

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

PART 0 SAR CHAR REPORT

Applicant Name:

SAMSUNG Electronics Co., Ltd.

129, Samsung-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-

do, 16677 Rep. of Korea

Date of Issue:Jul.14, 2022

Test Report No.: HCT-SR-2207-FC006

Test Site: HCT CO., LTD.

FCC ID:

A3LSMG991U

Report Type: Part 0 SAR Characterization

Equipment Type: Mobile Phone

Model Name: SM-G991U

Additional Model Name: SM-G991U1

I attest to the accuracy of data. All measurements reported herein were performed by me or were made unde r my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

の一件差

DaSol Lee
Test Engineer
SAR Team
Certification Division

Reviewed By

Yun-jeang, Heo Technical Manager SAR Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

F-TP22-03 (Rev.00) Page 1of 16

Report No: HCT-SR-2207-FC006

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description			
0	Jul. 14, 2022	Initial Release			

This test results were applied only to the test methods required by the standard.

F-TP22-03 (Rev.00) Page 2of 16

Table of Contents

1. Test Location	4
2. DEVICE UNDER TEST	5
3. SAR MEASUREMENTS	7
4. SAR CHARAC TERIZATION	9
5. Equipment List	12
6. Measurement Uncertainty	13
Appendix A: SAR Test Results For P limit CAI CIII ATIONS	14

1. Test Location

1.1 Test Laboratory

Company Name	HCT Co., Ltd.
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA
Telephone	031-645-6300
Fax.	031-645-6401

1.2 Test Facilities

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Wayaa	National Radio Research Agency (Designation No. KR0032)			
Korea	KOLAS (Testing No. KT197)			

F-TP22-03 (Rev.00) Page 4of 16

2. DEVICE UNDER TEST

2.1 General Information of the EUT

Device Wireless specification overview						
Band & Mode	Operating Mode	Tx Frequency				
CDMA/EVDO BC10	Voice / Data	817.90 MHz~ 823.10 MHz				
CDMA/EVDO BC0	Voice / Data	824.70 MHz~ 848.31 MHz				
PCS CDMA/EVDO	Voice / Data	1 851.25 MHz~ 1 908.75 MHz				
GSM850	Voice / Data	824.2 MHz~ 848.8 MHz				
GSM1900	Voice / Data	1 850.2 MHz~ 1 909.8 MHz				
UMTS 850	Voice / Data	826.4 MHz~ 846.6 MHz				
UMTS 1700	Voice / Data	1 712.4 MHz~ 1 752.6 MHz				
UMTS 1900	Voice / Data	1 852.4 MHz~ 1 907.6 MHz				
LTE Band 2 (PCS)	Voice / Data	1 850.7 MHz~ 1 909.3 MHz				
LTE Band 4 (AWS)	Voice / Data	1 710.7 MHz~ 1 754.3 MHz				
LTE Band 5 (Cell)	Voice / Data	824.7 MHz~ 848.3 MHz				
LTE Band 7	Voice / Data	2 502.5 MHz~ 2 567.5 MHz				
LTE Band 12	Voice / Data	699.7 MHz~ 715.3 MHz				
LTE Band 13	Voice / Data	779.5 MHz~ 784.5 MHz				
LTE Band 14	Voice / Data	790.5 MHz~ 795.5 MHz				
LTE Band 25	Voice / Data	1 850.7 MHz~ 1 914.3 MHz				
LTE Band 26	Voice / Data	814.7 MHz~ 848.3 MHz				
LTE Band 30	Voice / Data	2 307.5 MHz ~ 2 312.5 MHz				
LTE TDD Band 38	Voice / Data	2 572.5 MHz ~ 2 617.5 MHz				
LTE TDD Band 40	Voice / Data	2 302.5 MHz ~ 2 397.5 MHz				
LTE TDD Band 41	Voice / Data	2 498.5 MHz~ 2 687.5 MHz				
LTE TDD Band 48	Voice / Data	3 552.5 MHz~ 3697.5 MHz				
LTE Band 66 (AWS)	Voice / Data	1 710.7 MHz ~ 1 779.3 MHz				
LTE Band 71	Voice / Data	665.5 MHz~ 695.5 MHz				
NR Band n2	Voice / Data	1 852.5 MHz~ 1 907.5 MHz				
NR Band n5	Voice / Data	826.5 MHz~ 846.5 MHz				
NR Band n12	Voice / Data	701.5 MHz~ 713.5 MHz				
NR Band n25	Voice / Data	1 852.5 MHz ~ 1 912.5 MHz				
NR Band n30	Voice / Data	2307.5 MHz~ 2312.5 MHz				
NR Band n41	Voice / Data	2 506.02 MHz~ 2 679.99 MHz				
NR Band n48	Voice / Data	3 555 MHz~ 3 694.98 MHz				
NR Band n66	Voice / Data	1 712.5 MHz~ 1 777.5 MHz				
NR Band n71	Voice / Data	665.5 MHz - 695.5 MHz				
NR Band n77	Voice / Data	3710 MHz~ 3969.99 MHz				
NR Band n260	Data Data	37000 – 40000 MHz				
NR Band n261	Data	27500 – 28350 MHz				
U-NII-1	Voice / Data	5 180 MHz ~ 5 240 MHz				
U-NII-2A	Voice / Data	5 260 MHz ~ 5 320 MHz				
U-NII-2C	Voice / Data	5 500 MHz ~ 5 720 MHz				
U-NII-3	Voice / Data	5 745 MHz ~ 5 825 MHz				
2.4 Hz WLAN	Voice / Data	2 412 MHz ~ 2 462 MHz				
Bluetooth / LE 5.0	Data Data	2 402 MHz ~ 2 480 MHz				
NFC	Data	13.56 MHz				

This device uses the Qualcomm® Smart Transmit feature to control and manage transmitting power in real time and to ensure the time-averaged RF exposure is in compliance with the FCC requirement at all times for 2G/3G/4G/5G WWAN operations. Additionally, this device supports WLAN/BT/NFC technologies, but the output power of these technologies is not controlled by the Smart Transmit algorithm.

F-TP22-03 (Rev.00) Page 5of 16

2.2Time-Averaging for SAR

This device is enabled with Qualcomm® Smart Transmit algorithm to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from 2G/3G/4G/5G NR WWAN is incompliance with FCC requirements.

This Part 0 report shows SAR and Power Density characterization of WWAN radios for 2G/3G/4G and 5G Sub-6 NR respectively. Characterization is achieved by determining Plimit for 2G/3G/4G and 5G Sub-6 NR correspond to the exposure design targets after accounting for all device design related uncertainties, i.e. SAR design target (< FCC SAR limit) for sub-6 radio.

The SAR characterization is denoted as SAR Char in this report. Section 2.3 includes a nomenclature of the specific terms used in this report.

The compliance test under the static transmission scenario and simultaneous transmission analysis are reported in Part 1 report. The validation of the time-averaging algorithm and compliance under the dynamic (time-varying) transmission scenario for WWAN technologies are reported in Part 2 report

2.3 Nomenclature for Part 0 Report

Technology	Term	Description				
	Plimit	Power level that corresponds to the exposure design target (SAR_design_target) after accounting for all device design related uncertainties				
2G/3G/4G/5G	Pmax	Maximum tune up output power				
Sub 6 NR	SAR_design_target	Target SAR level < FCC SAR limit after accounting for all device design related uncertainties.				
	SAR Char	Table containing <i>Plimit</i> for all technologies and bands				

F-TP22-03 (Rev.00) Page 6of 16

3. SAR MEASUREMENTS

3.1 SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right)$$

SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2 / \rho$$

Where:

 σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m²) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

F-TP22-03 (Rev.00) Page 7of 16

3.2 SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 (see table 3-1) & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)
 - **a**. The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - **b**. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - **c**. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Table 3-1

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zo	om Scan Spa	Minimum Zoom Scan		
Frequency	Resolution(mm)	· · · · · · · · · · · · · · · · · · ·		G	raded Grid	Volume (mm)	
	(Δxarea, Δyarea) (Δxzoom, Δyzoom)		Δzzoom(n)	Δzzoom(1)*	Δzzoom(n>1)*	(x,y,z)	
≤2 GHz	≤15	≤8	≤5	≤4	≤1.5*∆zzoom(n-1)	≥30	
2-3 GHz	≤12	≤5	≤5	≤4	≤1.5*∆zzoom(n-1)	≥30	
3-4 GHz	≤12	≤5	≤4	≤3	≤1.5*∆zzoom(n-1)	≥28	
4-5 GHz	≤10	≤4	≤3	≤2.5	≤1.5*∆zzoom(n-1)	≥25	
5-6 GHz	≤10	≤4	≤2	≤2	≤1.5*∆zzoom(n-1)	≥22	

Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

F-TP22-03 (Rev.00) Page 8of 16

4. SAR CHARAC TERIZATION

4.1 DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the smartphone, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

When 1g SAR and 10g SAR exposure comparison is needed, the worst-case was determined from SAR normalized to 1g or 10g SAR limit.

The device state index (DSI) conditions used in Table 4-1 represent different exposure scenarios.

Scenario	Description	SAR Test Cases
Head (DSI = 2)	Device positioned next to headReceiver Active	Head SAR per KDB Publication 648474 D04
Hotspot mode (DSI = 3)	Device transmits in hotspot mode near bodyHotspot Mode Active	Hotspot SAR per KDB Publication 941225 D06
Phablet Grip (DSI=1 or 4)	 Device is held with hand and grip sensor is triggered Grip sensor triggered or earjack is active 	Phablet SAR per KDB Publication 648474 D04 & KDB Publication 616217 D04
Phablet (DSI = 0)	 Device is held with hand and grip sensor is not triggered Distance grip sensor not triggered 	Phablet SAR per KDB Publication 648474 D04 & KDB Publication 616217 D04
Body-worn (DSI = 0)	☐ Device being used with a body-worn accessory	Body-worn SAR per KDB Publication 648474 D04

Table 4-1 DSI and Corresponding Exposure Scenarios

F-TP22-03 (Rev.00) Page 9of 16

4.2 SAR Design Target

SAR_design_target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer (see Table 4-2).

SAR_design_target								
SAR_design_target < SAR_regulatory_limit x 10 ^{-Total Uncertainty/10}								
1g SAR (W/kg)	10g SAR (W/kg)						
Total Uncertainty	1.0 dB	Total Uncertainty	1.0 dB					
SAR_regulatory_limit	SAR_regulatory_limit 1.6 W/kg		4.0 W/kg					
SAR_design_target	1.0 W/kg	SAR_design_target	2.5 W/kg					

Table 4-2 SAR_design_target Calculations

4.3 SAR Characterization

SAR test results corresponding to *Pmax* for each antenna/technology/band/DSI can be found in Appendix A. *Plimit* is calculated by linearly scaling with the measured SAR at the *Pmax* to correspond to the SAR_design_target. *Plimit* determination for each exposure scenario corresponding to *SAR_design_target* are

Device State Index (DSI)	PLimit Determination Scenarios
0	The worst-case SAR exposure is determined as maximum SAR normalized to the limit among: 1. Body Worn SAR 2. Extremity SAR measured at 8, 6 and 11 mm spacing for back, front, bottom respectively 3. Extremity SAR measured at 0 mm for left and right surfaces
2	Plimit is calculated based on 1g Head SAR
3	Plimit is calculated based on 1g Hotspot SAR at 10 mm
1 & 4	Plimit is calculated based on 10g Extremity SAR at 0 mm for back, front, and bottom surfaces. Ear jack inseted mode.

shown in Table 4-3.

Table 4-3 PLimit Determination

Note:

For DSI=0, Plimit is calculated by:

Plimit = min{ Plimit cooresponding to 1g Body Worn SAR evaluation at 15mm spacing,

Plimit cooresponding to 10g Extremity SAR evaluation at 6(Front), 8(rear) and 11mm(bottom) spacing,

Plimit cooresponding to 10g Extremity SAR evaluation at 0mm for Left and right surface }

F-TP22-03 (Rev.00) Page 10of 16

Report No: HCT-SR-2207-FC006

SAR Exposure Configurations		Body-Worn	Phablet	Phablet	Head	Hotspot	Ear jack	Power Power				
Averaging volume		1g	10g	10g	1g	1g	10g		UL:DL Ratio	reduction		
Spacing (mm)		15 mm	8,6,11mm	0 mm	0 mm	10 mm	0 mm					
DSI		0		1	2	3	4	[dBm]	[dBm]		[dBm]	
Mode	Band	Antenna		Plimt				Pmax				
NR TDD	48	G	18.	.0	18.0	12.0	18.0	18.0	24.0	18.0	25%	6.0

Table 4-4 SAR Characterization

Note:

- 1. Compared with the Plimt (Tune up Powers) declared in each DSI by the manufacturer and the plimt (calculation) calculated by the SAR measurement of each DSI, the lower power were applied to the EFS as the plimit at each DSI configurations.
- 2. When Pmax < Plimit, the DUT will operate at a power level up to Pmax.
- 3. when Hotspot Mode (DSI=3) Grip sensor (DSI=1) and Ear-jack mode(DSI=4) are triggered at the same time, DSI=3(Hotspot) takes more higher priority.the Priority for power reduction was given in the order of hotspot(DSI=3), earjack.(DSI=4), and grip (DSI=1),.
- 4. Maximum Tune up Power, Pmax. Is configured in NV settings in EUT to limit maximum transmitting power. This power is converted into peak power in NV setting for TDD schemes. (GPRS, LTE TDD, NR TDD)

F-TP22-03 (Rev.00) Page 11of 16

5. Equipment List

5. Equipii					
Manufacturer	, ·	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
SPEAG	SAM Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	CS8Cspeag-TX90	F11/5K3RA1/C/01	N/A	N/A	N/A
Staubli	TX90 XLspeag	F11/5K3RA1/A/01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	S-1203 0309	N/A	N/A	N/A
SPEAG	DAE4	614	01/27/2020	Annual	01/27/2021
SPEAG	E-Field Probe EX3DV4	7370	08/31/2020	Annual	08/31/2021
SPEAG	Dipole D3500V2	1040	01/28/2020	Annual	01/28/2021
SPEAG	Dipole D3700V2	1066	12/31/2019	Annual	12/31/2020
Agilent	Power Meter E4419B	MY41291386	10/23/2020	Annual	10/23/2021
Agilent	Power Meter N1911A	MY45101406	08/31/2020	Annual	08/31/2021
Agilent	Power Sensor 8481A	SG1091286	10/05/2020	Annual	10/05/2021
Agilent	Power Sensor 8481A	MY41090873	10/05/2020	Annual	10/05/2021
Agilent	Power Sensor N1921A	MY55220026	08/31/2020	Annual	08/31/2021
SPEAG	DAKS 3.5	1038	03/24/2020	Annual	03/24/2021
H.P	Network Analyzer /8753ES	JP39240221	01/28/2020	Annual	01/28/2021
Agilent	Signal Generator N5182A	MY47070230	05/06/2020	Annual	05/06/2021
Agilent	11636B/Power Divider	58698	02/28/2020	Annual	02/28/2021
TESTO	175-H1/Thermometer	40331949309	01/29/2020	Annual	01/29/2021
EMPOWER	RF Power Amplifier	1084	07/01/2020	Annual	07/01/2021
MICRO LAB	LP Filter / LA-60N	32011	10/05/2020	Annual	10/05/2021
Agilent	Attenuator (3dB) 8693B	MY39260298	09/17/2020	Annual	09/17/2021
HP	Attenuator (20dB) 8493C	09271	09/17/2020	Annual	09/17/2021
Agilent	Directional Bridge	3140A03878	06/08/2020	Annual	06/08/2021
Agilent	MXA Signal Analyzer N9020A	MY50510407	10/23/2020	Annual	10/23/2021
HP	Dual Directional Coupler	16072	10/05/2020	Annual	10/05/2021
Anritsu	Radio Communication Tester MT8821C	6262044720	01/06/2020	Annual	01/06/2021
Anritsu	Radio Communication Test Station MT8000A	6262036812	01/06/2020	Annual	01/06/2021

^{*} The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

F-TP22-03 (Rev.00) Page 12of 16

Report No: HCT-SR-2207-FC006

6. Measurement Uncertainty

The measured SAR was <1.5 W/Kg for 1g SAR and <3.75 W/Kg For 10g SAR for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE1528-2013 was not required.

F-TP22-03 (Rev.00) Page 13 of 16

Appendix A: SAR Test Results For P limit CALCULATIONS

F-TP22-03 (Rev.00) Page 14of 16

Report No: HCT-SR-2207-FC006

Table A-1 DSI = 2 PLimit Calculations - NR Head SAR

For some bands/modes, a lower PLimit was selected as a more conservative evaluation.

NR TDD Bands: In the case of the NR TDD bands, the Plimit were calculated as the Frame average power to which the duty factor was applied to the burst power.

SAR measurements of all NR bands were measured in FTM Mode.

	MEASUREMENT RESULTS													
Frequency		Mode			Frame Averaged Conducte d Power		MPR	MPR RB Size	RB e offset	Duty Cycle	Meas. SAR(1g)	Plimit	Minimum Plimit	
MHz	Ch.			MHz	(dBm)			(dB)				(W/kg)	(dBm)	(dBm)
3570	638000	NR Band n48	Mid	40	12.74	Right Cheek	DFT-s-OFDM QPSK	0	1	104	1:1	0.273	18.4	
3570	638000	NR Band n48	Mid	40	12.74	Right Tilt	DFT-s-OFDM QPSK	0	1	104	1:1	0.014	31.3	10.1
3570	638000	NR Band n48	Mid	40	12.74	Left Cheek	DFT-s-OFDM QPSK	0	1	104	1:1	0.099	22.8	18.4
3570	638000	NR Band n48	Mid	40	12.74	Left Tilt	DFT-s-OFDM QPSK	0	1	104	1:1	0.025	28.8	

Table A-2 DSI = 0 PLimit Calculations - NR Body-Worn SAR

For some bands/modes, a lower *P*_{Limit} was selected as a more conservative evaluation.

NR TDD Bands: In the case of the NR TDD bands, the Plimit were calculated as the Frame average power to which the duty factor was applied to the burst power.

SAR measurements of all NR bands were measured in FTM Mode.

MEASUREMENT RESULTS															
	MEASUREMENT RESULTS														
Frequency Mode Frame Band Averaged width Conducted Power Frame Configurations MPR Spacing RB (mm) Size offse RB Duty Meas. Cycle SAR(1g) FRAME Cycle SAR(1g) FRAME Cycle SAR(1g)	Plimit Minin														
MHz Ch. MHz (dBm) (dB) (W/kg) (c	(dBm) (dBm														
3570 638000 NR Band n48 Mid 40 18.24 Back DFT-s-OFDM QPSK 0 15 1 104 1:1 0.038 3	32.4 29.4														
3570 638000 NR Band n48 Mid 40 18.24 Front DFT-s-OFDM QPSK 0 15 1 104 1:1 0.077 2	29.4														

F-TP22-03 (Rev.00) Page 15of 16

Report No: HCT-SR-2207-FC006

Table A-3 DSI = 3 PLimit Calculations - - NR Hotspot SAR

For some bands/modes, a lower *P*_{Limit} was selected as a more conservative evaluation.

NR TDD Bands: In the case of the NR TDD bands, the Plimit were calculated as the Frame average power to which the duty factor was applied to the burst power.

SAR measurements of all NR bands were measured in FTM Mode.

	MEASUREMENT RESULTS														
Frequency		Mode			Frame Averaged Conducted Power	Test Position		MPR	Spacing (mm)	RB Size	RB offset	Duty Cycle	Meas. SAR(1g)	Plimit	Minimum Plimit
MHz	Ch.			MHz	(dBm)			(dB)					(W/kg)	(dBm)	(dBm)
3570	638000	NR Band n48	Mid	40	18.24	Back	DFT-s-OFDM QPSK	0	10	1	104	1:1	0.104	28.8	
3570	638000	NR Band n48	Mid	40	18.24	Front	DFT-s-OFDM QPSK	0	10	1	104	1:1	0.113	28.2	23.7
3570	638000	NR Band n48	Mid	40	18.24	Right	DFT-s-OFDM QPSK	0	10	1	104	1:1	0.241	23.7	

Table A-4 DSI = 1, 4 PLimit Calculations - - NR Phablet SAR (Grip on, Ear Jack inserted)

For some bands/modes, a lower *P*_{Limit} was selected as a more conservative evaluation.

NR TDD Bands: In the case of the NR TDD bands, the Plimit were calculated as the Frame average power to which the duty factor was applied to the burst power.

SAR measurements of all NR bands were measured in FTM Mode.

	MEASUREMENT RESULTS															
	Frequency Mode				Frame Averaged Conducted Power		Test Position	MPR	Spacing (mm)	RB Size	RB offset	Duty Cycle	Meas. SAR(1g)	Plimit	Minimum Plimit	
ı	MHz	Ch.			MHz	(dBm)			(dB)					(W/kg)	(dBm)	(dBm)
35	570	638000	NR Band n48	Mid	40	18.24	Back	DFT-s-OFDM QPSK	0	0	1	104	1:1	0.367	26.6	
35	570	638000	NR Band n48	Mid	40	18.24	Front	DFT-s-OFDM QPSK	0	0	1	104	1:1	0.876	22.8	20.6
35	570	638000	NR Band n48	Mid	40	18.24	Right	DFT-s-OFDM QPSK	0	0	1	104	1:1	1.440	20.6	

F-TP22-03 (Rev.00) Page 16of 16