

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

PART 2 RF EXPOSURE EVALUATION REPORT

A3LSMG998U

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 11/05/2020 - 12/10/2020 **Test Site/Location:** PCTEST, Columbia, MD, USA **Document Serial No.:** 1M2009230152-23-R1.A3L

APPLICANT:

FCC ID:

SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model: **Device Serial Numbers:** Portable Handset Certification CFR §2.1093 SM-G998U SM-G998U1 Pre-Production Samples [0706M, 0184M, 1367M, 1347M, 0814M, 0691M, 0066M, 1414M]

Note: This revised Test Report (S/N: 1M2009230152-23-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dege 1 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 1 of 98
© 2020 PCTEST				REV 1.0

TABLE OF CONTENTS

1	DEVICE U	INDER TEST	.3
2	RF EXPO	SURE LIMITS	5
3	TIME VAR	RYING TRANSMISSION TEST CASES	7
4	FCC MEA	SUREMENT PROCEDURES (FREQ < 6 GHZ)	10
5	FCC MEA	SUREMENT PROCEDURES (FREQ > 6 GHZ)	21
6	MEASURI	EMENT TEST SETUP (FREQ < 6 GHZ)	28
7	MEASURI	EMENT TEST SETUP (FREQ > 6 GHZ)	31
8	TEST CO	NFIGURATIONS (FREQ < 6 GHZ)	33
9	CONDUC	TED TX CASES (FREQ < 6 GHZ)	36
10	SYSTEM	VERIFICATION (FREQ < 6 GHZ)	64
11	SAR TES	T RESULTS (FREQ < 6 GHZ)	66
12	TEST CO	NFIGURATIONS (FREQ > 6 GHZ)	74
13	RADIATE	D POWER TX CASES (FREQ > 6 GHZ)	77
14	SYSTEM	VERIFICATION (FREQ > 6 GHZ)	89
15	POWER D	DENSITY TEST RESULTS (FREQ > 6 GHZ)	90
16	EQUIPME	NT LIST	93
17	MEASURI	EMENT UNCERTAINTIES	94
18	CONCLUS	SION	96
19	REFEREN	ICES	97
APPENI	DIX A:	VERIFICATION PLOTS	
APPENI	DIX B:	SAR TISSUE SPECIFICATIONS	
APPENDIX C: SAR SYSTEM VALIDATION		SAR SYSTEM VALIDATION	
APPENDIX D: TEST SETUP PHOTOGRAPHS		TEST SETUP PHOTOGRAPHS	
APPENI	DIX E:	TEST SEQUENCES	
APPENI	DIX F:	TEST PROCEDURES FOR SUB6 NR + NR RADIO	

APPENDIX G: CALIBRATION CERTIFICATES

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 2 of 08	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 2 of 98	
© 2020 PCTEST REV 1.					

DEVICE UNDER TEST 1

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
Dana a mode		TXTTEQUENCY
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
CDMA/EVDO BC10 (§303)	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12		
	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 14	Voice/Data	790.5 - 795.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 48	Voice/Data	3552.5 - 3697.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
LTE Band 38	Voice/Data	2572.5 - 2617.5 MHz
NR Band n71	Data	665.5 - 695.5 MHz
NR Band n12	Data	701.5 - 713.5 MHz
NR Band n5 (Cell)	Data	826.5 - 846.5 MHz
NR Band n66 (AWS)	Data	1712.5 - 1777.5 MHz
NR Band n25 (PCS)	Data	1852.5 - 1912.5 MHz
NR Band n2 (PCS)	Data	1852.5 - 1907.5 MHz
NR Band n30	Data	2307.5 - 2312.5 MHz
NR Band n41	Data	2506.02 - 2679.99 MHz
NR Band n77	Data	3710.01 - 3969.99 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
U-NII-5	Voice/Data	5925 - 6425 MHz
U-NII-6	Voice/Data	6425 - 6525 MHz
U-NII-7	Voice/Data	6525 - 6875 MHz
U-NII-8	Voice/Data	6875 - 7125 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
NR Band n260	Data	37000 - 40000 MHz
NR Band n261	Data	27500 - 28350 MHz

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 3 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 5 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

1.2 Time-Averaging Algorithm for RF Exposure Compliance

This device is enabled with Qualcomm® Smart Transmit feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. DUT contains embedded file system (EFS) version 16 configured for the second generation (GEN2).

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of SAR design target or PD design target, below the predefined time-averaged power limit (i.e., Plimit for sub-6 radio, and input.power.limit for 5G mmW NR), for each characterized technology and band.

Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to P_{limit} for frequencies < 6 GHz and input.power.limit for frequencies > 6 GHz.

Note that the device uncertainty for sub-6GHz WWAN is 1.0dB for this DUT, the device uncertainty for mmW is 2.1 dB, and the reserve power margin is 3 dB.

This purpose of the Part 2 report is to demonstrate the DUT complies with FCC RF exposure requirement under Tx varying transmission scenarios, thereby validity of Qualcomm[®] Smart Transmit feature implementation in this device. It serves to compliment the Part 0 and Part 1 Test Reports to justify compliance per FCC and ISED.

1.3 Bibliography

Report Type	Report Serial Number
Part 0 SAR Test Report	1M2009230152-25-R1.A3L
Part 1 SAR Test Report	1M2009230152-01-R2.A3L
Part 0 Power Density Test Report	Rev A
Part 1 Power Density Test Report	1M2009230152-22-R2.A3L
RF Exposure Compliance Summary	1M2009230152–24-R1.A3L

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 4 of 08
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 4 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

2 **RF EXPOSURE LIMITS**

2.1 **Uncontrolled Environment**

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

2.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

2.3 **RF Exposure Limits for Frequencies Below 6 GHz**

HUN	1AN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

Table 2-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate 1. averaging time.

The Spatial Average value of the SAR averaged over the whole body. 2.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo E of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 5 of 98
© 2020 PCTEST				

© 2020 PCTEST

2.4 **RF Exposure Limits for Frequencies Above 6 GHz**

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Table 2-2 Human Exposure Limits Specified in FCC 47 CFR §1.1310				
Human Exposure to Radiofrequency (RF) Radiation Limits				
Frequency Range [MHz]Power Density [mW/cm²]Averaging Time [Minutes]				
(A) Limit	s for Occupational / Controlled I	Environments		
1,500 - 100,000	5.0	6		
(B) Limits for General Population / Uncontrolled Environments				
1,500 – 100,000	1.0	30		

Note: 1.0 mW/cm² is 10 W/m²

2.5 **Time Averaging Windows for FCC Compliance**

Per October 2018 TCB Workshop Notes, the below time-averaging windows can be used for assessing timeaveraged exposures for devices that are capable of actively monitoring and adjusting power output over time to comply with exposure limits.

Interim Guidance	Frequency (GHz)	Maximum Averaging Time (sec)
SAR	< 3	100
SAN	3 – 6	60
MPE	6 - 10	30
	10 - 16	14
	16 – 24	8
	24 - 42	4
	42 - 95	2

FCC ID: A3LSMG998U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAM SUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 6 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 6 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

3 TIME VARYING TRANSMISSION TEST CASES

To validate the time averaging feature and demonstrate the compliance in Tx varying transmission conditions, the following transmission scenarios are covered in the Part 2 test:

- 1. During a time-varying Tx power transmission: To prove that the Smart Transmit feature accounts for Tx power variations in time accurately.
- 2. During a call disconnect and re-establish scenario: To prove that the Smart Transmit feature accounts for history of past Tx power transmissions accurately.
- 3. During a technology/band handover: To prove that the Smart Transmit feature functions correctly during transitions in technology/band.
- 4. During a DSI (Device State Index) change: To prove that the Smart Transmit feature functions correctly during transition from one device state (DSI) to another.
- 5. During an antenna (or beam) switch: To prove that the Smart Transmit feature functions correctly during transitions in antenna (such as AsDiv scenario) or beams (different antenna array configurations) or beams (different antenna array configurations).
- 6. SAR vs. PD exposure switching during sub-6+mmW transmission: To prove that the Smart Transmit feature functions correctly and ensures total RF exposure compliance during transitions in SAR dominant exposure, SAR+PD exposure, and PD dominant exposure scenarios.
- 7. During time window switch: To prove that the Smart Transmit feature correctly handles the transition from one time window to another specified by FCC, and maintains the normalized time-averaged RF exposure to be less than normalized FCC limit of 1.0 at all times.
- 8. SAR exposure switching between two active radios (radio1 and radio2): To prove that the Smart Transmit feature functions correctly and ensures total RF exposure compliance when exposure varies among SAR_radio1 only, SAR_radio1 + SAR_radio2, and SAR_radio2 only scenarios.

As described in Part 0 report, the RF exposure is proportional to the Tx power for a SAR- and PD-characterized wireless device. Thus, feature validation in Part 2 can be effectively performed through conducted (for f < 6GHz) and radiated (for $f \ge 6GHz$) power measurement. Therefore, the compliance demonstration under dynamic transmission conditions and feature validation are done in conducted/radiated power measurement setup for transmission scenario 1 through 8.

To add confidence in the feature validation, the time-averaged SAR and PD measurements are also performed but only performed for transmission scenario 1 to avoid the complexity in SAR and PD measurement (such as, for scenario 3 requiring change in SAR probe calibration file to accommodate different bands and/or tissue simulating liquid).

The strategy for testing in Tx varying transmission condition is outlined as follows:

- Demonstrate the total RF exposure averaged over FCC defined time windows does not exceed FCC's SAR and PD limits, through <u>time-averaged power</u> measurements
 - Measure conducted Tx power (for f < 6GHz) versus time, and radiated Tx power (EIRP for f > 10GHz) versus time.
 - Convert it into RF exposure and divide by respective FCC limits to get normalized exposure versus time.
 - o Perform running time-averaging over FCC defined time windows.
 - Demonstrate that the total normalized time-averaged RF exposure is less than 1 for all transmission scenarios (i.e., transmission scenarios 1, 2, 3, 4, 5, 6, 7, and 8) at all times.

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 7 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 7 01 96

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 1.0

Mathematical expression:

For < 6 GHz transmission only:

$$1g_or_10gSAR(t) = \frac{conducted_Tx_power(t)}{conducted_Tx_power_P_{limit}} * 1g_or_10gSAR_P_{limit}$$
(1a)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_or_10gSAR(t)dt}{FCC SAR limit} \le 1$$
(1b)

For sub-6+mmW transmission:

$$1g_or_10gSAR(t) = \frac{conducted_Tx_power(t)}{conducted_Tx_power_P_{limit}} * 1g_or_10gSAR_P_{limit}$$
(2a)

$$4cm^{2}PD(t) = \frac{radiated_{Tx_power(t)}}{radiated_{Tx_power_input.power.limit}} * 4cm^{2}PD_{input.power.limit}$$

04/06/2020

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_{-}or_{-}10gSAR(t)dt}{FCC\,SAR\,limit} + \frac{\frac{1}{T_{PD}}\int_{t-T_{PD}}^{t} 4cm^{2}PD(t)dt}{FCC\,4cm^{2}\,PD\,limit} \le 1$$
(2c)

- where, *conducted_Tx_power(t)*, *conducted_Tx_power_P_{limit}*, and 1g_or_10gSAR_P_{limit} correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at *P_{limit}*, and measured 1gSAR *or 10gSAR* values at *P_{limit}* corresponding to sub-6 transmission. Similarly, *radiated_Tx_power(t)*, *radiated_Tx_power_input.power.limit*, and 4cm²PD_input.power.limit correspond to the measured instantaneous radiated Tx power, radiated Tx power at *input.power.limit* (i.e., radiated power limit), and 4cm²PD value at *input.power.limit* corresponding to mmW transmission. Both *P_{limit}* and *input.power.limit* are the parameters pre-defined in Part 0 and loaded via Embedded File System (EFS) onto the EUT. *T_{SAR}* is the FCC defined time window for sub-6 radio; *T_{PD}* is the FCC defined time window for mmW radio.
 - Demonstrate the total RF exposure averaged over FCC defined time windows does not exceed FCC's SAR and PD limits, through time-averaged SAR and PD measurements. Note as mentioned earlier, this measurement is performed for transmission scenario 1 only.
 - For sub-6 transmission only, measure instantaneous SAR versus time; for LTE+sub6 NR transmission, request low power (or all-down bits) on LTE so that measured SAR predominantly corresponds to sub6 NR.
 - For LTE + mmW transmission, measure instantaneous E-field versus time for mmW radio and instantaneous conducted power versus time for LTE radio.
 - Convert it into RF exposure and divide by respective FCC limits to obtain normalized exposure versus time.
 - Perform time averaging over FCC defined time window.
 - Demonstrate that the total normalized time-averaged RF exposure is less than 1 for transmission scenario 1 at all times.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 8 of 98
© 2020 PCTEST				REV 1.0

^{© 2020} PCTEST

Mathematical expression:

For sub-6 transmission only:

$$1g_or_10gSAR(t) = \frac{pointSAR(t)}{pointSAR_P_{limit}} * 1g_or_10gSAR(t)_P_{limit}$$
(3a)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_{-}or_{-}10gSAR(t)dt}{FCC SAR limit} \le 1$$
(3b)

For LTE+mmW transmission:

$$1g_or_10gSAR(t) = \frac{conducted_Tx_power(t)}{conducted_Tx_power_P_{limit}} * 1g_or_10gSAR_P_{limit}$$
(4a)

 $4cm^2 PD(t) = \frac{[pointE(t)]^2}{[pointE_input.power.limit]^2} * 4cm^2 PD_input.power.limit$ (4b)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_or_10gSAR(t)dt}{FCC SAR limit} + \frac{\frac{1}{T_{PD}}\int_{t-T_{PD}}^{t} 4cm^{2}PD(t)dt}{FCC 4cm^{2}PD limit} \le 1$$
(4c)

where, pointSAR(t), $pointSAR_{limit}$, and $1g_{or}_{10}gSAR_{limit}$ correspond to the measured instantaneous point SAR, measured point SAR at P_{limit} , and measured 1gSAR or 10gSAR values at P_{limit} corresponding to sub-6 transmission. Similarly, pointE(t), $pointE_{input.power.limit}$, and $4cm^{2}PD_{input.power.limit}$ correspond to the measured instantaneous E-field, E-field at *input.power.limit*, and $4cm^{2}PD$ value at *input.power.limit* corresponding to mmW transmission.

Note: cDASY6 measurement system by Schmid & Partner Engineering AG (SPEAG) of Zurich, Switzerland measures relative E-field, and provides ratio of $\frac{[pointE(t)]^2}{[pointE_input.power.limit]^2}$ versus time.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 9 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 9 01 90
© 2020 PCTEST				REV 1.0

04/06/2020

4 FCC MEASUREMENT PROCEDURES (FREQ < 6 GHZ)

This chapter provides the test plan and test procedure for validating Qualcomm Smart Transmit feature for sub-6 transmission. The 100 seconds time window for operating f < 3GHz is used as an example to detail the test procedures in this chapter. The same test plan and test procedures described in this chapter apply to 60 seconds time window for operating $f \ge 3GHz$.

4.1 Test sequence determination for validation

Following the FCC recommendation, two test sequences having time-variation in Tx power are predefined for sub-6 (f < 6 GHz) validation:

- Test sequence 1: request DUT's Tx power to be at maximum power, measured P_{max}^{\dagger} , for 80s, then • requesting for half of the maximum power, i.e., measured $P_{max}/2$, for the rest of the time.
- Test sequence 2: request DUT's Tx power to vary with time. This sequence is generated relative to • measured P_{max}, measured P_{limit} and calculated P_{reserve} (= measured P_{limit} in dBm - Reserve power margin in dB) of DUT based on measured Plimit.

The details for generating these two test sequences is described and listed in Appendix E.

For test sequence generation, "measured P_{limit} " and "measured P_{max} " are used instead of the " P_{limit} " NOTE specified in EFS entry and " P_{max} " specified for the device, because the Smart Transmit feature operates against the actual power level of the " P_{limit} " that was calibrated for the DUT. The "measured P_{limit} " accurately reflects what the feature is referencing to, therefore, it should be used during feature validation testing. The RF tune up and device-to-device variation are already considered in Part 0 report prior to determining Plimit.

4.2 Test configuration selection criteria for validating Smart Transmit feature

For validating the Smart Transmit feature, this section provides the general guidance to select test cases.

4.2.1 Test configuration selection for time-varying Tx power transmission

The Smart Transmit time averaging feature operation is independent of bands, modes, and channels for a given technology. Hence, validation of Smart Transmit in one band/mode/channel per technology is sufficient. Two bands per technology are proposed and selected for this testing to provide high confidence in this validation.

The criteria for the selection are based on the Piimit values determined in Part 0 report. Select two bands* in each supported technology that correspond to least** and highest*** Plimit values that are less than Pmax for validating Smart Transmit.

* If one *P*_{limit} level applies to all the bands within a technology, then only one band needs to be tested. In this case, within the bands having the same Plimit, the radio configuration (e.g., # of RBs, channel#) and device position that correspond to the highest measured 1gSAR at Plimit shown in Part 1 report is selected.

** In case of multiple bands having the same least P_{limit} within the technology, then select the band having the highest measured 1gSAR at Plimit.

*** The band having a higher P_{limit} needs to be properly selected so that the power limiting enforced by Smart Transmit can be validated using the pre-defined test sequences. If the highest Plimit in a technology is too high where the power limiting enforcement is not needed when testing with the pre-defined test sequences, then the

	FCC ID: A3LSMG998U	Poud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 10 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 10 01 96
0	2020 PCTEST				REV 1.0

© 2020 PCTEST

next highest level is checked. This process is continued within the technology until the second band for validation testing is determined.

Test configuration selection for change in call 4.2.2

The criteria to select a test configuration for call-drop measurement is:

- Select technology/band with least Plimit among all supported technologies/bands, and select the radio configuration (e.g., # of RBs, channel#) in this technology/band that corresponds to the highest measured 1gSAR at Plimit listed in Part 1 report.
- In case of multiple bands having same least P_{limit} , then select the band having the highest measured • 1gSAR at Plimit in Part 1 report.

This test is performed with the DUT's Tx power requested to be at maximum power, the above band selection will result in Tx power enforcement (i.e., DUT forced to have Tx power at Preserve) for longest duration in one FCC defined time window. The call change (call drop/reestablish) is performed during the Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at Preserve). One test is sufficient as the feature operation is independent of technology and band.

4.2.3 Test configuration selection for change in technology/band

The selection criteria for this measurement is, for a given antenna, to have DUT switch from a technology/band with lowest Plimit within the technology group (in case of multiple bands having the same Plimit, then select the band with highest measured 1gSAR at Plimit) to a technology/band with highest Plimit within the technology group, in case of multiple bands having the same Plimit, then select the band with lowest measured 1gSAR at Plimit in Part 1 report, or vice versa.

This test is performed with the DUT's Tx power requested to be at maximum power, the technology/band switch is performed during Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at Preserve).

4.2.4 Test configuration selection for change in antenna

The criteria to select a test configuration for antenna switch measurement is:

- Whenever possible and supported by the DUT, first select antenna switch configuration within the same technology/band (i.e., same technology and band combination).
- Then, select any technology/band that supports multiple Tx antennas, and has the highest difference in *P*_{limit} among all supported antennas.
- In case of multiple bands having same difference in Plimit among supported antennas, then select the • band having the highest measured 1gSAR at Plimit in Part 1 report.

This test is performed with the DUT's Tx power requested to be at maximum power in selected technology/band, and antenna change is conducted during Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at Preserve).

Test configuration selection for change in DSI 4.2.5

The criteria to select a test configuration for DSI change test is

Select a technology/band having the $P_{limit} < P_{max}$ within any technology and DSI group, and for the • same technology/band having a different Plimit in any other DSI group. Note that the selected DSI transition need to be supported by the device.

This test is performed with the DUT's Tx power requested to be at maximum power in selected technology/band, and DSI change is conducted during Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at Preserve).

	FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 11 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage IT 01 90
(2020 PCTEST				REV 1.0

^{© 2020} PCTEST

4.2.6 Test configuration selection for change in time window

FCC specifies different time window for time averaging based on operation frequency. The criteria to select a test configuration for validating Smart Transmit feature and demonstrating the compliance during the change in time window is

- Select any technology/band that has operation frequency classified in one time window defined by FCC (such as 100-seconds time window), and its corresponding P_{limit} is less than P_{max} if possible.
- Select the 2nd technology/band that has operation frequency classified in a different time window defined by FCC (such as 60-seconds time window), and its corresponding P_{limit} is less than P_{max} if possible.
- . Note it is preferred both P_{limit} values of two selected technology/band less than corresponding P_{max} , but if not possible, at least one of technologies/bands has its P_{limit} less than P_{max} .

This test is performed with the EUT's Tx power requested to be at maximum power in selected technology/band. Test for one pair of time windows selected is sufficient as the feature operation is the same.

4.2.7 Test configuration selection for SAR exposure switching

If supported, the test configuration for SAR exposure switching should cover

- 1. SAR exposure switch when two active radios are in the same time window
- 2. SAR exposure switch when two active radios are in different time windows. One test with two active radios in any two different time windows is sufficient as Smart Transmit operation is the same for RF exposure switch in any combination of two different time windows. For device supporting LTE + mmW NR, this test is covered in SAR vs PD exposure switch validation.

The Smart Transmit time averaging operation is independent of the source of SAR exposure (for example, LTE vs. Sub6 NR) and ensures total time-averaged RF exposure compliance. Hence, validation of Smart Transmit in any one simultaneous SAR transmission scenario (i.e., one combination for LTE + Sub6 NR transmission) is sufficient, where the SAR exposure varies among SAR_{radio1} only, SAR_{radio1} + SAR_{radio2}, and SAR_{radio2} only scenarios.

The criteria to select a test configuration for validating Smart Transmit feature during SAR exposure switching scenarios is

- Select any two < 6GHz technologies/bands that the EUT supports simultaneous transmission (for example, LTE+Sub6 NR).
- Among all supported simultaneous transmission configurations, the selection order is
 - 1. select one configuration where both Plimit of radio1 and radio2 is less than their corresponding P_{max} , preferably, with different P_{limits} . If this configuration is not available, then.
 - 2. select one configuration that has P_{limit} less than its P_{max} for at least one radio. If this can not be found, then,
 - select one configuration that has *P*_{limit} of radio1 and radio2 greater than *P*_{max} but with 3. least $(P_{limit} - P_{max})$ delta.

Test for one simultaneous transmission scenario is sufficient as the feature operation is the same.

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 12 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 12 01 90
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

4.3 Test procedures for conducted power measurements

This section provides general conducted power measurement procedures to perform compliance test under dynamic transmission scenarios described in Section 3. In practice, an adjustment can be made in these procedures. The justification/clarification may be provided.

Time-varying Tx power transmission scenario 4.3.1

This test is performed with the two pre-defined test sequences described in Section 4.1 for all the technologies and bands selected in Section 4.2.1. The purpose of the test is to demonstrate the effectiveness of power limiting enforcement and that the time-averaged SAR (corresponding time-averaged Tx power) does not exceed the FCC limit at all times (see Eq. (1a) and (1b)).

Test procedure

- 1. Measure *P_{max}*, measure *P_{limit}* and calculate *P_{reserve}* (= measured *P_{limit}* in dBm *Reserve_power_margin* in dB) and follow Section 4.1 to generate the test sequences for all the technologies and bands selected in Section 4.2.1. Both test sequence 1 and test sequence 2 are created based on measured Pmax and measured P_{limit} of the DUT. Test condition to measure P_{max} and P_{limit} is:
 - a. Measure P_{max} with Smart Transmit disabled and callbox set to request maximum power.
 - Measure Plimit with Smart Transmit enabled and Reserve power margin set to 0 dB, callbox set b. to request maximum power.
- 2. Set Reserve_power_margin to actual (intended) value (3dB for this DUT based on Part 1 report) and reset power on DUT to enable Smart Transmit, establish radio link in desired radio configuration, with callbox requesting the DUT's Tx power to be at pre-defined test sequence 1, measure and record Tx power versus time, and then convert the conducted Tx power into 1gSAR or 10gSAR value (see Eq. (1a)) using measured Plimit from above Step 1. Perform running time average to determine time-averaged power and 1gSAR or 10gSAR versus time as illustrated in Figure 4-1 where using 100-seconds time window as an example.

Note: In Eq.(1a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at Plimit for the corresponding technology/band/antenna/DSI reported in Part 1 report.

Note: For an easier computation of the running time average, 0 dBm can be added at the beginning of the test sequences the length of the responding time window, for example, add 0dBm for 100-seconds so the running time average can be directly performed starting with the first 100-seconds data using excel spreadsheet. This technique applies to all tests performed in this Part 2 report for easier time-averaged computation using excel spreadsheet.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 13 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 13 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

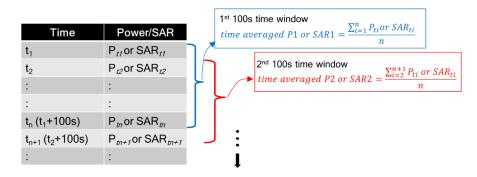


Figure 4-1 Running Average Illustration

- 3. Make one plot containing:
 - a. Instantaneous Tx power versus time measured in Step 2,
 - b. Requested Tx power used in Step 2 (test sequence 1),
 - c. Computed time-averaged power versus time determined in Step 2,
 - d. Time-averaged power limit (corresponding to FCC SAR limit of 1.6 W/kg for 1gSAR or 4.0W/kg for 10gSAR) given by

Time avearged power limit = meas. $P_{limit} + 10 \times \log(\frac{FCC SAR limit}{meas.SAR Plimit})$ (5a)

where *meas*. P_{limit} and *meas*. *SAR_Plimit* correspond to measured power at P_{limit} and measured SAR at P_{limit} .

- 4. Make another plot containing:
 - a. Computed time-averaged 1gSAR or 10gSAR versus time determined in Step 2
 - b. FCC 1gSAR_{limit} of 1.6W/kg or FCC 10gSAR_{limit} of 4.0W/kg.
- 5. Repeat Steps 2 ~ 4 for pre-defined test sequence 2 and replace the requested Tx power (test sequence 1) in Step 2 with test sequence 2.
- 6. Repeat Steps 2 ~ 5 for all the selected technologies and bands.
- 7. The validation criteria are, at all times, the time-averaged power versus time shown in Step 3 plot shall not exceed the time-averaged power limit (defined in Eq. (5a)), in turn, the time-averaged 1gSAR or 10gSAR versus time shown in Step 4 plot shall not exceed the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (1b)).

4.3.2 Change in call scenario

This test is to demonstrate that Smart Transmit feature accurately accounts for the past Tx powers during time-averaging when a new call is established.

The call disconnect and re-establishment needs to be performed during power limit enforcement, i.e., when the DUT's Tx power is at $P_{reserve}$ level, to demonstrate the continuity of RF exposure management and limiting in call change scenario. In other words, the RF exposure averaged over any FCC defined time window (including the time windows containing the call change) doesn't exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 14 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 14 01 90
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

Test procedure

- 1. Measure *P*_{limit} for the technology/band selected in Section 4.2.2. Measure *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set *Reserve_power_margin* to actual (intended) value and reset power on DUT to enable Smart Transmit.
- 3. Establish radio link with callbox in the selected technology/band.
- 4. Request DUT's Tx power at 0 dBm for at least one time window specified for the selected technology/band, followed by requesting DUT's Tx power to be at maximum power for about ~60 seconds, and then drop the call for ~10 seconds. Afterwards, re-establish another call in the same radio configuration (i.e., same technology/band/channel) and continue callbox requesting DUT's Tx power to be at maximum power for the remaining time of at least another full duration of the specified time window. Measure and record Tx power versus time. Once the measurement is done, extract instantaneous Tx power versus time, convert the measured conducted Tx power into 1gSAR or 10gSAR value using Eq. (1a), and then perform the running time average to determine time-averaged power and 1gSAR or 10gSAR versus time.
 - NOTE: In Eq.(1a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at *P*_{limit} for the corresponding technology/band/antenna/DSI reported in Part 1 report.
- 5. Make one plot containing: (a) instantaneous Tx power versus time, (b) requested power, (c) computed time-averaged power, (d) time-averaged power limit calculated using Eq.(5a).
- 6. Make another plot containing: (a) computed time-averaged 1gSAR or 10gSAR versus time, and (b) FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

The validation criteria are, at all times, the time-averaged power versus time shall not exceed the timeaveraged power limit (defined in Eq.(5a)), in turn, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (1b)).

4.3.3 Change in technology and band

This test is to demonstrate the correct power control by Smart Transmit during technology switches and/or band handovers.

Similar to the change in call test in Section 4.3.2, to validate the continuity of RF exposure limiting during the transition, the technology and band handover needs to be performed when DUT's Tx power is at $P_{reserve}$ level (i.e., during Tx power enforcement) to make sure that the DUT's Tx power from previous $P_{reserve}$ level to the new $P_{reserve}$ level (corresponding to new technology/band). Since the P_{limit} could vary with technology and band, Eq. (1a) can be written as follows to convert the instantaneous Tx power in 1gSAR or 10gSAR exposure for the two given radios, respectively:

$$1g_or_10gSAR_1(t) = \frac{conducted_Tx_power_1(t)}{conducted_Tx_power_P_{limit_1}} * 1g_or_10gSAR_P_{limit_1}$$
(6a)

$$1g_or_10gSAR_2(t) = \frac{conducted_Tx_power_2(t)}{conducted_Tx_power_P_{limit_2}} * 1g_or_10gSAR_P_{limit_2}$$
(6b)

$$\frac{1}{T_{SAR}} \left[\int_{t-T_{SAR}}^{t_1} \frac{1g_or_10gSAR_1(t)}{FCC\ SAR\ limit} dt + \int_{t-T_{SAR}}^{t} \frac{1g_or_10gSAR_2(t)}{FCC\ SAR\ limit} dt \right] \le 1$$
(6c)

where, *conducted_Tx_power_1(t)*, *conducted_Tx_power_P*_{*limit_1*}, and *1g_or_10gSAR_P*_{*limit_1*} correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at *P*_{*limit*}, and measured *1gSAR* or *10gSAR* value at *P*_{*limit*} of technology1/band1; *conducted_Tx_power_2(t)*,

	FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 15 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 15 01 96
a	A 2020 DOTEST				DEV/10

© 2020 PCTEST

REV 1.0 04/06/2020

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

conducted_Tx_power_ $P_{limit_2}(t)$, and 1g_or_10gSAR_ P_{limit_2} correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at Plimit, and measured 1gSAR or 10gSAR value at P_{limit} of technology2/band2. Transition from technology1/band1 to the technology2/band2 happens at time-instant ' t_1 '.

Test procedure

- 1. Measure P_{limit} for both the technologies and bands selected in Section 4.2.3. Measure P_{limit} with Smart Transmit enabled and *Reserve power margin* set to 0 dB, callbox set to request maximum power.
- 2. Set Reserve_power_margin to actual (intended) value and reset power on DUT to enable Smart Transmit
- 3. Establish radio link with callbox in first technology/band selected.
- Request DUT's Tx power at 0 dBm for at least one time window specified for the selected technology/band, followed by requesting DUT's Tx power to be at maximum power for about ~60 seconds, and then switch to second technology/band selected. Continue with callbox requesting DUT's Tx power to be at maximum power for the remaining time of at least another full duration of the specified time window. Measure and record Tx power versus time for the full duration of the test.
- 5. Once the measurement is done, extract instantaneous Tx power versus time, and convert the conducted Tx power into 1gSAR or 10gSAR value using Eq. (6a) and (6b) and corresponding measured Plimit values from Step 1 of this section. Perform the running time average to determine time-averaged power and 1gSAR or 10gSAR versus time.
 - NOTE: In Eq.(6a) & (6b), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at Plimit for the corresponding technology/band/antenna/DSI reported in Part 1 report.
- 6. Make one plot containing: (a) instantaneous Tx power versus time, (b) requested power, (c) computed time-averaged power, (d) time-averaged power limit calculated using Eq.(5a).
- 7. Make another plot containing: (a) computed time-averaged 1gSAR or 10gSAR versus time, and (b) FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

The validation criteria are, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (6c)).

4.3.4 Change in antenna

This test is to demonstrate the correct power control by Smart Transmit during antenna switches from one antenna to another. The test procedure is identical to Section 4.3.3, by replacing technology/band switch operation with antenna switch. The validation criteria are, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

NOTE: If the DUT does not support antenna switch within the same technology/band, but has multiple antennas to support different frequency bands, then the antenna switch test is included as part of change in technology and band (Section 4.3.3) test.

4.3.5 Change in DSI

This test is to demonstrate the correct power control by Smart Transmit during DSI switches from one DSI to another. The test procedure is identical to Section 4.3.3, by replacing technology/band switch operation with DSI switch. The validation criteria are, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

	FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 16 of 09
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 16 of 98
© 2020 PCTEST					

© 2020 PCTEST

4.3.6 Change in time window

This test is to demonstrate the correct power control by Smart Transmit during the change in averaging time window when a specific band handover occurs. FCC specifies time-averaging windows of 100s for Tx frequency < 3GHz, and 60s for Tx frequency between 3GHz and 6GHz.

To validate the continuity of RF exposure limiting during the transition, the band handover test needs to be performed when EUT handovers from operation band less than 3GHz to greater than 3GHz and vice versa. The equations (3a) and (3b) in Section 2 can be written as follows for transmission scenario having change in time window,

$$1gSAR_{1}(t) = \frac{conducted_Tx_power_{1}(t)}{conducted_Tx_power_{P_{limit_{1}}}} * 1g_or \ 10g_SAR_{P_{limit_{1}}}$$
(7a)
$$1gSAR_{2}(t) = \frac{conducted_Tx_power_{2}(t)}{conducted_Tx_power_{P_{limit_{2}}}} * 1g_or \ 10g_SAR_{P_{limit_{2}}}$$
(7b)

$$\frac{1}{T_{1_{SAR}}} \left[\int_{t-T_{1_{SAR}}}^{t_1} \frac{1g_{or \ 10g_{SAR_1}(t)}}{FCC \ SAR \ limit} dt \right] + \frac{1}{T_{2_{SAR}}} \left[\int_{t-T_{2_{SAR}}}^{t} \frac{1g_{or \ 10g_{SAR_2}(t)}}{FCC \ SAR \ limit} dt \right] \le 1$$
(7c)

where, *conducted_Tx_power_1(t)*, *conducted_Tx_power_P*_{*limit_1*}(*t*), and *1g_ or 10g_SAR_P*_{*limit_1*} correspond to the instantaneous Tx power, conducted Tx power at *P*_{*limit,*} and compliance *1g_ or 10g_SAR* values at *P*_{*limit_1*} of band1 with time-averaging window '*T1*_{SAR}'; *conducted_Tx_power_2(t)*, *conducted_Tx_power_P*_{*limit_2*}(*t*), and *1g_ or 10g_SAR_P*_{*limit_2*} correspond to the instantaneous Tx power, conducted Tx power at *P*_{*limit_2*} of band2 with time-averaging window '*T2*_{SAR}'. One of the two bands is less than 3GHz, another is greater than 3GHz. Transition from first band with time-averaging window '*T2*_{SAR}' happens at time-instant '*t*₁'.

Test procedure

- 1. Measure *P*_{limit} for both the technologies and bands selected in Section 4.2.6. Measure *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set Reserve_power_margin to actual (intended) value and enable Smart Transmit

Transition from 100s time window to 60s time window, and vice versa

- 3. Establish radio link with callbox in the technology/band having 100s time window selected in Section 4.2.6.
- 4. Request EUT's Tx power to be at 0 dBm for at least 100 seconds, followed by requesting EUT's Tx power to be at maximum power for about ~140 seconds, and then switch to second technology/band (having 60s time window) selected in Section 4.2.6. Continue with callbox requesting EUT's Tx power to be at maximum power for about ~60s in this second technology/band, and then switch back to the first technology/band. Continue with callbox requesting EUT's Tx power for at least another 100s. Measure and record Tx power versus time for the entire duration of the test.
- 5. Once the measurement is done, extract instantaneous Tx power versus time, and convert the conducted Tx power into 1gSAR or 10gSAR value (see Eq. (7a) and (7b)) using corresponding technology/band Step 1 result, and then perform 100s running average to determine time-averaged 1gSAR or 10gSAR versus time. Note that in Eq.(7a) & (7b), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the worst-case 1gSAR or 10gSAR value tested in Part 1 for the selected technologies/bands at *P*_{limit}.
- 6. Make one plot containing: (a) instantaneous Tx power versus time measured in Step 4.
- Make another plot containing: (a) instantaneous 1gSAR versus time determined in Step 5, (b) computed time-averaged 1gSAR versus time determined in Step 5, and (c) corresponding regulatory 1gSAR_{limit} of 1.6W/kg or 10gSAR_{limit} of 4.0W/kg.

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 17 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 17 of 98
© 2020 PCTEST				REV 1.0

JIESI

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTEST.COM.

04/06/2020

Transition from 60s time window to 100s time window, and vice versa

- Establish radio link with callbox in the technology/band having 60s time window selected in Section 4.2.6. 8.
- 9. Request EUT's Tx power to be at 0 dBm for at least 60 seconds, followed by requesting EUT's Tx power to be at maximum power for about ~80 seconds, and then switch to second technology/band (having 100s time window) selected in Section 4.2.6. Continue with callbox requesting EUT's Tx power to be at maximum power for about ~100s in this second technology/band, and then switch back to the first technology/band. Continue with callbox requesting EUT's Tx power to be at maximum power for the remaining time for a total test time of 500 seconds. Measure and record Tx power versus time for the entire duration of the test.
- 10. Repeat above Step 5~7 to generate the plots

The validation criteria is, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the regulatory 1gSAR_{limit} of 1.6W/kg or 10gSAR_{limit} of 4.0W/kg.

4.3.7 SAR exposure switching

This test is to demonstrate that Smart Transmit feature is accurately accounts for switching in exposures among SAR from radio1 only, SAR from both radio1 and radio2, and SAR from radio2 only scenarios, and ensures total time-averaged RF exposure complies with the FCC limit. Here, radio1 represents primary radio (for example, LTE anchor in a NR non-standalone mode call) and radio2 represents secondary radio (for example, sub6 NR or mmW NR). The detailed test procedure for SAR exposure switching in the case of LTE+Sub6 NR non-standalone mode transmission scenario is provided in APPENDIX F:..

Test procedure:

- 1. Measure conducted Tx power corresponding to Plimit for radio1 and radio2 in selected band. Test condition to measure conducted Plimit is:
 - □ Establish device in call with the callbox for radio1 technology/band. Measure conducted Tx power corresponding to radio1 Plimit with Smart Transmit enabled and Reserve_power_margin set to 0 dB, callbox set to request maximum power.
 - □ Repeat above step to measure conducted Tx power corresponding to radio2 <u>*P_{limit}*</u>. If radio2 is dependent on radio1 (for example, non-standalone mode of Sub6 NR requiring radio1 LTE as anchor), then establish radio1 + radio2 call with callbox, and request all down bits for radio1 LTE. In this scenario, with callbox requesting maximum power from radio2 Sub6 NR, measured conducted Tx power corresponds to radio2 Plimit (as radio1 LTE is at all-down bits)
- 2. Set Reserve power margin to actual (intended) value, with EUT setup for radio1 + radio2 call. In this description, it is assumed that radio2 has lower priority than radio1. Establish device in radio1+radio2 call, and request all-down bits or low power on radio1, with callbox requesting EUT's Tx power to be at maximum power in radio2 for at least one time window. After one time window, set callbox to request EUT's Tx power to be at maximum power on radio1, i.e., all-up bits. Continue radio1+radio2 call with both radios at maximum power for at least one time window, and drop (or request all-down bits on) radio2. Continue radio1 at maximum power for at least one time window. Record the conducted Tx power for both radio1 and radio2 for the entire duration of this test.
- 3. Once the measurement is done, extract instantaneous Tx power versus time for both radio1 and radio2 links. Convert the conducted Tx power for both these radios into 1gSAR or 10gSAR value (see Eq. (6a) and (6b)) using corresponding technology/band Plimit measured in Step 1, and then perform the running time average to determine time-averaged 1gSAR or 10gSAR versus time.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 18 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage to 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

- 4. Make one plot containing: (a) instantaneous Tx power versus time measured in Step 2.
- 5. Make another plot containing: (a) instantaneous 1gSAR versus time determined in Step 3, (b) computed time-averaged 1gSAR versus time determined in Step 3, and (c) corresponding regulatory 1gSARlimit of 1.6W/kg or 10gSARlimit of 4.0W/kg.

The validation criteria is, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the regulatory 1gSARlimit of 1.6W/kg or 10gSARlimit of 4.0W/kg.

Test procedure for time-varying SAR measurements 4.4

This section provides general time-varying SAR measurement procedures to perform compliance test under dynamic transmission scenarios described in Section 3. In practice, an adjustment can be made in these procedures. The justification/clarification may be provided.

To perform the validation through SAR measurement for transmission scenario 1 described in Section 3, the "path loss" between callbox antenna and DUT needs to be calibrated to ensure that the DUT Tx power reacts to the requested power from callbox in a radiated call. It should be noted that when signaling in closed loop mode, protocol-level power control is in play, resulting in DUT not solely following callbox TPC (Tx power control) commands. In other words, DUT response has many dependencies (RSSI, quality of signal, path loss variation, fading, etc.,) other than just TPC commands. These dependencies have less impact in conducted setup (as it is a controlled environment and the path loss can be very well calibrated) but have significant impact on radiated testing in an uncontrolled environment, such as SAR test setup. Therefore, the deviation in DUT Tx power from callbox requested power is expected, however the time-averaged SAR should not exceed FCC SAR requirement at all times as Smart Transmit controls Tx power at DUT.

The following steps are for time averaging feature validation through SAR measurement:

- 1. "Path Loss" calibration: Place the DUT against the phantom in the worst-case position determined based on Section 4.2.1. For each band selected, prior to SAR measurement, perform "path loss" calibration between callbox antenna and DUT. Since the SAR test environment is not controlled and well calibrated for OTA (Over the Air) test, extreme care needs to be taken to avoid the influence from reflections. The test setup is described in Section 6.2.
- 2. Time averaging feature validation:
 - i For a given radio configuration (technology/band) selected in Section 4.2.1, enable Smart Transmit and set *Reserve power margin* to 0 dB, with callbox to request maximum power, perform area scan, conduct pointSAR measurement at peak location of the area scan. This point SAR value, pointSAR_Plimit, corresponds to point SAR at the measured Plimit (i.e., measured Plimit from the DUT in Step 1 of Section 4.3.1).
 - Set Reserve_power_margin to actual (intended) value and reset power on DUT to enable Smart ii Transmit. Note, if *Reserve power margin* cannot be set wirelessly, care must be taken to reposition the DUT in the exact same position relative to the SAM phantom as in above Step 2.i. Establish radio link in desired radio configuration, with callbox requesting the DUT's Tx power at power levels described by test sequence 1 generated in Step 1 of Section 4.3.1, conduct point SAR measurement versus time at peak location of the area scan determined in Step 2.i of this section. Once the measurement is done, extract instantaneous point SAR vs time data, pointSAR(t), and convert it into instantaneous 1gSAR or 10gSAR vs. time using Eq. (3a), rewritten below:

$1g_or_10gSAR(t) =$	$\frac{pointSAR(t)}{pointSAR_{P_{limit}}} * 1g_{or_{10}gSAR_{P_{limit}}}$
---------------------	---

FCC ID: A3LSMG998U	Proud to be part of relement	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 19 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 19 01 98
© 2020 PCTEST				REV 1.0

2020 PCTEST

where, $pointSAR_{P_{limit}}$ is the value determined in Step 2.i, and pointSAR(t) is the instantaneous point SAR measured in Step 2.ii, $1g_{or}_{10gSAR}_{P_{limit}}$ is the measured 1gSAR or 10gSAR value listed in Part 1 report.

- iii Perform 100s running average to determine time-averaged 1gSAR or 10gSAR versus time.
- iv Make one plot containing: (a) time-averaged 1gSAR or 10gSAR versus time determined in Step 2.iii of this section, (b) FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.
- Repeat 2.ii ~ 2.iv for test sequence 2 generated in Step 1 of Section 4.3.1. v
- Repeat 2.i ~ 2.v for all the technologies and bands selected in Section 4.2.1. vi

The time-averaging validation criteria for SAR measurement is that, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (3b)).

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 20 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 20 01 98
2020 PCTEST				REV 1.0

© 2020 PCTEST

5 FCC MEASUREMENT PROCEDURES (FREQ > 6 GHZ)

This section provides the test plan and test procedures for validating Qualcomm Smart Transmit feature for mmW transmission. For this EUT, millimeter wave (mmW) transmission is only in non-standalone mode, i.e., it requires an LTE link as anchor.

5.1 Test sequence for validation in mmW NR transmission

In 5G mmW NR transmission, the test sequence for validation is with the callbox requesting EUT's Tx power in 5G mmW NR at maximum power all the time.

5.2 Test configuration selection criteria for validating Smart Transmit feature

5.2.1 Test configuration selection for time-varying Tx power transmission

The Smart Transmit time averaging feature operation is independent of bands, modes, channels, and antenna configurations (beams) for a given technology. Hence, validation of Smart Transmit in any one band/mode/channel per technology is sufficient.

5.2.2 Test configuration selection for change in antenna configuration (beam)

The Smart Transmit time averaging feature operation is independent of bands, modes, channels, and antenna configurations (beams) for a given technology. Hence, validation of Smart Transmit with beam switch between any two beams is sufficient.

5.2.3 Test configuration selection for SAR vs. PD exposure switch during transmission

The Smart Transmit time averaging feature operation is independent of the nature of exposure (SAR vs. PD) and ensures total time-averaged RF exposure compliance. Hence, validation of Smart Transmit in any one band/mode/channel/beam for mmW + sub-6 (LTE) transmission is sufficient, where the exposure varies among SAR dominant scenario, SAR+PD scenario, and PD dominant scenario.

5.3 Test procedures for mmW radiated power measurements

Perform conducted power measurement (for f < 6GHz) and radiated power measurement (for f > 6GHz) for LTE + mmW transmission to validate Smart Transmit time averaging feature in the various transmission scenarios described in Section 3.

This section provides general conducted power measurement procedures to perform compliance test under dynamic transmission scenarios described in Section 3. In practice, an adjustment can be made in these procedures. The justification/clarification may be provided.

5.3.1 Time-varying Tx power scenario

The purpose of the test is to demonstrate the effectiveness of power limiting enforcement and that the time-averaged Tx power when converted into RF exposure values does not exceed the FCC limit at all times (see Eq. (2a), (2b) & (2c) in Section 3).

Test procedure:

1. Measure conducted Tx power corresponding to *P*_{limit} for LTE in selected band, and measure radiated Tx power corresponding to *input.power.limit* in desired mmW band/channel/beam by following below steps:

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 21 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 21 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

- Measure radiated power corresponding to mmW input.power.limit by setting up the EUT's Tx a. power in desired band/channel/beam at input.power.limit in Factory Test Mode (FTM). This test is performed in a calibrated anechoic chamber. Rotate the EUT to obtain maximum radiated Tx power, keep the EUT in this position and do not disturb the position of the EUT inside the anechoic chamber for the rest of this test.
- Reset EUT to place in online mode and establish radio link in LTE, measure conducted Tx b. power corresponding to LTE P_{limit} with Smart Transmit enabled and Reserve_power_margin set to 0 dB, callbox set to request maximum power.
- 2. Set Reserve power margin to actual (intended) value and reset power on EUT to enable Smart Transmit. With EUT setup for a mmW NR call in the desired/selected LTE band and mmW NR band, perform the following steps:
 - Establish LTE and mmW NR connection in desired band/channel/beam used in Step 1. As soon as the mmW connection is established, immediately request all-down bits on LTE link. With callbox requesting EUT's Tx power to be at maximum mmW power to test predominantly PD exposure scenario (as SAR exposure is less when LTE's Tx power is at low power).
 - b. After 120s, request LTE to go all-up bits for at least 100s. SAR exposure is dominant. There are two scenarios:
 - If $P_{limit} < P_{max}$ for LTE, then the RF exposure margin (provided to mmW NR) gradually runs i out (due to high SAR exposure). This results in gradual reduction in the 5G mmW NR transmission power and eventually seized 5G mmW NR transmission when LTE goes to Preserve level.
 - If $P_{limit} \ge P_{max}$ for LTE, then the 5G mmW NR transmission's averaged power should ii gradually reduce but the mmW NR connection can sustain all the time (assuming TxAGC uncertainty = 0dB).
 - Record the conducted Tx power of LTE and radiated Tx power of mmW for the full duration of c. this test of at least 300s.
- Once the measurement is done, extract instantaneous Tx power versus time for both LTE and mmW links. Convert the conducted Tx power for LTE into 1gSAR or 10gSAR value using Eq. (2a) and Plimit measured in Step 1.b, and then divide by FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR to obtain instantaneous normalized 1gSAR or 10gSAR versus time. Perform 100s running average to determine normalized 100s-averaged 1gSAR or 10gSAR versus time.
 - NOTE: In Eq.(2a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at Plimit for the corresponding technology/band/antenna/DSI reported in Part 1 report.
- Similarly, convert the radiated Tx power for mmW into 4cm²PD value using Eq. (2b) and the radiated Tx power limit (i.e., radiated Tx power at *input.power.limit*) measured in Step 1.a, then divide by FCC 4cm²PD limit of 10W/m² to obtain instantaneous normalized 4cm²PD versus time. Perform 4s running average to determine normalized 4s-averaged 4cm²PD versus time.
 - NOTE: In Eq.(2b), instantaneous radiated Tx power is converted into instantaneous 4cm²PD by applying the worst-case 4cm²PD value measured at input.power.limit for the selected band/beam in Part 1 report.
- 5. Make one plot containing: (a) instantaneous conducted Tx power for LTE versus time, (b) computed 100s-averaged conducted Tx power for LTE versus time, (c) instantaneous radiated Tx power for

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 22 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 22 01 98
© 2020 PCTEST				REV 1.0

mmW versus time, as measured in Step 2, (d) computed 4s-averaged radiated Tx power for mmW versus time, and (e) time-averaged conducted and radiated power limits for LTE and mmW radio using Eq. (5a) & (5b), respectively:

 $Time \ avearged \ LTE \ power \ limit = meas. P_{limit} + 10 \times \log(\frac{FCC \ SAR \ limit}{meas.SAR_Plimit})$ (5a)

 $Time \ avearged \ mmW \ NR \ power \ limit = meas. EIRP_{input.power.limit} + 10 \times \log(\frac{FCC \ PD \ limit}{meas.PD_input.power.limit})$ (5b)

where *meas*. *EIRP*_{input.power.limit} and *meas*. *PD_input.power.limit* correspond to measured EIRP at *input.power.limit* and measured power density at *input.power.limit*.

 Make another plot containing: (a) computed normalized 100s-averaged 1gSAR or 10gSAR versus time determined in Step 3, (b) computed normalized 4s-averaged 4cm²PD versus time determined in Step 4, and (c) corresponding total normalized time-averaged RF exposure (sum of steps (6.a) and (6.b)) versus time.

The validation criteria are, at all times, the total normalized time-averaged RF exposure versus time determined in Step 6.c shall not exceed the normalized limit of 1.0 of FCC requirement (i.e., Eq. (2c)).

5.3.2 Switch in SAR vs. PD exposure during transmission

This test is to demonstrate that Smart Transmit feature is independent of the nature of exposure (SAR vs. PD), accurately accounts for switching in exposures among SAR dominant, SAR+PD, and PD dominant scenarios, and ensures total time-averaged RF exposure compliance.

Test procedure:

- 1. Measure conducted Tx power corresponding to *P*_{limit} for LTE in selected band, and measure radiated Tx power corresponding to *input.power.limit* in desired mmW band/channel/beam by following below steps:
 - a. Measure radiated power corresponding to *input.power.limit* by setting up the EUT's Tx power in desired band/channel/beam at *input.power.limit* in FTM. This test is performed in a calibrated anechoic chamber. Rotate the EUT to obtain maximum radiated Tx power, keep the EUT in this position and do not disturb the position of the EUT inside the anechoic chamber for the rest of this test.
 - b. Reset EUT to place in online mode and establish radio link in LTE, measure conducted Tx power corresponding to LTE *P*_{limit} with Smart Transmit enabled and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set *Reserve_power_margin* to actual (intended) value and reset power in EUT, with EUT setup for LTE + mmW call, perform the following steps:
 - a. Establish LTE (sub-6) and mmW NR connection with callbox.
 - As soon as the mmW connection is established, immediately request all-down bits on LTE link. Continue LTE (all-down bits) + mmW transmission for more than 100s duration to test predominantly PD exposure scenario (as SAR exposure is negligible from all-down bits in LTE).
 - c. After 120s, request LTE to go all-up bits, mmW transmission should gradually run out of RF exposure margin if LTE's *P*_{limit} < *P*_{max} and seize mmW transmission (SAR only scenario); or mmW transmission should gradually reduce in Tx power and will sustain the connection if LTE's *P*_{limit} > *P*_{max}.
 - d. After 75s, request LTE to go all-down bits, mmW transmission should start getting back RF exposure margin and resume transmission again.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 23 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 23 01 96
O 2020 POTEST				DEV 10

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTEST.COM.

REV 1.0 04/06/2020

- e. Record the conducted Tx power of LTE and radiated Tx power of mmW for the entire duration of this test of at least 300s.
- Once the measurement is done, extract instantaneous Tx power versus time for both LTE and mmW links. Convert the conducted Tx power for LTE into 1gSAR or 10gSAR value using Eq. (2a) and P_{limit} measured in Step 1.b, and then divide by FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR to obtain instantaneous normalized 1gSAR or 10gSAR versus time. Perform 100s running average to determine normalized 100s-averaged 1gSAR or 10gSAR versus time.
 - NOTE: In Eq.(2a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at Plimit for the corresponding technology/band/antenna/DSI reported in Part 1 report.
- 4. Similarly, convert the radiated Tx power for mmW into 4cm²PD value using Eq. (2b) and the radiated Tx power limit (i.e., radiated Tx power at *input.power.limit*) measured in Step 1.a, then divide this by FCC 4cm²PD limit of 10W/m² to obtain instantaneous normalized 4cm²PD versus time. Perform 4s running average to determine normalized 4s-averaged 4cm²PD versus time.
 - NOTE: In Eq.(2b), instantaneous radiated Tx power is converted into instantaneous 4cm²PD by applying the worst-case 4cm²PD value measured at *input.power.limit* for the selected band/beam in Part 1 report.
- 5. Make one plot containing: (a) instantaneous conducted Tx power for LTE versus time, (b) computed 100s-averaged conducted Tx power for LTE versus time. (c) instantaneous radiated Tx power for mmW versus time, as measured in Step 2, (d) computed 4s-averaged radiated Tx power for mmW versus time, and (e) time-averaged conducted and radiated power limits for LTE and mmW radio using Eq. (5a) & (5b), respectively.
- 6. Make another plot containing: (a) computed normalized 100s-averaged 1gSAR or 10gSAR versus time determined in Step 3, (b) computed normalized 4s-averaged 4cm²PD versus time determined in Step 4, and (c) corresponding total normalized time-averaged RF exposure (sum of steps (6.a) and (6.b)) versus time.

The validation criteria are, at all times, the total normalized time-averaged RF exposure versus time determined in Step 6.c shall not exceed the normalized limit of 1.0 of FCC requirement (i.e., Eq. (2c)).

5.3.3 Change in antenna configuration (beam)

This test is to demonstrate the correct power control by Smart Transmit during changes in antenna configuration (beam). Since the input.power.limit varies with beam, the Eq. (2a), (2b) and (2c) in Section 3 are written as below for transmission scenario having change in beam,

$$1g_{or_{1}0gSAR(t)} = \frac{conducted_{Tx_power(t)}}{conducted_{Tx_power_{limit}}} * 1g_{or_{1}0gSAR_{limit}}$$
(8a)

$$4cm^{2}PD_{1}(t) = \frac{radiated_{Tx}power_{1}(t)}{radiated_{Tx}power_{input}power_{limit_{1}}} * 4cm^{2}PD_{input}power_{limit_{1}}$$
(8b)

$$4cm^{2}PD_{2}(t) = \frac{radiated_{Tx}power_{2}(t)}{radiated_{Tx}power_{input}power_{init_{2}}} * 4cm^{2}PD_{input}power_{init_{2}}$$
(8c)

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 24 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 24 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_{-}or_{-}10gSAR(t)dt}{FCC SAR limit} + \frac{\frac{1}{T_{PD}}\left[\int_{t-T_{PD}}^{t} 4cm^{2}PD_{1}(t)dt + \int_{t1}^{t} 4cm^{2}PD_{2}(t)dt\right]}{FCC4cm^{2}PD limit} \le 1$$
(8d)

where, *conducted_Tx_power(t)*, *conducted_Tx_power_P_{limit}*, and 1g_or_10gSAR_P_{limit} correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at *P_{limit}*, and measured 1gSAR or 10gSAR values at *P_{limit}* corresponding to LTE transmission. Similarly, *radiated_Tx_power_1(t)*, *radiated_Tx_power_input.power.limit_1*, and 4cm²PD_input.power.limit_1 correspond to the measured instantaneous radiated Tx power, radiated_Tx_power_2(t), *radiated_Tx_power_limit_2*, and 4cm²PD_input.power.limit_2, and 4cm²PD_input.power.limit_2, and 4cm²PD_input.power.limit_2 correspond to the measured instantaneous radiated Tx power.limit_2 correspond to the measured instantaneous radiated Tx power, radiated Tx power at input.power.limit of beam 2 corresponding to mmW transmission.

Test procedure:

- 1. Measure conducted Tx power corresponding to *P*_{*limit*} for LTE in selected band, and measure radiated Tx power corresponding to *input.power.limit* in desired mmW band/channel/beam by following below steps:
 - a. Measure radiated power corresponding to mmW *input.power.limit* by setting up the EUT's Tx power in desired band/channel at *input.power.limit* of beam 1 in FTM. Do not disturb the position of the EUT inside the anechoic chamber for the rest of this test. Repeat this Step 1.a for beam 2.
 - b. Reset EUT to place in online mode and establish radio link in LTE, measure conducted Tx power corresponding to LTE *P*_{*limit*} with Smart Transmit enabled and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set *Reserve_power_margin* to actual (intended) value and reset power in EUT, With EUT setup for LTE + mmW connection, perform the following steps:
 - a. Establish LTE (sub-6) and mmW NR connection in beam 1. As soon as the mmW connection is established, immediately request all-down bits on LTE link with the callbox requesting EUT's Tx power to be at maximum mmW power.
 - b. After beam 1 continues transmission for at least 20s, request the EUT to change from beam 1 to beam 2, and continue transmitting with beam 2 for at least 20s.
 - c. Record the conducted Tx power of LTE and radiated Tx power of mmW for the entire duration of this test.
- Once the measurement is done, extract instantaneous Tx power versus time for both LTE and mmW links. Convert the conducted Tx power for LTE into 1gSAR or 10gSAR value using the similar approach described in Step 3 of Section 5.3.2. Perform 100s running average to determine normalized 100s-averaged 1gSAR versus time.
- 4. Similarly, convert the radiated Tx power for mmW NR into 4cm²PD value using Eq. (8b), (8c) and the radiated Tx power limits (i.e., radiated Tx power at *input.power.limit*) measured in Step 1.a for beam 1 and beam 2, respectively, and then divide the resulted PD values by FCC 4cm²PD limit of 10W/m² to obtain instantaneous normalized 4cm²PD versus time for beam 1 and beam 2. Perform 4s running average to determine normalized 4s-averaged 4cm²PD versus time.
 - NOTE: In Eq.(8b) and (8c), instantaneous radiated Tx power of beam 1 and beam 2 is converted into instantaneous 4cm²PD by applying the worst-case 4cm²PD value measured at the *input.power.limit* of beam 1 and beam 2 in Part 1 report, respectively.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 25 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 25 of 98
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

- 5. Since the measured radiated powers for beam 1 and beam 2 in Step 1.a were performed at an arbitrary rotation of EUT in anechoic chamber, repeat Step 1.a of this procedure by rotating the EUT to determine maximum radiated power at *input.power.limit* in FTM mode for both beams separately. Re-scale the measured instantaneous radiated power in Step 2.c by the delta in radiated power measured in Step 5 and the radiated power measured instantaneous radiated power during the measurement in Step 2 into maximum instantaneous radiated power for both beams. Perform 4s running average to compute 4s-avearged radiated Tx power. Additionally, use these EIRP values measured at *input.power.limit* at respective peak locations to determine the EIRP limits (using Eq. (5b)) for both these beams.
- 6. Make one plot containing: (a) instantaneous conducted Tx power for LTE versus time, (b) computed 100s-averaged conducted Tx power for LTE versus time, (c) instantaneous radiated Tx power for mmW versus time, as obtained in Step 5, (d) computed 4s-averaged radiated Tx power for mmW versus time, as obtained in Step 5, and (e) time-averaged conducted and radiated power limits for LTE and mmW radio, respectively.
- Make another plot containing: (a) computed normalized 100s-averaged 1gSAR versus time determined in Step 3, (b) computed normalized 4s-averaged 4cm²PD versus time determined in Step 4, and (c) corresponding total normalized time-averaged RF exposure (sum of steps (6.a) and (6.b)) versus time.

The validation criteria are, at all times, the total normalized time-averaged RF exposure versus time determined in Step 6.c shall not exceed the normalized limit of 1.0 of FCC requirement (i.e., (8d)).

5.4 Test procedure for time-varying PD measurements

The following steps are used to perform the validation through PD measurement for transmission scenario 1 described in Section 3:

- 1. Place the EUT on the cDASY6 platform to perform PD measurement in the worst-case position/surface for the selected mmW band/beam. In PD measurement, the callbox is set to request maximum Tx power from EUT all the time. Hence, "path loss" calibration between callbox antenna and EUT is not needed in this test.
- 2. Time averaging feature validation:
 - a. Measure conducted Tx power corresponding to *P*_{*limit*} for LTE in selected band, and measure point E-field corresponding to *input.power.limit* in desired mmW band/channel/beam by following the below steps:
 - i. Measure conducted Tx power corresponding to LTE *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, with callbox set to request maximum power.
 - ii. Measure point E-field at peak location of fast area scan corresponding to input.power.limit by setting up the EUT's Tx power in desired mmW band/channel/beam at input.power.limit in FTM. Do not disturb the position of EUT and mmW cDASY6 probe.
 - b. Set *Reserve_power_margin* to actual value (i.e., intended value) and reset power on EUT, place EUT in online mode. With EUT setup for LTE (sub-6) + mmW NR call, as soon as the mmW NR connection is established, request all-down bits on LTE link. Continue LTE (all-down bits) + mmW transmission for more than 100s duration to test predominantly PD exposure scenario. After 120s, request LTE to go all-up bits, mmW transmission should gradually reduce. Simultaneously, record the conducted Tx power of LTE transmission using power meter and point E-field (in terms of ratio of [lipointE(t)]2) of mmW transmission using cDASY6 E-field probe at peak location is for the optime duration of this test of at least 300s.

location identified in Step 2.a.ii for the entire duration of this test of at least 300s.

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 26 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 20 01 90
© 2020 PCTEST				REV 1 (

© 2020 PCTEST

- c. Once the measurement is done, extract instantaneous conducted Tx power versus time for LTE transmission and $\frac{[pointE(t)]^2}{[pointE_input.power.limit]^2}$ ratio versus time from cDASY6 system for mmW transmission. Convert the conducted Tx power for LTE into 1gSAR or 10gSAR value using Eq. (4a) and Plimit measured in Step 2.a.i, and then divide this by FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR to obtain instantaneous normalized 1gSAR or 10gSAR versus time. Perform 100s running average to determine normalized 100s-averaged 1gSAR or 10gSAR versus time
 - NOTE: In Eq.(4a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at Plimit for the corresponding technology/band reported in Part 1 report.
- d. Similarly, convert the point E-field for mmW transmission into 4cm²PD value using Eq. (4b) and radiated power limit measured in Step 2.a.ii, and then divide this by FCC 4cm²PD limit of 10W/m² to obtain instantaneous normalized 4cm²PD versus time. Perform 4s running average to determine normalized 4s-averaged 4cm²PD versus time.
- Make one plot containing: (i) computed normalized 100s-averaged 1gSAR or 10gSAR versus e. time determined in Step 2.c, (ii) computed normalized 4s-averaged 4cm²PD versus time determined in Step 2.d, and (iii) corresponding total normalized time-averaged RF exposure (sum of steps (2.e.i) and (2.e.ii)) versus time.

The validation criteria are, at all times, the total normalized time-averaged RF exposure versus time determined in Step 2.e.iii shall not exceed the normalized limit of 1.0 of FCC requirement (i.e., Eq. (4c)).

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 27 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 27 of 98
2020 PCTEST				REV 1.0

© 2020 PCTEST

6 **MEASUREMENT TEST SETUP (FREQ < 6 GHZ)**

6.1 **Conducted Measurement Test setup**

Legacy Test Setup

The Rohde & Schwarz CMW500 callbox was used in this test. The test setup schematic is shown in Figure 6-1a (Appendix D – Test Setup Photo 1) for measurements with a single antenna of DUT, and in Figure 6-1b (Appendix D – Test Setup Photo 2 and 3) for measurements involving antenna switch. For single antenna measurement, one port (RF1 COM) of the callbox is connected to the RF port of the DUT using a directional coupler. For technology/band switch measurement, one port (RF1 COM) of the callbox used for signaling two different technologies is connected to a combiner, which is in turn connected to a directional coupler. The other end of the directional coupler is connected to a splitter to connect to two RF ports of the DUT corresponding to the two antennas of interest. In the setups, power meter is used to tap the directional coupler for measuring the conducted output power of the DUT. For all legacy conducted tests, only RF1 COM port of the callbox is used to communicate with the DUT.

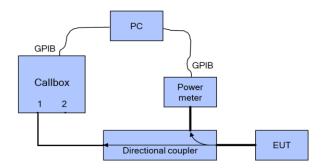
Note that for this EUT, antenna switch test is included within time-window switch test as the selected technology/band combinations for the time-window switch test are on two different antennas.

All the path losses from RF port of DUT to the callbox RF COM port and to the power meter are calibrated and automatically entered as offsets in the callbox and the power meter via test scripts on the PC used to control callbox and power meter.

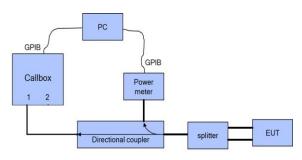
Sub6 NR test setup:

The KeySight UXM 5G callbox was used in this test. The test setup schematic is the same as the Legacy Test Setup shown in Figure 5-1a (Appendix C – Test Setup Photo 4). One port of the callbox is connected to the RF port of the DUT using a directional coupler. In the setup, the power meter is used to tap the directional coupler for measuring the conducted output power of the DUT.

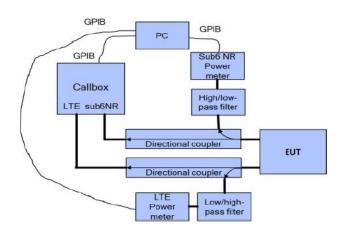
All the path losses from RF port of DUT to the callbox RF COM port and to the power meter are calibrated and automatically entered as offsets in the callbox and the power meter via test scripts on the PC used to control callbox and power meter.


LTE+Sub6 NR test setup:

LTE conducted port and Sub6 NR conducted port are different on this EUT, therefore, the LTE and Sub6 NR signals for power meter measurement are performed on separate paths as shown below in Figure 6-1c (Appendix D – Test Setup Photo 5).


All the path losses from RF port of DUT to the callbox RF COM port and to the power meter are calibrated and automatically entered as offsets in the callbox and the power meter via test scripts on the PC used to control callbox and power meter.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 28 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 28 of 98
© 2020 PCTEST				REV 1.0


© 2020 PCTEST

(a) Appendix D – Test Setup Photo 1 and 4

(b)Appendix D – Test Setup Photo 2 and 3

(c) Appendix D – Test Setup Photo 5

Figure 6-1 Conducted power measurement setup

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 29 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

Both the callbox and power meter are connected to the PC using GPIB cables. Two test scripts are custom made for automation, and the test duration set in the test scripts is 500 seconds.

For time-varying Tx power measurement, the PC runs the 1st test script to send GPIB commands to control the callbox's requested power versus time, while at the same time to record the conducted power measured at DUT RF port using the power meter. The commands sent to the callbox to request power are:

- 0dBm for 100 seconds
- test sequence 1 or test sequence 2 (defined in Section 4.1 and generated in Section 4.2.1), for 360 seconds
- stay at the last power level of test sequence 1 or test sequence 2 for the remaining time.

Power meter readings are periodically recorded every 100ms. A running average of this measured Tx power over 100 seconds is performed in the post-data processing to determine the 100s-time averaged power.

For call drop, technology/band/antenna switch, and DSI switch tests, after the call is established, the callbox is set to request the DUT's Tx power at 0dBm for 100 seconds while simultaneously starting the 2nd test script runs at the same time to start recording the Tx power measured at DUT RF port using the power meter. After the initial 100 seconds since starting the Tx power recording, the callbox is set to request maximum power from the DUT for the rest of the test. Note that the call drop/re-establish, or technology/band/antenna switch or DSI switch is manually performed when the Tx power of DUT is at Preserve level. See Section 4.3 for detailed test procedure of call drop test, technology/band/antenna switch test and DSI switch test.

6.2 SAR Measurement setup

The measurement setup is similar to normal SAR measurements as described in the Part 1 Test Report. The difference in SAR measurement setup for time averaging feature validation is that the callbox is signaling in close loop power control mode (instead of requesting maximum power in open loop control mode) and callbox is connected to the PC using GPIB so that the test script executed on PC can send GPIB commands to control the callbox's requested power over time (test sequence). The same test script used in conducted setup for time-varying Tx power measurements is also used in this section for running the test sequences during SAR measurements, and the recorded values from the disconnected power meter by the test script were discarded.

As mentioned in Section 4.4, for DUT to follow TPC command sent from the callbox wirelessly, the "path loss" between callbox antenna and the DUT needs to be very well calibrated. Since the SAR chamber is in uncontrolled environment, precautions must be taken to minimize the environmental influences on "path loss". Similarly, in the case of time-varying SAR measurements in Sub6 NR (with LTE as anchor), "path loss" between callbox antenna and the EUT needs to be carefully calibrated for both LTE link as well as for Sub6 NR link.

The DUT is placed in worst-case position according to Table 8-2.

FCC ID: A3LSMG998U	Poud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 30 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 50 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

7 **MEASUREMENT TEST SETUP (FREQ > 6 GHZ)**

7.1 **Radiated Power Measurement Test setup**

The Keysight Technologies E7515B UXM callbox is used in this test. The schematic of the setup is shown in Figure 7-1. The UXM callbox has two RF radio heads to up/down convert IF to mmW frequencies, which in turn are connected to two horn antennas for V- and H-polarizations for downlink communication. In the uplink, a directional coupler is used in the path of one of the horn antennas to measure and record radiated power using a Rohde & Schwarz NRP50S power sensor. Note here that the isolation of the directional coupler may not be sufficient to attenuate the downlink signal from the callbox, which will result in high noise floor masking the recording of radiated power from EUT. In that case, either lower the downlink signal strength emanating from the RF radio heads of callbox or add an attenuator between callbox radio heads and directional coupler. Additionally, note that since the measurements performed in this validation are all relative, measurement of EUT's radiated power in one polarization is sufficient. The EUT is placed inside an anechoic chamber with V- and H-pol horn antennas to establish the radio link as shown in Figure 7-1. The callbox's LTE port is directly connected to the EUT's RF port via a directional coupler to measure the EUT's conducted Tx power using a Rohde & Schwarz NRP8S power sensor. Additionally, EUT is connected to the PC via USB connection for sending beam switch command. Care is taken to route the USB cable and RF cable (for LTE connection) away from the EUT's mmW antenna modules.

Setup in Figure 7-1 is used for the test scenario 1, 5 and 6 described in Section 3. The test procedures described in Section 5 are followed. The path losses from the EUT to both the power meters are calibrated and used as offset in the power meter.

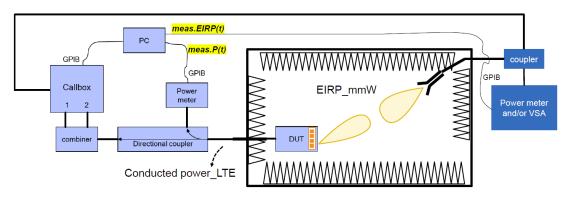


Figure 7-1 mmW NR radiated power measurement setup – Test Setup Photo 14

Both the callbox and power meters are connected to the PC using USB cables. Test scripts are custom made for automation of establishing LTE + mmW call, conducted Tx power recording for LTE and radiated Tx power recording for mmW. These tests are manually stopped after desired time duration. Test script is programmed to set LTE Tx power to all-down bits on the callbox immediately after the mmW link is established, and programmed to set toggle between all-up and all-down bits depending on the transmission scenario being evaluated. Similarly, test script is also programmed to send beam switch command manually to the EUT via USB connection. For all the tests, the callbox is set to request maximum Tx power in mmW NR radio from EUT all the time.

Test configurations for this validation are detailed in Section 5.2. Test procedures are listed in Section 5.3.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 24 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 31 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

7.2 Power Density Measurement Test setup

The measurement setup is similar to normal PD measurements, the EUT is positioned on cDASY6 platform, and is connected with the callbox (conducted for LTE and wirelessly for mmW). Keysight UXM callbox is set to request maximum mmW Tx power from EUT all the time. Hence, "path loss" calibration between callbox antenna and EUT is not needed in this test. The callbox's LTE port is directly connected to the EUT's RF port via a directional coupler to measure the EUT's conducted Tx power using a Rohde & Schwarz NRP8S power sensor. Additionally, EUT is connected to the PC via USB connection for toggling between FTM and online mode with Smart Transmit enabled following the test procedures described Section 5.4.

Worst-surface of EUT (for the mmW beam being tested) is positioned facing up for PD measurement with cDASY6 mmW probe. Figure 7-2 shows the schematic of this measurement setup.

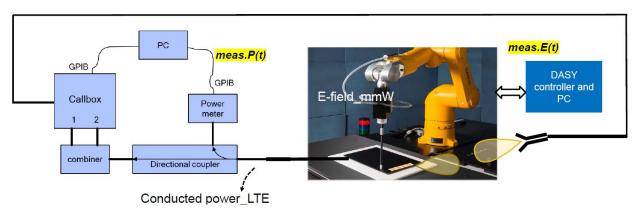


Figure 7-2 Power Density Measurement Setup – Test Setup Photo 12 and 13

Both callbox and power meters are connected to the PC using USB cables. Test scripts are custom made for automation of establishing LTE + mmW call, and for conducted Tx power recording of LTE transmission. These tests are manually stopped after desired time duration. Once the mmW link is established, LTE Tx power is programmed to toggle between all-up and all-down bits on the callbox. For all the tests, the callbox is set to request maximum Tx power in mmW NR radio from EUT all the time. Therefore, the calibration for the pathloss between the EUT and the horn antenna connected to the remote radio head of the callbox is not required.

Power meter readings are periodically recorded every 10ms on NR8S power sensor for LTE conducted Tx power. Time-averaged E-field measurements are performed using EUmmWV3 mmW probe at peak location of fast area scan. The distance between EUmmWV3 mmW probe tip to EUT surface is ~0.5 mm. and the distance between EUmmWV3 mmW probe sensor to probe tip is 1.5 mm. cDASY6 records $[pointE(t)]^2$ relative point E-field (i.e., ratio $\frac{|pointE(t)|^2}{[pointE_{input.power.limit]^2}}$) versus time for mmW NR transmission.

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 32 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 32 01 90
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

8 **TEST CONFIGURATIONS (FREQ < 6 GHZ)**

8.1 WWAN (sub-6) transmission

The Plimit values, corresponding to 1.0 W/kg (1gSAR) and 2.5 W/kg (10gSAR) of SAR_design_target, for technologies and bands supported by DUT are derived in Part 0 report and summarized in Table 8-1. Note all Plimit power levels entered in Table 8-1 correspond to average power levels after accounting for duty cycle in the case of TDD modulation schemes.

				1				1
Exposure Scenar		Body-Worn	Phablet	Phablet	Head	Hotspot	Earjack	
Averaging Volum	ne:	1g	10g	10g	1g	1g	10g	Maximum Tune-up
Spacing:		15 mm	8, 6, 11	0 mm	0 mm	10 mm	0 mm	Output Power*
DSI:		0	0	1	2	3	4	
Technology/Band	Antenna		Plimit co	rresponding to 1r	nW/g (SAR_desig	n_target)		Pmax
CDMA/EVDO BC10	Α	30		26.9	32.1	26.9	26.9	24.8
CDMA/EVDO BCO	Α	30).5	27.0	31.9	27.0	27.0	24.8
CDMA/EVDO BC1	А	27	.2	18.5	34.3	18.5	18.5	23.0
GSM/GPRS/EDGE 850 MHz	А	31		26.9	33.6	26.9	26.9	24.8
GSM/GPRS/EDGE 1900 MHz	А	26	i.3	18.8	35.4	18.8	18.8	21.3
UMTS B5	A	30).9	26.7	32.3	26.7	26.7	24.5
UMTS B4	A	25		18.5	32.5	18.5	18.5	23.0
UMTS B2	А	27	2.0	18.5	34.2	18.5	18.5	23.0
LTE FDD B71	А	31		27.4	34.0	27.4	27.4	24.8
LTE FDD B12	А	32		27.2	33.3	27.2	27.2	24.8
LTE FDD B13	А	31	31.5		32.6	27.0	27.0	24.8
LTE FDD B14	А	31.3		26.8	32.8	26.8	26.8	24.8
LTE FDD B26	А	31.4		26.9	32.9	26.9	26.9	24.8
LTE FDD B5	А	30.6		26.9	32.2	26.9	26.9	24.8
LTE FDD B66/4	А	24.8		18.5	31.9	18.5	18.5	23.0
LTE FDD B25/2	А	25		18.5	32.0	18.5	18.5	23.5
LTE FDD B30	А	27		20.0	37.6	19.0	20.0	23.0
LTE FDD B7	В	28		20.0	33.4	20.0	20.0	23.0
LTE TDD B48	l I	20	0.0	20.0	17.0	20.0	20.0	21.5
LTE TDD B41/38	В	26	i.6	20.0	35.6	19.0	20.0	22.0
LTE TDD B41 PC2	В	26	ö.6	20.0	35.6	19.0	20.0	22.9
NR FDD n71	А	31	3	29.2	33.6	29.2	29.2	24.5
NR FDD n12	А	31	1	28.8	35.7	28.8	28.8	24.5
NR FDD n5	А	30).3	27.1	31.8	26.6	27.1	24.5
NR FDD n66 Ant A	А	24	.6	18.5	32.1	18.5	18.5	23.8
NR FDD n66 Ant E	E	23	1.5	23.5	19.0	19.0	23.5	23.5
NR FDD n25/2 Ant A	А	26.5		18.5	33.8	18.5	18.5	23.8
NR FDD n25/2 Ant E	E	23.5		23.5	19.0	19.0	23.5	23.5
NR FDD n30	А	25	25.4		35.9	19.0	20.0	23.0
NR TDD n41 Ant B	В	18.0		14.0	18.0	13.0	14.0	24.0
NR TDD n41 Ant E	E	17.0		17.0	14.0	15.0	17.0	24.0
NR TDD n41 Ant E (PC2)	E	17	17.0		14.0	15.0	17.0	26.0
NR TDD n77	I	19	.5	19.5	15.0	17.5	19.5	23.5
NR TDD n77 PC2	I	19	0.5	19.5	15.0	17.5	19.5	25.5

Table 8-1 Plimit for supported technologies and bands (Plimit in EFS file)

* Maximum tune up target power, P_{max} , is configured in NV settings in DUT to limit maximum transmitting power. This power is converted into peak power in NV settings for TDD schemes. The DUT maximum allowed output power is equal to $P_{max} + 1$ dB device uncertainty.

Based on selection criteria described in Section 4.2.1, the selected technologies/bands for testing time-varying test sequences are highlighted in yellow in Table 8-1. Per the manufacturer, the Reserve_power_margin (dB) is set to 3dB in EFS and is used in Part 2 test.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 33 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/06/2020

The radio configurations used in Part 2 test for selected technologies, bands, DSIs and antennas are listed in Table 8-2. The corresponding worst-case radio configuration 1gSAR values for selected technology/band/DSI are extracted from Part 1 report and are listed in the last column of Table 8-2.

Based on equations (1a), (2a), (3a) and (4a), it is clear that Part 2 testing outcome is normalized quantity, which implies that it can be applied to any radio configuration within a selected technology/band/DSI. Thus, as long as applying the worst-case SAR obtained from the worst radio configuration in Part 1 testing to calculate time-varying SAR exposure in equations (1a), (2a), (3a) and (4a), the accuracy in compliance demonstration remains the same. Therefore, there may be some differences between the radio configuration selected for Part 2 testing and the radio configuration associated with worst-case SAR obtained in the Part 1 evaluation.

Test Case #	Test Scenario	Tech	Band	Antenna	DSI	Channel	Frequency [MHz]	RB/RB Offset/Bandwidth (MHz)	Mode	SAR Exposure Scenario	SAR Exposure Scenario	Part 1 Worst Case Measured SAR at Plimit (W/kg)
1	Test Sequence 1		41 PC3	в	1	40620	2593	1/50/20 MHz BW	QPSK	Phablet	back side. 0mm	1.16*
1	Test Sequence 2	LTE	41 - 03	В	1	40620	2593	1/50/20 MHz BW	QPSK	Flablet	Dack side, Unin	1.10
2	Test Sequence 1		48		2	56207	3646.7	1/0/20 MHz BW	QPSK	Head	right, cheek	0.436
2	Test Sequence 2		40	'	2	56207	3646.7	1/0/20 MHz BW	QPSK	neau	ngni, cheek	0.450
3	Test Sequence 1	WCDMA	2	А	3	9400	1880	-	RMC	Hotspot	bottom edge, 10mm	0.952
3	Test Sequence 2	WCDIVIA	2	~	3	9400	1880	-	RMC	Hotspot	bollom edge, Tomm	0.952
4	Test Sequence 1	CDMA	PCS	А	3	600	1880	-	1x EvDO Rev.0	Hotspot	bottom edge, 10mm	0.977
4	Test Sequence 2	CDIVIA	F03	~	3	600	1880	-	TX EVDO NEV.0	HUISPOL	bollom edge, Tomm	0.977
5	Test Sequence 1	GSM	1900	А	3	661	1880	-	GPRS, 4 Tx SLOTS	Hotspot	bottom edge, 10mm	0.723
5	Test Sequence 2	GSIVI	1900	~	3	661	1880	-	GFK3, 4 1X 3L013		bollom edge, romin	0.723
6	Test Sequence 1		n66/SA	А	3	349000	1745	1/1/40 MHz BW	DFT-S-OFDM, QPSK	Hotspot	bottom edge, 10mm	0.971
0	Test Sequence 2	Sub6 NR	100/3A	~	3	349000	1745	1/1/40 MHz BW	DFT-S-OFDM, QPSK	Hotspot	bollomedge, romm	0.971
7	Test Sequence 1	SUDO INK	n30/SA	А	1	46200	2310	1/1/10 MHz BW	DFT-S-OFDM, QPSK	Phablet	bottom edge, 0mm	1.42*
'	Test Sequence 2		1130/ SA	~		46200	2310	1/1/10 MHz BW	DFT-S-OFDM, QPSK		bollom edge, omm	1.42
8	Call Drop	LTE	48	I	2	56207	3646.7	1/0/20 MHz BW	QPSK	Head	right, cheek	0.436
9	Tech Switch	LTE	41 PC3	В	3	40620	2593	1/50/20 MHz BW	QPSK	Hotspot	bottom edge, 10mm	0.465
9	Tech Switch	WCDMA	2	A	3	9400	1880	-	RMC	Hotspot	bottom edge, 10mm	0.952
10	Time Window/Antenna	LTE	41 PC3	В	3	40620	2593	1/50/20 MHz BW	QPSK	Hotspot	bottom edge, 10mm	0.465
10	Switch	LIC	48	1	3	56207	3646.7	1/0/20 MHz BW	QPSK	Hotspot	right edge, 10mm	0.564
11	DSI Switch	LTE	41 PC3	В	3	40620	2593	1/50/20 MHz BW	QPSK	Hotspot	bottom edge, 10mm	0.465
11	DSI SWICH	LIE	41 PC3	В	1	40620	2593	1/50/20 MHz BW	QPSK	Phablet	back side, 0mm	1.16*
12	SAR1 vs SAR2	Sub6 NR	n66/NSA	E	3	349000	1745	1/1/40 MHz BW	DFT-S-OFDM, QPSK	Hotspot	left edge, 10mm	0.123
12	JARI VS JARZ	LTE	2	A	3	18900	1880	1/0/20 MHz BW	QPSK	Hotspot	bottom edge, 10mm	1.01

Table 8-2Radio configurations selected for Part 2 test

*Indicates 10g SAR

Note that the DUT has a proximity sensor to manage extremity exposure, which is represented using DSI = 1; the head exposure can be distinguished through audio receiver mode, represented as DSI = 2; similarly, the hotspot exposure is distinguished via hotspot mode, represented as DSI = 3; the exposure for headset jack active scenario is represented using DSI = 4 and is managed as the same exposure condition as extremity exposure at 0 mm; DSI = 0 represents all other exposures which cannot be distinguished, thus, in this case, the maximum 1gSAR and/or 10gSAR among all remaining exposure scenarios or the minimum *Plimit* among all remaining exposure scenarios (i.e., body worn 1gSAR evaluation at 15mm spacing, phablet 10gSAR extremity evaluation at 6~11mm spacing, phablet 10gSAR extremity evaluation at omm spacing for left and right surfaces) is used in Smart Transmit feature for time averaging operation.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 34 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 34 01 96
© 2020 PCTEST				REV 1 (

© 2020 PCTEST

Based on the selection criteria described in Section 4.2, the radio configurations for the Tx varying transmission test cases listed in Section 3 are:

- 1. Technologies and bands for time-varying Tx power transmission: The test case 1~7 listed in Table 8-2 are selected to test with the test sequences defined in Section 4.1 in both timevarying conducted power measurement and time-varying SAR measurement.
- 2. Technology and band for change in call test: LTE Band 48, having the lowest Plimit among all technologies and bands (test case 8 in Table 8-2), is selected for performing the call drop test in conducted power setup.
- 3. Technologies and bands for change in technology/band test: Following the guidelines in Section 4.2.3, test case 9 in Table 8-2 is selected for handover test from a technology/band within one technology group (LTE Band 41, DSI=3, antenna B), to a technology/band in the same DSI within another technology group (WCDMA Band 2, DSI=3, antenna A) in conducted power setup.
- 4. Technologies and bands for change in time-window/antenna: Based on selection criteria in Section 4.2.6, for a given DSI=3, test case 10 in Table 8-2 is selected for time window switch between 60s window (LTE 48, Antenna I) and 100s window (LTE 41, Antenna B) in conducted power setup.
- 5. Technologies and bands for change in DSI: Based on selection criteria in Section 4.2.5, for a given technology and band, test case 11 in Table 8-2 is selected for DSI switch test by establishing a call in LTE Band 41 in DSI=3, and then handing over to DSI= 1 exposure scenario in conducted power setup.
- 6. Technologies and bands for switch in SAR exposure: Based on selection criteria in Section 4.2.7 Scenario 1, test case 12 in Table 8-2 is selected for SAR exposure switching test in one of the supported simultaneous WWAN transmission scenario, i.e., LTE + Sub6 NR active in the same 100s time window, in conducted power setup. Since this device supports LTE+mmW NR, test for Section 4.2.7 Scenario 2 for RF exposure switch is covered in Sections 13.1 and 13.2 between LTE (100s window) and mmW NR (4s window).

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 25 of 08
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 35 of 98
© 2020 PCTEST				REV 1.0

8.2 *Plimit* and *Pmax* measurement results

The measured *P*_{limit} for all the selected radio configurations given in Table 8-2 are listed in below Table 8-3. *P_{max}* was also measured for radio configurations selected for testing time-varying Tx power transmission scenarios in order to generate test sequences following the test procedures in Section 4.1.

Test Case #	Test Scenario	Tech	Band	Antenna	DSI	Channel	Frequency [MHz]	RB/RB Offset/Bandwidth (MHz)	Mode	SAR Exposure Scenario	EFS Plimit [dBm]	Tune-up Pmax [dBm]	Measured Plimit [dBm]	Measured Pmax [dBm]											
1	Test Sequence 1		41 PC3	в	1	40620	2593	1/50/20 MHz BW	QPSK	Phablet	20.0	22.0	20.29	22.38											
	Test Sequence 2	LTE	41 PC3			40620	2593	1/50/20 MHz BW	QPSK	Filablet	20.0	22.0	20.29	22.38											
2	Test Sequence 1		48		2	56207	3646.7	1/0/20 MHz BW	QPSK	Head	17.0	21.5	17.57	21.72											
2	Test Sequence 2		ę		2	56207	3646.7	1/0/20 MHz BW	QPSK	Tiedu	17.0	21.5	17.57	21.72											
3	Test Sequence 1	WCDMA	2	А	3	9400	1880	-	RMC	Hotspot	18.5	23.0	19.08	23.04											
3	Test Sequence 2	VICDIVIA	2	~	3	9400	1880	-	RMC	новрог	18.5	23.0	19.08	23.04											
4	Test Sequence 1	CDMA	PCS	А	3	600	1880	-	1x EvDO Rev.0	Hotopot	18.5	23.0	18.95	22.98											
4	Test Sequence 2	CDIVIA	FG3	~	3	600	1880	-	TX EVDO Rev.0	Hotspot	18.5	23.0	18.95	22.98											
5	Test Sequence 1	GSM	4000	1000	1900	1900	1900	1900	1000	1000	1000	1000	1000	1000	А	3	661	1880	-	GPRS, 4 Tx SLOTS	Hotspot	18.8	20.3	19.18	21.15
5	Test Sequence 2	GOIVI	1900	~	3	661	1880	-	GFR3, 4 1X 3L013	Tiotspor	18.8	20.3	19.18	21.15											
6	Test Sequence 1		n66/SA A	-00/04	n66/SA	n66/SA	n66/SA	n66/SA	n66/SA	n66/SA	n66/SA	n66/SA	n66/SA	n66/SA		3	349000	1745	1/1/40 MHz BW	DFT-S-OFDM, QPSK	Hotspot	18.5	23.8	19.29	22.95
0	Test Sequence 2	Sub6 NR		A	м	3	349000	1745	1/1/40 MHz BW	DFT-S-OFDM, QPSK	Hotspor	18.5	23.8	19.29	22.95										
7	Test Sequence 1	SUDO INK	n30/SA	n20/6A	-20/04	-20/04	-20/04	-20/04	-20/04	А	4	46200	2310	1/1/10 MHz BW	DFT-S-OFDM, QPSK	Phablet	20.0	23.0	20.60	22.35					
'	Test Sequence 2		1130/ SA	~		46200	2310	1/1/10 MHz BW	DFT-S-OFDM, QPSK	Filablet	20.0	23.0	20.60	22.35											
8	Call Drop	LTE	48	I	2	56207	3646.7	1/0/20 MHz BW	QPSK	Head	17.0	21.5	17.57	21.72											
9	Tech Switch	LTE	41 PC3	В	3	40620	2593	1/50/20 MHz BW	QPSK	Hotspot	19.0	22.0	19.45	22.38											
9	Tech Switch	WCDMA	2	A	3	9400	1880	-	RMC	Hotspot	18.5	23.0	19.08	23.04											
10	Time Window/Antenna	LTE	41 PC3	В	3	40620	2593	1/50/20 MHz BW	QPSK	Hotspot	19.0	22.0	19.45	22.38											
10	Switch	48	1	3	56207	3646.7	1/0/20 MHz BW	QPSK	Hotspot	20.0	21.5	20.05	21.72												
11	DSI Switch	LTE 4	41 PC3	В	3	40620	2593	1/50/20 MHz BW	QPSK	Hotspot	19.0	22.0	19.45	22.38											
11	DSI Switch	LIE	41 PC3	В	1	40620	2593	1/50/20 MHz BW	QPSK	Phablet	20.0	22.0	20.29	22.38											
12	SAR1 vs SAR2	Sub6 NR	n66/NSA	E	3	349000	1745	1/1/40 MHz BW	DFT-S-OFDM, QPSK	Hotspot	19.0	23.5	19.89	24.31											
12	JART VS JARZ	LTE	2	A	3	18900	1880	1/0/20 MHz BW	QPSK	Hotspot	18.5	23.5	18.98	22.73											

Table 8-3 Measured Plimit and Pmax of selected radio configurations

Note: The device uncertainty of P_{max} is +/- 1 dB as provided by manufacturer.

Note: The above Pmax value for GPRS1900 is for 4 Tx Slots

EFS v16 Verification 8.3

Per Qualcomm's 80-w2112-5 document, embedded file system (EFS) version 16 products are required to be verified for Smart Tx generation for relevant MCC settings. It was confirmed that this DUT contains embedded file system (EFS) version 16 configured for Smart Tx second generation (GEN2) with MCC settings for the US market.

EFS v16 Generation	мсс
GEN2	310

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 36 of 98	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 30 01 90	
© 2020 PCTEST	·	·		REV 1.0	

© 2020 PCTEST

9 CONDUCTED TX CASES (FREQ < 6 GHZ)

FCC SAR limit

9.1 **Time-varying Tx Power Case**

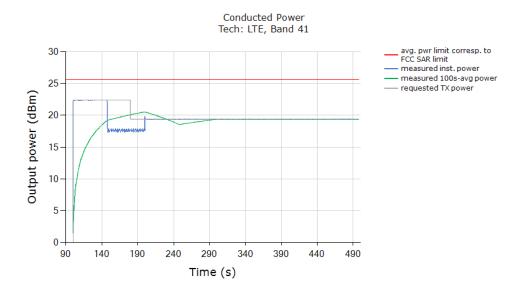
The measurement setup is shown in Figure 6-1. The purpose of the time-varying Tx power measurement is to demonstrate the effectiveness of power limiting enforcement and that the time-averaged Tx power when represented in time-averaged 1gSAR or 10gSAR values does not exceed FCC limit as shown in Eq. (1a) and (1b), rewritten below:

$$1g_or_10gSAR(t) = \frac{conducted_Tx_power(t)}{conducted_Tx_power_P_{limit}} * 1g_or_10gSAR_P_{limit}$$
(1a)
$$\frac{\frac{1}{T_{SAR}}\int_{t=T_{SAR}}^{t} 1g_or_10gSAR(t)dt}{T_{SAR}} \leq 1$$
(1b)

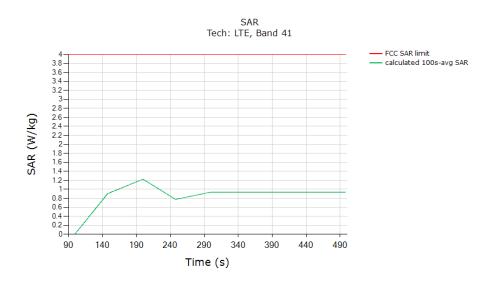
where, $conducted_Tx_power(t)$, $conducted_Tx_power_P_{limit}$, and $1g_or_10gSAR_P_{limit}$ correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at Plimit, and measured 1gSAR and 10gSAR values at Plimit reported in Part 1 test (listed in Table 8-2 of this report as well).

Following the test procedure in Section 4.3, the conducted Tx power measurement for all selected configurations are reported in this section. In all the conducted Tx power plots, the dotted line represents the requested power by callbox (test sequence 1 or test sequence 2), the blue curve represents the instantaneous conducted Tx power measured using power meter, the green curve represents time-averaged power and red line represents the conducted power limit that corresponds to FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

Similarly, in all the 1g or 10gSAR plots (when converted using Eq. (1a)), the green curve represents the 100s/60s-time averaged 1gSAR or 10gSAR value calculated based on instantaneous 1gSAR or 10gSAR; and the red line limit represents the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.


Time-varying Tx power measurements were conducted on test cases $\#1 \sim \#7$ in Table 8-2, by generating test sequence 1 and test sequence 2 given in APPENDIX E: using measured Plimit and measured Pmax (last two columns of Table 8-3) for each of these test cases. Measurement results for test cases #1 ~ #7 are given in Sections 9.1.1-9.1.7.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 27 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 37 of 98
© 2020 PCTEST				REV 1.0

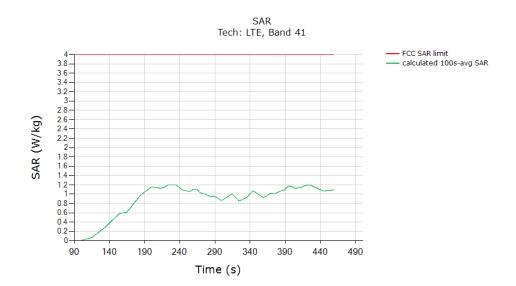

© 2020 PCTEST

Test result for test sequence 1:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 10gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 10gSAR versus time does not exceed the FCC limit of 4.0 W/kg for 10gSAR:



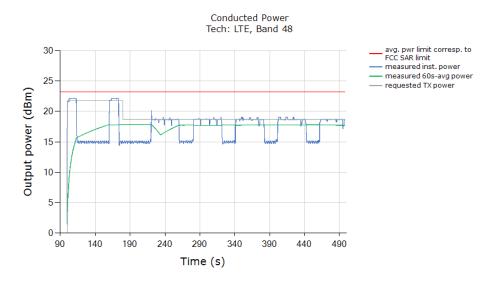
	(W/kg)
FCC 10gSAR limit	4.0
Max 100s-time averaged 10gSAR (green curve)	1.226
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 8-2).	nty of measured


	FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 29 of 09
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 38 of 98
0	2020 PCTEST				REV 1.0

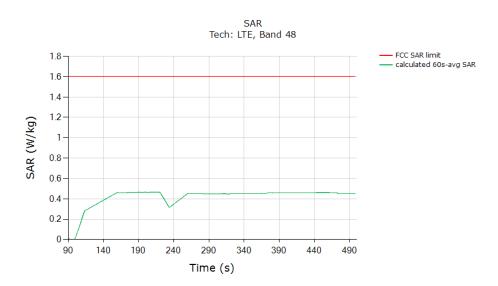
© 2020 PCTEST

Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 10gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 10gSAR versus time does not exceed the FCC limit of 4.0 W/kg for 10gSAR:

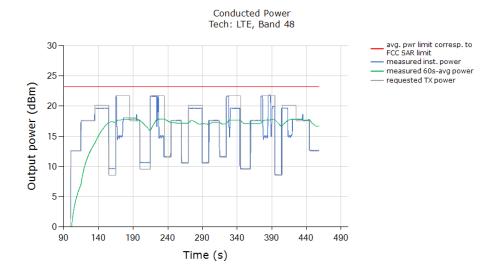

	(W/kg)
FCC 10gSAR limit	4.0
Max 100s-time averaged 10gSAR (green curve)	1.203
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	nty of measured

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 20 at 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 39 of 98
© 2020 PCTEST				REV 1.0

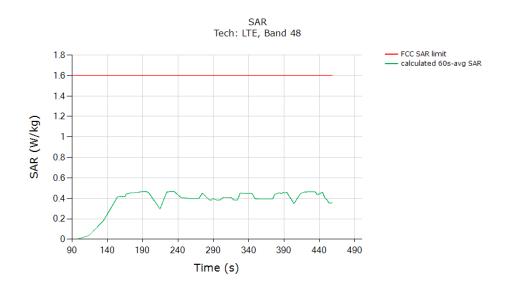

REV 1.0 04/06/2020

Test result for test sequence 1:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



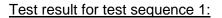
	(W/kg)
FCC 1gSAR limit	1.6
Max 60s-time averaged 1gSAR (green curve)	0.464
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 8-2).	nty of measured

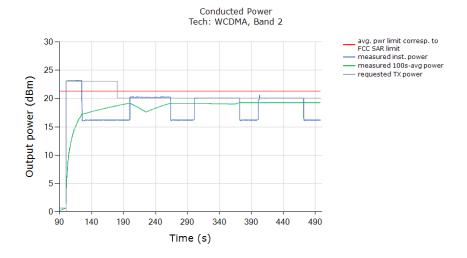

	FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 40 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 40 01 96
0	2020 PCTEST				REV 1.0

© 2020 PCTEST

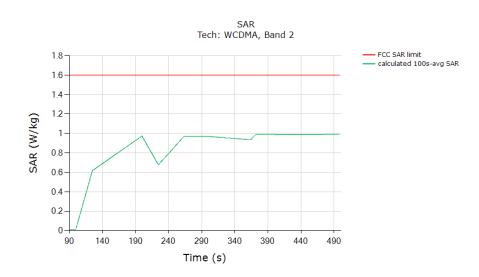
Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



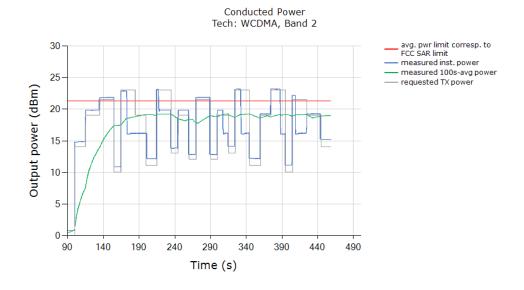

	(W/kg)
FCC 1gSAR limit	1.6
Max 60s-time averaged 1gSAR (green curve)	0.467
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	nty of measured

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 41 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 41 of 98
© 2020 PCTEST				REV 1.0

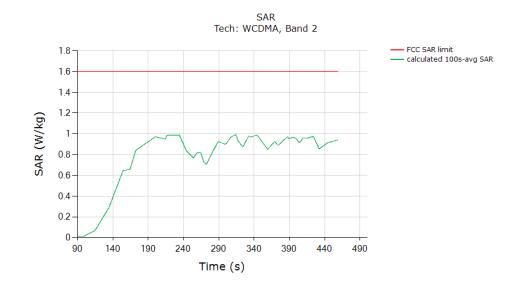

04/06/2020

9.1.3 UMTS B2

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



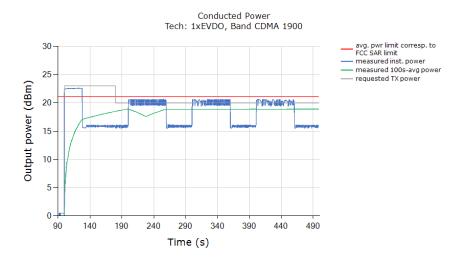
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.991
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	nty of measured


FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 42 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 42 of 98
© 2020 PCTEST				REV 1.0

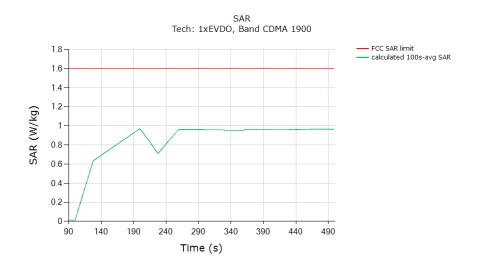
REV 1.0 04/06/2020

Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.989
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 8-2).	nty of measured

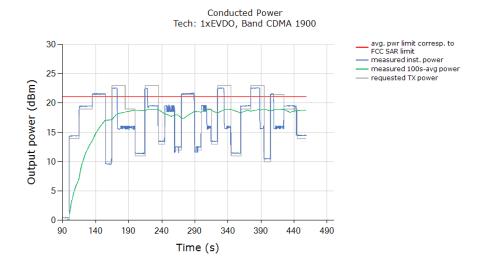
FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 42 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 43 of 98
© 2020 PCTEST				REV 1.0


REV 1.0 04/06/2020

9.1.4 **CDMA/EVDO BC1**

Test result for test sequence 1:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



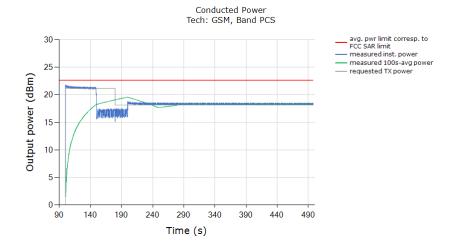
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.969
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	nty of measured

	FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 44 of 00
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 44 of 98
0	2020 PCTEST				REV 1.0

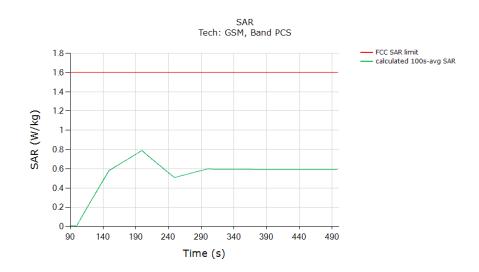
© 2020 PCTEST

Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

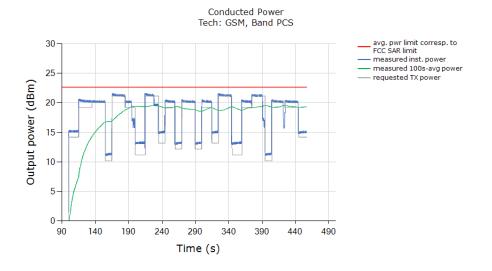

	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.969
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	nty of measured

FCC ID: A3LSMG998U	Proud to be part of (® element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 45 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 45 of 98
© 2020 PCTEST				REV 1.0


© 2020 PCTEST

9.1.5

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



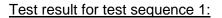
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.789
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 8-2).	nty of measured

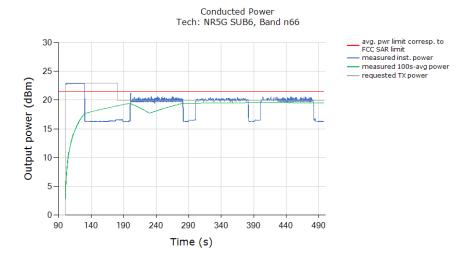

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 46 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 46 of 98
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

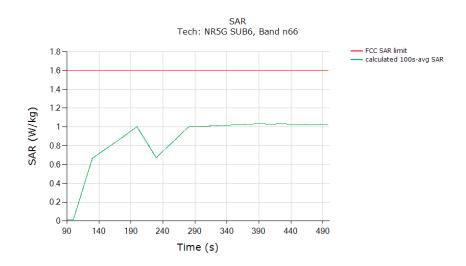
Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



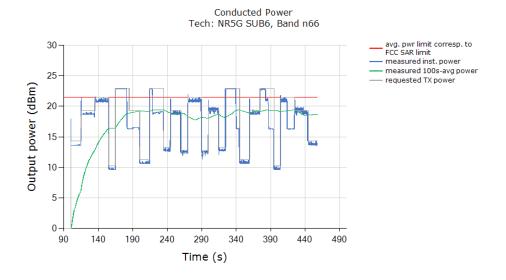

	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.783
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 8-2).	nty of measured

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 47 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 47 01 98
© 2020 PCTEST				REV 1.0

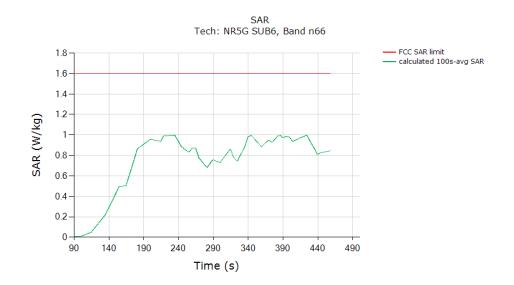

© 2020 PCTEST

9.1.6 NR n66

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



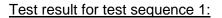
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.033
Validated: Max time averaged SAR (green curve) is within 1dB device uncertain measured SAR at <i>Plimit</i> (last column in Table 8-2).	ty of the

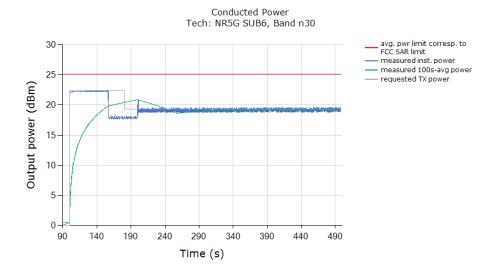

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 40 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 48 of 98
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

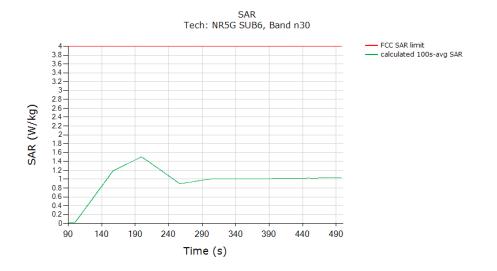
Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



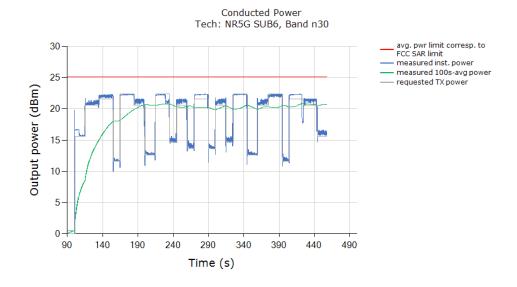

	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.998
Validated: Max time averaged SAR (green curve) is within 1dB device uncertain measured SAR at <i>Plimit</i> (last column in Table 8-2).	ty of the

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 40 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 49 of 98
© 2020 PCTEST				REV 1.0

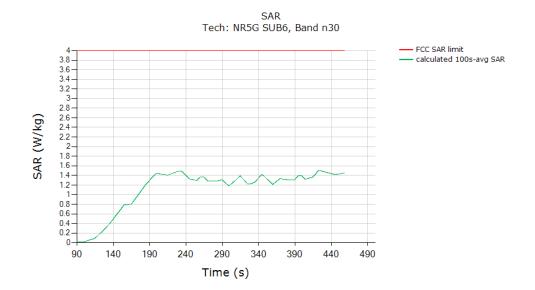

REV 1.0 04/06/2020

NR n30 9.1.7

Above time-averaged conducted Tx power is converted/calculated into time-averaged 10gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 10gSAR versus time does not exceed the FCC limit of 4.0 W/kg for 10gSAR:



	(W/kg)
FCC 10gSAR limit	4.0
Max 100s-time averaged 10gSAR (green curve)	1.503
Validated: Max time averaged SAR (green curve) is within 1dB device uncertaint measured SAR at <i>Plimit</i> (last column in Table 8-2).	ty of the


	FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 50 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 50 01 98
© 2020 PCTEST					REV 1.0

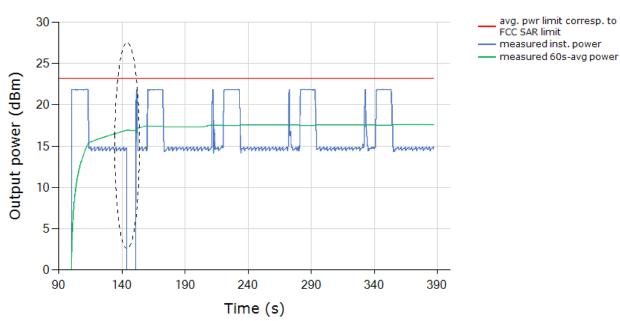
© 2020 PCTEST

Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 10gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 10gSAR versus time does not exceed the FCC limit of 4.0 W/kg for 10gSAR:

	(W/kg)		
FCC 10gSAR limit	4.0		
Max 100s-time averaged 10gSAR (green curve)	1.505		
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of the measured SAR at <i>Plimit</i> (last column in Table 8-2).			

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 51 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 51 of 98
© 2020 PCTEST				

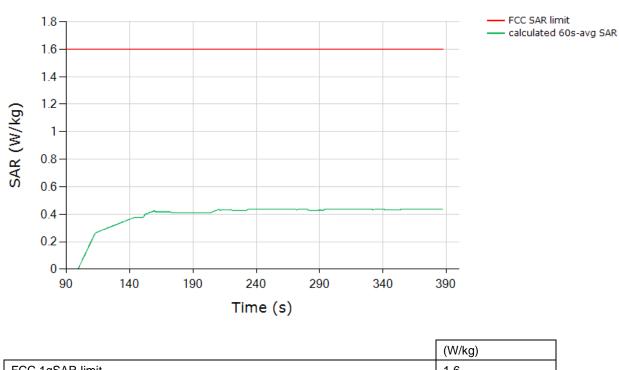

© 2020 PCTEST

9.2 **Call Drop Test Case**

This test was measured LTE Band 48, Antenna I, DSI=2, and with callbox requesting maximum power. The call drop was manually performed when the DUT is transmitting at Preserve level as shown in the plot below (dotted black region). The measurement setup is shown in Figure 6-1. The detailed test procedure is described in Section 4.3.2.

Call drop test result:

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power kept the same Preserve level of LTE Band 48 after the call was re-established:


Conducted Power Tech: LTE, Band 48

Plot Notes: The power level after the change in call kept the same *P*_{reserve} level of LTE Band 48. The conducted power plot shows expected Tx transition.

FCC ID: A3LSMG998U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dana 50 af 00	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 52 of 98	
© 2020 PCTEST					

© 2020 PCTEST

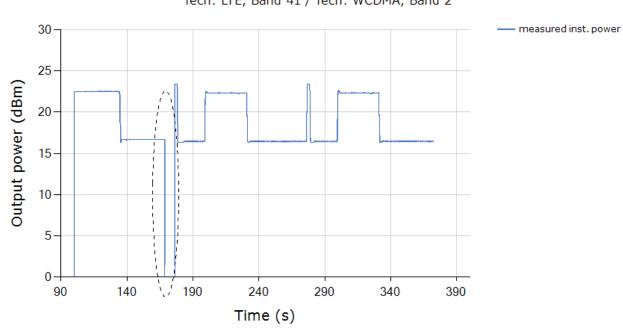
Plot 2: Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

SAR Tech: LTE, Band 48

	(W/kg)			
FCC 1gSAR limit	1.6			
Max 60s-time averaged 1gSAR (green curve)	0.437			
Validated				

The test result validated the continuity of power limiting in call change scenario.

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 52 of 08	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 53 of 98	
© 2020 PCTEST					

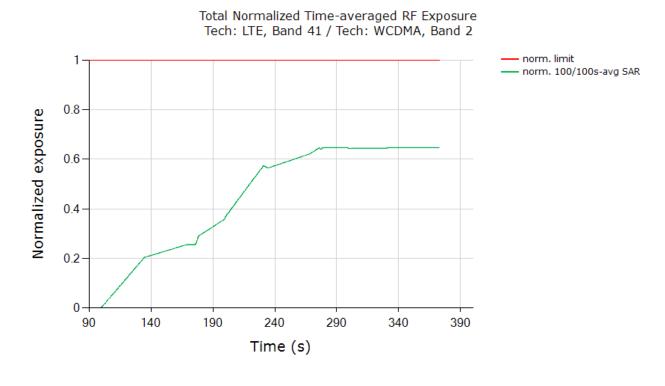

REV 1.0 04/06/2020

9.3 **Change in Technology/Band Test Case**

This test was conducted with callbox requesting maximum power, and with a technology switch from LTE Band 41, Antenna B, DSI = 3 to WCDMA Band 2, Antenna A, DSI = 3. Following procedure detailed in Section 4.3.3, and using the measurement setup shown in Figure 6-1, the technology/band switch was performed when the DUT is transmitting at *P*_{reserve} level as shown in the plot below (dotted black region).

Test result for change in technology/band:

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed from LTE Band 41, Antenna B, DSI = 3 Preserve level to WCDMA Band 2, Antenna A, DSI = 3 Preserve level (within 1 dB device uncertainty):


Conducted Power Tech: LTE, Band 41 / Tech: WCDMA, Band 2

Note: As per the manufacturer, Reserve_power_margin = 3 dB. Based on Table 8-1, EFS Plimit = 19.0dBm for LTE Band 41 (DSI=3), and EFS *Plimit* = 18.5dBm for WCDMA Band 2 (DSI=3), it can be seen from above plot that the difference in Preserve (= Plimit - 3dB Reserve_power_margin) power level corresponds to the expected difference in Plimit levels of 0.5 dB (within 1dB of sub6 radio design related uncertainty). Therefore, the conducted power plot shows expected transition in Tx power.

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 54 of 98	
© 2020 PCTEST		·		REV 1.0	

© 2020 PCTEST

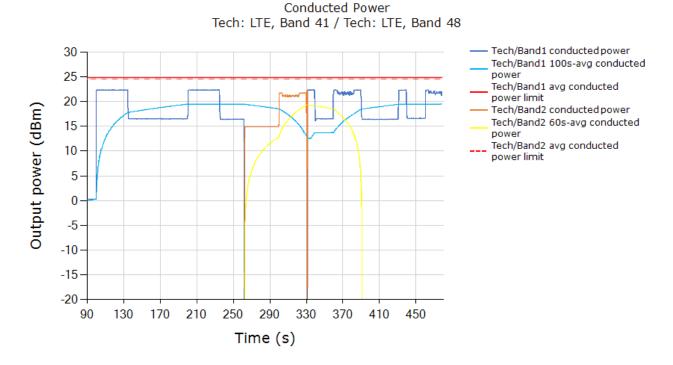
Plot 2: All the time-averaged conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (6a), (6b) and (6c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the normalized FCC limit of 1.0:

	(W/kg)
FCC normalized SAR limit	1.0
Max 100s-time averaged normalized SAR (green curve)	0.647
Validated	

The test result validated the continuity of power limiting in technology/band switch scenario.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 55 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 55 of 98
© 2020 PCTEST				

© 2020 PCTEST

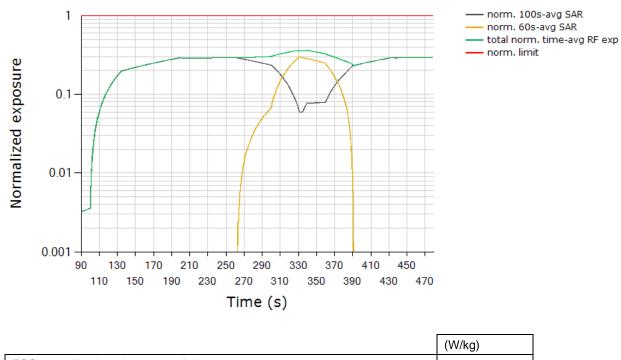

9.4 Change in Time window / antenna switch test results

This test was conducted with callbox requesting maximum power, and with timewindow/antenna switch between LTE Band 41, Antenna B, DSI = 3 (100s window) and LTE Band 48, Antenna I, DSI = 3 (60s window). Following procedure detailed in Section 4.3.6, and using the measurement setup shown in Figure 6-1(b), the time-window switch via tech/band/antenna switch was performed when the EUT is transmitting at $P_{reserve}$ level.

9.4.1 Test case 1: transition from LTE B41 PC3 to LTE B48 (i.e., 100s to 60s), then back to LTE B41 PC3

Test result for change in time-window (from 100s to 60s to 100s):

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed when LTE Band 41 switches to LTE Band 48 (~260 seconds timestamp) and switches back to LTE Band 41 (~330s seconds timestamp):



Plot Notes: As per the manufacturer, *Reserve_power_margin* = 3dB. Based on Table 8-1, EFS P_{limit} = 19.0dBm for LTE Band 41 DSI = 3 (100s window), and EFS P_{limit} = 20.0 dBm (P_{max} = 21.5dBm) for LTE Band 48 DSI = 3 (60s window). The conducted power plot shows expected transitions in Tx power at ~260 seconds (100s-to-60s transition) and at ~330 seconds (60s-to-100s transition) in order to maintain total time-averaged RF exposure compliance across time windows, as show in next plot.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 56 of 00	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 56 of 98	
© 2020 PCTEST					

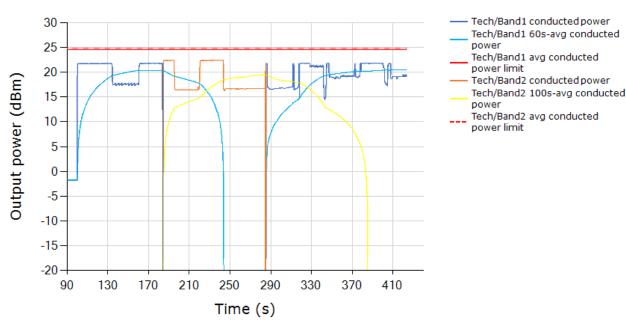
© 2020 PCTEST

Plot 2: All the conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (7a), (7b) and (7c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit. Equation (7a) is used to convert the Tx power of device to obtain 100s-averaged normalized SAR in LTE Band 41 PC3 as shown in black curve. Similarly, equation (7b) is used to obtain 60s-averaged normalized SAR in LTE Band 48 as shown in orange curve. Equation (7c) is used to obtain total time-averaged normalized SAR as shown in green curve (i.e., sum of black and orange curves).

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 41 / Tech: LTE, Band 48

	(W/kg)
FCC normalized total exposure limit	1.0
Max time averaged normalized SAR (green curve)	0.363
Validated	

Plot Notes: Maximum power is requested by callbox for the entire duration of the test, with tech/band switches from 100s-to-60s window at ~260s time stamp, and from 60s-to-100s window at ~330s time stamp. Smart Transmit controls the Tx power during these time-window switches to ensure total time-averaged RF exposure, i.e., sum of black and orange curves given by equation (7c), is always compliant. In time-window switch test, at all times the total time-averaged normalized RF exposure (green curve) should not exceed normalized SAR_design_target + 1dB device uncertainty. In this test, with a maximum normalized SAR of 0.363 being ≤ 0.79 (= 1.0/1.6 + 1dB device uncertainty), the above test result validated the continuity of power limiting in time-window switch scenario.

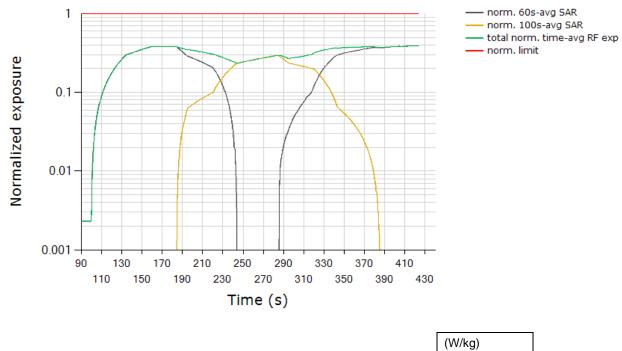

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 57 of 98	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 57 01 96	
© 2020 PCTEST				REV 1.0	

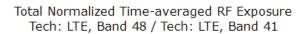
REV 1.0 04/06/2020

9.4.2 Test case 2: transition from LTE B48 to LTE B41 (i.e., 60s to 100s), then back to LTE 48

Test result for change in time-window (from 60s to 100s to 60s):

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed when LTE Band 48 switches to LTE Band 41 (~185 seconds timestamp) and switches back to LTE Band 48 (~285 seconds timestamp):


Conducted Power Tech: LTE, Band 48 / Tech: LTE, Band 41


Note: As per the manufacturer, *Reserve_power_margin* = 3dB. Based on Table 8-1, EFS *Plimit* = 20.0dBm (*Pmax* = 21.5dBm) for LTE Band 48 DSI = 3 (60s window), and EFS *Plimit* = 19.0dBm for LTE Band 41 DSI = 3 (100s window). The conducted power plot shows expected transitions in Tx power at ~185s (60s-to-100s transition) and at ~285s (100s-to-60s transition) in order to maintain total time-averaged RF exposure compliance across time windows, as show in next plot.

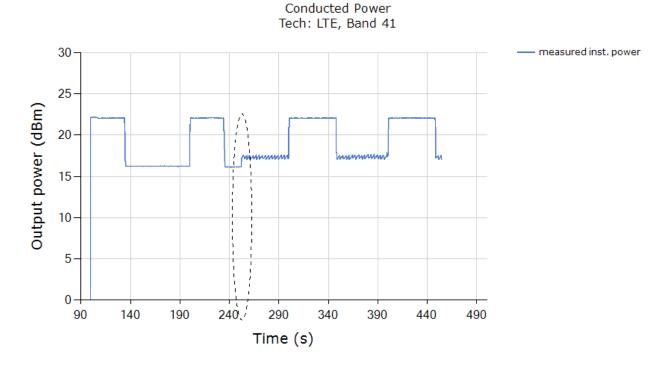
FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 59 of 09	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 58 of 98	
© 2020 PCTEST		·		REV 1.0	

REV 1.0 04/06/2020

Plot 2: All the conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (7a), (7b) and (7c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit. Equation (7a) is used to convert the Tx power of device to obtain 60s-averaged normalized SAR in LTE Band 48 as shown in black curve. Similarly, equation (7b) is used to obtain 100saveraged normalized SAR in LTE Band 41 PC3 as shown in orange curve. Equation (7c) is used to obtain total time-averaged normalized SAR as shown in green curve (i.e., sum of black and orange curves).

	(W/kg)
FCC normalized total exposure limit	1.0
Max time averaged normalized SAR (green curve)	0.387
Validated	

Plot Notes: Maximum power is requested by callbox for the entire duration of the test, with tech/band switches from 60s-to-100s window at ~185 time stamp, and from 100s-to-60s window at ~285s time stamp. Smart Transmit controls the Tx power during these time-window switches to ensure total time-averaged RF exposure, i.e., sum of black and orange curves given by equation (7c), is always compliant. In time-window switch test, at all times the total timeaveraged normalized RF exposure (green curve) should not exceed normalized SAR design target + 1dB device uncertainty. In this test, with a maximum normalized SAR of 0.387 being \leq 0.79 (= 1.0/1.6 + 1dB device uncertainty), the above test result validated the continuity of power limiting in time-window switch scenario.

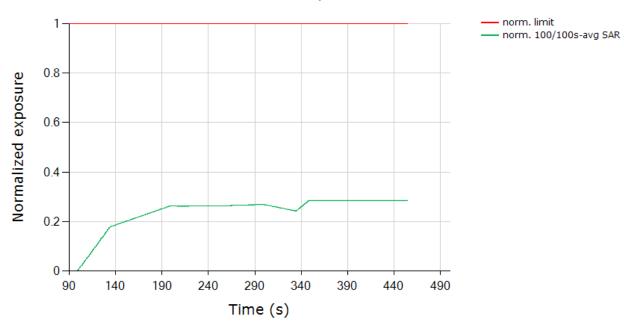

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 59 of 98	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 59 01 96	
© 2020 PCTEST				REV 1.0	

9.5 DSI Switch Test Case

This test was conducted with callbox requesting maximum power, and with DSI switch from LTE Band 41 DSI = 3 (hotspot) to DSI = 1 (grip sensor triggered). Following procedure detailed in Section 4.3.5 using the measurement setup shown in Figure 6-1, the DSI switch was performed when the DUT is transmitting at $P_{reserve}$ level as shown in the plot below (dotted black circle).

Test result for change in DSI:

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed when DSI = 3 switches to DSI = 1:



Note: As per the manufacturer, $Reserve_power_margin = 3dB$. Based on Table 8-1, EFS $P_{limit} = 19.0 dBm$ for LTE Band 41 Hotspot DSI = 3, and EFS $P_{limit} = 20.0 dBm$ for extremity DSI = 1.The difference in $P_{reserve}$ (= $P_{limit} - 3dB Reserve_power_margin$) level corresponds to the expected different in P_{limit} levels of 1.0 dB (within 1dB of sub6 radio design related uncertainty). Therefore, the conducted power plot shows expected transition in Tx power.

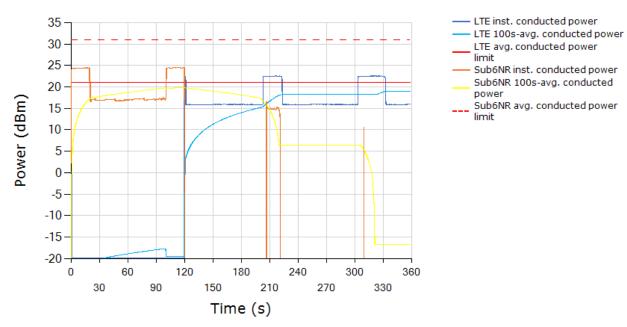
FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 60 af 09	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 60 of 98	
© 2020 PCTEST				REV 1.0	

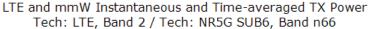
REV 1.0 04/06/2020

Plot 2: All the time-averaged conducted Tx power measurement results were converted into timeaveraged normalized SAR values using Equation (6a), (6b) and (6c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit.

Total Normalized Time-averaged	RF Exposure
Tech: LTE, Band 41	

	(W/kg)
FCC normalized total exposure limit	1.0
Max 100s-time averaged normalized SAR (green curve)	0.285
Validated	

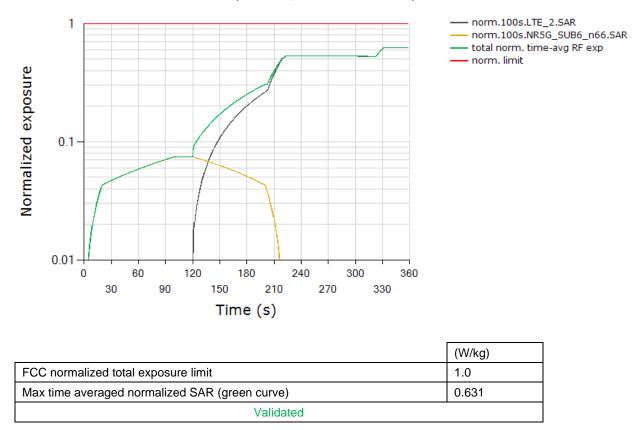

The test result validated the continuity of power limiting in DSI switch scenario.


FCC ID: A3LSMG998U	Proved to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT		Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 61 of 08	
1M2009230152-23-R1.	A3L 11/05/2020-12/10/2020	Portable Handset		Page 61 of 98	
© 2020 PCTEST				REV 1.0	

REV 1.0 04/06/2020

9.6 Switch in SAR exposure test results

This test was conducted with callbox requesting maximum power, and with the EUT in LTE Band 2 + Sub6 NR Band n66 call. Following procedure detailed in Section 4.3.7 and Appendix F.2, and using the measurement setup shown in Figure 6-1(c) since LTE and Sub6 NR are sharing the same antenna port, the SAR exposure switch measurement is performed with the EUT in various SAR exposure scenarios, i.e., in SAR_{sub6NR} only scenario (t =0s ~120s), SAR_{su6NR} + SAR_{LTE} scenario (t =120s ~ 210s) and SAR_{LTE} only scenario (t > 210s).



Plot Notes: All the conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (7a), (7b) and (7c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit. Equation (7a) is used to convert the LTE Tx power of device to obtain 100s-averaged normalized SAR in LTE Band 2 as shown in black curve. Similarly, equation (7b) is used to obtain 100s-averaged normalized SAR in Sub6 NR n66 as shown in orange curve. Equation (7c) is used to obtain total time-averaged normalized SAR as shown in green curve (i.e., sum of black and orange curves).

FCC ID: A3LSM	G998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:		Test Dates:	DUT Type:			
1M2009230152-2	23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 62 of 98	
© 2020 PCTEST					REV 1.0	

REV 1.0 04/06/2020

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G SUB6, Band n66

<u>Plot Notes:</u> Device starts predominantly in Sub6 NR SAR exposure scenario between 0s and 120s, and in LTE SAR + Sub6 NR SAR exposure scenario between 120s and 210s, and in predominantly in LTE SAR exposure scenario after t=210s. Here, Smart Transmit allocates a maximum of 100% of exposure margin (based on 3dB reserve margin setting) for Sub6 NR. This corresponds to a normalized 1gSAR exposure value = 100% * 0.123 W/kg measured SAR at Sub6 NR *Plimit* / 1.6W/kg limit = 0.077 ± 1dB device related uncertainty (see orange curve between 0s~120s). For predominantly LTE SAR exposure scenario, maximum normalized 1gSAR exposure should correspond to 100% exposure margin = 1.01 W/kg measured SAR at LTE *Plimit* / 1.6W/kg limit = 0.631 ± 1dB device related uncertainty (see black curve after t = 210s). Additionally, in SAR exposure switch test, at all times the total time-averaged normalized RF exposure (green curve) should not exceed normalized SAR_design_target + 1dB device uncertainty. In this test, with a maximum normalized SAR of 0.631 being ≤ 0.79 (= 1.0/1.6 + 1dB device uncertainty), the above test result validated the continuity of power limiting in SAR exposure switch scenario.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 63 of 98	
© 2020 PCTEST				REV 1.0	

REV 1.0 04/06/2020

10 SYSTEM VERIFICATION (FREQ < 6 GHZ)

Tissue Verification 10.1

	Measured Tissue Properties								
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			3350	2.688	37.404	2.759	38.1	-2.57%	-1.83%
			3450	2.78	37.219	2.861	37.986	-2.83%	-2.02%
			3500	2.821	37.116	2.913	37.929	-3.16%	-2.14%
			3550	2.871	37.025	2.964	37.871	-3.14%	-2.23%
			3560	2.88	37.011	2.974	37.86	-3.16%	-2.24%
			3600	2.915	36.934	3.015	37.814	-3.32%	-2.33%
11/09/2020	3700 Head	21.8	3650	2.961	36.854	3.066	37.757	-3.42%	-2.39%
			3690	3.001	36.763	3.107	37.711	-3.41%	-2.51%
			3700	3.011	36.752	3.117	37.7	-3.40%	-2.51%
			3750	3.054	36.677	3.169	37.643	-3.63%	-2.57%
			3900	3.201	36.405	3.323	37.471	-3.67%	-2.84%
			3930	3.231	36.346	3.353	37.437	-3.64%	-2.91%
			4150	3.456	35.966	3.579	37.186	-3.44%	-3.28%
			1710	1.42	55.434	1.463	53.537	-2.94%	3.54%
			1720	1.427	55.428	1.469	53.511	-2.86%	3.58%
12/01/2020	1750 D - du	21.0	1745	1.446	55.379	1.485	53.445	-2.63%	3.62%
12/01/2020	1750 Body	21.0	1750	1.45	55.365	1.488	53.432	-2.55%	3.62%
			1770	1.465	55.32	1.501	53.379	-2.40%	3.64%
			1790	1.482	55.29	1.514	53.326	-2.11%	3.68%
			1850	1.551	52.677	1.52	53.3	2.04%	-1.17%
		10 Body 21.9	1860	1.558	52.664	1.52	53.3	2.50%	-1.19%
			1880	1.573	52.645	1.52	53.3	3.49%	-1.23%
11/09/2020	1900 Body		1900	1.588	52.632	1.52	53.3	4.47%	-1.25%
			1905	1.592	52.626	1.52	53.3	4.74%	-1.26%
			1910	1.595	52.619	1.52	53.3	4.93%	-1.28%
			1850	1.527	55.195	1.52	53.3	0.46%	3.56%
			1860	1.534	55.174	1.52	53.3	0.92%	3.52%
10/01/0000			1880	1.55	55.134	1.52	53.3	1.97%	3.44%
12/01/2020	1900 Body	21.0	1900	1.565	55.106	1.52	53.3	2.96%	3.39%
			1905	1.569	55.102	1.52	53.3	3.22%	3.38%
			1910	1.573	55.099	1.52	53.3	3.49%	3.38%
			2300	1.894	54.586	1.809	52.9	4.70%	3.19%
			2310	1.905	54.577	1.816	52.887	4.90%	3.20%
12/01/2020	2300 Body	21.0	2320	1.916	54.569	1.826	52.873	4.93%	3.21%
	,		2400	1.992	54.445	1.902	52.767	4.73%	3.18%
			2450	2.044	54.363	1.95	52.7	4.82%	3.16%
			2480	2.029	50.475	1.993	52.662	1.81%	-4.15%
			2500	2.05	50.421	2.021	52.636	1.43%	-4.21%
			2510	2.061	50.388	2.035	52.623	1.28%	-4.25%
			2535	2.091	50.306	2.071	52.592	0.97%	-4.35%
			2550	2.11	50.268	2.092	52.573	0.86%	-4.38%
11/16/2020	2600 Body	22.5	2550	2.112	50.248	2.106	52.56	0.76%	-4.40%
			2600	2.163	50.145	2.163	52.509	0.00%	-4.50%
			2650	2.224	49.982	2.234	52.445	-0.45%	-4.70%
			2680	2.257	49.909	2.277	52.407	-0.88%	-4.77%

Table 10-1 Tissua Proportios

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 64 of 09	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 64 of 98	
© 2020 PCTEST					

© 2020 PCTEST

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix C.

	System Verification Results – 1g											
	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input	Source SN		Measured SAR1g (W/kg)	1 W Target SAR1g (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)
М	3700	HEAD	11/9/2020	22.4	21.8	0.100	1067	7526	6.210	67.200	62.100	-7.59%
Ν	1750	BODY	12/1/2020	21.4	21.0	0.100	1150	7527	3.480	36.600	34.800	-4.92%
М	1900	BODY	11/9/2020	22.4	21.9	0.100	5d148	7526	4.010	39.100	40.100	2.56%
Ν	1900	BODY	12/1/2020	21.4	21.0	0.100	5d149	7527	4.050	39.400	40.500	2.79%

Table 10-2

Table 10-3 System Verification Results - 10g

	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR10g (W/kg)	1 W Target SAR ^{10g} (W/kg)	1 W Normalized SAR ¹⁰ g (W/kg)	Deviation _{10g} (%)
N	2300	BODY	12/1/2020	21.4	21.0	0.100	1073	7527	2.110	23.200	21.100	-9.05%
М	2600	BODY	11/16/2020	20.8	22.5	0.100	1064	7526	2.410	25.000	24.100	-3.60%

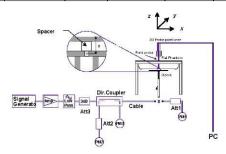


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	st Dates: DUT Type:		Dage (5 of 08	
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 65 of 98	
2202 PCTEST REV 1.0					

© 2020 PCTEST

11 SAR TEST RESULTS (FREQ < 6 GHZ)

Time-varying Tx Power Case 11.1

Following Section 4.4 procedure, time-averaged SAR measurements are conducted using a SAR probe at peak location of area scan over 500 seconds. cDASY6 system verification for SAR measurement is provided in Section 10, and the associated SPEAG certificates are attached in Appendix G.

SAR probe integration times depend on the communication signal being tested as defined in the probe calibration parameters.

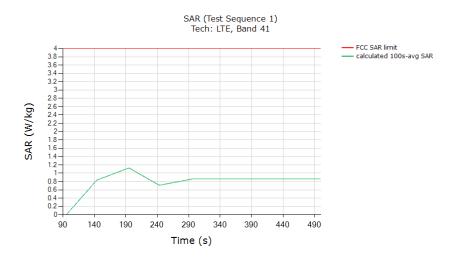
Since the sampling rate used by cDASY6 for pointSAR measurements is not in user control, the number of points in 100s interval is determined from the scan duration setting in cDASY6 timeaverage pointSAR measurement by (100s cDASY6_scan_duration * total number of pointSAR values recorded). Running average is performed over these number of points in excel spreadsheet to obtain 100s averaged point SAR.

Following Section 4.4, for each of selected technology/band (listed in Table 8-2):

- 7. With Reserve_power_margin set to 0 dB, area scan is performed at Plimit, and time-averaged pointSAR measurements are conducted to determine the pointSAR at P_{limit} at peak location, denoted as *point*SAR_{Plimit}.
- 8. With Reserve power margin set to actual (intended) value, two more time-averaged pointSAR measurements are performed at the same peak location for test sequences 1 and 2.

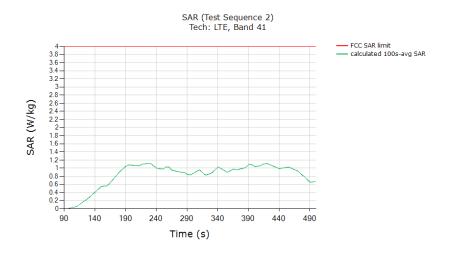
To demonstrate compliance, all the pointSAR measurement results were converted into 1gSAR or 10gSAR values by using Equation (3a), rewritten below:

$$1g_{or}_{10gSAR(t)} = \frac{pointSAR(t)}{pointSAR_{P_{limit}}} * 1g_{or}_{10gSAR_{P_{limit}}}$$
(3a)


where, pointSAR(t), $pointSAR_{limit}$, and $1g_{or}_{10}gSAR_{limit}$ correspond to the measured instantaneous point SAR, measured point SAR at Plimit from above step 1 and 2, and measured 1gSAR or 10gSAR values at Plimit obtained from Part 1 report and listed in Table 8-2 of this report.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 66 of 98	
© 2020 PCTEST					

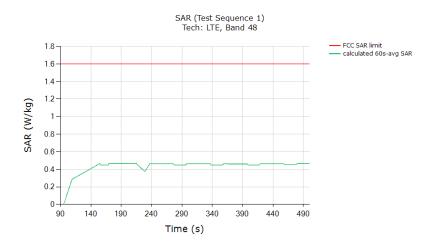
^{© 2020} PCTEST


11.1.1 LTE Band 41 PC3

SAR test results for test sequence 1:

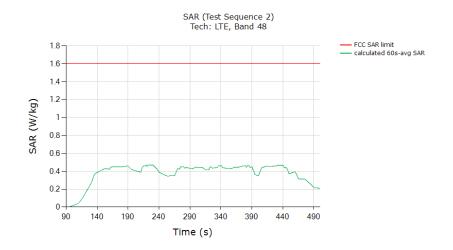
	(W/kg)			
FCC 10gSAR limit	4.0			
Max 100s-time averaged point 10gSAR (green curve)	1.124			
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 8-2).				

SAR test results for test sequence 2:


	(W/kg)			
FCC 10gSAR limit	4.0			
Max 100s-time averaged 10gSAR (green curve)	1.114			
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of meas SAR at <i>Plimit</i> (last column in Table 8-2).				

	FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	Dates: DUT Type:		Dage 67 of 08
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 67 of 98
© 2020 PCTEST					

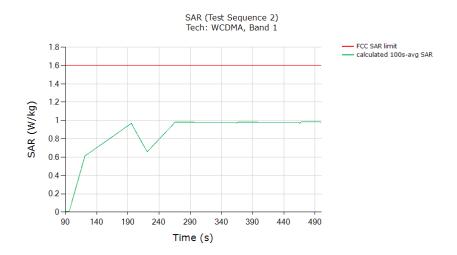
© 2020 PCTEST


11.1.2 LTE Band 48

SAR test results for test sequence 1:

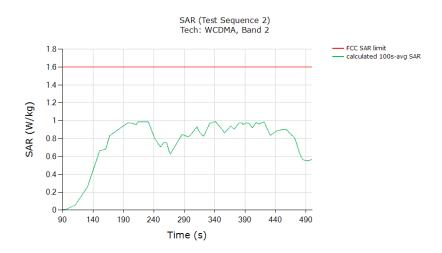
	(W/kg)			
FCC 1gSAR limit	1.6			
Max 60s-time averaged point 1gSAR (green curve)	0.469			
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 8-2).				

SAR test results for test sequence 2:


	(W/kg)			
FCC 1gSAR limit	1.6			
Max 60s-time averaged 1gSAR (green curve)	0.468			
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 8-2).				

	FCC ID: A3LSMG998U	PCTEST [®] Proud to be part of [®] element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates: DUT Type:			Dage CR of OR	
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 68 of 98	
C	2020 PCTEST REV 1.0					

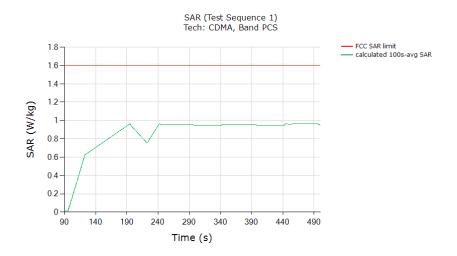
© 2020 PCTEST


11.1.3 UMTS B2

SAR test results for test sequence 1:

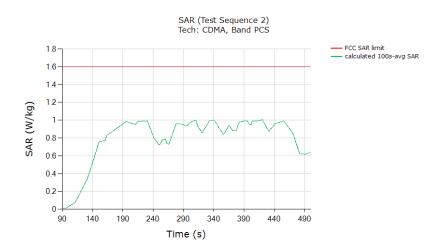
	(W/kg)			
FCC 1gSAR limit	1.6			
Max 100s-time averaged point 1gSAR (green curve)	0.985			
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>Plimit</i> (last column in Table 8-2).				

SAR test results for test sequence 2:


	(W/kg)	
FCC 1gSAR limit	1.6	
Max 100s-time averaged 1gSAR (green curve) 0.989		
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	ity of measured	

	FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 60 of 08
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 69 of 98
0	2020 PCTEST				REV 1.0

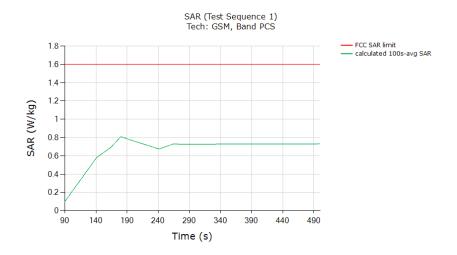
© 2020 PCTEST


11.1.4 **CDMA/EVDO BC1**

SAR test results for test sequence 1:

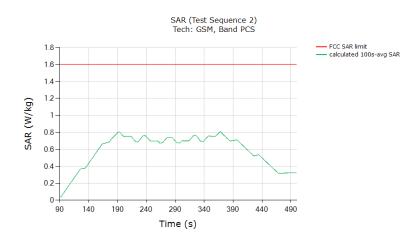
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	0.964
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 8-2).	ty of measured

SAR test results for test sequence 2:


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.005
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 8-2).	nty of measured

	FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dege 70 of 00
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 70 of 98
0	2020 PCTEST				REV 1.0

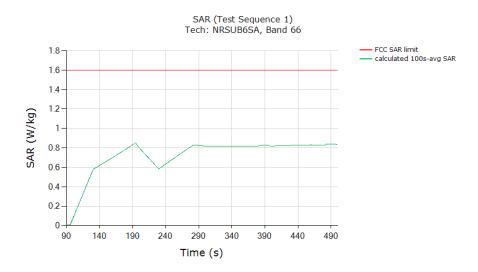
© 2020 PCTEST


11.1.5 GSM/GPRS/EDGE 1900

SAR test results for test sequence 1:

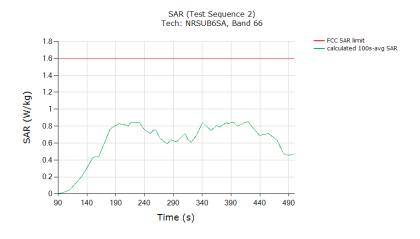
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	0.810
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measure SAR at <i>P</i> _{limit} (last column in Table 8-2).	

SAR test results for test sequence 2:


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.808
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of meas SAR at <i>Plimit</i> (last column in Table 8-2).	

	FCC ID: A3LSMG998U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 71 of 00
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 71 of 98
(2020 PCTEST				REV 1.0

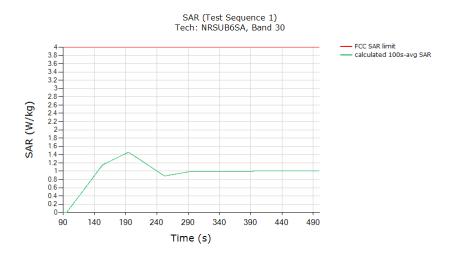
REV 1.0 04/06/2020


11.1.6 **NR n66**

SAR test results for test sequence 1:

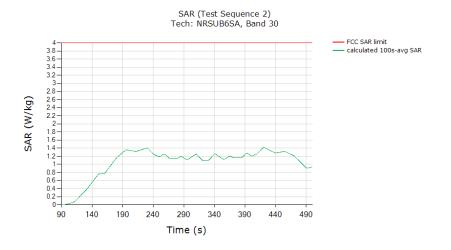
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	0.850
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 100% 3dB <i>Reserve_power_margin</i> setting) of the measured SAR at <i>Plimit</i> (last column in Table	

SAR test results for test sequence 2:


	(W/kg)	
FCC 1gSAR limit	1.6	
Max 100s-time averaged 1gSAR (green curve)	0.851	
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 100 3dB Reserve_power_margin setting) of the measured SAR at <i>Plimit</i> (last column in Table		

	FCC ID: A3LSMG998U	PCTEST [®] Proud to be part of [®] element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 72 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 72 01 96
C	2020 PCTEST				REV 1.0

© 2020 PCTEST


11.1.7 **NR n30**

SAR test results for test sequence 1:

	(W/kg)			
FCC 10gSAR limit	4.0			
Max 100s-time averaged point 10gSAR (green curve)	1.458			
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 100% (with 3dB <i>Reserve_power_margin</i> setting) of the measured SAR at <i>Plimit</i> (last column in Table 8-2).				

SAR test results for test sequence 2:

	(W/kg)			
FCC 10gSAR limit	4.0			
Max 100s-time averaged 10gSAR (green curve)	1.419			
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 100% (with 3dB <i>Reserve_power_margin</i> setting) of the measured SAR at <i>Plimit</i> (last column in Table 8-2).				

	FCC ID: A3LSMG998U	PCTEST [®] Proud to be part of ® element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 73 of 98
	1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 73 01 96
0	2020 PCTEST				REV 1.0

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

12 TEST CONFIGURATIONS (FREQ > 6 GHZ)

12.1 LTE + mmW NR transmission

Based on the selection criteria described in Section 4.2, the selections for LTE and mmW NR validation test are listed in Table 12-1. The radio configurations used in this test are listed in Table 12-2.

Table 12-1				
Selections for LTE + mmW NR validation measurements				

Transmsion Scenario	Test	Technology and Band	mmWave Beam
Time verying Ty power test	1. Cond. & Rad. Power meas.	LTE Band 2 and n261	Beam ID 16
Time-varying Tx power test	2. PD meas.	LTE Band 2 and n260	Beam ID 29
Switch in SAR vs. PD	1. Cond. & Rad. Power meas.	LTE Band 2 and n261	Beam ID 16
Switch in SAR VS. PD	1. Cond. & Rad. Power meas.	LTE Band 2 and n260	Beam ID 29
Deem quitch test	1 Cond 8 Dod Dower mooo	LTE Band 2 and n261	Beam ID 16 to Beam ID 2
Beam switch test	1. Cond. & Rad. Power meas.	LTE Band 2 and n260	Beam ID 29 to Beam ID 2

 Table 12-2

 Test configuration for LTE + mmW NR validation

Tech	Band	Antenna	DSI	Channel	Freq (MHz)	RB/RB Offset/Bandwidth (MHz)	Mode	UL Duty Cycle
LTE	2	A	3	18900	1880	1/0/20 MHz BW	QPSK	100%
mmW NR	n261	L	-	2071821	27559.32	66/0/100 MHz BW	CP-OFDM, QPSK	75.6%*
	n260	L	-	2254147	38498.88	66/0/100 MHz BW	CP-OFDM, QPSK	75.6%*

12.2 mmW NR radiated power test results

To demonstrate the compliance, the conducted Tx power of LTE 2 in DSI = 3 is converted to 1gSAR exposure by applying the corresponding worst-case 1g SAR value at P_{limit} as reported in Part 1 report and listed in Table 8-2 of this report.

Similarly, following Step 4 in Section 5.3.1, radiated Tx power of mmW Band n261 and n260 for the beams tested is converted by applying the corresponding measured worst-case 4cm²PD values, and listed in below Table 12-3. Qualcomm Smart Transmit feature operates based on time-averaged Tx power reported on a per symbol basis, which is independent of modulation, channel and bandwidth (RBs), therefore the worst-case 4cm²PD was conducted with the EUT in FTM mode, with CW modulation and 100% duty cycle. cDASY6 system verification for power density measurement is provided in Section 14, and the associated SPEAG certificates are attached in Appendix G.

Both the worst-case 1gSAR and 4cm²PD values used in this section are listed in Table 12-3. The measured EIRP at *input.power.limit* for the beams tested in this section are also listed in Table 12-3.

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 74 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 74 of 98
© 2020 PCTEST				DEV/1(

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Table 12-3 Worst-case 1gSAR, 4cm² avg. PD and EIRP measured at *input.power.limit* for the selected configurations

Tech	Band	Ante	nna	Beam ID	input.pov	ver.			red psPD at power.limit Test Position		Measured EIRP at input.power.limit (dBm)	
Tech	Band	Ante	iiia	Deamin	limit (dB	m)	4cm ² psP (W/m ²)	D				
mmW NR	n261	L	-	16	0.8		6.06		back		13.04	
	11201	L	-	2	8		5.93		back		10.66	
mmW NR	n260	L	-	29	3.9		4.31		right edge		9.27	
	1260	L		2	8.5*		4.31		right edge		8.06	
Tech	Ba	ad	And	tenna	DSI	N	leasured		Measured 1g SAR at Plimit		AR at Plimit	
rech	Da	u	An	lenna	031	Pli	Plimit (dBm) 1		SAR (W/kg)		Test Position	
LTE	2	2		A	3		17.71		1.01		bottom	

*The input.power.limit for n260 beam 2 is 9.7 dBm. However, the maximum input power of this device for n261 CP-OFDM modulation is 8.5dBm, thus, the input.power.limit was adjusted to 8.5 dBm in the static PD measurement via FTM for n260 beam 2 to obtain the maximum PD exposure for CP-OFDM modulation.

The 4cm² psPD distributions for the highest PD value per band, as listed in Table 12-3, are plotted below.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 75 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 75 of 98
© 2020 PCTEST		·		REV 1.0

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Figure 12-1 4cm² psPD distribution measured at *input.power.limit* of 0.8 dBm on the back surface for n261 beam 16

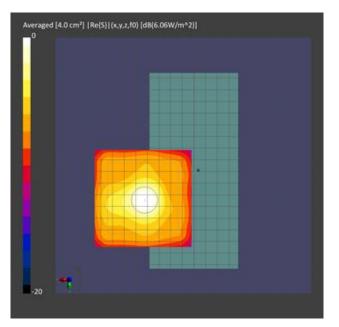
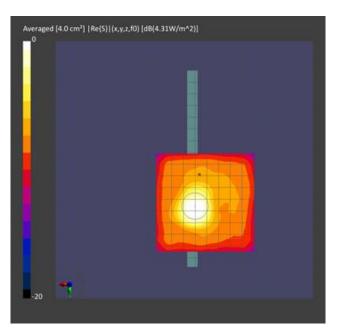
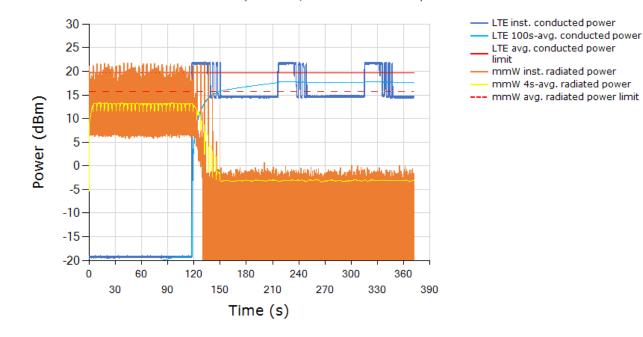



Figure 12-2 4cm² psPD distribution measured at *input.power.limit* of 3.9 dBm on the right edge for n260 beam 29

FCC ID: A3LSMG998U	Proud to be part of (® element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 76 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 76 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

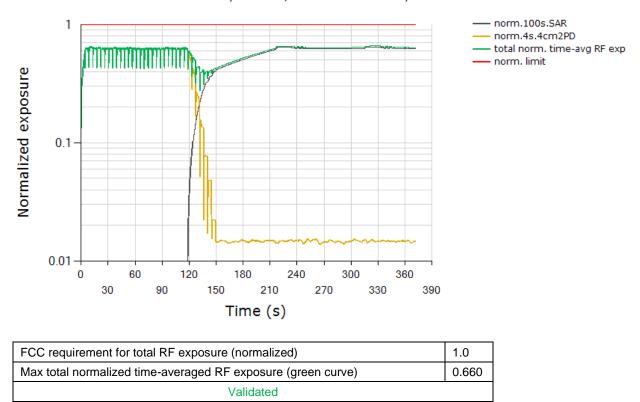

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

13 RADIATED POWER TX CASES (FREQ > 6 GHZ)

13.1 Maximum Tx power test results for n261

This test was measured with LTE Band 2 and mmW Band n261 Beam ID 16, by following the detailed test procedure described in Section 5.3.1.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:


LTE and mmW Instantaneous and Time-averaged TX Power Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

Above time-averaged conducted Tx power for LTE 2 and radiated Tx power for mmW NR n261 beam 16 are converted into time-averaged 1gSAR and time-averaged 4cm²PD using Equation (2a) and (2b), which are divided by FCC 1gSAR limit of 1.6 W/kg and 4cm²PD limit of 10 W/m², respectively, to obtain normalized exposures versus time. Below plot shows (a) normalized time-averaged 1gSAR versus time, (b) normalized time-averaged 4cm²-avg.PD versus time, (c) sum of normalized time-averaged 1gSAR and normalized time-averaged 4cm²-avg.PD:

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 77 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 77 of 98
© 2020 PCTEST		·		REV 1.0

REV 1.0 04/06/2020

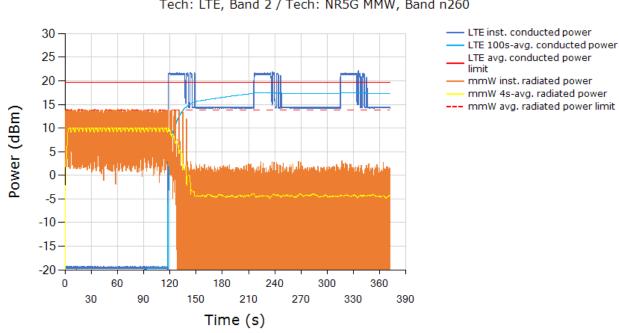
© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

Plot notes: As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on the 3dB reserve setting in Part 1 report). From Table 12-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 16 of $(100\% * 6.06 \text{ W/m}^2)/(10 \text{ W/m}^2) = 60.6\% \pm 2.1 \text{ dB}$ device related uncertainty (see green/orange curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually. Towards the end of test, LTE is the dominant contributor towards RF exposure, i.e., corresponding normalized 1gSAR exposure value of $(100\% * 1.01 W/kg)/(1.6 W/kg) = 63.1\% \pm 1dB$ design related uncertainty (see black curve approaching this level towards end of the test).

As can be seen, the power limiting enforcement is effective and the total normalized timeaveraged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 78 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 70 01 90
© 2020 PCTEST	·	·		REV 1.0

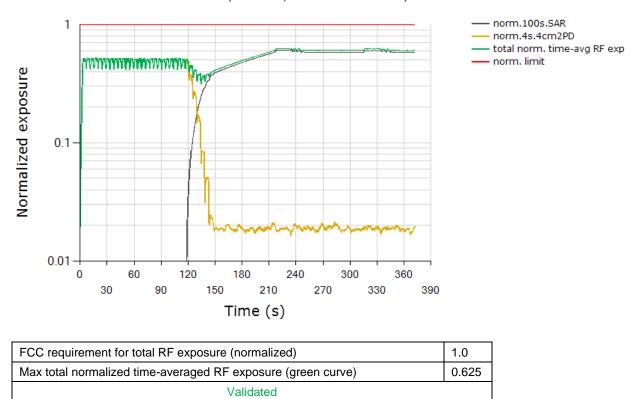

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

13.2 Maximum Tx power test results for n260

This test was measured with LTE Band 2 and mmW Band n260 Beam ID 29, by following the detailed test procedure described in Section 5.3.1.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:


LTE and mmW Instantaneous and Time-averaged TX Power Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260

Above time-averaged conducted Tx power for LTE 2 and radiated Tx power for mmW NR n260 beam 29 are converted into time-averaged 1gSAR and time-averaged 4cm²PD using Equation (2a) and (2b), which are divided by FCC 1gSAR limit of 1.6 W/kg and 4cm²PD limit of 10 W/m², respectively, to obtain normalized exposures versus time. Below plot shows (a) normalized time-averaged 1gSAR versus time, (b) normalized time-averaged 4cm2-avg.PD versus time, (c) sum of normalized time-averaged 1gSAR and normalized time-averaged 4cm²-avg.PD:

FCC ID: A3LSMG998U	Poud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dogo 70 of 08		
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 79 of 98		
© 2020 PCTEST						

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopy microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of c /ing and mbly of contents thereof, please contact INFO@PCTEST.COM

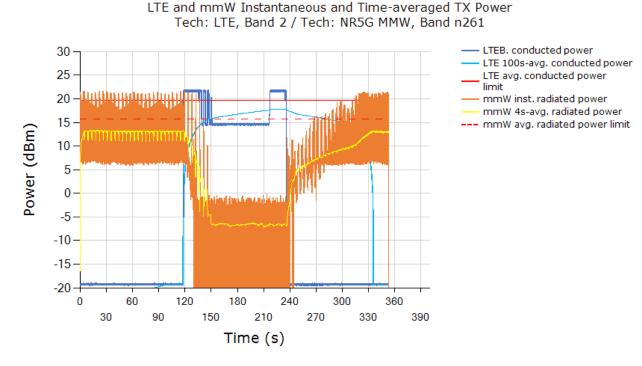
Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260

<u>Plot notes:</u> As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on the 3dB reserve setting in Part 1 report). From Table 12-3, this corresponds to a normalized $4\text{cm}^2\text{PD}$ exposure value for Beam ID 29 of $(100\% * 4.31 \text{ W/m}^2)/(10 \text{ W/m}^2) = 43.1\% \pm 2.1\text{dB}$ device related uncertainty (see green/orange curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually. Towards the end of test, LTE is the dominant contributor towards RF exposure, i.e., corresponding normalized 1gSAR exposure value of $(100\% * 1.01 \text{ W/kg})/(1.6 \text{ W/kg}) = 63.1\% \pm 1\text{dB}$ design related uncertainty (see black curve approaching this level towards end of the test).

As can be seen, the power limiting enforcement is effective and the total normalized timeaveraged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	Test Dates: DUT Type:		Daga 80 of 09
1M2009230152-23-R1.A3L	-R1.A3L 11/05/2020-12/10/2020 Portable Handset			Page 80 of 98
@ 2020 DCTEST				DEV/1/

© 2020 PCTEST

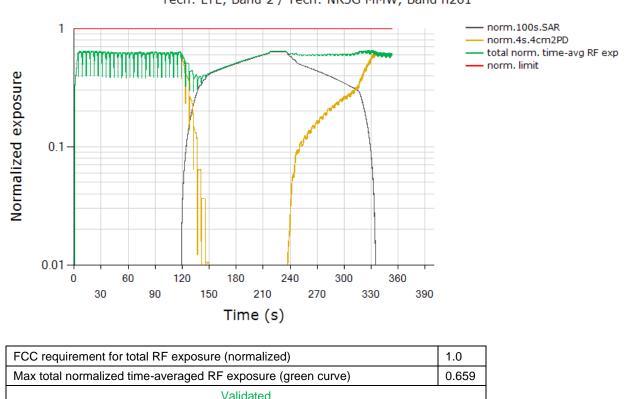

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 1.0 04/06/2020

13.3 Switch in SAR vs. PD exposure test results for n261

This test was measured with LTE Band 2 (DSI =3) and mmW Band n261 Beam ID 16, by following the detailed test procedure is described in Section 5.3.2.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:


From the above plot, it is predominantly instantaneous PD exposure between $0s \sim 120s$, it is instantaneous SAR+PD exposure between 120s ~ 140s, it is predominantly instantaneous SAR exposure between 140s ~ 240s, and above 240s, it is predominantly instantaneous PD exposure.

Normalized time-averaged exposures for LTE (1gSAR) and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 81 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage of 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

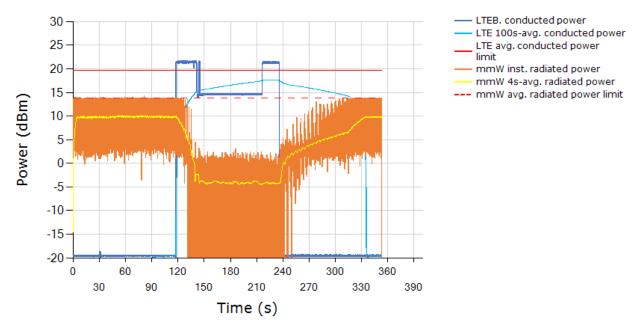
04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopy microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of c thereof, please contact INFO@PCTEST.COM. /ing and mbly of contents

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

Plot notes: As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on 3dB reserve setting in Part 1 report). From Table 12-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 16 of (100% * 6.06 W/m²)/(10 W/m²) = 60.6% ± 2.1dB device related uncertainty (see orange/green curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually (orange curve for mmW exposure goes down while black curve for LTE exposure goes up). At ~240s time mark, LTE is set to all-down bits, which results in mmW getting back RF margin slowly as seen by gradual increase in mmW exposure (orange curve for mmW exposure goes up while black curve for LTE exposure goes down). The calculated maximum RF exposure from LTE corresponds to normalized 1gSAR exposure value of $(100\% \times 1.01 \text{ W/kg})/(1.6 \text{ W/kg}) = 63.1\% \pm 1 \text{ dB}$ design related uncertainty (note that this level will be achieved by green and black curves if LTE remains in all-up bits for longer time duration which was already demonstrated in maximum Tx power test in Section 13.1). Total normalized time-averaged exposure (green curve) for this test should be within the calculated range between 60.6% ± 2.1dB device related uncertainty (only PD exposure) and 63.1% ± 1dB design related uncertainty (only SAR exposure).

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 82 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST


04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopy microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of c ring and mbly of contents hereof, please contact INFO@PCTEST.COM

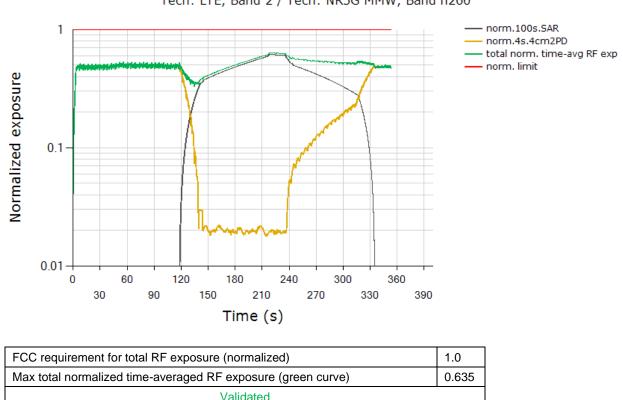
As can be seen, the power limiting enforcement is effective during transmission when SAR and PD exposures are switched, and the total normalized time-averaged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

13.4 Switch in SAR vs. PD exposure test results for n260

This test was measured with LTE Band 2 (DSI =3) and mmW Band n260 Beam ID 29, by following the detailed test procedure is described in Section 5.3.2.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:

LTE and mmW Instantaneous and Time-averaged TX Power Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260


From the above plot, it is predominantly instantaneous PD exposure between $0s \sim 120s$, it is instantaneous SAR+PD exposure between 120s ~ 140s, it is predominantly instantaneous SAR exposure between 140s ~ 240s, and above 240s, it is predominantly instantaneous PD exposure

Normalized time-averaged exposures for LTE (1gSAR) and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Page 83 of 98		
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 03 01 90		
© 2020 PCTEST						

© 2020 PCTEST

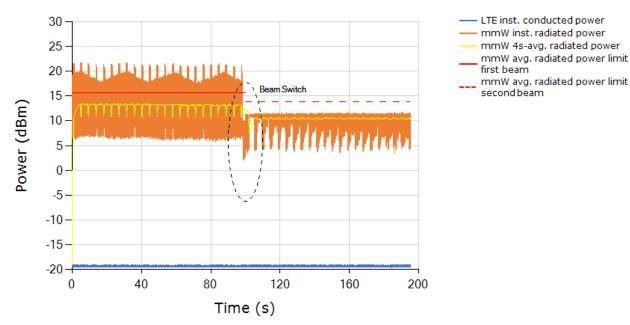
04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photoc microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of ring and mbly of contents thereof, please contact INFO@PCTEST.COM

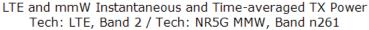
Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260

Plot notes: As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on 3dB reserve setting in Part 1 report). From Table 12-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 29 of (100% * 4.31 W/m²)/(10 W/m²) = 43.1% ± 2.1dB device related uncertainty (see orange/green curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually (orange curve for mmW exposure goes down while black curve for LTE exposure goes up). At ~240s time mark, LTE is set to all-down bits, which results in mmW getting back RF margin slowly as seen by gradual increase in mmW exposure (orange curve for mmW exposure goes up while black curve for LTE exposure goes down). The calculated maximum RF exposure from LTE corresponds to normalized 1gSAR exposure value of $(100\% \times 1.01 \text{ W/kg})/(1.6 \text{ W/kg}) = 63.1\% \pm 1 \text{ dB}$ design related uncertainty (note that this level will be achieved by green and black curves if LTE remains in all-up bits for longer time duration which was already demonstrated in maximum Tx power test in Section 13.1). Total normalized time-averaged exposure (green curve) for this test should be within the calculated range between 43.1% ± 2.1dB device related uncertainty (only PD exposure) and 63.1% ± 1dB design related uncertainty (only SAR exposure).

FCC ID:	A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Docume	nt S/N:	Test Dates:	DUT Type:		Page 84 of 98
1M20092	30152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		
© 2020 PCTI	EST				REV 1.0

REV 1.0 04/06/2020

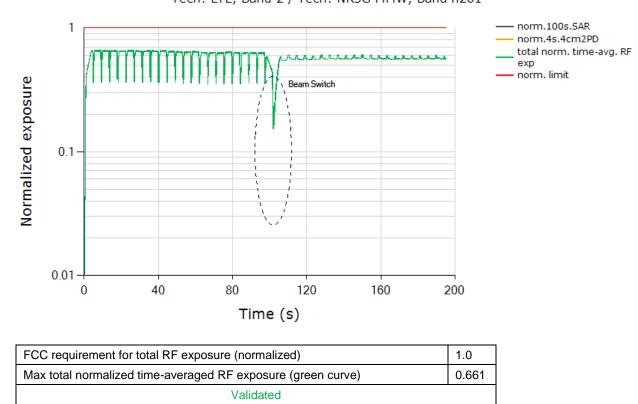

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INPO@PCTEST.COM.


As can be seen, the power limiting enforcement is effective during transmission when SAR and PD exposures are switched, and the total normalized time-averaged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

13.5 Change in Beam test results for n261

This test was measured with LTE Band 2 (DSI = 3) and mmW Band n261, with beam switch from Beam ID 16 to Beam ID 2, by following the test procedure is described in Section 5.3.3.

Instantaneous conducted LTE Tx power versus time, instantaneous and 4s-averaged radiated mmW Tx power versus time, time-averaged radiated mmW Tx power limits for beam 16 and beam 2:



FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 95 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 85 of 98
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

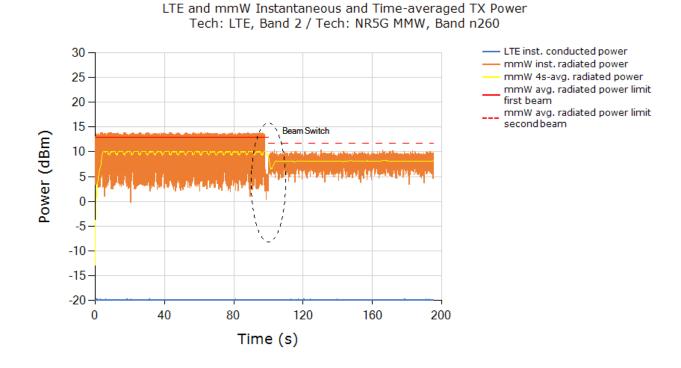
© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INPO@PCTEST.COM.

Normalized time-averaged exposures for LTE and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

Plot notes: 5G mmW NR call was established at ~1s time mark and LTE was placed in all-down bits immediately after 5G mmW NR call was established. For the rest of this test, mmW exposure is the dominant contributor as LTE is left in all-down bits. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on 3dB reserve setting in Part 1 report). From Table 12-3, exposure between 1s ~100s corresponds to a normalized 4cm²PD exposure value for Beam ID 16 of (100% * 6.06 W/m²)/(10 W/m^2) = 60.6% ± 2.1dB device related uncertainty. At ~100s time mark (shown in black dotted ellipse), beam was switched to Beam ID 2. From Table 12-3, exposure between 100s ~200s corresponds to a normalized 4cm²PD exposure value for Beam ID 2 of (100% * 5.93 W/m²)/(10 W/m²) = 59.3% ± 2.1dB device related uncertainty. Additionally, during the switch, the ratio between the averaged radiated powers of the two beams (vellow curve) should correspond to the difference in EIRPs measured at each corresponding input.power.limit for these beams listed in Table 12-3, i.e., 2.4 dB ± 2.1dB device uncertainty.

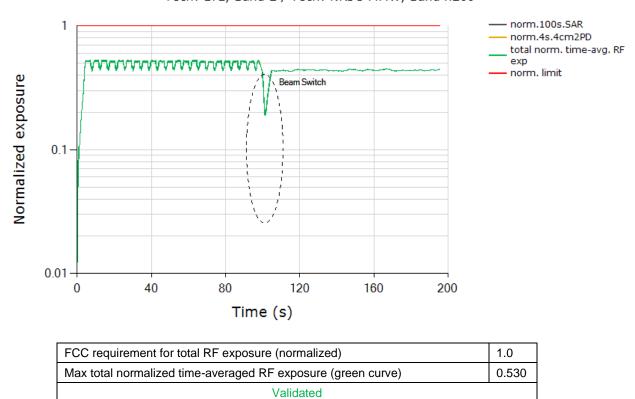
FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 86 at 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 86 of 98
© 2020 PCTEST		·		REV 1.0


© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photoc microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of ring and mbly of contents thereof, please contact INFO@PCTEST.COM

13.6 Change in Beam test results for n260

This test was measured with LTE Band 2 (DSI = 3) and mmW Band n260, with beam switch from Beam ID 29 to Beam ID 2, by following the test procedure is described in Section 5.3.3.


Instantaneous conducted LTE Tx power versus time, instantaneous and 4s-averaged radiated mmW Tx power versus time, time-averaged radiated mmW Tx power limits for beam 29 and beam 2:

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 87 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	020 Portable Handset		Fage of 01 90
© 2020 PCTEST				REV 1.0

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTEST.COM.

Normalized time-averaged exposures for LTE and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

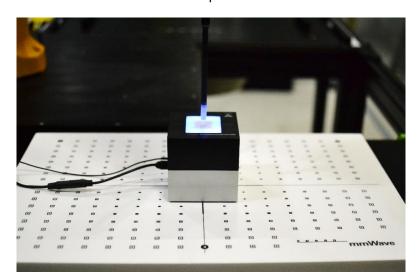
Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260

Plot notes: 5G mmW NR call was established at ~1s time mark and LTE was placed in all-down bits immediately after 5G mmW NR call was established. For the rest of this test, mmW exposure is the dominant contributor as LTE is left in all-down bits. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on 3dB reserve setting in Part 1 report). From Table 12-3, exposure between 1s ~100s corresponds to a normalized 4cm²PD exposure value for Beam ID 29 of (100% * 4.31 W/m²)/(10 W/m²) = 43.1% ± 2.1dB device related uncertainty. At ~100s time mark (shown in black dotted ellipse), beam was switched to Beam ID 2. Note that the input power.limit for Beam ID 2 is 9.7 dBm, however the maximum input power for n260 CP-OFDM modulation is capped at 8.5dBm, therefore, there is no power limiting required when in n260 Beam ID 2, resulting in flat line in power plot for instantaneous radiated power after switch. Note that at 8.5dBm max power, it is 1.2dB (75.9% in linear units) lower than input.power.limit. Since the callbox is configured to transmit at 75.6% duty cycle, the maximum average power consumes 75.9% x 75.6% = 57.3% of RF exposure margin utilized by Beam ID 2 (less than 100% allocated margin for mmW by Smart Transmit). Therefore, Smart Transmit allows Beam ID 2 to transmit at maximum power continuously at 75.6% duty cycle. Therefore, the normalized 4cm²PD exposure value for n260 Beam ID 2 = (100% * 75.6% callbox duty cycle * 4.31 W/m²)/(10 W/m²) = 32.6% ± 2.1dB device related uncertainty. Additionally, during the switch, the ratio between the averaged radiated powers of the two beams (yellow curve) should correspond to the difference in EIRPs measured at each corresponding input.power.limit for these beams listed in Table 12-3, i.e., 1.2dB ± 1.2dB device uncertainty.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 80 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 88 of 98
© 2020 PCTEST				REV 1.0

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including price microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or asse ding photoc ring and mbly of contents hereof, please contact INFO@PCTEST.COM

14 SYSTEM VERIFICATION (FREQ > 6 GHZ)


The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

	System Verification									
Syst.	Freq. (GHz)	Date	Source SN	Probe SN	Normal psPD (W	//m ² over 4 cm ²)	Deviation (dB)	Total psPD (W/	/m² over 4 cm²)	Deviation (dB)
				-	measured	target		measured	target	
N	30.00	12/7/2020	1043	9364	26.10	26.40	-0.05	26.50	26.70	-0.03
N	30.00	12/8/2020	1043	9364	25.80	26.40	-0.10	26.10	26.70	-0.10
N	30.00	12/10/2020	1043	9364	25.70	26.40	-0.12	26.10	26.70	-0.10

Table 14-1 System Verification Results

Note: A 10 mm distance spacing was used from the reference horn antenna aperture to the probe element. This includes 4.45 mm from the reference antenna horn aperture to the surface of the verification source plus 5.55 mm from the surface to the probe. The SPEAG software requires a setting of "5.55 mm" for the correct set up.

Figure 14-1 System Verification Setup Photo

FCC ID: A3LSMG998U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 90 of 99
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 89 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

15 **POWER DENSITY TEST RESULTS (FREQ > 6 GHZ)**

PD measurement results for maximum power transmission scenario 15.1

The following configurations were measured by following the detailed test procedure is described in Section 5.4:

- 1. LTE Band 2 (DSI =3) and mmW Band n261 Beam ID 16
- 2. LTE Band 2 (DSI =3) and mmW Band n260 Beam ID 29

The measured conducted Tx power of LTE and ratio of $\frac{[pointE(t)]^2}{[pointE_input.power.limit]^2}$ of mmW is converted into 1gSAR and 4cm²PD value, respectively, using Eq. (4a) and (4b), rewritten below:

$$1g_{or_{1}0gSAR(t)} = \frac{conducted_{Tx_power(t)}}{conducted_{Tx_power_{limit}}} * 1g_{or_{1}0gSAR_{limit}}$$
(4a)

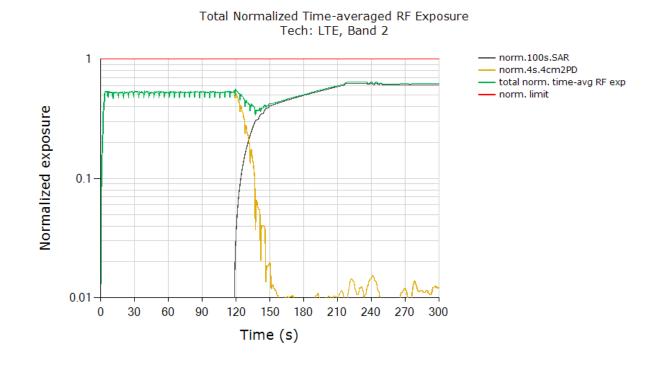
 $4cm^2 PD(t) = \frac{[pointE(t)]^2}{[pointE_input.power.limit]^2} * 4cm^2 PD_input.power.limit$ (4b)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_{-}or_{-}10gSAR(t)dt}{FCC SAR limit} + \frac{\frac{1}{T_{PD}}\int_{t-T_{PD}}^{t} 4cm^{2}PD(t)dt}{FCC 4cm^{2}PD limit} \le 1$$
(4c)

where, $conducted_Tx_power(t)$, $conducted_Tx_power_P_{limit}$, and $1g_or_10gSAR_P_{limit}$ correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at Plimit, and measured 1gSAR or 10gSAR values at P_{limit} corresponding to LTE transmission. Similarly, pointE(t), pointE_input.power.limit, and 4cm²PD@input.power.limit correspond to the measured instantaneous E-field, E-field at input power limit, and 4cm²PD value at input power limit. corresponding to mmW transmission.

NOTE: cDASY6 system measures relative E-field, and provides ratio of $\frac{[pointE(t)]^2}{[pointE_input.power.limit]^2}$ versus time.

The radio configurations tested are described in Table 12-1 and Table 12-2. The 1gSAR at Plimit for LTE 2 DSI = 3, the measured 4cm²PD at input.power.limit of mmW n261 beam 16 and n260 beam 29, are all listed in Table 12-3.


FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 00 of 00
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 90 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents hereof, please contact INFO@PCTEST.COM.

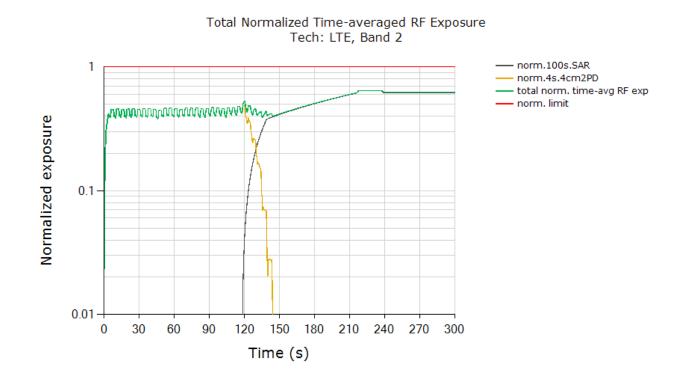
15.1.1 PD test results for n261

Step 2.e plot (in Section 5.4) for normalized instantaneous and time-averaged exposures for LTE and mmW n261 beam 16.

FCC limit for total RF exposure (normalized)	1.0				
Max total normalized time-averaged RF exposure (green curve)					
Validated					

<u>Plot notes</u>: LTE was placed in all-down bits immediately after 5G mmW NR call was established. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on the 3dB reserve setting in Part 1 report). From Table 12-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 16 of (100% * 6.06 W/m²)/(10 W/m²) = 60.6% ± 2.1dB device related uncertainty (see orange/green curve between 0s~120s). Around 120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually. Towards the end of the test, LTE is the dominant contributor towards RF exposure, i.e., corresponding normalized 1gSAR exposure value of (100% * 1.01 W/kg)/(1.6 W/kg) = 63.1% ± 1dB design related uncertainty (see black curves approaching this level towards end of the test).

As can be seen, the power limiting enforcement is effective and the total normalized time-averaged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.


FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 01 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 91 of 98
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTEST.COM.

15.1.2 PD test results for n260

Step 2.e plot (in Section 5.4) for normalized instantaneous and time-averaged exposures for LTE and mmW n260 beam 29.

FCC limit for total RF exposure	1.0				
Max total normalized time-averaged RF exposure (green curve)	0.644				
Validated					

Plot notes: LTE was placed in all-down bits immediately after 5G mmW NR call was established. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 100% for mmW (based on the 3dB reserve setting in Part 1 report). From Table 12-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 29 of $(100\% * 4.31 W/m^2)/(10 W/m^2) = 43.1\% \pm$ 2.1dB device related uncertainty (see orange/green curve between 0s~120s). Around 120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually. Towards the end of the test, LTE is the dominant contributor towards RF exposure, i.e., corresponding normalized 1gSAR exposure value of (100% * 1.01 W/kg)/(1.6 W/kg) = 63.1% ± 1dB design related uncertainty (see black curves approaching this level towards end of the test).

As can be seen, the power limiting enforcement is effective and the total normalized time-averaged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 92 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 92 01 96
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM

04/06/2020

EQUIPMENT LIST 16

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	N9020A	MXA Signal Analyzer	12/19/2019	Annual	12/19/2020	MY48010233
Agilent	N5182A	MXG Vector Signal Generator	2/19/2020	Annual	2/19/2021	MY47420651
Agilent	8753ES	S-Parameter Network Analyzer	12/31/2019	Annual	12/31/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	5/13/2020	Annual	5/13/2021	MY47420603
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	E4438C	ESG Vector Signal Generator	3/11/2019	Biennial	3/11/2021	MY45090700
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	8753ES	S-Parameter Vector Network Analyzer	3/5/2020	Annual	3/5/2021	MY40001472
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1520501
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1520503
Anritsu	ML2496A	Power Meter	12/17/2019	Annual	12/17/2020	1138001
Anritsu	MA2411B	Pulse Power Sensor	3/10/2020	Annual	3/10/2021	1911105
Anritsu	MA2411B	Pulse Power Sensor	11/10/2020	Annual	11/10/2021	1726261
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Control Company	4352	Ultra Long Stem Thermometer	5/16/2020	Biennial	5/16/2022	200294416
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/6/2020	Biennial	3/6/2022	200234410
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282753
K & L	4332 11SH10-1300/U4000	High Pass Filter	N/A	N/A	N/A	11SH10-1300/U4000 - 2
Keysight Technologies	772D	Dual Directional Coupler	CBT	N/A N/A	CBT	MY52180215
Keysight Technologies	E7515B	UXM 5G Wireless Test Platform	6/11/2019	Biennial	6/11/2021	MY59150289
Keysight Technologies	M1740A	mmWave Transceiver	2/20/2020	Annual	2/20/2021	MY59291989
Keysight Technologies	M1740A M1740A	mmWave Transceiver	2/20/2020	Annual	2/20/2021	MY59291989
Keysight Technologies	E7770A	Common Interface Unit	2/20/2020 N/A	N/A	N/A	MY58290483
Krytar	110067006	Directional Coupler, 10 - 67 GHz	N/A	N/A N/A	N/A N/A	200391
MCI	BW-N6W5+	6dB Attenuator	CBT	N/A N/A	CBT	1139
INICE				N/A N/A	CBT	SUU64901930
Mini Circuits	ZA2PD2-63-S+	Power Splitter	CBT		-	
Mini Circuits MIniCircuits	ZAPD-2-272-S+ NLP-1200+	Power Splitter	CBT	N/A N/A	CBT	SF702001405 VUU78201318
	SLP-2400+	Low Pass Filter	N/A CBT	,	N/A CBT	R8979500903
MiniCircuits		Low Pass Filter	CBT	N/A	CBT	
MiniCircuits	VLF-6000+	Low Pass Filter		N/A		N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Narda	4216-10	Directional Coupler, 0.5 to 8.0 GHz, 10 dB	CBT	N/A	CBT	01492
Narda	4216-10	Directional Coupler, 0.5 to 8.0 GHz, 10 dB	CBT	N/A	CBT	01493
Narda	4772-3	Attenuator	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator	CBT	N/A	CBT	120
Narda	BW-S10W2+	Attenuator	CBT	N/A	CBT	831
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Newmark System	NSC-G2	Motion Controller	CBT	N/A	CBT	1007-D
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler		N/A	CBT	N/A
			CBT			
Rohde & Schwarz	CMW500	Radio Communication Tester	3/27/2020	Annual	3/27/2021	128633
Rohde & Schwarz Rohde & Schwarz	CMW500 NRP8S		3/27/2020 5/27/2019		5/19/2021	128633 108168
	CMW500 NRP8S NRP8S	Radio Communication Tester	3/27/2020 5/27/2019 9/16/2019	Annual Biennial Biennial	5/19/2021 9/16/2021	128633 108168 108523
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	CMW500 NRP8S NRP8S NRP8S	Radio Communication Tester 3-Path Dipole Power Sensor	3/27/2020 5/27/2019 9/16/2019 6/10/2020	Annual Biennial	5/19/2021 9/16/2021 6/10/2021	128633 108168 108523 109322
Rohde & Schwarz Rohde & Schwarz	CMW500 NRP8S NRP8S	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor	3/27/2020 5/27/2019 9/16/2019	Annual Biennial Biennial	5/19/2021 9/16/2021	128633 108168 108523
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG	CMW500 NRP8S NRP8S NRP8S NRP50S 5G Verification Source 30GHz	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020	Annual Biennial Biennial Biennial	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021	128633 108168 108523 109322 101164 1043
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG	CMW500 NRP8S NRP8S NRP8S NRP50S 5G Verification Source 30GHz EUmmWV3	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019	Annual Biennial Biennial Biennial Biennial	5/19/2021 9/16/2021 6/10/2021 6/4/2021	128633 108168 108523 109322 101164
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG	CMW500 NRP8S NRP8S NRP8S NRP50S 5G Verification Source 30GHz	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020	Annual Biennial Biennial Biennial Biennial Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021	128633 108168 108523 109322 101164 1043
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG	CMW500 NRP8S NRP8S NRP8S NRP50S 5G Verification Source 30GHz EUmmWV3	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 6/24/2020	Annual Biennial Biennial Biennial Biennial Annual Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021 6/24/2021	128633 108168 108523 109322 101164 1043 9364
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG	CMW500 NRP8S NRP8S NRP8S SG Verification Source 30GHz EUmmWV3 DAK-3.5	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 6/24/2020 10/14/2020	Annual Biennial Biennial Biennial Biennial Annual Annual Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021 6/24/2021 10/14/2021 10/22/2021 2/21/2021	128633 108168 108523 109322 101164 1043 9364 1091
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP8S NRP8S NRP50S 5G Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 6/24/2020 10/14/2020 10/14/2020 10/22/2018 2/21/2019 10/22/2018	Annual Biennial Biennial Biennial Biennial Annual Annual Annual Triennial	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021 6/24/2021 10/14/2021 10/22/2021 2/21/2021 10/23/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D190V2	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 6/24/2020 10/14/2020 10/14/2020 10/22/2018 2/21/2019 10/22/2018	Annual Biennial Biennial Biennial Biennial Annual Annual Triennial Biennial	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021 6/24/2021 10/14/2021 10/22/2021 2/21/2021 10/23/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150 5d148
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 6/24/2020 10/14/2020 10/22/2018 2/21/2019	Annual Biennial Biennial Biennial Biennial Annual Annual Triennial Biennial Triennial	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/19/2021 6/24/2021 10/14/2021 10/22/2021 2/21/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150 5d148 5d149
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2 D2300V2 D2300V2 D2600V2	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2300 HHz SAR Dipole 2600 MHz SAR Dipole	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 10/14/2020 10/14/2020 10/22/2018 2/21/2019 10/23/2018 6/13/2018 6/14/2019	Annual Biennial Biennial Biennial Annual Annual Triennial Biennial Triennial Biennial Biennial	5/19/2021 9/16/2021 6/10/2021 6/19/2021 6/24/2021 10/14/2021 10/22/2021 10/22/2021 10/22/2021 8/13/2021 6/14/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150 5d148 5d149 1073 1064
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2 D2300V2 D2300V2 D3700V2	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2300 HHz SAR Dipole 2600 MHz SAR Dipole 3700 MHz SAR Dipole	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2020 10/14/2020 10/14/2020 10/22/2018 8/13/2018 8/13/2018 8/13/2018	Annual Biennial Biennial Biennial Annual Annual Triennial Triennial Biennial Triennial Biennial Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/4/2021 6/24/2021 10/14/2021 10/22/2021 10/23/2021 8/13/2021 6/14/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150 5d148 5d149 1073
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 NRP85 5G Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2 D1900V2 D2300V2 D2300V2 D3700V2 D3700V2 D4E4	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHZ System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2300 HHz SAR Dipole 2300 HHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 10/14/2020 10/22/2018 2/21/2019 10/23/2018 8/13/2018 6/14/2019 1/21/2020 4/15/2020	Annual Biennial Biennial Biennial Annual Annual Annual Biennial Triennial Triennial Biennial Annual Annual Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/24/2021 10/24/2021 10/22/2021 2/21/2021 2/21/2021 8/13/2021 6/14/2021 1/21/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150 5d148 5d149 1073 1064 1067
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2 D2300V2 D2300V2 D2300V2 D3700V2 D3700V2 D4E4 DAE4	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2300 HHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 10/22/2020 10/14/2020 10/22/2018 2/21/2019 10/22/2018 8/13/2018 6/14/2019 1/21/2020 12/18/2019	Annual Biennial Biennial Biennial Biennial Annual Annual Triennial Biennial Biennial Biennial Annual Annual Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/4/2021 10/14/2021 10/14/2021 10/22/2021 2/21/2021 8/13/2021 6/14/2021 1/21/2021 1/21/2021 12/18/2020	128633 108168 108523 109322 101164 9364 1091 1150 5d148 5d149 1073 1064 1067 1582 859
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D3700V2 D3700V2 DAE4 DAE4	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2300 HHz SAR Dipole 2300 HHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 2/12/2020 10/14/2020 10/22/2018 8/13/2018 8/13/2018 6/14/2019 1/21/2020	Annual Biennial Biennial Biennial Annual Annual Triennial Biennial Triennial Biennial Biennial Annual Annual Annual Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/24/2021 10/14/2021 10/22/2021 2/21/2021 2/21/2021 8/13/2021 8/13/2021 1/21/2021 12/18/2020 9/10/2021	128633 108168 108523 109322 101164 1043 9364 1091 1150 5d148 5d149 1073 1064 1067 1582 859 1449
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	CMW500 NRP85 NRP85 SG Verification Source 30GHz EUmmWV3 DAK-3.5 D1750V2 D1900V2 D1900V2 D2300V2 D2300V2 D2300V2 D3700V2 D3700V2 D4E4 DAE4	Radio Communication Tester 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 3-Path Dipole Power Sensor 30GHz System Verification Antenna E-field Probe Dielectric Assessment Kit 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2300 HHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole 3700 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/27/2020 5/27/2019 9/16/2019 6/10/2020 6/4/2019 10/22/2020 10/14/2020 10/22/2018 2/21/2019 10/22/2018 8/13/2018 6/14/2019 1/21/2020 12/18/2019	Annual Biennial Biennial Biennial Biennial Annual Annual Triennial Biennial Biennial Biennial Annual Annual Annual	5/19/2021 9/16/2021 6/10/2021 6/4/2021 6/4/2021 10/14/2021 10/14/2021 10/22/2021 2/21/2021 8/13/2021 6/14/2021 1/21/2021 1/21/2021 12/18/2020	128633 108168 108523 109322 101164 9364 1091 1150 5d148 5d149 1073 1064 1067 1582 859

Notes:

CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler, or filter were 1. connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

Each equipment item is used solely within its respective calibration period. 2.

Due to the worldwide pandemic caused by the novel SAR-CoV-2 virus (COVID-19), special calibration extensions have been permitted 3. by A2LA. Some equipment had its calibration period extended accordingly and will be calibrated when possible.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 02 of 08
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 93 of 98
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

MEASUREMENT UNCERTAINTIES 17

For SAR Measurements

Measurements		1			r i		1	1
a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	C _i	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	x
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	8
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	x
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	x
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	x
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	x
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	x
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	x
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	x
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	x
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

FCC ID: A3LSMG998U		PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager			
Document S/N:	Test Dates:	DUT Type:	Dage 04 of 09			
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset	Page 94 of 98			
© 2020 PCTEST REV 1.0 04/06/2020						

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

For PD Measurements

					f=	
а	b	С	d	e	b x e/d	g
	Unc.	Prob.			ui	
Uncertainty Component	(± dB)	Dist.	Div.	ci	(± dB)	vi
Calibration	0.49	N	1	1.0	0.49	~
Probe correction	0	R	1.73	1.0	0.00	~
Frequency Response (BW ≤ 1 GHz)	0.20	R	1.73	1.0	0.12	~
Sensor cross coupling	0	R	1.73	1.0	0.00	~~
Isotropy	0.50	R	1.73	1.0	0.29	∞
Linearity	0.20	R	1.73	1.0	0.12	∞
Probe Scattering	0	R	1.73	1.0	0	~~
Probe Positioning Offset	0.30	R	1.73	1.0	0.17	∞
Probe Positioning Repeatability	0.04	R	1.73	1.0	0.02	~
Sensor Mechanical Offset	0	R	1.73	1.0	0	~~
Probe Spatial Resolution	0	R	1.73	1.0	0	~~
Field Impedance Dependence	0	R	1.73	1.0	0	∞
Amplitude and phase drift	0	R	1.73	1.0	0	∞
Amplitude and phase noise	0.04	R	1.73	1.0	0.02	~~
Measurement area truncation	0	R	1.73	1.0	0	∞
Data acquisition	0.03	Ν	1	1.0	0.03	∞
Sampling	0	R	1.73	1.0	0	∞
Field Reconstruction	0.60	R	1.73	1.0	0.35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Forward Transformation	0	R	1.73	1.0	0	~
Power Density Scaling	-	R	1.73	1.0	-	∞
Spatial Averaging	0.10	R	1.73	1.0	0.06	∞
System Detection Limit	0.04	R	1.73	1.0	0.02	∞
Test Sample and Environmental Factors						
Probe Coupling with DUT	0	R	1.73	1.0	0	~
Modulation Response	0.40	R	1.73	1.0	0.23	8
Integration Time	0	R	1.73	1.0	0	8
Response Time	0	R	1.73	1.0	0	8
Device Holder Influence	0.10	R	1.73	1.0	0.06	8
DUT Alignment	0	R	1.73	1.0	0	8
RF Ambient Conditions	0.04	R	1.73	1.0	0.02	8
Ambient Reflections	0.04	R	1.73	1.0	0.02	∞
Immunity / Secondary Reception	0	R	1.73	1.0	0	∞
Drift of the DUT	0.22	R	1.73	1.0	0.13	~
Combined Standard Uncertainty (k=1)		RSS			0.76	∞
(95% CONFIDENCE LEVEL)		k	=2		S	

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 95 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 95 01 96
O 2020 POTEST				DEV/10

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

18 CONCLUSION

18.1 Measurement Conclusion

The SAR evaluation indicates that the DUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 06 of 09
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Page 96 of 98
2020 PCTEST				REV 1.0

© 2020 PCTEST

04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

19 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for [6] RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMG998U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 97 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 97 01 90
© 2020 PCTEST				REV 1.0

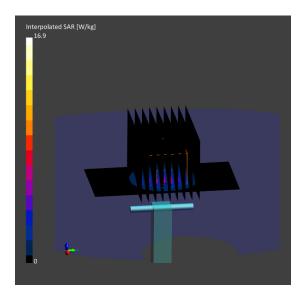
© 2020 PCTEST

^{04/06/2020} © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 98 of 98
1M2009230152-23-R1.A3L	11/05/2020-12/10/2020	Portable Handset		Fage 90 01 90
0 2020 PCTEST				REV 1

© 2020 PCTEST


04/06/2020 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. APPENDIX A: VERIFICATION PLOTS

PCTEST Date: 11-9-2020 3700MHz Head Verification

Medium

Frequency [MHz]	TSL	TSL Conductivity [S	/m] T	SL Permittivity	Ambient	Temperature [C]	Tissue Temperature [C]	
3700.0	3700 Head	3.01	3	6.8	22.4		21.8	
Exposure Con	ditions							
Phantom Section		Test Distance [mm]		Power [dBm]		Communication Syste	m, UID	
Flat		10		20.0		CW, 0		
Hardware Setu	qr					1		
Phantom	Phantom Dipole		Probe, Calib	Probe, Calibration Date		Conversion Factor	DAE, Calibration Date	
Twin-SAM V8.0 (Left) - 1964 D3700V2 - SN1067		EX3DV4 - S	N7526, 2020-03-	18	6.31	DAE4 Sn859, 2019-12-18		
Scans Setup								
					Area Scan	Zoom Scar		
Grid Extents [mm]				4	10.0 x 80.0	50.0 x 30.0 x 30.0		
Grid Steps [mm]				1	0.0 x 10.0	4.0 x 4.0 x 1.4		
Sensor Surface [mm]				3.0	1.4			
Graded Grid				No		Yes		
Grading Ratio				n/a	1.4			

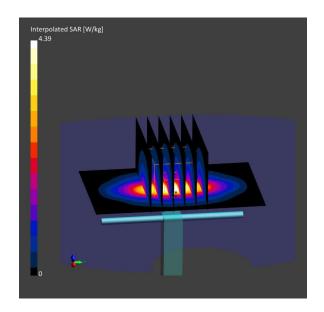
	Zoom Scan
psSAR1g [W/Kg]	6.21
psSAR10g [W/Kg]	2.31
Dev. 1g [%]	-7.59

PCTEST Date: 12-01-2020 1750MHz Body Verification

Medium

Frequency [MHz]	TSL		TSL Conductivity [S/m]		TSL	Permittivity	Ambien	t Temperature [C]		Tissue Temperature [C]
1750.0	1750 Body	1750 Body 1.45			55.4 21		21.4			21.0
Exposure Con	ditions									
Phantom Section		Tes	t Distance [mm]			Power [dBm]		Communication Sys	stem, U	ID
Flat		10				20.0		CW, 0		
Hardware Seti	чр	1								
Phantom	Dij	oole		Probe,	, Calibration	Date	Conversion Factor		DAE, Calibration Date	
Twin-SAM V8.0 - 197	78 D1	750V2	2 – SN1150	EX3DV	/4 – SN7527	, 2020-03-17	8	.1	DAI	4 Sn1582, 2020-04-15
Scans Setup										
						Area Scan			Zoom Scan	
Grid Extents [mm]				60.0 × 90.0				50.0 × 30.0 × 30.0		
Grid Steps [mm]						15	5.0 x 15.0			6.0 x 6.0 x 1.
Sensor Surface [mm]							3.0			1.

Measurement Results

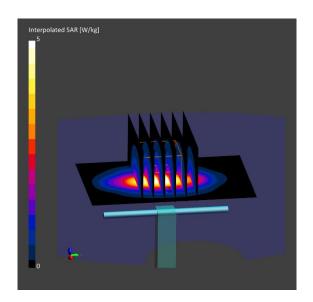

Graded Grid

Grading Ratio

	Zoom Scan
psSAR1g [W/Kg]	3.48
psSAR10g [W/Kg]	1.86
Dev. 1g [%]	-4.92

No

n/a


Yes

PCTEST Date: 11-09-2020 1900MHz Body Verification

Medium

Frequency [MHz]	TSL	TSL TSL Conductivity [S/m]		Y [S/m] TSL Permittivity		Temperature [C]	Tissue Temperature [C]	
1900.0	1900 Body 1.59		52	.6	22.4		21.9	
Exposure Con	ditions	ľ	ŀ					
Phantom Section		Test Distance [mm]		Power [dBm]		Communication System	n, UID	
Flat		10		20.0		CW, 0		
Hardware Setu	ıp							
Phantom		Dipole	Probe, Cali	ibration Date		Conversion Factor	DAE, Calibration Date	
Twin-SAM V8.0 (Right	win-SAM V8.0 (Right) - 1981 D1900V2 - SN5d148		EX3DV4 - SN7526, 2020-03-18			7.33	DAE4 Sn859, 2019-12-18	
Scans Setup								
			Area Scan			Zoom Sca		
Grid Extents [mm]				6	50.0 x 90.0	50.0 × 30.0 × 30		
Grid Steps [mm]			15.0 x 15.0			6.0 × 6.0 × 5.		
Sensor Surface [mm]		3.0			0 1.			
Graded Grid					No		Να	
Grading Ratio		n/a			ı/a n/			

	Zoom Scan
psSAR1g [W/Kg]	4.01
psSAR10g [W/Kg]	2.07
Dev. 1g [%]	2.56

PCTEST Date: 12-01-2020 1900MHz Body Verification

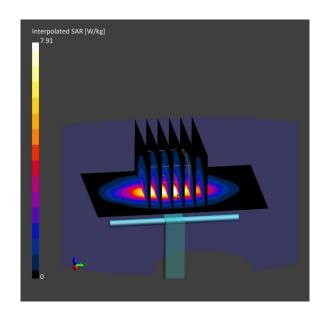
Medium

Graded Grid

Grading Ratio

psSAR1g [W/Kg]

psSAR10g [W/Kg]


Dev. 1g [%]

Measurement Results

Frequency [MHz]	TSL		TSL Conductivity [S	/m] -	TSL Permittivity	Ambier	nt Temperature [C]	Tissue Temperature [C]
1900.0	1900 Bod	1900 Body 1.56		1	55.1	21.4		21.0
Exposure Con	ditions							
Phantom Section		Tes	t Distance [mm]		Power [dBm]		Communication Sys	stem, UID
Flat		10			20.0		CW, 0	
Hardware Set	up							
Phantom	Dij	oole		Probe, Calibrat	ion Date		Conversion Factor	DAE, Calibration Date
Twin-SAM V8.0 - 197	78 D1	900V2	2 – SN5d149	EX3DV4 - SN7	527, 2020-03-17		7.78	DAE4 Sn1582, 2020-04-15
Scans Setup								
						Area Scan		Zoom Scan
Grid Extents [mm]				60.0 × 90.0			50.0 x 30.0 x 30.0	
Grid Steps [mm]					15.0 x 15.0 6.0 :			6.0 x 6.0 x 1.5
Sensor Surface [mm]					3.0			1.4

No

n/a

Yes

1.5

Zoom Scan

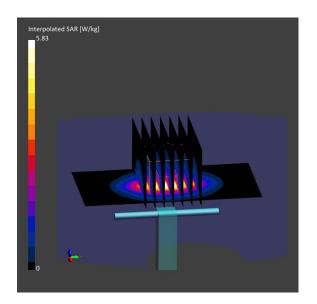
4.05

2.09

2.79

PCTEST Date: 12-01-2020 2300MHz Body Verification

Medium

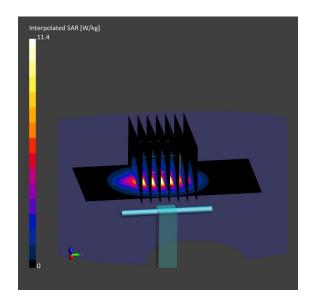

Frequency [MHz]	TSL		TSL Conductivity [S/m]		TSL Permittivity		Ambie	Ambient Temperature [C]			Tissue Temperature [C]
2300.0	2300 B	ody 1.89			54.6		21.4				21.0
Exposure Con	ditions						"				
Phantom Section		Tes	t Distance [mm]			Power [dBm]			Communication Sys	tem, l	JID
Flat		10				20.0			CW, 0		
Hardware Seti	up										
Phantom		Dipole	pole Prob		be, Calibration Date			Conversion Factor E		DA	E, Calibration Date
Twin-SAM V8.0 - 197	78	D2300V2	2 – SN1073	EX3DV4 - S	N7527	, 2020-03-17		7.75	5	DA	E4 Sn1582, 2020-04-15
Scans Setup											
				Area Sca			n			Zoom Sca	
Grid Extents [mm]				48.0 × 96.0			0	50.0 × 30.0 × 30.0			
Grid Steps [mm]					12.0 x 12.0 5.			5.0 x 5.0 x 1.			
Sensor Surface [mm]							3.0	0			1.
Graded Grid							No	0			Ye

Measurement Results

Grading Ratio

	Zoom Scan
psSAR1g [W/Kg]	4.44
psSAR10g [W/Kg]	2.11
Dev. 10g [%]	-9.05

n/a


1.5

PCTEST Date: 11–16–2020 2600MHz Body Verification

Medium

Frequency [MHz]	TSL	TSL Conductivity [S/n	TSL Conductivity [S/m] TSL Permittivity		Ambient	Temperature [C]	Tissue Temperature [C]	
2600.0	2600 Body	2.16	50).1	20.8		22.5	
Exposure Con	ditions							
Phantom Section		Test Distance [mm]		Power [dBm]		Communication Syste	m, UID	
Flat		10		20.0		CW, 0		
Hardware Seti	hb							
Phantom		Dipole	Probe, Cali	Probe, Calibration Date		Conversion Factor	DAE, Calibration Date	
Twin-SAM V8.0 (Right) – 1981 D2600V2 – SN1064		EX3DV4 - 5	5N7526, 2020-03	-18	7.0	DAE4 Sn859, 2019-12-18		
Scans Setup		<u>.</u>					·	
					Area Scan	Zoom Sc		
Grid Extents [mm]				4	48.0 × 96.0		50.0 x 30.0 x 30.0	
Grid Steps [mm]		12.0 x 12.0			5.0 x 5.0 x 5.0			
Sensor Surface [mm]				3.0	1.			
Graded Grid			No		N			
Grading Ratio				n/a		n/a		

	Zoom Scan
psSAR1g [W/Kg]	5.41
psSAR10g [W/Kg]	2.41
Dev. 10g [%]	-3.60

PCTEST

Date: 12/07/2020

30 GHz System Verification

Device Under Test Properties

DUT	Serial Number
30 GHz Verification Source	1043

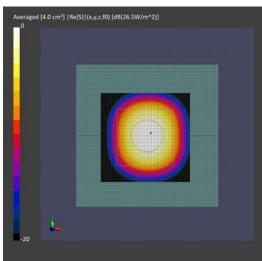
Exposure Conditions

Phantom Section	Position	Test Distance [mm]	Band	Frequency [MHz]
5G	FRONT	5.55	Validation band	30000.0

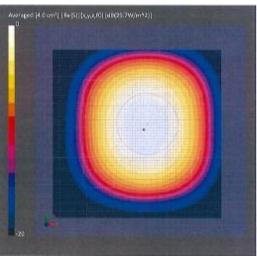
Hardware Setup

Probe, Calibration Date	DAE, Calibration Date
EUmmWV3 - SN9364, 06/24/2020	DAE4 SN1582, 04/15/2020

Software Setup


Software	Software Version
cDASY6 Module mmWave	2.0.2.34

Scans Setup


Scan Type	5G Scan
Grid Extents [mm]	60.0 × 60.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	5.55

Measurement Results

Scan Type	5G Scan
Avg. Area [cm²]	4.00
pS _{tot} avg [W/m ²]	26.5
pSn avg [W/m²]	26.1
E _{Peak} [V/m]	116
Deviation (dB)	-0.03

30GHz System Verification

Calibration Certificate

PCTEST

Date: 12/08/2020

30 GHz System Verification

Device Under Test Properties

DUT	Serial Number
30 GHz Verification Source	1043

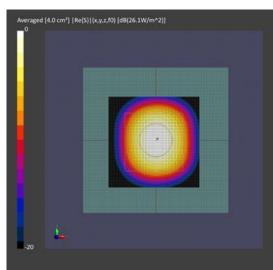
Exposure Conditions

Phantom Section	Position	Test Distance [mm]	Band	Frequency [MHz]
5G	FRONT	5.55	Validation band	30000.0

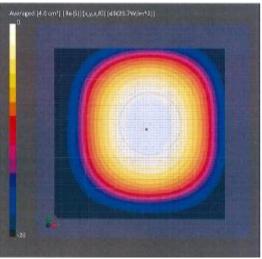
Hardware Setup

Probe, Calibration Date	DAE, Calibration Date
EUmmWV3 - SN9364, 06/24/2020	DAE4 SN1582, 04/15/2020

Software Setup


Software	Software Version
cDASY6 Module mmWave	2.0.2.34

Scans Setup


Scan Type	5G Scan
Grid Extents [mm]	60.0 × 60.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	5.55

Measurement Results

Scan Type	5G Scan
Avg. Area [cm²]	4.00
pS _{tot} avg [W/m ²]	26.1
pSn avg [W/m²]	25.8
E _{Peak} [V/m]	116
Deviation (dB)	-0.10

30GHz System Verification

Calibration Certificate

PCTEST

Date: 12/10/2020

30 GHz System Verification

Device Under Test Properties

DUT	Serial Number
30 GHz Verification Source	1043

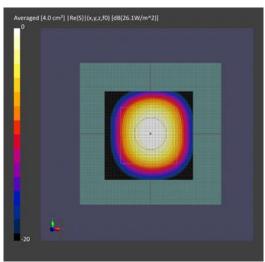
Exposure Conditions

Phantom Section	Position	Test Distance [mm]	Band	Frequency [MHz]
5G	FRONT	5.55	Validation band	30000.0

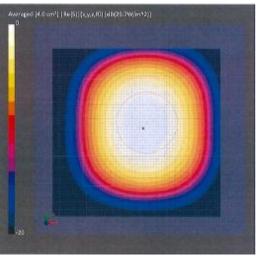
Hardware Setup

Probe, Calibration Date	DAE, Calibration Date
EUmmWV3 - SN9364, 06/24/2020	DAE4 SN1582, 04/15/2020

Software Setup


Software	Software Version
cDASY6 Module mmWave	2.0.2.34

Scans Setup


Scan Type	5G Scan
Grid Extents [mm]	60.0 × 60.0
Grid Steps [lambda]	0.25 × 0.25
Sensor Surface [mm]	5.55

Measurement Results

Scan Type	5G Scan
Avg. Area [cm²]	4.00
pS _{tot} avg [W/m ²]	26.1
pSn avg [W/m²]	25.7
E _{Peak} [V/m]	116
Deviation (dB)	-0.10

30GHz System Verification

Calibration Certificate

APPENDIX B: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to

source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

©

Description: Aqueous solution with surfactants and inhibitors

Deciarable, or nazaruous compon	ents.	
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Additional information:

For the wording of the listed risk phrases refer to section 16. Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure B -1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

F	FCC ID: A3LSMG998U		SAMSUNG	Approved by: Quality Manager
Т	est Dates:	DUT Type:		APPENDIX B:
1	1/05/2020 - 12/10/2020	Portable Handset		Page 1 of 3
2020	PCTEST			REV 1.0 04/06/2020

Schmid & Partner Engineering AG S peag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 181029-1)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the KDB 865664 compliance standard.

Ambient Condi	ion 22°C ; 30% humidity	
TSL Temperate	ire 22°C	
Test Date	30-Oct-18	
Operator	CL	
Additional Info	ormation	
TSL Density	No.	
TSL Heat-capa		

5500

5500

-0.4 -8.8 -8.8 -1.8 -0.6 -1.9 -2.0 -0.4 -0.2 0.8 1.3 -2.3 -2.5 1.8

-2.6 2.3

Results

Т

I Child	Measu	ured		Targe	et	Diff.to Targ	get [%]	10000					
[MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	15.0	1000		55 510		1200
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1	10.0	-	100	1242		
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0						
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5	% 5.0	144				
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0	0.0	-			1.00	
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7	Permittivity 0.0					
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7	a [₩] -5.0					
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6	a -10.0					
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5	1 9	1				
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4	-15.0	00	1500	2500	3500	450
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3					ency MHz	
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3						
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2	15.0					
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9	15.0					
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1	10.0 -	1000				
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0	2 5.0 -		1	1910		
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9	- 0.0 Conductivity			1		
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3	- 0.0 duct			1		
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6	8 -5.0	Λ	2	1		1
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3	05.0 -	12	/			/
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7	-10.0 -				~	
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3	-15.0					
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3	50	0	1500	2500	3500	4500
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5				Frequer	ncy MHz	
0100	53.3	14.4	1.68	53.2	1.62	0.2	3.7						
2100	00.0				1.66	0.4	3.6						
2100	53.3	14.4	1.72	53.1	1.66		0.0						
2150		14.4 14.4	1.72 1.76	53.1 53.0	1.66	0.3	2.9	3500	51.1	15.5	3.02	51.3	3.31
	53.3		1000					3500 3700	51.1 50.8	15.5 15.7	3.02 3.24	51.3 51.1	3.31 3.55
2150 2200	53.3 53.2	14.4	1.76	53.0	1.71	0.3	2.9			1000	10.535253333		
2150 2200 2250	53.3 53.2 53.1	14.4 14.4	1.76 1.81	53.0 53.0	1.71 1.76	0.3 0.2	2.9 2.8	3700	50.8	15.7	3.24	51.1	3.55
2150 2200 2250 2300	53.3 53.2 53.1 53.1	14.4 14.4 14.4	1.76 1.81 1.85	53.0 53.0 52.9	1.71 1.76 1.81	0.3 0.2 0.4	2.9 2.8 2.2	3700 5200	50.8 48.1	15.7 18.2	3.24 5.27	51.1 49.0	3.55 5.30
2150 2200 2250 2300 2350	53.3 53.2 53.1 53.1 53.0	14.4 14.4 14.4 14.5	1.76 1.81 1.85 1.89	53.0 53.0 52.9 52.8	1.71 1.76 1.81 1.85	0.3 0.2 0.4 0.3	2.9 2.8 2.2 2.2	3700 5200 5250	50.8 48.1 48.0	15.7 18.2 18.3	3.24 5.27 5.34	51.1 49.0 49.0	3.55 5.30 5.36
2150 2200 2250 2300 2350 2400	53.3 53.2 53.1 53.1 53.0 52.9	14.4 14.4 14.4 14.5 14.5	1.76 1.81 1.85 1.89 1.94	53.0 53.0 52.9 52.8 52.8	1.71 1.76 1.81 1.85 1.90	0.3 0.2 0.4 0.3 0.2	2.9 2.8 2.2 2.2 2.1	3700 5200 5250 5300	50.8 48.1 48.0 47.9	15.7 18.2 18.3 18.4	3.24 5.27 5.34 5.41	51.1 49.0 49.0 48.9	3.55 5.30 5.36 5.42
2150 2200 2250 2300 2350 2400 2450	53.3 53.2 53.1 53.1 53.0 52.9 52.9	14.4 14.4 14.4 14.5 14.5 14.5	1.76 1.81 1.85 1.89 1.94 1.98	53.0 53.0 52.9 52.8 52.8 52.8	1.71 1.76 1.81 1.85 1.90 1.95	0.3 0.2 0.4 0.3 0.2 0.4	2.9 2.8 2.2 2.2 2.1 1.5	3700 5200 5250 5300 5500	50.8 48.1 48.0 47.9 47.5	15.7 18.2 18.3 18.4 18.6	3.24 5.27 5.34 5.41 5.70	51.1 49.0 49.0 48.9 48.6	3.55 5.30 5.36 5.42 5.65

TSL Dielectric Parameters

Figure B-2 600 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID: A3LSMG998U		SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX B:
	11/05/2020 - 12/10/2020	Portable Handset		Page 2 of 3
© 202	20 PCTEST			REV 1.0 04/06/2020

S	p	е	а	a
	<u> </u>	<u>s p</u>	<u>spe</u>	<u>spea</u>

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)	
Product No.	SL AAH U16 BC (Batch: 181031-2)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition		
Ambient Condition	22°C ; 30% humidity	
TSL Temperature	22°C	
Test Date	31-Oct-18	
Operator	CL	
Additional Inform	ation	
TSL Density		
TSL Heat-capacity		

Results

	Meas	ured		Targe	et	Diff.to Targ	get [%]	15.0	0						
f [MHz]	e'	0"	sigma	eps	sigma	∆-eps	∆-sigma	15.0		11352		13-24-10	a laste		10
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4	10.0	0						
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5	\$ 5.0		-					
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0	ititi				~			
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5	E	1210			18210			
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1							-	-
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8	Å 0-10.0)				-		
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8	-15.0		13.512	1				1
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1		500 15	00 2500	3500 4: Freque	500 5500 ncv MHz	6500 7500	0 8500 9	9500
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7	45.0							
1640	42.2	14.2	1.30	40.3	1.31	4.8	-0.5	15.0			45.24	1.2452		1	
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0	10.0	1200						
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9		-	Λ					
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8	0.0 nctiv		$\boldsymbol{\Lambda}$		-	-	-	-
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7	0.0 0.0 0.0 0.0	p	- /		/			
				40.0	1.10	4.7	0.0		0.000		~				
1810	41.9	13.8	1.40	40.0	1.40	4./	0.0	m.	1000						
1810 1825	41.9 41.9	13.8 13.8	1.40 1.41	40.0	1.40	4.7	0.7	Å10.0							
			1000000				10112011	-15.0							
1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7	-15.0	500 150	00 2500	3500 45 Freque	00 5500 é	3500 7500	8500 9	500
1825 1850 1900	41.9 41.8	13.8 13.8	1.41 1.42	40.0 40.0	1.40 1.40	4.7 4.5	0.7 1.4	-15.0	500 150	00 2500	3500 45 Freque	00 5500 6 ancy MHz 36.0	3500 7500 4.66	8500 9	
1825 1850 1900 1950	41.9 41.8 41.8	13.8 13.8 13.7	1.41 1.42 1.45	40.0 40.0 40.0	1.40 1.40 1.40	4.7 4.5 4.5	0.7 1.4 3.6	-15.0			Freque	ancy MHz			-1
1825 1850 1900 1950 2000	41.9 41.8 41.8 41.7	13.8 13.8 13.7 13.7	1.41 1.42 1.45 1.48	40.0 40.0 40.0 40.0	1.40 1.40 1.40 1.40	4.7 4.5 4.5 4.3	0.7 1.4 3.6 5.7	-15.0 5200	36.3	15.8	4.57	36.0	4.66	0.9	-1 -1
1825 1850 1900 1950 2000 2050	41.9 41.8 41.8 41.7 41.6	13.8 13.8 13.7 13.7 13.6	1.41 1.42 1.45 1.48 1.51	40.0 40.0 40.0 40.0 40.0	1.40 1.40 1.40 1.40 1.40	4.7 4.5 4.3 4.0	0.7 1.4 3.6 5.7 7.9	-15.0 5200 5250	36.3 36.2	15.8 15.9	4.57 4.63	36.0 35.9	4.66 4.71	0.9 0.8	-1 -1 -1
1825 1850 1900 1950 2000 2050 2100	41.9 41.8 41.7 41.6 41.6	13.8 13.8 13.7 13.7 13.6 13.6	1.41 1.42 1.45 1.48 1.51 1.55	40.0 40.0 40.0 40.0 40.0 39.9	1.40 1.40 1.40 1.40 1.40 1.44	4.7 4.5 4.3 4.0 4.2	0.7 1.4 3.6 5.7 7.9 7.3	-15.0 5200 5250 5300	36.3 36.2 36.1	15.8 15.9 15.9	4.57 4.63 4.69	36.0 35.9 35.9	4.66 4.71 4.76	0.9 0.8 0.7	-1 -1 -1 -0
1825 1850 1900 2000 2000 2100 2100 2150 2200	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4	13.8 13.8 13.7 13.7 13.6 13.6 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58	40.0 40.0 40.0 40.0 39.9 39.8	1.40 1.40 1.40 1.40 1.40 1.44 1.49	4.7 4.5 4.3 4.0 4.2 4.2	0.7 1.4 3.6 5.7 7.9 7.3 6.1	-15.0 5200 5250 5300 5500	36.3 36.2 36.1 35.8	15.8 15.9 15.9 16.1	4.57 4.63 4.69 4.92	36.0 35.9 35.9 35.6	4.66 4.71 4.76 4.96	0.9 0.8 0.7 0.3	-1 -1 -1 -0 -0
1825 1850 1900 2000 2000 2100 2100 2150 2200 2250	41.9 41.8 41.8 41.7 41.6 41.6 41.5 41.4	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62	40.0 40.0 40.0 40.0 39.9 39.8 39.7	1.40 1.40 1.40 1.40 1.40 1.44 1.49 1.53	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7	-15.0 5200 5250 5300 5500 5600	36.3 36.2 36.1 35.8 35.6	15.8 15.9 15.9 16.1 16.2	4.57 4.63 4.69 4.92 5.04	36.0 35.9 35.9 35.6 35.5	4.66 4.71 4.76 4.96 5.07	0.9 0.8 0.7 0.3 0.1	-1 -1 -0 -0 -0
1825 1850 1900 2000 2050 2100 2150 2200 2250 2250	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.3 41.2	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72	40.0 40.0 40.0 40.0 39.9 39.8 39.7 39.6	1.40 1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6	-15.0 5200 5250 5300 5500 5600 5700	36.3 36.2 36.1 35.8 35.6 35.4	15.8 15.9 15.9 16.1 16.2 16.2	Freque 4.57 4.63 4.69 4.92 5.04 5.15	36.0 35.9 35.9 35.6 35.5 35.4	4.66 4.71 4.76 4.96 5.07 5.17	0.9 0.8 0.7 0.3 0.1 0.0	-1 -1 -0 -0 -0 0.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2	-15.0 5200 5250 5300 5500 5600 5700 5800	36.3 36.2 36.1 35.8 35.6 35.4 35.2	15.8 15.9 15.9 16.1 16.2 16.2 16.3	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27	36.0 35.9 35.9 35.6 35.5 35.4 35.3	4.66 4.71 4.76 4.96 5.07 5.17 5.27	0.9 0.8 0.7 0.3 0.1 0.0 -0.2	-11 -11 -0 -0 -0 -0 0. 0. 0. 0.
1825 1850 1900 2000 2050 2150 2250 2250 2350 2350 2400	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5	1.40 1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2	-15.0 5200 5250 5300 5500 5600 5700 5800 6000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6	-1 -1 -0 -0 -0 0. 0. 0.
1825 1850 1900 2000 2050 2150 2200 2250 2350 2350 2400	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4	-1 -1 -0 -0 -0 0. 0.
1825 1850 1900 2000 2050 2100 2100 2250 2300 2350 2400 2450 2500	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.6 39.5 39.4 39.3	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5	-15.0 5200 5250 5300 5500 5600 5700 6000 6500 7000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1	15.8 15.9 16.1 16.2 16.3 16.5 16.9	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3	-1 -1 -0 -0 -0 -0 .0 .0 .0 .0 .1 .1.
1825 1800 1900 2000 2010 2100 2100 2200 2200 2300 2300 2400 2500	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84 1.88	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.6 39.5 39.4 39.3 39.3	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500 7000 7500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2	15.8 15.9 16.1 16.2 16.3 16.5 16.9 17.3 17.6	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2	-1 -1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1825 1800 1900 2000 2010 2100 2100 2200 2200 2300 2300 2400 2500	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84 1.88 1.92	40.0 40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 2.2 1.4	-15.0 5200 5250 5300 5500 5500 5700 5800 6000 6500 7000 7500 8000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9	Freque 4.57 4.63 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97	MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1	-1 -1 -0 -0 -0 -0 .0 .0 .0 .0 .1 .1 .1 .1 .1
1825 1850 1900 2000 2000 2100 2100 2150 2200 2250	41.9 41.8 41.7 41.6 41.5 41.4 41.5 41.4 41.3 41.2 41.1 41.1 41.0 40.9 40.8	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.45 1.51 1.55 1.58 1.62 1.64 1.62 1.64 1.62 1.76 1.80 1.88 1.92 1.92	40.0 40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.7 39.6 39.5 39.4 39.3 39.2 39.2 39.2	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85 1.91	4.7 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 2.9 2.5 2.2 1.4 0.6	-15.0 5200 5300 5500 5500 5500 5500 6000 6500 7000 7500 8000 8500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4 30.5	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9 18.2	Freque 4.57 4.63 4.69 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97 8.59	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7 32.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84 8.45	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1 -5.0	-1 -1 -0 -0 -0 0. 0. 0. 1.

TSL Dielectric Parameters

Figure B-3 600 – 5800 MHz Head Tissue Equivalent Matter

	FCC ID: A3LSMG998U		SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX B:
	11/05/2020 - 12/10/2020	Portable Handset		Page 3 of 3
© 202	0 PCTEST			REV 1.0 04/06/2020

APPENDIX C: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	System Validation												
SAR	Freq.		Probe				Perm.	CW	VALIDAT	ION	MO). Validat	TION
System	(MHz)	Date	SN	Probe C	al Point	Cond. (σ)	renn. (εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
М	3700	5/21/2020	7526	3700	Head	2.984	38.772	PASS	PASS	PASS	TDD	PASS	N/A
N	1750	10/30/2020	7527	1750	Body	1.462	53.523	PASS	PASS	PASS	N/A	N/A	N/A
М	1900	5/19/2020	7526	1900	Body	1.585	53.549	PASS	PASS	PASS	GMSK	PASS	N/A
N	1900	12/1/2020	7527	1900	Body	1.565	55.106	PASS	PASS	PASS	GMSK	PASS	N/A

 Table C-1

 SAR System Validation Summary – 1g

Table C-2 SAR System Validation Summary – 10g

	System validation													
SA	ь	Freg.	Freq. Probe		g Probe Cond. Per		Perm.	CW VALIDATION			MOD. VALIDATION			
Syst		(MHz)	Date	Probe Cal Point	Probe Cal Point	Probe Cal Point		SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
N		2300	11/11/2020	7527	2300	Body	1.889	53.764	PASS	PASS	PASS	N/A	N/A	N/A
Μ	1	2600	5/20/2020	7526	2600	Body	2.18	54.171	PASS	PASS	PASS	TDD	PASS	N/A

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A3LSMG998U	Point to be part of @ Mercent PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX C:
11/05/2020 - 12/10/2020	Portable Handset	Page 1 of 1

APPENDIX E: TEST SEQUENCES

- 1. Test sequence is generated based on below parameters of the DUT:
 - a. Measured maximum power (Pmax)
 - b. Measured Tx_power_at_SAR_design_target (Plimit)
 - c. Reserve_power_margin (dB)
 - P_{reserve} (dBm) = measured P_{limit} (dBm) Reserve_power_margin (dB)
 - d. SAR_time_window (100s for FCC)
- 2. Test Sequence 1 Waveform:

Based on the parameters above, the Test Sequence 1 is generated with one transition between high and low Tx powers. Here, high power = P_{max} ; low power = $P_{max}/2$, and the transition occurs after 80 seconds at high power P_{max} . As long as the power enforcement is taking into effective during one 100s/60s time window, the validation test with this defined test sequence 1 is valid, otherwise, select other radio configuration (band/DSI within the same technology group) having lower P_{limit} for this test. The Test sequence 1 waveform is shown below:

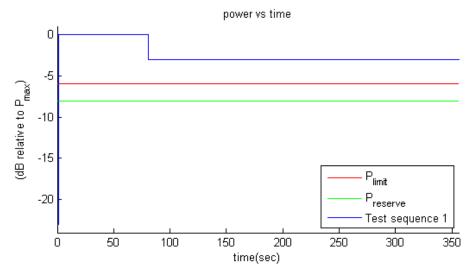
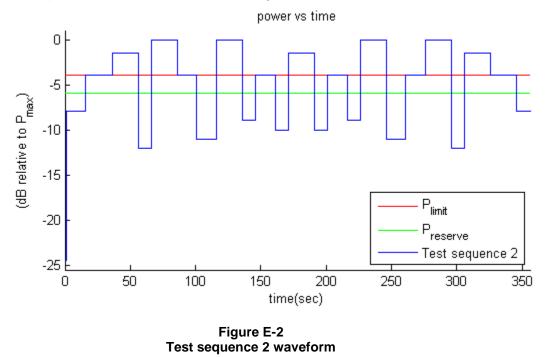
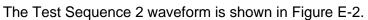


Figure E-1 Test sequence 1 waveform

	FCC ID: A3LSMG998U	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX E:
	11/05/2020 - 12/10/2020	Portable Handset		Page 1 of 3
© 202	0 PCTEST			REV 1.0 04/06/2020


3. Test Sequence 2 Waveform:


Based on the parameters described above, the Test Sequence 2 is generated as described in Table 10-1, which contains two 170 second-long sequences (yellow and green highlighted rows) that are mirrored around the center row of 20s, resulting in a total duration of 360 seconds:

Time duration (seconds)	dB relative to <i>P_{limit}</i> or <i>P_{reserve}</i>			
<mark>15</mark>	P _{reserve} – 2			
<mark>20</mark>	P _{limit}			
20	(<i>P_{limit} + P_{max})/</i> 2 averaged in mW and rounded to nearest 0.1 dB step			
<mark>10</mark>	P _{reserve} – 6			
<mark>20</mark>	P _{max}			
<mark>15</mark>	P _{limit}			
<mark>15</mark>	P _{reserve} – 5			
<mark>20</mark>	P _{max}			
<mark>10</mark>	P _{reserve} – 3			
<mark>15</mark>	P _{limit}			
<mark>10</mark>	P _{reserve} – 4			
20	$(P_{limit} + P_{max})/2$ averaged in mW and rounded to nearest 0.1 dB step			
<mark>10</mark>	P _{reserve} – 4			
<mark>15</mark>	P _{limit}			
<mark>10</mark>	P _{reserve} – 3			
20	P _{max}			
<mark>15</mark>	P _{reserve} – 5			
<mark>15</mark>	P _{limit}			
20	P _{max}			
<mark>10</mark>	P _{reserve} – 6			
20	$(P_{limit} + P_{max})/2$ averaged in mW and rounded to nearest 0.1 dB step			
20	P _{limit}			
<mark>15</mark>	P _{reserve} – 2			

Table E-1 Test Sequence 2

	FCC ID: A3LSMG998U	POTEST PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager
	Test Dates:	DUT Type:	APPENDIX E:
	11/05/2020 - 12/10/2020	Portable Handset	Page 2 of 3
© 202	20 PCTEST		REV 1.0 04/06/2020

	FCC ID: A3LSMG998U	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX E:
	11/05/2020 - 12/10/2020	Portable Handset		Page 3 of 3
© 202	0 PCTEST			REV 1.0 04/06/2020

APPENDIX F: TEST PROCEDURES FOR SUB6 NR + NR RADIO

Appendix F provides the test procedures for validating Qualcomm Smart Transmit feature for LTE + Sub6 NR non-standalone (NSA) mode transmission scenario, where sub-6GHz LTE link acts as an anchor.

F.1 Time-varying Tx power test for sub6 NR in SA mode

Follows Section 4.2.1 to select test configurations for time-varying test. This test is performed with two pre-defined test sequences (described in Section 4.1) applied to Sub6 NR. Follow the test procedures described in Section 4.3.1 to demonstrate the effectiveness of power limiting enforcement and that the time averaged Tx power of Sub6 NR when converted into 1gSAR values does not exceed the regulatory limit at all times (see Eq. (1a) and (1b)). Sub6 NR response to test sequence1 and test sequence2 will be similar to other technologies (say, LTE), and are shown in Sections 9.1.6 and 9.1.7.

F.2 Switch in SAR exposure between LTE vs. Sub6 NR during transmission

This test is to demonstrate that Smart Transmit feature accurately accounts for switching in exposures among SAR for LTE radio only, SAR from both LTE radio and sub6 NR, and SAR from sub6 NR only scenarios, and ensures total time-averaged RF exposure compliance with FCC limit.

Test procedure:

©

- 1. Measure conducted Tx power corresponding to P_{limit} for LTE and sub6 NR in selected band. Test condition to measure conducted P_{limit} is:
 - Establish device in call with the callbox for LTE in desired band. Measure conducted Tx power corresponding to LTE *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
 - Repeat above step to measure conducted Tx power corresponding to Sub6 NR <u>*Plimit*</u>. If testing LTE+Sub6 NR in non-standalone mode, then establish LTE+Sub6 NR call with callbox and request all down bits for radio1 LTE. In this scenario, with callbox requesting maximum power from Sub6 NR, measured conducted Tx power corresponds to radio2 <u>*Plimit*</u> (as radio1 LTE is at all-down bits)
- Set Reserve_power_margin to actual (intended) value with EUT setup for LTE + Sub6 NR call. First, establish LTE connection in all-up bits with the callbox, and then Sub6 NR connection is added with callbox requesting UE to transmit at maximum power in Sub6 NR. As soon as the Sub6 NR connection is established, request all-down bits on LTE link (otherwise, Sub6 NR will not have sufficient RF exposure margin to sustain the call with LTE in all-up bits). Continue LTE (all-down bits)+Sub6 NR transmission for more than one timewindow duration to test predominantly Sub6 NR SAR exposure scenario (as SAR exposure is negligible from all-down bits in LTE). After at least one time-window, request LTE to go allup bits to test LTE SAR and Sub6 NR SAR exposure scenario. After at least one more timewindow, drop (or request all-down bits) Sub6 NR transmission to test predominantly LTE

	FCC ID: A3LSMG998U		SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX F
	11/05/2020 - 12/10/2020	Portable Handset		Page 1 of 2
202	20 PCTEST			REV 1.0 04/06/2020

SAR exposure scenario. Continue the test for at least one more time-window. Record the conducted Tx powers for both LTE and Sub6 NR for the entire duration of this test.

- 2. Once the measurement is done, extract instantaneous Tx power versus time for both LTE and Sub6 NR links. Similar to technology/band switch test in Section 4.3.3, convert the conducted Tx power for both these radios into 1gSAR value (see Eq. (6a) and (6b)) using corresponding technology/band *P*_{limit} measured in Step 1, and then perform 100s running average to determine time-averaged 1gSAR versus time as illustrated in Figure 4-1. Note that here it is assumed both radios have Tx frequencies < 3GHz, otherwise, 60s running average should be performed for radios having Tx frequency between 3GHz and 6GHz.</p>
- 3. Make one plot containing: (a) instantaneous Tx power versus time measured in Step 2.
- Make another plot containing: (a) instantaneous 1gSAR versus time determined in Step 3, (b) computed time-averaged 1gSAR versus time determined in Step 3, and (c) corresponding regulatory 1gSAR_{limit} of 1.6W/kg.

The validation criteria is, at all times, the time-averaged 1gSAR versus time shall not exceed the regulatory *1gSAR*_{limit} of 1.6W/kg.

	FCC ID: A3LSMG998U	PCTEST* PART 2 RF EXPOSURE EVALUATION REPORT	MSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX F
	11/05/2020 - 12/10/2020	Portable Handset		Page 2 of 2
202	20 PCTEST			REV 1.0 04/06/2020

©

APPENDIX G: CALIBRATION CERTIFICATES

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Iac mra

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7527_Mar20

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE Object EX3DV4 - SN:7527 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: March 17, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.</td>

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards		Check Date (in house)	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	Scheduled Check In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M/4/
			11.18×1
Approved by:	Katja Pokovic	Technical Manager	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			della
This calibration certificate	a shall not be reproduced event in full	En dela constanta de la constan	lssued: March 18, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handb) held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c)
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" d)

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom • exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.35	0.38	0.59	± 10.1 %
DCP (mV) ^B	103.2	100.3	99.1	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√µ∨	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	151.9	± 3.0 %	$\pm 4.7\%$
		Y	0.00	0.00	1.00	0.00	141.6	10.0 %	4.7 /0
		Z	0.00	0.00	1.00		152.8	1	
10352-	Pulse Waveform (200Hz, 10%)	X	3.49	69.32	12.16	10.00	60.0	± 3.1 %	± 9.6 %
AAA		Y	1.64	62.00	8.65	1	60.0		1 0.0 /0
		Z	20.00	88.52	18.64	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	4.17	73.88	12.78	6,99	80.0	± 2.0 %	± 9.6 %
AAA		Y	1.29	63.36	7.97		80.0		20.0 /0
		Z	20.00	90.75	18.56	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	88.76	15.83	3.98	95.0	± 1.3 %	± 9.6 %
AAA		Y	0.43	60.13	5.05		95.0	1	- 0.0 /0
		Z	20.00	96.64	20.01		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	93.75	16.95	2.22	120.0	± 1.8 %	± 9.6 %
AAA		Y	8.57	85.90	0.17		120.0		
		Z	20.00	107.09	23.44		120.0	ĺ	
10387-	QPSK Waveform, 1 MHz	X	1.57	68.03	15.29	1.00	150,0	± 3.6 %	± 9.6 %
AAA		Y	1.35	67.00	14.27		150.0		
		Ζ	1.76	68.85	16.08		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.03	67.70	15.72	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	1.84	66.85	15.14		150.0		
10000		Z	2.30	69.46	16.62		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.58	69.90	18.52	3.01	150.0	± 1.2 %	± 9.6 %
AAA		Y	2.06	65.93	16.71		150.0		
40000		Z	2.94	71.66	19.42		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.38	67.02	15.78	0.00	150.0	± 2.3 %	± 9.6 %
AAA		Y	3.22	66.47	15.47		150.0		
40.444		Z	3.55	67.78	16.21		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.64	65.80	15.63	0.00	150.0	±4.0 %	± 9.6 %
AAA		Y	4.63	66.05	15.77		150.0		
		Z	4.65	65.49	15.53		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

C1 C2 α **T1 T**2 Т3 **T4** T5 **T6** fF fF V-1 ms.V⁻² ms.V^{−1} V^{-₂} ms V-1 X 28.7 212.81 35.19 4.27 0.19 4.99 1.71 0.02 1.00 Y 27.0 205.35 36.59 3.61 0.22 5.02 0.00 0.29 1.00 Z 35.6 264.00 35.25 8.82 0.00 5.05 1.33 0.17 1.01

Sensor Model Parameters

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-29.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	
Probe Overall Length	disabled
Probe Body Diameter	337 mm
Tip Length	10 mm
	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

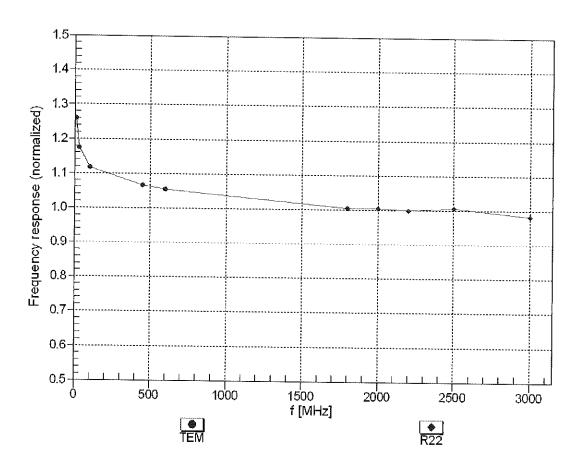
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.61	0.80	± 12.0 %
835	41.5	0.90	9.49	9.49	9.49	0.55	0.80	± 12.0 %
1750	40.1	1.37	8.44	8.44	8.44	0.25	0.80	± 12.0 %
1900	40.0	1.40	8.13	8.13	8.13	0.36	0.80	± 12.0 %
2300	39.5	1.67	7.68	7.68	7.68	0.39	0.90	± 12.0 %
2450	39.2	1.80	7.50	7.50	7.50	0.31	0.90	± 12.0 %
2600	39.0	1.96	7.15	7.15	7.15	0.41	0.90	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4.0 MHz and ConvF assessed at 40 MHz and 50 MHz and 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

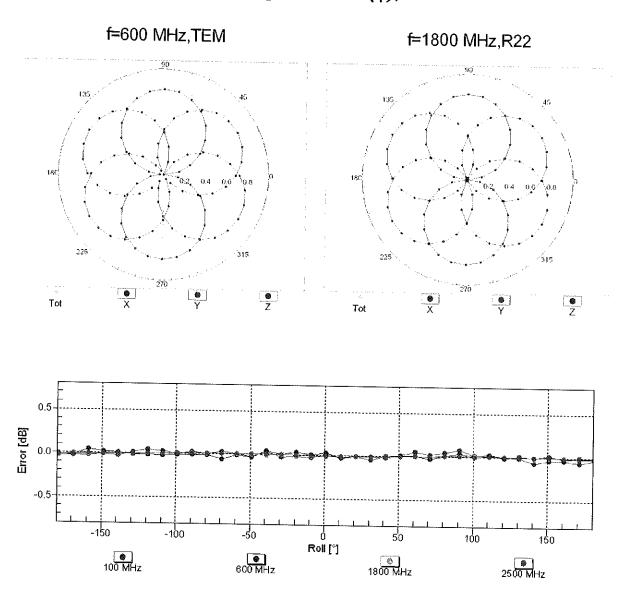
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

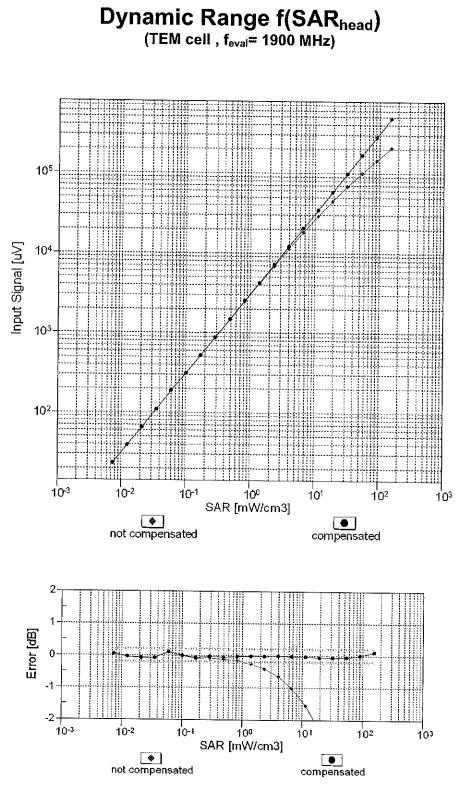

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.05	10.05	10.05	0.43	0.85	± 12.0 %
835	55.2	0.97	9.76	9.76	9.76	0.40	0.93	± 12.0 %
1750	53.4	1.49	8.10	8.10	8.10	0.45	0.87	± 12.0 %
1900	53.3	1.52	7.78	7.78	7.78	0.29	0.87	± 12.0 %
2300	52.9	1.81	7.75	7.75	7.75	0.38	0.90	± 12.0 %
2450	52.7	1.95	7.54	7.54	7.54	0.39	0,90	± 12.0 %
2600	52.5	2.16	7.29	7.29	7.29	0.33	0.90	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

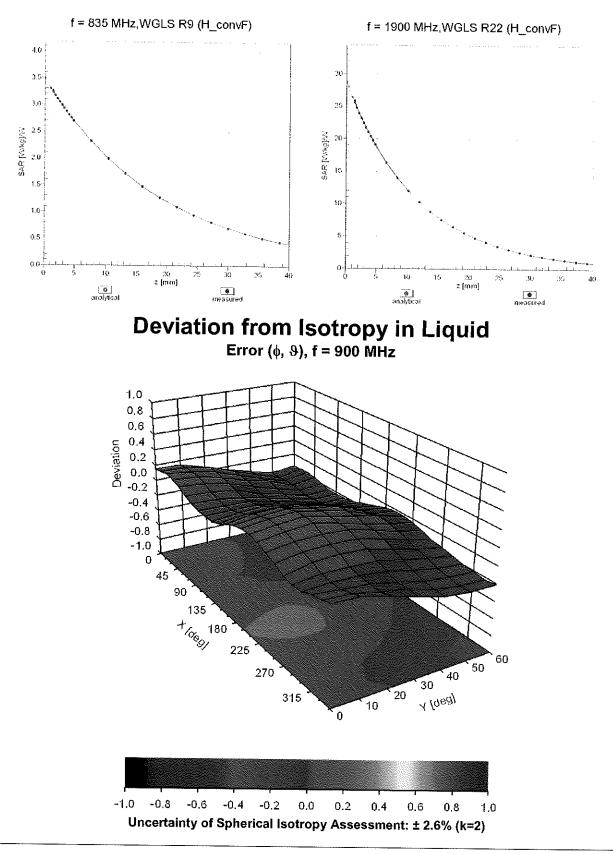
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: \pm 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Certificate No: EX3-7527_Mar20

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR	Unc ^E
0.5			•	(dB)	(k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 % ± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM GSM	4.80 3.55	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	7.78	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2) IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10030		IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10031 10032	CAA CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6%
10035	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044		IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 % ± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	$\pm 9.6\%$
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN WLAN	9.09 9.00	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10003	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	$\pm 9.6\%$
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	$\pm 9.6\%$
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 % ± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	10.01	$\pm 9.6\%$ $\pm 9.6\%$
10105	CAG		LTE-FDD	5.80	± 9.6 %
10108	CAG	$\Box = \Box = \Box \cup (\Box \cup \neg \Box \cup \forall A, \Box \cup \forall A, \Box \cup \forall \Box Z, \Box = \Box)$		1 0.00	1 - 0.0 /0

10109	0.00				
10109	CAG CAG		LTE-FDD	6.43	± 9.6 %
10110			LTE-FDD	5.75	± 9.6 %
10111	CAG		LTE-FDD	6.44	
10112	CAG		LTE-FDD	6.59	± 9.6 %
10113	CAG		LTE-FDD	6.62	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	$\pm 9.6\%$
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD		± 9.6 %
10141		LTE-FDD (SC-FDMA, 100% RB, 15 MHz 64-OAM)	LTE-FDD	6.49	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	6.53	<u>± 9.6 %</u>
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz 16-OAM)	LTE-FDD	5.73	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.35	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)		6.65	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	5.76	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.41	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.72	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.42	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	6.60	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.28	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	9.92	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.05	±9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	6.43	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	5.79	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10159	CAG	LTE-FDD (SC FDMA, 50% RB, 10 MHZ, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10170		LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	$\pm 9.6\%$
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, OPSK)	LTE-FDD		
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	5.72 6.52	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, OPSK)	LTE-FDD		±9.6%
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	5.73	±9.6%
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz 64-OAM)	LTE-FDD	6.52	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	6.50	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)		5.72	± 9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.52	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	±9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz 64-OAM)	LTE-FDD	6.51	±9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	5.73	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.52	±9.6 %
		IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	LTE-FDD	6.50	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.09	±9.6 %
		IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.12	± 9.6 %
······································		IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.21	± 9.6 %
		IEEE 802.11n (HT Mixed, 8.3 Mbps, BPSK)	WLAN	8.10	±9.6 %
10197		992. THE (THE WIXED, 39 MOPS, 16-QAM)	WLAN	8.13	±9.6%
		FEE 802 11p / HT Mixed OF Mither Of Other		0.10	± 0,0 /n >
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN WLAN	8.27	± 9.6 %

			WLAN	8.13	± 9.6 %
10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.27	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.06	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8,48	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.08	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WCDMA	5.97	±9.6 %
10225	CAB	UMTS-FDD (HSPA+)	LTE-TDD	9.49	± 9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	10.26	± 9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.22	± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.48	± 9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	10.25	± 9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	9.19	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.48	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	10.25	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	9.21	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.48	±9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	10.25	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	9.21	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.48	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	10.25	$\pm 9.6\%$
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	9.21	± 9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10241	CAB	LTE-TUD (SU-FUNIA, SU% KB, 1.4 MIHZ, 10-UAM)	LTE-TDD	9.86	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.46	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10244			LTE-TDD	10.06	$\pm 9.6\%$
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	9.30	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 10-QAM)	LTE-TDD	10.17	± 9.6 %
10251		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10253		LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 10-QAM)	LTE-TDD	10.14	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 04-04M)	LTE-TDD	9.20	± 9.6 %
10255		LTE-TDD (SC-FDMA, 50% RB, 13 MHZ, 4F3R)	LTE-TDD	9.96	± 9.6 %
10256		LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 10-GAM)	LTE-TDD	10.08	± 9.6 %
10257		LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10258	CAB CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10-QAM)	LTE-TDD	9.97	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
	CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 46 OK)	LTE-TDD	9.83	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10209	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10270		UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10273	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10277	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10279	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10290	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10291	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3,39	± 9.6 %
10292	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
1 11 705			LTE-FDD	5.81	± 9.6 %
10295	ΔΔΠ	T L LE-EDD (SC-EDMA, 50% RB, 20 MHZ, GESKI		0.01	1 2 0.0 /0
10295 10297 10298	AAD AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %

10000					
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL	WIMAX	12.03	± 9.6 %
10000		symbols)	11111111111	12.57	1 9.0 7
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	± 9.6 %
10304	AAA	IEEE 802.166 WIMAX (29:18, 5ms, 10MHz 640AM PUSC)	WIMAX	11.86	
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	WIMAX		± 9.6 %
		(symbols)		15,24	± 9.6 %
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18	WIMAX	44.07	-
·····		symbols)	VVIIVIAA	14.67	± 9.6 %
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	14/:844.2	1	
	_	symbols)	WIMAX	14.49	± 9.6 %
10308	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	44.40	
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18		14.46	±9.6 %
		symbols)	WIMAX	14.58	± 9.6 %
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	14/14/14		
		symbols)	WIMAX	14.57	± 9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)			<u> </u>
10313	AAA	IDEN 1:3	LTE-FDD	6.06	± 9.6 %
10314	AAA	IDEN 1:6	IDEN	10.51	± 9.6 %
10315	AAB	IEEE 802 11h M/IEI 2 4 CL In (D000 4 M/I	IDEN	13.48	± 9.6 %
10316	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	± 9.6 %
10317	AAC	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10352		IEEE 802.11a WIFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9,6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	
10388	AAA	QPSK Waveform, 10 MHz	Generic		± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	5.22	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz		6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Generic	6.27	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	WLAN	8.53	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.76	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	3.77	± 9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	CDMA2000	5.22	±9.6 %
		Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz			
10415	AAA		Generic	8.54	±9.6 %
0416	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6 %
0417		IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
0418	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
0410	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.14	±9.6 %
0419	A A A	Long preambule)			- 010 70
0413	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.19	±9.6 %
		Short preambule)			- 0.0 70
0400	A A D				
	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	+06%
0423	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN WLAN	8.32	±9.6 %
0423 0424	AAB AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.47	± 9.6 %
0423 0424 0425	AAB AAB AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN WLAN	8.47 8.40	±9.6 % ±9.6 %
0423 0424 0425 0426	AAB AAB AAB AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN WLAN WLAN	8.47 8.40 8.41	<u>± 9.6 %</u> ± 9.6 % ± 9.6 %
0423 0424 0425 0426 0427	AAB AAB AAB AAB AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN	8.47 8.40 8.41 8.45	± 9.6 % ± 9.6 % ± 9.6 %
0423 0424 0425 0426 0427 0430	AAB AAB AAB AAB AAB AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN WLAN	8.47 8.40 8.41 8.45 8.41	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
0423 0424 0425 0426 0427 0430 0431	AAB AAB AAB AAB AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEFDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN WLAN LTE-FDD	8.47 8.40 8.41 8.45 8.41 8.28	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
0423 0424 0425 0426 0427 0430 0431 0432	AAB AAB AAB AAB AAB AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEFDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN ULAN LTE-FDD LTE-FDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433	AAB AAB AAB AAB AAB AAD AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF DD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433	AAB AAB AAB AAB AAB AAD AAD AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34 8.34	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433 0433 0434	AAB AAB AAB AAB AAD AAD AAD AAC AAC AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield,	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34 8.34 8.34 8.60	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433 0433 0434	AAB AAB AAB AAB AAB AAD AAD AAC AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield,	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34 8.34	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433 0434 0435	AAB AAB AAB AAB AAD AAD AAD AAC AAC AAA AAF	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 80.11n (HT Greenfield, 150 M	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA LTE-TDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34 8.34 8.34 8.60	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433 0434 0435 0447	AAB AAB AAB AAB AAD AAD AAD AAC AAC AAA AAF AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FDD (OFDMA, 5 MHz, E-TM 3.1) ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD (OFDMA, 15 MHz, E-TM 3.1) ITE-FDD (OFDMA, 20 MHz, E-TM 3.1) V-CDMA (BS Test Model 1, 64 DPCH) ITE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) ITE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34 8.34 8.34 8.60	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0423 0424 0425 0426 0427 0430 0431 0432 0433 0434 0435 0447 0448	AAB AAB AAB AAB AAD AAD AAD AAC AAC AAA AAF AAD AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FDD (OFDMA, 5 MHz, E-TM 3.1) ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD (OFDMA, 20 MHz, E-TM 3.1) ITE-FDD (OFDMA, 20 MHz, E-TM 3.1) ITE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) ITE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) ITE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA LTE-TDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.34 8.34 8.34 8.60 7.82	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
0448 0449	AAB AAB AAB AAB AAD AAD AAD AAC AAC AAA AAF AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FDD (OFDMA, 5 MHz, E-TM 3.1) ITE-FDD (OFDMA, 10 MHz, E-TM 3.1) ITE-FDD (OFDMA, 15 MHz, E-TM 3.1) ITE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) ITE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) ITE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD	8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.34 8.34 8.34 8.60 7.82 7.56	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	8.25	± 9,6 %
	- <u> </u>		WCDMA	2.39	± 9.6 %
10460	AAA			7.82	± 9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL		1.02	1 5.0 %
10100		Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	± 9.6 %
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL		0.50	1 3.0 %
		Subframe=2,3,4,7,8,9)		0.50	± 9.6 %
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.56	± 9.0 %
		Subframe=2,3,4,7,8,9)		7 00	1000
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2.3.4.7.8.9)]	
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10107		Subframe=2,3,4,7,8,9)		ļ	
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
10400		Subframe=2,3,4,7,8,9)			
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.56	±9.6 %
10409		Subframe=2,3,4,7,8,9)	2,2,00		
40470		LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10470	AAF			1.02	
40.474		Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL		0.52	1 3.0 %
	- <u> </u>	Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL		0.07	± 9.0 %
		Subframe=2,3,4,7,8,9)		7.00	1000
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
ļ		Subframe=2,3,4,7,8,9)		0.00	100%
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
1		Subframe=2,3,4,7,8,9)			
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2,3,4,7,8,9)		.l	
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2.3.4.7.8.9)			
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
	,	Subframe=2,3,4,7,8,9)			
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10410	1,010	Subframe=2,3,4,7,8,9)			
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.18	± 9.6 %
10400		Subframe=2,3,4,7,8,9)			
10401		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9.6 %
10481	AAB				2010 /0
40.400	1	Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	± 9.6 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL		1 1.11	1 0.0 70
10100		Subframe=2,3,4,7,8,9)		8.39	± 9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.39	I9.0 %
		Subframe=2,3,4,7,8,9)		0.47	1000
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.47	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	LTE-TDD	7.59	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.38	± 9.6 %
		Subframe=2.3.4.7.8.9)			
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.60	± 9.6 %
1.2		Subframe=2.3,4,7,8,9)			
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL	LTE-TDD	7.70	± 9.6 %
10700	100	Subframe=2,3,4,7,8,9)		1	
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
10409		Subframe=2,3,4,7,8,9)			
40400	A A 17	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10490	AAF			0.04	
	1	Subframe=2,3,4,7,8,9)			L

10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	± 9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	± 9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	14/1 4.61	- <u>,</u>	
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6 %
10519	AAB	IFEE 802 11a/h WiFi 5 GHz (OFDM, 9 Wipps, 99pc duty cycle)	WLAN	8.23	±9.6%
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6 %
10521	AAB	IEEE 802.11a/h WIFI 5 GHZ (OFDIN, 18 Midps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6 %
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6 %
10523			WLAN	8.08	±9.6 %
	AAB	IEEE 802 11a/h WiFi & CULE (OFDM, 46 MIDPS, 99pc duty cycle)			
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6 %
10524 10525	AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN WLAN		
10524 10525 10526	AAB AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN WLAN WLAN	8.27	± 9.6 % ± 9.6 %
10524 10525 10526 10527	AAB AAB AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN WLAN	8.27 8.36 8.42	± 9.6 % ± 9.6 % ± 9.6 %
10524 10525 10526 10527 10528	AAB AAB AAB AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN WLAN WLAN	8.27 8.36 8.42 8.21	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10524 10525 10526 10527 10528 10529	AAB AAB AAB AAB AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN	8.27 8.36 8.42 8.21 8.36	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10523 10524 10525 10526 10527 10528 10529 10531 10532	AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN	8.27 8.36 8.42 8.21 8.36 8.36	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10524 10525 10526 10527 10528 10529	AAB AAB AAB AAB AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN	8.27 8.36 8.42 8.21 8.36	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$

EX3DV4- SN:7527

10704		UFFF 000 44 MUE (40MUE MCCO, 80pp duby ovolo)	WLAN	8.45	± 9.6 %
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.44	±9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.54	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	± 9,6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10541	AAB	1222 802.1180 WIFI (401017, 10037, 9900 duty cycle)	WLAN	8.65	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.35	± 9.6 %
10546	AAB	IEEE 802.11ac WiFI (80MHz, MCS2, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)		8.38	± 9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN		± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8,56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty	WLAN	8.25	±9.6 %
10565	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty	WLAN	8.45	± 9.6 %
10566	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10569	AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	± 9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	± 9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10582	AAA	IÉEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9.6 %
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %

March 17, 2020

10587					aron 17, 20
	AAB		WLAN	0.00	
10588	AAB	IEEE 802.11a/n WIFI 5 GHz (OFDM 36 Mbps 90pc duty syster)	WLAN	8.36	± 9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cyclo)		8.76	± 9.6 %
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.63	± 9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10595	AAB	IEEE 802.11n (HT Mixed, 20MInz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8,74	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	± 9.6 %
10598		IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.72	± 9.6 %
10599	AAB	TEEE 802.11h (HT Mixed, 20MHz, MCS7, 90nc duty cycle)	WLAN	8.50	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (H1 Mixed, 40MHz, MCS1, 90pc duty cyclo)	WLAN	8.88	
	AAB	IEEE 802.11n (HI Mixed, 40MHz, MCS2, 90nc duty cyclo)	WLAN	8.82	± 9.6 %
10602	AAB	IEEE 802.11n (H) Mixed, 40MHz MCS3, 90pc duty cycle)	WLAN		± 9.6 %
10603	AAB	IEEE 802.11n (HI Mixed, 40MHz MCS4 90nc duty cycle)	WLAN	8.94	± 9.6 %
10604	AAB	IEEE 802.11n (H1 Mixed, 40MHz, MCS5, 90nc duty cycle)		9.03	± 9.6 %
10605	AAB	IEEE 002.110 (HI MIXED, 40MHz MCS6, 90pc duty availa)	WLAN	8.76	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.97	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10609	AAB	IEEE 802.11ac WiFI (20MHz, MCS2, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10611	AAB	IEEE 802 11ac WIEI (20MIE, MCS3, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10612	AAB	IEEE 802.11ac WIFI (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10615		IEEE 802.11ac WIFI (20MHz, MCS7, 90nc duty cycle)	WLAN	8.59	± 9.6 %
10616	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90nc duty cyclo)	WLAN	8.82	
10617	AAB	IEEE 802.11ac WiFi (40MHz MCS1 90pc duty cyclo)	WLAN		± 9.6 %
10618	AAB	TEEE 802.11ac WIFI (40MHz, MCS2, 90nc duty cycle)	WLAN	8.81	± 9.6 %
10619	AAB	IEEE 802.11ac WIFI (40MHz, MCS3, 90nc duty cycle)	WLAN	8.58	±9.6%
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90nc duty cycle)		8.86	± 9.6 %
10621	AAB	IEEE 802.11ac WIFI (40MHz, MCS5, 90pc duty cyclo)	WLAN	8.87	±9.6%
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.77	±9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.68	± 9.6 %
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.96	± 9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6 %
10628	AAB	IEEE 802 11ac WIEL (20MUL MODO 00 01	WLAN	8.88	± 9.6 %
10629	AAB	IEEE 802.11ac WIFI (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	± 9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	± 9.6 %
0632	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10633	AAB	IEEE 802.11ac WIFI (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
0634		IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	± 9.6 %
	AAB	IEEE 802.11ac WIFI (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	
0635	AAB	IEEE 802.11ac WIFI (80MHz, MCS9, 90nc duty cycle)	WLAN	8.81	± 9.6 %
0636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN		± 9.6 %
0637	AAC	IEEE 802.11ac WiFI (160MHz_MCS1_90pc duty gyolo)	WLAN	8.83	± 9.6 %
	AAC	IEEE 802.11ac WIFI (160MHz MCS2 90pc duty cyclo)		8.79	± 9.6 %
	AAC	IEEE 002.118C WIEL (160MHz MCS3 90pc duty cycle)	WLAN	8.86	±9.6 %
	AAC	IEEE 002.118C WIFI (160MHz, MCS4, 90nc duty cyclo)	WLAN	8.85	± 9.6 %
	AAC	IEEE 802.11ac WIFI (160MHz, MCS5, 90pc duty cyclo)	WLAN	8.98	± 9.6 %
	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6 %
0642		IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	9.06	±9.6 %
0642 0643	AAC	IEEE 000 44 - WIE (100Winz, WOO7, SUPC OULY CYCle)	WLAN	8.89	±9.6 %
0642 0643				2	
0642 0643 0644	AAC	IEEE 802.11ac WIFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.0%.
0642 0643 0644 0645	AAC AAC	TEEE 802.11ac WiFi (160MHz, MCS9, 90nc duty cyclo)	WLAN WLAN		±9.6 %
0642 0643 0644 0645 0646	AAC AAC AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL, Subframe=2.7)	WLAN	9.11	± 9.6 %
0642 0643 0644 0645 0646 0647	AAC AAC AAG AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	WLAN LTE-TDD	9.11 11.96	± 9.6 % ± 9.6 %
0642 0643 0644 0645 0645 0646 0647 0648	AAC AAC AAG AAF AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) CDMA2000 (1x Advanced)	WLAN LTE-TDD LTE-TDD	9.11 11.96 11.96	± 9.6 % ± 9.6 % ± 9.6 %
0642 0643 0644 0645 0646 0647 0648 0652	AAC AAC AAG AAF AAA AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	WLAN LTE-TDD	9.11 11.96	± 9.6 % ± 9.6 %

		TE TED (CEDMA 45 MUL E TM 0.4 Olimping 449/)	LTE-TDD	6.96	±9.6 %
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10655 10658	AAE AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	6.99	±9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6 %
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6%
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc duty cycle)	WLAN	8.89 8.80	<u>± 9.6 %</u> ± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)	WLAN WLAN	8.62	$\pm 9.6\%$
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.83	$\pm 9.6\%$
10682		IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.42	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10685		IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.28	± 9.6 %
10686 10687	AAA AAA	IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10687	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc duty cycle)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc duty cycle)	WLAN	8.86	± 9.6 % ± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)	WLAN WLAN	8.70 8.82	$\pm 9.6\%$
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)	WLAN	8.56	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.69	± 9.6 %
10705		IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle) IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)	WLAN	8,66	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10707	AAA AAA	IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10708		IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 35pc duty cycle)	WLAN	8.29	± 9.6 %
10710	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	± 9.6 %
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	± 9.6 %
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	± 9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	± 9.6 %
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WLAN	8.76	<u>± 9.6 %</u>
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	$\pm 9.6\%$
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)	WLAN	8.72	± 9.6 %

40707					
10727			WLAN	8.66	± 9.6
10728			WLAN	8.65	± 9.6
10729	AAA		WLAN	8.64	± 9.6
10730	AAA		WLAN	8.67	± 9.6
10731	AAA		WLAN	8.42	± 9.6
10732		IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	
10733	_ AAA	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)	WLAN		± 9.6
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)		8.40	± 9.6
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.25	± 9.6
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.33	± 9.6
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.27	± 9.6
10738	AAA	IEEE 802.11ax (80Mi hz, MCO3, 99pc duty cycle)	WLAN	8.36	± 9.6
10739	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	± 9.6
10740	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	± 9.6
10741	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)	WLAN	8.48	± 9.6
10742		IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)	WLAN	8.40	± 9.6
		IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)	WLAN	8.43	± 9,6
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)	WLAN	8.94	± 9.6
0744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)	WLAN	9.16	± 9.6
0745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc duty cycle)	WLAN		
0746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc duty cycle)	WLAN	8.93	± 9.6
0747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)	WLAN	9.11	± 9.6
0748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)		9.04	± 9.6
0749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.93	± 9.6
0750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.90	± 9.6
0751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)	WLAN	8.79	± 9.6
0752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)	WLAN	8.82	±9.6
0753	AAA		WLAN	8.81	± 9.6
0754	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6
0755	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle)	WLAN	8.94	± 9.6
0756		IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle)	WLAN	8.64	± 9.6 9
0756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.77	± 9.6 °
	AAA	IEEE 802.11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	± 9.6 9
0758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	WLAN	8.69	± 9.6 9
0759	AAA	IEEE 802.11ax (160MHz, MCS4, 99pc duty cycle)	WLAN	8.58	
0760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc duty cycle)	WLAN		± 9.6 %
0761	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc duty cycle)	WLAN	8.49	± 9.6 9
0762	AAA	IEEE 802.11ax (160MHz, MCS7, 99pc duty cycle)		8.58	± 9.6 %
0763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc duty cycle)	WLAN	8.49	± 9.6 %
0764	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc duty cycle)	WLAN	8.53	± 9.6 %
0765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc duty cycle)	WLAN	8.54	± 9.6 %
0766	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle)	WLAN	8.54	± 9.6 %
0767	AAC	5G NP (CP OEDM 4 DP 5 MU ODD/C (TV/VC)	WLAN	8.51	± 9.6 %
0/0/		5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	7.99	± 9.6 %
0768	1000		TDD		
0700	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	± 9.6 %
0700			TDD		
0769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	± 9.6 %
0770			TDD	0.01	1 - 3.0 %
0770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	+000
				0.02	± 9.6 %
0771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)			L
		د ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	5G NR FR1	8.02	± 9.6 %
0772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	TDD		
		(10 MHZ)	5G NR FR1	8.23	± 9.6 %
0773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)		·	
		(2, 2, 2, 2, 2, 3, 7, 10) and $(2, 2, 3, 10)$	5G NR FR1	8.03	±9.6 %
)774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	TDD		
		(or or own, into, ou Minz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
)775	AAB	5G NR (CR-OEDM 50% DD E MILL ODDIE			
	· • • •	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	8.31	± 9.6 %
0776	AAC	50 NIR (OR OFTIM FOR THE STATE	DDT D		/0
	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.30	± 9.6 %
777			TDD	2.00	± 0.0 /0
)777	AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.30	± 9.6 %
i			TDD	0.00	± 9.0 %
++					
778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.34	± 9.6 %

10779	AAB	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
1078 9	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	7.89	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10806	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	8.37	± 9.6 %
10809	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10810	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10812	AAC	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	8.35	± 9.6 %
10817	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1	8.35	± 9.6 %
10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1	8.30	± 9.6 %

10821	AAC		5G NR FR1 TDD	8.41	± 9.6 %
10822	AAC		5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC		5G NR FR1 TDD	8.36	± 9.6 %
10824	AAC		5G NR FR1	8.39	± 9.6 %
10825	AAC		5G NR FR1	8.41	± 9.6 %
10827	AAC		5G NR FR1 TDD	8.42	± 9.6 %
10828	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1	8.43	± 9.6 %
10829	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10830	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
10831	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10833	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1	7,70	± 9.6 %
10834	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1	7.75	± 9.6 %
10835	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	± 9.6 %
10836	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1	7.66	± 9.6 %
10837	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.68	± 9.6 %
10839	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.70	± 9.6 %
10840	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.67	± 9.6 %
10841	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.71	± 9.6 %
10843	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.49	± 9.6 %
10844	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.34	± 9.6 %
10846	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	± 9.6 %
10854	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.34	± 9.6 %
10855	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	8.36	± 9.6 %
10856	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.37	± 9.6 %
10857	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.35	± 9.6 %
1085 8	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.36	± 9.6 %
10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.34	± 9.6 %
10860	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	± 9.6 %
10861	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.40	± 9.6 %
10863	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	± 9.6 %
10864	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.37	± 9.6 %
10865	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	± 9.6 %
			TDD		20.0 /0

10866	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6 %
10868	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,68	± 9.6 %
10902	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %

10904	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAA	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	5.68	± 9.6 %
10906	AAA	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1	5.78	± 9.6 %
10908	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	5.93	± 9.6 %
10909	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	5.96	± 9.6 %
10910		5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10911		5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10913	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
10915		5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916		5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	5.87	± 9.6 %
10917	AAA	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10920	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10922	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10924	ΑΑΑ	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6 %
10925	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 %
10926	AAA	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	5.84	± 9.6 %
10927	AAA	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	5.94	± 9.6 %
0928	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	TDD 5G NR FR1 FDD	5.52	± 9.6 %
0929	ΑΛΑ	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	5.52	± 9.6 %
0930	ΑΑΑ	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	FDD 5G NR FR1	5.52	± 9.6 %
0931	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	5.51	± 9.6 %
0932	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1	5.51	± 9.6 %
	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	5.51	± 9.6 %
0933		5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	FDD	5.51	± 9.6 %
	AAA	00 Tit (DI 1-3-01 DIN, T KB, 40 MHZ, QPSK, 15 KHZ)	5G NR FR1	0.01	10.0 %
0933 0934 0935	ААА ААА	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.51	± 9.6 %

10937	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6 %
10938	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6 %
10939	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6 %
10940	AAA	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6 %
10941	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10942	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6%
10943	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	5.81	± 9.6 %
10945	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10946	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	5.83	±9.6 %
10947	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	FDD 5G NR FR1 FDD	5.87	± 9.6 %
10948	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6 %
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1	8.23	± 9.6 %
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6 %
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1	8.61	± 9.6 %
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	FDD 5G NR FR1	8.33	± 9.6 %
10960	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	FDD 5G NR FR1	9.32	± 9.6 %
10961	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1	9.36	± 9.6 %
10962	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	TDD 5G NR FR1	9.40	± 9.6 %
10963	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	TDD 5G NR FR1	9.55	± 9.6 %
10964	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	TDD 5G NR FR1	9.29	± 9.6 %
10965	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1	9.37	± 9.6 %
10966	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	TDD 5G NR FR1	9.55	± 9.6 %
10967	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	TDD 5G NR FR1	9.42	± 9.6 %
10968	AAA	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	TDD 5G NR FR1	9.49	± 9.6 %
F	1			1	1

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7526_Mar20

CALIBRATION CERTIFICATE

	Object	EX3DV4 - SN:7526	
	Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	
	Calibration date:	March 18, 2020 • 04-2-2	20
	This calibration certificate document The measurements and the uncerta	ts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.	0.0
	All calibrations have been conducte	ed in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.	
I	Calibration Equipment used (MRTE	oritigation - the (1)	

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Sebertulard O-lite of
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Apr-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
·····			
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Jun-20 In house check: Oct-20

Collibrated buy	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	dalla
Approved by:	Katja Pokovic	Technical Manager	All
This calibration certificate	shall not be reproduced event in ful		Issued: March 18, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.40	0.43	0.39	± 10.1 %
DCP (mV) ^B	100.0	96.5	100.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	144.6	± 3.0 %	± 4.7 %
		Y	0.00	0.00	1.00		153.6		
		Z	0.00	0.00	1.00		139.6	1	
10352-	Pulse Waveform (200Hz, 10%)	X	2.27	64.83	9.33	10.00	60.0	± 2.6 %	± 9.6 %
AAA		Y	1.47	61.47	7.92		60.0		- 0.0 //
····-		Z	2.24	64.75	9.49	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.19	62.89	7.51	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	0.92	61.50	6.65		80.0	/2	
		Z	1.48	64.63	8.40	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.47	60.82	5.72	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Υ	0.37	60.00	4.48		95.0	/2	
		Z	0.70	63.37	6.83		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.29	61.21	5.28	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	0.27	60.00	2.87		120.0		
		Z	0.26	60.73	4.80		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.69	69.60	16.08	1.00	150.0	± 3.3 %	± 9.6 %
AAA		Υ	1.47	67.72	14.75		150.0		
		Z	2.01	73.12	17.66		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.10	68.63	16.26	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	1.98	67.68	15.60		150.0		
		Z	2.27	70.41	17.22		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.44	69.62	18.47	3.01	150.0	±0.8%	± 9.6 %
AAA		Y	2.15	66.59	17.11		150.0		
		Z	2.58	70.98	19.23		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.41	67.32	15.99	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.35	66.94	15.77		150.0		
		Z	3.49	68.04	16.43		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.63	65.89	15.72	0.00	150.0	±4.0 %	± 9.6 %
AAA		Y	4.61	65.72	15.68		150.0		
		Z	4.69	66.35	16.02		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
<u>X</u>	28.7	212.51	35.16	5.03	0.00	4.98	1.61	0.00	1.00
Y	28.8	222.60	37.67	2.60	0.00	5.03	0.04	0.29	1.00
Ζ	27.4	203.13	35.18	4.45	0.03	5.00	1.43	0.03	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	124.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

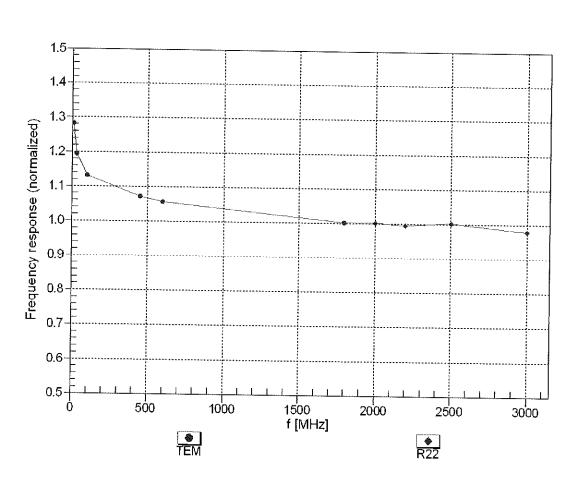
					0			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.41	9.41	9.41	0.66	0.80	± 12.0 %
835	41.5	0.90	9.17	9.17	9.17	0.61	0.80	± 12.0 %
1750	40.1	1.37	7.96	7.96	7.96	0.34	0.88	± 12.0 %
1900	40.0	1.40	7.63	7.63	7.63	0.33	0.88	± 12.0 %
2300	39.5	1.67	7.50	7.50	7.50	0.32	0.90	± 12.0 %
2450	39.2	1.80	7.24	7.24	7.24	0.39	0.90	± 12.0 %
2600	39.0	1.96	7.02	7.02	7.02	0.36	0.95	± 12.0 %
3500	37.9	2.91	6.43	6.43	6.43	0.35	1.30	± 13.1 %
3700	37.7	3.12	6.31	6.31	6.31	0.30	1.30	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

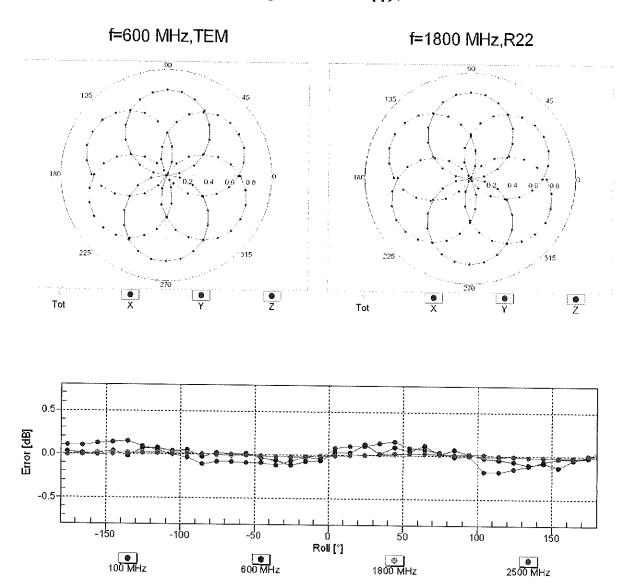
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

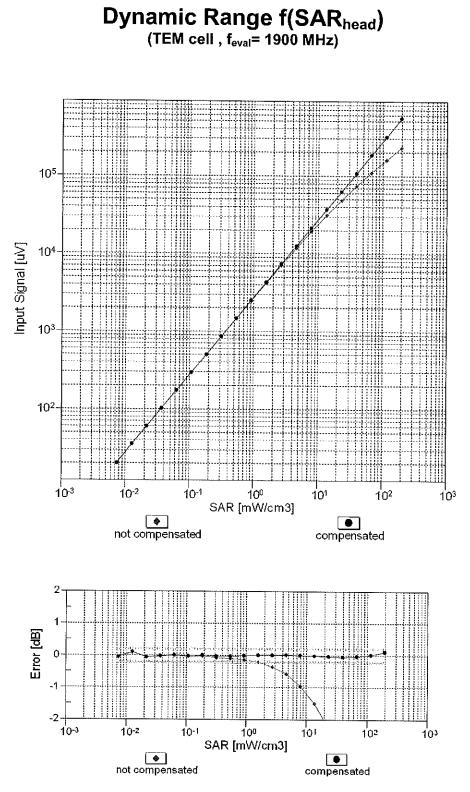

			-		•			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.87	9.87	9.87	0.47	0.80	± 12.0 %
835	55.2	0.97	9.55	9.55	9.55	0.46	0.87	± 12.0 %
1750	53.4	1.49	7.62	7.62	7.62	0.41	0.88	± 12.0 %
1900	53.3	1.52	7.33	7.33	7.33	0.39	0.88	± 12.0 %
2300	52.9	1.81	7.31	7.31	7.31	0.40	0.95	± 12.0 %
2450	52.7	1.95	7.22	7.22	7.22	0.36	0.95	± 12.0 %
2600	52.5	2.16	7.00	7.00	7.00	0.30	0.95	± 12.0 %
3500	51.3	3.31	6.20	6.20	6.20	0.45	1.35	± 13.1 %
3700	51.0	3.55	5.80	5.80	5.80	0.40	1.35	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

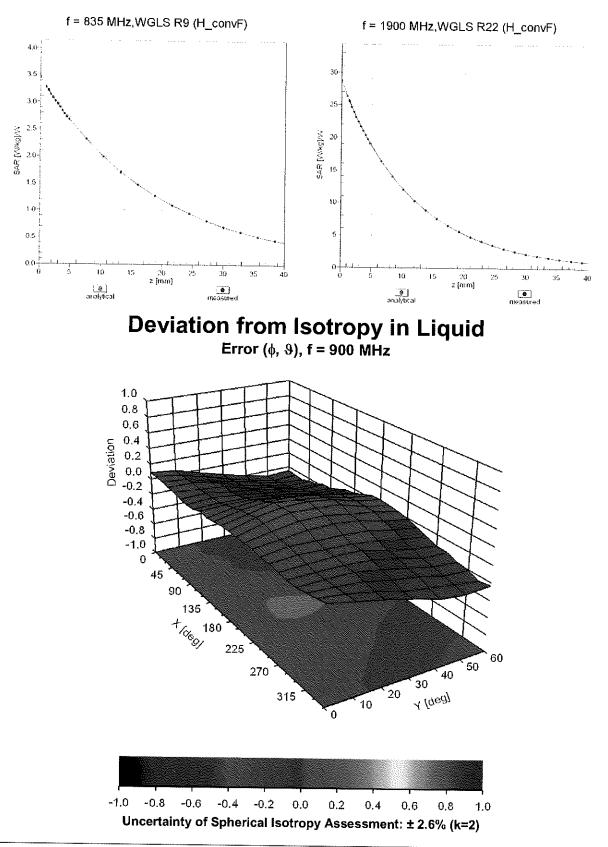
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Certificate No: EX3-7526_Mar20

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	<u>±9.6 %</u>
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10020	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9,6 %
10020	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10020	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10023	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1,87	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10032		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6 %
10034		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10035		IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	8.01	± 9.6 %
10036		IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	4.77	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.10	± 9.6 %
10038			CDMA2000	4.57	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1) IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TUMA/FDM, PI/4-DQFSK, Hailate)	AMPS	0.00	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	DECT	13.80	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	10.79	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	TD-SCDMA	11.01	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	GSM	6.52	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	WLAN	2.12	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.83	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	3.60	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	8.68	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.63	± 9.6 %
10063	CAC	1EEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)			± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 °
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 °
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 9
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 9
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 °
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 °
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10102	CAG		LTE-TDD	9.29	± 9.6 °
10103	CAG		LTE-TDD	9.97	± 9.6 °
10104	CAG		LTE-TDD	10.01	± 9.6 °
10103	CAG		LTE-FDD	5.80	± 9.6

				M	arch 18, 202
10109	CAG		LTE-FDD	6 40	1.000
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, OPSK)	LTE-FDD	6.43	
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	<u>5.75</u> 6.44	_ <u>}</u>
10112		LTE-FDD (SC-FDMA, 100% RB, 10 MHz 64-OAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-0AM)	LTE-FDD	6.62	± 9.6 % ± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-OAM)	WLAN	8.46	± 9.6 %
10117	CAC CAC		WLAN	8.15	± 9.6 %
10118	CAC		WLAN	8.07	± 9.6 %
10119	CAC		WLAN	8.59	± 9.6 %
10140	CAE		WLAN	8.13	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	6.53	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	6.65	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	5.76	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.41	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.72	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.42	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	6.60	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.28	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	9.92	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.05	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz 16-0AM)	LTE-FDD	5.75	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, OPSK)	LTE-FDD	6.43	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	5.79	±9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz 64-OAM)	LTE-FDD LTE-FDD	6.49	± 9.6 %
10159	CAG	LIE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-OAM)	LTE-FDD	6.62	±9.6%
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, OPSK)	LTE-FDD	6.56	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz 16-OAM)	LTE-FDD	<u>5.82</u> 6,43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz 64-0AM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, OPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz 16-OAM)	LTE-FDD	6.21	±9.6 % ±9.6 %
10168 10169	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-OAM)	LTE-FDD	6.79	$\pm 9.6\%$
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10172	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10175	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	6.52	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	5.73	±9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.52	± 9.6 %
	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	5.72	±9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.52	±9.6 %
	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	±9.6 %
	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.51	±9.6 %
	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz 16-OAM)	LTE-FDD	5.73	± 9.6 %
	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.52	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbns, BPSK)	LTE-FDD	6.50	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-OAM)	WLAN WLAN	8.09	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps 64-OAM)	WLAN	8.12	± 9.6 %
	CAC	TEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.21	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.10	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10219 (CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.27 8.03	± 9.6 %
				0.03	±9.6 %