

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

PART 22 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

1/16/2021 - 1/26/2021 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2101110003-02.A3L

FCC ID:

Applicant Name:

A3LSMG998JPN

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification SC-52B Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 22 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 1 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 1 of 65
© 2021 PCTEST	•	·		V1.2 11/2/2020



TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Cellular - Base Frequency Blocks	6
	3.3	Cellular - Mobile Frequency Blocks	6
	3.4	Radiated Power and Radiated Spurious Emissions	7
4.0	MEAS		8
5.0	TEST	EQUIPMENT CALIBRATION DATA	9
6.0	SAMF	PLE CALCULATIONS	.10
7.0	TEST	RESULTS	.12
	7.1	Summary	. 12
	7.2	Occupied Bandwidth	. 13
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	. 22
	7.4	Band Edge Emissions at Antenna Terminal	. 38
	7.5	Radiated Power (ERP)	. 46
	7.6	Radiated Spurious Emissions Measurements	. 49
	7.7	Frequency Stability / Temperature Variation	. 58
8.0	CON	CLUSION	.65

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 2 01 65
© 2021 PCTEST				V1.2 11/2/2020

PART 22 MEASUREMENT REPORT

Overview Table (Front Page Table)								
			T	EF	۲P	El	RP	Fundamentaria
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Max. Power [W]	Max. Power [dBm]	Emission Designator
GSM/GPRS	-	GMSK	824.2 - 848.8	0.365	25.62	0.598	27.77	243KGXW
EDGE	-	8-PSK	824.2 - 848.8	0.085	19.27	0.139	21.42	237KG7W
WCDMA	-	Spread Spectrum	826.4 - 846.6	0.069	18.36	0.112	20.51	4M16F9W
	10 MHz	QPSK	829.0 - 844.0	0.067	18.26	0.110	20.41	9M02G7D
		16QAM	829.0 - 844.0	0.058	17.64	0.095	19.79	8M97W7D
		64QAM	829.0 - 844.0	0.047	16.71	0.077	18.86	9M00W7D
		QPSK	826.5 - 846.5	0.064	18.04	0.104	20.19	4M51G7D
	5 MHz	16QAM	826.5 - 846.5	0.057	17.57	0.094	19.72	4M51W7D
LTE Band 5		64QAM	826.5 - 846.5	0.046	16.67	0.076	18.82	4M52W7D
LIE Banu S		QPSK	825.5 - 847.5	0.063	18.02	0.104	20.17	2M70G7D
	3 MHz	16QAM	825.5 - 847.5	0.057	17.57	0.094	19.72	2M70W7D
		64QAM	825.5 - 847.5	0.046	16.59	0.075	18.74	2M70W7D
		QPSK	824.7 - 848.3	0.063	17.97	0.103	20.12	1M09G7D
	1.4 MHz	16QAM	824.7 - 848.3	0.057	17.58	0.094	19.73	1M10W7D
		64QAM	824.7 - 848.3	0.046	16.60	0.000	18.75	1M09W7D

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 3 of 65
© 2021 PCTEST		·		V1.2 11/2/2020

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 4 of CE
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 4 of 65
© 2021 PCTEST	•	•		V1 2 11/2/2020

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID:A3LSMG998JPN**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 22.

Test Device Serial No.: 0466M, 70564H, 70681H, 0482M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

2.3 Test Configuration

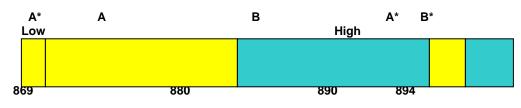
The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

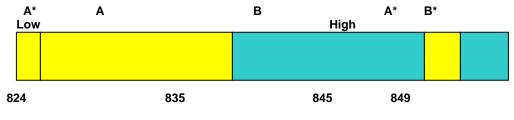
FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 5 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 5 of 65
© 2021 PCTEST				V1 2 11/2/2020

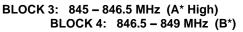

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None


3.2 Cellular - Base Frequency Blocks


BLOCK 1: 869 - 880 MHz (A* Low + A) BLOCK 2: 880 - 890 MHz (B)

BLOCK 3:	890 – 891.5 MHz	(A* High)
BLOCK 4:	891.5 – 894 MHz	(B*)

3.3 Cellular - Mobile Frequency Blocks

BLOCK 1: 824 – 835 MHz (A* Low + A) BLOCK 2: 835 – 845 MHz (B)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 6 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 6 of 65
© 2021 PCTEST	•	·		V1.2 11/2/2020

3.4 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI/TIA-603-E-2016. A halfwave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \text{ [dBm]}}$ – cable loss [dB].

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]} =$ Measured amplitude level_[dBm] + 107 + Cable Loss_[dB] + Antenna Factor_[dB/m] And EIRP_[dBm] = E_[dB\mu V/m] + 20logD - 104.8; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-E-2016.

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of the element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 7 01 05
© 2021 PCTEST				\/1.2.11/2/2020

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of the element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 6 01 05
© 2021 PCTEST				V1 2 11/2/2020

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx2	Licensed Transmitter Cable Set	4/9/2020	Annual	4/9/2021	LTx2
-	LTx4	Licensed Transmitter Cable Set	7/9/2020	Annual	7/9/2021	LTx4
-	LTx5	LIcensed Transmitter Cable Set	4/9/2020	Annual	4/6/2021	LTx5
Agilent	N9020A	MXA Signal Analyzer	8/4/2020	Annual	8/4/2021	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	7/17/2020	Annual	7/17/2021	MY52350166
Agilent	E5515C	Wireless Communications Test Set		N/A		GB45360985
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6200901190
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2019	Biennial	10/10/2021	121034
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/12/2020	Biennial	3/12/2022	128337
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	2/22/2019	Biennial	2/22/2021	128338
Mini Circuits	TVA-11-422	RF Power Amp		N/A		QA1317001
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11403100002
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		100976
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		112347
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	7/15/2020	Annual	7/15/2021	100342
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/10/2020	Annual	2/10/2021	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/21/2020	Annual	2/21/2021	102133
Sunol	DRH-118	Horn Antenna (1-18 GHz)	8/27/2019	Biennial	8/27/2021	A042511

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		
© 2021 PCTEST				V1 2 11/2/2020

6.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHzG = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W EDGE BW = 250 kHz

G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	dset	
© 2021 PCTEST	•	·		V1 2 11/2/2020

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 11 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	et	
© 2021 PCTEST	-	·		V1.2 11/2/2020

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMG998JPN
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>GSM/GPRS/WCDMA</u>

Test Condition	Test Description	FCC Part Section(s)	RSS Section(s)	Test Limit	Test Result	Reference
	Occupied Bandwidth	2.1049	RSS-Gen(6.7)	N/A	PASS	Section 7.2
	Conducted Band Edge / Spurious Emissions	2.1051, 22.917(a)	RSS-132(5.5)	> 43 + 10log10(P[Watts]) at Band Edge and for all out-of- band emissions	PASS	Sections 7.3, 7.4
CONDUCTED	Transmitter Conducted Output Power	2.1046	RSS-132(5.4)	N/A	PASS	See RF Exposure Report
0	Frequency Stability	2.1055, 22.355	RSS-132(5/3)	Fundamental emissions stay within authorized frequency block	PASS	Section 7.8
	Effective Radiated Power / Equivalent Isotropic Radiated Power	22.913(a)(5)	RSS-132(5.4)	< 7 Watts max. ERP	PASS	Section 7.6
RADI	Radiated Spurious Emissions	2.1053, 22.917(a)	RSS-132(5.5)	> 43 + 10 log10 (P[Watts]) for all out-of-band emissions	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST 2G/3G Automation Version 4.5, LTE Automation Version 5.3.

FCC ID: A3LSMG998JPN	Postest*	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		
© 2021 PCTEST				V1 2 11/2/2020

7.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	table Handset		
© 2021 PCTEST	•	•		V1.2 11/2/2020	

LTE Band 5

🔤 Keysight Spect			upied BW										
LXI RL	RF	50 Ω	AC	CORRE	C		SENSE:INT Freg: 836.50	0000 MHz	ALIGN AUTO	10:44:39 P Radio Std	M Jan 15, 2021	Trac	e/Detector
					↔	, Trig: F	ree Run		ld: 100/100				
				#IFGa	n:Low	#Atten:	36 dB			Radio Dev	vice: BTS		
10 dB/div	Ref	40.00	dBm										
Log 30.0													
												0	Clear Write
20.0					, marine the	an and a second s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	war when we are					
10.0									1				
0.00				- /					<u>ل</u>				
-10.0				-					1,				Average
-20.0 Annahra	Al March	Mr. Mark	dan m	~					mar and the	Woodhall	Marcal all		
-30.0										10.11	A MARK OF DAMA		
-40.0													Max Hold
-50.0													maxilora
Center 836		z				-443	10W 76A				5.00 MHz		
Res BW 24	IU KHZ					#\	/BW 750	KHZ		SW	eep 1 ms		Min Hold
Occup	ied R	and	widt	h			Total	Power	33.	6 dBm			
Occup		anten											
			9.0	J19	9 MI	ΗZ							Detector Peak►
Transm	it Fred	Erro	or		7.767	kHz	% of C	BW Pov	ver 99	9.00 %		Auto	Man
x dB Ba	ndwid	lth		c	.835 N	11-	x dB		-26	.00 dB			
	nuwiu				.055 W	1112	X UD		-20	.00 UB			
MSG									STATU	s			

Plot 7-1. Occupied Bandwidth Plot (LTE Band 5 - 10MHz QPSK - Full RB Configuration)

Plot 7-2. Occupied Bandwidth Plot (LTE Band 5 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 14 01 05
© 2021 PCTEST	•	•		V1.2 11/2/2020

2021 PCTEST

Keysight Spectrum Analyzer - Occupied E					ø
LXI RL RF 50Ω AC	CORREC	SENSE:INT Center Freg: 836.500	ALIGN AUTO	10:45:01 PM Jan 15, 20: Radio Std: None	Trace/Detector
	•••	Trig: Free Run	Avg Hold: 100/100		
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS	_
10 dB/div Ref 40.00 dB	m				
30.0					
20.0		and the forther way to be a stand of the sta			Clear Write
10.0	moran	and a start a provide a start of the start o	Umaysen		
0.00			\		
-10.0			\		Average
-20.0	- Charles -		human -	10 0 0 0 0 0	
-20.0 merchanter and a start a				M. Muldury	<i>n</i> ,
-40.0					Max Hold
-50.0					ινίαχ ποιά
Center 836.50 MHz			11_	Span 25.00 MH	
Res BW 240 kHz		#VBW 750 k	HZ	Sweep 1 m	S Min Hold
Occupied Bandwid	lth	Total P	ower 31.	7 dBm	
	.0042 MH	-			Detector
9	.0042 1016	12			Detector Peak►
Transmit Freq Error	-10.632 k	Hz % of OE	3W Power 9	9.00 %	Auto <u>Man</u>
x dB Bandwidth	9.849 M	Hz xdB	-26	.00 dB	
MSG			STAT	IS	
			JIAN .		

Plot 7-3. Occupied Bandwidth Plot (LTE Band 5 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-4. Occupied Bandwidth Plot (LTE Band 5 - 5MHz QPSK - Full RB Configuration)

FCC ID: A3LSMG998JPN	PCTEST Poud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset			
© 2021 PCTEST		•		V1.2 11/2/2020	

Keysight Spectrum Analyzer - O	ccupied BW									- 0 ×
🗶 RL RF 50 S	AC CO	RREC	SENSE	:INT : 836.500000		ALIGN AUTO	10:40:35 Pf Radio Std:	4 Jan 15, 2021	Trace	/Detector
	#IF	⊶ Gain:Low	Trig: Free R #Atten: 36 c	un A	vg Hold:	100/100	Radio Sta:			
10 dB/div Ref 40.0	00 dBm									
30.0 20.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.					c	lear Write
0.00										
10.0 20.0 20.0 Mr. M. M. M. M.						hum				Average
30.0 30.0 40.0 50.0								~~~~·		Max Hold
Center 836.500 MHz Res BW 120 kHz			#VBW	/ 390 kHz				2.50 MHz ep 1 ms		Min Hole
Occupied Band				otal Pow	/er	32.4	dBm			
		16 MH								Detecto Peak
Transmit Freq Er	ror	3.284 kl	-lz %	6 of OBW	Powe	er 99	.00 %		Auto	Ma
x dB Bandwidth		5.006 MI	Hz x	dB		-26.	00 dB			
SG						STATUS				

Plot 7-5. Occupied Bandwidth Plot (LTE Band 5 - 5MHz 16-QAM - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 5 - 5MHz 64-QAM - Full RB Configuration)

FCC ID: A3LSMG998JPN	PCTEST. Proud to be part of @wkerment	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 16 01 65
© 2021 PCTEST				V1.2 11/2/2020

Keysight Spectrum Analyzer - Occupied B					
LXI RE 50 Ω AC	CORREC	SENSE:INT Center Freq: 836.500	ALIGN AUTO	10:32:20 PM Jan 15, 20 Radio Std: None	Trace/Detector
		Trig: Free Run #Atten: 36 dB	Avg Hold: 100/100	Radio Device: BTS	_
10 dB/div Ref 40.00 dB	n				
30.0					Clear Write
10.0		∊⋰⋼∊⋰⋼∊ ⋬∊⋎⋫∊⋹ <mark>⋬</mark> ∊⋎⋫∊⋹ <mark>⋬</mark>	- man		
-10.0					Average
-20.0	<i></i>		``````	๚๚๛๛๛๛๚๚๛๚๛	
-40.0					Max Hold
Center 836.500 MHz				Span 7.500 Mi	
Res BW 68 kHz		#VBW 220 k	Hz	Sweep 3.8 n	ns Min Hold
Occupied Bandwid	th	Total P	ower 33	.5 dBm	
2.	.6985 MH	Z			Detector Peak▶
Transmit Freq Error	-3.377 kH	z % of O	BW Power 9	9.00 %	Auto <u>Man</u>
x dB Bandwidth	3.003 MH	lz x dB	-20	5.00 dB	
ISG			STAT	US	

Plot 7-7. Occupied Bandwidth Plot (LTE Band 5 - 3MHz QPSK - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 5 - 3MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 17 01 05
© 2021 PCTEST		·		V1.2 11/2/2020

Keysight Spectrum Analyzer -								2 - X
RL RF 5	OΩ AC	CORREC	SENSE:INT	ALIGN AU	TO 10:32:40 PI Radio Std:	MJan 15, 2021	Trace/Dete	ctor
		₩IFGain:Low	Center Freq: 836.50 Trig: Free Run #Atten: 36 dB	Avg Hold: 100/100				
dB/div Ref 40).00 dBn	n						
9 g 0.0 0.0							Clear	Wri
0.0		mm	m	monten				
00							Ave	era
.0 .0	an and the second	~.w/			and and a second se	and the former		
1.0							Max	Но
enter 836.500 MH es BW 68 kHz	Z		#VBW 220	kHz		.500 MHz p 3.8 ms	Min	Нс
Occupied Bar			Total F	Power 3	1.3 dBm			
	2.	7004 MH	lz				Det	ect Pea
Transmit Freq E	Error	2.552 k	Hz % of O	BW Power	99.00 %		Auto	M
x dB Bandwidth	1	2.994 M	Hz x dB	-1	26.00 dB			
				ST	ATUS			_

Plot 7-9. Occupied Bandwidth Plot (LTE Band 5 - 3MHz 64-QAM - Full RB Configuration)

Plot 7-10. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz QPSK - Full RB Configuration)

FCC ID: A3LSMG998JPN	Potest*	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage to 0105
© 2021 PCTEST	·	·		V1.2 11/2/2020

Keysight Spectrum Analyzer - Occupied BV					Ø 🛃
L RF 50 Ω AC	CORREC	SENSE:INT	ALIGN AUTO	10:28:30 PM Jan 15 Radio Std: None	
	Trig:	er Freq: 836.500000 Free Run / n: 36 dB	Avg Hold: 100/100	Radio Std: None	,
) dB/div Ref 30.00 dBn	n				
0.0	mm	m.h.m.m.m	m		Clear Writ
00					
).0).0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			mannan na	Averag
					Max Hol
0.0					
enter 836.500 MHz es BW 33 kHz		≇VBW 110 kH	Z	Span 3.500 Sweep 3.06	
Occupied Bandwidt		Total Pov	wer 31.	6 dBm	
1.	0969 MHz				Detecto
Transmit Freq Error	4.784 kHz	% of OBV	V Power 9	9.00 %	Auto <u>Ma</u>
x dB Bandwidth	1.233 MHz	x dB	-26	.00 dB	
3			STATU	IS	

Plot 7-11. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz 16-QAM - Full RB Configuration)

Plot 7-12. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz 64-QAM - Full RB Configuration)

FCC ID: A3LSMG998JPN	Poud to be part of the element	PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	Fage 19 01 05
© 2021 PCTEST	•		V1.2 11/2/2020

GPRS Cell

Plot 7-13. Occupied Bandwidth Plot (GPRS, Ch. 190)

Plot 7-14. Occupied Bandwidth Plot (EDGE, Ch. 190)

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of CE	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 20 of 65	
© 2021 PCTEST		•		V1.2 11/2/2020	

© 2021 PCTEST

WCDMA Cell

Keysight Spectrum Analyzer - Occup	pied BW				
LXIRL RF 50Ω	DC CORREC	SENSE:INT Center Freg: 836.600000 M	ALIGN AUTO	11:52:01 PM Jan 18, 2021 Radio Std: None	Trace/Detector
	-		⊓z Hold: 100/100	Radio Sta: None	
	#IFGain:Low	#Atten: 28 dB		Radio Device: BTS	
10 dB/div Ref 40.00	dBm				
Log					
30.0					
20.0		mmmm			Clear Write
10.0					
0.00					
					Average
-10.0			1		Average
-20.0 -30.0 Manna	urren M		Mar Mar Mar Mar		
-30.0 Marin menonination	·····		~ 4%		
-40.0					Max Hold
-50.0					muxmoru
Center 836.600 MHz				Span 15.00 MHz	
Res BW 150 kHz		#VBW 910 kHz		Sweep 1 ms	Min Hold
	-: -141-	Total Powe		dBm	
Occupied Bandw			54.7	ubm	
	4.1613 M	Hz			Detector
	0.055			00 M	Peak►
Transmit Freq Erro	or -2.655	kHz % of OBW F	ower 99.	.00 %	Auto <u>Man</u>
x dB Bandwidth	4.771	MHz xdB	-26.0	0 dB	
MSG			STATUS		

Plot 7-15. Occupied Bandwidth Plot (WCDMA, Ch. 4183)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 21 01 05
© 2021 PCTEST				V1 2 11/2/2020

7.3 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

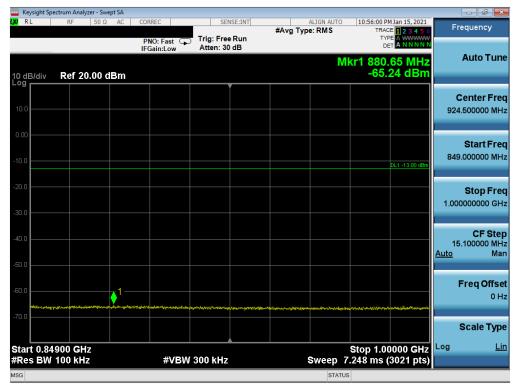
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

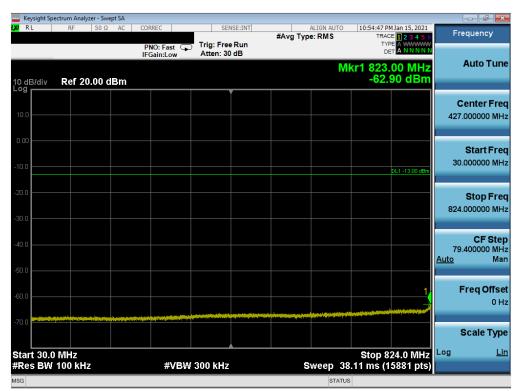
Per Part 22 and RSS-132, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.


FCC ID: A3LSMG998JPN	PCTEST* Proud to be part of @element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 22 01 05
© 2021 PCTEST				V/1 2 11/2/2020

LTE Band 5

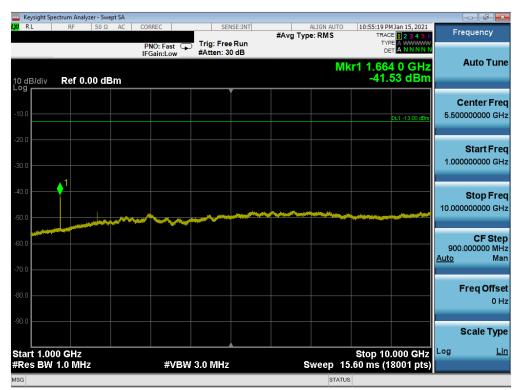
	Spectrum Ana											
RL	RF	<u>50 Ω</u>	AC	CORREC		NSE:INT	#Avg Ty	ALIGN AUTO	TRAC	4 Jan 15, 2021 E 1 2 3 4 5 6	F	requency
				PNO: Fast 🕞	Trig: Free Atten: 30				TYF DE			
								Μ	kr1 815.	55 MHz 73 dBm		Auto Tur
dB/div	Ref 2	20.00 d	Bm						-49.	/s abm		
												Center Fr
0.0											42	6.500000 N
.00												Start F
											3	0.000000 N
3.0										DL1 -13.00 dBm		0.000000
D.0												
												Stop F
D.O											82	3.000000 1
D.O											-	CF S
										1	/: Auto	9.300000 N
D.O										¥		
												Freq Off
D.O												
	and a sure band of an observe		ferences	a second and the second se						and the second second		-
D.O History	Constanting of the local division of the loc	and a strength of the strength	an Land, Joseph and	الفائقة فأسألهم فاستخصر يشرح مركب ولاحمد والريال								Seale T
												Scale Ty
tart 30.	.0 MHz								Stop 8	23.0 191112	Log	
Res BV	V 100 ki	Hz		#VBW	/ 300 kHz			Sweep 3	8.06 ms (1	5861 pts)		
G								STATU	s			

Plot 7-16. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-17. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 23 01 05
© 2021 PCTEST				V1 2 11/2/2020

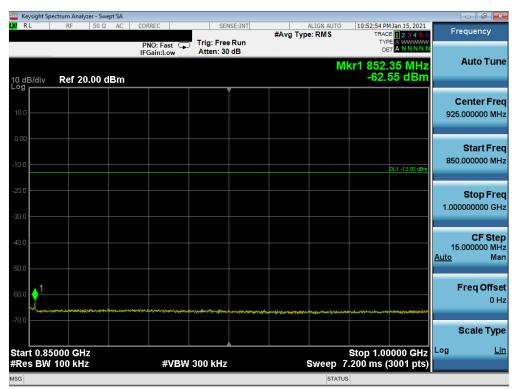
Plot 7-18. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-19. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 24 01 05
© 2021 PCTEST	•	·		V1.2 11/2/2020

		nalyzer - Swe												
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC			ISE:INT	#Av		ALIGN AUTO E: RMS		PM Jan 15, 2021 ACE 1 2 3 4 5 6	Fr	equency
				PNO: Fa		Trig: Free Atten: 30								
				in Game						Μ	lkr1 850	.65 MHz		Auto Tune
10 dB/div Log	Ref	20.00 d	IBm								-65	.11 dBm		
														Center Freq
10.0														.500000 MHz
0.00														Start Freq
-10.0													849	.000000 MHz
10.0												DL1 -13.00 dBm		
-20.0														Stop Freq
													1.00	0000000 GHz
-30.0														
-40.0														CF Step
													15 Auto	.100000 MHz Man
-50.0														
														Freq Offset
-60.0														0 Hz
-70.0	And 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19	ineres in the second second	Welne Historingto of	april 2 and a second	homesta	an and the second s		بازندا به مدر سوال	and period	مومال الراج اعيدي ع ^ر وبي	tien warde the set	المغيبة فالإخراجة المدعانات وريحاسه		
														Scale Type
Start 0.8	4900.0	GHz									Stop 1.(0000 GHz	Log	Lin
#Res BW				#	VBW 3	300 kHz			ş	Sweep	7.248 ms	(3021 pts)		
MSG										STATU	IS			

Plot 7-20. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-21. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 25 01 05
© 2021 PCTEST		•		V1.2 11/2/2020

PNO: Fast Frequency PNO: Fast Free Run Atten: 30 dB 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm		ctrum Analyzer - Swept S					
Atten: 30 dB Mkr1 821.75 MHz -64.02 dBm Center Freq 427.00000 MHz 200 000 000 000 000 000 000 00	LXI RL	RF 50 Ω A	AC CORREC	SENSE:INT		TRACE 1 2 3 4 5 6	Frequency
Log Image: State Sta	10 dB/diu	Bef 20.00 dB	IFGain:Low		N	Ikr1 821.75 MHz	Auto Tune
100 0.1 1 13.00 dem Start Freq 200 0.1 1 13.00 dem 0.1 1 13.00 dem 200 0.1 1 13.00 dem 0.1 1 13.00 dem 300 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 13.00 dem 0.1 1 13.00 dem 400 0.1 1 1 13.00 dem 0.1 1 1 13.00 dem 400 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Log			•			•
300 400 400 400 400 400 400 400						DL1 -13.00 dBm	•
4400 Image: Constraint of the second sec							
-500 -700 Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 38.11 ms (15881 pts)							79.400000 MHz
Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 38.11 ms (15881 pts)						<u>1</u>	•
	Start 30.0		<i>4</i> 1/544	200 kills		Stop 024.0 Milli2	Log <u>Lin</u>
		TUU KHZ	#VBW	JUU KHZ			

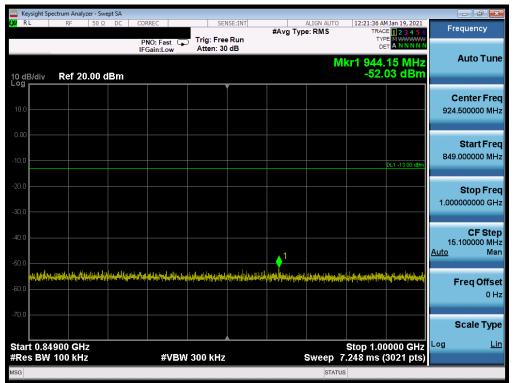
Plot 7-22. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-23. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 26 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 26 of 65
© 2021 PCTEST	<u>.</u>			V1.2 11/2/2020

🔤 Keysight Spectrum Analyzer - Swept SA								×
LXX RL RF 50Ω AC	CORREC		#Avg Type	ALIGN AUTO e: RMS	TRAC	4 Jan 15, 2021 E 1 2 3 4 5 6	Frequency	У
	PNO: Fast 😱 IFGain:Low	Trig: Free #Atten: 32			TYF			
10 dB/div Ref 0.00 dBm				Mł	(r1 1.67) -42.	9 0 GHz 18 dBm	Auto T	une
-10.0		Ĭ					Center	
						DL1 -13.00 dBm	5.500000000	GHZ
-20.0							Start F 1.000000000	
-40.0							Stop F	
-50.0	\rightarrow						10.00000000	GHz
-60.0							CF \$ 900.000000 <u>Auto</u>	Step MHz Man
-80.0							Freq Of	ffset 0 Hz
-90.0							Scale T	Гуре
Start 1.000 GHz #Res BW 1.0 MHz	#\(B)M(3.0 MHz		woon 16	Stop 10	.000 GHz 8001 pts)	Log	<u>Lin</u>
#Res DW 1.0 Minz	#9099	5.0191112		STATUS		soor pis)		

Plot 7-24. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

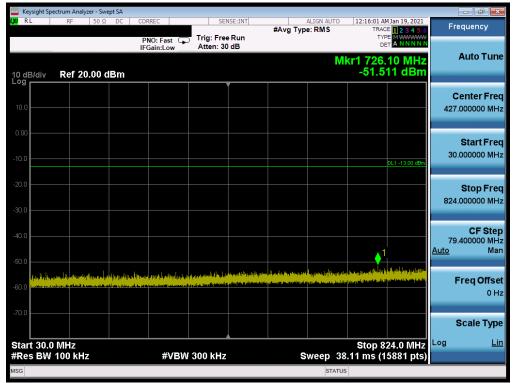

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 27 01 05
© 2021 PCTEST				V1 2 11/2/2020

GSM/GPRS Cell

Keysight Spectrum Analyzer - Switch					
LX/ RL RF 50 Ω	DC CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	12:21:27 AM Jan 19, 2021 TRACE 1 2 3 4 5 6 TYPE M	Frequency
10 dB/div Ref 20.00 d	IFGain:Low _	Atten: 30 dB	М	ьета NNNNN kr1 822.75 MHz -29.449 dBm	Auto Tune
10.0					Center Freq 426.500000 MHz
-10.0				DL1 -13.00 dBm	Start Freq 30.000000 MHz
-20.0				1,	Stop Freq 823.000000 MHz
-40.0					CF Step 79.300000 MHz <u>Auto</u> Man
ing stars they entremine including to the stars to a second second second second second second second second se	han hij Nep 19 provinsi hadala provinsi kana ji farih da Grand Markan ji kata provinsi na pitanta na pana kata ba	per den på på passe og kannel en på sen skapa for som skal det som	na di Balikan kana pangan pangan kana balan kana kana kana kana kana kana kana	a in a bar and an an a bar and a second and a second a s	Freq Offset 0 Hz
-70.0					Scale Type
Start 30.0 MHz #Res BW 100 kHz	#VB	W 300 kHz	Sweep 38	Stop 823.0 MHz 8.06 ms (15861 pts)	Log <u>Lin</u>
MSG			STATUS	3	

Plot 7-25. Conducted Spurious Plot (GPRS Ch. 128)

Plot 7-26. Conducted Spurious Plot (GPRS Ch. 128)


FCC ID: A3LSMG998JPN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of CE
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 28 of 65
© 2021 PCTEST				V1.2 11/2/2020

© 2021 PCTEST

		Analyzer - Swe									ð X
XI RI	- F	F 50 Ω	F	NO: Fast		#Avg Typ	ALIGN AUTO e: RMS			Frequer	псу
10 dE	3/div Re	ef 20.00 c		Gain:Low	Atten: 30		MI	(r1 9.674 5 -31.59	GHz	Auto	Tun
10.0										Cente 5.5000000	
0.00 -								DL1	-13.00 dBm	Stai 1.0000000	r t Fre 00 GH
-20.0 -30.0									1	Sto 10.0000000	p Fre 00 GH
-40.0	and a state of the						elas (1996) (n. 1997), a definis 19 metriko en 1996 en 1996 en 1996 19 metriko en 1996 en 1996 en 1996 en 1996 1996 en 1996			CI 900.0000 <u>Auto</u>	F Ste 00 MH Ma
-60.0 +										Freq	Offse 0⊦
-70.0										Scale	
	t 1.000 G s BW 1.0			#VBW	/ 3.0 MHz	s	weep 15	Stop 10.00 6.60 ms (180	0 0 12	Log	Li
ISG							STATUS	3			

Plot 7-27. Conducted Spurious Plot (GPRS Ch. 128)

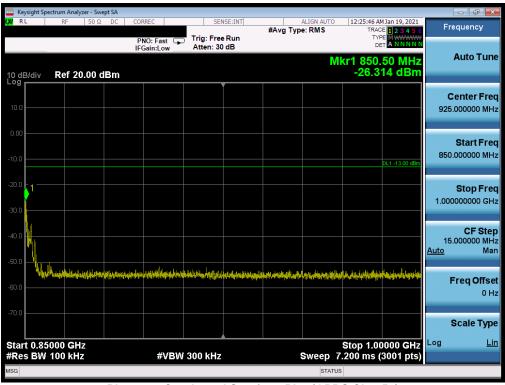

Plot 7-28. Conducted Spurious Plot (GPRS Ch. 190)

FCC ID: A3LSMG998JPN	PCTEST. Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 6		
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Faye 29 01 00	
© 2021 PCTEST				V1 2 11/2/2020	

🔤 Keysight Sp	ectrum Analyzer -	Swept SA									a X
L <mark>XI</mark> RL	RF 50	DΩ DC	CORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		MJan 19, 2021 E 1 2 3 4 5 6	Freque	ncv
			PNO: Fast IFGain:Low	Trig: Free Atten: 30		#Avg Typ		TYP			o Tune
10 dB/div Log	Ref 20.0	0 dBm						-52.1	38 dBm		
10.0										Cent 924.5000	er Freq 000 MHz
-10.0									DL1 -13.00 dBm	Sta 849.0000	irt Freq 000 MHz
-20.0										Sto 1.000000	o p Freq 000 GHz
-40.0											F Step 000 MHz Man
and the state	water in the set	n fi gå <mark>d</mark> åler hvir dete	hinglet Mennehenslande	halanti pikingi	k, jiliyosik, kiling, p	ilyilatada kalifa di gily	inderfor indele	inedyntellingåsiski,	ileitisetti oltaatii	Frec	 Offset 0 Hz
-70.0										Sca	le Type
Start 0.84 #Res BW			#VBW	/ 300 kHz			Sweep 7	Stop 1.00 7.248 ms (0000 GHz 3021 pts)	Log	<u>Lin</u>
MSG							STATU	s			

Plot 7-29. Conducted Spurious Plot (GPRS Ch. 190)

Plot 7-30. Conducted Spurious Plot (GPRS Ch. 190)


FCC ID: A3LSMG998JPN	PCTEST*	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 30 01 65
© 2021 PCTEST		•		V1.2 11/2/2020

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

	trum Analyzer - Sv	vept SA									- • • •
LXI RL	RF 50 S		NO: Fast			#Avg Typ	ALIGN AUTO e: RMS	TRAC	MJan 19, 2021 E 1 2 3 4 5 6 E M WWWWW	Fre	quency
10 dB/div	Ref 20.00	IF	Gain:Low	Atten: 30			M	kr1 811.	85 MHz 87 dBm		Auto Tune
10.0											enter Freq 000000 MHz
-10.0									DL1 -13.00 dBm		Start Freq 000000 MHz
-20.0											Stop Freq 000000 MHz
-40.0									4	79. <u>Auto</u>	CF Step 400000 MHz Man
-60.0	tiyalan falaniyadandi Managalan yalaman katawa a	lay a beller, på filler och fill <u>a verta på antika</u> l omstadde	n og standel for frænder for som	n han han an dir ber an	nagi ((pres) and an ing	e lette (Andreik preise operations and preise	degeligen gebeuren engeligen gebeuren	Uniper Skillinger og det skiller næret skiller og det skiller	an an Angela Kagari (194 Ainte an an an Angela Angela Ainte an an an Angela Angela Angela Angela Angela Angela Angela Angela Angela Angel	F	r eq Offset 0 Hz
											cale Type
Start 30.0 #Res BW 1			#VBW	300 kHz		s	weep 38	8 Stop 11 ms (1	24.0 MHz 5881 pts)	Log	Lin
MSG							STATUS				

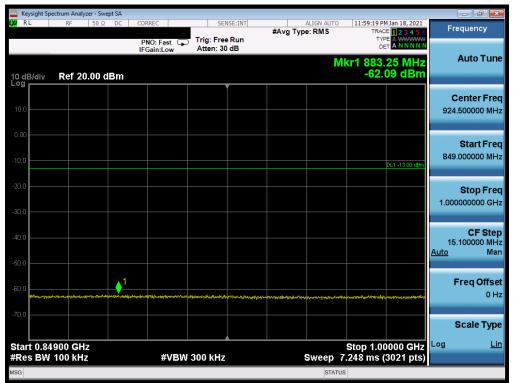
Plot 7-31. Conducted Spurious Plot (GPRS Ch. 251)

Plot 7-32. Conducted Spurious Plot (GPRS Ch. 251)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 31 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset			
© 2021 PCTEST	•	•		V1.2 11/2/2020	

Image: New State S	
PNO: Fast Trig: Free Run Atten: 30 dB Trig: Free Run Atten: 30 dB 10 dB/div Ref 20.00 dBm -31.593 dB -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -20 d -10 d -10 d -10 d -10 d -30 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d -10 d	
Log 10.0 .000 .10.0 .10.0 .20.0 .30.0 .30.0 .40.0	XX Auto Tune
100	n
-10.0	Center Fred 5.500000000 GHz
-30.0	Start Fred 1.000000000 GH:
	Stop Fred 10.000000000 GH:
	CF Step 900.000000 MH <u>Auto</u> Mar
-60.0	Freq Offse 0 H
-70.0	Scale Type
Start 1.000 GHz Stop 10.000 G #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 15.60 ms (18001 p	Z Log <u>Lir</u>
#KCS DW 1.0 WH2 #VDW J.0 WH2 SWEEP 13.00 HIS (18001 P MSG STATUS	9/

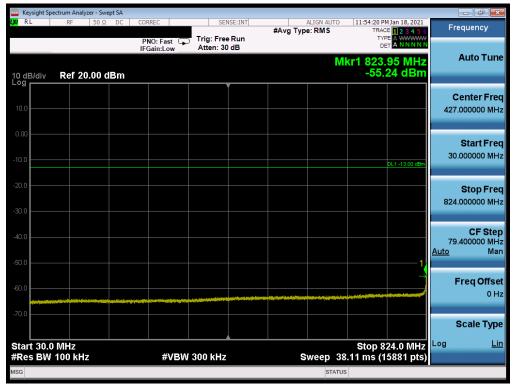
Plot 7-33. Conducted Spurious Plot (GPRS Ch. 251)


FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 22 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 32 of 65	
© 2021 PCTEST				V1 2 11/2/2020	

WCDMA Cell

	ectrum Analyzer - Swept					
XI RL	RF 50 Ω	PNO: Fast	Trig: Free Run Atten: 30 dB	#Avg Type: RMS	11:59:08 PM Jan 18, 2021 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div	Ref 20.00 dB	IFGain:Low	Atten: 30 dB	М	kr1 822.55 MHz -37.05 dBm	Auto Tune
10.0						Center Fred 426.500000 MHz
-10.0					DL1 -13.00 dBm	Start Free 30.000000 MH;
-20.0					1	Stop Fred 823.000000 MH:
-40.0						CF Step 79.300000 MH <u>Auto</u> Mar
-60.0	re en en ja de anterior de la tradeción de la composition de la composition de la composition de la composition			terefor er men og sjoner i hende med af er er og støtet i der med atter		Freq Offse 0 H:
-70.0						Scale Type
Start 30.0 #Res BW		#VBV	V 300 kHz	Sweep 38	Stop 823.0 MHz 3.06 ms (15861 pts)	Log <u>Lir</u>
MSG				STATU	s	

Plot 7-34. Conducted Spurious Plot (WCDMA Ch. 4132)


Plot 7-35. Conducted Spurious Plot (WCDMA Ch. 4132)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	Fage 33 01 05
© 2021 PCTEST			V1.2 11/2/2020

Keysight Spectrum Analyzer - Swept					e e 💌
Χ RL RF 50 Ω		SENSE:INT	ALIGN AUTO #Avg Type: RMS	12:00:02 AM Jan 19, 2021 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Frequency
10 dB/div Ref 20.00 dB	I Guilleow	Atten: 32 dB	MI	kr1 9.994 5 GHz -38.41 dBm	Auto Tun
10.0					Center Fre 5.500000000 G⊦
10.0				DL1 -13.00 dBm	Start Fre 1.000000000 G⊦
30.0					Stop Fre 10.00000000 GF
40.0		~~~~			CF Ste 900.000000 MH <u>Auto</u> Ma
60.0					Freq Offs 0 H
70.0					Scale Typ
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 3.	.0 MHz	Sweep 1	Stop 10.000 GHz 5.60 ms (18001 pts)	Log <u>L</u>
ISG			STATU	s	

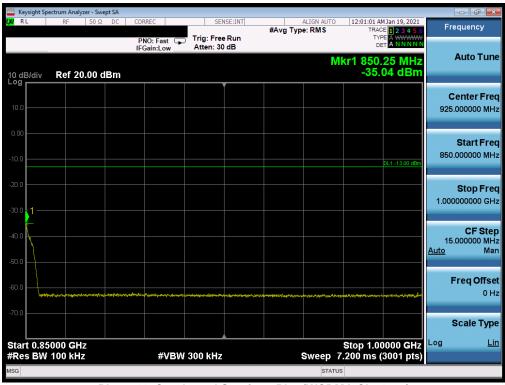
Plot 7-36. Conducted Spurious Plot (WCDMA Ch. 4132)

Plot 7-37. Conducted Spurious Plot (WCDMA Ch. 4183)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 6	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 34 01 05
© 2021 PCTEST				V1 2 11/2/2020

	ectrum Analyzer - S	wept SA									di X
L <mark>XI</mark> RL	RF 50	ΩDC	CORREC		E:INT	#Avg Typ	ALIGN AUTO	TRAC	I Jan 18, 2021	Freque	ency
10 dB/div Log	Ref 20.00	dBm	PNO: Fast IFGain:Low	Atten: 30			М	kr1 849.	00 MHz 93 dBm	Aut	to Tune
10.0										Cent 924.500	e r Freq 000 MHz
-10.0									DL1 -13.00 dBm	Sta 849.000	a rt Freq 000 MHz
-20.0										Sto 1.000000	o p Freq 000 GHz
-40.0											CF Step 000 MHz Mar
-60.0	an di sama na sa	% .}}	6-1-130-90 - 1-15-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	gryvesta, ctrastriategatu	للموجود العنوان والمراجع والمعالية والمراجع والمحافظ والمراجع والمحافظ والمراجع والمحافظ والمحافظ والمحافظ وال		······································	alan tanakan di kardi ya tang	hansansan ang mang mang mang mang mang mang man	Free	Offse 0 Hz
-70.0 Start 0.84	900 GHz							Stop 1.00	000 GHz		le Type <u>Lin</u>
#Res BW			#VBW	300 kHz				.248 ms (
MSG							STATUS	5			

Plot 7-38. Conducted Spurious Plot (WCDMA Ch. 4183)


Plot 7-39. Conducted Spurious Plot (WCDMA Ch. 4183)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 25 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 35 of 65
© 2021 PCTEST	-	·		V1.2 11/2/2020

	ectrum Analyzer -	Swept SA						
LXI RL	RF 5	DΩ DC	CORREC	SENSE:INT	ALIG #Avg Type: R		AM Jan 19, 2021	Frequency
			PNO: Fast C IFGain:Low	Trig: Free Run Atten: 30 dB	#Avg Type. R			Auto Tune
10 dB/div Log	Ref 20.0	0 dBm				-6	1.36 dBm	
10.0								Center Freq 427.000000 MHz
-10.0							DL1 -13.00 dBm	Start Freq 30.000000 MHz
-20.0								Stop Freq 824.000000 MHz
-40.0								CF Step 79.400000 MHz <u>Auto</u> Man
-60.0			n jaaran da salahiya kading salahiya sala		hall particular solution of the later of t			Freq Offset 0 Hz
-70.0								Scale Type
Start 30.0 #Res BW			#VB	N 300 kHz	Swe	Stop ep 38.11 ms		Log <u>Lin</u>
MSG						STATUS		

Plot 7-40. Conducted Spurious Plot (WCDMA Ch. 4233)

Plot 7-41. Conducted Spurious Plot (WCDMA Ch. 4233)

FCC ID: A3LSMG998JPN	Pout to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 30 01 05
© 2021 PCTEST				V1 2 11/2/2020

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

🔤 Keysight Spe	ectrum Analyzer -	Swept SA								_	
LXU RL	RF 50	DΩ DC	CORREC		SE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	4 Jan 19, 2021 E <mark>1 2 3 4 5 6</mark>	Frec	luency
10 dB/div Log	Ref 20.00	0 dBm	PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 30			M	kr1 9.76	7 5 GHz 60 dBm	A	uto Tune
10.0											nter Freq 00000 GHz
-10.0									DL1 -13.00 dBm		Start Freq 00000 GHz
-20.0											Stop Freq 00000 GHz
-40.0				-	~~~				↓ 1	900.0 <u>Auto</u>	CF Step 00000 MHz Mar
-60.0										Fr	e q Offse 0 H:
-70.0										So	c ale Type Lir
Start 1.00 #Res BW			#VBW	3.0 MHz		s	weep 1:	5.60 ms (1	.000 GHz 8001 pts)		
MSG							STATU	s			

Plot 7-42. Conducted Spurious Plot (WCDMA Ch. 4233)

FCC ID: A3LSMG998JPN	Poud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 37 01 05	
© 2021 PCTEST				V1 2 11/2/2020	

7.4 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

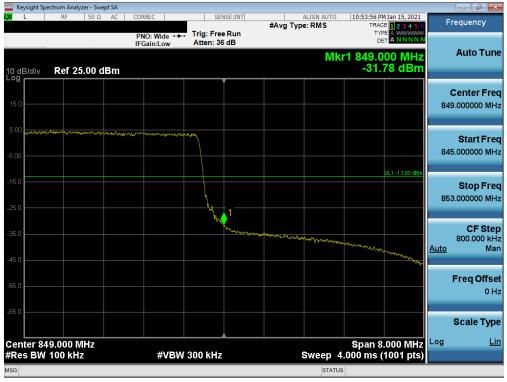
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: A3LSMG998JPN	Post 5 be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 30 01 05	
© 2021 PCTEST				V1 2 11/2/2020	

Test Notes

Per 22.917(b) and RSS-132(5.5), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.


FCC ID: A3LSMG998JPN	PCTEST Froud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 39 of 65	
© 2021 PCTEST				V1.2 11/2/2020	

LTE Band 5

🔤 Keysight Spectrun											
LXI L F	RF 50 Ω	AC COI	RREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO		4 Jan 15, 2021 E 1 2 3 4 5 6	F	requency
			NO: Wide ↔ Gain:Low	Trig: Free Atten: 36		" ə .)P		TYF DE			
10 dB/div Ro	ef 25.00 di	Bm					Mk	r1 824.0 -29.9	00 MHz 47 dBm		Auto Tune
209										(Center Freq
15.0										824	4.000000 MHz
5.00					m		and a second	and the second second			
-5.00										820	Start Freq 0.000000 MHz
-5.00									DL1 -13.00 dBm		
-15.0											Stop Freq
-25.0					1					828	3.000000 MHz
			erandreferrand type have	and an and the second second	a de la calendaria de la c						CF Step
-35.0	Wynery Nowe A									Auto	800.000 kHz Man
-45.0										Auto	Widi
-55.0											Freq Offset
											0 Hz
-65.0											Scale Type
Center 824.0	00 MHz							Snan 9	.000 MHz	Log	Lin
#Res BW 100			#VBW	/ 300 kHz			Sweep 4	.000 ms (1000 MHZ 1001 pts)		
MSG							STATUS	5			

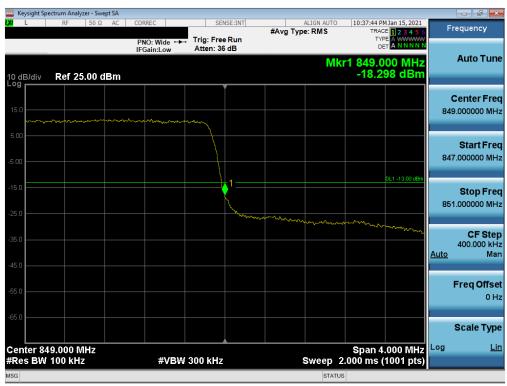
Plot 7-43. Lower Band Edge Plot (LTE Band 5 - 10MHz QPSK – Full RB Configuration)

Plot 7-44. Upper Band Edge Plot (LTE Band 5 - 10MHz QPSK – Full RB Configuration)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	Fage 40 01 05
© 2021 PCTEST	•	·	V1.2 11/2/2020

© 2021 PCTEST

	ctrum Analyze												
<mark>XI</mark> L	RF	50 Ω	AC	CORREC		SEI	ISE:INT	#Avg Typ	ALIGN AUTO		MJan 15, 2021	F	requency
				PNO: W IFGain:l	lide ↔ ∟ow	Trig: Free Atten: 36		• //		TYF DE			Auto Tune
10 dB/div Log	Ref 25.	00 di	Зm						Mk	r1 824.0 -24.9	00 MHz 04 dBm		Auto Tune
						,							Center Fred
15.0							~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- margare	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	82	4.000000 MH:
5.00													Start Free
-5.00												82:	2.000000 MH:
15.0											DL1 -13.00 dBm		Stop Free
-25.0							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					82	6.000000 MH
-35.0 <u>~~~~</u> ~	mana	ر مەرىكىمىر	والمحاصر عوره	m	mada	mark							CF Ste
45.0												<u>Auto</u>	400.000 kH Ma
45.0													Freq Offse
-55.0													0 H
-65.0													Scale Type
Center 82	4.000 MI	Hz								Span 4	.000 MHz	Log	Lir
#Res BW					#VBW	300 kHz			Sweep 2	.000 ms (1001 pts)		
ISG									STATUS	5			


Plot 7-46. Upper Band Edge Plot (LTE Band 5 - 5MHz QPSK – Full RB Configuration)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 41 of 65	
© 2021 PCTEST				V1 2 11/2/2020	

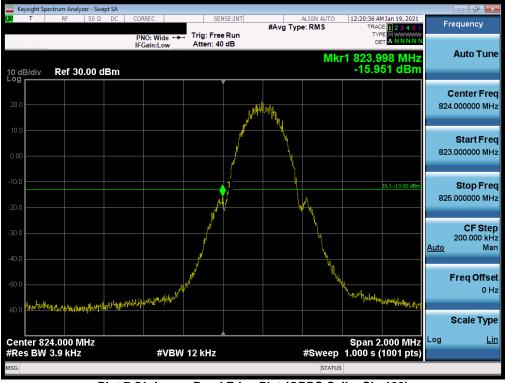
🔤 Keysight Spe	ectrum Analyzer - Swept SA								
LXI L	RF 50 Ω AC	CORREC	SENSE:1	#A	ALIGN AUTO	TRACE	123456	Freq	uency
		PNO: Wide ↔ IFGain:Low	Trig: Free Ru Atten: 36 dB	n		DET	A WWWWW A N N N N N		
10 dB/div Log	Ref 25.00 dBm	1			M	kr1 824.00 -18.09	00 MHz 5 dBm	A	uto Tune
15.0					man	mar radio and a fait	, markenne		n ter Freq 10000 MHz
-5.00			/	/					tart Freq 10000 MHz
-15.0			1				L1 -13.00 dBm		t op Freq 10000 MHz
-35.0			~~~~~					40 <u>Auto</u>	CF Step 00.000 kHz Man
-55.0								Fre	e q Offset 0 Hz
-65.0									ale Type Lin
#Res BW	4.000 MHz 100 kHz	#VBW	300 kHz		Sweep	Span 4.0 2.000 ms (1	000 MHz 001 pts)	- vg	<u></u>
MSG					STAT				

Plot 7-47. Lower Band Edge Plot (LTE Band 5 - 3MHz QPSK – Full RB Configuration)

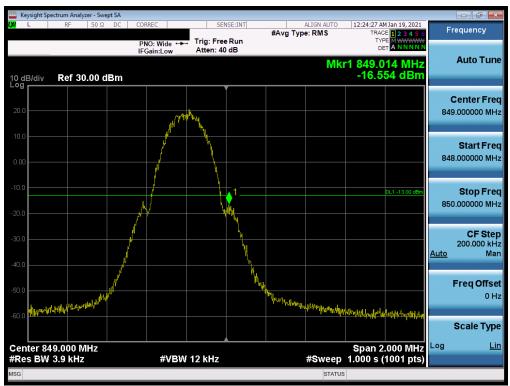
Plot 7-48. Upper Band Edge Plot (LTE Band 5 - 3MHz QPSK – Full RB Configuration)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 42 of 65	
© 2021 PCTEST	•	·		V1.2 11/2/2020	

🚾 Keysight Spectrum Analyzer - Swept SA					
L RF 50Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	10:30:45 PM Jan 15, 2021 TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide +++ IFGain:Low	Trig: Free Run Atten: 36 dB		DET A WWWWW	
	II Guill.cow	_	Mk	r1 824.000 MHz	Auto Tune
10 dB/div Ref 25.00 dBm				-24.281 dBm	
Log					Center Freq
15.0			Paralanter the the mather water of a	<u></u>	824.000000 MHz
5.00		\int			
5.00					Start Freq
-5.00		/			822.000000 MHz
				DL1 -13.00 dBm	
-15.0		1			Stop Freq 826.000000 MHz
-25.0				howana	
	mon	manned			CF Step
-35.0					400.000 kHz Auto Man
-45.0					
-55.0					Freq Offset
-33.0					0 Hz
-65.0					
					Scale Type
Center 824.000 MHz				Span 4.000 MHz	Log <u>Lin</u>
#Res BW 100 kHz	#VBW	300 kHz	Sweep 2	2.000 ms (1001 pts)	
MSG			STATU	S	



Plot 7-50. Upper Band Edge Plot (LTE Band 5 – 1.4MHz QPSK – Full RB Configuration)

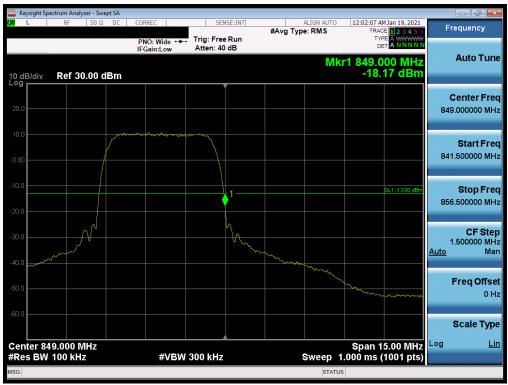

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 42 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 43 of 65	
© 2021 PCTEST	•	·		V1.2 11/2/2020	

GSM/GPRS Cell

Plot 7-51. Lower Band Edge Plot (GPRS Cell - Ch. 128)

Plot 7-52. Upper Band Edge Plot (GPRS Cell – Ch. 251)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of CE	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 44 of 65	
© 2021 PCTEST	•			V1.2 11/2/2020	


© 2021 PCTEST

WCDMA Cell

Plot 7-53. Lower Band Edge Plot (WCDMA Cell - Ch. 4132)

Plot 7-54. Upper Band Edge Plot (WCDMA Cell – Ch. 4233)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 45 of 65	
© 2021 PCTEST	•			V1.2 11/2/2020	

© 2021 PCTEST

7.5 Radiated Power (ERP)

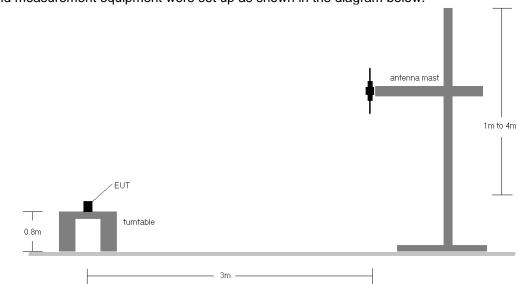
Test Overview

Effective Radiated Power (ERP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17


Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 46 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 46 of 65	
© 2021 PCTEST V1.2 11/2/2020					

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Radiated Test Setup <1GHz

Test Notes

- 1) This device employs GSM, GPRS, and EDGE capabilities. The EUT was tested under all configurations and the highest powers is reported in GPRS mode while transmitting with one slot active.
- 2) This device employs UMTS technology with WCDMA (AMR/RMC) and HSDPA capabilities. The EUT was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1".
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 4) This unit was tested with its standard battery.
- 5) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 47 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 47 of 65	
© 2021 PCTEST	·	•		V1.2 11/2/2020	

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
		829.0	Н	226	287	6.80	1 / 25	13.09	17.74	0.059	38.45	-20.71	19.89	0.098	40.61	-20.72
	QPSK	836.5	Н	114	283	6.68	1 / 49	13.70	18.23	0.067	38.45	-20.22	20.38	0.109	40.61	-20.23
10 MHz		844.0	н	115	287	6.66	1/0	13.75	18.26	0.067	38.45	-20.19	20.41	0.110	40.61	-20.20
	16-QAM	844.0	н	115	287	6.66	1 / 25	13.13	17.64	0.058	38.45	-20.81	19.79	0.095	40.61	-20.82
	64-QAM	844.0	н	115	287	6.66	1 / 25	12.20	16.71	0.047	38.45	-21.74	18.86	0.077	40.61	-21.75
		826.5	Н	226	287	6.80	1 / 12	12.98	17.63	0.058	38.45	-20.82	19.78	0.095	40.61	-20.83
	QPSK	836.5	н	114	283	6.68	1 / 12	13.51	18.04	0.064	38.45	-20.41	20.19	0.104	40.61	-20.42
5 MHz		846.5	н	115	287	6.66	1 / 12	13.48	17.99	0.063	38.45	-20.46	20.14	0.103	40.61	-20.47
	16-QAM	836.5	н	114	283	6.68	1 / 12	13.04	17.57	0.057	38.45	-20.88	19.72	0.094	40.61	-20.89
	64-QAM	846.5	Н	115	287	6.66	1 / 12	12.16	16.67	0.046	38.45	-21.78	18.82	0.076	40.61	-21.79
		825.5	н	226	287	6.80	1/0	12.99	17.64	0.058	38.45	-20.81	19.79	0.095	40.61	-20.82
	QPSK	836.5	н	114	283	6.68	1/0	13.49	18.02	0.063	38.45	-20.43	20.17	0.104	40.61	-20.44
3 MHz		847.5	н	115	287	6.66	1/0	13.38	17.89	0.061	38.45	-20.56	20.04	0.101	40.61	-20.57
	16-QAM	836.5	н	114	283	6.68	1/0	13.04	17.57	0.057	38.45	-20.88	19.72	0.094	40.61	-20.89
	64-QAM	847.5	Н	115	287	6.66	1/0	12.08	16.59	0.046	38.45	-21.86	18.74	0.075	40.61	-21.87
		824.7	н	226	287	6.80	1/2	13.00	17.65	0.058	38.45	-20.80	19.80	0.096	40.61	-20.81
	QPSK	836.5	н	114	283	6.68	1/2	13.44	17.97	0.063	38.45	-20.48	20.12	0.103	40.61	-20.49
1.4 MHz		848.3	н	115	287	6.66	1/2	13.40	17.91	0.062	38.45	-20.54	20.06	0.101	40.61	-20.55
	16-QAM	836.5	н	114	283	6.68	1/2	13.05	17.58	0.057	38.45	-20.87	19.73	0.094	40.61	-20.88
	64-QAM	848.3	Н	115	287	6.66	1/2	12.09	16.60	0.046	38.45	-21.85	18.75	0.075	40.61	-21.86
10 MHz	Opposite Pol.	844.0	V	135	269	6.46	1/0	11.69	18.15	0.065	38.45	-20.30	20.30	0.107	40.61	-20.31
10 10112	WCP	844.0	н	178	258	6.66	1/0	5.95	12.61	0.018	38.45	-25.84	14.76	0.030	40.61	-25.85

Table 7-2. ERP Data (LTE Band 5)

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
824.20	GSM850	Н	196	276	20.83	6.75	25.43	0.349	38.45	-13.02
836.60	GSM850	Н	100	287	21.09	6.68	25.62	0.365	38.45	-12.83
848.80	GSM850	Н	389	293	20.27	6.71	24.83	0.304	38.45	-13.63
836.60	GSM850	V	169	258	19.50	6.38	23.73	0.236	38.45	-14.72
836.60	EDGE850	Н	100	287	14.74	6.68	19.27	0.085	38.45	-19.18
836.60	GSM850 (WCP)	Н	311	259	16.93	6.68	21.46	0.140	38.45	-16.99

Table 7-3. ERP Data (GPRS Cell)

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
826.40	WCDMA850	Н	221	295	13.16	6.77	17.78	0.060	38.45	-20.67
836.60	WCDMA850	Н	199	295	13.83	6.68	18.36	0.069	38.45	-20.09
846.60	WCDMA850	Н	210	290	13.71	6.68	18.24	0.067	38.45	-20.21
836.60	WCDMA850	V	150	251	12.54	6.38	16.77	0.048	38.45	-21.68
836.60	WCDMA850 (WCP)	Н	183	300	10.13	6.68	14.66	0.029	38.45	-23.79

Table 7-4. ERP Data (WCDMA Cell)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 48 of 65	
© 2021 PCTEST				V1.2 11/2/2020	

7.6 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in KDB 971168 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 49 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 49 01 65	
© 2021 PCTEST V1 2 11/2/2020					

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

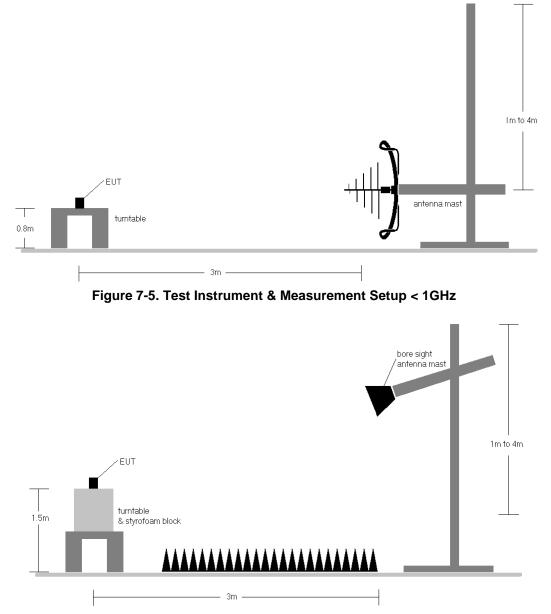
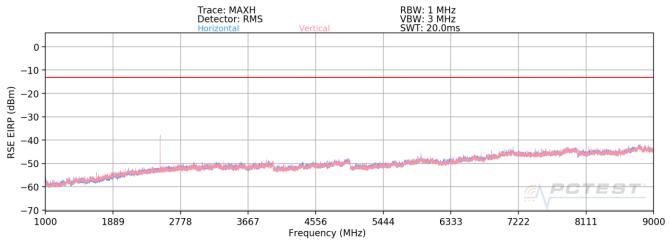


Figure 7-6. Test Instrument & Measurement Setup >1 GHz

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago E0 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	Page 50 of 65	
© 2021 PCTEST				V1.2 11/2/2020


Test Notes

- Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
 b) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
 d) EIRP (dBm) = E(dBµV/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) This device employs GSM, GPRS, and EDGE capabilities. The EUT was tested under all configurations and the highest powers is reported in GPRS mode while transmitting with one slot active.
- 3) This device employs UMTS technology with WCDMA (AMR/RMC) and HSDPA capabilities. The EUT was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1".
- 4) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 5) This unit was tested with its standard battery.
- 6) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 7) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 8) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 9) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 51 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 51 01 05	
© 2021 PCTEST				\/1.2.11/2/2020	

LTE Band 5

Plot 7-55. Radiated Spurious Plot (LTE Band 5)

Bandwidth (MHz):	10
Frequency (MHz):	829.0
RB / Offset:	1 / 25

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1658.0	Н	151	196	-72.80	0.77	34.97	-60.29	-13.00	-47.29
2487.0	Н	101	254	-60.71	5.14	51.43	-43.83	-13.00	-30.83
3316.0	Н	-	-	-80.18	6.76	33.58	-61.68	-13.00	-48.68
4145.0	Н	-	-	-80.94	8.53	34.59	-60.66	-13.00	-47.66
4974.0	Н	-	-	-81.44	10.56	36.12	-59.14	-13.00	-46.14

Table 7-5. Radiated Spurious Data (LTE Band 5 – Low Channel)

Bandwidth (MHz):	10
Frequency (MHz):	836.5
RB / Offset:	1 / 25

Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
Н	144	174	-75.40	1.02	32.62	-62.64	-13.00	-49.64
Н	117	254	-64.59	5.17	47.58	-47.67	-13.00	-34.67
Н	-	-	-81.22	6.75	32.53	-62.73	-13.00	-49.73
Н	-	-	-82.19	8.62	33.43	-61.83	-13.00	-48.83
Н	-	-	-83.19	10.78	34.59	-60.67	-13.00	-47.67
	(H/V) H H H H H	Ant. Pol. Height [cm] H 144 H 117 H - H - H - H - H - H -	Ant. Pol. [H/V] Height [cm] Azimuth [degree] H 144 174 H 117 254 H - - H - - H - - H - - H - - H - -	Ant. Pol. [H/V] Height [cm] Azimuth [degree] Level [dBm] H 144 174 -75.40 H 117 254 -64.59 H - - -81.22 H - - -82.19 H - - -83.19	Ant. Pol. [H/V] Height [cm] Azimuth [degree] Level [dBm] AFCL [dB/m] H 144 174 -75.40 1.02 H 117 254 -64.59 5.17 H - - -81.22 6.75 H - - -82.19 8.62 H - - -83.19 10.78	Ant. Pol. [H/V] Height [cm] Azimuth [degree] Level [dBm] AFCL [dB/m] Strength [dBµ//m] H 144 174 -75.40 1.02 32.62 H 117 254 -64.59 5.17 47.58 H - - -81.22 6.75 32.53 H - - -82.19 8.62 33.43 H - - -83.19 10.78 34.59	Ant. Pol. [H/V] Height [cm] Azimuth [degree] Level [dBm] AFCL [dB/m] Strength [dB/m] Emission Level [dB/m] H 144 174 -75.40 1.02 32.62 -62.64 H 117 254 -64.59 5.17 47.58 -47.67 H - - -81.22 6.75 32.53 -62.73 H - - -82.19 8.62 33.43 -61.83 H - - -83.19 10.78 34.59 -60.67	Ant. Pol. [H/V] Height [cm] Azimuth [degree] Level [dBm] AFCL [dB/m] Strength [dB/V/m] Emission Level [dBm] Limit [dBm] H 144 174 -75.40 1.02 32.62 -62.64 -13.00 H 117 254 -64.59 5.17 47.58 -47.67 -13.00 H - - -81.22 6.75 32.53 -62.73 -13.00 H - - -82.19 8.62 33.43 -61.83 -13.00 H - - -83.19 10.78 34.59 -60.67 -13.00

Table 7-6. Radiated Spurious Data (LTE Band 5 – Mid Channel)

FCC ID: A3LSMG998JPN	Post to be part of & element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 65
1M2101110003-02.A3L	2101110003-02.A3L 1/16/2021 - 1/26/2021 Portable Handset			Page 52 of 65
© 2021 PCTEST		·		V1.2 11/2/2020

Bandwidth (MHz):	10
Frequency (MHz):	844.0
RB / Offset:	1 / 25

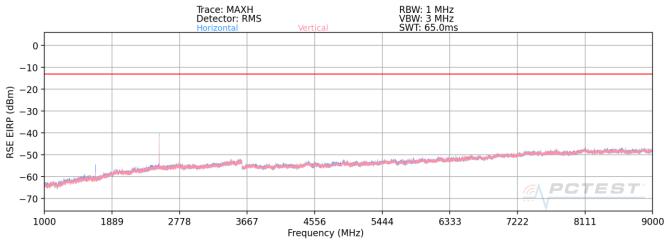

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1688.00	Н	139	177	-72.55	1.24	35.69	-59.56	-13.00	-46.56
2532.00	Н	121	262	-59.11	5.61	53.50	-41.76	-13.00	-28.76
3376.00	Н	-	-	-80.53	7.09	33.56	-61.70	-13.00	-48.70
4220.00	Н	-	-	-81.07	8.36	34.29	-60.96	-13.00	-47.96
5064.00	Н	-	-	-81.41	9.77	35.36	-59.90	-13.00	-46.90

Table 7-7. Radiated Spurious Data (LTE Band 5 – High Channel)

FCC ID: A3LSMG998JPN	Poud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 53 of 65	
1M2101110003-02.A3L	L 1/16/2021 - 1/26/2021 Portable Handset			raye 55 01 65	
© 2021 PCTEST				V1 2 11/2/2020	

GSM/GPRS Cell

Plot 7-56. Radiated Spurious Plot (GPRS Cell)

Mode:	GPRS 1 Tx Slot
Channel:	128
Frequency (MHz):	824.2

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1648.4	Н	213	2	-60.93	-5.62	40.45	-54.81	-13.00	-41.81
2472.6	Н	124	216	-43.40	-2.33	61.27	-33.98	-13.00	-20.98
3296.8	Н	-	-	-71.86	0.72	35.86	-59.40	-13.00	-46.40
4121.0	Н	-	-	-76.41	2.17	32.76	-62.50	-13.00	-49.50
4945.2	Н	-	-	-77.16	3.41	33.25	-62.01	-13.00	-49.01

Table 7-8. Radiated Spurious Data (GPRS Cell – Low Channel)

Mode:	GPRS 1 Tx Slot
Channel:	190
Frequency (MHz):	836.6

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.2	Н	138	356	-60.42	-5.27	41.31	-53.95	-13.00	-40.95
2509.8	Н	127	209	-47.21	-2.26	57.53	-37.73	-13.00	-24.73
3346.4	Н	-	-	-71.66	0.40	35.74	-59.51	-13.00	-46.51
4183.0	Н	-	-	-76.81	2.10	32.29	-62.97	-13.00	-49.97
5019.6	Н	-	-	-76.93	4.01	34.08	-61.17	-13.00	-48.17

Table 7-9. Radiated Spurious Data (GPRS Cell – Mid Channel)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 54 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	1/16/2021 - 1/26/2021 Portable Handset		Fage 54 01 05
© 2021 PCTEST				V1 2 11/2/2020

Mode:	GPRS 1 Tx Slot
Channel:	251
Frequency (MHz):	848.8

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1697.6	Н	157	350	-61.68	-4.61	40.71	-54.55	-13.00	-41.55
2546.4	Н	155	304	-38.86	-1.77	66.37	-28.88	-13.00	-15.88
3395.2	Н	-	-	-71.21	0.51	36.30	-58.95	-13.00	-45.95
4244.0	Н	-	-	-78.38	1.95	30.57	-64.68	-13.00	-51.68
5092.8	Н	-	-	-79.16	4.42	32.26	-62.99	-13.00	-49.99

Table 7-10. Radiated Spurious Data (GPRS Cell – High Channel)

Sample #:	0466M
Mode:	GPRS 1 Tx Slot
Channel:	251
Frequency (MHz):	848.8

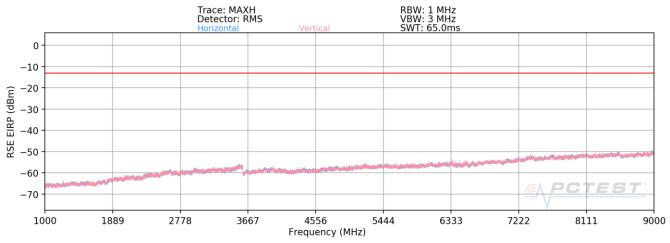

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1697.6	Н	-	-	-70.56	-4.61	31.83	-63.43	-13.00	-50.43
2546.4	Н	-	-	-71.13	-1.77	34.10	-61.15	-13.00	-48.15
3395.2	Н	-	-	-71.87	0.51	35.64	-59.61	-13.00	-46.61

Table 7-11. Radiated Spurious Data with WCP (GPRS Cell)

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo EE of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset	Page 55 of 65	
© 2021 PCTEST		•		V1.2 11/2/2020

WCDMA Cell

Plot 7-57. Radiated Spurious Plot (WCDMA Cell)

WCDMA RMC
4132
826.4

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1652.8	V	199	85	-71.12	-5.60	30.28	-64.98	-13.00	-51.98
2479.2	V	-	-	-73.73	-2.39	30.88	-64.38	-13.00	-51.38
3305.6	V	-	-	-74.08	0.70	33.62	-61.64	-13.00	-48.64
4132.0	V	-	-	-76.84	2.03	32.19	-63.07	-13.00	-50.07

Table 7-12. Radiated Spurious Data (WCDMA Cell – Low Channel)

Mode:	WCDMA RMC
Channel:	4183
Frequency (MHz):	836.6

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.2	V	218	54	-72.64	-5.27	29.09	-66.17	-13.00	-53.17
2509.8	V	-	-	-74.46	-2.26	30.28	-64.98	-13.00	-51.98
3346.4	V	-	-	-74.32	0.40	33.08	-62.17	-13.00	-49.17
4183.0	V	-	-	-77.37	2.10	31.73	-63.53	-13.00	-50.53

Table 7-13. Radiated Spurious Data (WCDMA Cell – Mid Channel)

FCC ID: A3LSMG998JPN	Post to be part of & element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage F6 of 65	
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 56 of 65	
© 2021 PCTEST		•		V1.2 11/2/2020	

Mode	WCDMA RMC			
Channel	4233			
Frequency (MHz):	846.6			

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1693.2	V	228	117	-73.42	-4.72	28.86	-66.40	-13.00	-53.40
2539.8	V	-	-	-74.11	-1.84	31.05	-64.21	-13.00	-51.21
3386.4	V	-	-	-73.36	0.38	34.02	-61.24	-13.00	-48.24
4233.0	V	-	-	-77.23	1.83	31.60	-63.66	-13.00	-50.66

Table 7-14. Radiated Spurious Data (WCDMA Cell – High Channel)

FCC ID: A3LSMG998JPN	Potest Proud to be part of eveneent	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 57 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 57 of 65
© 2021 PCTEST				

7.7 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22 and RSS-132, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

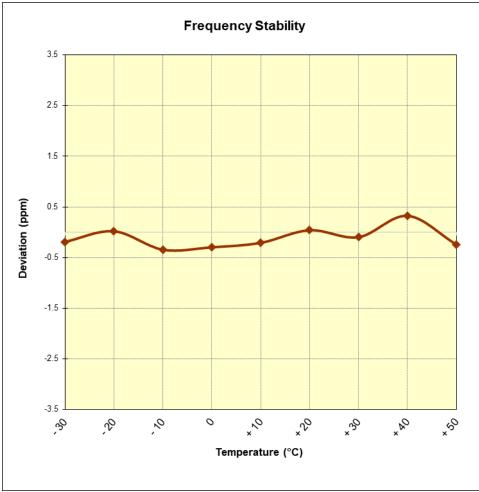
The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 58 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 56 01 05
© 2021 PCTEST				

г


LTE Band 5

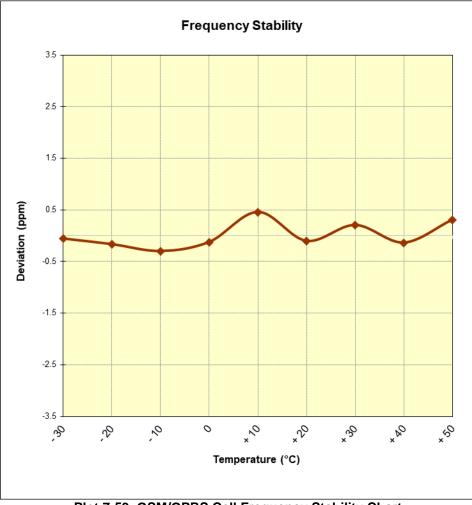
OPERATING FREQUENCY: CHANNEL: REFERENCE VOLTAGE: DEVIATION LIMIT:		836,500,000 20525 4.18 ± 0.00025 % or 2.5 ppm		_Hz _ _ VDC _	
VOLTAGE (%)	POWER (VDC)	ТЕМР (°С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	836,500,006	6	0.0000000
100 %		- 30	836,499,848	-158	-0.0000189
100 %		- 20	836,500,024	18	0.0000022
100 %		- 10	836,499,720	-286	-0.0000342
100 %		0	836,499,759	-247	-0.0000295
100 %	4.18	+ 10	836,499,832	-174	-0.0000208
100 %	4.10	+ 20	836,500,041	35	0.0000042
100 %		+ 30	836,499,926	-80	-0.000096
100 %		+ 40	836,500,279	273	0.0000326
100 %		+ 50	836,499,805	-201	-0.0000240
85 %		+ 20	836,499,931	-75	-0.0000090
BATT. ENDPOINT	2.98	+ 20	836,499,981	-25	-0.0000030

Table 7-15. LTE Band 5 Frequency Stability Data

FCC ID: A3LSMG998JPN	POTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 59 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Fage 59 01 05
© 2021 PCTEST	•			V1.2 11/2/2020

Plot 7-58. LTE Band 5 Frequency Stability Chart

FCC ID: A3LSMG998JPN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 60 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 60 of 65
© 2021 PCTEST		•		V1.2 11/2/2020


GSM/GPRS Cell

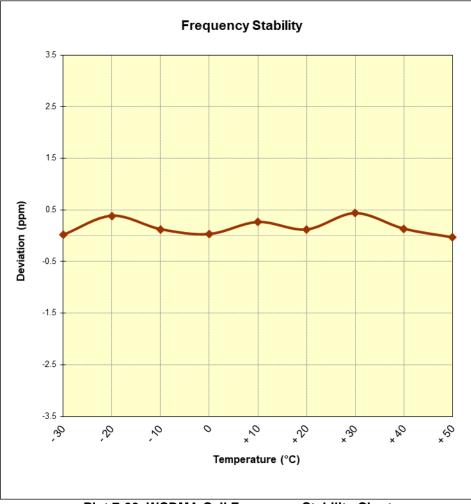
OPERATING FREQUENCY:		836,600,000		Hz	
С	HANNEL:	190		-	
REFERENCE VOLTAGE:			4.18	VDC	
DEVIATIO	ON LIMIT:	± 0.00025	% or 2.5 ppm	-	
				-	
VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	836,599,990	-10	0.0000000
100 %	4.18	- 30	836,599,940	-50	-0.0000060
100 %		- 20	836,599,850	-140	-0.0000167
100 %		- 10	836,599,738	-252	-0.0000301
100 %		0	836,599,886	-104	-0.0000124
100 %		+ 10	836,600,373	383	0.0000458
100 %		+ 20	836,599,903	-87	-0.0000104
100 %		+ 30	836,600,161	171	0.0000204
100 %		+ 40	836,599,876	-114	-0.0000136
100 %		+ 50	836,600,248	258	0.0000308
85 %		+ 20	836,600,175	185	0.0000221
BATT. ENDPOINT	2.98	+ 20	836,600,074	84	0.0000100

Table 7-16. GSM/GPRS Cell Frequency Stability Data

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 61 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 61 of 65
© 2021 PCTEST	•	·		V1.2 11/2/2020

Plot 7-59. GSM/GPRS Cell Frequency Stability Chart

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 62 of 65
© 2021 PCTEST		·		V1.2 11/2/2020


WCDMA Cell

OPERATING FREQUENCY:		836,600,000		Hz	
С	HANNEL:	4183		-	
REFERENCE VOLTAGE:		4.18		VDC	
DEVIATIO	ON LIMIT:	± 0.00025	% or 2.5 ppm	_	
VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	836,600,215	215	0.0000000
100 %		- 30	836,600,229	14	0.0000017
100 %		- 20	836,600,537	322	0.0000385
100 %		- 10	836,600,319	104	0.0000124
100 %		0	836,600,241	26	0.0000031
100 %	4.18	+ 10	836,600,436	221	0.0000264
100 %	4.10	+ 20	836,600,315	100	0.0000120
100 %		+ 30	836,600,579	364	0.0000435
100 %		+ 40	836,600,327	112	0.0000134
100 %		+ 50	836,600,188	-27	-0.0000032
85 %		+ 20	836,600,200	-15	-0.0000018
BATT. ENDPOINT	2.98	+ 20	836,600,301	86	0.0000103

Table 7-17. WCDMA Cell Frequency Stability Data

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 62 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 63 of 65
© 2021 PCTEST	•	·		V1.2 11/2/2020

Plot 7-60. WCDMA Cell Frequency Stability Chart

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 64 of 65
© 2021 PCTEST	•	·		V1.2 11/2/2020

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Samsung **Portable Handset FCC ID: A3LSMG998JPN** complies with all the requirements of Part 22 of the FCC rules.

FCC ID: A3LSMG998JPN		PART 22 MEASUREMENT REPORT	SAMSUNE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 65 of 65
1M2101110003-02.A3L	1/16/2021 - 1/26/2021	Portable Handset		Page 65 of 65
© 2021 PCTEST	•	·		V1.2 11/2/2020