

FCC BT LE REPORT

Certification

Applicant Name: SAMSUNG Electronics Co., Ltd. Date of Issue: October 29, 2020

Test Site/Location: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

Address: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-

do, 16677, Rep. of Korea

Report No.: HCT-RF-2010-FC010

FCC ID:	A3L5MG9910
APPLICANT:	SAMSUNG Electronics Co., Ltd.
Model:	SM-G991U
Additional Model:	SM-G991U1
EUT Type:	Mobile Phone
Average Output Power:	9.78 dBm (9.51 mW)
Frequency Range:	2 402 MHz ~ 2 480 MHz
Modulation type	GFSK
FCC Classification:	Digital Transmission System(DTS)
FCC Rule Part(s):	Part 15.247

A21 SMC00111

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

REVIEWED BY

AD

Report prepared by : Jung Ki Lim Engineer of Telecommunication Testing Center

Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2010-FC010 October 29, 2020		- First Approval Report

Table of Contents

REVIEWED BY 2	
1. EUT DESCRIPTION	i
2. TEST METHODOLOGY	j
EUT CONFIGURATION	j
EUT EXERCISE	j
GENERAL TEST PROCEDURES6	į
DESCRIPTION OF TEST MODES7	,
3. INSTRUMENT CALIBRATION	,
4. FACILITIES AND ACCREDITATIONS	,
FACILITIES	,
EQUIPMENT	,
5. ANTENNA REQUIREMENTS	į
6. MEASUREMENT UNCERTAINTY	ì
7. DESCRIPTION OF TESTS	I
8. SUMMARY TEST OF RESULTS	
9. TEST RESULT	,
9.1 DUTY CYCLE	,
9.2 6dB BANDWIDTH	I
9.3 OUTPUT POWER	I
9.4 POWER SPECTRAL DENSITY 41	
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	
9.6 RADIATED SPURIOUS EMISSIONS	
9.7 RADIATED RESTRICTED BAND EDGES 67	
9.8 POWERLINE CONDUCTED EMISSIONS 69	I
10. LIST OF TEST EQUIPMENT	,
11. ANNEX A_TEST SETUP PHOTO75	,

1. EUT DESCRIPTION

Model	SM-G991U		
Additional Model	SM-G991U1		
ЕИТ Туре	Mobile Phone		
Power Supply	DC 3.88 V		
Battery Information	Model: EB-BG991ABY Type: Li-ion Battery		
Travel Adapter Information	Model : EP-TA800 Manufacture: DONGYANG E	&P	
Data Cable Information	Model : EP-DN980BBZ Manufacture: RF-Tech		
Ear-jack Information	Manufacture: Nr Tech Model : YBD-19HS-026 Manufacture: ALMUS		
Frequency Range	2 402 MHz ~ 2 480 MHz		
		125k Bit/s : 10.036 dBm (10.08 mW)	
	Peak	500k Bit/s : 10.083 dBm (10.19 mW)	
	(For information only)	1M Bit/s : 10.125 dBm (10.29 mW)	
Max. RF Output Power		2M Bit/s : 10.290 dBm (10.69 mW)	
		125k Bit/s : 9.72 dBm (9.38 mW)	
	Average	500k Bit/s :9.77 dBm (9.48 mW)	
	Average	1M Bit/s : 9.78 dBm (9.51 mW)	
		2M Bit/s : 9.68 dBm (9.29 mW)	
Modulation Type	GFSK		
Bluetooth Version	5.0		
Number of Channels	40 Channels		
Antenna Specification	Antenna type: Metal Peak Gain: -6.83 dBi		
Date(s) of Tests	September 15, 2020 ~ October 28, 2020		

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test

Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

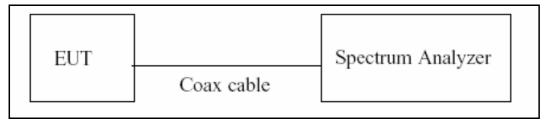
- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.


Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

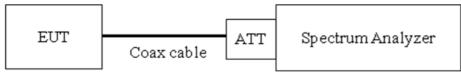
We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/ T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2. 6dB Bandwidth

<u>Limit</u>

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

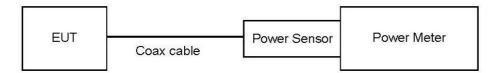
The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02,

Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \ge 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

<u>Limit</u>

The maximum permissible conducted output power is 1 Watt.

Test Configuration

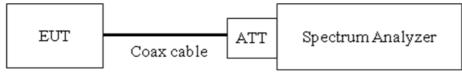
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

<u>Limit</u>

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

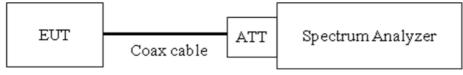
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = power averaging (rms) or sample detector (when rms not available).
- 7) Ensure that the number of measurement points in the sweep \geq [2 × span / RBW].
- 8) Employ trace averaging (rms) modeover a minimum of 100 traces
- 9) Use the peak marker function to determine the maximum amplitude level.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11) if then duty factor shall be added to adjust the result if the duty cycle is less than 98%

Sample Calculation

Power Spectral Density = Reading Value + ATT loss + Cable loss


7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

<u>Limit</u>

The maximum conducted (average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 30 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \ge 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\ge 2 \times \text{Span/VBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

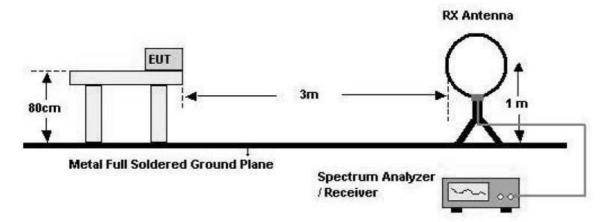
Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors for frequency

Freq(MHz)	Factor(dB)
30	10.04
100	10.07
200	10.12
300	10.17
400	10.20
500	10.21
600	10.21
700	10.23
800	10.24
900	10.26
1000	10.27
2000	10.41
2400	10.45
2500	10.47
3000	10.52
4000	10.60
5000	10.71
6000	10.73
7000	10.80
8000	10.85
9000	10.91
10000	10.97
11000	11.02
12000	11.10
13000	11.19
14000	11.16
15000	11.21
16000	11.22
17000	11.25
18000	11.30
19000	11.32
20000	11.36
21000	11.48
22000	11.55
23000	11.55
24000	11.59
25000	11.68
26000	11.69

Note : 1. 2 400 ~ 2 500 MHz is fundamental frequency range.

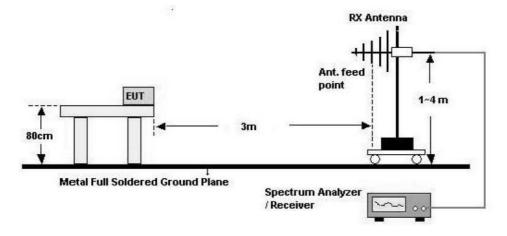
2. Factor = Attenuator loss(10 dB) + Cable loss(1ea)

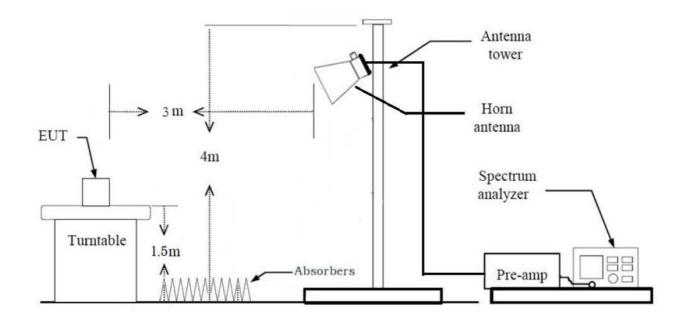

7.6. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz



Report No.: HCT-RF-2010-FC010

30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - In general, (1) is used mainly
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW ≥ 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1

9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total (Measurement Type : Peak)
 - = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total (Measurement Type : Average)

= Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G)

+ Distance Factor(D.F) + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak
 - = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

Total(Measurement Type : Average)

- = Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

7.8. Worst case configuration and mode

Radiated Test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone, etc)
 - Worstcase : Stand alone
- 2. EUT Axis:
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : X
- 3. All packet length of operation were investigated and the test results are worst case in lowest packet length. (Worst case : 37 Byte)
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position : Horizontal, Vertical, Parallel to the ground plane
- 5. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone + External accessories(Earphone, etc)+Travel Adapter

Stand alone + Travel Adapter

- Worstcase : Stand alone + Travel Adapter
- 2. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

Conducted test

1. The EUT was configured with packet length of highest power.

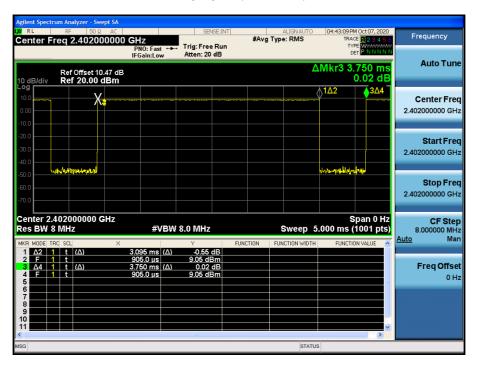
(Worst case : 37 Byte)

2. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

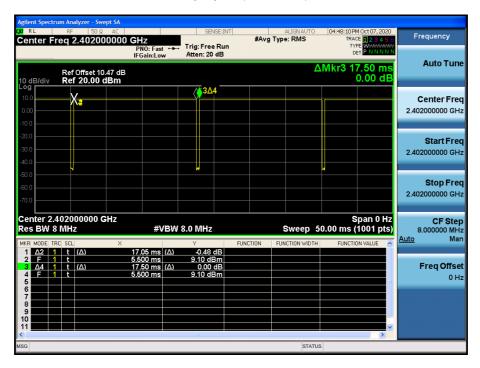
8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§15.247(d)	Conducted > 30 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 7.6	Dedicted	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

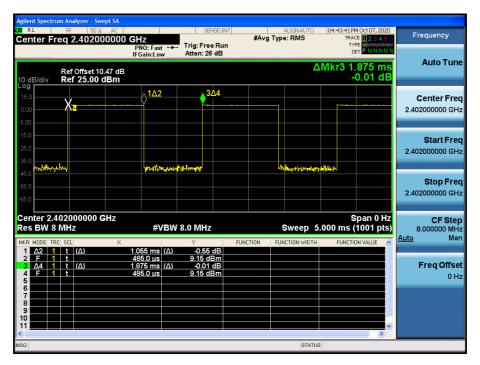

9. TEST RESULT

9.1 DUTY CYCLE

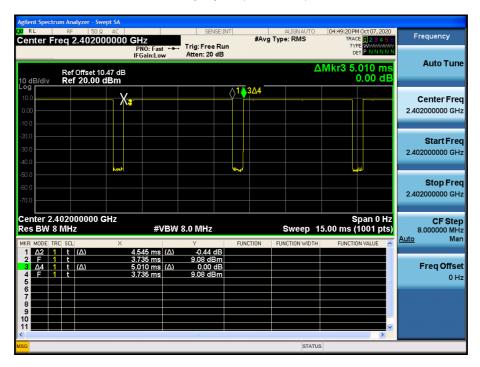
Data rate (Bit/s)	Packet length (Byte)	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
125k	37	3.095	3.750	0.8253	0.83
IZOK	255	17.050	17.500	0.9743	0.11
500k	37	1.055	1.875	0.5627	2.50
SUUK	255	4.545	5.010	0.9072	0.42
114	37	0.378	0.625	0.6045	2.19
1M	255	2.125	2.500	0.8500	0.71
2M	37	0.194	0.624	0.3103	5.08
ZIVI	255	1.065	1.875	0.5680	2.46



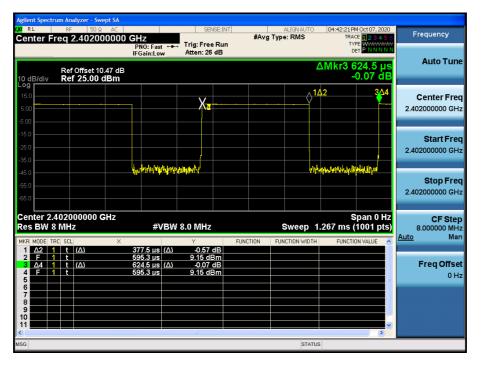
125k Bit/s(37 Byte) Test Plots


Duty Cycle (Low-CH 0)

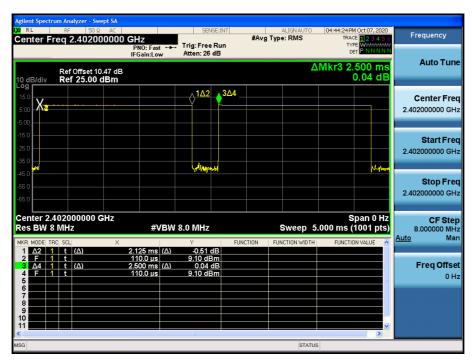
■ 125k Bit/s(255 Byte) Test Plots



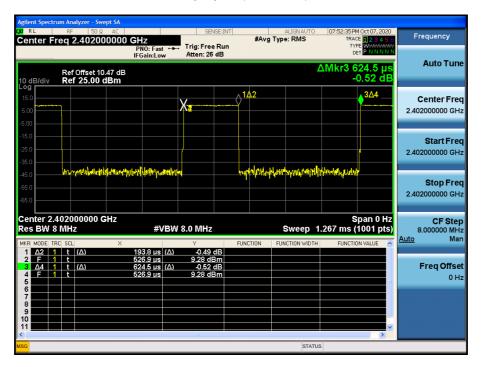
500k Bit/s(37 Byte) Test Plots


Duty Cycle (Low-CH 0)

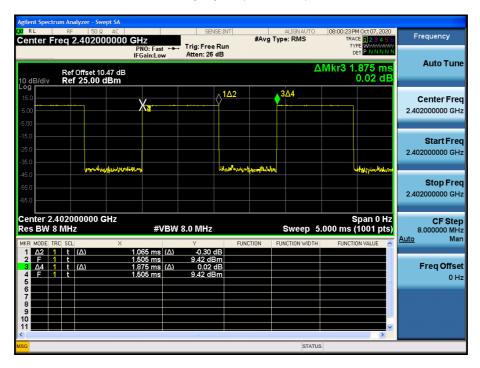
■ 500k Bit/s(255 Byte) Test Plots



IM Bit/s (37 Byte) Test Plots


Duty Cycle (Low-CH 0)

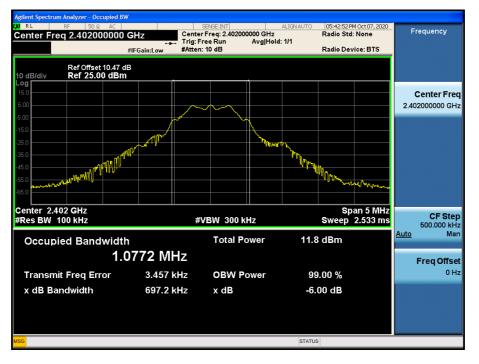
IM Bit/s (255 Byte) Test Plots



2M Bit/s (37 Byte) Test Plots

Duty Cycle (Low-CH 0)

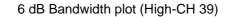
2M Bit/s (255 Byte) Test Plots



9.2 6dB BANDWIDTH

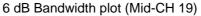
Mode	Channel	6 dB Bandwidth	Limit
(Bit/s)	Channer	(kHz)	(kHz)
	0	697.2	
125k	19	695.5	> 500
	39	698.4	
	0	670.7	
500k	19	667.9	> 500
	39	665.3	
	0	697.1	
1M	19	721.6	> 500
	39	714.3	
	0	1250	
2M	19	1262	> 500
	39	1260	

■ 125k Bit/s(37 Byte) Test Plots



6 dB Bandwidth plot (Low-CH 0)

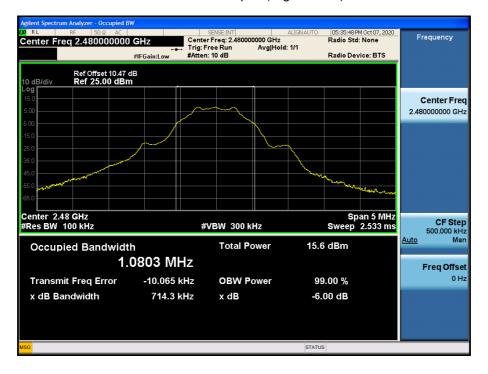
6 dB Bandwidth plot (Mid-CH 19)



■ 500k Bit/s(37 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

IM Bit/s (37 Byte) Test Plots


6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)

2M Bit/s (37 Byte) Test Plots


6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)

9.3 OUTPUT POWER

Peak Power

Data rate	Packet length		lode	Measured	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	Power(dBm)	(dBm)
		2402	0	9.123	
	37	2440	19	9.947	
4051		2480	39	9.324	
125k		2402	0	9.717	
	255	2440	19	10.036	
		2480	39	9.550	_
		2402	0	9.148	
	37	2440	19	10.083	_
500k		2480	39	9.391	
500K		2402	0	8.976	
	255	2440	19	9.978	
		2480	39	9.359	- 30
		2402	0	9.060	- 30
	37	2440	19	9.957	
414		2480	39	9.346	
1M		2402	0	8.941	
	255	2440	19	10.125	
		2480	39	9.896	
		2402	0	9.545	
	37	2440	19	10.290	
		2480	39	9.678	
2M		2402	0	9.458	
	255	2440	19	10.242	
		2480	39	9.653	

Average Power

Data rate	Packet length	LEN	lode	Measured Power	Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(dBm)
		2402	0	7.66	0.83	8.49	
	37	2440	19	8.89	0.83	9.72	
125k		2480	39	8.15	0.83	8.98	
		2402	0	8.50	0.11	8.61	
	255	2440	19	9.60	0.11	9.71	
		2480	39	8.94	0.11	9.05	_
		2402	0	6.12	2.50	8.62	
	37	2440	19	7.27	2.50	9.77	
500k		2480	39	6.48	2.50	8.98	
500K	255	2402	0	8.19	0.42	8.61	
		2440	19	9.30	0.42	9.72	
		2480	39	8.65	0.42	9.07	
		2402	0	6.15	2.19	8.34	- 30
	37	2440	19	7.59	2.19	9.78	_
414		2480	39	6.79	2.19	8.98	
1M		2402	0	7.88	0.71	8.59	_
	255	2440	19	9.00	0.71	9.71	_
		2480	39	8.35	0.71	9.06	
		2402	0	3.55	5.08	8.63	
	37	2440	19	4.60	5.08	9.68	
014		2480	39	3.90	5.08	8.98	
2M		2402	0	6.02	2.46	8.48	
	255	2440	19	7.10	2.46	9.56	
		2480	39	6.40	2.46	8.86	

Note :

1. Power meter offset = Attenuator loss + Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.47 dB is offset for 2.4 GHz Band.

9.4 POWER SPECTRAL DENSITY

				Test Res	ult	
Frequency (MHz)	Channel No.	Mode	Measured Power(dBm)	Duty Cycle Factor(dB)	Measured Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)
2402	0		1.647	0.83	2.481	
2440	19	125k Bit/s 37 Byte	2.580	0.83	3.414	
2480	39	or Byte	2.121	0.83	2.955	
2402	0		2.985	0.11	3.098	
2440	19	125k Bit/s 255 Byte	3.799	0.11	3.912	
2480	39	200 Dyte	3.339	0.11	3.452	
2402	0		-1.097	2.50	1.400	
2440	19	500k Bit/s 37 Byte	-0.232	2.50	2.265	
2480	39		-0.765	2.50	1.732	
2402	0		1.081	0.42	1.504	
2440	19	500k Bit/s 255 Byte	2.102	0.42	2.525	
2480	39	200 Dyte	1.304	0.42	1.727	8
2402	0		-0.253	2.19	1.933	0
2440	19	1M Bit/s 37 Byte	0.921	2.19	3.107	
2480	39	or byte	0.120	2.19	2.306	
2402	0		0.576	0.71	1.282	
2440	19	1M Bit/s 255 Byte	2.213	0.71	2.919	
2480	39	200 Dyte	2.075	0.71	2.781	
2402	0		-5.014	5.08	0.068	
2440	19	2M Bit/s 37 Byte	-5.340	5.08	-0.258	
2480	39		-4.516	5.08	0.566	
2402	0	2M Bit/s	-3.406	2.46	-0.949	
2440	19	201 Bit/s 255 Byte	-2.874	2.46	-0.417	
2480	39	200 2,00	-3.270	2.46	-0.813	

Note :

1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.47 dB is offset for 2.4 GHz Band.

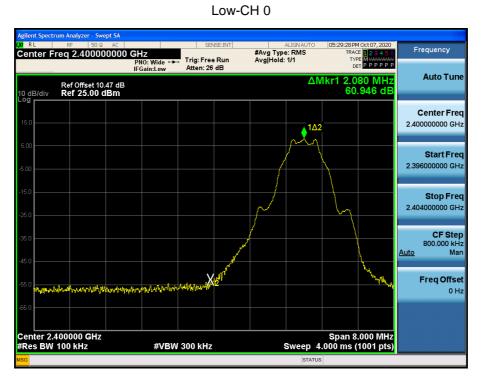
4. Worst case test Plot Only : 125k Bit/s (255 Byte)

I 125k Bit/s (255 Byte) Test Plots

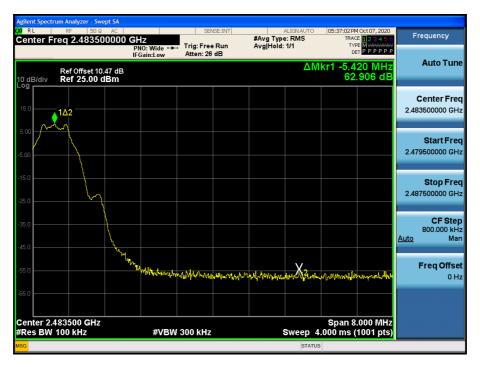
Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Power Spectral Density (High-CH 39)


9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

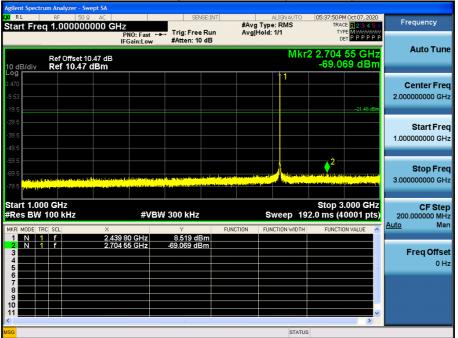
Test Result : please refer to the plot below.

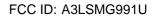

In order to simplify the report, attached plots were only the worst case channel and data rate.

1M Bit/s (37 Byte) Test Plots -BandEdge

High-CH 39

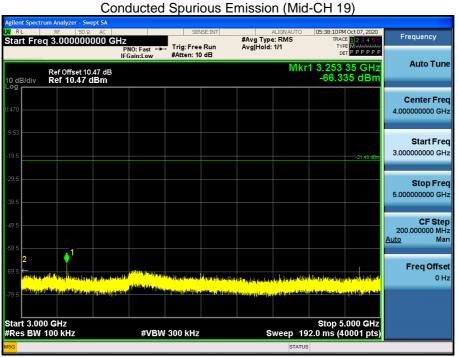
IM Bit/s (37 Byte) Test Plots -Conducted Spurious Emission

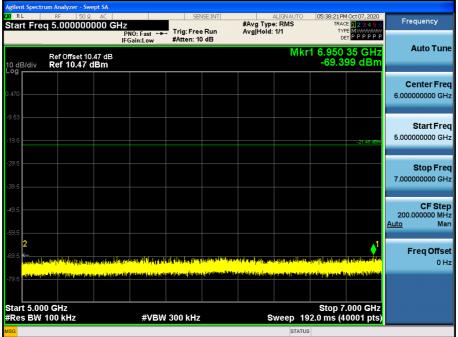

30 MHz ~ 1 GHz


Frequency #Avg Type: RMS Avg|Hold: 1/1 Start Freq 30.000000 MHz PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 10 dB Auto Tune r1 979.43 MH: -71.879 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/div **Center Freq** 515.000000 MHz Start Fred 30.000000 MHz Stop Freq 1.00000000 GHz **CF Step** 97.000000 MHz <u>o</u> Man Auto Freq Offset 0 Hz Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) #VBW 300 kHz

Conducted Spurious Emission (Mid-CH 19)

1 GHz ~ 3 GHz

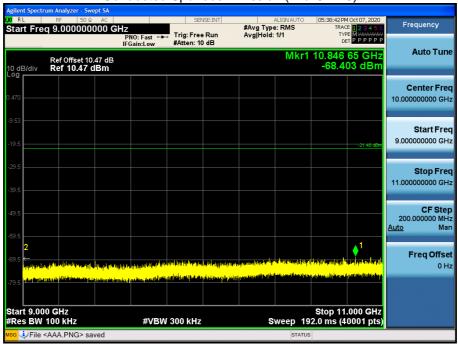




Report No.: HCT-RF-2010-FC010

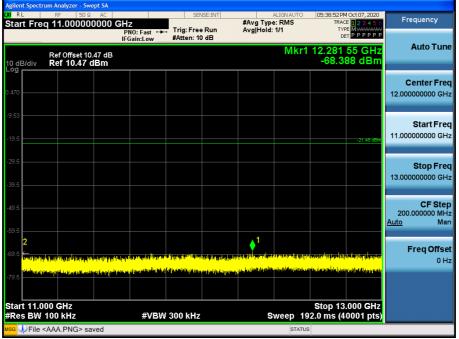
3 GHz ~ 5 GHz

5 GHz ~ 7 GHz

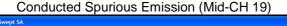

Report No.: HCT-RF-2010-FC010

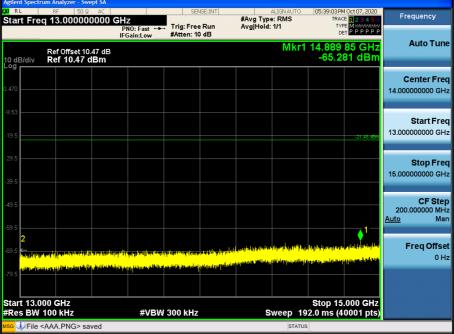
7 GHz ~ 9 GHz

RL Frequency Start Freq 7.000000000 GHz #Avg Type: RMS Avg|Hold: 1/1 PNO: Fast →→→ Trig: Free Run IFGain:Low #Atten: 10 dB DET P P P P P Auto Tune Mkr1 7.109 55 GHz -68.169 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/div **Center Freq** 8.000000000 GHz Start Freq 7.000000000 GHz Stop Freq 9.000000000 GHz CF Step 200.000000 MHz uto Man Auto 1 Freq Offset 0 Hz Start 7.000 GHz #Res BW 100 kHz Stop 9.000 GHz Sweep 192.0 ms (40001 pts) #VBW 300 kHz Alignment Completed


Conducted Spurious Emission (Mid-CH 19)

9 GHz ~ 11 GHz

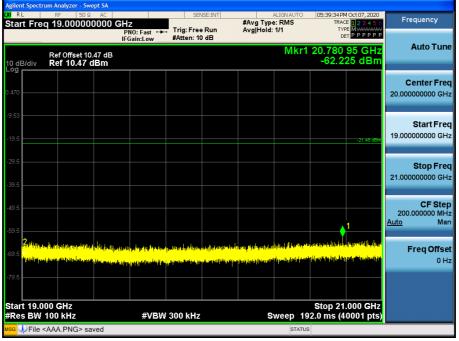



11 GHz ~ 13 GHz

Conducted Spurious Emission (Mid-CH 19)

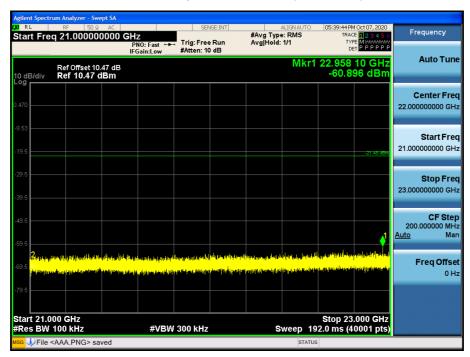
13 GHz ~ 15 GHz

15 GHz ~ 17 GHz


Conducted Spurious Emission (Mid-CH 19)

17 GHz ~ 19 GHz

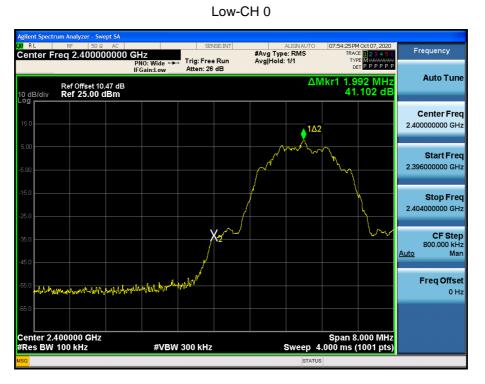
R Frequency Start Freq 17.000000000 GHz PN0: Fast ↔ IF6ain:Low #Atten: 10 dB #Avg Type: RMS Avg|Hold: 1/1 DET PPPPP Auto Tune Mkr1 18.496 95 GHz -62.997 dBm Ref Offset 10.47 dB Ref 10.47 dBm **Center Freq** 18.00000000 GHz Start Freq 17 00000000 GHz Stop Freq 19.00000000 GHz CF Step 200.000000 MHz Auto Mar Freq Offset 0 Hz Start 17.000 GHz #Res BW 100 kHz Stop 19.000 GHz Sweep 192.0 ms (40001 pts) #VBW 300 kHz File <AAA.PNG> saved



19 GHz ~ 21 GHz

Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz



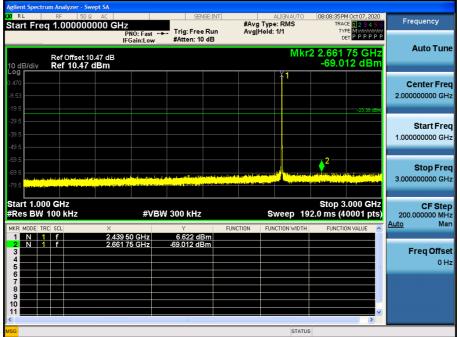
23 GHz ~ 25 GHz

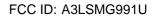
RL		Ω AC		SE	NSE:INT		ALIGN AUTO		4 Oct 07, 2020	Frequency
tart Fre	q 23.0000		HZ PNO:Fast ↔ IFGain:Low	Trig: Fre #Atten: 1		#Avg Typ Avg Hold:		TYE	^{2E} 1 2 3 4 5 6 PE M W M M M M T P P P P P P P	Prequency
0 dB/div	Ref Offset 1 Ref 10.47						Mkr1		55 GHz 47 dBm	Auto Tur
og 470										Center Fre 24.000000000 GR
9.5									-21.46 dBm	Start Fr 23.00000000 G
9.5										Stop Fr 25.00000000 G
9.5					a d tanula a			↓ 1		CF Sto 200.000000 M <u>Auto</u> M
9.5 <mark>Selation</mark>	la an dhacharan an tao an t	An and the second s In the second	^{Anto} n and a state of the second state of the	<mark>1999 - Ali Birlanda 1999 - Ali Birlanda 1999 - Ali Birlanda</mark>	na na ana ana ana ana ana ana ana ana a		an a state a s I state a		ndiatisiopeat	Freq Offs
9.5										
	000 GHz 100 kHz		#VBV	V 300 kHz		S	weep <u>19</u>	Stop 25 2.0 ms <u>(</u> 4	.000 GHz 0001 pts)	
_	<aaa.png> s</aaa.png>	e ve d	<i>"</i> •В·	1 000 1112		-	STATUS	2.0 1113 (+	0001 pt3/	

2M Bit/s (37 Byte) Test Plots -BandEdge

High-CH 39

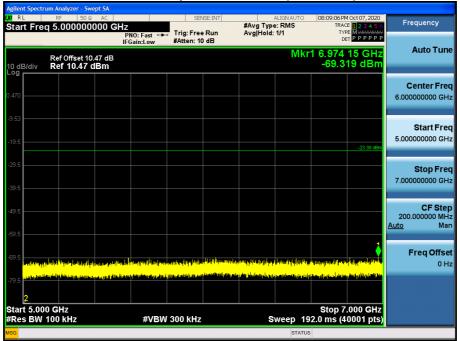
Image: 2M Bit/s (37 Byte) Test Plots -Conducted Spurious Emission

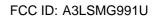

30 MHz ~ 1 GHz


Frequency #Avg Type: RMS Avg|Hold: 1/1 Start Freq 30.000000 MHz PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 10 dB Auto Tune r1 830.10 MHz -72.265 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/div **Center Freq** 515.000000 MHz Start Freq 30.000000 MHz Stop Freq 1.00000000 GHz **CF Step** 97.000000 MHz <u>o</u> Man Freq Offset 0 Hz بغادته بغدائه Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) #VBW 300 kHz

Conducted Spurious Emission (Mid-CH 19)

1 GHz ~ 3 GHz

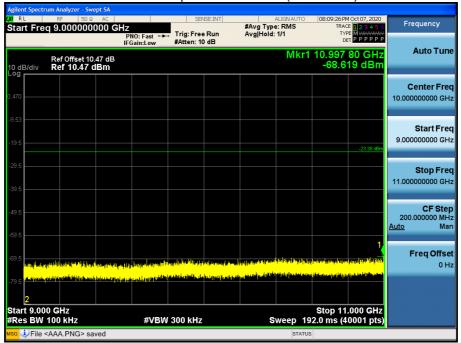

Report No.: HCT-RF-2010-FC010


3 GHz ~ 5 GHz

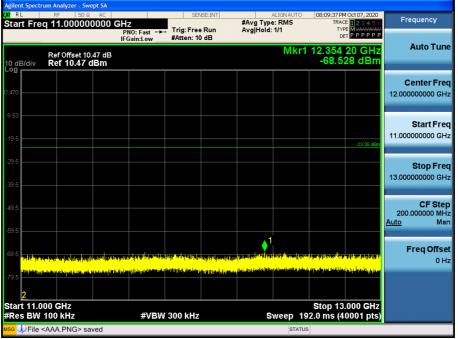
Conducted Spurious Emission (Mid-CH 19)

5 GHz ~ 7 GHz



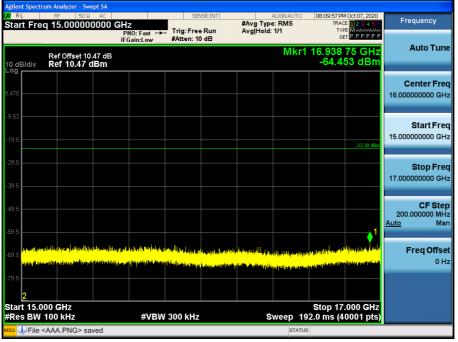

Report No.: HCT-RF-2010-FC010

7 GHz ~ 9 GHz


Conducted Spurious Emission (Mid-CH 19)

9 GHz ~ 11 GHz

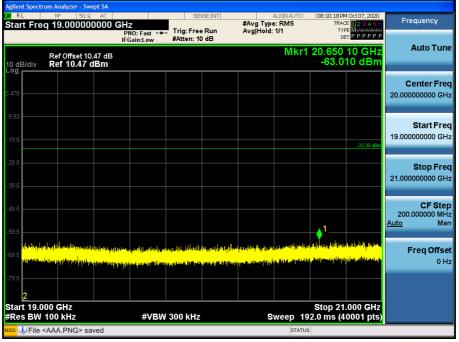
11 GHz ~ 13 GHz


Conducted Spurious Emission (Mid-CH 19)

13 GHz ~ 15 GHz

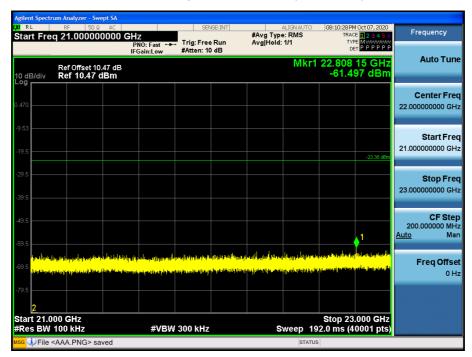
R Frequency Start Freq 13.000000000 GHz PN0: Fast ↔ IF6ain:Low #Atten: 10 dB #Avg Type: RMS Avg|Hold: 1/1 DET P P P P P Auto Tune Mkr1 14.954 00 GHz -64.358 dBm Ref Offset 10.47 dB Ref 10.47 dBm **Center Freq** 14.00000000 GHz Start Freq 13 00000000 GHz Stop Freq 15.00000000 GHz CF Step 200.000000 MHz Auto Mar Freq Offset 0 Hz Start 13.000 GHz #Res BW 100 kHz Stop 15.000 GHz Sweep 192.0 ms (40001 pts) #VBW 300 kHz File <AAA.PNG> saved

15 GHz ~ 17 GHz


Conducted Spurious Emission (Mid-CH 19)

17 GHz ~ 19 GHz

nt Spectr R Frequency Start Freq 17.000000000 GHz PN0: Fast ↔ IFGain:Low #Atten: 10 dB #Avg Type: RMS Avg|Hold: 1/1 Mkr1 18.731 65 GHz -63.552 dBm Auto Tune Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/div **Center Freq** 18.00000000 GHz Start Freq 17 00000000 GHz Stop Freq 19.00000000 GHz CF Step 200.000000 MHz Auto Mar Freq Offset 0 Hz Start 17.000 GHz #Res BW 100 kHz Stop 19.000 GHz Sweep 192.0 ms (40001 pts) #VBW 300 kHz File <AAA.PNG> saved



19 GHz ~ 21 GHz

Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

RL		Ω AC		SE	VSE:INT		ALIGN AUTO		1 Oct 07, 2020	Frequency
tart Fre	q 23.0000		IZ PNO:Fast ↔ Gain:Low	Trig: Fre #Atten: 1		#Avg Typ Avg Hold		TYF	E 123456 E M WWWWW T P P P P P P	
0 dB/div	Ref Offset ∕ Ref 10.47						Mkr1	24.822 -58.1	30 GHz 34 dBm	Auto Tur
og 470										Center Fre 24.00000000 GF
19.53									-23.38 dBm	Start Fre 23.000000000 GF
19.5 19.5 										Stop Fre 25.00000000 GF
19.5 59.5						dinaan distrimen a			↓1 n-utst-monue	CF Ste 200.000000 M⊦ <u>Auto</u> Ma
<mark>ակցվին</mark> ուլելնու, 5.63	na (c) by a bia (b) ana (c) by a bia (b)	angesten berlande Legeneration	the the second secon	n an	dig nga tike	te Bachter gabatet			Paradia p. na organi	Freq Offs
79.5										01
tart 23.0 Res BW	00 GHz 100 kHz		#VBV	V 300 kHz		s	weep 19	Stop 25 2.0 ms (4	.000 GHz 0001 pts)	

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

Mode : 1M Bit/s (37 Byte)

Operation	Mode:	СН	Low
-----------	-------	----	-----

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	41.77	0.00	2.30	V	44.07	73.98	29.91	PK
4804	30.34	2.19	2.30	V	34.83	53.98	19.15	AV
7206	38.11	0.00	12.07	V	50.18	73.98	23.80	PK
7206	27.10	2.19	12.07	V	41.36	53.98	12.62	AV
4804	42.67	0.00	2.30	Н	44.97	73.98	29.01	PK
4804	30.50	2.19	2.30	Н	34.99	53.98	18.99	AV
7206	38.70	0.00	12.07	Н	50.77	73.98	23.21	PK
7206	27.06	2.19	12.07	Н	41.32	53.98	12.66	AV

Operation Mode: CH Mid

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4880	42.54	0.00	1.83	V	44.37	73.98	29.61	PK
4880	30.78	2.19	1.83	V	34.80	53.98	19.18	AV
7320	39.02	0.00	10.83	V	49.85	73.98	24.13	PK
7320	27.70	2.19	10.83	V	40.72	53.98	13.26	AV
4880	42.30	0.00	1.83	Н	44.13	73.98	29.85	PK
4880	30.84	2.19	1.83	Н	34.86	53.98	19.12	AV
7320	39.27	0.00	10.83	Н	50.10	73.98	23.88	PK
7320	27.85	2.19	10.83	Н	40.87	53.98	13.11	AV

FCC ID: A3LSMG991U

Operation Mode: CH High

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	41.56	0.00	2.59	V	44.15	73.98	29.83	PK
4960	30.12	2.19	2.59	V	34.90	53.98	19.08	AV
7440	38.93	0.00	11.91	V	50.84	73.98	23.14	PK
7440	26.81	2.19	11.91	V	40.91	53.98	13.07	AV
4960	41.48	0.00	2.59	Н	44.07	73.98	29.91	PK
4960	30.25	2.19	2.59	Н	35.03	53.98	18.95	AV
7440	39.07	0.00	11.91	Н	50.98	73.98	23.00	PK
7440	26.90	2.19	11.91	Н	41.00	53.98	12.98	AV

Mode : 2M Bit/s (37 Byte)

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	42.12	0.00	2.30	V	44.42	73.98	29.56	PK
4804	30.51	5.08	2.30	V	37.89	53.98	16.09	AV
7206	38.71	0.00	12.07	V	50.78	73.98	23.20	PK
7206	27.28	5.08	12.07	V	44.43	53.98	9.55	AV
4804	41.69	0.00	2.30	Н	43.99	73.98	29.99	PK
4804	30.44	5.08	2.30	Н	37.82	53.98	16.16	AV
7206	38.99	0.00	12.07	Н	51.06	73.98	22.92	PK
7206	27.11	5.08	12.07	Н	44.26	53.98	9.72	AV

Operation Mode: CH Low

Operation Mode: CH Mid

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	туре
4880	43.15	0.00	1.83	V	44.98	73.98	29.00	PK
4880	30.95	5.08	1.83	V	37.86	53.98	16.12	AV
7320	38.94	0.00	10.83	V	49.77	73.98	24.21	PK
7320	27.85	5.08	10.83	V	43.76	53.98	10.22	AV
4880	42.94	0.00	1.83	Н	44.77	73.98	29.21	PK
4880	30.89	5.08	1.83	Н	37.80	53.98	16.18	AV
7320	40.21	0.00	10.83	Н	51.04	73.98	22.94	PK
7320	27.93	5.08	10.83	Н	43.84	53.98	10.14	AV

FCC ID: A3LSMG991U

Operation Mode: CH High

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	туре
4960	42.19	0.00	2.59	V	44.78	73.98	29.20	PK
4960	30.15	5.08	2.59	V	37.82	53.98	16.16	AV
7440	38.56	0.00	11.91	V	50.47	73.98	23.51	PK
7440	26.91	5.08	11.91	V	43.90	53.98	10.08	AV
4960	41.99	0.00	2.59	Н	44.58	73.98	29.40	PK
4960	30.30	5.08	2.59	Н	37.97	53.98	16.01	AV
7440	39.12	0.00	11.91	Н	51.03	73.98	22.95	PK
7440	27.01	5.08	11.91	Н	44.00	53.98	9.98	AV

2M Bit/s 37 Byte Test Plots (Worst case : Y-V)

Radiated Spurious Emissions plot - Average Reading (Ch.0 3rd Harmonic)

Spectrum Ref Level 80.0	Spectrum 2	RBW 1 MHz	7 222 211		
Att			7.206 GHz		
Count 200/200					
●1Rm View●2Pk	JIFW		M1[1]		27.28 dBµ\
				7.5	2014560 GHz
70 dBµV					
60 dBuV					
50 dBµV					
40 dBµV					
terrender harden te	Market Alberton	white he have a start of the second	Krathander and and a strategy		ali walatiki
36/00 20 - 4-11 10	-1640-5000 B.00 - R-0 - 1	<u> </u>	<u> </u>	+	
20 dBµV					
10 dBµV					
0 dBµV					
-10 dBµV					
	1				
CF 7.206 GHz		691	pts	Spa	in 10.0 MHz

Date: 16.0CT.2020 11:12:28

Radiated Spurious Emissions plot - Peak Reading (Ch.0 3rd Harmonic)

Spectrum	1 Sp	ectrum 2	×						
Ref Level Att Count 200/	I 80.00 dBµ' 0 d		● RBW ms ● VBW	1 MHz 3 MHz NY	lode Sweep)			
● 1Pk Max●									
					м	1[1]			38.71 dBµV 76350 GHz
70 dBµV									
60 dBµV									
50 dBµV									
40 dBµV	www.	uhuniyuunu	mp-u-Mullin	herenand	Mertingelinghe	M1	unterman	mandelingen	and the second second
138 BBAULUM	an Miraber	and a feating the	a. 1	nhurl/vlapd)			ULAN MARKEN	eddlwy new tyla	HAANDY Hords
20 dBµV—									
10 dBµV									
0 dвµV									
-10 dBµV—									
CF 7.206 G				691	pts			Span	10.0 MHz
						suring			6.10.2020 11:13:03

Date: 16.0CT.2020 11:13:03

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

Mode : 1M Bit/s (37 Byte)

Operating Frequency

2402 MHz, 2480 MHz

Channel No.

0 CH, 39 CH

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	21.417	0.00	34.77	н	56.19	73.98	17.79	PK
2390.0	9.663	2.19	34.77	Н	46.62	53.98	7.36	AV
2390.0	20.630	0.00	34.77	V	55.40	73.98	18.58	PK
2390.0	9.581	2.19	34.77	V	46.54	53.98	7.44	AV
2483.5	20.701	0.00	34.25	Н	54.95	73.98	19.03	PK
2483.5	9.542	2.19	34.25	Н	45.98	53.98	8.00	AV
2483.5	20.571	0.00	34.25	V	54.82	73.98	19.16	PK
2483.5	9.489	2.19	34.25	V	45.93	53.98	8.05	AV

Mode : 2M Bit/s (37 Byte)

Operating Frequency

2402 MHz, 2480 MHz

Channel No.

0 CH, 39 CH

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	21.955	0.00	34.77	н	56.73	73.98	17.26	PK
2390.0	9.300	5.08	34.77	Н	49.15	53.98	4.83	AV
2390.0	20.584	0.00	34.77	V	55.35	73.98	18.63	PK
2390.0	9.116	5.08	34.77	V	48.97	53.98	5.01	AV
2483.5	21.159	0.00	34.25	Н	55.41	73.98	18.57	PK
2483.5	9.691	5.08	34.25	Н	49.02	53.98	4.96	AV
2483.5	20.994	0.00	34.25	V	55.24	73.98	18.74	PK
2483.5	9.587	5.08	34.25	V	48.92	53.98	5.06	AV

Mode : 2M Bit/s (37 Byte) Test Plots

nt Spectrum Analyzer - Swept SA ON RF 150.0 AC Start Freq 2.310000000 GHz PR0: Fast ↔ Trig: Free Run PREAMP IFGain:Low #Atten: 6 dB #Avg Type: RMS Avg|Hold: 500/500 Frequency TYPE A WWW Auto Tune Mkr1 2.349 200 GHz 9.300 dBµV 10 dB/div Ref 72.99 dBµV **Center Freq** 2.361000000 GHz Start Freq 2.310000000 GHz Stop Freq 2.412000000 GHz **CF Step** 10.200000 MHz <u>o</u> Man Auto **Freq Offset** 0 Hz Start 2.31000 GHz #Res BW 1.0 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz*

Radiated Restricted Band Edges plot – Average Reading (Ch.0, X-H)

Radiated Restricted Band Edges plot - Peak Reading (Ch.0, X-H)

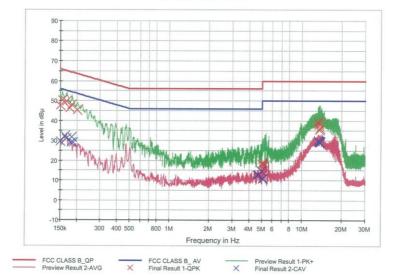
Note:

Plot of worst case are only reported.

9.8 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

Test


1/2

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: SM-G991U SAMSUNG SHIELD ROOM BT_LE MODE L1

FCC CLASS B_Exten Cable

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	47.7	9.000	Off	L1	9.8	18.3	66.0
0.156000	50.2	9.000	Off	L1	9.8	15.4	65.7
0.166000	49.6	9.000	Off	L1	9.8	15.6	65.2
0.176000	46.1	9.000	Off	L1	9.8	18.5	64.7
0.184000	47.9	9.000	Off	L1	9.8	16.4	64.3
0.200000	45.4	9.000	Off	L1	9.8	18.2	63.6
5.000000	18.6	9.000	Off	L1	10.0	41.4	60.0
5.080000	16.8	9.000	Off	L1	10.0	43.2	60.0
5.088000	17.7	9.000	Off	L1	10.0	42.4	60.0
5.092000	17.7	9.000	Off	L1	10.0	42.3	60.0
5.098000	16.8	9.000	Off	L1	10.0	43.2	60.0
5.122000	18.8	9.000	Off	L1	10.0	41.2	60.0
13.204000	39.1	9.000	Off	L1	10.3	20.9	60.0
13.208000	39.6	9.000	Off	L1	10.3	20.4	60.0
13.310000	38.9	9.000	Off	L1	10.3	21.1	60.0
13.366000	37.7	9.000	Off	L1	10.3	22.3	60.0
13.516000	35.6	9.000	Off	L1	10.3	24.4	60.0
13.692000	36.0	9.000	Off	L1	10.3	24.0	60.0

2020-09-30

오전 11:34:03

FCC ID: A3LSMG991U

Test

2/2

Final Result 2

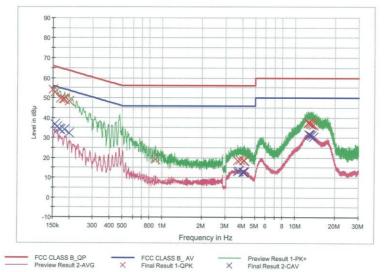
Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	29.7	9.000	Off	L1	9.8	26.3	56.0
0.162000	32.5	9.000	Off	L1	9.8	22.9	55.4
0.166000	31.2	9.000	Off	L1	9.8	24.0	55.2
0.180000	28.9	9.000	Off	L1	9.8	25.6	54.5
0.184000	31.8	9.000	Off	L1	9.8	22.5	54.3
0.188000	28.9	9.000	Off	L1	9.8	25.2	54.1
4.592000	12.6	9.000	Off	L1	10.0	33.4	46.0
4.694000	12.6	9.000	Off	L1	10.0	33.4	46.0
4.714000	12.6	9.000	Off	L1	10.0	33.4	46.0
4.964000	14.7	9.000	Off	L1	10.0	31.3	46.0
5.080000	10.5	9.000	Off	L1	10.0	39.5	50.0
5.092000	11.1	9.000	Off	L1	10.0	38.9	50.0
13.204000	29.9	9.000	Off	L1	10.3	20.1	50.0
13.342000	29.7	9.000	Off	L1	10.3	20.3	50.0
13.350000	29.2	9.000	Off	L1	10.3	20.8	50.0
13.520000	28.9	9.000	Off	L1	10.3	21.1	50.0
13.686000	29.2	9.000	Off	L1	10.3	20.8	50.0
13.692000	29.0	9.000	Off	L1	10.3	21.0	50.0

2020-09-30

오전 11:34:03

Conducted Emissions (Line 2)

Test


1/2

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: SM-G991U SAMSUNG SHIELD ROOM BT_LE MODE N

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	54.2	9.000	Off	N	9.8	11.8	66.0
0.156000	52.8	9.000	Off	N	9.8	12.9	65.7
0.170000	49.8	9.000	Off	N	9.8	15.1	65.0
0.178000	49.3	9.000	Off	N	9.8	15.3	64.6
0.184000	49.4	9.000	Off	N	9.8	14.9	64.3
0.198000	48.5	9.000	Off	N	9.8	15.2	63.7
0.892000	19.0	9.000	Off	N	9.8	37.0	56.0
3.690000	18.6	9.000	Off	N	9.9	37.4	56.0
3.702000	18.6	9.000	Off	N	9.9	37.4	56.0
3.884000	18.8	9.000	Off	N	9.9	37.2	56.0
4.114000	18.5	9.000	Off	N	10.0	37.5	56.0
4.148000	18.4	9.000	Off	N	10.0	37.6	56.0
12.530000	37.5	9.000	Off	N	10.4	22.5	60.0
12.566000	37.6	9.000	Off	N	10.4	22.4	60.0
12.584000	37.5	9.000	Off	N	10.4	22.5	60.0
12.870000	37.2	9.000	Off	N	10.4	22.8	60.0
13.244000	36.8	9.000	Off	N	10.4	23.2	60.0
13.756000	36.4	9.000	Off	N	10.4	23.6	60.0

2020-09-30

오전 11:42:35

Report No.: HCT-RF-2010-FC010

Test

2/2

Final Result 2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.156000	36.9	9.000	Off	N	9.8	18.8	55.7
0.160000	35.6	9.000	Off	N	9.8	19.9	55.5
0.166000	34.4	9.000	Off	N	9.8	20.7	55.2
0.170000	34.0	9.000	Off	N	9.8	21.0	55.0
0.184000	34.1	9.000	Off	N	9.8	20.2	54.3
0.198000	32.2	9.000	Off	N	9.8	21.5	53.7
3.690000	13.0	9.000	Off	N	9.9	33.0	46.0
3.702000	13.0	9.000	Off	N	9.9	33.0	46.0
3.804000	13.2	9.000	Off	N	9.9	32.8	46.0
4.040000	12.8	9.000	Off	N	10.0	33.2	46.0
4.114000	12.8	9.000	Off	N	10.0	33.2	46.0
4.148000	12.6	9.000	Off	N	10.0	33.4	46.0
12.584000	31.7	9.000	Off	N	10.4	18.3	50.0
12.790000	31.4	9.000	Off	N	10.4	18.6	50.0
12.824000	31.5	9.000	Off	N	10.4	18.5	50.0
12.914000	31.4	9.000	Off	N	10.4	18.6	50.0
13.244000	31.0	9.000	Off	N	10.4	19.0	50.0
13.766000	30.3	9.000	Off	N	10.4	19.7	50.0

2020-09-30

오전 11:42:35

10. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration	Calibration	Serial No.
		Date	Interval	
Rohde & Schwarz	ENV216 / LISN	09/04/2020	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/10/2020	Annual	100584
ESPAC	SU-642 /Temperature Chamber	03/18/2020	Annual	0093008124
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Rohde & Schwarz	OSP 120 / Power Measurement Set	07/02/2020	Annual	101231
Agilent	N1911A / Power Meter	04/07/2020	Annual	MY45100523
Keysight	N1921A / Power Sensor	06/08/2020	Annual	MY57820067
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/25/2020	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/12/2020	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	06/26/2020	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
	FCC WLAN&BT&BLE Conducted Test Software	N/A	N/A	N/A
HCT CO., LTD.	v3.0	IN/A		IN/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	05/18/2020	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	03/22/2019	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	04/29/2019	Biennial	9120D-937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	07/28/2020	Annual	102168
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	01/21/2020	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	03/02/2020	Annual	8
Wainwright Instruments	WHKX8-6090-7000-18000-40SS/ High Pass Filter	03/02/2020	Annual	25
Api tech.	18B-03 / Attenuator (3 dB)	03/02/2020	Annual	1
Agilent	8493C-10 / Attenuator(10 dB)	03/02/2020	Annual	08285
CERNEX	CBLU1183540 / Power Amplifier	03/02/2020	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	03/02/2020	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2020	Annual	25956

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2010-FC010-P