

FCC BT REPORT Certification

Applicant Name: SAMSUNG Electronics Co., Ltd.

Address:

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea Date of Issue: October 29, 2020

Test Site/Location: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

FCC ID: A3LSMG991U

Report No.: HCT-RF-2010-FC009

APPLICANT:	SAMSUNG Electronics Co., Ltd.
Model:	SM-G991U
Additional Model:	SM-G991U1
EUT Type:	Mobile Phone
Max. RF Output Power:	14.738 dBm (29.77 mW)
Frequency Range:	2 402 MHz – 2 480 MHz (Bluetooth)
Modulation type	GFSK(Normal), π /4DQPSK and 8DPSK(EDR)
FCC Classification:	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s):	Part 15 subpart C 15.247

.......

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

REVIEWED BY

AD

Report prepared by : Jung Ki Lim Engineer of Telecommunication Testing Center Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2010-FC009	October 29, 2020	- First Approval Report

Table of Contents

REVIEWED BY	2
1. EUT DESCRIPTION	5
ANTENNA CONFIGURATIONS for Bluetooth	6
2. Requirements for Bluetooth transmitter(15.247)	7
3. TEST METHODOLOGY	B
EUT CONFIGURATION	B
EUT EXERCISE	B
GENERAL TEST PROCEDURES	B
DESCRIPTION OF TEST MODES	B
4. INSTRUMENT CALIBRATION	9
5. FACILITIES AND ACCREDITATIONS	9
FACILITIES	9
EQUIPMENT	9
6. ANTENNA REQUIREMENTS	9
7. MEASUREMENT UNCERTAINTY	D
8. DESCRIPTION OF TESTS11	1
9. SUMMARY OF TEST RESULTS	9
10. TEST RESULT	D
10.1 PEAK POWER	D
10.2 BAND EDGES	6
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	3
10.4 NUMBER OF HOPPING FREQUENCY	1
10.5 TIME OF OCCUPANCY (DWELL TIME)	5
10.6 SPURIOUS EMISSIONS	1
10.6.1 CONDUCTED SPURIOUS EMISSIONS6	1
10.6.2 RADIATED SPURIOUS EMISSIONS	9
10.6.3 RADIATED RESTRICTED BAND EDGES70	6
10.7 POWERLINE CONDUCTED EMISSIONS	D
11. LIST OF TEST EQUIPMENT	4
12. ANNEX A_ TEST SETUP PHOTO	6

1. EUT DESCRIPTION

Model	SM-G991U
Additional Model	SM-G991U1
ЕИТ Туре	Mobile Phone
Power Supply	DC 3.88 V
Battery Information	Model: EB-BG991ABY Type: Li-ion Battery
Travel Adapter Information	Model : EP-TA800 Manufacture: DONGYANG E&P
Data Cable Information	Model : EP-DN980BBZ Manufacture: RF-Tech
Ear-jack Information	Model : YBD-19HS-026 Manufacture: ALMUS
Frequency Range	2 402 MHz ~ 2 480 MHz
Max. RF Output Power	14.738 dBm (29.77 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π /4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Number of Channels	79 Channels, Minimum 20 Channels(AFH)
Antenna Specification	Antenna type: Metal Peak Gain: -6.83 dBi
Date(s) of Tests	September 15, 2020 ~ October 28, 2020

ANTENNA CONFIGURATIONS for Bluetooth

1. This device supports simultaneous transmission operation, which allows for two channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna.

RSDB Scenario	2.4 GHz WiFi Ant.1	2.4 GHz WiFi Ant.2	5GHz WiFi Ant.1	5GHz WiFi Ant.2	Test Case
2.4 GHz WiFi + 5GHz WiFi MIMO		On	On	On	1
2.4 GHz WiFi MIMO + 5GHz WiFi MIMO	On	On	On	On	2

Non-DBS	5GHz WiFi Ant.1	5GHz WiFi Ant.2	Bluetooth	Test Case
5GHz WiFi MIMO + Bluetooth	On	On	On	3

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

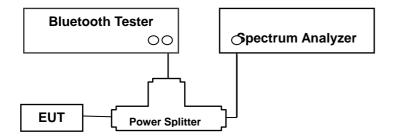
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

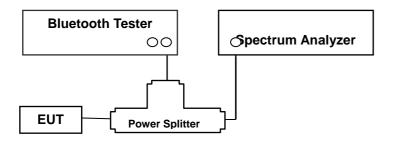
The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW \geq RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm



8.2. Conducted Band Edge(Out of Band Emissions)

<u>Limit</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

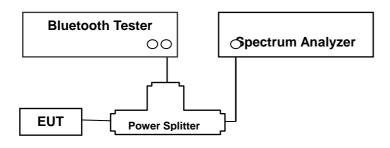
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

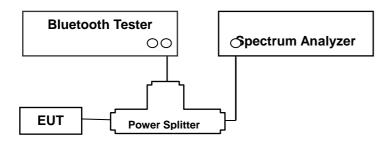
- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1% to 5% of the OBW.
- 3) VBW \ge 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

<u>Limit</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

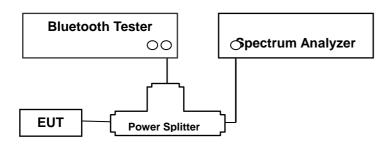
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

<u>Limit</u>

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

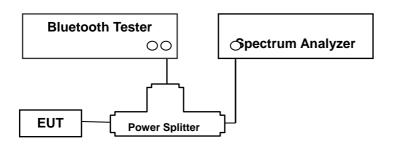
- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- (2) AFH Mode
- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance of DH5 is 2.890 ms.

Dwell time = Tx-time x 106.667 = 308.27 (ms)



8.6. Conducted Spurious Emissions

<u>Limit</u>

Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

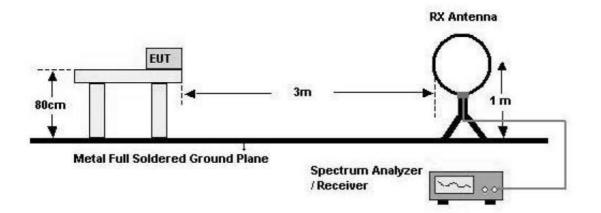
This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)			
30	6.14			
100	6.22			
200	6.30			
300	6.40			
400	6.46			
500	6.49			
600	6.49			
700	6.53			
800	6.55			
900	6.59			
1000	6.61			
2000	6.88			
2400	6.97			
2500	6.99			
3000	7.09			
4000	7.25			
5000	7.44			
6000	7.51			
7000	7.66			
8000	7.78			
9000	7.90			
10000	8.04			
11000	8.12			
12000	8.28			
13000	8.47			
14000	8.41			
15000	8.51			
16000	8.56			
17000	8.63			
18000	8.75			
19000	8.81			
20000	8.89			
21000	9.18			
22000	9.24			
23000	9.27			
24000	9.35			
25000	9.48			
26000	9.58			

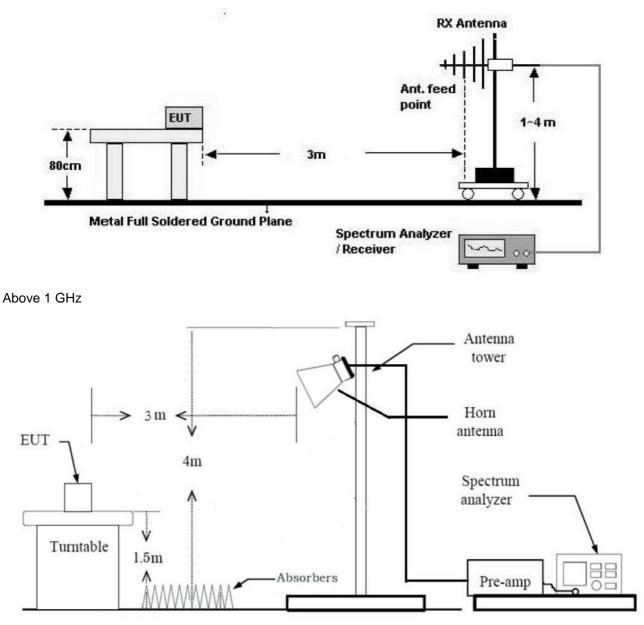
Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Cable loss(2 EA) + Splitter loss(6 dB)


8.7. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Test Configuration

Below 30 MHz

30 MHz - 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW ≥ 3 x RBW

9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - * In general, (1) is used mainly
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out

the highest emissions.

- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds

The actual setting value of VBW = 1 kHz

- 9. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 10. Total

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

8.8. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)			
Frequency Range (MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)		
0.50 to 5	56	46		
5 to 30	60	50		

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
 - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Worst case configuration and mode

Radiated test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories (Earphone, etc)
 - Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : X,Y,Z
 - Radiated Restricted Band Edge : X

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5
- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position : Horizontal, Vertical, Parallel to the ground plane
- 5. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

Radiated test(DBS)

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone, etc)
 - Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : Y,Z
- 3. Test case

RSDB Scenario	2.4 GHz WiFi Ant.1	2.4 GHz WiFi Ant.2	5GHz WiFi Ant.1	5GHz WiFi Ant.2	Test Case
2.4 GHz WiFi + 5GHz WiFi MIMO		On	On	On	1
2.4 GHz WiFi MIMO + 5GHz WiFi MIMO	On	On	On	On	2

Non-DBS	5GHz WiFi Ant.1	5GHz WiFi Ant.2	Bluetooth	Test Case
5GHz WiFi MIMO + Bluetooth	On	On	On	3

4. The following tables show the worst case configurations determined during testing.

(Worst case: The lowest margin condition the channels and modes were selected for test.) (Test case 1 Result : Please refer to the SM-G991U [DTS], [UNII] Test Report.)

Test case	Description	5 GHz Emission	Bluetooth Emission
	Antenna	Ant All	Ant.1
3	Channel	165	0
5	Data Rate	6 Mbps	1 Mbps
	Mode	802.11a	DH-5

5. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone + External accessories(Earphone, etc)+Travel Adapter
 - Stand alone + Travel Adapter
 - Worstcase : Stand alone + Travel Adapter
- 2. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - π/4DQPSK : 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.
 - (Worst case : Non-AFH)

3. SM-G991U, SM-G991U1 were tested and the worst case results are reported.

(Worst case : SM-G991U)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 0.125 W		PASS
Carrier Frequency Separation	§15.247(a)(1)	> 25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii)	≥ 15	Conducted	PASS
Time of Occupancy	§15.247(a)(1)(iii)	< 400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.8		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 8.7		PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency (MHz)	Outpu (GF	Limit (mW)	
	(11172)	(dBm)	(mW)	(11100)
Low	2402	13.891	24.50	
Mid	2441	13.857	24.31	125
High	2480	13.337	21.56	

Channel	Frequency	Output Power (8DPSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	14.738	29.77	
Mid	2441	14.346	27.20	125
High	2480	13.407	21.91	

Channel	Frequency	Outpu (π/4D	Limit	
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	14.141	25.95	
Mid	2441	13.706	23.47	125
High	2480	12.771	18.93	

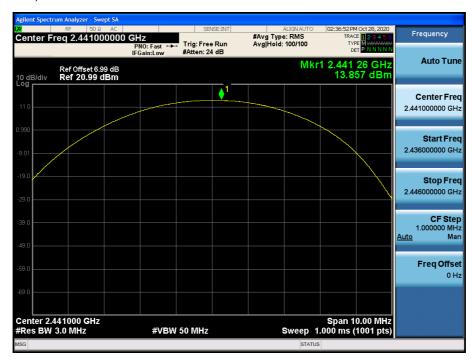
Note:

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

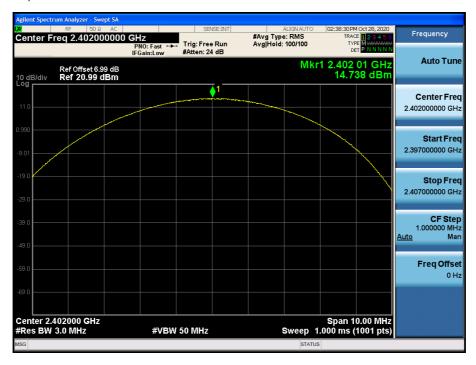
Actual value of loss for the splitter and cable combination is 6.97 dB at 2400 MHz and is 6.99 dB at 2500 MHz.


So, 6.99 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK) Peak Power (CH.0)

enter Freq 2.402000000	GHZ PNO: East +=== Trig: Free Run	ALIGNAUTO #Avg Type: RMS Avg Hold: 100/100	02:36:07 PM Oct 28, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref Offset 6.99 dB	PNO: Fast ++- Trig: Free Run IFGain:Low #Atten: 24 dB		1 2.401 93 GHz	Auto Tur
) dB/div Ref 20.99 dBm	1		13.891 dBm	
1.0				Center Fre 2.402000000 Gł
.01				Start Fr 2.397000000 G
9.0				Stop Fr 2.407000000 G
9.0 				CF St 1.000000 M <u>Auto</u> M
3.0				Freq Offs 0
9.0				
enter 2.402000 GHz Res BW 3.0 MHz	#VBW 50 MHz	Sweep 1	Span 10.00 MHz .000 ms (1001 pts)	

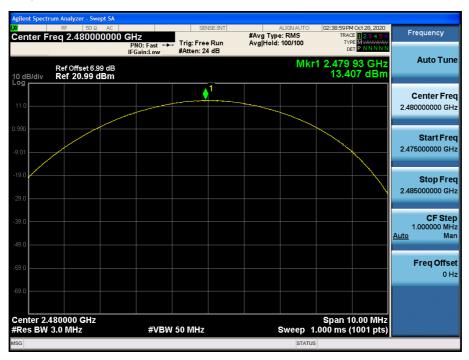
Test Plots (GFSK) Peak Power (CH.39)



Test Plots (GFSK) Peak Power (CH.78)

Agilent Spectrum Analyzer - Swept SA							
κα ΝΕ 50 Ω ΑC Center Freq 2.480000000	PNO: Fast ++ Trig:	SENSE:INT	#Avg Type Avg Hold:		TRAC	E 1 2 3 4 5 6 E M P N N N N T P N N N N	Frequency
Ref Offset 6.99 dB 10 dB/div Ref 20.99 dBm	IFGain:Low #Atte	n: 24 dB		Mkr	1 2.479	90 GHz 37 dBm	Auto Tune
11.0		▲1					Center Freq 2.480000000 GHz
-9.01							Start Freq 2.475000000 GHz
-19.0							Stop Freq 2.485000000 GHz
-39.0							CF Step 1.000000 MHz <u>Auto</u> Mar
-59.0							Freq Offset 0 Hz
Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 50 M	Hz		Sween 1	Span 1	0.00 MHz 1001 pts)	
MSG				STATUS		100 F (100)	

Test Plots (8DPSK) Peak Power (CH.0)



Test Plots (8DPSK)

Peak Power (CH.39)

Agilent Spectrur	m Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGNAUTO	02:38:42 PM Oct 28, 2020	
Center Fre	eq 2.44100000	PNO: Fast +	Trig: Free Run	#Avg Type: RMS Avg Hold: 100/100	TRACE 123456 TYPE MWWWW DET P N N N N N	Frequency
		IFGain:Low	#Atten: 24 dB	Mk	1 2.441 03 GHz	Auto Tune
10 dB/div Log	Ref Offset 6.99 dB Ref 20.99 dBm			INIK	14.346 dBm	
			1			Center Fred
11.0						2.441000000 GHz
0.990						
-9.01						Start Fred 2.436000000 GHz
-9.01						
-19.0					× ×	Stop Free
-29.0						2.446000000 GHz
						CF Ster
-39.0						1.000000 MH: Auto Mar
-49.0						<u>Auto</u> Mar
-59.0						Freq Offse
						0 H:
-69.0						
Center 2.44					Enon 10 00 MHz	
#Res BW 3		#VBW	/ 50 MHz	Sweep 7	Span 10.00 MHz 1.000 ms (1001 pts)	
MSG				STATU	s	

Test Plots (8DPSK) Peak Power (CH.78)

Test Plots (π/4DQPSK) Peak Power (CH.0)

RF 50 Ω AC		SENSE:INT	ALIGNAUTO	02:38:18 PM Oct 28, 2020	Engeneration
enter Freq 2.4020000	DO GHz PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 24 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 23456 TYPE MUMUUMU DET PNNNNN	Frequency
Ref Offset 6.99 dE 0 dB/div Ref 20.99 dBm			Mkr	1 2.402 22 GHz 14.141 dBm	Auto Tur
og 11.0		1			Center Fre 2.402000000 Gi
01					Start Fr 2.397000000 GI
9.0					Stop Fr 2.407000000 G
9.0					CF Ste 1.000000 M <u>Auto</u> M
9.0					Freq Offs 0
enter 2.402000 GHz				Span 10.00 MHz	
Res BW 3.0 MHz	#VBI	V 50 MHz	Sweep 1	.000 ms (1001 pts)	

Test Plots (π/4DQPSK) Peak Power (CH.39)

Test Plots (π/4DQPSK) Peak Power (CH.78)

Center F	RF 50 Ω AC req 2.4800000	00 GHz	SENSE:INT	#Avg Type		TRAC	E 123456	Frequency
		PNO: Fast ↔ IFGain:Low	"Trig: Free Run #Atten: 24 dB	Avg Hold:		DE	TPNNNNN	Auto Tu
0 dB/div	Ref Offset 6.99 di Ref 20.99 dBn				WIK	1 2.479 12.7	82 GHZ 71 dBm	
			↓1					Center Fr
11.0								2.480000000 G
990								Start Fr
.01								2.475000000 G
19.0								Stop Fr
29.0							L Y	2.485000000 G
								CF St
9.0								1.000000 N Auto N
19.0								<u>, , , , , , , , , , , , , , , , , , , </u>
i9.0								Freq Off
:9.0								Ū
	480000 GHz 3.0 MHz	#VBV	V 50 MHz		Sweep 1		0.00 MHz 1001 pts)	
SG					STATUS			

10.2 BAND EDGES

Without hopping

Outside Frequency Bond	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	64.750	60.746	61.632	0
Upper	68.105	64.193	62.804	20

With hopping

Outoido Eroguenev Pand	GFSK	8DPSK	π/4DQPSK	Limit	
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)	
Lower	65.677	62.135	61.575	20	
Upper	67.315	63.559	63.961	20	

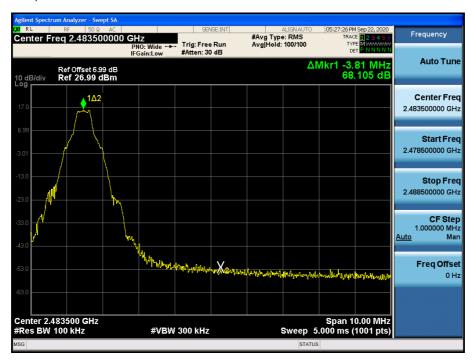
Note :

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

Actual value of loss for the splitter and cable combination is 6.97 dB at 2400 MHz and is 6.99 dB at 2500 MHz.


So, 6.99 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots without hopping (GFSK) Band Edges (CH.0)

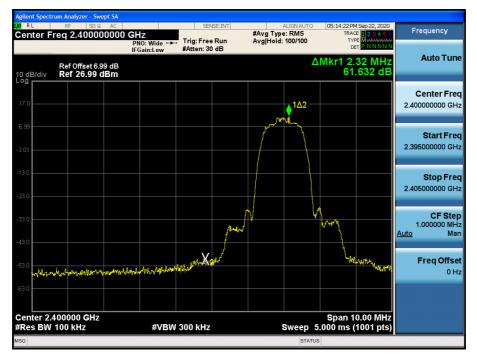
OM RL RF 50 Ω AC Center Freq 2.400000000 GHz PNO: Wide → IFGain:Low Frequency #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB Auto Tune ΔMkr1 2.01 MHz 64.750 dB Ref Offset 6.99 dB Ref 26.99 dBm 10 dB/di **Center Freq** <u>1∆2</u> 2.400000000 GHz Start Freq 2.395000000 GHz Stop Freq 2.405000000 GHz CF Step 1.000000 MHz Man Auto X Freq Offset 0 Hz Center 2.400000 GHz #Res BW 100 kHz Span 10.00 MHz Sweep 5.000 ms (1001 pts) #VBW 300 kHz

Test Plots without hopping (GFSK) Band Edges (CH.78)



Test Plots without hopping (8DPSK)

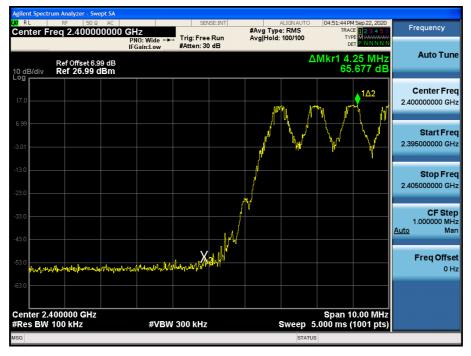
Band Edges (CH.0)

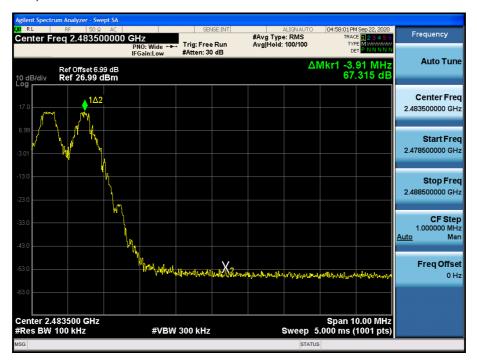

Test Plots without hopping (8DPSK) Band Edges (CH.78)



Test Plots without hopping (π /4DQPSK)

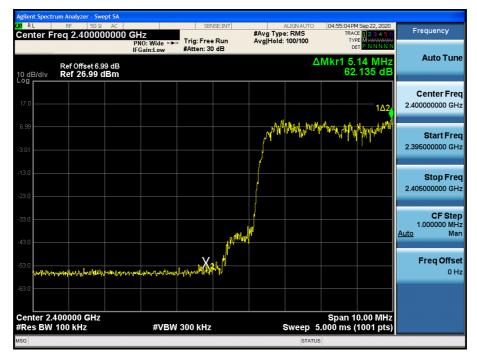
Band Edges (CH.0)


Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)



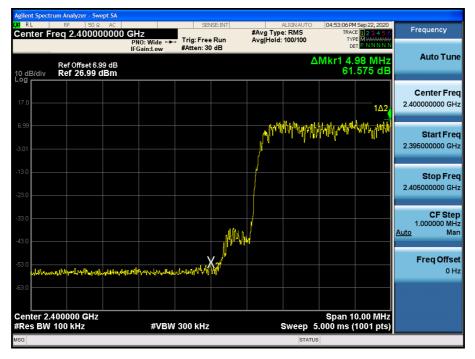
Test Plots with hopping (GFSK)

Band Edges (CH.0)


Test Plots with hopping (GFSK) Band Edges (CH.78)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)


Test Plots with hopping (8DPSK) Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots with hopping (π /4DQPSK) Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

99% BW (kHz)							
ChannelGFSK8DPSKπ/4DQPSK							
CH.0	880.41	1200.1	1197.3				
CH.39	884.97	1201.0	1194.6				
CH.78	887.03	1200.7	1191.2				

20dB BW (kHz)							
Channel GFSK 8DPSK π/4DQPSK							
CH.0	979.6	1323	1340				
CH.39	988.7	1330	1341				
CH.78	981.1	1310	1338				

	Limit		
GFSK	8DPSK	π/4DQPSK	(kHz)
			>25 kHz
966	990	990	or
			>2/3 of the 20dB BW

Test Plots (GFSK)

Channel Separation

Agilent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO	05:58:35 PM Sep 22, 2020	
Center Freq 2.441000000	OGHZ PNO: Wide →→→ Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE MWWWWWW DET P N N N N N	Frequency
Ref Offset 6.99 dB 10 dB/div Ref 26.99 dBm	IFGain:Low #Atten: 30 dB		∆Mkr3 966 kHz 0.243 dB	Auto Tune
Log 17.0 6.99 -3.01		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₹ <u>3∆4</u>	Center Freq 2.441000000 GHz
-13.0 -23.0 -33.0				Start Freq 2.439500000 GHz
-43.0 -53.0 -63.0				Stop Freq 2.442500000 GHz
Center 2.441000 GHz #Res BW 30 kHz	#VBW 100 kHz		Span 3.000 MHz 200 ms (1001 pts)	CF Step 300.000 kHz Auto Man
1 Δ2 1 f (Δ) 2 F 1 f 2.43 3 Δ4 1 f (Δ)	999 kHz (Δ) 0.096 dB 39 969 GHz 12.987 dBm 966 kHz (Δ) 0.243 dB 40 991 GHz 13.083 dBm	FUNCTION WIDTH	FUNCTION VALUE	Freq Offset
6 7 8 9 10				
< MSG	iii	STATUS	>	

Test Plots (8DPSK) Channel Separation

Test Plots (π/4DQPSK)

Channel Separation

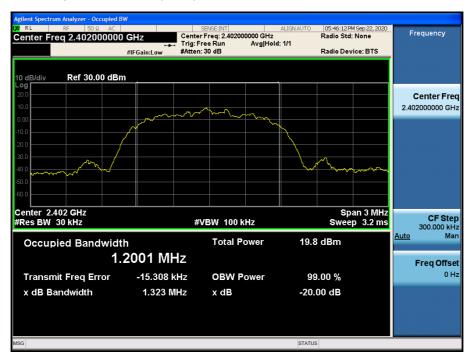
Agilent Spectrum An								
Center Freq		PNO: Wide 🔸	SENSE:INT Trig: Free Run #Atten: 30 dB		ALIGN AUTO /pe: RMS ld: 1/1	TRAC	4 Sep 22, 2020 E 1 2 3 4 5 6 PE M	Frequency
10 dB/div Re	f Offset 6.99 dB f 26.99 dB m	IFGain:Low	#Atten: 30 dB		ΔN	/lkr3 1.0 -0.	05 MHz .161 dB	Auto Tune
Log 17.0 6.99	X2~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		J.	- M	3∆4 √~~~~	~~~~	Center Freq 2.441000000 GHz
-13.0 -23.0 -33.0								Start Freq 2.439500000 GHz
-43.0 -53.0 -63.0								Stop Freq 2.442500000 GHz
Center 2.4410 #Res BW 30 k	Hz	#VBW	100 kHz		Sweep 3	.200 ms (CF Step 300.000 kHz Auto Man
MKR MODE TRC SCL	. × (Δ)	990 kHz (Δ)	∀ 0.944 dB	FUNCTION F	UNCTION WIDTH	FUNCTIO	IN VALUE	
2 F 1 f 3 Δ4 1 f 4 F 1 f 5 F 1 f	<u>2.43</u> (Δ)	9 974 GHz 1.005 MHz (Δ) 0 964 GHz	7.749 dBm -0.161 dB 8.693 dBm					Freq Offset 0 Hz
6 7 8 9 10								
11			ш				~	
MSG					STATUS	5		



Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

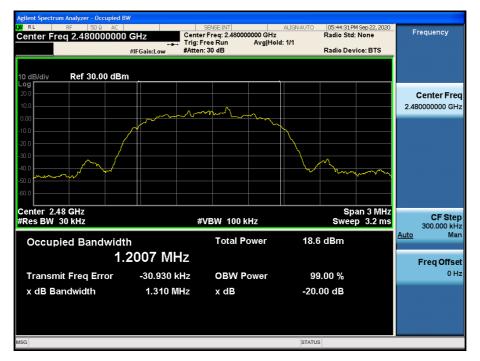
Test Plots (GFSK) 20 dB Bandwidth & Occupied Bandwidth (CH.39)


FCC ID: A3LSMG991U

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.0)


Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

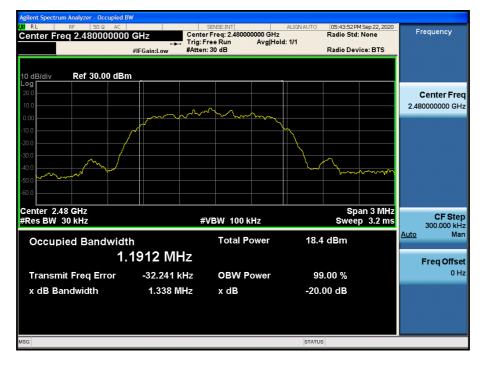
Test Plots (8DPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π/4DQPSK)

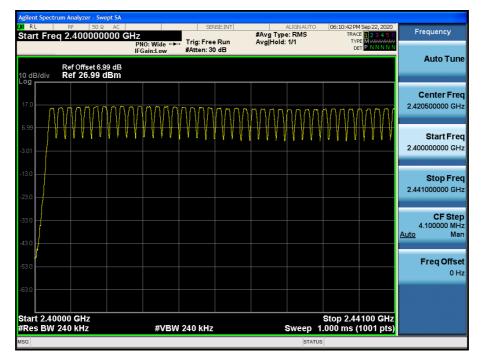

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π/4DQPSK)

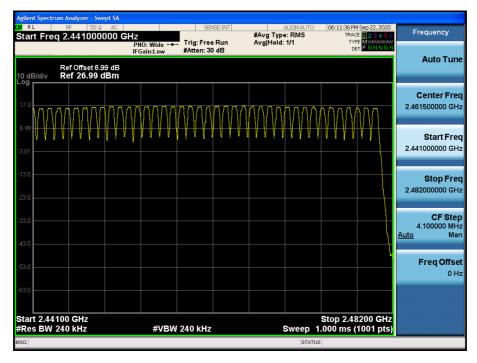
20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

GFSK	8DPSK	π/4DQPSK	Limit
79	79	79	>15


Note :

In case of AFH mode, minimum number of hopping channels is 20.


Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.482 GHz)

Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Agilent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO	07:00:56 PM Sep 22, 2020	
Start Freq 2.400000000 G		#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE MW4444444	Frequency
Ref Offset 6.99 dB 10 dB/div Ref 26.99 dBm	IFGain:Low #Atten: 30 dB		DET <u>P N N N N N</u>	Auto Tune
17.0	M MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MMMM		Center Fred 2.420500000 GHz
3.01				Start Free 2.400000000 GH
-13.0				Stop Fre 2.441000000 GH
43.0				CF Ste 4.100000 MH <u>Auto</u> Ma
53.0				Freq Offse 0 H
Start 2.40000 GHz #Res BW 240 kHz	#VBW 240 kHz	Sweep 1	Stop 2.44100 GHz .000 ms (1001 pts)	
ISG		STATU		

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.482 GHz)

RL	rum Analyzer - Sw RF 50 Ω eq 2.441000	AC		SE	SE:INT	#Avg Typ	ALIGN AUTO		I Sep 22, 2020 E 1 2 3 4 5 6	Frequency
	q 2.441000	Р	NO: Wide 🔸 Gain:Low	Trig: Free #Atten: 30		Avg Hold:		TYP		Auto Tur
0 dB/div	Ref Offset 6.9 Ref 26.99 (Auto Tu
										Center Fre
7.0	ᡁᡙᡃᡳ᠕ᠰ	γ	$\gamma \gamma \gamma \gamma \gamma \gamma$	γ	ᠬᠬ᠕ᢇᠬ	mm	n n n n n n n n n n n n n n n n n n n	ᠰᡎᡃ᠇ᡳ᠆ᠧᢇᡧ	እስረጉ	2.461500000 G
.99										Start Fr
.01										2.441000000 G
3.0										Stop Fr
3.0										2.482000000 G
3.0									h	CF St 4.100000 M
3.0										4.100000 W Auto N
										Freq Offs
3.0										. 0
3.0										
	100 GHz							Stop 2.48		
Res BW	240 kHz		#VBW	240 kHz			Sweep 1		1001 pts)	

Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.482 GHz)

HZ PNO: Wide → Trig: Free Ru IFGain:Low #Atten: 30 dE	#Avg Type: RMS	06:14:03 PM Sep 22, 2020 TRACE 1 2 3 4 5 6	Frequency
		DET P N N N N N	
			Auto Tun
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$		Center Fre 2.461500000 GF
			<b>Start Fre</b> 2.441000000 GH
			<b>Stop Fr</b> 2.482000000 GI
			CF Ste 4.100000 MI <u>Auto</u> Mi
			Freq Offs 0
#\/D\\/\240.141-		Stop 2.48200 GHz	
	#VBW 240 kHz		Stop 2.48200 GHz #VBW 240 kHz Sweep 1.000 ms (1001 pts)



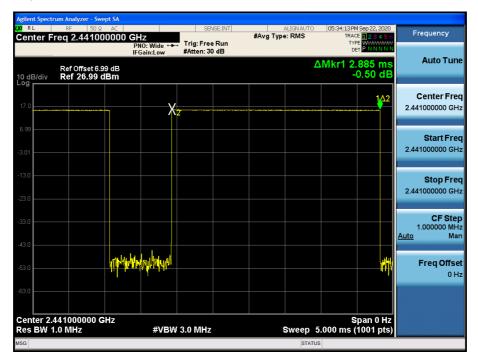
#### 10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.880	2.890	2.885
(ms)	Mid	2.885	2.890	2.890
	High	2.885	2.890	2.880

### Non-AFH Mode

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	307.20	308.27	307.73	31.6	
(ms)	Mid	307.73	308.27	308.27	31.6	400
	High	307.73	308.27	307.20	31.6	

### <u>AFH Mode</u>

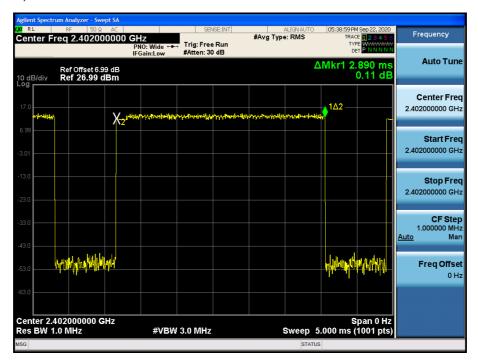

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	153.60	154.13	153.87	8.0	
(ms)	Mid	153.87	154.13	154.13	8.0	400
	High	153.87	154.13	153.60	8.0	



### Test Plots (GFSK) Dwell Time (CH.0)

Agilent Spect	r <mark>um Analyzer - Swe</mark> j RF 50 Ω			SENSE	INT		ALIGN AUTO	05:33:28 PM	1 Sep 22, 2020	
Center F	req 2.40200	0000 GHz	:Wide 🔸	Trig: Free R	un	#Avg Type		TRAC	E 123456 WWWWWWWWW	Frequency
10 dB/div	Ref Offset 6.99 Ref 26.99 d	9 dB	in:Low	#Atten: 30 d	8		Δ	Mkr1 2.	880 ms 0.50 dB	Auto Tune
17.0		>	< <mark>2</mark>						1Δ2	Center Freq 2.402000000 GHz
-3.01										Start Freq 2.402000000 GHz
-13.0										Stop Fred 2.402000000 GHz
-33.0										CF Step 1.000000 MH: <u>Auto</u> Mar
-53.0	ynaphy	n fan fan fan fan fan fan fan fan fan fa						,	n <mark>aapeeli</mark> e	Freq Offse 0 H:
	402000000 G	Hz						s	pan 0 Hz	
Res BW 1	.0 MHz		#VBW	3.0 MHz			Sweep 5.		1001 pts)	

### Test Plots (GFSK) Dwell Time (CH.39)



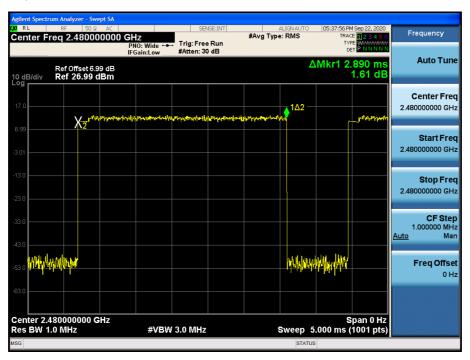



### Test Plots (GFSK) Dwell Time (CH.78)

Agilent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO	05:34:50 PM Sep 22, 2020	
Center Freq 2.480000000		#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	Frequency
Ref Offset 6.99 dB 10 dB/div Ref 26.99 dBm		۵	Mkr1 2.885 ms 0.19 dB	Auto Tune
17.0 X2		1Δ2		Center Freq 2.480000000 GHz
-3.01				Start Free 2.480000000 GH:
-13.0				<b>Stop Free</b> 2.480000000 GH:
-33.0				<b>CF Step</b> 1.000000 MH <u>Auto</u> Mar
-53.0 <b>444000000000000000000000000000000000</b>		//////	hymphalaps ¹¹	Freq Offse 0 H
-63.0 Center 2.480000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 5	Span 0 Hz .000 ms (1001 pts)	
MSG		STATUS	5	

### Test Plots (8DPSK) Dwell Time (CH.0)

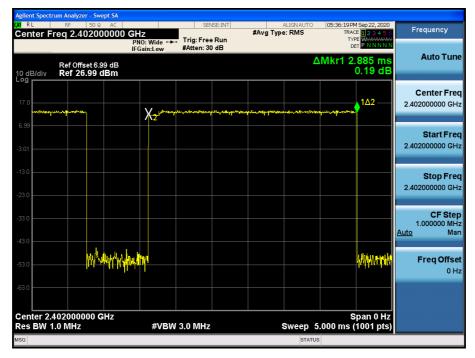




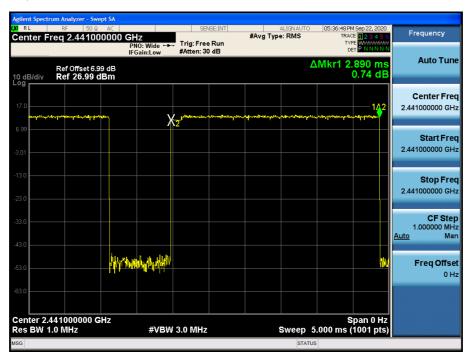

## Test Plots (8DPSK)

Dwell Time (CH.39)

Agilent Spectrum Analyzer - Swept SA (XI RL RF 50 Ω AC Center Freq 2.441000000	GHz DNO: Wildo Trig: Free Run	#Avg Type: RMS TRA	PM Sep 22, 2020 ACE 1 2 3 4 5 6 YPE WWWWWWW
Ref Offset 6.99 dB 10 dB/div Ref 26.99 dBm	PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB		2.890 ms 0.69 dB
	การรูปการ ในวิษัทรรรษศาสตร์ (ประมาณ	- 	<b>Center Freq</b> 2.441000000 GHz
-3.01			<b>Start Freq</b> 2.441000000 GHz
-13.0			<b>Stop Freq</b> 2.441000000 GHz
-33.0			CF Step 1.000000 MHz <u>Auto</u> Man
-53.0 WILHWHHM		march Human	Freq Offset 0 Hz
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 5.000 ms	Span 0 Hz (1001 pts)
MSG	#VEVV 5.0 WH2	status	


### Test Plots (8DPSK) Dwell Time (CH.78)






## Test Plots (π/4DQPSK)

Dwell Time (CH.0)



### Test Plots (π/4DQPSK) Dwell Time (CH.39)





## Test Plots ( $\pi$ /4DQPSK)

Dwell Time (CH.78)

Agilent Spectrum Ana WRLRF Center Freq 2	50Ω AC	GHz PNO: Wide ↔ IFGain:Low	SENSI Trig: Free F #Atten: 30 d	Run	#Avg Typ	ALIGN AUTO e: RMS	TRAC	4 Sep 22, 2020 E 1 2 3 4 5 6 E W N N N N N	Frequency
Ref 10 dB/div Ref	Offset 6.99 dB 26.99 dBm	IFGain:Low	sAtten: 50 t			Δ	Mkr1 2.	.880 ms 1.32 dB	Auto Tune
17.0	, Proceeding of the second	afer the matter of the second	จๅ๛ระการการณ์	freshipting and a second	1	Δ2	<u>سر المراجع</u>		Center Fred 2.480000000 GH
-3.01									<b>Start Free</b> 2.480000000 GH
-13.0									<b>Stop Fre</b> 2.480000000 GH
-33.0									CF Ste 1.000000 MH <u>Auto</u> Ma
-53.0						phillip Ma	al al		<b>Freq Offse</b> 0 H
-63.0 Center 2.48000							s	ipan 0 Hz	
Res BW 1.0 MI	lz	#VBW	3.0 MHz			Sweep 5	.000 ms (	1001 pts)	



#### **10.6 SPURIOUS EMISSIONS**

#### **10.6.1 CONDUCTED SPURIOUS EMISSIONS**

Test Result : please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.




### Test Plots (8DPSK)- 30 MHz - 1 GHz

Spurious Emission (CH.0)

England	PM Oct 28, 2020		ALIGNAUTO		NSE:INT	SEI		AC		
Frequency	ACE 123456 TYPE MWWWWW DET PNNNNN	T		#Avg Typ Avg Hold		Trig: Free #Atten: 2	PNO: Fast ↔ IFGain:Low	0 MHz	q 30.0000	tart Fre
Auto Tur	0.67 MHz 351 dBm	<r1 800<br="">-49.3</r1>	M				I Gali.Low		Ref Offset 6. Ref 20.99	) dB/div
Center Fre 515.000000 Mi										n.0
Start Fre 30.000000 MH										.01
<b>Stop Fre</b> 1.000000000 GF										9.0 9.0
CF Ste 97.000000 MH <u>Auto</u> Ma		1								9.0
Freq Offs 0 F	iheense Marine (Marine) Marine (Marine)	a sa sa bara gu an bara da Dan ya ma da an da	, edaporti de stata e	a na di shika shika ili		u Alka ya Marada Marada	ulia a ti pi ta nili cali sodh	an factor a station of the	ladigh Antoireagthige	9.0
	1.0000 GHz (20001 pts)	Stop 1.				300 kHz		kjerzers, darbe, Ma		art 30.0 Res BW
		· · · · · ·	STATUS							G

## Test Plots (8DPSK)- 1 GHz – 3 GHz Spurious Emission (CH.0)





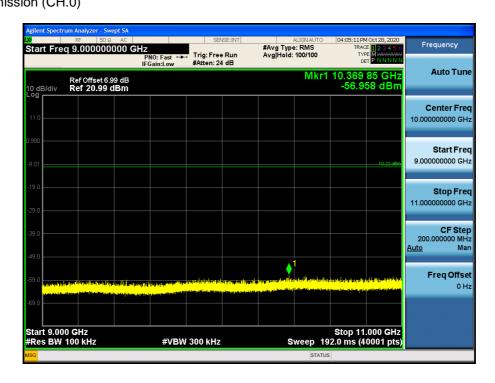
### Test Plots(8DPSK)- 3 GHz - 5 GHz

Spurious Emission (CH.0)

<mark>xi</mark> Start	RF 50 G		PNO: Fast +>	Trig: Free		#Avg Type Avg Hold:		TRAC	E 123456 MWWWWW P NNNN	Frequency
10 dB/c	Ref Offset 6. div <b>Ref 20.99</b>	.99 dB	IFGain:Low	#Atten: 24	4 dB		Mkr	1 3.603	75 GHz 79 dBm	Auto Tune
11.0										Center Free 4.000000000 GH
.990 -									10.23 dBm	<b>Start Fre</b> 3.000000000 GH
-19.0 -										Stop Fre 5.000000000 GH
39.0 - 49.0 -										CF Ste 200.000000 M⊦ <u>Auto</u> Ma
-59.0 (10)	A new plants and a second s			Martin and a survey of the second		like in the parison of a parison of the parison of		ala (labora silga set) Mala gi tang araga	- the first of the	Freq Offse 0 ⊦
69.0	3.000 GHz							Stop 5	.000 GHz	
Res s	BW 100 kHz		#VBW	/ 300 kHz		S	status	2.0 ms (4	0001 pts)	

Test Plots (8DPSK)- 5 GHz - 7 GHz Spurious Emission (CH.0)






### Test Plots(8DPSK)- 7 GHz - 9 GHz

Spurious Emission (CH.0)

Agilent Spectr	r <mark>um Analyzer - Swept</mark> RF 50 Ω A		SENSE:INT	ALIGNAUTO	04:04:34 PM Oct 28, 2020	
Start Fre	q 7.00000000	0 GHz PNO: Fast ↔→	Trig: Free Run #Atten: 24 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 123456 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div	Ref Offset 6.99 c Ref 20.99 dBi	iB	PAten. 24 dB	Mkr	1 7.095 45 GHz -57.001 dBm	Auto Tune
11.0						Center Freq 8.000000000 GHz
0.990 -9.01						Start Freq 7.000000000 GHz
-19.0						<b>Stop Fred</b> 9.000000000 GHz
-39.0						CF Step 200.000000 MH; <u>Auto</u> Mar
-59.0 antibals				(17) (1) part (man) (mar) (1) fan (1) (1) fan ar fal far 19 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		<b>Freq Offse</b> 0 Hz
-69.0 Start 7.00	0 GHz				Stop 9.000 GHz	
#Res BW		#VBW	300 kHz	_	2.0 ms (40001 pts)	
G				STATUS		

Test Plots(8DPSK)- 9 GHz - 11 GHz Spurious Emission (CH.0)





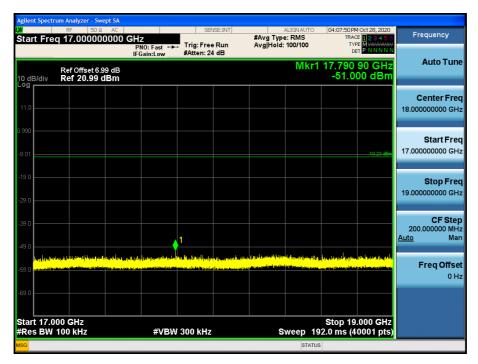
### Test Plots(8DPSK) 11 GHz - 13 GHz

Spurious Emission (CH.0)

	RF	50 Ω A			SEM	ISE:INT		ALIGNAUTO		4 Oct 28, 2020	Frequency
tart F	req 11.0	0000000	PN	0:Fast ↔ ain:Low	Trig: Free #Atten: 24		#Avg Typ Avg Hold		TY	23456 Pe Mwwwww P N N N N N	Frequency
) dB/di	Ref Off v <b>Ref 2</b>	fset 6.99 dl 0.99 dBn	B N					Mkr1	11.987 -56.9	10 GHz 39 dBm	Auto Tur
11.0											Center Fre 12.000000000 GF
990											<b>Start Fre</b> 11.000000000 GH
9.0											<b>Stop Fr</b> 13.00000000 G
19.0											CF Ste 200.000000 Mi <u>Auto</u> Mi
9.0 <mark>77171</mark>		et opening so of the second		n kan ta ta ta ta ta ta		1 noisearth na seasaíth		aller op tat op delt recen at statistical, e	idi qitage taadib Aada taa ay daa	<mark>() to 110 (1990) Apro-1</mark> () Alisa ay an Antonip Anto	Freq Offs 01
19.0	1.000 GHz								Stop 13	.000 GHz	
Res B	W 100 kH	z		#VBW	/ 300 kHz		s	weep 19	2.0 ms (4	0001 pts)	
G								STATUS			

Test Plots (8DPSK)- 13 GHz – 15 GHz






### Test Plots(8DPSK)- 15 GHz - 17 GHz

Spurious Emission (CH.0)

		2 AC		SEN	NSE:INT	#Avg Tvp			1 Oct 28, 2020	Frequency
tart Fre	q 15.00000		FZ PNO: Fast ↔ IFGain:Low	Trig: Free #Atten: 24		#Avg Typ Avg Hold:		TYP	E 123456 E MWWWWWW F P N N N N N	
) dB/div	Ref Offset 6. Ref 20.99						Mkr1	15.578 -53.1	30 GHz 89 dBm	Auto Tur
1.0										Center Fre 16.000000000 GF
.01										Start Fre 15.000000000 GF
9.0										<b>Stop Fr</b> 17.00000000 G
a.o			1							<b>CF St</b> e 200.000000 M <u>Auto</u> M
афияны 9.0 <mark>на да сел</mark>	ting op af fra trille dit og så Helger i sterne som en det di				alay ya Ulata Marah Mata ka ya mata wa	ala di Mandala na kata ang			dipetro dalla di Manazia	Freq Offs 01
s.o	00 GH7							Stop 17	.000 GHz	
	100 kHz		#VBV	/ 300 kHz		s	weep 19	2.0 ms (4	0001 pts)	
G							STATUS			

Test Plots(8DPSK)- 17 GHz - 19 GHz





### Test Plots (8DPSK)- 19 GHz - 21 GHz

### Spurious Emission (CH.0)



Test Plots (8DPSK)- 21 GHz - 23 GHz





### Test Plots (8DPSK)- 23 GHz - 25 GHz

Start Fre	RF 50 Ω q 23.000000	000 GH	NO:Fast 🔸	Trig: Fre		#Avg Type Avg Hold:		TRAC	4 Oct 28, 2020 CE 123456 PE MMMMMMM F P N N N N N	Frequency
10 dB/div	Ref Offset 6.9 Ref 20.99 d	∂dB	Gain:Low	#Atten: 2	4 dB		Mkr1	24.148	75 GHz 76 dBm	Auto Tun
11.0										Center Fre 24.00000000 GF
-9.01										<b>Start Fre</b> 23.000000000 GH
-19.0										<b>Stop Fre</b> 25.00000000 GF
39.0	AND STATES OF A DESCRIPTION OF A DESCRIP		a di santa dui	ya kara diliminin	1 Lesteration		and press to faith	Laurant of Lines & Lines of Lines	unterformenen	CF Ste 200.000000 Mi <u>Auto</u> Mi
-59.0 <mark>-00-02,0-4</mark>	gan gan balan sa kan sa ka Na kan sa kan Na kan sa kan				, w _{ay a} n easthicted	indentification and the second	<mark></mark>	na ya jina katala jina katali ing	f ekseni, su da fasta fil	Freq Offs 0 I
-69.0 Start 23.0 #Res BW			#\/B)A	300 kHz			weep 10	Stop 25	.000 GHz 0001 pts)	



### 10.6.2 RADIATED SPURIOUS EMISSIONS

#### Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
No Critical peaks found										

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

#### Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m dBm/m		dBm	(H/V)	dBuV/m	dBuV/m	dB			
No Critical peaks found										

#### Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.



## Frequency Range : Above 1 GHz

Operation Mode: CH Low(GFSK)

[dBuV]			Total	Limit	Margin	Measurement
	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
41.61	2.30	V	43.91	73.98	30.07	PK
28.50	2.30	V	30.80	53.98	23.18	AV
38.33	12.07	V	50.40	73.98	23.58	PK
24.98	12.07	V	37.05	53.98	16.93	AV
42.02	2.30	Н	44.32	73.98	29.66	PK
28.61	2.30	Н	30.91	53.98	23.07	AV
38.38	12.07	Н	50.45	73.98	23.53	PK
25.38	12.07	Н	37.45	53.98	16.53	AV
	28.50 38.33 24.98 42.02 28.61 38.38 25.38	28.50 2.30   38.33 12.07   24.98 12.07   42.02 2.30   28.61 2.30   38.38 12.07	28.502.30V38.3312.07V24.9812.07V42.022.30H28.612.30H38.3812.07H25.3812.07H	28.502.30V30.8038.3312.07V50.4024.9812.07V37.0542.022.30H44.3228.612.30H30.9138.3812.07H50.4525.3812.07H37.45	28.502.30V30.8053.9838.3312.07V50.4073.9824.9812.07V37.0553.9842.022.30H44.3273.9828.612.30H30.9153.9838.3812.07H50.4573.9825.3812.07H37.4553.98	28.502.30V30.8053.9823.1838.3312.07V50.4073.9823.5824.9812.07V37.0553.9816.9342.022.30H44.3273.9829.6628.612.30H30.9153.9823.0738.3812.07H50.4573.9823.5325.3812.07H37.4553.9816.53

Operation Mode: CH Mid(GFSK)

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	41.69	1.83	V	43.52	73.98	30.46	PK
4882	29.11	1.83	V	30.94	53.98	23.04	AV
7323	39.30	11.05	V	50.35	73.98	23.63	PK
7323	25.79	11.05	V	36.84	53.98	17.14	AV
4882	42.09	1.83	Н	43.92	73.98	30.06	PK
4882	29.05	1.83	Н	30.88	53.98	23.10	AV
7323	38.56	11.05	Н	49.61	73.98	24.37	PK
7323	25.84	11.05	Н	36.89	53.98	17.09	AV

Operation Mode: CH High(GFSK)

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	41.15	2.59	V	43.74	73.98	30.24	PK
4960	28.35	2.59	V	30.94	53.98	23.04	AV
7440	39.18	11.91	V	51.09	73.98	22.89	PK
7440	24.92	11.91	V	36.83	53.98	17.15	AV
4960	42.56	2.59	Н	45.15	73.98	28.83	PK
4960	28.28	2.59	Н	30.87	53.98	23.11	AV
7440	37.42	11.91	Н	49.33	73.98	24.65	PK
7440	24.94	11.91	Н	36.85	53.98	17.13	AV



### Operation Mode: CH Low(π/4DQPSK)

Frequency	Reading	A.F + C.L - A.G + D.F		Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	43.22	2.30	V	45.52	73.98	28.46	PK
4804	28.31	2.30	V	30.61	53.98	23.37	AV
7206	38.05	12.07	V	50.12	73.98	23.86	PK
7206	25.22	12.07	V	37.29	53.98	16.69	AV
4804	41.52	2.30	Н	43.82	73.98	30.16	PK
4804	28.51	2.30	н	30.81	53.98	23.17	AV
7206	37.87	12.07	Н	49.94	73.98	24.04	PK
7206	25.40	12.07	Н	37.47	53.98	16.51	AV
Operation M	ode: CH Mic	d(π/4DQPSK)					
				r			l I

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	41.10	1.83	V	42.93	73.98	31.05	PK
4882	29.08	1.83	V	30.91	53.98	23.07	AV
7323	39.63	11.05	V	50.68	73.98	23.30	PK
7323	26.03	11.05	V	37.08	53.98	16.90	AV
4882	41.75	1.83	Н	43.58	73.98	30.40	PK
4882	29.14	1.83	Н	30.97	53.98	23.01	AV
7323	37.72	11.05	Н	48.77	73.98	25.21	PK
7323	25.95	11.05	Н	37.00	53.98	16.98	AV

### Operation Mode: CH High(π/4DQPSK)

Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	42.01	2.59	V	44.60	73.98	29.38	PK
4960	28.51	2.59	V	31.10	53.98	22.88	AV
7440	38.84	11.91	V	50.75	73.98	23.23	PK
7440	25.06	11.91	V	36.97	53.98	17.01	AV
4960	41.95	2.59	Н	44.54	73.98	29.44	PK
4960	28.40	2.59	Н	30.99	53.98	22.99	AV
7440	38.17	11.91	Н	50.08	73.98	23.90	PK
7440	24.93	11.91	Н	36.84	53.98	17.14	AV



#### Operation Mode: CH Low(8DPSK)

		Pol.	Total	Limit	Margin	Measurement
[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
42.85	2.30	V	45.15	73.98	28.83	PK
28.39	2.30	V	30.69	53.98	23.29	AV
37.68	12.07	V	49.75	73.98	24.23	PK
24.90	12.07	V	36.97	53.98	17.01	AV
42.10	2.30	Н	44.40	73.98	29.58	PK
28.40	2.30	Н	30.70	53.98	23.28	AV
37.25	12.07	Н	49.32	73.98	24.66	PK
25.12	12.07	Н	37.19	53.98	16.79	AV
	28.39 37.68 24.90 42.10 28.40 37.25 25.12	42.85 2.30   28.39 2.30   37.68 12.07   24.90 12.07   42.10 2.30   28.40 2.30   37.25 12.07	42.85 2.30 V   28.39 2.30 V   37.68 12.07 V   24.90 12.07 V   42.10 2.30 H   28.40 2.30 H   37.25 12.07 H   25.12 12.07 H	42.85 2.30 V 45.15   28.39 2.30 V 30.69   37.68 12.07 V 49.75   24.90 12.07 V 36.97   42.10 2.30 H 44.40   28.40 2.30 H 30.70   37.25 12.07 H 49.32   25.12 12.07 H 37.19	42.852.30V45.1573.9828.392.30V30.6953.9837.6812.07V49.7573.9824.9012.07V36.9753.9842.102.30H44.4073.9828.402.30H30.7053.9837.2512.07H49.3273.9825.1212.07H37.1953.98	42.85 2.30 V 45.15 73.98 28.83   28.39 2.30 V 30.69 53.98 23.29   37.68 12.07 V 49.75 73.98 24.23   24.90 12.07 V 36.97 53.98 17.01   42.10 2.30 H 44.40 73.98 29.58   28.40 2.30 H 30.70 53.98 23.28   37.25 12.07 H 49.32 73.98 24.66   25.12 12.07 H 37.19 53.98 16.79

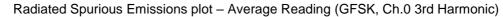
Operation Mode: CH Mid(8DPSK)

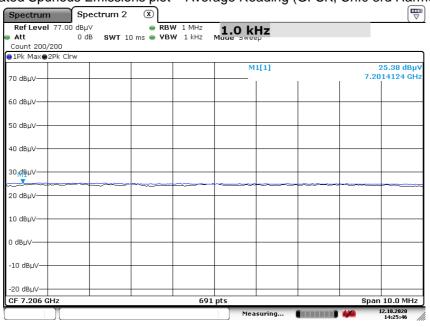
Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	41.80	1.83	V	43.63	73.98	30.35	PK
4882	29.28	1.83	V	31.11	53.98	22.87	AV
7323	37.99	11.05	V	49.04	73.98	24.94	PK
7323	25.84	11.05	V	36.89	53.98	17.09	AV
4882	41.55	1.83	Н	43.38	73.98	30.60	PK
4882	29.24	1.83	Н	31.07	53.98	22.91	AV
7323	38.12	11.05	Н	49.17	73.98	24.81	PK
7323	25.90	11.05	Н	36.95	53.98	17.03	AV

Operation Mode: CH High(8DPSK)

Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	41.35	2.59	V	43.94	73.98	30.04	PK
4960	28.45	2.59	V	31.04	53.98	22.94	AV
7440	38.46	11.91	V	50.37	73.98	23.61	PK
7440	24.95	11.91	V	36.86	53.98	17.12	AV
4960	42.11	2.59	Н	44.70	73.98	29.28	PK
4960	28.33	2.59	Н	30.92	53.98	23.06	AV
7440	38.33	11.91	Н	50.24	73.98	23.74	PK
7440	24.98	11.91	Н	36.89	53.98	17.09	AV




# [Non-DBS Mode]


# Test case 3

Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4804	41.44	2.30	V	43.74	73.98	30.24	PK
4804	29.24	2.30	V	31.54	53.98	22.44	AV
7206	38.54	12.07	V	50.61	73.98	23.37	PK
7206	26.78	12.07	V	38.85	53.98	15.13	AV
4804	40.56	2.30	Н	42.86	73.98	31.12	PK
4804	29.01	2.30	Н	31.31	53.98	22.67	AV
7206	39.01	12.07	Н	51.08	73.98	22.90	PK
7206	26.95	12.07	Н	39.02	53.98	14.96	AV



#### **RESULT PLOTS (Worst case : X-H)**

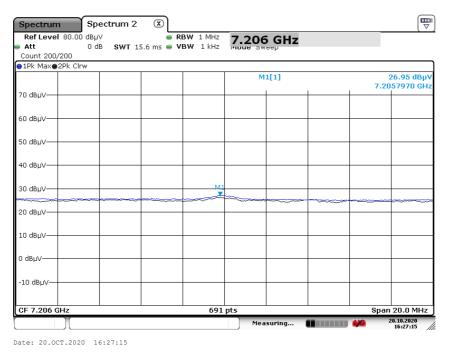




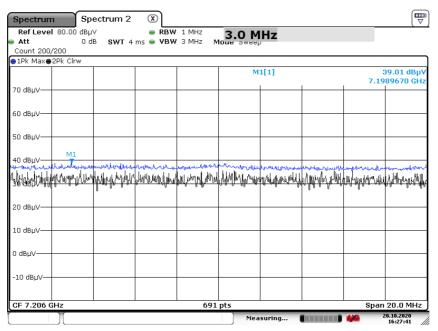
Date: 12.0CT.2020 14:25:46

### Radiated Spurious Emissions plot - Peak Reading (GFSK, Ch.0 3rd Harmonic)

Count 200/20									
●1Pk Max●2Pi	k Clrw								
					M	1[1]			38.38 dBµ 50449 GH
70 dBµV								/.20	50449 GI
60. ID 11									
60 dBµV									
50 dBµV									
40 dBµV			N	11					
montaning	wywww.	-	mayallow	humany	mululum	monutante	Junter alien	hypownaly	mounder
elliphelic and the	14.00.00	h had had had had had had had had had ha	<u>AlihihilimitA</u> ha			NPLAINS RELAXAN	ANU INNER N	A Marken	halmahali
concepts of will	l l o . do .	0) (U.	I BARA DA A	₩ Û, <b>ÎI</b> Î Î Î	-1  - v - 10 - 14(	լվ օղ օ տպր	s an a fi shahan	ի, մոև տանես	1001 10
20 dBµV									
20 app.									
10 dBµV									
o dbuv									
-10 dBµV									
-20 dBµV									
CF 7.206 GH	-			691	nte			Popo	10.0 MHz


#### Note:

Plot of worst case are only reported.




## [Non-DBS Mode]

Radiated Spurious Emissions plot – Average Reading (Test case 3, X-H, 3rd Harmonic)



#### Radiated Spurious Emissions plot - Peak Reading (Test case 3, X-H, 3rd Harmonic)



Date: 20.0CT.2020 16:27:41

#### Note:

Plot of worst case are only reported.



## **10.6.3 RADIATED RESTRICTED BAND EDGES**

Operation Mode	Normal(GFSK)		
Operating Frequency	2402 MHz, 2480 MHz		
Channel No	CH 0, CH 78		

Frequency [MHz]	Reading [dBuV]	A.F + C.L + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	21.204	34.77	H	55.97	73.98	18.01	PK
2390.0	10.648	34.77	Н	45.42	53.98	8.56	AV
2390.0	21.894	34.77	V	56.66	73.98	17.32	PK
2390.0	10.651	34.77	V	45.42	53.98	8.56	AV
2483.5	22.604	34.25	Н	56.85	73.98	17.13	PK
2483.5	14.971	34.25	Н	49.22	53.98	4.76	AV
2483.5	25.243	34.25	V	59.49	73.98	14.49	PK
2483.5	13.765	34.25	V	48.02	53.98	5.97	AV

**Operation Mode Operating Frequency** 

## $EDR(\pi/4DQPSK)$

Channel No

2402 MHz, 2480 MHz CH 0, CH 78

Frequency [MHz]	Reading [dBuV]	A.F + C.L + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	21.362	34.77	Н	56.13	73.98	17.85	PK
2390.0	10.819	34.77	Н	45.59	53.98	8.39	AV
2390.0	21.551	34.77	V	56.32	73.98	17.66	PK
2390.0	10.794	34.77	V	45.56	53.98	8.42	AV
2483.5	21.458	34.25	Н	55.71	73.98	18.27	PK
2483.5	14.056	34.25	н	48.31	53.98	5.67	AV
2483.5	25.896	34.25	V	60.15	73.98	13.83	PK
2483.5	13.044	34.25	V	47.29	53.98	6.69	AV



Operation Mode

Operating Frequency

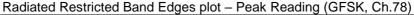
Channel No

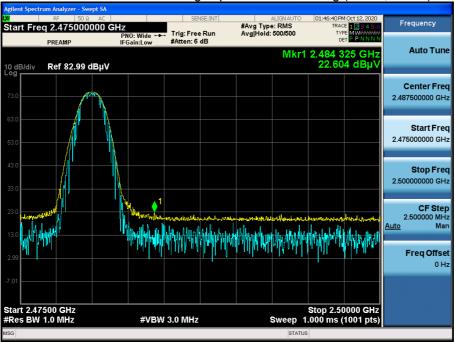
EDR(8DPSK)

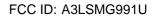
2402 MHz, 2480 MHz

CH 0, CH 78

Frequency [MHz]	Reading [dBuV]	A.F + C.L + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	20.906	34.77	H	55.68	73.98	18.30	PK
2390.0	10.714	34.77	Н	45.48	53.98	8.50	AV
2390.0	20.543	34.77	V	55.31	73.98	18.67	PK
2390.0	10.539	34.77	V	45.31	53.98	8.67	AV
2483.5	21.961	34.25	Н	56.21	73.98	17.77	PK
2483.5	14.047	34.25	Н	48.30	53.98	5.68	AV
2483.5	25.624	34.25	V	59.87	73.98	14.11	PK
2483.5	13.069	34.25	V	47.32	53.98	6.66	AV

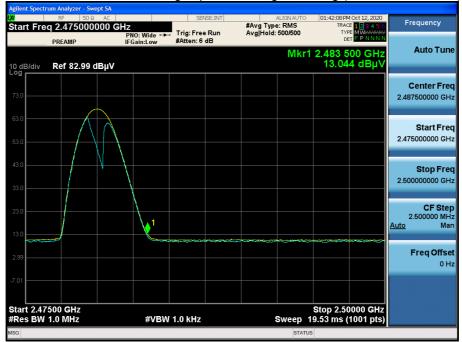




## RESULT PLOTS


## (Worst case : X-H)

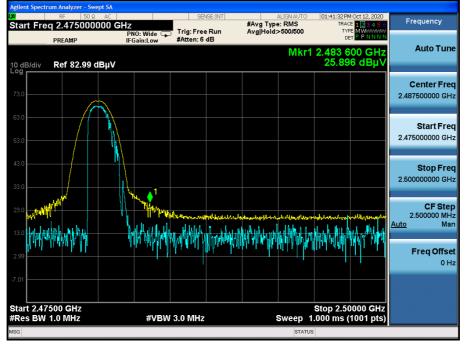
#### zilent Spectrum Analyzer - Swept S/ Frequency #Avg Type: RMS Avg|Hold: 500/500 Start Freq 2.475000000 GHz PNO: Wide PREAMP PREAMP IFGain:Low #Atten: 6 dB TYP MW Mkr1 2.483 500 GHz 14.971 dBµ\ Auto Tune 10 dB/div Ref 82.99 dBµV **Center Freq** 2.487500000 GHz Start Freq 2.475000000 GHz Stop Freq 2.50000000 GHz CF Step 2.500000 MHz Man 1 Auto Freq Offset 0 Hz Start 2.47500 GHz #Res BW 1.0 MHz Stop 2.50000 GHz Sweep 19.53 ms (1001 pts) #VBW 1.0 kHz

#### Radiated Restricted Band Edges plot - Average Reading (GFSK, Ch.78)








## (Worst case : Z-V)



## Radiated Restricted Band Edges plot – Average Reading ( $\pi$ /4DQPSK, Ch.78)

Radiated Restricted Band Edges plot – Peak Reading (π/4DQPSK, Ch.78)



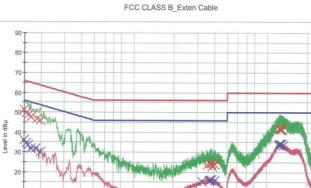
### Note:

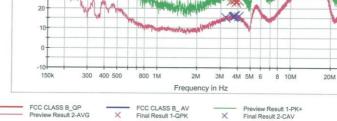
Plot of worst case are only reported.



## **10.7 POWERLINE CONDUCTED EMISSIONS**

## **Conducted Emissions (Line 1)**


Test


1/2

# **HCT TEST Report**

#### **Common Information**

EUT: Manufacturer: Test Site: Operating Conditions: SM-G991U SAMSUNG SHIELD ROOM BT MODE L1





#### **Final Result 1**

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	51.5	9.000	Off	L1	9.8	14.5	66.0
0.156000	49.8	9.000	Off	L1	9.8	15.9	65.7
0.162000	48.9	9.000	Off	L1	9.8	16.4	65.4
0.168000	47.6	9.000	Off	L1	9.8	17.5	65.1
0.188000	46.5	9.000	Off	L1	9.8	17.6	64.1
0.198000	45.9	9.000	Off	L1	9.8	17.8	63.7
3.574000	23.5	9.000	Off	L1	9.9	32.5	56.0
3.788000	24.3	9.000	Off	L1	9.9	31.7	56.0
3.820000	24.2	9.000	Off	L1	9.9	31.8	56.0
3.856000	22.9	9.000	Off	L1	9.9	33.1	56.0
4.012000	24.1	9.000	Off	L1	10.0	31.9	56.0
4.040000	23.8	9.000	Off	L1	10.0	32.2	56.0
12.282000	41.9	9.000	Off	L1	10.3	18.1	60.0
12.418000	41.5	9.000	Off	L1	10.3	18.5	60.0
12.428000	41.8	9.000	Off	L1	10.3	18.2	60.0
12.650000	41.8	9.000	Off	L1	10.3	18.2	60.0
12.842000	41.6	9.000	Off	L1	10.3	18.4	60.0
12.958000	41.6	9.000	Off	L1	10.3	18.4	60.0

2020-09-30

오후 12:00:51

30M



Test

2/2

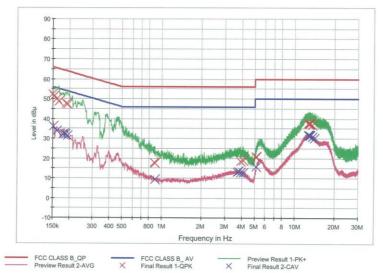
Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	36.0	9.000	Off	L1	9.8	20.0	56.0
0.156000	34.4	9.000	Off	L1	9.8	21.2	55.7
0.160000	33.3	9.000	Off	L1	9.8	22.1	55.5
0.168000	31.6	9.000	Off	L1	9.8	23.5	55.1
0.184000	31.6	9.000	Off	L1	9.8	22.7	54.3
0.198000	30.0	9.000	Off	L1	9.8	23.7	53.7
3.250000	15.3	9.000	Off	L1	9.9	30.7	46.0
3.702000	15.7	9.000	Off	L1	9.9	30.3	46.0
3.740000	16.1	9.000	Off	L1	9.9	29.9	46.0
3.820000	16.1	9.000	Off	L1	9.9	29.9	46.0
4.066000	15.8	9.000	Off	L1	10.0	30.2	46.0
4.074000	15.7	9.000	Off	L1	10.0	30.3	46.0
12.246000	33.9	9.000	Off	L1	10.3	16.1	50.0
12.372000	34.0	9.000	Off	L1	10.3	16.0	50.0
12.648000	34.0	9.000	Off	L1	10.3	16.0	50.0
12.700000	34.0	9.000	Off	L1	10.3	16.0	50.0
12.842000	33.9	9.000	Off	L1	10.3	16.1	50.0
13.194000	33.5	9.000	Off	L1	10.3	16.5	50.0

2020-09-30

오후 12:00:51



Test


1/2

# **HCT TEST Report**

Common Information EUT: Manufacturer: Test Site: Operating Conditions:

SM-G991U SAMSUNG SHIELD ROOM BT MODE N

FCC CLASS B_Exten Cable



#### **Final Result 1**

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	52.3	9.000	Off	N	9.8	13.7	66.0
0.154000	51.3	9.000	Off	N	9.8	14.5	65.8
0.160000	50.0	9.000	Off	N	9.8	15.5	65.5
0.166000	48.8	9.000	Off	N	9.8	16.4	65.2
0.190000	47.5	9.000	Off	N	9.8	16.5	64.0
0.194000	47.2	9.000	Off	N	9.8	16.7	63.9
0.882000	17.7	9.000	Off	N	9.8	38.3	56.0
0.888000	17.5	9.000	Off	N	9.8	38.5	56.0
3.928000	18.4	9.000	Off	N	9.9	37.6	56.0
4.112000	18.9	9.000	Off	N	10.0	37.1	56.0
5.102000	20.7	9.000	Off	N	10.0	39.3	60.0
5.126000	20.9	9.000	Off	N	10.0	39.1	60.0
12.688000	37.6	9.000	Off	N	10.4	22.4	60.0
12.718000	37.7	9.000	Off	N	10.4	22.3	60.0
12.880000	37.2	9.000	Off	N	10.4	22.8	60.0
12.992000	37.6	9.000	Off	N	10.4	22.4	60.0
13.146000	37.3	9.000	Off	N	10.4	22.7	60.0
13.542000	36.6	9.000	Off	N	10.4	23.4	60.0

2020-09-30

오전 11:52:20



Test

**Final Result 2** 

2/2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	36.1	9.000	Off	N	9.8	19.7	55.9
0.160000	33.9	9.000	Off	N	9.8	21.6	55.5
0.178000	32.1	9.000	Off	N	9.8	22.5	54.6
0.182000	32.4	9.000	Off	N	9.8	22.0	54.4
0.188000	32.0	9.000	Off	N	9.8	22.1	54.1
0.194000	31.3	9.000	Off	N	9.8	22.6	53.9
0.888000	9.5	9.000	Off	N	9.8	36.5	46.0
3.678000	13.0	9.000	Off	N	9.9	33.0	46.0
3.796000	13.2	9.000	Off	N	9.9	32.8	46.0
3.928000	12.8	9.000	Off	N	9.9	33.2	46.0
4.112000	12.6	9.000	Off	N	10.0	33.4	46.0
5.126000	15.6	9.000	Off	N	10.0	34.4	50.0
12.688000	31.7	9.000	Off	N	10.4	18.3	50.0
12.718000	31.8	9.000	Off	N	10.4	18.2	50.0
12.962000	31.5	9.000	Off	N	10.4	18.5	50.0
13.146000	31.2	9.000	Off	N	10.4	18.8	50.0
13.542000	30.7	9.000	Off	N	10.4	19.3	50.0
13.972000	30.0	9.000	Off	N	10.4	20.0	50.0

2020-09-30

오전 11:52:20

HCT CO.,LTD.



# **11. LIST OF TEST EQUIPMENT**

#### **Conducted Test**

Manufacturer	Medel / Environment	Calibration	Calibration	Serial No.
Manufacturer	Model / Equipment	Date	Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	09/04/2020	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/10/2020	Annual	100584
ESPAC	SU-642 /Temperature Chamber	03/18/2020	Annual	0093008124
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Rohde & Schwarz	OSP 120 / Power Measurement Set	07/02/2020	Annual	101231
Agilent	N1911A / Power Meter	04/07/2020	Annual	MY45100523
Keysight	N1921A / Power Sensor	06/08/2020	Annual	MY57820067
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/25/2020	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/12/2020	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	06/26/2020	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
	FCC WLAN&BT&BLE Conducted Test Software	N1/A	N1/A	N1/A
HCT CO., LTD.	v3.0	N/A	N/A	N/A
Rohde & Schwarz	CBT / Bluetooth Tester	05/12/2020	Annual	100422

#### Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.



#### **Radiated Test**

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	05/18/2020	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	03/22/2019	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	04/29/2019	Biennial	9120D-937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	07/28/2020	Annual	102168
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	01/21/2020	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	03/02/2020	Annual	8
Wainwright Instruments	WHKX8-6090-7000-18000-40SS/ High Pass Filter	03/02/2020	Annual	25
Api tech.	18B-03 / Attenuator (3 dB)	03/02/2020	Annual	1
Agilent	8493C-10 / Attenuator(10 dB)	03/02/2020	Annual	08285
CERNEX	CBLU1183540 / Power Amplifier	03/02/2020	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	03/02/2020	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2020	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/18/2020	Annual	3000C000276

## Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).



# 12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2010-FC009-P