

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 WLAN

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 10/05 - 11/20/2020 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2009230152-07.A3L

FCC ID:

A3LSMG998U

Certification

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: Frequency Range: Modulation Type: FCC Classification: FCC Rule Part(s): Test Procedure(s):

SM-G998U SM-G998U1 Portable Handset 2412 – 2462MHz CCK/DSSS/OFDM Digital Transmission System (DTS) Part 15 Subpart C (15.247) ANSI C63.10-2013, KDB 558074 D01 v05r02, KDB 662911 D01 v02r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 1 of 91
© 2020 PCTEST	· ·	•		V 9.0 02/01/2019



TABLE OF CONTENTS

1.0	INTRC	DUCTIC	N	4
	1.1	Scope		4
	1.2	PCTE	ST Test Location	4
	1.3	Test F	acility / Accreditations	4
2.0	PROD	UCT INF	ORMATION	5
	2.1	Equipr	nent Description	5
	2.2	Device	e Capabilities	5
	2.3	Test C	onfiguration	6
	2.4	Antenr	na Description	6
	2.5	Softwa	are and Firmware	6
	2.6	EMI S	uppression Device(s)/Modifications	6
3.0	DESC	RIPTION	OF TESTS	7
	3.1	Evalua	tion Procedure	7
	3.2	AC Lir	e Conducted Emissions	7
	3.3	Radiat	ed Emissions	8
	3.4	Enviro	nmental Conditions	8
4.0	ANTE	NNA REO	QUIREMENTS	9
5.0	MEAS	UREME	NT UNCERTAINTY	10
6.0	TEST	EQUIPM	ENT CALIBRATION DATA	11
7.0	TEST	RESULT	S	12
	7.1	Summ	ary	12
	7.2	6dB B	andwidth Measurement	13
	7.3	Output	t Power Measurement	25
	7.4	Power	Spectral Density	29
	7.5	Condu	cted Emissions at the Band Edge	44
	7.6	Condu	cted Spurious Emissions	53
	7.7	Radiat	ed Spurious Emission Measurements – Above 1 GHz	61
		7.7.1	SISO Antenna-1 Radiated Spurious Emission Measurements	64
		7.7.2	SISO Antenna-2 Radiated Spurious Emission Measurements	68
		7.7.3	MIMO/CDD Radiated Spurious Emission Measurements	72
		7.7.4	SISO Antenna-1 Radiated Restricted Band Edge Measurements	76
		7.7.5	SISO Antenna-2 Radiated Restricted Band Edge Measurements	78
		7.7.6	MIMO Radiated Restricted Band Edge Measurements	80
	7.8	Radiat	ed Spurious Emissions Measurements – Below 1GHz	83
	7.9	Line-C	onducted Test Data	87
8.0	CONC	LUSION		91

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 0 af 01	
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 2 of 91	
© 2020 PCTEST		•		V 9.0 02/01/2019	

MEASUREMENT REPORT

Mode	Frequency (MHz)	Avg Con Max.	iducted Max.	Peak Co Max.		Avg Co	nducted	Peak Co	nducted	Avg Cor	nducted	Peak Co	nducted
Mode			Max.	Max	Max								
(1		Deuten		TVICA/C.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
		Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power
		(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)
802.11b 2412	12 - 2462	87.498	19.42	151.008	21.79	97.949	19.91	156.675	21.95	N/A			
802.11g 2412	12 - 2462				N	/A				125.026	20.97	469.894	26.72
802.11n 2412	12 - 2462		N/A						123.595	20.92	470.977	26.73	
802.11ax 2412	12 - 2462		N/A						124.738	20.96	483.059	26.84	

EUT Overview

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	1/20/2020 Portable Handset		Page 3 of 91
© 2020 PCTEST	•	·		V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 4 of 91
© 2020 PCTEST		·	V 9.0 02/01/2019

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSMG998U. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0123M, 1575M, 1285M, 0061M, 0080M, 0779M, 0793M, 0814M

2.2 **Device Capabilities**

This device contains the following capabilities:

800/850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (n5, n71, n41, n66, n2, n12, n25, n30, n77, n260, n261), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles							
802.11 Mode/Band		Duty Cycle [%]					
802.11 1	ode/Band	ANT1	ΜΙΜΟ				
	b	98.9	98.9				
24647	g			93.8			
2.4GHz	n			93.4			
	ах			96.9			

Table 2-2. Measured Duty Cycles

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 5 of 01	
1M2009230152-07.A3L 10/05 - 11/20/2020		Portable Handset		Page 5 of 91	
© 2020 PCTEST		•		V 9 0 02/01/2019	

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and Air ignits reserved. Ones onliewise specified, to part of this report may be reproduced or unized in any part, form of by any means, electronic or mechanical, including protocopying microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		CDD		SDM	
WIFI COIII	igurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11b	✓	✓	×	×	×	×
2.4GHz	11g	×	×	✓	✓	×	×
2.4602	11n	×	×	×	×	✓	✓
	11ax	×	×	×	×	✓	\checkmark

Table 2-3. Frequency / Channel Operations

✓ = Support ; × = NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b) 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n) 13/14.4Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 78/86.7Mbps, 104/115.6Mbps, 117/130Mbps, 130/144.4Mbps (MIMO n)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT placed on an authorized wireless charging pad (WCP) Model: EP-5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Antenna Description

Following antenna was used for the testing.

Frequency [GHz]	Antenna Gain [dBi] ANT1	Antenna Gain [dBi] ANT2
2.4	-6.1	-5.9

Table 2-4. Antenna Peak Gain

2.5 Software and Firmware

The test was conducted with firmware version G998USQU0ATJ7 installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 6 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 6 of 91
© 2020 PCTEST				V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago Z of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 7 of 91
© 2020 PCTEST	-	•		V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 8 of 91
© 2020 PCTEST		·		V 9.0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMG998U	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 9 of 91
© 2020 PCTEST			V 9.0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMG998U	PCTEST [•] Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 10 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 10 of 91
© 2020 PCTEST			V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	9/16/2020	Annual	9/16/2021	WL25-1
-	WL40-1	WLAN Cable Set (40GHz)	9/16/2020	Annual	9/16/2021	WL40-1
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	846215
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2019	Biennial	10/10/2021	121034
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	8/7/2018	Triennial	8/7/2021	9203-2178
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	2/14/2019	Biennial	2/14/2021	125518
ETS-Lindgren	3816/2NM	LISN	7/9/2020	Biennial	7/9/2022	114451
ETS-Lindgren	3115	Double Ridged Guide Horn 750MHz - 18GHz	3/12/2020	Biennial	3/12/2022	150693
Keysight Technologies	N9020A	MXA Signal Analyzer	8/14/2020	Annual	8/14/2021	US46470561
Keysight Technologies	N9038A	MXE EMI Receiver	8/11/2020	Annual	8/11/2021	MY51210133
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	8/17/2020	Annual	8/17/2021	MY52350166
Keysight Technologies	N9020A	MXA Signal Analyzer	9/22/2020	Annual	9/22/2021	MY54500644
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	1/9/2020	Annual	1/9/2021	NMLC-2
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	11/1/2019	Annual	11/1/2020	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	7/15/2020	Annual	7/15/2021	100342
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	11/1/2019	Annual	11/1/2020	100037
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/21/2020	Annual	2/21/2021	102133
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	10/1/2019	Biennial	10/1/2021	310233
Sunol	DRH-118	Horn Antenna (1-18GHz)	10/3/2019	Biennial	10/3/2021	A050307
Sunol	DRH-118	Horn Antenna (1-18 GHz)	8/27/2019	Biennial	8/27/2021	A042511
Sunol Science	JB5	Bi-Log Antenna (30M - 5GHz)	7/27/2020	Biennial	7/27/2022	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

FCC ID: A3LSMG998U	PCTEST [®] Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 91
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 11 01 91
© 2020 PCTEST			V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.

FCC ID: <u>A3LSMG998U</u>

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.1.

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 12 of 91
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019

7.2 6dB Bandwidth Measurement

<u>§15.247(a.2); RSS-247 [5.2]</u>

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

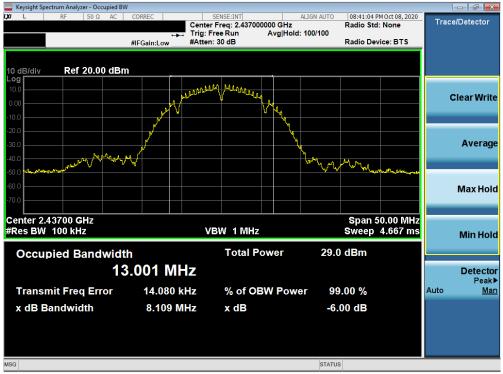
Test Notes

None

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 13 of 91
© 2020 PCTEST				V 9.0 02/01/2019

SISO Antenna-1 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.560	0.500
2437	6	b	1	8.109	0.500
2462	11	b	1	8.573	0.500


Table 7-2. Conducted Bandwidth Measurements SISO ANT1

Plot 7-1. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 1)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 14 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 14 of 91
© 2020 PCTEST				V 9.0 02/01/2019

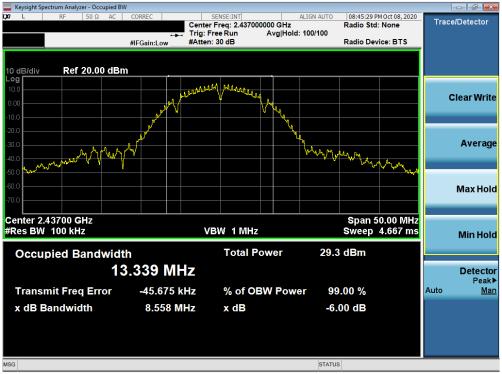
Plot 7-2. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 6)

Plot 7-3. 6dB Bandwidth Plot SISO ANT1 (802.11b – Ch. 11)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 15 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 15 of 91
© 2020 PCTEST	•			V 9.0 02/01/2019

SISO Antenna-2 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.560	0.500
2437	6	b	1	8.109	0.500
2462	11	b	1	8.573	0.500


 Table 7-3. Conducted Bandwidth Measurements SISO ANT2

Plot 7-4. 6dB Bandwidth Plot SISO ANT2 (802.11b - Ch. 1)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 16 of 91
© 2020 PCTEST	· ·	·		V 9.0 02/01/2019

Plot 7-5. 6dB Bandwidth Plot SISO ANT2 (802.11b - Ch. 6)

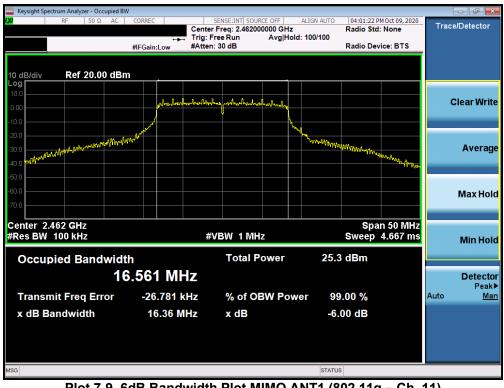
Plot 7-6. 6dB Bandwidth Plot SISO ANT2 (802.11b - Ch. 11)

FCC ID: A3LSMG998U	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 17 of 91
© 2020 PCTEST				V 9.0 02/01/2019

MIMO Antenna 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	g	6	16.35	16.35	0.500
2437	6	g	6	16.34	16.36	0.500
2462	11	g	6	16.36	16.37	0.500
2412	1	ах	8.6/7.3 (MCS0)	19.01	18.94	0.500
2437	6	ax	8.6/7.3 (MCS0)	18.98	18.93	0.500
2462	11	ах	8.6/7.3 (MCS0)	19.07	18.95	0.500

Table 7-4. Conducted Bandwidth Measurements MIMO

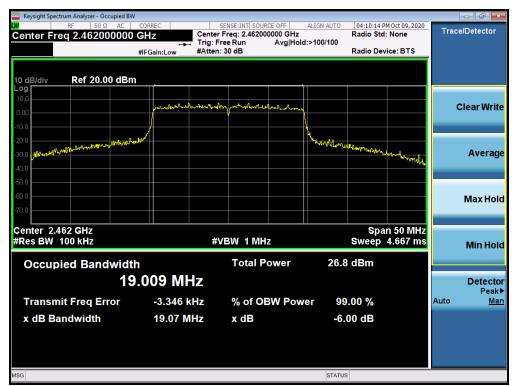

Plot 7-7. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 1)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 18 of 91
© 2020 PCTEST	·			V 9.0 02/01/2019

Plot 7-8. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 6)

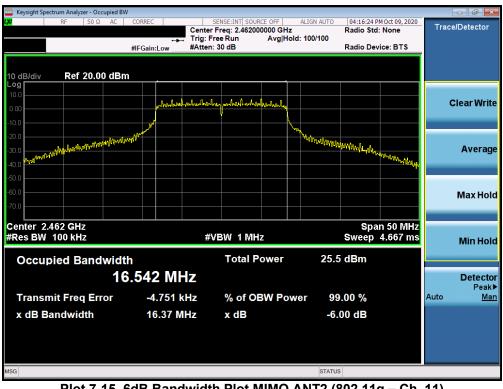

Plot 7-9. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 11)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 19 of 91
© 2020 PCTEST	-	·		V 9.0 02/01/2019



Plot 7-11. 6dB Bandwidth Plot MIMO ANT1 (802.11ax - Ch. 6)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 20 of 91
© 2020 PCTEST	•	·		V 9.0 02/01/2019


Plot 7-13. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 1)

FCC ID: A3LSMG998U	Pout to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 21 of 91
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019

Plot 7-14. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 6)

Plot 7-15. 6dB Bandwidth Plot MIMO ANT2 (802.11g – Ch. 11)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 22 of 91
© 2020 PCTEST	-	·		V 9.0 02/01/2019

Plot 7-17. 6dB Bandwidth Plot MIMO ANT2 (802.11ax - Ch. 6)

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 23 of 91
© 2020 PCTEST	-	·		V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occup	pied BW						- 0 ×
LX/ RF 50 Ω	AC CORREC	SENSE:INT SOUR		04:28:50 P Radio Std	M Oct 09, 2020	Trace	e/Detector
	→	Trig: Free Run	Avg Hold: 100/100				
	#IFGain:Low	#Atten: 30 dB		Radio Dev	rice: BTS		
10 dB/div Ref 20.00	dBm						
Log 10.0							
0.00	monolouver	hardressling restrictures bene	mahalum			C	Clear Write
-10.0							
			<u> </u>				
-20.0	and a start of the		hand the share	Land Haran	n de c		Average
					and all the state of the		Average
-40.0							
-50.0							
-60.0							Max Hold
-70.0						_	
Center 2.462 GHz				- Sna	n 50 MHz		
#Res BW 100 kHz		#VBW 1 MH	7		4.667 ms		Min Hold
							Min Hold
Occupied Bandw	vidth	Total P	ower 27.	0 dBm			
	19.001 MI	7					Detector
							Peak►
Transmit Freq Erro	or -12.835 l	kHz % of OE	3W Power 9	9.00 %		Auto	<u>Man</u>
x dB Bandwidth	18.95 N	lHz xdB	-6	.00 dB			
MSG			STAT	10			
MSG			STAT	15			

Plot 7-18. 6dB Bandwidth Plot MIMO ANT2 (802.11ax - Ch. 11)

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 24 of 91
© 2020 PCTEST	·			V 9.0 02/01/2019

7.3 Output Power Measurement §15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v05r02 – Section 8.3.1.3 PKPM1 Peak-reading Power Meter Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v05r02 – Section 8.3.2.3 Measurement using a Power Meter (PM) ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dawa 05 af 04
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 25 of 91
© 2020 PCTEST	· · ·	·		V 9.0 02/01/2019

N	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11b	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
Hz	2412	1	AVG	18.86	30.00	-11.14
Ŭ			PEAK	21.18	30.00	-8.82
2.4G	2437	6	AVG	19.42	30.00	-10.58
			PEAK	21.79	30.00	-8.21
	2462	11	AVG	19.05	30.00	-10.95
			PEAK	21.35	30.00	-8.65

Table 7-5. Conducted Output Power Measurements SISO ANT1

N	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11b	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
I	2412	1	AVG	19.72	30.00	-10.28
4G			PEAK	21.63	30.00	-8.37
5.4	2437	6	AVG	19.78	30.00	-10.22
			PEAK	21.95	30.00	-8.05
	2462	11	AVG	19.91	30.00	-10.09
			PEAK	21.79	30.00	-8.21

Table 7-6. Conducted Output Power Measurements SISO ANT2

FCC ID: A3LSMG998U	Pcoul to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 26 of 91
© 2020 PCTEST	·	•	V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	Conducted Power [dBm] ANT1 ANT2 MIMO		Conducted Power Limit	Conducted Power	
N						[dBm]	Margin [dB]	
F	2412	1	AVG	17.71	17.94	20.84	30.00	-9.16
.4G			PEAK	23.64	23.48	26.57	30.00	-3.43
4	2437	6	AVG	17.67	17.59	20.64	30.00	-9.36
2			PEAK	23.88	23.54	26.72	30.00	-3.28
	2462	11	AVG	17.79	18.12	20.97	30.00	-9.03
			PEAK	23.57	23.82	26.71	30.00	-3.29

Table 7-7. Conducted Output Power Measurements MIMO (802.11g)

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
N				ANT1	ANT1 ANT2 MIMO		[dBm]	Margin [dB]
F	2412	1	AVG	17.71	17.87	20.80	30.00	-9.20
Ŭ			PEAK	23.62	23.45	26.55	30.00	-3.45
4	2437	6	AVG	17.62	17.59	20.62	30.00	-9.38
2			PEAK	23.89	23.51	26.71	30.00	-3.29
	2462	11	AVG	17.67	18.14	20.92	30.00	-9.08
			PEAK	23.63	23.81	26.73	30.00	-3.27

Table 7-8. Conducted Output Power Measurements MIMO (802.11n)

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
				ANT1	NT1 ANT2 MIMO		[dBm]	Margin [dB]
	2412	1	AVG	14.75	15.09	17.93	30.00	-12.07
N			PEAK	21.91	22.09	25.01	30.00	-4.99
I I	2417	2	AVG	17.81	18.06	20.95	30.00	-9.05
2.4G			PEAK	23.51	23.82	26.68	30.00	-3.32
	2437	6	AVG	17.87	17.67	20.78	30.00	-9.22
			PEAK	24.07	23.57	26.84	30.00	-3.16
	2457	10	AVG	17.65	18.23	20.96	30.00	-9.04
			PEAK	23.08	23.21	26.16	30.00	-3.84
	2462	11	AVG	14.89	15.72	18.34	30.00	-11.66
			PEAK	22.09	22.43	25.27	30.00	-4.73

Table 7-9. Conducted Output Power Measurements MIMO (802.11ax)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 07 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 27 of 91
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019

Note:

Per ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 17.62 dBm for Antenna-1 and 17.59 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(17.62 dBm + 17.59 dBm) = (57.81 mW + 57.41 mW) = 115.22 mW = 20.62 dBm

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 29 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 28 of 91
© 2020 PCTEST	•	·		V 9.0 02/01/2019

7.4 Power Spectral Density

§15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

None

FCC ID: A3LSMG998U	Pout to be part of @ element			Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 29 of 91
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019

.

.

.

SISO Antenna-1 Power Spectral	Density Measurements

.

~

. .

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	4.38	8.00	-3.62	Pass
2437	6	b	1	4.74	8.00	-3.26	Pass
2462	11	b	1	3.74	8.00	-4.26	Pass

.

. .

• •

Table 7-10. Conducted Power Density Measurements SISO ANT1

Plot 7-19. Power Spectral Density Plot SISO ANT1 (802.11b – Ch. 1)

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 30 of 91
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019

Plot 7-20. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 6)

Plot 7-21. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 11)

FCC ID: A3LSMG998U	Proud to be part of @ element			Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 31 of 91
© 2020 PCTEST	·			V 9.0 02/01/2019

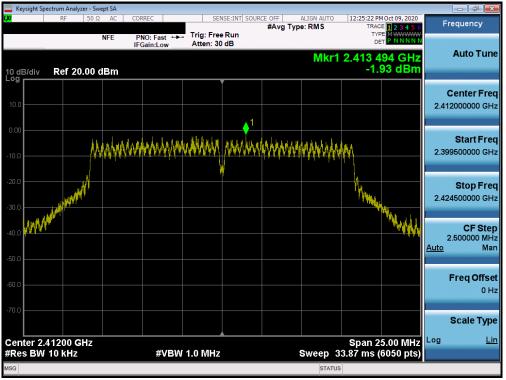
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	4.93	8.00	-3.07	Pass
2437	6	b	1	4.77	8.00	-3.23	Pass
2462	11	b	1	4.57	8.00	-3.43	Pass

Table 7-11. Conducted Power Density Measurements SISO ANT2

Plot 7-22. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 1)

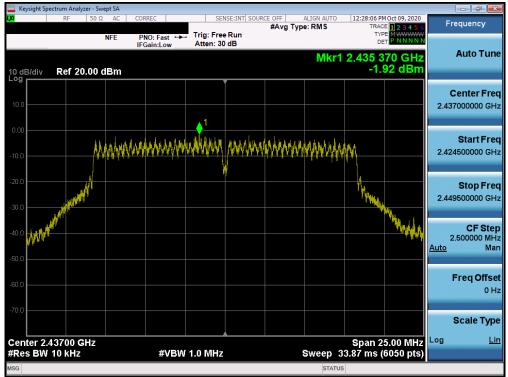
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 32 of 91
© 2020 PCTEST				V 9.0 02/01/2019

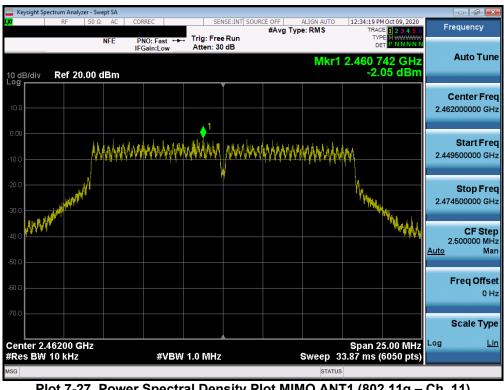
Plot 7-23. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 6)


Approved by: PCTEST MEASUREMENT REPORT <u>(</u> FCC ID: A3LSMG998U SAMSUNG (CERTIFICATION) Quality Manager to be part of 🚗 e EUT Type: Test Report S/N: Test Dates: Page 33 of 91 1M2009230152-07.A3L 10/05 - 11/20/2020 Portable Handset © 2020 PCTEST V 9.0 02/01/2019

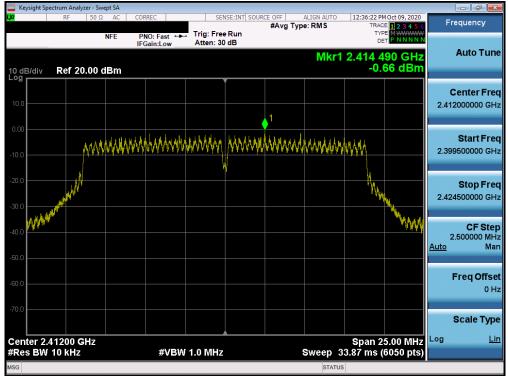
MIMO Power Spectral Density Measurements

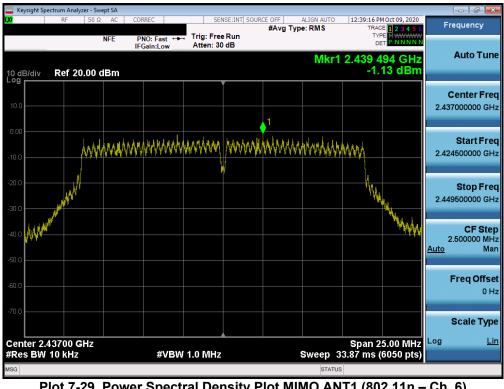
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	g	6	-1.93	-1.71	1.19	8.00	-6.81	Pass
2437	6	g	6	-1.92	-1.44	1.34	8.00	-6.66	Pass
2462	11	g	6	-2.05	-1.32	1.34	8.00	-6.66	Pass
2412	1	n	6.5/7.2 (MCS0)	-0.66	-1.44	1.98	8.00	-6.02	Pass
2437	6	n	6.5/7.2 (MCS0)	-1.13	-0.71	2.10	8.00	-5.90	Pass
2462	11	n	6.5/7.2 (MCS0)	-0.62	-0.50	2.45	8.00	-5.55	Pass
2412	1	ax	6.5/7.2 (MCS0)	-3.12	-2.36	0.28	8.00	-7.72	Pass
2437	6	ax	6.5/7.2 (MCS0)	-2.73	-2.20	0.55	8.00	-7.45	Pass
2462	11	ax	6.5/7.2 (MCS0)	-2.86	-1.52	0.87	8.00	-7.13	Pass


Table 7-12.MIMO Conducted Power Density Measurements

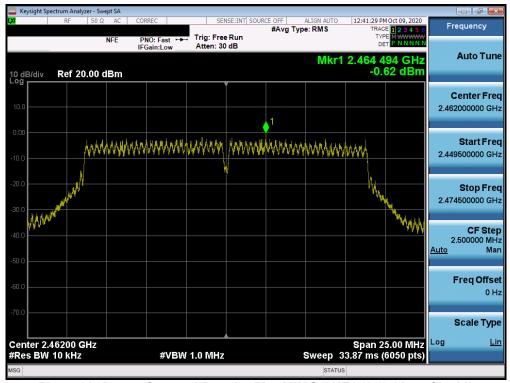

Plot 7-25. Power Spectral Density Plot MIMO ANT1 (802.11g – Ch. 1)

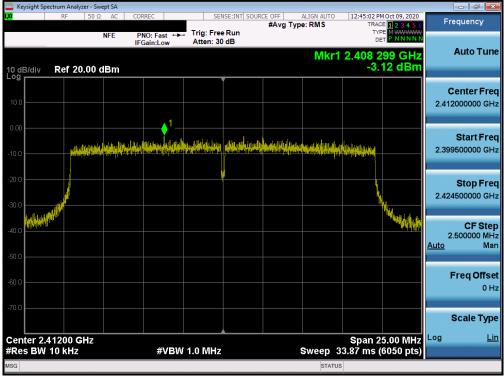
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element			Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 34 of 91
© 2020 PCTEST		•		V 9.0 02/01/2019


Plot 7-26. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 6)


Plot 7-27. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 11)

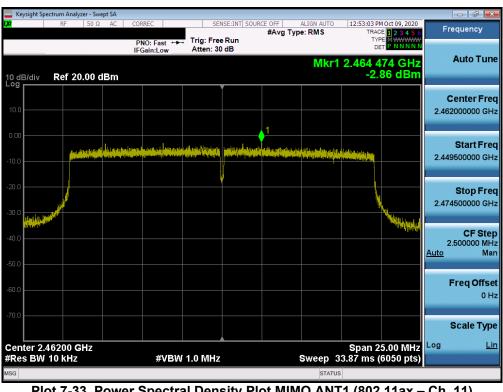
FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 25 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 35 of 91
© 2020 PCTEST	·			V 9.0 02/01/2019


Plot 7-28. Power Spectral Density Plot MIMO ANT1 (802.11n - Ch. 1)


Plot 7-29. Power Spectral Density Plot MIMO ANT1 (802.11n - Ch. 6)

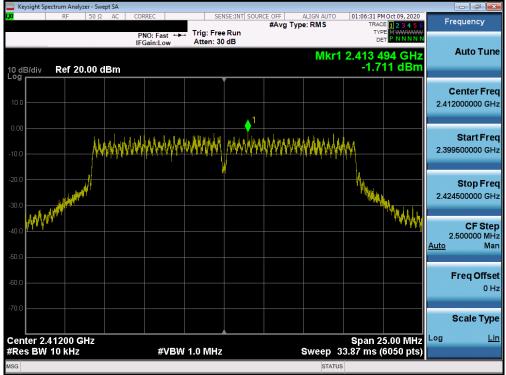
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 36 of 91
© 2020 PCTEST	·	•		V 9.0 02/01/2019

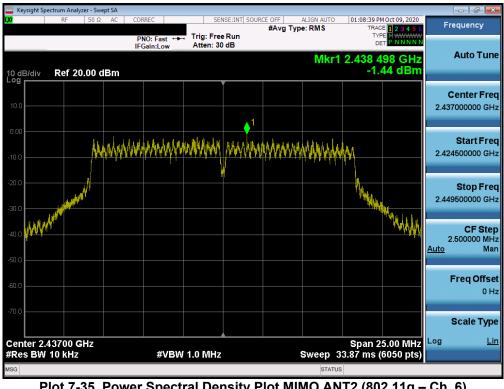
Plot 7-30. Power Spectral D	Density Plot MIMO ANT1 (802.11n – Ch. 11)
-----------------------------	---


Plot 7-31. Power Spectral Density Plot MIMO ANT1 (802.11ax - Ch. 1)

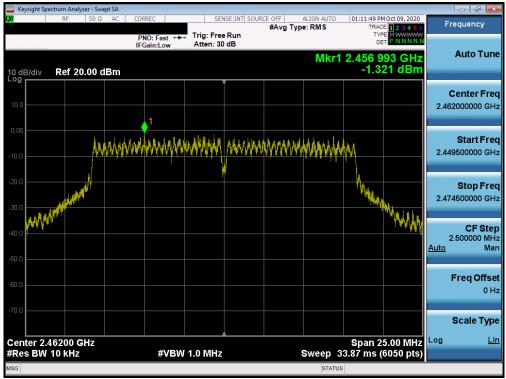
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 37 of 91
© 2020 PCTEST	•			V 9 0 02/01/2019

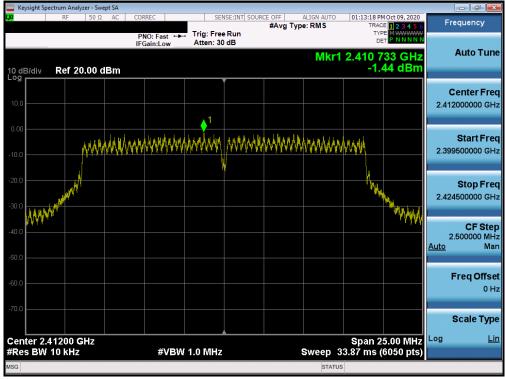
🔤 Keysight Spe	ctrum Analyzer - Swe										
LXI	RF 50 Ω	AC CC	ORREC	SEI	ISE:INT SOUR	CE OFF #Avg Typ	ALIGN AUTO		M Oct 09, 2020	F	requency
10 dB/div	Ref 20.00 d	I	PNO: Fast ↔ Gain:Low	. Trig: Free Atten: 30				1 2.433			Auto Tune
											Center Freq 7000000 GHz
-10.0		<mark>, har mitting hiji ki</mark>	n farmen al tri fan Alfer Di Ne ferren al tri fan Alfer Di	an himeit heitidu je Heregee	paté Mitter Balla Juanti Persiti State Paté Juanti	an da katalan gana ana ang ka	n de la facta de la compañía de la c			2.42	Start Freq 4500000 GHz
-20.0										2.44	Stop Freq 9500000 GHz
-40.0										Auto	CF Step 2.500000 MHz Man
-60.0											Freq Offset 0 Hz
-70.0										Log	Scale Type
Center 2.4 #Res BW	13700 GHz 10 kHz		#VBW	1.0 MHz			Sweep	Span 2 33.87 ms	25.00 MHz (6050 pts)		<u>Lin</u>
MSG							STATU	JS			


Plot 7-32. Power Spectral Density Plot MIMO ANT1 (802.11ax - Ch. 6)

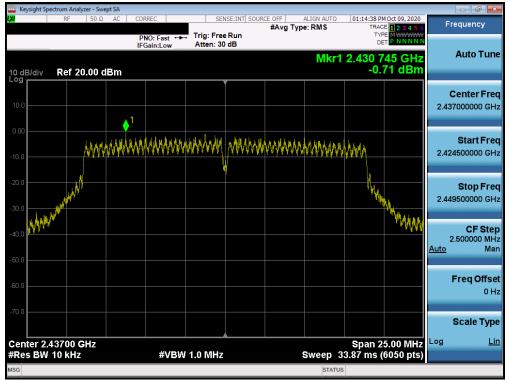

Plot 7-33. Power Spectral Density Plot MIMO ANT1 (802.11ax - Ch. 11)

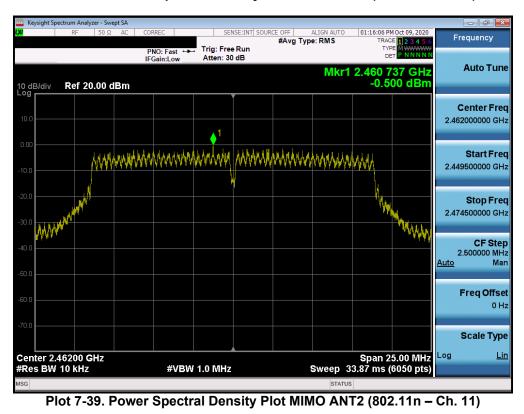
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 91
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	••	
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019


Plot 7-34. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 1)


Plot 7-35. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 6)

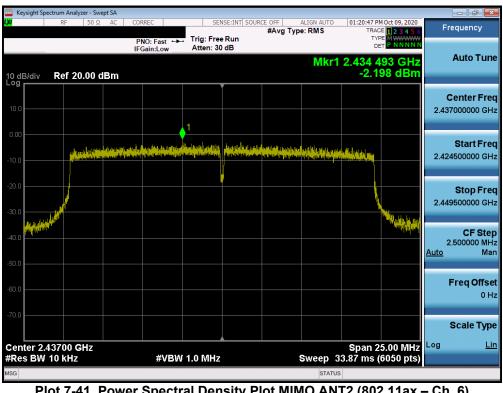
FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 91
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	51	
© 2020 PCTEST	·	·		V 9.0 02/01/2019


Plot 7-36. Power	Spectral Densit	y Plot MIMO	ANT2	(802.11	g – Ch. 1	1)
------------------	-----------------	-------------	------	---------	-----------	----


Plot 7-37. Power Spectral Density Plot MIMO ANT2 (802.11n - Ch. 1)

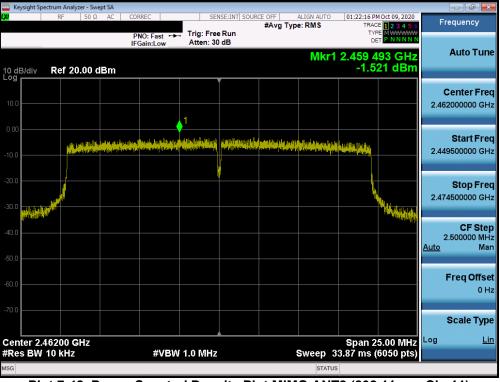
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 40 of 91
© 2020 PCTEST				V 9 0 02/01/2019

Plot 7-38. Power Spectral Density Plot MIMO ANT2 (802.11n - Ch. 6)



Approved by: PCTEST MEASUREMENT REPORT <u>(</u> FCC ID: A3LSMG998U SAMSUNG (CERTIFICATION) Quality Manager be part of 🙈 e EUT Type: Test Report S/N: Test Dates: Page 41 of 91 1M2009230152-07.A3L 10/05 - 11/20/2020 Portable Handset © 2020 PCTEST V 9.0 02/01/2019

🔤 Keysight Spe	ctrum Analyzer - Swe										
LXI	RF 50 Ω	AC COF	RREC	SEN	SE:INT SOUR	E OFF #Avg Typ	ALIGN AUTO e: RMS		HOct 09, 2020	Fi	equency
10 dB/div	Ref 20.00 d	IFO	NO: Fast ↔ Gain:Low	Trig: Free Atten: 30				TYF DE 2.409 4			Auto Tune
10.0				1							Center Freq 2000000 GHz
-10.0		11 pyled a Marilainson Mangaraki paraasin	lind ki la pi kan dan		- Andreise Andreise Provinsion (Sector)	ana ()) ¹⁰ kang katulat <mark>ang a</mark> Alay () maalay () maalay ()	la la la constana a con			2.39	Start Freq 9500000 GHz
-20.0 -30.0	weither									2.42	Stop Freq 4500000 GHz
-40.0										Auto	CF Step 2.500000 MHz Man
-60.0											Freq Offset 0 Hz
-70.0 Center 2.4	1200 GHz							Span 2	5.00 MHz		Scale Type <u>Lin</u>
#Res BW			#VBW	1.0 MHz				Span 2 33.87 ms (6050 pts)		
MSG							STATU	5			


Plot 7-40. Power Spectral Density Plot MIMO ANT2 (802.11ax - Ch. 1)

Plot 7-41. Power Spectral Density Plot MIMO ANT2 (802.11ax - Ch. 6)

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 42 of 91
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019

Plot 7-42. Power Spectral Density Plot MIMO ANT2 (802.11ax – Ch. 11)

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 D01 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted power spectral density was measured to be -0.66 dBm for Antenna-1 and - 1.44 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(-0.66 dBm + -1.44 dBm) = (0.86 mW + 0.72 mW) = 1.58 mW = 1.98 dBm

FCC ID: A3LSMG998U	Pout to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 42 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 43 of 91
© 2020 PCTEST		·		V 9.0 02/01/2019

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6.5/7.2Mbps for "n" mode, and 8.6Mbps for "ax" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

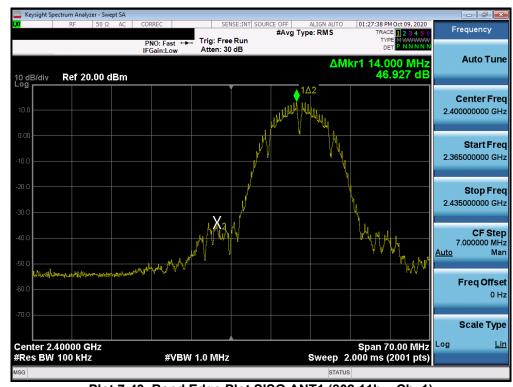
ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

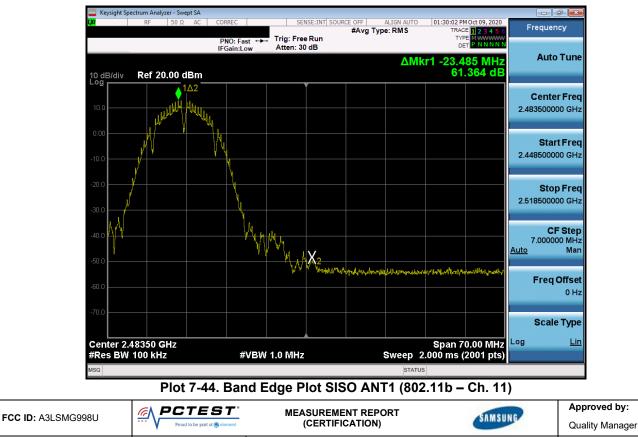
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-4. Test Instrument & Measurement Setup

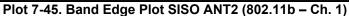
Test Notes

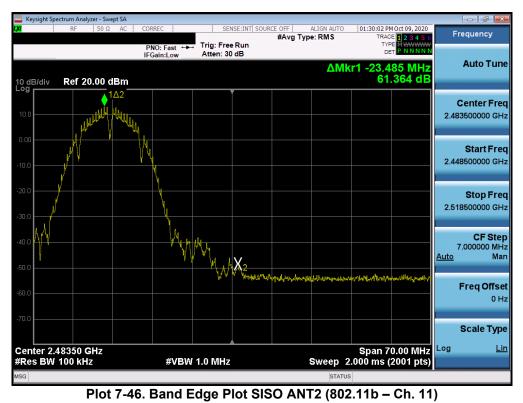
None


FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 01	
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 44 of 91	
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019	

SISO Antenna-1 Conducted Emissions at the Band Edge

 Test Report S/N: 1M2009230152-07.A3L
 Test Dates: 10/05 - 11/20/2020
 EUT Type: Portable Handset
 Page 45 of 91


 © 2020 PCTEST
 V9.0 02/01/2019

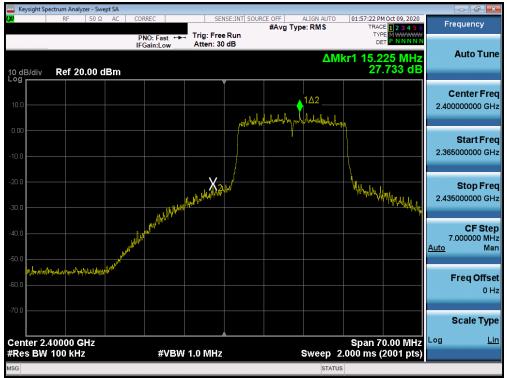

 All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and

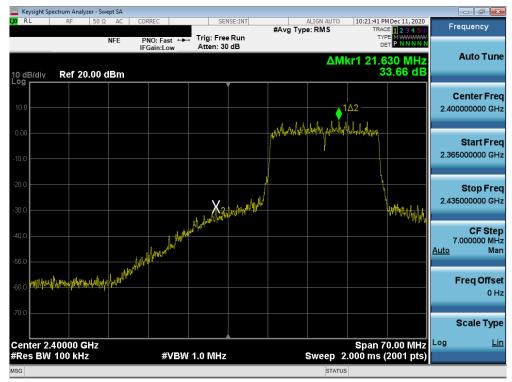
SISO Antenna-2 Conducted Emissions at the Band Edge



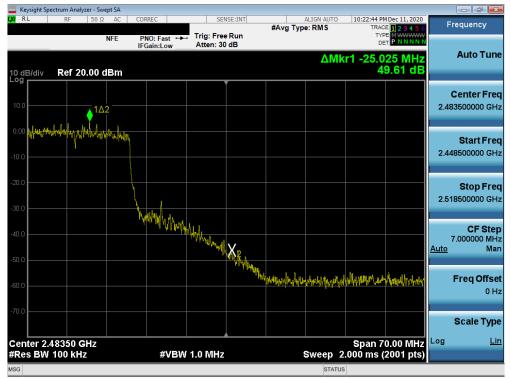
FCC ID: A3LSMG998U	Pout to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 46 of 91
© 2020 PCTEST		•		V 9.0 02/01/2019

MIMO Conducted Emissions at the Band Edge



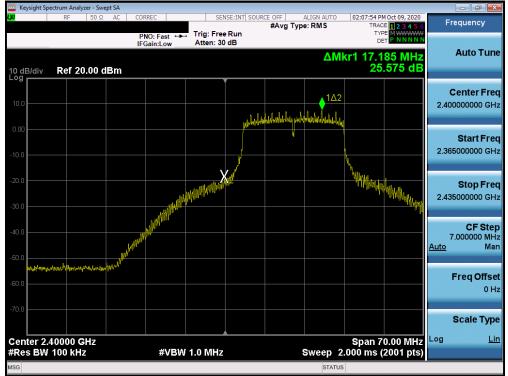


FCC ID: A3LSMG998U	Proud to be part of @ element	(CERTIFICATION)	SAMSUNG	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 47 of 91
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Fage 47 01 91
© 2020 PCTEST				V 9 0 02/01/2019




Plot 7-50. Band Edge Plot MIMO ANT1 (802.11ax – Ch. 2)

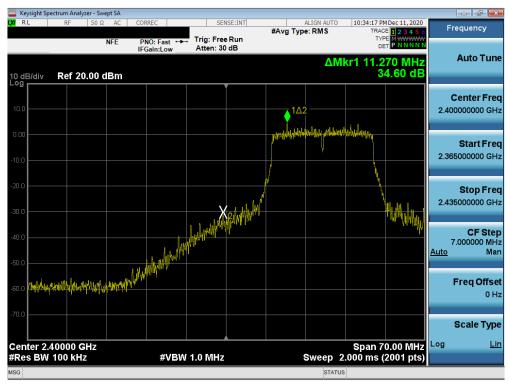
FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 48 of 91
© 2020 PCTEST	•	•		V 9 0 02/01/2019


Plot 7-51. Band Edge Plot MIMO ANT1 (802.11ax - Ch. 10)

Plot 7-52. Band Edge Plot MIMO ANT1 (802.11ax - Ch. 11)

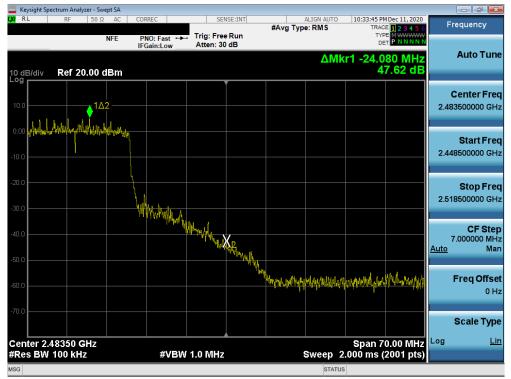
FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 49 of 91
© 2020 PCTEST	•	·		V 9.0 02/01/2019

Plot 7-53. Band Edge Plot MIMO ANT2 (802.11n - Ch. 1)


Plot 7-54. Band Edge Plot MIMO ANT2 (802.11n - Ch. 11)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 50 of 91
© 2020 PCTEST				V 9.0 02/01/2019

Keysight Spe	ectrum Analyzer - S									_	
LXI	RF 50 :		CORREC		SE:INT SOUR	CE OFF	ALIGN AUTO e: RMS	TRAC	Oct 09, 2020	Freq	uency
10 dB/div Log	Ref 20.00		PNO: Fast ↔ IFGain:Low	. Trig: Free Atten: 30			ΔΜ	DE kr1 17.6	T P NNNNN	A	uto Tune
10.0					muhala	Inthebolies with	1∆2	4			nter Freq 00000 GHz
-10.0											tart Freq 00000 GHz
-20.0			When Mit	And Malerkan	24 ¹			- Anthony	within the		Stop Freq 00000 GHz
-40.0		Marr	and the second sec							7.00 <u>Auto</u>	CF Step 00000 MHz Man
-60.0	nnetivlaetterestanterstant	فتعميلهمال								Fr	eq Offsel 0 Hz
-70.0											ale Type
Center 2.4 #Res BW	40000 GHz 100 kHz		#VBW	1.0 MHz			Sweep 2	Span 7 2.000 ms (2	0.00 MHz 2001 pts)	LUG	<u></u>
MSG							STATUS	5			


Plot 7-55. Band Edge Plot MIMO ANT2 (802.11ax - Ch. 1)

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 51 of 91
© 2020 PCTEST	•			V 9.0 02/01/2019

Plot 7-57. Band Edge Plot MIMO ANT2 (802.11ax - Ch. 10)

Plot 7-58. Band Edge Plot MIMO ANT2 (802.11ax - Ch. 11)

FCC ID: A3LSMG998U	Poud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 52 of 91
© 2020 PCTEST	•			V 9.0 02/01/2019

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "n", "ax" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of ANSI C63.10-2013 and KDB 558074 D01 v05r02.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5 ANSI C63.10-2013 – Section 14.3.3 KDB 662911 D01 v02r01 – Section E)3)b)

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

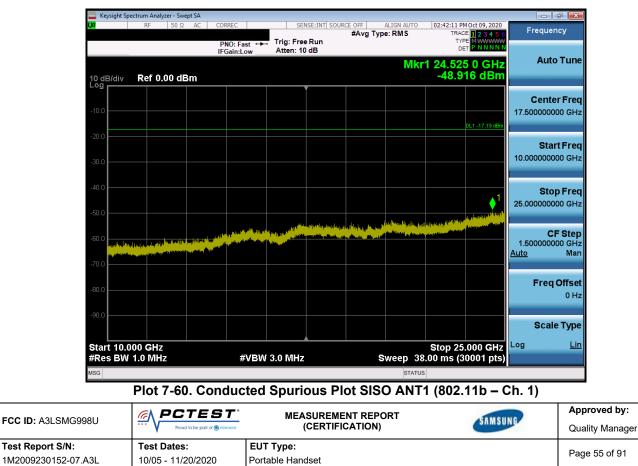
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 53 of 91
© 2020 PCTEST	•			V 9.0 02/01/2019

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)3)b), it was unnecessary to show compliance through the summation of test results of the individual outputs.


FCC ID: A3LSMG998U	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E4 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 54 of 91
© 2020 PCTEST			V 9.0 02/01/2019

Keysight Spectrum Analyzer - Swept SA SENSE:INT SOURCE OFF ALIGN AUTO 02:44:18 PM Oct 09, 2020 Frequency #Avg Type: RMS TRACE 1 2 3 4 5 Trig: Free Run PNO: Fast IFGain:Low Atten: 30 dB DE Auto Tune Mkr1 3.033 0 GHz -40.185 dBm Ref 20.00 dBm 10 dB/div **Center Freq** 5.015000000 GHz Start Freq 30.000000 MHz L1 -17.19 di Stop Freq 10.00000000 GHz CF Step 997.000000 MHz Auto Man **Freq Offset** 0 Hz Scale Type Start 30 MHz #Res BW 1.0 MHz Stop 10.000 GHz Sweep 18.00 ms (30001 pts) Log Lin #VBW 3.0 MHz SG STATUS

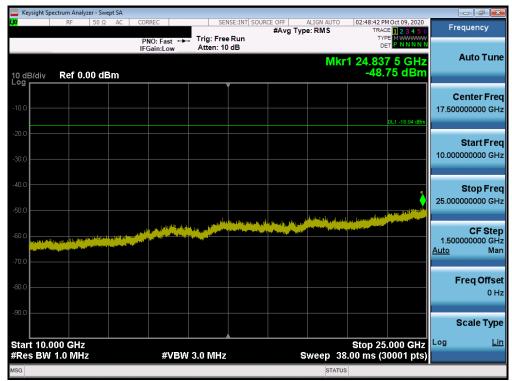
SISO Antenna-1 Conducted Spurious Emission

Plot 7-59. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 1)

V 9.0 02/01/2019

© 2020 PCTEST

10/05 - 11/20/2020


All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Portable Handset

Keysight Spe	ctrum Analy RF		AC AC	00000	-0				ALIGN AUTO	0.0.000	M Oct 09, 2020	_	
	KF	50 Ω	AC	CORRE	<u>-</u> C	SE	NSE:INT SO		ype: RMS	TRAC	E 1 2 3 4 5 6	Fred	luency
				PNC IFGa):Fast ↔ in:Low	Trig: Fre Atten: 3				TYP			
0 dB/div	Ref 20).00 dl	Bm						Mł	(r1 3.16 -39.3	5 2 GHz 51 dBm	A	uto Tur
							Ĭ					Ce	nter Fre
10.0												5.0150	00000 GH
1.00												5	Start Fre
10.0												30.0	00000 MH
											DL1 -16.94 dBm		
20.0													Stop Fre
30.0												10.0000	00000 GF
0.0					1								CF Ste
0.0								and the set of the set				997.0 <u>Auto</u>	00000 MI M
U.U part fait												_	
50.0												Fr	e q Offs 0 I
0.0												S	cale Typ
tart 30 N							A			Stop 10	.000 GHZ	Log	L
Res BW	1.0 MH:	Z			#VBW	/ 3.0 MHz			Sweep 18	3.00 ms (3	0001 pts)		

Plot 7-61. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 6)

Plot 7-62. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 6)

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 56 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 56 of 91
© 2020 PCTEST				V 9.0 02/01/2019

Keysight Spectrum	ectrum Analyz		SA										
L <mark>XI</mark>	RF	50 Ω	AC	CORREC		SEI	ISE:INT SOU	RCE OFF	ALIGN AUTO		PM Oct 09, 2020 ACE 1 2 3 4 5 6	Frequ	ency
				PNO: Fa IFGain:L	ist ↔ ow	Trig: Free Atten: 30				т			
10 dB/div Log	Ref 20	.00 dB	m						M	kr1 3.1 -39.	74 5 GHz 544 dBm	Au	to Tune
10.0													ter Freq 0000 GHz
-10.0											DL1 -17.09 dBm		art Freq 0000 MHz
-20.0												St 10.00000	o p Freq 0000 GHz
-40.0	ران اور رواندی مالیکری رواندی	James and States					an an tha an	d. ette Kingson Hangdore Manada av på kannade					CF Step 0000 MHz Man
-60.0												Fre	q Offsel 0 Hz
-70.0 Start 30 N	AH ₇									Stop 1	0.000 GHz	Sca	ale Type <u>Lin</u>
#Res BW	1.0 MHz	Z		#	VBW	3.0 MHz		s	weep 1	8.00 ms ((30001 pts)		
MSG									STAT	JS			

Plot 7-63. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 11)

Plot 7-64. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 11)

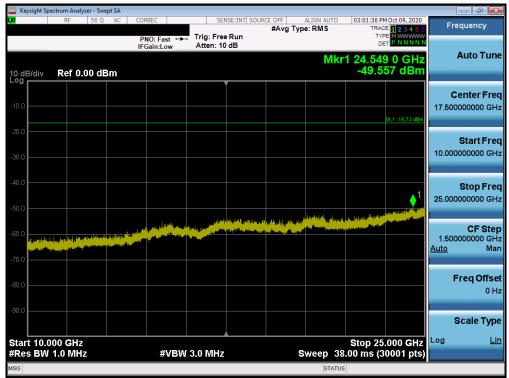

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 57 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 57 of 91
© 2020 PCTEST				V 9.0 02/01/2019

Keysight Spectrum Analyzer - Swept SA 02:57:15 PM Oct 09, 2020 TRACE 1 2 3 4 5 AL AUTO Frequency #Avg Type: RMS Trig: Free Run тур PNO: Fast NNNN DET Atten: 30 dB IFG ·I ov Auto Tune Mkr1 3.290 2 GHz -39.411 dBm 10 dB/div Log Ref 20.00 dBm **Center Freq** 5.015000000 GHz Start Freq 30.000000 MHz Stop Freq 10.00000000 GHz **♦**¹ CF Step 997.000000 MHz <u>Auto</u> Man **Freq Offset** 0 Hz Scale Type Stop 10.000 GHz Sweep 18.00 ms (30001 pts) Log Start 30 MHz #Res BW 1.0 MHz Lin #VBW 3.0 MHz

SISO Antenna-2 Conducted Spurious Emissions

Plot 7-65. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 1)

Plot 7-66. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 1)


FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Degra 59 of 01	
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 58 of 91	
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019	

2020 PCTEST

Keysight Sp	ectrum Analy											
	RF	50 Ω	AC	CORREC		SE	NSE:INT SO		ALIGN AUTO	03:03:23 PM Oct 09 TRACE 123		requency
				PNO: IFGair	Fast ↔ n:Low	Trig: Fre Atten: 3		#Avg i	ype. Kiwis	TYPE M WW		
0 dB/div	Ref 2	5.00 di	Зm						Mk	r1 3.177 2 0 -33.942 d	SHZ Bm	Auto Tur
							Ĭ					Center Fre
15.0											5.01	5000000 GH
5.00												Start Fre
5.00											3	0.00000 MH
5.0										DL1 -16.	73 cBm	Stop Fre
25.0											10.00	10000000 GI
15.0				•	1							CF Ste
يلغل والم	a sublicity of the last	and the second second		an a		ang pallang di kang b		And Softward States and a Distance States	and a strange s	اللغان ويعاد والقلور ويقاوم الأدي الأنور ويعاد ويتقاد وماكر ويتقاور الأدي	Auto	7.000000 MI Mi
5.0 <mark>Mar^a</mark>	and a state of the second s											
5.0												Freq Offs 0 I
i5.0												Coole Tre
												Scale Typ
tart 30 N Res BW		Z			#VBW	/ 3.0 MHz			Sweep 18	Stop 10.000 ک 00 ms (30001.		Ŀ
G									STATUS			

Plot 7-67. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 6)

Plot 7-68. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 6)

FCC ID: A3LSMG998U	Pout to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 59 of 91
© 2020 PCTEST	•	·		V 9.0 02/01/2019

Keysight Sp	ectrum Analy		t SA									_	- 7
a	RF	50 Ω	AC	CORRE	C	SE	NSE:INT SOU	RCE OFF	ALIGN AUTO		PM Oct 09, 2020	Free	quency
					:Fast ↔ in:Low	. Trig: Fre Atten: 3				ī			
0 dB/div	Ref 2	5.00 dl	3m						N	lkr1 3.1 -34.	64 2 GHz 012 dBm	-	Auto Tun
							Ĭ						enter Fre
15.0												5.0150	00000 GH
5.00													Start Fre
5.00												30.0	00000 MH
15.0											DL1 -16.69 dBm		Stop Fre
25.0													000000 GH
					1								CF Ste
15.0	يندون الايا <mark>ر</mark> ين	alter freiter f		Trapenet P		and the paper of the last	a Swepthrough		an di gana kana ka		and spectra the	997.0 <u>Auto</u>	00000 Mi Ma
5.0	فالقلمع وماليعي	الدائم والاعلام.				handelaan di kala				and the second second second		<u>riaro</u>	
5.0												Fi	r eq Offs 0 I
5.0													
												S	cale Typ
tart 30 P	MHz 1.0 MH				#\(P)A	/ 3.0 MHz			Swoon	Stop 1	0.000 GHz (30001 pts)	Log	L
G G G G G G G G G G G G G G G G G G G	nu win	2			#VBW	5.0 WH2			Sweep		(3000 F hts)		

Plot 7-69. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 11)

Plot 7-70. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 11)

FCC ID: A3LSMG998U	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 60 of 91
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-13 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]		
Above 960.0 MHz	500	3		

Table 7-13. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3 KDB 558074 D01 v05r02 – Sections 8.6, 8.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 61 of 91
© 2020 PCTEST				V 9 0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

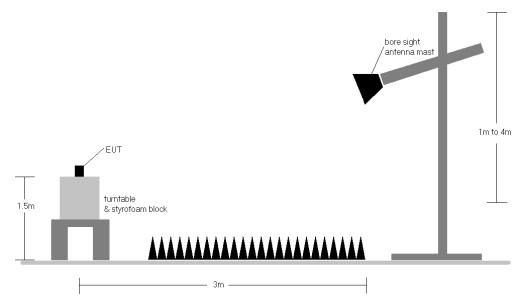


Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- 1. The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in Section 15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-13.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions

FCC ID: A3LSMG998U	Proud to be part of the element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 62 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 62 of 91
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019

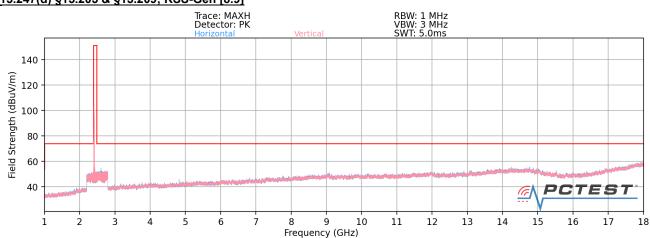
produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.

- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

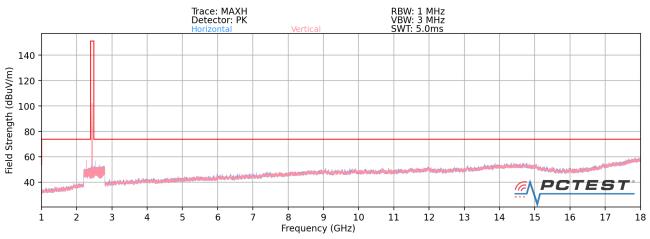
Determining Spurious Emissions Levels

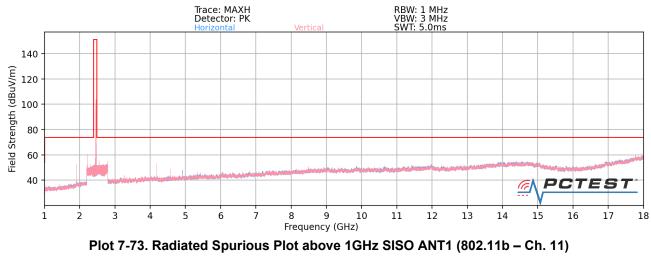
- ο Field Strength Level [dB_μV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]


Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMG998U	PCTEST [®] Proud to be part of ® element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset	Page 63 of 91
© 2020 PCTEST			V 9.0 02/01/2019



7.7.1 SISO Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

FCC ID: A3LSMG998U	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 01
1M2009230152-07.A3L	10/05 - 11/20/2020	Portable Handset		Page 64 of 91
© 2020 PCTEST				V 9.0 02/01/2019