

# PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com



# MEASUREMENT REPORT FCC Part 22 & 90

#### **Applicant Name:**

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

### Date of Testing:

09/15 – 12/01/2020 **Test Site/Location:** PCTEST Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2009140143-04.A3L

## FCC ID:

# A3LSMG996U

## **APPLICANT:**

# Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Certification SM-G996U SM-G996U1 Portable Handset PCS Licensed Transmitter Held to Ear (PCE) §2.1049, §22(H), §90(S), §90(R) ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President



| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dege 1 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 1 of 61                    |
| © 2020 PCTEST       |                               |                                       |         | V 9.0 02/01/2019                |



# TABLE OF CONTENTS

| 1.0 | INTF | RODUCTION                                           | 4  |
|-----|------|-----------------------------------------------------|----|
|     | 1.1  | Scope                                               | 4  |
|     | 1.2  | PCTEST Test Location                                | 4  |
|     | 1.3  | Test Facility / Accreditations                      | 4  |
| 2.0 | PRO  | DUCT INFORMATION                                    | 5  |
|     | 2.1  | Equipment Description                               | 5  |
|     | 2.2  | Device Capabilities                                 | 5  |
|     | 2.3  | Test Configuration                                  | 5  |
|     | 2.4  | EMI Suppression Device(s)/Modifications             | 5  |
| 3.0 | DES  | CRIPTION OF TESTS                                   | 6  |
|     | 3.1  | Evaluation Procedure                                | 6  |
|     | 3.2  | Radiated Power and Radiated Spurious Emissions      | 6  |
| 4.0 | MEA  | SUREMENT UNCERTAINTY                                | 7  |
| 5.0 | TES  | T EQUIPMENT CALIBRATION DATA                        | 8  |
| 6.0 | SAM  | PLE CALCULATIONS                                    | 9  |
| 7.0 | TES  | T RESULTS                                           | 10 |
|     | 7.1  | Summary                                             | 10 |
|     | 7.2  | Occupied Bandwidth                                  | 12 |
|     | 7.3  | Spurious and Harmonic Emissions at Antenna Terminal | 28 |
|     | 7.4  | Band Edge Emissions at Antenna Terminal             | 36 |
|     | 7.5  | Conducted Power Output Data                         | 47 |
|     | 7.6  | Radiated Power (ERP)                                | 49 |
|     | 7.7  | Radiated Spurious Emissions Measurements            | 52 |
|     | 7.8  | Frequency Stability / Temperature Variation         | 57 |
| 8.0 | CON  | CLUSION                                             | 61 |

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             | Dage 2 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      | Page 2 of 61                    |
| © 2020 PCTEST       | -                                       |                                       | V 9.0 02/01/2019                |





# MEASUREMENT REPORT FCC Part 22 & 90

| Mode        | Bandwidth | Modulation | Tx Frequency<br>Range [MHz] | Measurement | Max. Power<br>[W] | Max. Power<br>[dBm] | Emission<br>Designator |
|-------------|-----------|------------|-----------------------------|-------------|-------------------|---------------------|------------------------|
|             |           | QPSK       | 821.5                       | ERP         | 0.087             | 19.38               | 13M5G7D                |
| 1           | 15 MHz    | 16QAM      | 821.5                       | ERP         | 0.072             | 18.59               | 13M4W7D                |
|             |           | 64QAM      | 821.5                       | ERP         | 0.058             | 17.67               | 13M4W7D                |
|             |           | 256QAM     | 821.5                       | ERP         | 0.028             | 14.51               | 13M4W7D                |
|             |           | QPSK       | 821.5                       | Conducted   | 0.313             | 24.96               | 13M5G7D                |
|             |           | 16QAM      | 821.5                       | Conducted   | 0.252             | 24.01               | 13M4W7D                |
|             | 15 MHz    | 64QAM      | 821.5                       | Conducted   | 0.202             | 23.06               | 13M4W7D                |
|             |           | 256QAM     | 821.5                       | Conducted   | 0.097             | 19.89               | 13M4W7D                |
|             |           | QPSK       | 819.0                       | Conducted   | 0.308             | 24.89               | 8M96G7D                |
|             |           | 16QAM      | 819.0                       | Conducted   | 0.247             | 23.92               | 8M95W7D                |
|             | 10 MHz    | 64QAM      | 819.0                       | Conducted   | 0.203             | 23.08               | 8M93W7D                |
| LTE Band 26 |           | 256QAM     | 819.0                       | Conducted   | 0.100             | 19.98               | 8M95W7D                |
| LTE Band 20 |           | QPSK       | 816.5 - 821.5               | Conducted   | 0.308             | 24.89               | 4M48G7D                |
|             | 5 MHz     | 16QAM      | 816.5 - 821.5               | Conducted   | 0.264             | 24.22               | 4M47W7D                |
|             | 3 IVINZ   | 64QAM      | 816.5 - 821.5               | Conducted   | 0.219             | 23.41               | 4M49W7D                |
|             |           | 256QAM     | 816.5 - 821.5               | Conducted   | 0.102             | 20.08               | 4M48W7D                |
|             |           | QPSK       | 815.5 - 822.5               | Conducted   | 0.315             | 24.98               | 2M70G7D                |
|             | 2 MU-     | 16QAM      | 815.5 - 822.5               | Conducted   | 0.255             | 24.07               | 2M69W7D                |
|             | 3 MHz     | 64QAM      | 815.5 - 822.5               | Conducted   | 0.209             | 23.20               | 2M69W7D                |
|             |           | 256QAM     | 815.5 - 822.5               | Conducted   | 0.103             | 20.11               | 2M70W7D                |
|             |           | QPSK       | 814.7 - 823.3               | Conducted   | 0.315             | 24.98               | 1M08G7D                |
|             | 1.4 MHz   | 16QAM      | 814.7 - 823.3               | Conducted   | 0.270             | 24.32               | 1M08W7D                |
|             | 1.4 IVI⊓∠ | 64QAM      | 814.7 - 823.3               | Conducted   | 0.213             | 23.29               | 1M08W7D                |
|             |           | 256QAM     | 814.7 - 823.3               | Conducted   | 0.103             | 20.13               | 1M08W7D                |
|             |           | QPSK       | 793.0                       | ERP         | 0.102             | 20.08               | 9M02G7D                |
|             | 10 MHz    | 16QAM      | 793.0                       | ERP         | 0.092             | 19.64               | 8M98W7D                |
|             |           | 64QAM      | 793.0                       | ERP         | 0.067             | 18.27               | 9M00W7D                |
| LTE Band 14 |           | 256QAM     | 793.0                       | ERP         | 0.033             | 15.12               | 8M99W7D                |
|             |           | QPSK       | 790.5 - 795.5               | ERP         | 0.108             | 20.33               | 4M51G7D                |
|             | 5 MHz     | 16QAM      | 790.5 - 795.5               | ERP         | 0.097             | 19.88               | 4M51W7D                |
|             |           | 64QAM      | 790.5 - 795.5               | ERP         | 0.082             | 19.15               | 4M52W7D                |
|             |           | 256QAM     | 790.5 - 795.5               | ERP         | 0.033             | 15.17               | 4M51W7D                |
| CDMA BC10   | N/A       | CDMA       | 817.9 - 823.1               | Conducted   | 0.30              | 24.84               | 1M27F9W                |

**EUT Overview** 

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 2 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 3 of 61                    |
| © 2020 PCTEST       | <u>.</u>                                |                                       |         | V 9.0 02/01/2019                |



# **1.0 INTRODUCTION**

## 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

## 1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

#### 1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             | Dage 4 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      | Page 4 of 61                    |
| © 2020 PCTEST       | •                             | ·                                     | V 9 0 02/01/2019                |



# 2.0 PRODUCT INFORMATION

## 2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMG996U**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part.

#### Test Device Serial No.: N/A

### 2.2 Device Capabilities

This device contains the following capabilities:

800/850/1900 CDMA/EVDO Rev. 0/A (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1/FR2), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE), NFC, UWB, Wireless Power Transfer

## 2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad WCP Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

## 2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

| FCC ID: A3LSMG996U  | Provid to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dage 5 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 5 of 61                    |
| © 2020 PCTEST       |                                | ·                                     |         | V 9.0 02/01/2019                |



# 3.0 DESCRIPTION OF TESTS

## 3.1 Evaluation Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

## 3.2 Radiated Power and Radiated Spurious Emissions

#### <u>§2.1053</u>

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$ 

Where,  $P_d$  is the dipole equivalent power,  $P_g$  is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to  $P_{g [dBm]}$  – cable loss [dB].

For fundamental radiated power measurements, the guidance of KDB 971168 D01 v03r01 is used to record the EUT power level that is subsequently matched via the aforementioned substitution method given in ANSI/TIA-603-E-2016.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dere 6 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 6 of 61                    |
| © 2020 PCTEST       | •                                       | ·                                     |         | V 9.0 02/01/2019                |



# 4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{\text{CISPR}}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.13                       |
| Radiated Disturbance (<1GHz)        | 4.98                       |
| Radiated Disturbance (>1GHz)        | 5.07                       |
| Radiated Disturbance (>18GHz)       | 5.09                       |

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         |                                 |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 7 of 61                    |
| © 2020 PCTEST       | -                             | ·                                     |         | V 9.0 02/01/2019                |



# 5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

| Manufacturer    | Model      | Description                      | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------|------------|----------------------------------|------------|--------------|------------|---------------|
| -               | LTx2       | Licensed Transmitter Cable Set   | 4/9/2020   | Annual       | 4/9/2021   | LTx2          |
| -               | LTx4       | Licensed Transmitter Cable Set   | 7/9/2020   | Annual       | 7/9/2021   | LTx4          |
| -               | LTx5       | LIcensed Transmitter Cable Set   | 4/9/2020   | Annual       | 4/6/2021   | LTx5          |
| Agilent         | N9020A     | MXA Signal Analyzer              | 8/4/2020   | Annual       | 8/4/2021   | US46470561    |
| Agilent         | N9030A     | PXA Signal Analyzer (44GHz)      | 7/17/2020  | Annual       | 7/17/2021  | MY52350166    |
| Agilent         | E5515C     | Wireless Communications Test Set |            | N/A          |            | GB45360985    |
| Anritsu         | MT8820C    | Radio Communication Analyzer     |            | N/A          |            | 6201300731    |
| Anritsu         | MT8821C    | Radio Communication Analyzer     |            | N/A          | 6201381794 |               |
| Com-Power       | AL-130     | 9kHz - 30MHz Loop Antenna        | 10/10/2019 | Biennial     | 10/10/2021 | 121034        |
| Emco            | 3115       | Horn Antenna (1-18GHz)           | 6/18/2020  | Biennial     | 6/18/2022  | 9704-5182     |
| ETS Lindgren    | 3164-08    | Quad Ridge Horn Antenna          | 3/12/2020  | Biennial     | 3/12/2022  | 128337        |
| Mini Circuits   | TVA-11-422 | RF Power Amp                     | N/A        |              | QA1317001  |               |
| Mini-Circuits   | SSG-4000HP | Synthesized Signal Generator     |            | N/A          |            | 11208010032   |
| Rohde & Schwarz | CMU200     | Base Station Simulator           |            | N/A          |            | 836371/0079   |
| Rohde & Schwarz | CMW500     | Radio Communication Tester       |            | N/A          |            | 100976        |
| Rohde & Schwarz | CMW500     | Radio Communication Tester       |            | N/A          |            | 112347        |
| Rohde & Schwarz | ESU26      | EMI Test Receiver (26.5GHz)      | 7/15/2020  | Annual       | 7/15/2021  | 100342        |
| Rohde & Schwarz | SFUNIT-Rx  | Shielded Filter Unit             | 2/10/2020  | Annual       | 2/10/2021  | 102134        |
| Rohde & Schwarz | SFUNIT-Rx  | Shielded Filter Unit             | 2/21/2020  | Annual       | 2/21/2021  | 102133        |
| Sunol           | DRH-118    | Horn Antenna (1-18GHz)           | 10/3/2019  | Biennial     | 10/3/2021  | A050307       |
| Sunol           | DRH-118    | Horn Antenna (1-18 GHz)          | 8/27/2019  | Biennial     | 8/27/2021  | A042511       |
| Sunol           | JB5        | Bi-Log Antenna (30M - 5GHz)      | 7/27/2020  | Biennial     | 7/27/2022  | A051107       |

Table 5-1. Summary of Test Results

#### Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dage 9 of 61                    |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 8 of 61                    |
| © 2020 PCTEST       |                               | ·                                     |         | V 9.0 02/01/2019                |



# 6.0 SAMPLE CALCULATIONS

## Emission Designator

#### Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

### Spurious Radiated Emission – BC10

#### Example: Channel 476 CDMA BC10 Mode 3rd Harmonic (2453.70MHz)

The average spectrum analzyer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 2453.70 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm -(-24.80) = 50.3 dBc.

### **Emission Designator**

#### **QPSK Modulation**

#### Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data transmission, telemetry, telecommand

#### **QAM Modulation**

#### Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

## Spurious Radiated Emission – LTE Band

#### Example: Middle Channel LTE Mode 2<sup>nd</sup> Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80).

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 0 of 61                    |  |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 9 of 61                    |  |
| © 2020 PCTEST       |                                         | •                                     |         | V 9 0 02/01/2019                |  |



# 7.0 TEST RESULTS

# 7.1 Summary

| Company Name:       | Samsung Electronics Co., Ltd.              |
|---------------------|--------------------------------------------|
| FCC ID:             | A3LSMG996U                                 |
| FCC Classification: | PCS Licensed Transmitter Held to Ear (PCE) |
| Mode(s):            | <u>CDMA / LTE</u>                          |
| Band:               | Band Class 10 / Band 26 / Band 14          |

| Test<br>Condition | Test Description                                               | FCC Part Section(s)                   | Test Limit                                                                                                                                                                                                                                                                                                          | Test Result | Reference            |
|-------------------|----------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|
|                   | Occupied Bandw idth                                            | 2.1049                                | NA                                                                                                                                                                                                                                                                                                                  | PASS        | Section 7.2          |
| CTED              | Conducted Band Edge / Spurious<br>Emissions<br>(LTE Band 14)   | 2.1051, 90.691(a)                     | On all frequencies betw een 769-775 MHz and 799-805<br>MHz, attenuation by a factor not less than 65 + 10 log(P)<br>dB in a 6.25 kHz band segment, for mobile and portable<br>stations.<br>On any frequency betw een 775-788 MHz, above 805<br>MHz, and below 758 MHz, attenuation by at least 43 +<br>10 log(P) dB | PASS        | Sections<br>7.3, 7.4 |
| CONDUCTED         | Conducted Band Edge / Spurious<br>Emissions<br>(LTE Band 26)   | 2.1051, 90.543(a)                     | > 43 + 10 log10 (P[Watts]) for all out-of-band emissions<br>except                                                                                                                                                                                                                                                  | PASS        | Sections<br>7.3, 7.4 |
|                   | Conducted Band Edge / Spurious<br>Emissions<br>(CDMA BC10)     |                                       | > 50 + 10 log10 (P[Watts]) at Band Edge and for all out-<br>of-band emissions w ithin 37.5kHz of Block Edge                                                                                                                                                                                                         | PASS        | Sections<br>7.3, 7.4 |
|                   | Frequency Stability                                            | 2.1055, 90.213                        | < 2.5 ppm                                                                                                                                                                                                                                                                                                           | PASS        | Section 7.8          |
|                   | Conducted Pow er                                               | ted Pow er 2.1046, 90.635 < 100 Watts |                                                                                                                                                                                                                                                                                                                     | PASS        | Section 7.5          |
|                   | Effective Radiated Pow er<br>(LTE Band 14)                     | 90.542(a)(7)                          | < 3 Watts max. ERP                                                                                                                                                                                                                                                                                                  | PASS        | Section 7.6          |
|                   | Effective Radiated Pow er<br>(LTE Band 26)                     | 22.913(a.2)                           | < 7 Watts max. ERP                                                                                                                                                                                                                                                                                                  | PASS        | Section 7.6          |
| RADIATED          | Radiated Spurious Emissions<br>(LTE Band 14) 2.1053, 90.543(e) |                                       | > 43 + 10 log10 (P[Watts]) for all out-of-band emissions<br>except emissions in the 1559 - 1610MHz band are<br>subject to a limit of -40dBm/MHz for wideband signals                                                                                                                                                | PASS        | Section 7.7          |
|                   | Radiated Spurious Emissions<br>(LTE Band 26)                   | 2.1053, 90.543(e)                     | > 43 + 10 log10 (P[Watts]) for all out-of-band emissions<br>except<br>> 50 + 10 log10 (P[Watts]) at Band Edge and for all out-<br>of-band emissions w ithin 37.5kHz of Block Edge                                                                                                                                   | PASS        | Section 7.7          |

#### Table 7-1. Summary of Test Results

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dage 10 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 10 of 61                   |
| © 2020 PCTEST       | •                             | •                                     |         | V 9.0 02/01/2019                |



#### Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 7.0 were taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation," Version 4.2.
- 5) For LTE B14 conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "LTE Automation," Version.5.3.

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dege 11 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 11 of 61                   |
| © 2020 PCTEST       | •                                       |                                       |         | V 9.0 02/01/2019                |



# 7.2 Occupied Bandwidth §2.1049

#### **Test Overview**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### **Test Procedure Used**

KDB 971168 D01 v03r01 - Section 4.2

#### **Test Settings**

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

#### **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-1. Test Instrument & Measurement Setup

#### Test Notes

#### None.

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             | Dage 10 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      | Page 12 of 61                   |
| © 2020 PCTEST       | <u>.</u>                                |                                       | V 9.0 02/01/2019                |



# LTE Band 26



Plot 7-1. Occupied Bandwidth Plot (LTE Band 26 - 15MHz QPSK - Full RB Configuration)



Plot 7-2. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 12 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 13 of 61                   |
| © 2020 PCTEST       |                                         |                                       |         | V 9 0 02/01/2019                |



| Keysight Spectrum Analyzer - Occupied BV |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|---------------------------|----------------------|--------|------------------|
| XIRL RF 50Ω AC                           | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SENSE:INT<br>er Freg: 821.500000 MHz | ALIGN AUTO    | 09:47:45 AN<br>Radio Std: | Sep 18, 2020<br>None | Tracel | Detector         |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Free Run Avg Hol<br>en: 40 dB        | d:>100/100    | Radio Devi                | ce: BTS              |        |                  |
|                                          | #IFGain:Low #Atte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an. 40 dB                            |               | Radio Devi                | ce. DTS              |        |                  |
| 10 dB/div Ref 30.00 dBn                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| 10 dB/div Ref 30.00 dBn                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| 20.0                                     | at the set the set of |                                      | ~~~           |                           |                      | C      | ear Write        |
| 10.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| 0.00                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |               |                           |                      |        |                  |
| -10.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| -20.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | Vienes        | www.w.sha                 | - alamanakarak       |        | Average          |
| -30.0 Journal 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      | _      |                  |
| -40.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| -50.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        | Max Hold         |
| -60.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| Center 821.50 MHz                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               | Span 30                   | 0.00 MHz             |        |                  |
| Res BW 270 kHz                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBW 2.7 MHz                          |               |                           | ep 1 ms              |        | Min Hold         |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Power                          | 22.4          | l dBm                     |                      |        |                  |
| Occupied Bandwidt                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Power                          | JZ.           | иыш                       |                      |        |                  |
| 13                                       | .445 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |               |                           |                      |        | Detector<br>Peak |
| Transmit Freq Error                      | 8.597 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % of OBW Pow                         | ver <u>99</u> | 9.00 %                    |                      | Auto   | Peak<br>Mar      |
| x dB Bandwidth                           | 14.58 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x dB                                 |               | 00 dB                     |                      |        |                  |
|                                          | 14.50 MIHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Xub                                  | -20.          |                           |                      |        |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |               |                           |                      |        |                  |
| MSG                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | STATU         | 9                         |                      |        |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 51/103        |                           |                      |        |                  |

Plot 7-3. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 64-QAM - Full RB Configuration)



Plot 7-4. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dage 14 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 14 of 61                   |
| © 2020 PCTEST       | •                                        | •                                     |         | V 9.0 02/01/2019                |



|                 |                              | pied BW                                        |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|-----------------|------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF              | 50 Ω                         | AC                                             | CORRE                                                                                           | C                                       | Cente         |                | 0000 MHz                                                                                                                                                                       | ALIGN AUTO                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e/Detector                                                                                                                                                                                                                               |
|                 |                              |                                                | #IFGai                                                                                          |                                         | 📑 Trig:       | Free Run       |                                                                                                                                                                                | d: 100/100                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
| Ref             | 40.00                        | dBm                                            | ۱ <u> </u>                                                                                      |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clear Wri                                                                                                                                                                                                                                |
|                 |                              |                                                | ~~~~                                                                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | marthan       | Mart Mart Mart | a and the second second                                                                                                                                                        | ~~~~~                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                        |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                | +                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Avera                                                                                                                                                                                                                                    |
| alan a share of | Mmm                          | (h~l)                                          |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      | - how they                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max Ho                                                                                                                                                                                                                                   |
| 0.00 MIL        |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 | - Cnon (                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
| 180 kHz         |                              |                                                |                                                                                                 |                                         | ١             | /BW 1.8 M      | Hz                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min Ho                                                                                                                                                                                                                                   |
| pied B          | and                          | vidt                                           | h                                                                                               |                                         |               | Total F        | Power                                                                                                                                                                          | 33.                                                                                                                                                                                                             | 6 dBm                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              | 8.                                             | 963                                                                                             | 0 M                                     | Hz            |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detect                                                                                                                                                                                                                                   |
| nit Freq        | q Erro                       | or                                             | 1                                                                                               | 2.041                                   | kHz           | % of O         | BW Pow                                                                                                                                                                         | ver 9                                                                                                                                                                                                           | 9.00 %                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea<br><u>M</u>                                                                                                                                                                                                                          |
| andwid          | lth                          |                                                | g                                                                                               | .813                                    | ИHz           | x dB           |                                                                                                                                                                                | -26                                                                                                                                                                                                             | .00 dB                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 |                              |                                                |                                                                                                 |                                         |               |                |                                                                                                                                                                                | CTAT                                                                                                                                                                                                            | 10                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |
|                 | 9.00 MH<br>180 KHz<br>Died B | Ref 40.00<br>9.00 MHz<br>180 kHz<br>Died Bandy | Ref 40.00 dBm<br>Ref 40.00 dBm<br>9.00 MHz<br>180 kHz<br>Died Bandwidt<br>8.1<br>nit Freq Error | #FGat<br>Ref 40.00 dBm                  | Ref 40.00 dBm | Ref 40.00 dBm  | Center Freq: 819.00<br>#/FGain:Low #Atten: 40 dB<br>Ref 40.00 dBm<br>9.00 MHz<br>180 kHz VBW 1.8 M<br>bied Bandwidth Total F<br>8.9630 MHz<br>nit Freq Error 12.041 kHz % of O | Center Freq: 819.00000 MHz<br>Trig: Free Run Avg Hol<br>#Atten: 40 dB<br>Ref 40.00 dBm<br>9.00 MHz<br>180 kHz VBW 1.8 MHz<br>bied Bandwidth Total Power<br>8.9630 MHz<br>nit Freq Error 12.041 kHz % of OBW Pow | Center Freq: 819.00000 MHz<br>Trig: Free Run Avg Hold: 100/100<br>#Atten: 40 dB<br>Ref 40.00 dBm<br> | Center Freq: 819.000000 MHz<br>Trig: Free Run Avg Hold: 100/100 Radio Der<br>Ref 40.00 dBm<br>9.00 MHz<br>180 kHz VBW 1.8 MHz Span 2<br>Span 2<br>Symptotic State | Center Freq: 819.000000 MHz<br>Trig: Free Run       Radio Std: None<br>Radio Device: BTS         Ref 40.00 dBm       Image: Ref 40.00 dBm         9.00 MHz       Span 20.00 MHz         9.00 MHz       Span 20.00 MHz         9.00 MHz       VBW 1.8 MHz         Span 20.00 MHz         Span 20.00 MHz         9.00 MHz         100 MHz         110 MHz         120 MHz <td>Center Freq: 819.000000 MHz<br/>Trig: Free Run Avg Hold: 100/100<br/>Radio Device: BTS<br/>Ref 40.00 dBm<br/>9.00 MHz<br/>180 kHz VBW 1.8 MHz Span 20.00 MHz<br/>System 12.041 kHz % of OBW Power 99.00 %<br/>andwidth 9.813 MHz x dB -26.00 dB</td> | Center Freq: 819.000000 MHz<br>Trig: Free Run Avg Hold: 100/100<br>Radio Device: BTS<br>Ref 40.00 dBm<br>9.00 MHz<br>180 kHz VBW 1.8 MHz Span 20.00 MHz<br>System 12.041 kHz % of OBW Power 99.00 %<br>andwidth 9.813 MHz x dB -26.00 dB |

Plot 7-5. Occupied Bandwidth Plot (LTE Band 26 - 10MHz QPSK - Full RB Configuration)



Plot 7-6. Occupied Bandwidth Plot (LTE Band 26 - 10MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|----------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                            | EUT Type:                             | Dage 15 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                     | Portable Handset                      | Page 15 of 61                   |
| © 2020 PCTEST       | •                                      | •                                     | V 9.0 02/01/2019                |





Plot 7-7. Occupied Bandwidth Plot (LTE Band 26 - 10MHz 64-QAM - Full RB Configuration)



Plot 7-8. Occupied Bandwidth Plot (LTE Band 26 - 10MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Daga 16 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 16 of 61                   |
| © 2020 PCTEST       |                                         | •                                     |         | V 9.0 02/01/2019                |





Plot 7-9. Occupied Bandwidth Plot (LTE Band 26 - 5MHz QPSK - Full RB Configuration)



Plot 7-10. Occupied Bandwidth Plot (LTE Band 26 - 5MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of (e) element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                               | EUT Type:                             |         | Dage 17 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                        | Portable Handset                      |         | Page 17 of 61                   |
| © 2020 PCTEST       |                                           |                                       |         | V 9.0 02/01/2019                |





Plot 7-11. Occupied Bandwidth Plot (LTE Band 26 - 5MHz 64-QAM - Full RB Configuration)



Plot 7-12. Occupied Bandwidth Plot (LTE Band 26 - 5MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of (e) element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                               | EUT Type:                             |         | Dage 19 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                        | Portable Handset                      |         | Page 18 of 61                   |
| © 2020 PCTEST       | ·                                         | •                                     |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analyzer - Occu |          |          |                     |                          |                                         |           |          |                               |      |             |
|-----------------------------------|----------|----------|---------------------|--------------------------|-----------------------------------------|-----------|----------|-------------------------------|------|-------------|
| <mark>X/</mark> RL RF 50 Ω        | AC CO    | RREC     |                     | ENSE:INT<br>Freg: 815.50 |                                         | ALIGN AUT |          | 8 AM Sep 18, 2020<br>td: None | Trac | e/Detector  |
|                                   |          |          | Trig: Fr<br>#Atten: | ee Run                   | Avg Hold                                | : 100/100 | Dedie D  | evice: BTS                    |      |             |
|                                   | #IF      | Gain:Low | #Atten:             | 40 aB                    |                                         |           | Radio D  | evice: DTS                    |      |             |
|                                   | -18      |          |                     |                          |                                         |           |          |                               |      |             |
| 10 dB/div Ref 30.00               | dBm      |          |                     |                          |                                         |           |          |                               |      |             |
| 20.0                              |          |          |                     |                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           |          |                               |      |             |
| 10.0                              |          |          |                     |                          |                                         |           | <u> </u> |                               | (    | Clear Write |
| 0.00                              | /        |          |                     |                          |                                         |           | <u>\</u> |                               |      |             |
| -10.0                             | <u> </u> |          |                     |                          |                                         |           | <u> </u> |                               |      |             |
| -20.0                             |          |          |                     |                          |                                         |           | have     |                               |      | Average     |
| -30.0                             |          |          |                     |                          |                                         |           |          |                               |      |             |
| -40.0                             |          |          |                     |                          |                                         |           |          |                               |      |             |
| -50.0                             |          |          |                     |                          |                                         |           |          |                               |      | Max Hold    |
| -60.0                             |          |          |                     |                          |                                         |           |          |                               |      |             |
| Center 815.500 MHz                |          |          |                     |                          |                                         |           | 0        | 5 000 MU                      |      |             |
| Res BW 47 kHz                     |          |          | VE                  | SW 470 k                 | Hz                                      |           |          | 5.000 MHz<br>2.533 ms         |      | Min Hold    |
|                                   |          |          |                     |                          |                                         |           |          |                               |      | Min Hold    |
| Occupied Bandy                    | vidth    |          |                     | Total I                  | Power                                   | 33        | 3.7 dBm  |                               |      |             |
|                                   | 2.69     | 97 M     | Hz                  |                          |                                         |           |          |                               |      | Detector    |
|                                   |          |          |                     |                          |                                         |           |          |                               | 0    | Peak        |
| Transmit Freq Erro                | or       | 5.652    | KHZ                 | % of C                   | BW Pow                                  | er        | 99.00 %  |                               | Auto | Mar         |
| x dB Bandwidth                    |          | 2.987    | MHz                 | x dB                     |                                         | -2        | 6.00 dB  |                               |      |             |
|                                   |          |          |                     |                          |                                         |           |          |                               |      |             |
|                                   |          |          |                     |                          |                                         |           |          |                               |      |             |
|                                   |          |          |                     |                          |                                         |           |          |                               |      |             |
| ISG                               |          |          |                     |                          |                                         | STA       | TUS      |                               |      |             |

Plot 7-13. Occupied Bandwidth Plot (LTE Band 26 - 3MHz QPSK - Full RB Configuration)



Plot 7-14. Occupied Bandwidth Plot (LTE Band 26 - 3MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 10 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 19 of 61                   |
| © 2020 PCTEST       | <u>.</u>                                |                                       |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analy           |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
|-----------------------------------|---------|-----------|-----------------------------------------|--------|---------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------|-----------|------|-------------------------|-----------------------|------|-------------|
| KL RF                             | 50 Ω    | AC        | CORR                                    | EC     |         |                                         | Freg: 81                                | 5.5000                                  | 00 MHz   | ALIGN AU  | то   | 11:07:31 /<br>Radio Std | M Sep 18, 2020        | Trac | ce/Detector |
|                                   |         |           |                                         |        | <b></b> |                                         | ree Run                                 |                                         | Avg Hold | : 100/100 | )    | Radio Dev               | dee: BTC              |      |             |
|                                   |         |           | #IFGa                                   | in:Low |         | #Atten:                                 | 40 dB                                   |                                         |          |           | _    | Radio Dev               | /ice: B15             |      |             |
|                                   | ~~ ~~   |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
| 10 dB/div Ref                     | 30.00   | dBn       | 1                                       |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
| 20.0                              |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      | <b>O</b> I  |
| 10.0                              |         |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~    | አካሌታላ   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~    | ~~~~      | ╞    |                         |                       |      | Clear Write |
| 0.00                              |         | $\square$ |                                         |        |         |                                         |                                         |                                         |          |           | ł    |                         |                       |      |             |
| -10.0                             | لم      | <u> </u>  |                                         |        |         |                                         |                                         |                                         |          |           | X    | <u></u>                 |                       |      |             |
| -20.0                             | كمسميني |           |                                         |        |         |                                         |                                         |                                         |          |           |      | <b>h</b>                |                       |      | Average     |
| -30.0                             |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      | www                     | mmm                   |      |             |
| -40.0                             |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
| -50.0                             |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      | Max Hold    |
| -60.0                             |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      | maxmore     |
|                                   |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
| Center 815.500 N<br>Res BW 47 kHz | /IHZ    |           |                                         |        |         | V                                       | 3W 47                                   | ) kH                                    | 7        |           |      |                         | 5.000 MHz<br>2.533 ms |      |             |
|                                   |         |           |                                         |        |         |                                         | 148548                                  | v IXIII                                 | -        |           |      | Oncep                   | 2.000 1113            |      | Min Hold    |
| Occupied B                        | andv    | vidt      | h                                       |        |         |                                         | Tota                                    | il Po                                   | ower     | 3         | 1.2  | 2 dBm                   |                       |      |             |
|                                   |         | 2.        | 689                                     | 3      | ΛН      | 7                                       |                                         |                                         |          |           |      |                         |                       |      | Detector    |
|                                   | _       |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      | Peak▶       |
| Transmit Free                     | q Erro  | r         |                                         | 4.35   | 0 kl    | Z                                       | % oʻ                                    | OB                                      | W Pow    | er        | 99   | 0.00 %                  |                       | Auto | Mar         |
| x dB Bandwid                      | dth     |           |                                         | 2.973  | 3 MI    | Ιz                                      | x dE                                    | 3                                       |          | -7        | 26.  | 00 dB                   |                       |      |             |
|                                   |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
|                                   |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
|                                   |         |           |                                         |        |         |                                         |                                         |                                         |          |           |      |                         |                       |      |             |
| MSG                               |         |           |                                         |        |         |                                         |                                         |                                         |          | ST        | ATUS | 5                       |                       |      |             |

Plot 7-15. Occupied Bandwidth Plot (LTE Band 26 - 3MHz 64-QAM - Full RB Configuration)



Plot 7-16. Occupied Bandwidth Plot (LTE Band 26 - 3MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of (e) element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                               | EUT Type:                             |         | Dage 20 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                        | Portable Handset                      |         | Page 20 of 61                   |
| © 2020 PCTEST       |                                           |                                       |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analyzer - Occupi |                                        |                                        |                 |                                            |                |
|-------------------------------------|----------------------------------------|----------------------------------------|-----------------|--------------------------------------------|----------------|
| KI RF 50Ω /                         | AC CORREC                              | SENSE:INT<br>Center Freg: 814.700000 N | ALIGN AUTO      | 01:17:40 PM Sep 18, 202<br>Radio Std: None | Trace/Detector |
|                                     |                                        | Trig: Free Run Av                      | g Hold: 100/100 |                                            |                |
|                                     | #IFGain:Low                            | #Atten: 40 dB                          |                 | Radio Device: BTS                          | _              |
|                                     |                                        |                                        |                 |                                            |                |
| 10 dB/div Ref 30.00 d               | dBm                                    |                                        |                 |                                            |                |
| - <b>og</b><br>20.0                 |                                        |                                        |                 |                                            |                |
|                                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mmm                                    | m               |                                            | Clear Writ     |
| 10.0                                |                                        |                                        |                 |                                            |                |
| 0.00                                |                                        |                                        | )               | 4                                          |                |
| 10.0                                |                                        |                                        |                 |                                            |                |
| 20.0                                |                                        |                                        |                 | hannam                                     | Averag         |
| 30.0                                |                                        |                                        |                 |                                            |                |
| 40.0                                |                                        |                                        |                 |                                            |                |
| 50.0                                |                                        |                                        |                 |                                            | Max Hol        |
| 60.0                                |                                        |                                        |                 |                                            |                |
|                                     |                                        |                                        |                 |                                            |                |
| Center 814.700 MHz<br>Res BW 18 kHz |                                        | VBW 180 kHz                            |                 | Span 2.000 MH<br>Sweep 5.733 m             |                |
|                                     |                                        |                                        |                 | Sweep 5.755 III                            | s Min Hol      |
| Occupied Bandw                      | idth                                   | Total Powe                             | r 33.           | 3 dBm                                      |                |
|                                     | 1.0812 MH                              | -                                      |                 |                                            | Detecto        |
|                                     |                                        | Z                                      |                 |                                            | Peak           |
| Transmit Freq Erro                  | r -222 I                               | Hz % of OBW                            | Power 99        | 9.00 %                                     | Auto <u>Ma</u> |
| x dB Bandwidth                      | 1.214 M                                | Hz xdB                                 | -26             | .00 dB                                     |                |
|                                     | 1.2 14 101                             |                                        | -20             |                                            |                |
|                                     |                                        |                                        |                 |                                            |                |
|                                     |                                        |                                        |                 |                                            |                |
|                                     |                                        |                                        |                 |                                            |                |
| SG                                  |                                        |                                        | STATU           | JS                                         |                |

Plot 7-17. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz QPSK - Full RB Configuration)



Plot 7-18. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST:<br>Proud to be part of @element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             | Dage 21 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      | Page 21 of 61                   |
| © 2020 PCTEST       |                                         |                                       | V 9.0 02/01/2019                |



| Keysight Spe                               |         |             |      |        |                                        |       |                                        |                                         |            |        |                      |                       |      |                 |
|--------------------------------------------|---------|-------------|------|--------|----------------------------------------|-------|----------------------------------------|-----------------------------------------|------------|--------|----------------------|-----------------------|------|-----------------|
| RL                                         | RF      | <u>50 Ω</u> | AC   | CORRE  | C                                      | Cont  | SENSE:INT<br>er Freq: 814.7            | 00000 MH-                               | ALIGN AUT  |        | 1:18:32 P<br>dio Std | M Sep 18, 2020        | Trac | e/Detector      |
|                                            |         |             |      | #IFGai |                                        | Trig: | Free Run<br>en: 40 dB                  |                                         | d: 100/100 | )      |                      | vice: BTS             |      |                 |
| 0 dB/div                                   | Ref     | 30.00       | dBn  | n      |                                        |       |                                        | 1                                       |            |        |                      |                       |      |                 |
| 0.0                                        |         |             | ~~~  | n      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |        |                      |                       |      | Clear Writ      |
| 0.00                                       |         | /           | /    |        |                                        |       |                                        |                                         |            |        |                      |                       |      |                 |
| 0.0<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | v., min | m           |      |        |                                        |       |                                        |                                         |            |        | $\sim$               | ^^                    |      | Averag          |
| 0.0<br>0.0                                 |         |             |      |        |                                        |       |                                        |                                         |            |        |                      |                       |      |                 |
| 0.0                                        |         |             |      |        |                                        |       |                                        |                                         |            |        |                      |                       |      | Max Ho          |
| enter 81<br>es BW                          |         | /IHz        |      |        |                                        |       | VBW 180                                | kHz                                     |            |        |                      | 2.000 MHz<br>5.733 ms |      | Min Ho          |
| Occup                                      | oied B  | andv        | vidt | h      |                                        |       | Total                                  | Power                                   | 3          | 0.7 dE | Bm                   |                       |      |                 |
|                                            |         |             | 1.   | 079    | 8 M                                    | Hz    |                                        |                                         |            |        |                      |                       |      | Detecto<br>Peak |
| Transr                                     | nit Fre | q Erro      | or   |        | 1.214                                  | kHz   | % of (                                 | OBW Pow                                 | er         | 99.00  | ) %                  |                       | Auto | <u>Ma</u>       |
| x dB B                                     | andwid  | dth         |      | 1      | .220                                   | MHz   | x dB                                   |                                         | -2         | 26.00  | dB                   |                       |      |                 |
|                                            |         |             |      |        |                                        |       |                                        |                                         |            |        |                      |                       |      |                 |

Plot 7-19. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz 64-QAM - Full RB Configuration)



Plot 7-20. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 22 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 22 of 61                   |
| © 2020 PCTEST       |                                         |                                       |         | V 9.0 02/01/2019                |

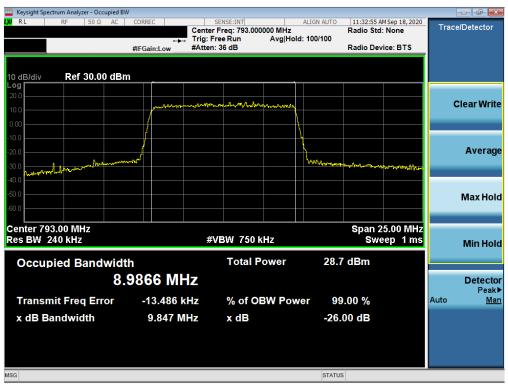


# LTE Band 14



Plot 7-21. Occupied Bandwidth Plot (LTE Band 14 - 10MHz QPSK - Full RB Configuration)




Plot 7-22. Occupied Bandwidth Plot (LTE Band 14 - 10MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dama 02 of 01                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 23 of 61                   |
| © 2020 PCTEST       | ·                                        |                                       |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analyze |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
|---------------------------|-------------|-----|--------|--------|------|---------------|------------------------|-----------|-----|------------|-------------------------|--------------------------|------|------------|
| RL RF                     | 50 Ω        | AC  | CORRE  | C      | Ce   |               | NSE:INT<br>eq: 793.000 | 000 MHz   |     | ALIGN AUTO | 11:32:31 A<br>Radio Std | M Sep 18, 2020<br>: None | Trac | e/Detector |
|                           |             |     |        | 4      | 📑 Tr | ig: Fre       | Run                    |           | ld: | >100/100   |                         |                          |      |            |
|                           |             |     | #IFGa  | in:Low | #A   | tten: 3       | 6 dB                   |           |     |            | Radio Dev               | vice: BTS                |      |            |
|                           |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
|                           | 30.00       | dBm |        | _      |      |               |                        |           |     |            |                         |                          |      |            |
| .og                       |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
|                           |             |     |        | manan  |      | t.<br>Alerach | yyong rathylinessay    | monsmuter |     |            |                         |                          |      | Clear Writ |
| 10.0                      |             |     | 1      |        |      |               |                        |           | l.  |            |                         |                          |      |            |
| ).00                      |             |     | -1     |        |      |               |                        |           | ţ   |            |                         |                          |      |            |
| 0.0                       |             |     | -+     |        |      |               |                        |           | H   |            |                         |                          |      |            |
| 0.0                       | Jun Alash   |     | کی کھی |        |      |               |                        |           |     |            |                         |                          |      | Avera      |
| 0.0 mbanantan             | Jww. Marine |     |        |        |      |               |                        |           |     | manymen    | arren are flother       | munt later               | _    |            |
| 0.0                       |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
| 50.0                      |             |     |        |        |      |               |                        |           |     |            |                         |                          |      | Max Ho     |
| 50.0                      |             |     |        |        |      |               |                        |           |     |            |                         |                          |      | Max no     |
|                           |             |     |        |        |      |               |                        |           |     |            |                         |                          |      | _          |
| enter 793.00 MH           | z           |     |        |        |      |               |                        |           |     |            |                         | 5.00 MHz                 |      |            |
| Res BW 240 kHz            |             |     |        |        |      | #VE           | SW 750 H               | (Hz       |     |            | Swe                     | eep 1 ms                 |      | Min Ho     |
|                           | a na alta   |     |        |        |      |               | Total P                | owor      |     | 20.5       | dBm                     |                          |      |            |
| Occupied Ba               | angv        |     |        |        |      |               | TULATE                 | Ower      |     | 50.5       | UBIII                   |                          |      |            |
|                           |             | 9.0 | 003    | 6 M    | Ηz   |               |                        |           |     |            |                         |                          |      | Detect     |
| Transmit Frag             | Erro        |     | 4      | 4.306  | 니ㅋ   |               | % of O                 |           |     | - 00       | .00 %                   |                          | Auto | Peak<br>Ma |
| Transmit Freq             |             | Л   | -1     | 4.300  | KITZ |               | % 0I U                 |           | NE  | 99         | .00 %                   |                          | Auto | 1416       |
| x dB Bandwid              | th          |     | ę      | 9.861  | MHz  |               | x dB                   |           |     | -26.       | 00 dB                   |                          |      |            |
|                           |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
|                           |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
|                           |             |     |        |        |      |               |                        |           |     |            |                         |                          |      |            |
| G                         |             |     |        |        |      |               |                        |           | _   | STATUS     |                         |                          |      |            |
| SG                        |             |     |        |        |      |               |                        |           |     | STATUS     | 8                       |                          |      |            |

Plot 7-23. Occupied Bandwidth Plot (LTE Band 14 - 10MHz 64-QAM - Full RB Configuration)



Plot 7-24. Occupied Bandwidth Plot (LTE Band 14 - 10MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dage 24 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 24 of 61                   |
| © 2020 PCTEST       | •                                        | •                                     |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analyzer - Occupied B\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                     |                                    |                |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|------------------------------------|----------------|-----------------|
| LXI RL RF 50Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CORREC             | SENSE:INT<br>r Freg: 793.000000 MHz | ALIGN AUTO 11:48:31 A<br>Radio Std | M Sep 18, 2020 | Trace/Detector  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🛶 Trig: F          | Free Run Avg Hol                    | d: 100/100                         |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #IFGain:Low #Atter | n: 36 dB                            | Radio Dev                          | /ice: BTS      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                     |                                    |                |                 |
| 10 dB/div Ref 40.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                  |                                     |                                    |                |                 |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                     |                                    |                |                 |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                     |                                    |                | Clear Write     |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                     |                                    |                | 01001 01110     |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                     |                                    |                |                 |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                     |                                    |                |                 |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     |                                    |                | Average         |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     | handhan                            |                |                 |
| -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 | -V U               |                                     | harrow                             | 1 W Were       |                 |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     |                                    |                | Mawliald        |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     |                                    |                | Max Hold        |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     |                                    |                |                 |
| Center 793.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                     | Span 1                             | 2.50 MHz       |                 |
| Res BW 120 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                  | VBW 390 kHz                         | Sw                                 | eep 1 ms       | Min Hold        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | <b>T</b> ( 1 <b>D</b>               | 00.4.15                            |                |                 |
| Occupied Bandwidt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | Total Power                         | 33.4 dBm                           |                |                 |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5112 MHz           |                                     |                                    |                | Detector        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                     |                                    |                | Peak▶           |
| Transmit Freq Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.051 kHz         | % of OBW Pow                        | ver 99.00 %                        |                | Auto <u>Man</u> |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.024 MHz          | x dB                                | -26.00 dB                          |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                     |                                    |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                     |                                    |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                     |                                    |                |                 |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                     | STATUS                             |                |                 |
| mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                     | 51/105                             |                |                 |

Plot 7-25. Occupied Bandwidth Plot (LTE Band 14 - 5MHz QPSK - Full RB Configuration)



Plot 7-26. Occupied Bandwidth Plot (LTE Band 14 - 5MHz 16-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 25 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 25 of 61                   |
| © 2020 PCTEST       |                                         | •                                     |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analyzer - Occupie |                   |                                      |             |                                             |                 |
|--------------------------------------|-------------------|--------------------------------------|-------------|---------------------------------------------|-----------------|
| RL RF 50Ω A                          |                   | SENSE:INT<br>er Freg: 793.000000 MHz | ALIGN AUTO  | 11:49:03 AM Sep 18, 2020<br>Radio Std: None | Trace/Detector  |
|                                      | Trig:             | Free Run Avg Ho                      | ld: 100/100 | Radio Sta. None                             |                 |
|                                      | #IFGain:Low #Atte | en: 36 dB                            |             | Radio Device: BTS                           |                 |
|                                      |                   |                                      |             |                                             |                 |
| 0 dB/div Ref 40.00 d                 | Bm                |                                      |             |                                             |                 |
| og                                   |                   |                                      |             |                                             |                 |
| 30.0                                 |                   |                                      |             |                                             | Clear Wri       |
| 20.0                                 | - man have        | mon                                  |             |                                             | cica mi         |
| 10.0                                 |                   |                                      |             |                                             |                 |
| .00                                  | /                 |                                      | <u> </u>    |                                             |                 |
| 0.0                                  | /                 |                                      |             |                                             | Avera           |
| 20.0                                 |                   |                                      | An a ba     |                                             |                 |
| 0.0                                  |                   |                                      | ግግ የአለም ነ   | mann                                        |                 |
| 10.0                                 |                   |                                      |             |                                             | Max Ho          |
| in n                                 |                   |                                      |             |                                             | IVIAX FIO       |
|                                      |                   |                                      |             |                                             |                 |
| enter 793.000 MHz                    |                   |                                      |             | Span 12.50 MHz                              |                 |
| tes BW 120 kHz                       |                   | #VBW 390 kHz                         |             | Sweep 1 ms                                  | Min Ho          |
| Occurried Dendus                     |                   | Total Power                          | 24.2        | dBm                                         |                 |
| Occupied Bandwi                      |                   |                                      | 51.5        | ubiii                                       |                 |
|                                      | 4.5199 MHz        |                                      |             |                                             | Detect          |
| Transmit Freq Error                  | 11.924 kHz        | % of OBW Pov                         | Nor 00      | .00 %                                       | Peak<br>Auto Ma |
|                                      |                   |                                      |             |                                             | <u></u>         |
| x dB Bandwidth                       | 4.967 MHz         | x dB                                 | -26.        | 00 dB                                       |                 |
|                                      |                   |                                      |             |                                             |                 |
|                                      |                   |                                      |             |                                             |                 |
|                                      |                   |                                      |             |                                             |                 |
|                                      |                   |                                      |             |                                             |                 |

Plot 7-27. Occupied Bandwidth Plot (LTE Band 14 - 5MHz 64-QAM - Full RB Configuration)



Plot 7-28. Occupied Bandwidth Plot (LTE Band 14 - 5MHz 256-QAM - Full RB Configuration)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of (e) element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                               | EUT Type:                             |         | Dage 26 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                        | Portable Handset                      |         | Page 26 of 61                   |
| © 2020 PCTEST       | ·                                         | •                                     |         | V 9.0 02/01/2019                |



## CDMA BC10







#### Plot 7-30. Occupied Bandwidth Plot (CDMA, Ch. 684)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 07 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 27 of 61                   |
| © 2020 PCTEST       |                                         |                                       |         | V 9 0 02/01/2019                |



# 7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §90.691(a) §90.543(e)

#### Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

# The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$ , where P is the transmitter power in Watts.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### **Test Settings**

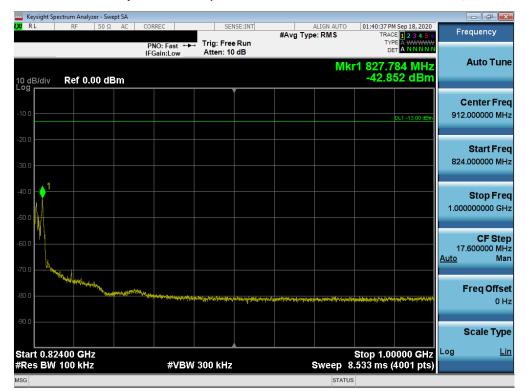
- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. RBW ≥ 100kHz
- 3. VBW  $\ge$  3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-2. Test Instrument & Measurement Setup


| FCC ID: A3LSMG996U  | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dage 29 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 28 of 61                   |
| © 2020 PCTEST       | ·                              |                                       |         | V 9.0 02/01/2019                |



# LTE Band 26

|                       | ectrum Analyzer - S |      |                                                                       |                         |         |                                |                      |                    |                                                |                               | 7 ×                |
|-----------------------|---------------------|------|-----------------------------------------------------------------------|-------------------------|---------|--------------------------------|----------------------|--------------------|------------------------------------------------|-------------------------------|--------------------|
| X/RL                  | RF 50               | Ω AC | CORREC                                                                | SEI                     | NSE:INT | #Avg Typ                       | ALIGN AUTO<br>e: RMS |                    | M Sep 18, 2020                                 | Frequen                       | су                 |
|                       |                     |      | PNO: Fast ↔<br>IFGain:Low                                             | Trig: Free<br>Atten: 40 |         |                                |                      | TY                 |                                                |                               |                    |
| 10 dB/div<br>Log      | Ref 30.00           | dBm  |                                                                       |                         |         |                                | Mkr1                 | 415.72<br>-52.     | 8 0 MHz<br>27 dBm                              | Auto                          | Tune               |
| 20.0                  |                     |      |                                                                       |                         |         |                                |                      |                    |                                                | Center<br>422.00000           |                    |
| 0.00                  |                     |      |                                                                       |                         |         |                                |                      |                    |                                                | Star<br>30.00000              | t Frec<br>10 MHz   |
| -10.0                 |                     |      |                                                                       |                         |         |                                |                      |                    | DL1 -13.00 dBm                                 | Stop<br>814.00000             | o Frec<br>10 MHz   |
| 30.0                  |                     |      |                                                                       |                         |         |                                |                      |                    |                                                | CF<br>78.40000<br><u>Auto</u> | Step<br>MH:<br>Mar |
| 50.0                  |                     |      | ta na star na di sa na ana ang sa |                         | 1       | gente antenne for (en preside) |                      |                    | adalas dalapitan astro<br>mayar di sasala dala | Freq                          | Offse<br>0 Ha      |
| -60.0                 |                     |      |                                                                       |                         |         |                                |                      |                    |                                                | Scale                         |                    |
| Start 30.0<br>#Res BW |                     |      | #VBW                                                                  | / 300 kHz               |         | s                              | weep 37              | Stop 8<br>33 ms (2 | 14.0 MHz<br>20001 pts)                         | Log                           | Lin                |
| //SG                  |                     |      |                                                                       |                         |         |                                | STATUS               | 3                  |                                                |                               |                    |

Plot 7-31. Conducted Spurious Plot (LTE Band 26 - 15MHz QPSK - RB Size 1, RB Offset 0)



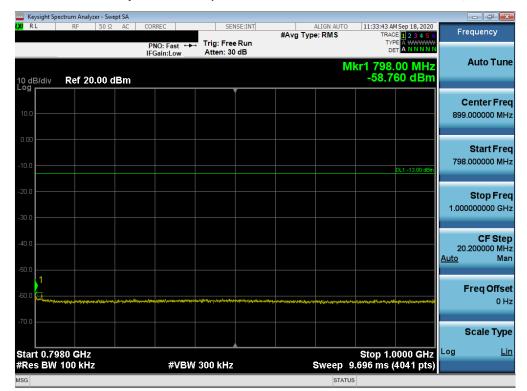
Plot 7-32. Conducted Spurious Plot (LTE Band 26 - 15MHz QPSK - RB Size 1, RB Offset 0)

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Daga 20 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 29 of 61                   |
| © 2020 PCTEST       |                               | •                                     |         | V 9 0 02/01/2019                |



|           | ectrum Analyzer - Swe |           |                               |         |          |                      |                   |                                                                    | - 6 론                                       |
|-----------|-----------------------|-----------|-------------------------------|---------|----------|----------------------|-------------------|--------------------------------------------------------------------|---------------------------------------------|
| XI        | RF 50 Ω               | P         | RREC<br>NO:Fast ↔<br>Gain:Low |         | #Avg Typ | ALIGN AUTO<br>e: RMS | TRAC              | MNov 23, 2020<br>E <b>1 2 3 4 5 6</b><br>PE A WWWWW<br>A N N N N N | Frequency                                   |
| 10 dB/div | Ref 30.00 c           |           | Juin.20                       |         |          | Mk                   | r1 9.735<br>-37.9 | 40 GHz<br>84 dBm                                                   | Auto Tune                                   |
| 20.0      |                       |           |                               |         |          |                      |                   |                                                                    | Center Fred<br>5.500000000 GH:              |
| 0.00      |                       |           |                               |         |          |                      |                   |                                                                    | Start Free<br>1.000000000 GH:               |
| 20.0      |                       |           |                               |         |          |                      |                   | DL1 -13.00 dBm                                                     | Stop Free<br>10.000000000 GH:               |
| 30.0      |                       | . Alfanad |                               |         |          |                      |                   |                                                                    | CF Step<br>900.000000 MH<br><u>Auto</u> Mar |
| 50.0      |                       |           |                               |         |          |                      |                   |                                                                    | Freq Offse<br>0 H:                          |
| 60.0      | 0 GHz                 |           |                               |         |          |                      | Stop 10           | .000 GHz                                                           | Scale Type                                  |
| Res BW    |                       |           | #VBW                          | 3.0 MHz | s        | weep 1               | 6.00 ms (2        | 0001 pts)                                                          |                                             |
| ISG       |                       |           |                               |         |          | STAT                 | us                |                                                                    |                                             |

Plot 7-33. Conducted Spurious Plot (LTE Band 26 - 15MHz QPSK - RB Size 1, RB Offset 0)


| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 20 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 30 of 61                   |
| © 2020 PCTEST       |                                         |                                       |         | V 9.0 02/01/2019                |



# LTE Band 14

|                  | ectrum Analy |         | t SA |                    |               |                        |         |          |                        |       |       |                            |             |                        |
|------------------|--------------|---------|------|--------------------|---------------|------------------------|---------|----------|------------------------|-------|-------|----------------------------|-------------|------------------------|
| X/RL             | RF           | 50 Ω    | AC   | CORREC             |               |                        | NSE:INT | #Avg Typ | ALIGN AU<br>e: RMS     | TO 11 | TRAC  | Sep 18, 2020               | Fr          | equency                |
|                  |              |         |      | PNO: F<br>IFGain:I | ast ⊶⊷<br>.ow | Trig: Fre<br>Atten: 30 |         |          |                        |       | TYP   | E A WWWWW<br>T A N N N N N |             |                        |
|                  |              |         |      |                    |               |                        |         |          |                        | Mkr1  | 788.  | 00 MHz                     |             | Auto Tune              |
| 10 dB/div<br>Log | Ref 20       | ).00 dE | Зm   |                    |               |                        | -       |          |                        |       | 27.1  | 36 dBm                     |             |                        |
|                  |              |         |      |                    |               |                        | Ĭ       |          |                        |       |       |                            |             | Center Freq            |
| 10.0             |              |         |      |                    |               |                        |         |          |                        |       |       |                            | 409         | .000000 MHz            |
| 0.00             |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             |                        |
| 0.00             |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             | Start Freq             |
| -10.0            |              |         |      |                    |               |                        |         |          |                        |       |       | DL1 -13.00 dBm             | 30          | .000000 MHz            |
|                  |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             |                        |
| -20.0            |              |         |      |                    |               |                        |         |          |                        |       |       | 1                          |             | Stop Free              |
| -30.0            |              |         |      |                    |               |                        |         |          |                        |       |       | <u> </u>                   | 788         | 8.000000 MHz           |
|                  |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             |                        |
| -40.0            |              |         |      |                    |               |                        |         |          |                        |       |       |                            | 75          | CF Step<br>8.800000 MH |
|                  |              |         |      |                    |               |                        |         |          |                        |       |       |                            | <u>Auto</u> | Mar                    |
| -50.0            |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             |                        |
| -60.0            |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             | Freq Offse             |
|                  |              |         |      |                    |               |                        |         |          | la parte de caracter d |       |       |                            |             | 0 H:                   |
| -70.0            |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             |                        |
|                  |              |         |      |                    |               |                        |         |          |                        |       |       |                            |             | Scale Type             |
| Start 30.0       |              |         |      |                    |               |                        |         |          |                        | s     | top 7 | 38.0 MHz                   | Log         | Lin                    |
| #Res BW          | 100 KHz      | 2       |      |                    | #VBW          | 300 kHz                |         | s        |                        |       | ms (1 | 5161 pts)                  |             |                        |
| ISG              |              |         |      |                    |               |                        |         |          | ST                     | ATUS  |       |                            |             |                        |

Plot 7-34. Conducted Spurious Plot (LTE Band 14 - 10MHz QPSK - RB Size 1, RB Offset 0)



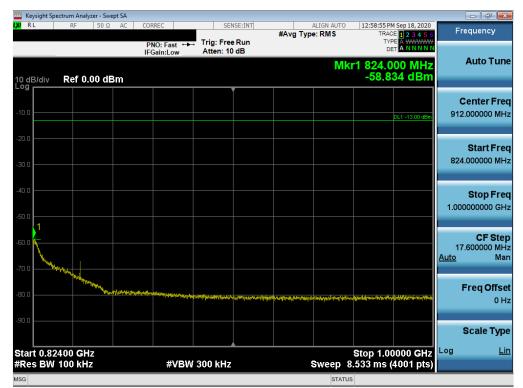
Plot 7-35. Conducted Spurious Plot (LTE Band 14 - 10MHz QPSK - RB Size 1, RB Offset 0)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 21 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 31 of 61                   |
| © 2020 PCTEST       |                                         | •                                     |         | V 9 0 02/01/2019                |



|                  | ectrum Analyzer - Sw |   |                               |         |          |                      |                    |                                                                       |                     |                              |
|------------------|----------------------|---|-------------------------------|---------|----------|----------------------|--------------------|-----------------------------------------------------------------------|---------------------|------------------------------|
| XI               | RF 50 Ω              | Р | RREC<br>NO:Fast ↔<br>Gain:Low |         | #Avg Typ | ALIGN AUTO<br>e: RMS | TRAC               | M Nov 23, 2020<br>CE <b>1 2 3 4 5 6</b><br>PE A WWWW<br>T A N N N N N | Fre                 | equency                      |
| 10 dB/div<br>Log | Ref 30.00            |   | Sumeon                        |         |          | Mk                   | (r1 9.41)<br>-38.0 | 2 0 GHz<br>24 dBm                                                     |                     | Auto Tune                    |
| 20.0             |                      |   |                               |         |          |                      |                    |                                                                       |                     | enter Freq                   |
| 0.00             |                      |   |                               |         |          |                      |                    |                                                                       | 1.000               | Start Freq                   |
| -10.0            |                      |   |                               |         |          |                      |                    | DL1 -13.00 dBm                                                        | 10.000              | Stop Freq                    |
| -30.0            |                      |   |                               |         |          |                      |                    |                                                                       | 900.<br><u>Auto</u> | CF Step<br>000000 MHz<br>Mar |
| -50.0            |                      |   |                               |         |          |                      |                    |                                                                       | F                   | F <b>req Offsel</b><br>0 Hz  |
| -60.0            | 00 GHz               |   |                               |         |          |                      | Stop 10            | .000 GHz                                                              | tog                 | Scale Type<br>Lin            |
| #Res BW          |                      |   | #VBW                          | 3.0 MHz | s        | weep 15              | 60 ms (1           | 8001 pts)                                                             |                     |                              |
| /ISG             |                      |   |                               |         |          | STATUS               | 3                  |                                                                       |                     |                              |

Plot 7-36. Conducted Spurious Plot (LTE Band 14 - 10MHz QPSK - RB Size 1, RB Offset 0)


| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 22 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 32 of 61                   |
| © 2020 PCTEST       | •                                       |                                       |         | V 9.0 02/01/2019                |



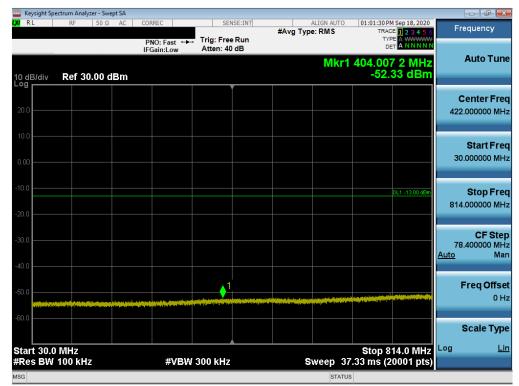
# CDMA BC10

| RL                 | ectrum Analy<br>RF | 2er - Swep<br>50 Ω |    | CORREC | _                                            | CEI                     | SE:INT |                                                                                                                 | ALIGN AUTO                                           | 12-59-49 0           | M Sep 18, 2020                  |                    |                            |
|--------------------|--------------------|--------------------|----|--------|----------------------------------------------|-------------------------|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|---------------------------------|--------------------|----------------------------|
| KL.                | N                  | 50.32              | AC |        | ast ↔→<br>_ow                                | Trig: Free<br>Atten: 40 | Run    | #Avg Typ                                                                                                        |                                                      | TRAC                 | ET A NNNNN                      |                    | quency                     |
| dB/div             | Ref 30             | ).00 dl            | Bm |        |                                              |                         |        |                                                                                                                 | Mkr1                                                 | 405.96<br>-52.       | 7 2 MHz<br>23 dBm               | 4                  | Auto Tui                   |
| ).0                |                    |                    |    |        |                                              |                         |        |                                                                                                                 |                                                      |                      |                                 |                    | enter Fr<br>DOOOOO M       |
|                    |                    |                    |    |        |                                              |                         |        |                                                                                                                 |                                                      |                      |                                 |                    | Start Fr<br>000000 M       |
| 1.0 <u> </u>       |                    |                    |    |        |                                              |                         |        |                                                                                                                 |                                                      |                      | DL1 -13.00 dBm                  | 814.               | <b>Stop Fr</b><br>000000 М |
| .0                 |                    |                    |    |        |                                              |                         |        |                                                                                                                 |                                                      |                      |                                 | 78.<br><u>Auto</u> | CF St<br>400000 M<br>M     |
|                    |                    |                    |    |        | di na si |                         |        | tina kaominina dia mampika dia mampika dia mampika dia kaominina dia mampika dia kaominina dia kaominina dia ka | a ha kan san dikana dikana<br>Mangana kan san dikana |                      | a ang anang kang kang kang kang | F                  | req Offs<br>0              |
| 1.0                |                    |                    |    |        |                                              |                         |        |                                                                                                                 |                                                      |                      |                                 |                    | cale Ty                    |
| art 30.0<br>les BW | MHz<br>100 kHz     | z                  |    |        | #VBW                                         | 300 kHz                 |        | s                                                                                                               | weep 37                                              | Stop 8<br>2.33 ms (2 | 14.0 MHz<br>0001 pts)           | Log                | ļ                          |
| 3                  |                    |                    |    |        |                                              |                         |        |                                                                                                                 | STATU                                                |                      |                                 |                    |                            |

Plot 7-37. Conducted Spurious Plot (CDMA Ch. 476- Low Channel)



#### Plot 7-38. Conducted Spurious Plot (CDMA Ch. 476- Low Channel)


| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dega 22 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 33 of 61                   |
| © 2020 PCTEST       |                                          | ·                                     |         | V 9.0 02/01/2019                |

2020 PCTEST



| Keysight S<br>R L | RE     | 50 Ω  | AC | CORREC   |       | SEN        | SE:INT |          | ALIGN AUT | 12:59:0  | 4 PM Sep 18, 2020                              |                        | P <b>-</b> |
|-------------------|--------|-------|----|----------|-------|------------|--------|----------|-----------|----------|------------------------------------------------|------------------------|------------|
|                   | i u    | 00 32 | AC | PNO: Fa  | ast 🛶 | Trig: Free | Run    | #Avg Typ |           | т        | RACE 1 2 3 4 5 6<br>TYPE A WWWW<br>DET A NNNNN | Frequency              | У          |
|                   |        |       |    | IFGain:L | .ow   | Atten: 10  | dB     |          | M         | kr1 2.45 | 4 40 GHz                                       | Auto T                 | Tun        |
| odB/div           | Ref 0. | 00 dE | 3m |          |       |            |        |          |           | -23      | .895 dBm                                       |                        |            |
| - 3               |        |       |    |          |       |            | 1      |          |           |          |                                                | Center                 | Fre        |
| 0.0               |        |       |    |          |       |            |        |          |           |          | DL1 -13.00 dBm                                 | 5.50000000             | ) GH       |
| 0.0               |        | 1     |    |          |       |            |        |          |           |          |                                                | 01                     | -          |
| 0.0               |        | Ĭ     |    |          |       |            |        |          |           |          |                                                | Start  <br>1.000000000 |            |
| 5.0               |        |       |    |          |       |            |        |          |           |          |                                                |                        |            |
| 0.0               |        |       |    |          |       |            |        |          |           |          |                                                | Stop                   |            |
| 0.0               |        |       |    |          |       |            |        |          |           |          |                                                | 10.00000000            | ) GI       |
|                   |        |       |    |          |       |            |        |          |           |          |                                                | CF                     | Ste        |
|                   |        |       |    |          |       |            | -      |          |           |          |                                                | 900.000000<br>Auto     |            |
| 0.0               |        |       |    |          |       |            |        |          |           |          |                                                |                        |            |
| 0.0               |        |       |    |          |       |            |        |          |           |          |                                                | Freq O                 |            |
|                   |        |       |    |          |       |            |        |          |           |          |                                                |                        | 01         |
| 0.0               |        |       |    |          |       |            |        |          |           |          |                                                | Scale 1                | Ту         |
| tart 1.0          | 00 GHz |       |    |          |       |            |        |          |           | Stop     | 10.000 GHz                                     | Log                    | L          |
|                   | 1.0 MH | ,     |    | +        | AVD1A | 3.0 MHz    |        |          | woon      | 16.00 mg | (20001 pts)                                    |                        |            |





#### Plot 7-40. Conducted Spurious Plot (CDMA Ch. 684- High Channel)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Daga 24 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 34 of 61                   |
| © 2020 PCTEST       | •                                       |                                       |         | V 9.0 02/01/2019                |



| Keysight Spectrum Analyz |                                        |                                            |                                                                                                                |                                                    |                                               |                        |
|--------------------------|----------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------|
| RL RF                    | 50 Ω AC                                | CORREC                                     | SENSE:INT                                                                                                      | ALIGN AUTO<br>#Avg Type: RMS                       | 01:01:58 PM Sep 18, 2020<br>TRACE 1 2 3 4 5 6 | Frequency              |
|                          |                                        | PNO: Fast ↔→→<br>IFGain:Low                | Trig: Free Run<br>#Atten: 24 dB                                                                                |                                                    |                                               |                        |
| <b></b>                  | ·                                      |                                            |                                                                                                                | Mk                                                 | r1 824.000 MHz<br>-26.380 dBm                 | Auto Tun               |
| 0 dB/div Ref 0.0         | U aBM                                  |                                            | •                                                                                                              |                                                    | -20.000 uBm                                   |                        |
|                          |                                        |                                            |                                                                                                                |                                                    |                                               | Center Fre             |
| 10.0                     |                                        |                                            |                                                                                                                |                                                    | DL1 -13.00 dBm                                | 912.000000 MH          |
| 20.0                     |                                        |                                            |                                                                                                                |                                                    |                                               |                        |
| 2                        |                                        |                                            |                                                                                                                |                                                    |                                               | Start Fre              |
| 30.0                     |                                        |                                            |                                                                                                                |                                                    |                                               | 824.000000 MH          |
|                          |                                        |                                            |                                                                                                                |                                                    |                                               |                        |
| 40.0                     |                                        |                                            |                                                                                                                |                                                    |                                               | Stop Fre               |
| 50.0                     |                                        |                                            |                                                                                                                |                                                    |                                               | 1.000000000 GH         |
|                          |                                        |                                            |                                                                                                                |                                                    |                                               |                        |
| 50.0 <b></b>             |                                        |                                            |                                                                                                                |                                                    |                                               | CF Ste<br>17.600000 MH |
| manonadurer              | ************************************** | and the second second second second second | adar Maharan Angara da Maharan ang mangang mangang mangang mangang mangang mangang mangang mangang mangang man | winterstations from contract on and raised by some | an a      | <u>Auto</u> Ma         |
| 70.0                     |                                        |                                            |                                                                                                                |                                                    |                                               |                        |
| 80.0                     |                                        |                                            |                                                                                                                |                                                    |                                               | Freq Offs              |
|                          |                                        |                                            |                                                                                                                |                                                    |                                               | 01                     |
| 0.0                      |                                        |                                            |                                                                                                                |                                                    |                                               |                        |
|                          |                                        |                                            |                                                                                                                |                                                    |                                               | Scale Typ              |
| tart 0.82400 GHz         |                                        |                                            |                                                                                                                |                                                    |                                               | Log <u>L</u>           |
| Res BW 100 kHz           |                                        | #VBW                                       | 300 kHz                                                                                                        | Sweep 8                                            | 8.533 ms (4001 pts)                           |                        |
| G                        |                                        |                                            |                                                                                                                | STATU                                              | 5                                             |                        |

Plot 7-41. Conducted Spurious Plot (CDMA Ch. 684- High Channel)





| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dego 25 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 35 of 61                   |
| © 2020 PCTEST       | ·                             | ·                                     |         | V 9.0 02/01/2019                |



# 7.4 Band Edge Emissions at Antenna Terminal §2.1051 §90.691(a) §90.543(e)

#### Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

For LTE B26 operation under Part 90.691, the minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by greater than 37.5 kHz is  $43 + 10\log_{10}(P_{[Watts]})$ , where P is the transmitter power in Watts. The minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by up to and including 37.5 kHz is 50 +  $10\log_{10}(P_{[Watts]})$ , where P is the transmitter power in Watts.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### **Test Settings**

- 1. Span was set large enough so as to capture all out of band emissions near the band edge
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = RMS
- 5. Trace mode = trace average
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

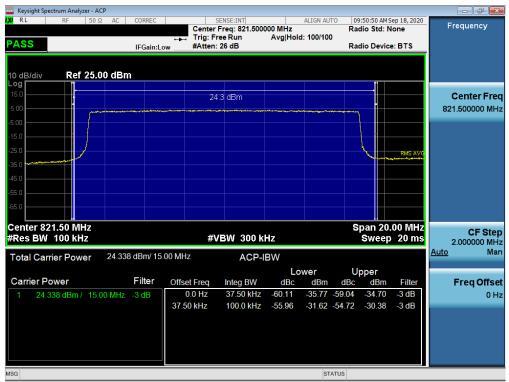
| FCC ID: A3LSMG996U  | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dege 26 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 36 of 61                   |
| © 2020 PCTEST       | •                              | ·                                     |         | V 9.0 02/01/2019                |



### Test Notes

For channel edge emission, the signal analyzer's "ACP" measurement capability is used.

Per 22.917(b) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.


For LTE Band 14 operation under Part 90.543, the power of any emission must be reduced below the mean output power (P) by at least 43 + 10log (P) dB measured in a 100 kHz bandwidth for frequencies less than 1 GHz, and in a 1 MHz bandwidth for frequencies greater than 1 GHz.

Additionally, for LTE Band 14 operation, on all frequencies between 769-775 MHz and 799-805 MHz, the power of any emission shall be attenuated by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.


| FCC ID: A3LSMG996U  | PCTEST°<br>Proud to be part of @element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 27 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 37 of 61                   |
| © 2020 PCTEST       |                                         | •                                     |         | V 9.0 02/01/2019                |

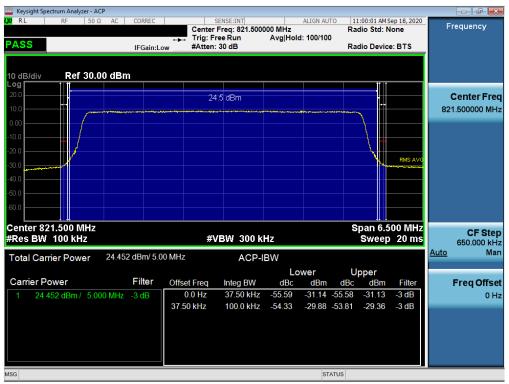


# LTE Band 26



Plot 7-43. Channel Edge Plot (LTE Band 26 - 15MHz QPSK - Mid Channel)




Plot 7-44. Channel Edge Plot (LTE Band 26 - 10MHz QPSK - Mid Channel)

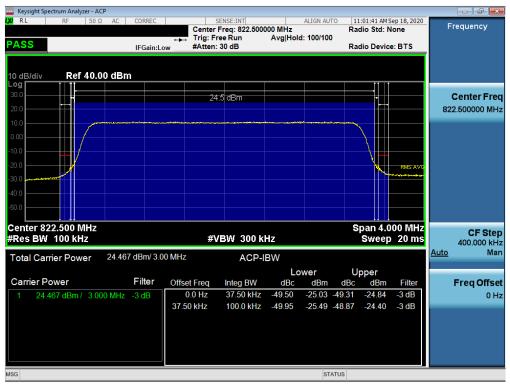
| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dage 29 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 38 of 61                   |
| © 2020 PCTEST       |                                          | •                                     |         | V 9 0 02/01/2019                |



| www.www.com.com.com.com.com.com.com.com.com.com |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|------------------|-----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 💢 RL RF 50 Ω AC CORREC                          | SENSE:           | INT ALIGN<br>816.500000 MHz | AUTO 10:59:23 AM Se<br>Radio Std: No |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 | Trig: Free Ru    |                             |                                      | She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PASS IFGain:L                                   | ow #Atten: 30 dl | В                           | Radio Device                         | BTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 dB/div Ref 30.00 dBm                         |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Log                                             |                  |                             | ii i                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20.0                                            | 24.4 dE          | 3m 👘 👘                      |                                      | Center Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.0                                            |                  |                             |                                      | 816.500000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.00                                            |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -10.0                                           |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -20.0                                           |                  |                             | \_ <b></b>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -30.0                                           |                  |                             |                                      | RMS AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -40.0                                           |                  |                             |                                      | and the second se |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -50.0                                           |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -60.0                                           |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Center 816.500 MHz                              |                  |                             | Span 6.50                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #Res BW 100 kHz                                 | #VBW             | 300 kHz                     | Sweep                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Carrier Power 24.425 dBm/ 5.0             |                  | ACP-IBW                     |                                      | Auto Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Carrier Power Filter                            | Offset Freq Inte | Lower<br>ea BW dBc dB       | Upper<br>Im dBc dBm                  | Filter Freq Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 24.425 dBm / 5.000 MHz -3 dB                  |                  | 5                           |                                      | -3 dB 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 24.425 dBm7 5.000 MHZ -3 dB                   |                  |                             |                                      | -3 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | 57.50 KHZ 10     | 0.0 KHZ -01.00 -21          | +1 -55.21 -20.15                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                  |                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MSG                                             |                  |                             | STATUS                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Plot 7-45. Channel Edge Plot (LTE Band 26 - 5MHz QPSK - Low Channel)






| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             | Dage 20 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      | Page 39 of 61                   |
| © 2020 PCTEST       | •                                       | •                                     | V 9.0 02/01/2019                |



| Keysight Spectrum Analyzer - ACP |                    |                              |              |                                |         |                        |
|----------------------------------|--------------------|------------------------------|--------------|--------------------------------|---------|------------------------|
| XIRL RF 50Ω AC CO                |                    | NSE:INT<br>reg: 815.500000 M | ALIGN AUTO   | 2 11:02:27 AMS<br>Radio Std: N |         | Frequency              |
| PASS                             | Gain:Low #Atten: 3 | eRun Avg                     | Hold: 68/100 | Radio Devic                    |         |                        |
| 10 dB/div Ref 40.00 dBm          |                    |                              |              |                                |         |                        |
| Log<br>30.0                      | 241                | 5 dBm                        |              |                                |         | Center Freq            |
| 20.0                             | 24.                |                              |              | Ĩ⊷                             |         | 815.500000 MHz         |
| 10.0                             |                    |                              |              |                                |         |                        |
| 0.00                             |                    |                              |              |                                |         |                        |
| 10.0                             |                    |                              |              | \                              |         |                        |
| 20.0                             |                    |                              |              |                                | RMS AVG |                        |
| 30.0                             |                    |                              |              |                                |         |                        |
| 40.0                             |                    |                              |              |                                |         |                        |
| -50.0                            |                    |                              |              |                                |         |                        |
| Center 815.500 MHz               |                    |                              |              | Enon 4 (                       |         |                        |
| #Res BW 100 kHz                  | #V                 | BW 300 kHz                   |              | Span 4.0<br>Sweep              | ) 20 ms | CF Step<br>400.000 kHz |
| Total Carrier Power 24.460 dB    | m/ 3.00 MHz        | ACP-IBW                      |              |                                |         | <u>Auto</u> Man        |
|                                  |                    |                              | Lower        | Upper                          |         |                        |
|                                  | ter Offset Freq    | 2                            | IBc dBm      | dBc dBm                        | Filter  | Freq Offset            |
| 1 24.460 dBm / 3.000 MHz -3 c    |                    | 37.50 kHz -48                |              |                                | -3 dB   | 0 Hz                   |
|                                  | 37.50 kHz          | 100.0 kHz -46                | 50 -22.04 -4 | 49.25 -24.79                   | -3 dB   |                        |
|                                  |                    |                              |              |                                |         |                        |

Plot 7-47. Channel Edge Plot (LTE Band 26 - 3MHz QPSK - Low Channel)






| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             | Dage 40 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      | Page 40 of 61                   |
| © 2020 PCTEST       | •                                        | •                                     | V 9.0 02/01/2019                |

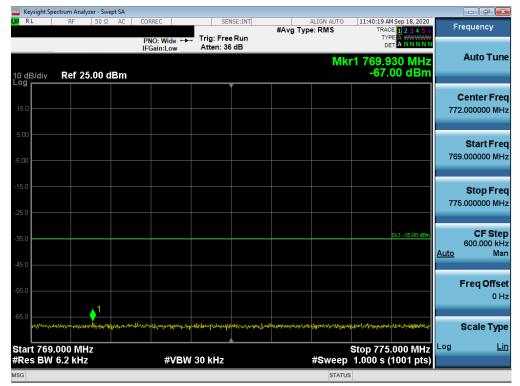


| 🔤 Keysight Spectrum Analyzer - ACP |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
|------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|------------|--------------|---------------------------|-------------------|-------------|-------------|
| LXX RL RF 50Ω AC 0                 | CORREC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NSE:INT<br>eq: 814.7000                | 00 1411- | ALIGN AUTO |              | :21:22 PM S<br>lio Std: N | Sep 18, 2020      | Fr          | equency     |
|                                    |               | Trig: Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | Avg Hold | 1: 100/100 | Rad          | 110 Sta: N                | ione              |             | ,,          |
| PASS                               | IFGain:Low    | #Atten: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |          |            | Rad          | lio Devic                 | e: BTS            |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
| 10 dB/div Ref 40.00 dBm            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
| Log                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
| 30.0                               |               | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm                                    |          |            |              | +                         |                   | 0           | Center Freq |
| 20.0                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   | 814         | .700000 MHz |
| 10.0                               |               | The state of the s | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | V        |            |              |                           |                   |             |             |
| 0.00                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          | ×          | <b>N</b>     |                           |                   |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            | $\mathbf{X}$ |                           |                   |             |             |
| -10.0                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            | $\sim$       |                           |                   |             |             |
| -20.0                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            | -            |                           | RMS AVG           |             |             |
| -30.0                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           | Ward (Togical day |             |             |
| -40.0                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
| -50.0                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
| Center 814.700 MHz                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            | S            | pan 2.1                   | 00 MHz            |             | CF Step     |
| #Res BW 100 kHz                    |               | #VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW 300 ki                              | lz       |            |              | Sweep                     | ) 20 ms           |             | 210.000 kHz |
| Total Carrier Power 22.099 c       | dBm/ 1.40 MHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACP-II                                 | зw       |            |              |                           |                   | <u>Auto</u> | Man         |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Lo       | wer        | Ur           | oper                      |                   |             |             |
| Carrier Power                      | Filter Offset | t Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Integ BW                               | dBc      | dBm        | dBc          | dBm                       | Filter            |             | Freq Offset |
| 1 22.099 dBm / 1.400 MHz -         | 3 dB 0        | .0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.50 kHz                              | -49.49   | -27.39 -   | 51.95        | -29.85                    | -3 dB             |             | 0 Hz        |
|                                    | 37.50         | ) kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0 kHz                              | -46.40   | -24.30 -   | 49.17        | -27.08                    | -3 dB             |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |            |              |                           |                   |             |             |
| MSG                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          | STAT       | rus          |                           |                   |             |             |

Plot 7-49. Channel Edge Plot (LTE Band 26 - 1.4MHz QPSK - Low Channel)



Plot 7-50. Channel Edge Plot (LTE Band 26 - 1.4MHz QPSK - High Channel)


| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | D                               |  |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 41 of 61                   |  |
| © 2020 PCTEST       |                                          | •                                     |         | V 9.0 02/01/2019                |  |



# LTE Band 14

| 🔤 Keysight Spectrum Analyzer - S      |                                                                                                                |                                |                               |                                               |                                    |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|-----------------------------------------------|------------------------------------|
| <b>LXI RE 50</b>                      | Ω AC CORREC                                                                                                    | SENSE:INT                      | ALIGN AUTO<br>#Avg Type: RMS  | 11:40:01 AM Sep 18, 2020<br>TRACE 1 2 3 4 5 6 | Frequency                          |
|                                       | PNO: Wide<br>IFGain:Low                                                                                        | Trig: Free Run<br>Atten: 36 dB |                               |                                               |                                    |
| 10 dB/div Ref 25.00                   | dBm                                                                                                            |                                | Mk                            | r1 787.984 MHz<br>-30.93 dBm                  | Auto Tune                          |
| 15.0                                  |                                                                                                                |                                |                               |                                               | Center Freq<br>788.000000 MHz      |
| 5.00                                  |                                                                                                                |                                |                               | ر الار من ماند مرد بر معد الار من ماند.       |                                    |
| -5.00                                 |                                                                                                                |                                | and and a second produced and |                                               | Start Freq<br>784.000000 MHz       |
|                                       |                                                                                                                |                                |                               | DL1 -13.00 dBm                                |                                    |
| -15.0                                 |                                                                                                                |                                |                               |                                               | <b>Stop Freq</b><br>792.000000 MHz |
| -25.0                                 |                                                                                                                | 17                             |                               |                                               | CF Step                            |
| -35.0<br>-45.0                        | and a second |                                |                               |                                               | 800.000 kHz<br><u>Auto</u> Man     |
| -55.0                                 |                                                                                                                |                                |                               |                                               | FreqOffset                         |
|                                       |                                                                                                                |                                |                               |                                               | 0 Hz                               |
| -65.0                                 |                                                                                                                |                                |                               |                                               | Scale Type                         |
| Center 788.000 MHz<br>#Res BW 100 kHz | #VI                                                                                                            | 300 kHz                        | Sweep 4                       | Span 8.000 MHz<br>.000 ms (1001 pts)          | Log <u>Lin</u>                     |
| MSG                                   |                                                                                                                |                                | STATU                         |                                               |                                    |

Plot 7-51. Lower Band Edge Plot (LTE Band 14, 10MHz QPSK - RB Size 50)



Plot 7-52. Lower Emission Mask Plot (LTE Band 14, 10MHz QPSK - RB Size 50)

| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dage 42 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 42 of 61                   |
| © 2020 PCTEST       | ·                                        | ·                                     |         | V 9.0 02/01/2019                |

2020 PCTEST



|                  | ctrum Analyzer - Swept |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                |             |                             |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-------------|----------------------|----------|----------------|-------------|-----------------------------|
| LXI RL           | RF 50 Ω                | AC COI                                                                                                          | RREC                                 | SEN                                                                                                             | ISE:INT                  | #Avg Typ    | ALIGN AUTO<br>e: RMS |          | 4 Sep 18, 2020 | Fr          | equency                     |
|                  |                        |                                                                                                                 | NO:Wide ↔<br>Gain:Low                | Trig: Free<br>Atten: 36                                                                                         |                          |             | Mk                   | DE       | 16 MHz         |             | Auto Tune                   |
| 10 dB/div<br>Log | Ref 25.00 dE           | 3m                                                                                                              |                                      |                                                                                                                 |                          |             |                      | -31.     | 93 dBm         |             | _                           |
|                  |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                |             | Center Freq                 |
| 15.0             |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                | 798         | .000000 MHz                 |
| 5.00             |                        | and the state of the second | <del>4 مى</del> لەتىلەتىمەنلەر مەر 4 | - All and a second s |                          |             |                      |          |                |             | Start Freq                  |
| -5.00            |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                | 794         | .000000 MHz                 |
| -15.0            |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          | DL1 -13.00 dBm |             |                             |
| -25.0            |                        |                                                                                                                 |                                      | 1<br>1<br>1                                                                                                     |                          |             |                      |          |                | 802         | Stop Freq                   |
|                  |                        |                                                                                                                 |                                      | "My                                                                                                             | 1                        |             |                      |          |                |             | CF Step                     |
| -35.0            |                        |                                                                                                                 |                                      |                                                                                                                 | an and the second second | man man bre | wwwwwww              | monterio | on Morrow      | <u>Auto</u> | 800.000 kHz<br>Man          |
| -40.0            |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                |             |                             |
| -55.0            |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                |             | F <b>req Offset</b><br>0 Hz |
| -65.0            |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                |             |                             |
|                  |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      |          |                |             | Scale Type                  |
|                  | 8.000 MHz              |                                                                                                                 |                                      |                                                                                                                 |                          |             |                      | Span 8   | .000 MHz       | Log         | <u>Lin</u>                  |
| #Res BW          | 100 kHz                |                                                                                                                 | #VBV                                 | V 300 kHz                                                                                                       |                          |             |                      |          | 1001 pts)      |             |                             |
| MSG              |                        |                                                                                                                 |                                      |                                                                                                                 |                          |             | STATUS               |          |                |             |                             |

Plot 7-53. Upper Band Edge Plot (LTE Band 14, 10MHz QPSK - RB Size 50)



Plot 7-54. Upper Emission Mask Plot (LTE Band 14, 10MHz QPSK - RB Size 50)

| FCC ID: A3LSMG996U  | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dage 42 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 43 of 61                   |
| © 2020 PCTEST       | ·                              | ·                                     |         | V 9.0 02/01/2019                |



|                  | ectrum Analyzer - S |             |                           |                         |         |          |            |                   |                  |             |                            |
|------------------|---------------------|-------------|---------------------------|-------------------------|---------|----------|------------|-------------------|------------------|-------------|----------------------------|
| XIRL             | RF 50               | Ω AC        | CORREC                    | SEN                     | ISE:INT | #Avg Typ | ALIGN AUTO |                   | I Sep 18, 2020   | F           | requency                   |
|                  |                     |             | PNO: Wide ↔<br>IFGain:Low | Trig: Free<br>Atten: 36 |         | #/19 Jyp |            | TYF<br>DE         |                  |             | A                          |
| 10 dB/div<br>Log | Ref 25.00           | dBm         |                           |                         |         |          | Mk         | r1 787.9<br>-29.: | 92 MHz<br>21 dBm |             | Auto Tune                  |
|                  |                     |             |                           | ,<br>                   |         |          |            |                   |                  | (           | Center Freq                |
| 15.0             |                     |             |                           |                         |         |          |            |                   |                  | 788         | 3.000000 MHz               |
| 5.00             |                     |             |                           |                         |         | mmm      | e hourse   |                   | Jun way          |             |                            |
| -5.00            |                     |             |                           |                         |         |          |            |                   |                  | 786         | Start Freq<br>5.000000 MHz |
| -3.00            |                     |             |                           |                         |         |          |            |                   | DL1 -13.00 dBm   |             |                            |
| -15.0            |                     |             |                           |                         |         |          |            |                   |                  |             | Stop Freq                  |
| -25.0            |                     |             |                           |                         | 1       |          |            |                   |                  | 790         | 0.000000 MHz               |
| -35.0            |                     |             |                           |                         | Ν.      |          |            |                   |                  |             | CF Step                    |
| -30.0            | www.www.www.www.ww  | un marine a | www.                      | يعمر مريد               |         |          |            |                   |                  | <u>Auto</u> | 400.000 kHz<br>Man         |
| -45.0            |                     |             |                           |                         |         |          |            |                   |                  |             | _                          |
| -55.0            |                     |             |                           |                         |         |          |            |                   |                  |             | Freq Offset<br>0 Hz        |
| -65.0            |                     |             |                           |                         |         |          |            |                   |                  |             | 0112                       |
| -03.0            |                     |             |                           |                         |         |          |            |                   |                  |             | Scale Type                 |
|                  | 8.000 MHz           |             |                           |                         |         |          |            | Span 4            |                  | Log         | Lin                        |
| #Res BW          | 100 kHz             |             | #VBW                      | 300 kHz                 |         |          |            | .000 ms (         | 1001 pts)        |             |                            |
| MSG              |                     |             |                           |                         |         |          | STATUS     | 8                 |                  |             |                            |

Plot 7-55. Lower Band Edge Plot (LTE Band 14, 5MHz QPSK - RB Size 25)




Plot 7-56. Lower Emission Mask Plot (LTE Band 14, 5MHz QPSK - RB Size 25)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 14 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | 2/01/2020 Portable Handset            |         | Page 44 of 61                   |
| © 2020 PCTEST       | -                                       | •                                     |         | V 9.0 02/01/2019                |

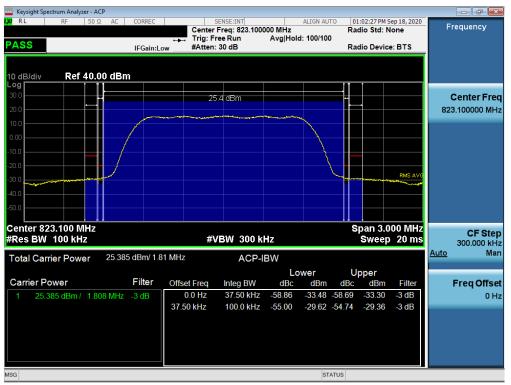


|                      | ectrum Analyzer - Swept SA |                                          |                                |                                                                                                                  |                 |                                               |                                           |
|----------------------|----------------------------|------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|-------------------------------------------|
| LXI RL               | RF 50 Ω AC                 | CORREC                                   | SENSE:IN                       | #Avg Typ                                                                                                         | ALIGN AUTO      | 11:55:39 AM Sep 18, 2020<br>TRACE 1 2 3 4 5 6 | Frequency                                 |
|                      |                            | PNO: Wide ↔<br>IFGain:Low                | Trig: Free Run<br>Atten: 36 dB | 1                                                                                                                |                 |                                               |                                           |
| 10 dB/div<br>Log     | Ref 25.00 dBm              |                                          |                                |                                                                                                                  | Mkı             | 1 798.000 MHz<br>-30.870 dBm                  | Auto Tune                                 |
| 15.0                 |                            |                                          |                                |                                                                                                                  |                 |                                               | Center Freq<br>798.000000 MHz             |
| 5.00                 |                            | an a |                                |                                                                                                                  |                 |                                               | Start Freq<br>796.000000 MHz              |
| -15.0                |                            |                                          |                                |                                                                                                                  |                 | DL1 -13.00 dBm                                | Stop Freq<br>800.000000 MHz               |
| -35.0                |                            |                                          |                                | un and a second and a | - Marina Marina | Morrison Carrow Carrow                        | CF Step<br>400.000 kHz<br><u>Auto</u> Man |
| -45.0                |                            |                                          |                                |                                                                                                                  |                 |                                               | <b>Freq Offset</b><br>0 Hz                |
| -65.0                |                            |                                          |                                |                                                                                                                  |                 |                                               | Scale Type                                |
| Center 79<br>#Res BW | 8.000 MHz<br>100 kHz       | #VBW                                     | 300 kHz                        |                                                                                                                  | Sweep 2         | Span 4.000 MHz<br>.000 ms (1001 pts)          | Log <u>Lin</u>                            |
| MSG                  |                            |                                          |                                |                                                                                                                  | STATUS          |                                               |                                           |

Plot 7-57. Upper Band Edge Plot (LTE Band 14, 5MHz QPSK - RB Size 25)




Plot 7-58. Upper Emission Mask Plot (LTE Band 14, 5MHz QPSK - RB Size 25)


| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dage 45 of 61                   |  |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | 09/15 – 12/01/2020 Portable Handset   |         | Page 45 of 61                   |  |
| © 2020 PCTEST       | -                             | ·                                     |         | V 9.0 02/01/2019                |  |



# CDMA BC10







## Plot 7-60. Channel Edge Plot (CDMA BC10 – Ch. 684)

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dage 46 of 61                   |  |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 46 of 61                   |  |
| © 2020 PCTEST       | <u>.</u>                      | ·                                     |         | V 9.0 02/01/2019                |  |



# 7.5 Conducted Power Output Data §2.1046 §2.1046 §90.635

| Bandwidth | Modulation | Channel | Frequency<br>[MHz] | RB<br>Size/Offset | Conducted<br>Power [dBm] | Conducted<br>Power<br>[Watts] | Conducted<br>Power Limit<br>[dBm] | Margin [dB] |
|-----------|------------|---------|--------------------|-------------------|--------------------------|-------------------------------|-----------------------------------|-------------|
|           | QPSK       | 26765   | 821.5              | 1/0               | 24.96                    | 0.313                         | 50.00                             | -25.04      |
| 15 MHz    | 16-QAM     | 26765   | 821.5              | 1/36              | 24.01                    | 0.252                         | 50.00                             | -25.99      |
|           | 64-QAM     | 26765   | 821.5              | 1/74              | 23.06                    | 0.202                         | 50.00                             | -26.94      |
|           | 256-QAM    | 26765   | 821.5              | 1/36              | 19.89                    | 0.097                         | 50.00                             | -30.11      |
|           | QPSK       | 26740   | 819.0              | 1/0               | 24.89                    | 0.308                         | 50.00                             | -25.11      |
| 10 MHz    | 16-QAM     | 26740   | 819.0              | 1/0               | 23.92                    | 0.247                         | 50.00                             | -26.08      |
|           | 64-QAM     | 26740   | 819.0              | 1/25              | 23.08                    | 0.203                         | 50.00                             | -26.92      |
|           | 256-QAM    | 26740   | 819.0              | 1/0               | 19.98                    | 0.100                         | 50.00                             | -30.02      |
|           | QPSK       | 26715   | 816.5              | 1/0               | 24.89                    | 0.308                         | 50.00                             | -25.11      |
|           |            | 26765   | 821.5              | 1/12              | 24.86                    | 0.306                         | 50.00                             | -25.14      |
| 5 MHz     | 16-QAM     | 26715   | 816.5              | 1/12              | 24.22                    | 0.264                         | 50.00                             | -25.78      |
|           | 64-QAM     | 26715   | 816.5              | 1/12              | 23.41                    | 0.219                         | 50.00                             | -26.59      |
|           | 256-QAM    | 26765   | 821.5              | 1/12              | 20.08                    | 0.102                         | 50.00                             | -29.92      |
|           | QPSK       | 26705   | 815.5              | 1/14              | 24.98                    | 0.315                         | 50.00                             | -25.02      |
|           | QFOR       | 26775   | 822.5              | 1/14              | 24.88                    | 0.308                         | 50.00                             | -25.12      |
| 3 MHz     | 16-QAM     | 26705   | 815.5              | 1/14              | 24.07                    | 0.255                         | 50.00                             | -25.93      |
|           | 64-QAM     | 26775   | 822.5              | 1/14              | 23.20                    | 0.209                         | 50.00                             | -26.80      |
|           | 256-QAM    | 26705   | 815.5              | 8/4               | 20.11                    | 0.103                         | 50.00                             | -29.89      |
|           | QPSK       | 26697   | 814.7              | 1/0               | 24.98                    | 0.315                         | 50.00                             | -25.02      |
|           | QFOR       | 26783   | 823.3              | 1/5               | 24.93                    | 0.311                         | 50.00                             | -25.07      |
| 1.4 MHz   | 16-QAM     | 26697   | 814.7              | 1/2               | 24.32                    | 0.270                         | 50.00                             | -25.68      |
|           | 64-QAM     | 26783   | 823.3              | 1/2               | 23.29                    | 0.213                         | 50.00                             | -26.71      |
|           | 256-QAM    | 26783   | 823.3              | 1/2               | 20.13                    | 0.103                         | 50.00                             | -29.87      |

Table 7-2. Conducted Power Output Data (LTE Band 26)

| Frequency<br>[MHz] | Channel | Battery<br>Type | Conducted<br>Power [dBm] | Conducted<br>Power<br>[Watts] | Conducted<br>Power Limit<br>[dBm] | Margin [dB] |
|--------------------|---------|-----------------|--------------------------|-------------------------------|-----------------------------------|-------------|
| 817.90             | 476     | Standard        | 24.84                    | 0.305                         | 50.00                             | -25.16      |
| 823.10             | 684     | Standard        | 24.78                    | 0.301                         | 50.00                             | -25.22      |

Table 7-3. Conducted Power Output Data (CDMA BC10)

| FCC ID: A3LSMG996U           | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|------------------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N: Test Dates: |                                         | EUT Type:                             |         | Dage 47 of 61                   |  |
| 1M2009140143-04.A3L          | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 47 of 61                   |  |
| © 2020 PCTEST                |                                         |                                       |         | V 9.0 02/01/2019                |  |



## NOTES:

- 1. For CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.
- 2. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 3. This unit was tested with its standard battery.

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 49 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 48 of 61                   |
| © 2020 PCTEST       | ·                                       |                                       |         | V 9.0 02/01/2019                |



#### 7.6 Radiated Power (ERP) §90.542(a)(7), §22.913(a)(2)

## Test Overview

Effective Radiated Power (ERP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

## **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

## Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points  $\geq$  2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

| FCC ID: A3LSMG996U  | PCTEST°<br>Proud to be part of @element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 40 of 61                   |  |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 49 of 61                   |  |
| © 2020 PCTEST       | •                                       | ·                                     |         | V 9.0 02/01/2019                |  |



## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

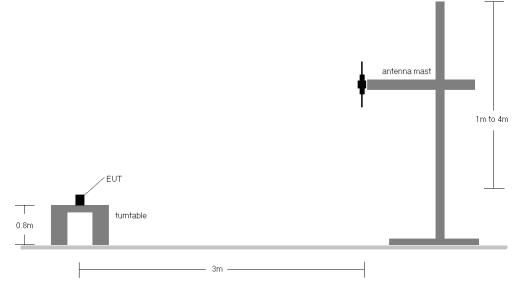



Figure 7-4. Radiated Test Setup <1GHz

## Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

| FCC ID: A3LSMG996U  | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|--|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dage 50 of 61                   |  |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 50 of 61                   |  |
| © 2020 PCTEST       | ·                              |                                       |         | V 9.0 02/01/2019                |  |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



| Bandwidth | Mod.       | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level<br>[dBm] | ERP [dBm] | ERP<br>[Watts] | ERP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|------------------------------|-----------|----------------|--------------------|----------------|
|           | QPSK       | 821.5              | V                  | 143.0                     | 261.0                            | 6.32               | 1 / 74            | 15.21                        | 19.38     | 0.087          | 38.45              | -19.07         |
| 15 MHz    | 16-QAM     | 821.5              | V                  | 143.0                     | 261.0                            | 6.32               | 1 / 74            | 14.42                        | 18.59     | 0.072          | 38.45              | -19.86         |
|           | 64-QAM     | 821.5              | V                  | 143.0                     | 261.0                            | 6.32               | 1 / 74            | 13.50                        | 17.67     | 0.058          | 38.45              | -20.78         |
|           | 256-QAM    | 821.5              | V                  | 143.0                     | 261.0                            | 6.32               | 1 / 74            | 10.34                        | 14.51     | 0.028          | 38.45              | -23.94         |
|           | QPSK       | 819.0              | V                  | 143.0                     | 261.0                            | 6.29               | 1/0               | 15.17                        | 19.31     | 0.085          | 38.45              | -19.14         |
| 10 MHz    | 16-QAM     | 819.0              | V                  | 143.0                     | 261.0                            | 6.29               | 1/0               | 14.36                        | 18.50     | 0.071          | 38.45              | -19.95         |
|           | 64-QAM     | 819.0              | V                  | 143.0                     | 261.0                            | 6.29               | 1/25              | 13.55                        | 17.69     | 0.059          | 38.45              | -20.76         |
|           | 256-QAM    | 819.0              | V                  | 143.0                     | 261.0                            | 6.29               | 1/0               | 10.46                        | 14.60     | 0.029          | 38.45              | -23.85         |
|           | QPSK       | 816.5              | V                  | 143.0                     | 261.0                            | 6.27               | 1/0               | 15.19                        | 19.31     | 0.085          | 38.45              | -19.14         |
|           | QFOR       | 821.5              | V                  | 143.0                     | 261.0                            | 6.32               | 1/12              | 15.11                        | 19.28     | 0.085          | 38.45              | -19.17         |
| 5 MHz     | 16-QAM     | 816.5              | V                  | 143.0                     | 261.0                            | 6.27               | 1/12              | 14.68                        | 18.80     | 0.076          | 38.45              | -19.65         |
|           | 64-QAM     | 816.5              | V                  | 143.0                     | 261.0                            | 6.27               | 1/12              | 13.90                        | 18.02     | 0.063          | 38.45              | -20.43         |
|           | 256-QAM    | 821.5              | V                  | 143.0                     | 261.0                            | 6.32               | 1/12              | 10.53                        | 14.70     | 0.030          | 38.45              | -23.75         |
|           | QPSK       | 815.5              | V                  | 143.0                     | 261.0                            | 6.26               | 1/14              | 15.29                        | 19.40     | 0.087          | 38.45              | -19.05         |
|           | QPSK       | 822.5              | V                  | 143.0                     | 261.0                            | 6.33               | 1/14              | 15.12                        | 19.30     | 0.085          | 38.45              | -19.15         |
| 3 MHz     | 16-QAM     | 815.5              | V                  | 143.0                     | 261.0                            | 6.26               | 1/14              | 14.54                        | 18.65     | 0.073          | 38.45              | -19.80         |
|           | 64-QAM     | 822.5              | V                  | 143.0                     | 261.0                            | 6.33               | 1/14              | 13.63                        | 17.81     | 0.060          | 38.45              | -20.64         |
|           | 256-QAM    | 815.5              | V                  | 143.0                     | 261.0                            | 6.26               | 8/4               | 10.62                        | 14.73     | 0.030          | 38.45              | -23.72         |
|           | QPSK       | 814.7              | V                  | 143.0                     | 261.0                            | 6.25               | 1/0               | 15.30                        | 19.40     | 0.087          | 38.45              | -19.05         |
|           | QFSK       | 823.3              | V                  | 143.0                     | 261.0                            | 6.34               | 1/5               | 15.16                        | 19.35     | 0.086          | 38.45              | -19.10         |
| 1.4 MHz   | 16-QAM     | 814.7              | V                  | 143.0                     | 261.0                            | 6.25               | 1/2               | 14.80                        | 18.90     | 0.078          | 38.45              | -19.55         |
|           | 64-QAM     | 823.3              | V                  | 143.0                     | 261.0                            | 6.34               | 1/2               | 13.71                        | 17.90     | 0.062          | 38.45              | -20.55         |
|           | 256-QAM    | 823.3              | V                  | 143.0                     | 261.0                            | 6.34               | 1/2               | 10.56                        | 14.75     | 0.030          | 38.45              | -23.70         |
| 15 MHz    | QPSK       | 816.5              | Н                  | 178.0                     | 186.0                            | 6.72               | 1 / 74            | 5.58                         | 10.15     | 0.010          | 38.45              | -28.30         |
| 13 10112  | QPSK (WCP) | 821.5              | V                  | 138.0                     | 300.0                            | 6.32               | 1 / 74            | 10.59                        | 14.76     | 0.030          | 38.45              | -23.69         |

# Table 7-61. ERP Data (LTE Band 26)

| Bandwidth | Mod.       | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level<br>[dBm] | ERP [dBm] | ERP [Watts] | ERP Limit<br>[dBm] | Margin [dB] |
|-----------|------------|--------------------|--------------------|------------------------|----------------------------------|--------------------|-------------------|------------------------------|-----------|-------------|--------------------|-------------|
|           | QPSK       | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1 / 49            | 16.32                        | 20.08     | 0.102       | 34.77              | -14.69      |
| 10 MHz    | 16-QAM     | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1 / 49            | 15.88                        | 19.64     | 0.092       | 34.77              | -15.13      |
|           | 64-QAM     | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1 / 49            | 14.51                        | 18.27     | 0.067       | 34.77              | -16.50      |
|           | 256-QAM    | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1 / 49            | 11.36                        | 15.12     | 0.033       | 34.77              | -19.65      |
|           |            | 790.5              | V                  | 147.0                  | 287.0                            | 5.89               | 1/12              | 16.39                        | 20.13     | 0.103       | 34.77              | -14.64      |
|           | QPSK       | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1/12              | 16.42                        | 20.18     | 0.104       | 34.77              | -14.59      |
| 5 MHz     |            | 795.5              | V                  | 147.0                  | 287.0                            | 5.94               | 1/12              | 16.54                        | 20.33     | 0.108       | 34.77              | -14.44      |
| 5 MILIZ   | 16-QAM     | 795.5              | V                  | 147.0                  | 287.0                            | 5.94               | 1/12              | 16.09                        | 19.88     | 0.097       | 34.77              | -14.89      |
|           | 64-QAM     | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1/12              | 15.39                        | 19.15     | 0.082       | 34.77              | -15.62      |
|           | 256-QAM    | 793.0              | V                  | 147.0                  | 287.0                            | 5.91               | 1/12              | 11.41                        | 15.17     | 0.033       | 34.77              | -19.60      |
| 10 MHz    | QPSK       | 795.5              | Н                  | 204.00                 | 345.00                           | 6.11               | 1 / 49            | 6.81                         | 10.77     | 0.012       | 34.77              | -24.00      |
|           | QPSK (WCP) | 790.5              | V                  | 146.00                 | 256.00                           | 5.91               | 1 / 49            | 11.49                        | 15.25     | 0.033       | 34.77              | -19.52      |

Table 7-62. ERP Data (LTE Band 14)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 51 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 51 of 61                   |
| © 2020 PCTEST       | •                                       | ·                                     |         | V 9.0 02/01/2019                |



# 7.7 Radiated Spurious Emissions Measurements §2.1053

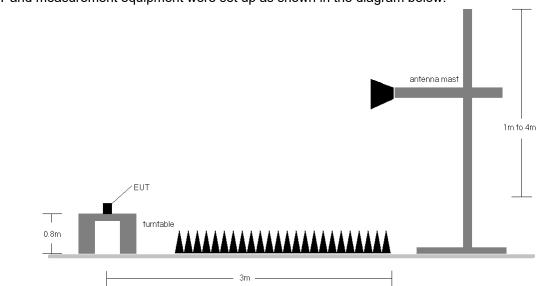
## **Test Overview**

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

### Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12


## **Test Settings**

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Dage 52 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 52 of 61                   |
| © 2020 PCTEST       | •                                        | •                                     |         | V 9.0 02/01/2019                |

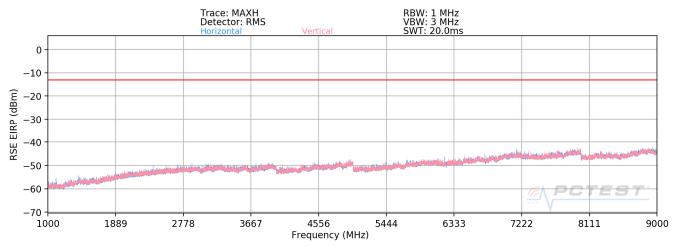


## Test Setup



The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup


## Test Notes

- 1. For CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.
- 2. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 3. This unit was tested with its standard battery.
- 4. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 5. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 6. Per 90.543(f), emissions in the 1559 1610MHz band are subject to a limit of -40dBm/MHz for wideband signals. These emission measurements are shown in this section below.

| FCC ID: A3LSMG996U  | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dage 52 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 53 of 61                   |
| © 2020 PCTEST       | •                              | •                                     |         | V 9.0 02/01/2019                |



# LTE Band 26





| Bandwidth (MHz):           | 10     |
|----------------------------|--------|
| Frequency (MHz):           | 819.0  |
| Modulation Signal:         | QPSK   |
| RB Config (Size / Offset): | 1 / 25 |

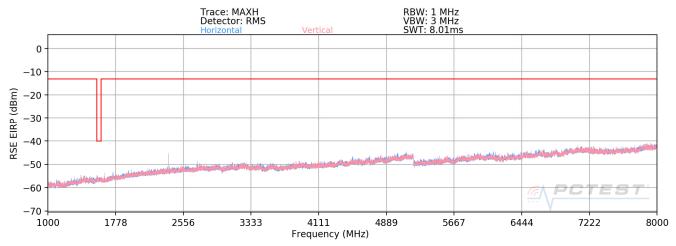

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission<br>Level [dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 1638.0          | Н                  | -                         | -                                | -77.20                     | 0.52           | 30.32                         | -64.94                                   | -13.00         | -51.94         |
| 2457.0          | Н                  | -                         | -                                | -77.12                     | 4.84           | 34.72                         | -60.53                                   | -13.00         | -47.53         |
| 3276.0          | Н                  | -                         | -                                | -79.74                     | 6.85           | 34.11                         | -61.15                                   | -13.00         | -48.15         |

Table 7-4. Radiated Spurious Data (LTE Band 26 – Mid Channel)

| FCC ID: A3LSMG996U  | PCTEST.<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             |         | Daga 54 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      |         | Page 54 of 61                   |
| © 2020 PCTEST       |                                          | •                                     |         | V 9.0 02/01/2019                |



# LTE Band 14





| Bandwidth (MHz):           | 5      |
|----------------------------|--------|
| Frequency (MHz):           | 790.5  |
| Modulation Signal:         | QPSK   |
| RB Config (Size / Offset): | 1 / 12 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission<br>Level [dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 1581.0          | V                  | -                         | -                                | -78.07                     | 0.75           | 29.68                         | -65.58                                   | -40.00         | -25.58         |
| 2371.5          | V                  | 101                       | 25                               | -64.35                     | 4.64           | 47.29                         | -47.97                                   | -13.00         | -34.97         |
| 3162.0          | V                  | -                         | -                                | -79.29                     | 5.94           | 33.65                         | -61.60                                   | -13.00         | -48.60         |
| 3952.5          | V                  | -                         | -                                | -81.35                     | 7.81           | 33.46                         | -61.80                                   | -13.00         | -48.80         |
| 4743.0          | V                  | -                         | -                                | -81.80                     | 8.42           | 33.62                         | -61.64                                   | -13.00         | -48.64         |

Table 7-5. Radiated Spurious Data (LTE Band 14 – Low Channel)

| Bandwidth (MHz):           | 5      |
|----------------------------|--------|
| Frequency (MHz):           | 795.5  |
| Modulation Signal:         | QPSK   |
| RB Config (Size / Offset): | 1 / 12 |

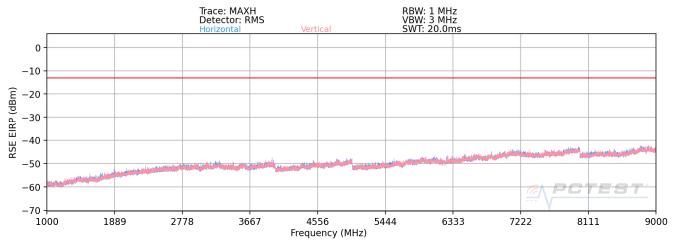

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission<br>Level [dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 1591.0          | V                  | -                         | -                                | -77.98                     | 0.78           | 29.80                         | -65.46                                   | -40.00         | -25.46         |
| 2386.5          | V                  | 103                       | 63                               | -68.57                     | 4.74           | 43.17                         | -52.09                                   | -13.00         | -39.09         |
| 3182.0          | V                  | -                         | -                                | -79.32                     | 6.08           | 33.76                         | -61.50                                   | -13.00         | -48.50         |
| 3977.5          | V                  | -                         | -                                | -81.30                     | 7.27           | 32.97                         | -62.29                                   | -13.00         | -49.29         |
| 4773.0          | V                  | -                         | -                                | -81.83                     | 9.07           | 34.24                         | -61.02                                   | -13.00         | -48.02         |

Table 7-6. Radiated Spurious Data (LTE Band 14 – High Channel)

| FCC ID: A3LSMG996U  | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|--------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                             |         | Dage EE of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020             | Portable Handset                      |         | Page 55 of 61                   |
| © 2020 PCTEST       | •                              |                                       |         | V 9.0 02/01/2019                |



# CDMA BC10



Plot 7-65. Radiated Spurious Plot (CDMA BC10)

| Frequency (MHz): | 817.9              |                           |                                  |                            |                |                               |                                          |                |                |
|------------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| Modulation:      | CDMA BC10          |                           |                                  |                            |                |                               |                                          |                |                |
| Frequency [MHz]  | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission<br>Level [dBm] | Limit<br>[dBm] | Margin<br>[dB] |
| 1635.8           | V                  | -                         | -                                | -68.91                     | 0.52           | 38.61                         | -56.64                                   | -13.00         | -43.64         |
| 2453.7           | V                  | -                         | -                                | -70.21                     | 4.86           | 41.65                         | -53.61                                   | -13.00         | -40.61         |
| 3271.6           | V                  | -                         | -                                | -70.50                     | 6.89           | 43.39                         | -51.87                                   | -13.00         | -38.87         |

Table 7-7. Radiated Spurious Data (CDMA BC10 – Ch. 476)

| Frequency (MHz): | 823.1              |                           |                                  |                            |                |                               |                                          |                |                |
|------------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| Modulation:      | CDMA BC10          |                           |                                  |                            |                |                               |                                          |                |                |
| Frequency [MHz]  | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission<br>Level [dBm] | Limit<br>[dBm] | Margin<br>[dB] |
| 1646.2           | V                  | -                         | -                                | -68.72                     | 0.50           | 38.78                         | -56.48                                   | -13.00         | -43.48         |
| 2469.3           | V                  | -                         | -                                | -70.25                     | 4.99           | 41.74                         | -53.52                                   | -13.00         | -40.52         |
| 3292.4           | V                  | -                         | -                                | -70.46                     | 6.75           | 43.29                         | -51.97                                   | -13.00         | -38.97         |
|                  |                    |                           |                                  |                            |                |                               | <b>AA (</b> )                            |                |                |

Table 7-8. Radiated Spurious Data (CDMA BC10 - Ch. 684)

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Page 56 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      | Handset |                                 |
| © 2020 PCTEST       | <u>.</u>                                | ·                                     |         | V 9.0 02/01/2019                |



# 7.8 Frequency Stability / Temperature Variation §2.1055 §90.213

### Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

# The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ( $\pm 2.5$ ppm) of the center frequency.

### Test Procedure Used

ANSI/TIA-603-E-2016

#### Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

### Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

### Test Notes

None

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 57 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 57 of 61                   |
| © 2020 PCTEST       | •                                       | ·                                     |         | V 9.0 02/01/2019                |



# Frequency Stability / Temperature Variation

| LTE Band 26      |             |                  |                   |                    |                  |  |  |
|------------------|-------------|------------------|-------------------|--------------------|------------------|--|--|
|                  | Operating F | Frequency (Hz):  | 819,00            | 00,000             |                  |  |  |
|                  | Ref.        | Voltage (VDC):   | 4.                | 41                 |                  |  |  |
|                  |             | Deviation Limit: | ± 0.00025%        | o or 2.5 ppm       |                  |  |  |
|                  |             |                  |                   |                    |                  |  |  |
| Voltage (%)      | Power (VDC) | Temp (°C)        | Frequency<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |  |  |
|                  |             | - 30             | 819,000,114       | -69                | -0.000084        |  |  |
|                  |             | - 20             | 818,999,834       | 211                | 0.0000258        |  |  |
|                  |             | - 10             | 818,999,874       | 171                | 0.0000209        |  |  |
|                  |             | 0                | 818,999,884       | 161                | 0.0000197        |  |  |
| 100 %            | 4.41        | + 10             | 818,999,921       | 124                | 0.0000151        |  |  |
|                  |             | + 20 (Ref)       | 819,000,045       | 0                  | 0.0000000        |  |  |
|                  |             | + 30             | 819,000,102       | -57                | -0.0000070       |  |  |
|                  |             | + 40             | 818,999,975       | 70                 | 0.000085         |  |  |
|                  |             | + 50             | 819,000,213       | -168               | -0.0000205       |  |  |
| Battery Endpoint | 3.37        | + 20             | 818,999,747       | 298                | 0.0000364        |  |  |

Table 7-9. LTE Band 26 Frequency Stability Data

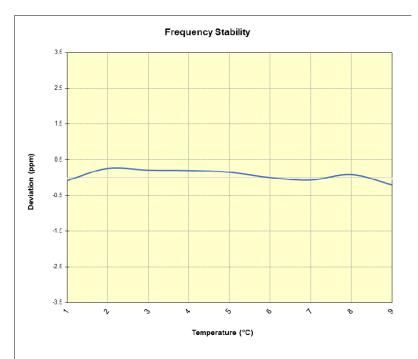



Table 7-9. LTE Band 26 Frequency Stability Chart

| FCC ID: A3LSMG996U  | Prove to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Dage 59 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         | Page 58 of 61                   |
| © 2020 PCTEST       |                               |                                       |         | V 9.0 02/01/2019                |



# Frequency Stability / Temperature Variation

| LTE Band 14      |                     |                |                   |                    |                  |  |  |
|------------------|---------------------|----------------|-------------------|--------------------|------------------|--|--|
|                  | Operating F         | requency (Hz): | 793,00            | 00,000             | T I              |  |  |
|                  | Ref. Voltage (VDC): |                | 4.4               | 41                 |                  |  |  |
|                  |                     |                |                   |                    |                  |  |  |
| Voltage (%)      | Power (VDC)         | Temp (°C)      | Frequency<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |  |  |
|                  |                     | - 30           | 793,000,315       | -432               | -0.0000545       |  |  |
|                  |                     | - 20           | 792,999,989       | -106               | -0.0000134       |  |  |
|                  |                     | - 10           | 792,999,687       | 196                | 0.0000247        |  |  |
|                  |                     | 0              | 792,999,640       | 243                | 0.0000306        |  |  |
| 100 %            | 4.41                | + 10           | 792,999,856       | 27                 | 0.000034         |  |  |
|                  |                     | + 20 (Ref)     | 792,999,883       | 0                  | 0.0000000        |  |  |
|                  |                     | + 30           | 792,999,999       | -116               | -0.0000146       |  |  |
|                  |                     | + 40           | 792,999,858       | 25                 | 0.000032         |  |  |
|                  |                     | + 50           | 793,000,012       | -129               | -0.0000163       |  |  |
| Battery Endpoint | 3.37                | + 20           | 792,999,973       | -90                | -0.0000113       |  |  |

Table 7-9. LTE Band 14 Frequency Stability Data




 Table 7-9. LTE Band 14 Frequency Stability Chart

| FCC ID: A3LSMG996U  | PCTEST:<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|---------------------|------------------------------------------|---------------------------------------|---------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                             | Dage 50 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                       | Portable Handset                      | Page 59 of 61                   |
| © 2020 PCTEST       |                                          | •                                     | V 9.0 02/01/2019                |



# Frequency Stability / Temperature Variation

| CDMA BC10        |             |                  |                   |                    |                  |  |  |
|------------------|-------------|------------------|-------------------|--------------------|------------------|--|--|
|                  | Operating F | requency (Hz):   | 817,90            | 00,000             | T I              |  |  |
|                  | Ref.        | Voltage (VDC):   | 4.                | 41                 |                  |  |  |
|                  |             | Deviation Limit: | ± 0.00025%        | or 2.5 ppm         |                  |  |  |
|                  |             |                  |                   |                    |                  |  |  |
| Voltage (%)      | Power (VDC) | Temp (°C)        | Frequency<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |  |  |
|                  |             | - 30             | 817,900,280       | -212               | -0.0000259       |  |  |
|                  |             | - 20             | 817,899,862       | 206                | 0.0000252        |  |  |
|                  |             | - 10             | 817,900,207       | -139               | -0.0000170       |  |  |
|                  |             | 0                | 817,900,065       | 3                  | 0.0000004        |  |  |
| 100 %            | 4.41        | + 10             | 817,899,717       | 351                | 0.0000429        |  |  |
|                  |             | + 20 (Ref)       | 817,900,068       | 0                  | 0.0000000        |  |  |
|                  |             | + 30             | 817,899,724       | 344                | 0.0000421        |  |  |
|                  |             | + 40             | 817,899,887       | 181                | 0.0000221        |  |  |
|                  |             | + 50             | 817,899,806       | 262                | 0.0000320        |  |  |
| Battery Endpoint | 3.37        | + 20             | 817,900,031       | 37                 | 0.0000045        |  |  |

Table 7-9. CDMA BC10 Frequency Stability Data

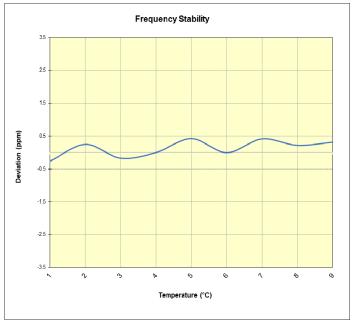



Table 7-9. CDMA BC10 Frequency Stability Chart

| FCC ID: A3LSMG996U  | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | <b>Approved by:</b><br>Quality Manager |
|---------------------|-------------------------------|---------------------------------------|---------|----------------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                             |         | Page 60 of 61                          |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020            | Portable Handset                      |         |                                        |
| © 2020 PCTEST       | <u>.</u>                      | ·                                     |         | V 9.0 02/01/2019                       |



# 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG996U** complies with all the requirements of Parts 22(H) and 90 of the FCC rules.

| FCC ID: A3LSMG996U  | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|---------------------|-----------------------------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                             |         | Dage 61 of 61                   |
| 1M2009140143-04.A3L | 09/15 - 12/01/2020                      | Portable Handset                      |         | Page 61 of 61                   |
| © 2020 PCTEST       |                                         |                                       |         | V 9.0 02/01/2019                |