST				V 9.0 02/01/2019

	ectrum Analyzer - Sw										×
L <mark>XI</mark> RL	RF 50 Ω	AC	CORREC	SEN	NSE:INT	#Avg Typ	ALIGN AUTO		Aug 03, 2020	Frequency	
10 dB/div	Ref 7.00 dl	NFE	PNO: Fast IFGain:Low	 Trig: Free Atten: 18 		• 1	Mł	TYF DE (r1 2.59		Auto Tu	une
-3.00										Center F 5.015000000 (
-13.0									DL1 -15.94 dBm	Start F 30.000000 M	
-33.0			1							Stop F 10.000000000	
-53.0	a tel fil tel a se fil tel fil tel fil tel fil 1 se se se tel fil					anganggyalan balagan Georgi ya Kerneana		a de la trada de comencia de la come Nomencia de la comencia de la comenci	un ^{te} ngaréntan situ un ^{ten} garéntan situ	CF Si 997.000000 M <u>Auto</u> M	t ep MHz Man
-73.0										Freq Off C	f set 0 Hz
-83.0 Start 30 F								Stop <u>10</u>	.000 GHz	Scale Ty	ype <u>Lin</u>
#Res BW	1.0 MHz		#VBW	/ 3.0 MHz		S	weep 18	3.00 ms (3	0001 pts)		

Plot 7-14. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 19)


Plot 7-15. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 19)

FCC ID: A3LSMH204V	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 26 of 41
© 2020 PCTEST	·	·		V 9.0 02/01/2019

	pectrum Analyz											d X
X/RL	RF	50 Ω AC	COR	REC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO		M Aug 03, 2020	Frequ	ency
		NFE	PN IFG	IO: Fast 🕞 Sain:Low	Trig: Free Atten: 18				TY		_	
10 dB/div	Ref 7.0	00 dBm						Mł	(r1 3.66) -47.	2 1 GHz 88 dBm	Au	to Tune
												ter Fred
3.00											5.015000	000 GH
13.0										DL1 -14.78 dBm	St	artFre
-23.0												000 MH
33.0											St	op Fre
											10.000000	
43.0				hinnelle aller	ul ^{esten^{is}le_rten.}	u figilitati gove	ellenperplerenses	ر ما ^ر ودية اسرائيو (ي	a distance of the local sector of the local se	- And the Deliver of the Party		CF Ste
Balled International			أللدين والمرامان	the second second	A CARLEN	in a state of the second s			Alberton Ukrafika		997.000 <u>Auto</u>	Ma Ma
											Fre	q Offse
73.0												он
83.0											Soa	le Typ
Start 30 I Res BW	MHz 1.0 MHz	,		#VBW	/ 3.0 MHz		s	weep 18	Stop 10	.000 GHz 0001 pts)	Log	Li
ISG								STATUS		Pto/		

Plot 7-16. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 39)

Plot 7-17. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 39)

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSONE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 07 of 44
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 27 of 41
© 2020 PCTEST				V 9.0 02/01/2019

7.7 Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-5 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3

KDB 558074 D01 v05r02 - Section 8.6, 8.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3kHz > 1/T
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to run for at least 50 times (1/duty cycle) traces

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 44
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 28 of 41
© 2020 PCTEST		•		V 9.0 02/01/2019

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW is set depending on measurement frequency, as specified in Table 7-6 below
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Frequency	RBW
9 – 150kHz	200 – 300Hz
0.15 – 30MHz	9 – 10kHz
30 – 1000MHz	100 – 120kHz
> 1000MHz	1MHz

Table 7-6. RBW as a Function of Frequency

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

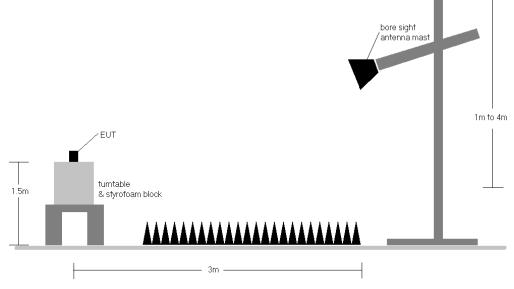


Figure 7-6. Radiated Test Setup >1GHz

FCC ID: A3LSMH204V	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 29 of 41
© 2020 PCTEST	·	·		V 9.0 02/01/2019

Test Notes

- 1. The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-5.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested while powered by an DC power source.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- Average measurements were recorded using a VBW of 3kHz, per Section 4.1.4.2.3 of ANSI C63.10-2013, since 1/T is equal to just under 3kHz. This method was used because the EUT could not be configured to operate with a duty cycle > 98%. Both average and peak measurements were made using a peak detector
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 8. No significant radiated band edge emissions were found in the 2310 2390MHz restricted band.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

Determining Spurious Emissions Levels

- \circ Field Strength Level [dB_µV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- $\circ \quad \text{Margin}_{[dB]} = \text{Field Strength Level}_{[dB\mu V/m]} \text{Limit}_{[dB\mu V/m]}$

Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.8 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 30 of 41
© 2020 PCTEST	•	·		V 9.0 02/01/2019

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Avg	V	187	25	-70.94	1.93	37.99	53.98	-15.98
4804.00	Peak	V	187	25	-63.54	1.93	45.39	73.98	-28.58
12010.00	Avg	V	-	-	-77.94	15.07	44.13	53.98	-9.85
12010.00	Peak	V	-	-	-65.73	15.07	56.34	73.98	-17.64

Table 7-7. Radiated Measurements @ 3 meters

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2440MHz
Channel:	19

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4880.00	Avg	V	130	49	-62.35	2.07	46.72	53.98	-7.26
4880.00	Peak	V	130	49	-57.59	2.07	51.48	73.98	-22.50
7320.00	Avg	V	127	328	-78.11	8.42	37.31	53.98	-16.67
7320.00	Peak	V	127	328	-66.50	8.42	48.92	73.98	-25.06
12200.00	Avg	V	-	-	-78.61	15.45	43.84	53.98	-10.14
12200.00	Peak	V	-	-	-66.51	15.45	55.94	73.98	-18.04

Table 7-8. Radiated Measurements @ 3 meters

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 21 of 11
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 31 of 41
© 2020 PCTEST		·		V 9.0 02/01/2019

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

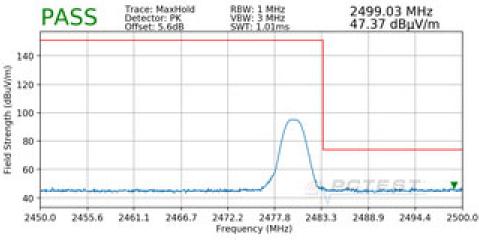
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	V	392	24	-61.81	2.06	47.25	53.98	-6.73
4960.00	Peak	V	392	24	-57.17	2.06	51.89	73.98	-22.09
7440.00	Avg	V	150	142	-76.99	8.53	38.54	53.98	-15.44
7440.00	Peak	V	150	142	-66.40	8.53	49.13	73.98	-24.85
12400.00	Avg	V	-	-	-78.68	15.17	43.49	53.98	-10.49
12400.00	Peak	V	-	-	-66.36	15.17	55.81	73.98	-18.17

Table 7-9. Radiated Measurements @ 3 meters

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 32 of 41
© 2020 PCTEST	•	•		V 9.0 02/01/2019


7.8 Radiated Restricted Band Edge Measurements §15.209; RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

Bluetooth Mode:	LE
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

Plot 7-18. Radiated Restricted Upper Band Edge Measurement (Average)

Plot 7-19. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMH204V	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 55 01 41
© 2020 PCTEST				V 9 0 02/01/2019

7.9 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-10 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-10. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMH204V	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 34 of 41
© 2020 PCTEST		·		V 9.0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

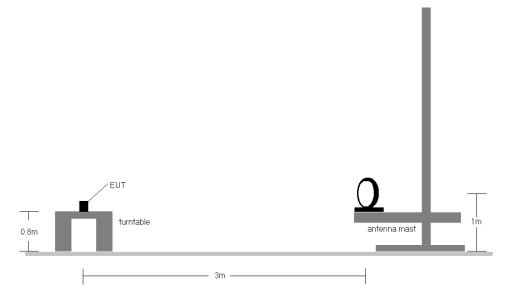
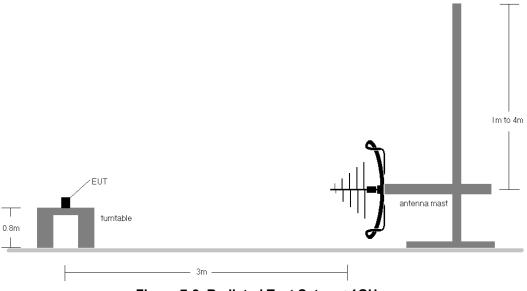
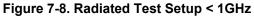
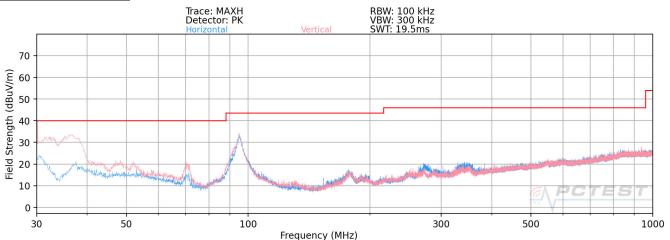




Figure 7-7. Radiated Test Setup < 30Mhz

FCC ID: A3LSMH204V	PCTEST*	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 25 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 35 of 41
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019


Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen(8.10) are below the limit shown in Table 7-10.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested while powered by an DC power source.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification.

FCC ID: A3LSMH204V	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNC	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 26 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 36 of 41
© 2020 PCTEST	•			V 9.0 02/01/2019

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-20. Radiated Spurious Plot below 1GHz

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
34.78	Quasi-Peak	V	112	342	-54.45	-17.13	35.42	40.00	-4.58
39.50	Quasi-Peak	V	101	298	-69.34	-15.28	22.38	40.00	-17.62
53.73	Quasi-Peak	V	100	101	-57.96	-13.83	35.21	40.00	-4.79
256.19	Quasi-Peak	V	108	74	-72.91	-14.35	19.74	46.02	-26.28
384.00	Quasi-Peak	V	130	19	-74.70	-11.47	20.83	46.02	-25.19
783.00	Quasi-Peak	Н	134	140	-64.24	-4.94	37.82	46.02	-8.20

Table 7-11. Radiated Measurements below 1GHz

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNC	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 44
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 37 of 41
© 2020 PCTEST	·			V 9.0 02/01/2019

7.10 Line-Conducted Test Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60 50	

Table 7-12. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

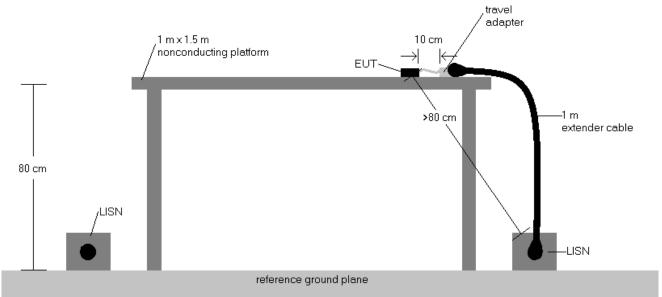
ANSI C63.10-2013, Section 6.2

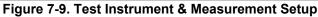
Test Settings

Quasi-Peak Field Strength Measurements

- 7. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 8. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 9. Detector = quasi-peak
- 10. Sweep time = auto couple
- 11. Trace mode = max hold
- 12. Trace was allowed to stabilize

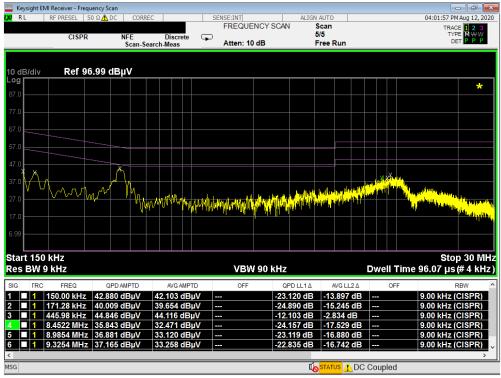
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

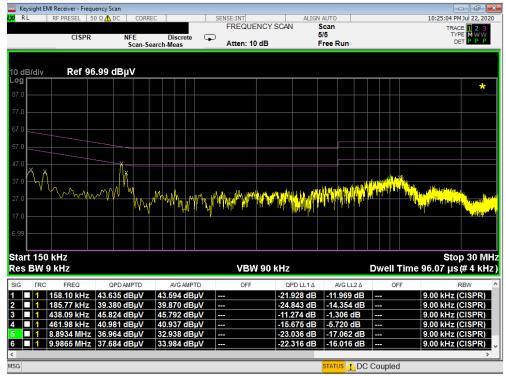

FCC ID: A3LSMH204V	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNC	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 29 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 38 of 41
© 2020 PCTEST				V 9 0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMH204V	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 39 of 41
© 2020 PCTEST	-			V 9.0 02/01/2019

Plot 7-21. Line Conducted Plot with BluetoWoth LE (L1)

FCC ID: A3LSMH204V	PCTEST Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 40 of 41
© 2020 PCTEST		·		V 9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Indoor Customer Premises Equipment (CPE) FCC ID: A3LSMH204V** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMH204V	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 41 of 41
1M2004140062-11.A3L	4/29 - 8/12/2020	Indoor Customer Premises Equipment (CPE)		Page 41 of 41
© 2020 PCTEST		·		V 9.0 02/01/2019