

CERTIFICATION TEST REPORT

Report Number. : 4789754174-E2V1

Applicant: SAMSUNG ELECTRONICS CO., LTD.

129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI,

GYEONGGI-DO, 16677, KOREA

Model: SCG09, SC-51B

FCC ID : A3LSMG991JPN

EUT Description: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, WPT

and NFC

Test Standard(s): FCC CFR47 PART 22 SUBPART H

FCC CFR47 PART 24 SUBPART E

FCC CFR47 PART 27 SUBPART F,H,L,M

Date Of Issue:

February 08, 2021

Prepared by:

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

REPORT NO: 4789754174-E2V1 FCC ID: A3LSMG991JPN

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	02/08/21	Initial issue	Sungeun Lee

TABLE OF CONTENTS

1.	Α	TTESTATION OF TEST RESULTS	4
2.	TE	EST METHODOLOGY	5
3.	FA	ACILITIES AND ACCREDITATION	5
4.	C	ALIBRATION AND UNCERTAINTY	6
4	1 . 1.	MEASURING INSTRUMENT CALIBRATION	6
4	1.2.	SAMPLE CALCULATION	6
4	1.3.	MEASUREMENT UNCERTAINTY	6
4	<i>1.4.</i>	DECISION RULE	6
5.	E	QUIPMENT UNDER TEST	7
5	5.1.	DESCRIPTION OF EUT	7
Ę	5.2.	MAXIMUM OUTPUT POWER	7
Ę	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	10
Ę	5.4.	WORST-CASE ORIENTATION	11
5	5.5.	DESCRIPTION OF TEST SETUP	12
6.	TE	EST AND MEASUREMENT EQUIPMENT	14
7. \$	SUN	MMARY TABLE	15
8. I	PEA	AK TO AVERAGE RATIO	16
8	3.1.	CONDUCTED PEAK TO AVERAGE RESULT	17
9.	LI	MITS AND CONDUCTED RESULTS	24
		OCCUPIED BANDWIDTH	
		1.1. OCCUPIED BANDWIDTH RESULTS	
S		BAND EDGE EMISSIONS	_
	• • • •	2.1. BAND EDGE RESULT	
Ç		OUT OF BAND EMISSIONS	
		3.1. OUT OF BAND EMISSIONS RESULT	
S	9.4.	FREQUENCY STABILITY	79
		4.1. FREQUENCY STABILITY RESULTS	
S	9.5. 9.1	RADIATED POWER (ERP & EIRP)51. ERP/EIRP Results	84
		5.2. ERP/EIRP DATA	
g		FIELD STRENGTH OF SPURIOUS RADIATION	
	9.0	6.1. SPURIOUS RADIATION PLOTS	114

REPORT NO: 4789754174-E2V1 FCC ID: A3LSMG991JPN

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax WPT and

NFC

MODEL NUMBER: SCG09, SC-51B

SERIAL NUMBER: R3CNA0ASKBD (CONDUCTED):

R3CNC0391GW, R3CNC038Z3E (RADIATED)

DATE TESTED: DEC 07, 2020 - JAN 29, 2021;

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H, 24E, 27F, H, L, M Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

8/ Approved & Released For UL Korea, Ltd. By:

Tested By:

Junwhan Lee Suwon Lab Engineer

UL Korea, Ltd.

Sungeun Lee Suwon Lab Engineer UL Korea, Ltd.

REPORT NO: 4789754174-E2V1 FCC ID: A3LSMG991JPN

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 22.
- 3. FCC CFR 47 Part 24.
- 4. FCC CFR 47 Part 27.
- 5. FCC CFR 47 Part 90.
- 6. ANSI TIA-603-E, 2016
- 7. ANSI C63.26, 2015
- 8. KDB 971168 D01 Power Meas License Digital Systems v03r01
- 9. KDB 412172 D01 Determing ERP and EIRP v01r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro						
☐ Chamber 2						
☐ Chamber 3						

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.01 dB
Radiated Disturbance, 30 MHz to 1 GHz	4.26 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.90 dB
Radiated Disturbance, Above 18 GHz	5.49 dB

Uncertainty figures are valid to a confidence level of 95%.

4.4. DECISION RULE

Decision rule for statement(s) of conformity is based on Procedure 1, Clause 4.4.2 in IEC Guide 115:2007.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, WPT and NFC. This test report addresses the WWAN operational mode.

This report covers the Samsung models SCG09 and SC-51B. SCG09 and SC-51B have the same hardware. Supported band and protocol are different depending on software settings.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum average radiated ERP / EIRP output powers as follows:

Note: Conducted output power results were excerpted from RF exposure test report (4789754174-S1 FCC Report SAR).

GSM

FCC Part 22/24									
Band	Frequency Range	Modulation	Cond	ucted	Radiated				
	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]			
GSM850	824~849	GPRS	33.3	2160.6	28.79	756.83			
GSIVIOSO		EGPRS	27.5	566.7	23.25	211.35			
GSM1900	1850~1910	GPRS	30.2	1039.9	30.86	1218.99			
		EGPRS	26.7	463.7	28.13	650.13			

WCDMA

FCC Part 22									
Band	Frequency Range	Modulation	Cond	ucted	Radiated				
	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]			
Band 5	824~849	Rel. 99	25.2	331.4	19.47	88.51			
Danu 3		HSDPA	24.2	261.1	18.30	67.61			

FCC Part 27								
Band	Frequency Range	BandWidth	Modulation	Conducted		Radi	Radiated	
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]	
			QPSK	23.39	218.06	24.71	295.80	
		20	16QAM	22.85	192.83	23.63	230.67	
			64QAM	21.60	144.70			
			QPSK	23.58	227.78	24.04	253.51	
		15	16QAM	22.93	196.48	23.72	235.50	
	1710 ~ 1755		64QAM	21.66	146.65			
		10	QPSK	23.69	233.81	24.04	253.51	
			16QAM	22.92	195.88	23.08	203.24	
Band 4			64QAM	21.67	146.98			
Dallu 4		5	QPSK	23.75	237.06	23.91	246.04	
			16QAM	22.94	196.79	22.86	193.20	
			64QAM	21.43	139.13			
			QPSK	23.63	230.44	24.20	263.03	
		3	16QAM	22.78	189.85	23.30	213.80	
			64QAM	21.91	155.33			
			QPSK	23.57	227.63	24.01	251.77	
		1.4	16QAM	22.88	194.14	22.85	192.75	
			64QAM	22.00	158.47			

LTE Band 5

FCC Part 22									
Band	Frequency Range	BandWidth	Modulation	Conducted		Radi	ated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]		
			QPSK	24.6	287.2	20.25	105.93		
		10	16QAM	23.5	224.9	19.35	86.10		
	824 ~ 849		64QAM	22.7	187.1				
		5	QPSK	24.7	297.0	19.69	93.11		
			16QAM	23.9	247.9	18.62	72.78		
Band 5			64QAM	22.9	194.6				
Danu 5			QPSK	24.7	292.7	19.81	95.72		
			16QAM	23.8	239.9	18.74	74.82		
			64QAM	23.0	199.5				
			QPSK	24.6	290.8	19.64	92.04		
		1.4	16QAM	23.9	244.9	18.74	74.82		
			64QAM	22.9	193.2				

FCC Part 27									
Frequence Band Range		BandWidth	BandWidth Modulation Conducted Radiated		Conducted		ated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]		
			QPSK	23.8	237.4	19.62	91.62		
		10	16QAM	23.0	197.3	18.49	70.63		
	699 ~ 716		64QAM	22.2	165.8				
		5	QPSK	23.9	243.6	19.64	92.04		
			16QAM	23.1	202.4	18.93	78.16		
Band 12			64QAM	21.8	151.7				
Dallu 12		3	QPSK	23.8	240.0	19.79	95.28		
			16QAM	23.0	197.9	18.76	75.16		
			64QAM	22.2	166.3				
			QPSK	23.8	239.8	19.49	88.92		
		1.4	16QAM	23.3	212.0	18.28	67.30		
			64QAM	22.4	172.0				

LTE Band 13

FCC Part 27									
Band	Frequency Range	BandWidth	Modulation	Conducted		Radi	ated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]		
	777 ~ 787	10	QPSK	23.30	213.63	20.50	112.20		
			16QAM	22.48	177.11	19.92	98.17		
Band 13			64QAM	21.73	148.90				
Danu 13		5	QPSK	23.50	223.68	21.00	125.89		
			16QAM	22.63	183.44	20.26	106.17		
			64QAM	21.39	137.74				

FCC Part 27									
Band	Frequency Range	BandWidth	Modulation	Conducted		Radi	ated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]		
			QPSK	24.2	261.2	24.17	261.22		
		20	16QAM	23.3	212.6	23.75	237.14		
	2496 ~ 2690		64QAM	22.6	182.3				
		15	QPSK	24.1	258.1	23.98	250.03		
			16QAM	23.3	215.4	23.73	236.05		
Band 41			64QAM	22.5	178.3				
Danu 41		10	QPSK	24.1	258.3	24.19	262.42		
			16QAM	23.3	214.0	23.59	228.56		
			64QAM	22.5	178.3				
			QPSK	24.1	258.7	24.27	267.30		
		5	16QAM	23.5	226.4	23.95	248.31		
			64QAM	22.6	181.3				

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a internal antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
GSM 1900 1850 ~ 1910 MHz	-4.40
LTE Band 4 1710 ~ 1755 MHz	-4.00
GSM 850 / WCDMA Band 5 / LTE Band 5 824 ~ 849 MHz	-7.20
LTE Band 12 699 ~ 716 MHz	-7.00
LTE Band 13 777 ~ 787 MHz	-6.70
LTE Band 41 2496 ~ 2690 MHz	-6.20

5.4. WORST-CASE ORIENTATION

Following modes should be considered as worst-case scenario for all other measurements.

- GSM GPRS/EGPRS
- UMTS REL 99/HSDPA

For all LTE Bands, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM and 64QAM modulations. It was found that QPSK and 16QAM results were worst case. All testing was performed using QPSK and 16QAM modulations to represent the worst case. However, the out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest conducted power in QPSK.

	Highest po	wer setting for each ba	ınds	
LTE Band	Frequency (MHz)	Bandwidth (MHz)	RB size	RB offset
	1712.5		1	12
4	1732.5	5	1	12
	1752.5		1	12
	826.5		1	24
5	836.5	5	1	12
	846.5		1	24
	701.5	5	1	24
12	707.5		1	12
	713.5		1	24
	779.5		1	12
13	782.0	5	1	24
	784.5		1	24
	2498.5		1	12
41	2593.0	5	1	24
	2687.5		1	0

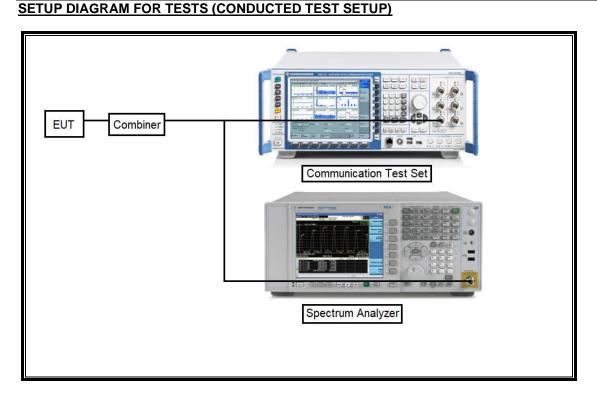
The fundamental and radiated spurious emission were investigated in three orthogonal orientations X, Y and Z, it was determined that below orientation was worst-case orientation for each band.

Band		ERP/EIRP		RSE		
Band	х	Y	Z	Х	Y	Z
GSM850	-	-	0	-	-	0
GSM1900	-	0	-	-	-	0
WCDMA B5	-	-	0	-	-	0
LTE B4	0	-	-	0	-	-
LTE B5	-	-	0	-	-	0
LTE B12	-	-	0	-	-	0
LTE B13	-	-	0	-	0	-
LTE B41	0	-	-	-	0	-

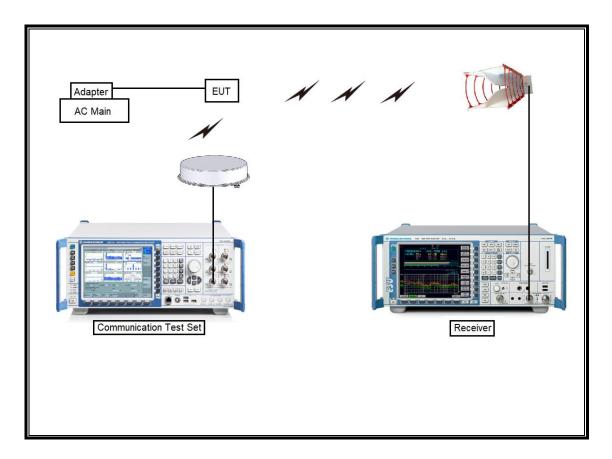
Note: For ERP/EIRP testing, the EUT didn't attached with travel adapter. But radiated spurious testing, the EUT attached with travel adapter for the worst case condition. The EUT is continuously communicated with the call box during the tests.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT


Support Equipment List									
Description Manufacturer Model Serial Number FCC ID									
Charger	SAMSUNG	EP-TA800	N/A	N/A					
Data Cable	SAMSUNG	N/A	N/A						

I/O CABLE


I/O Cable List										
Cable No Port # of identical Connector Cable Type Cable Length Remarks ports Type (m)										
1	DC Power	1	C Type	Shielded	1.0m	N/A				

TEST SETUP

The EUT is continuously communicated with the call box during the tests.

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

Page 13 of 121

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List									
Description	Manufacturer	Model	S/N	Cal Due					
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	01-31-21					
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	110367-0003	N/A					
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A					
Antenna, Horn, 40 GHz	ETS	3116C	00166155	08-04-22					
Preamplifier	ETS	3116C-PA	00168841	08-06-21					
Antenna, Horn, 40 GHz	ETS	3116C	00168645	10-02-21					
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-19-22					
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-13-22					
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-13-22					
Antenna, Horn, 18 GHz	ETS	3115	00167211	07-27-22					
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-15-22					
Antenna, Horn, 18 GHz	ETS	3117	00168724	07-27-22					
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-15-22					
Communications Test Set	R&S	CMW500	115331	08-03-2					
DC Power Supply	Agilent / HP	E3640A	MY54226395	08-05-2					
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-03-2					
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-06-2					
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-03-2					
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-03-2°					
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-04-2					
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-03-2°					
Spectrum Analyzer	Agilent	N9030A	MY54170614	08-05-2°					
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-03-2					
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-03-2					
Direcitonal Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A					
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G005	08-05-2					
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G006	08-05-2					
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	08-05-2					
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	08-05-2					
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G001	08-05-2					
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G002	08-05-2					
Attenuator	PASTERNACK	PE7087-10	A009	08-05-2					
Attenuator	PASTERNACK	PE7087-10	A001	08-03-2					
Attenuator	PASTERNACK	PE7087-10	A008	08-03-2					
Attenuator	PASTERNACK	PE7004-10	2	08-04-2					
Attenuator	PASTERNACK	PE7395-10	A011	08-05-2					
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-02-2					
Temperature Chamber	ESPEC	SH-642	93001109	08-04-2					
Power Splitter	MINI-CIRCUITS	WA1534	UL001	02-05-2					
Power Splitter	MINI-CIRCUITS	WA1534	UL002	02-05-2					
	UL S	oftware							
Description	Manufacturer	Model	Versi	ion					
Antenna port test software	UL	CLT	Ver 2	2.5					

7. SUMMARY TABLE

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Band width (99%)	N/A		Pass
22.917(a) 24.238(a) 27.53(c),(g),(h)	Band Edge / Conducted Spurious Emission	-13dBm		Pass
27.53(m)	Conducted Spurious Emission	-25 dBm		Pass
27.53(m)	Emission mask	Section 9.2.2	Conducted	Pass
2.1046	Conducted output power	N/A		Pass
22.355 24.235 27.54	Frequency Stability	2.5PPM		Pass
22.913(a)(5)		38.5 dBm		Pass
27.50(c)(10) 27.50(b)(10)	Effective Radiated Power	34.77 dBm		Pass
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated	33dBm	Radiated	Pass
27.50(d)(4)	Power	30dBm	radiatod	Pass
22.917(a) 24.238(a) 27.53 (c),(g),(h)	Radiated Spurious Emission	-13dBm		Pass
27.53 (m)		-25dBm		Pass

8. PEAK TO AVERAGE RATIO

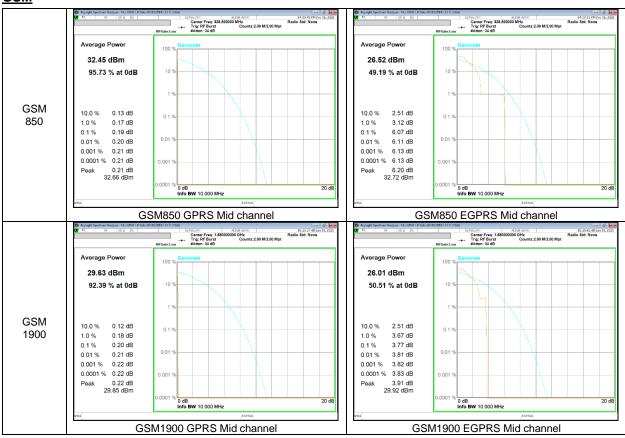
Test Procedure

Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

Test Spec

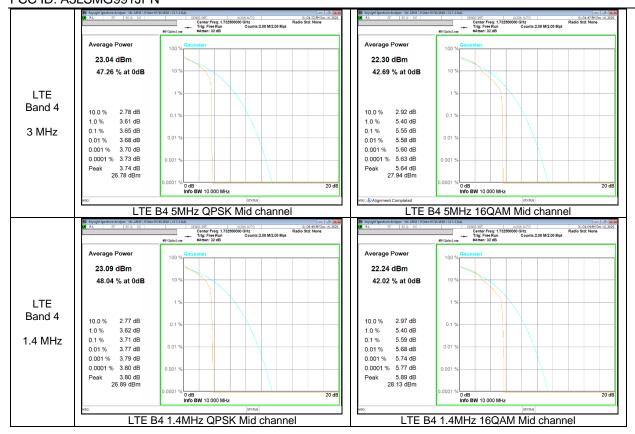
In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.


Note

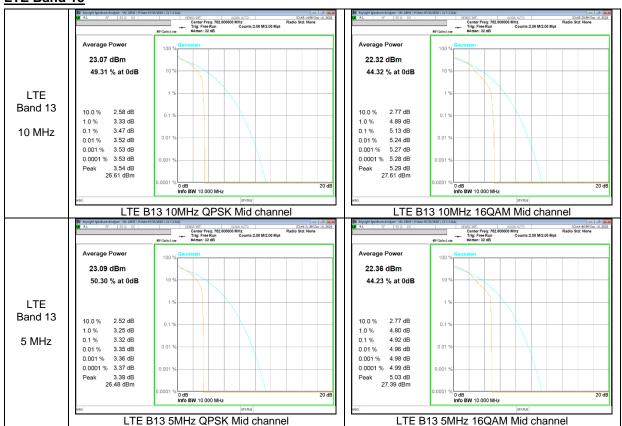
The modulations (QPSK, 16QAM, 64QAM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

RESULTS

8.1. CONDUCTED PEAK TO AVERAGE RESULT


GSM

WCDMA



LTE Band4 Average Power Average Power 22.97 dBm 22.21 dBm 47.02 % at 0dB 42.80 % at 0dB LTE Band 4 2.72 dB 2.92 dB 10.0 % 10.0 % 3.59 dB 5.31 dB 20 MHz 0.1 % 3.72 dB 0.1% 5.48 dB 5.54 dB 0.01 % 3.80 dB 0.01 % 0.001 % 3.83 dB 0.001 % 5.56 dB 0.0001 % 3.85 dB 0.0001 % 5.57 dB 3.87 dB 26.84 dBm 5.64 dB 27.85 dBm Peak Peak 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B4 20MHz QPSK Mid channel LTE B4 20MHz 16QAM Mid channel Average Power Average Power 22.83 dBm 22.16 dBm 47.17 % at 0dB 42.74 % at 0dB LTE Band 4 10.0 % 2.76 dB 10.0 % 2.91 dB 3.59 dB 1.0 % 1.0 % 5.34 dB 3.68 dB 5.54 dB 15 MHz 0.01% 3.71 dB 0.01% 5.62 dB 0.001 % 3.73 dB 0.001 % 5.65 dB 0.0001 % 3.74 dB 0.0001 % 5.66 dB 0.001 Peak 3.75 dB 26.58 dBm Peak 5.72 dB 27.88 dBm 20 dB 20 dB 0 dB Info BW 10.000 MHz LTE B4 15MHz QPSK Mid channel LTE B4 15MHz 16QAM Mid channel | Center Freq: 1.732500000 GHz | Radio Std. None 22.94 dBm 22.18 dBm 46.93 % at 0dB 42.67 % at 0dB LTE Band 4 2.79 dB 2.95 dB 1.0 % 3.66 dB 1.0 % 5.38 dB 3.81 dB 0.1 % 5.66 dB 10 MHz 0.1% 3.89 dB 0.01 % 5.78 dB 0.01 0.001 % 3.92 dB 0.001 % 5.82 dB 0.0001 % 3.94 dB 0.0001 % 5.83 dB 3.94 dB 26.88 dBm 5.96 dB 28.14 dBm Peak Peak 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B4 10MHz QPSK Mid channel LTE B4 10MHz 16QAM Mid channel Average Power 22.47 dBm 22.89 dBm 46.41 % at 0dB 42.89 % at 0dB LTE Band 4 10.0 % 2.76 dB 2.90 dB 10.0 % 1.0 % 3.62 dB 1.0 % 0.1 % 3.71 dB 0.1% 5.46 dB 5 MHz 3.74 dB 0.01 % 5.54 dB 0.01 % 0.001 % 3.78 dB 5.57 dB 0.0001 % 3.84 dB 0.0001 % 5.57 dB Peak 3.89 dB 26.78 dBm Peak 5.59 dB 28.06 dBm 20 dB 20 dB 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B4 5MHz QPSK Mid channel LTE B4 5MHz 16QAM Mid channel

LTE Band5 enter Freq 836.500000 MHz nter Freq 836.500000 MHz Average Power Average Power 23.92 dBm 23.12 dBm 46.75 % at 0dB 42.60 % at 0dB LTE Band 5 2.74 dB 2.89 dB 10.0 % 10.0 % 3.60 dB 5.26 dB 10 MHz 0.1 % 3.75 dB 0.1% 5.46 dB 5.59 dB 0.01 % 3.80 dB 0.01 % 0.001 % 3.82 dB 0.001 % 5.62 dB 0.0001 % 3.83 dB 0.0001 % 5.62 dB 3.86 dB 27.78 dBm 5.62 dB 28.74 dBm Peak Peak 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B5 10MHz QPSK Mid channel LTE B5 10MHz 16QAM Mid channel enter Freq 836.500000 MHz enter Freq 836.500000 MHz Average Power Average Power 23.83 dBm 23.32 dBm 46.64 % at 0dB 43.03 % at 0dB LTE Band 5 10.0 % 2.71 dB 10.0 % 2.84 dB 3.51 dB 1.0 % 1.0 % 5.12 dB 3.62 dB 5.34 dB 5 MHz 0.01% 3.67 dB 0.01% 5.45 dB 0.001 % 3.69 dB 0.001 % 5.49 dB 0.0001 % 3.75 dB 0.0001 % 5.51 dB 0.001 Peak 3.75 dB 27.58 dBm Peak 5.52 dB 28.84 dBm 20 dB 20 dB 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B5 5MHz QPSK Mid channel LTE B5 5MHz 16QAM Mid channel enter Freq 836.500000 MHz Center Freq 836.500000 MHz 23.90 dBm 23.27 dBm 47.34 % at 0dB 42.39 % at 0dB LTE Band 5 2.75 dB 2.89 dB 1.0 % 3.56 dB 1.0 % 5.28 dB 3.62 dB 0.1 % 5.45 dB 3 MHz 0.1% 3.65 dB 0.01 0.01 % 0.01 0.001 % 3.67 dB 0.0001 % 3.71 dB 0.001 % 5.48 dB 0.0001 % 5.49 dB 3.72 dB 27.62 dBm Peak Peak 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B5 5MHz QPSK Mid channel LTE B5 5MHz 16QAM Mid channel Average Power Average Power 23.82 dBm 23.09 dBm 48.60 % at 0dB 42.81 % at 0dB LTE Band 5 10.0 % 2.70 dB 2.99 dB 10.0 % 1.0 % 1.0 % 5.20 dB 0.1 % 3.60 dB 0.1% 5.32 dB 1.4 MHz 3.65 dB 0.01 % 0.01 % 5.37 dB 0.001 % 3.71 dB 0.0001 % 3.74 dB 0.0001 % 5.45 dB Peak 3.76 dB 27.58 dBm Peak 5.47 dB 28.56 dBm 20 dB 20 dB 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B5 1.4MHz QPSK Mid channel LTE B5 1.4MHz 16QAM Mid channel

LTE Band 12 Average Powe Average Power 23.29 dBm 22.53 dBm 47.84 % at 0dB 43.28 % at 0dB LTE Band 12 2.68 dB 2.84 dB 10.0 % 10.0 % 3.53 dB 5.27 dB 10 MHz 0.1 % 3.70 dB 0.1% 5.49 dB 0.01 % 3.80 dB 0.01 % 5.61 dB 0.001 % 3.82 dB 0.001 % 5.63 dB 0.0001 % 3.84 dB 0.0001 % 5.65 dB 3.85 dB 27.14 dBm 5.66 dB 28.19 dBm Peak Peak 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B12 10MHz QPSK Mid channel LTE B12 10MHz 16QAM Mid channel Average Power Average Power 23.29 dBm 22.79 dBm 48.02 % at 0dB 43.71 % at 0dB LTE Band 12 10.0 % 2.67 dB 10.0 % 2.80 dB 3.46 dB 1.0 % 1.0 % 5.12 dB 3.54 dB 5 MHz 0.01% 3.61 dB 0.01% 5.38 dB 0.001 % 3.65 dB 0.001 % 5.42 dB 0.0001 % 3.67 dB 0.0001 % 5.43 dB 0.001 3.76 dB 27.05 dBm Peak 5.43 dB 28.22 dBm 20 dB 20 dB 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B12 5MHz QPSK Mid channel LTE B12 5MHz 16QAM Mid channel Average Power 22.61 dBm 23.37 dBm 43.26 % at 0dB 48.13 % at 0dB LTE Band 12 10.0 % 2.85 dB 10.0% 2 70 dB 1.0 % 5.32 dB 3.52 dB 1.0 % 3 MHz 3.56 dB 0.01% 5.49 dB 0.01 % 3.59 dB 0.001 % 5.51 dB 0.001 % 3.61 dB 0.0001 % 5.53 dB 0.001 0.0001 % 3.61 dB Peak 5.53 dB 28.14 dBm Peak 3.62 dB 26.99 dBm 20 dB 0 dB Info BW 10.000 MHz 20 dB LTE B12 3MHz 16QAM Mid channel LTE B12 3MHz QPSK Mid channel 23.37 dBm 22.58 dBm 48.96 % at 0dB 42.74 % at 0dB LTE Band 12 10.0 % 2.68 dB 1.0 % 3.49 dB 1.0 % 5.28 dB 3.57 dB 5.41 dB 1.4 MHz 0.1 % 0.1 % 0.01 % 3.62 dB 0.01 % 5.47 dB 0.001 % 3.65 dB 0.001 % 5.54 dB 0.0001 % 3.66 dB 0.0001 % 5.55 dB 3.68 dB 27.05 dBm 5.61 dB 28.19 dBm 20 dB 0 dB Info BW 10.000 MHz Info BW 10.000 MHz LTE B12 1.4MHz QPSK Mid channel LTE B12 1.4MHz 16QAM Mid channel

LTE Band 41 Average Powe Average Power 22.82 dBm 21.83 dBm 45.69 % at 0dB 44.30 % at 0dB LTE Band 41 2.35 dB 2.90 dB 10.0 % 10.0 % 4.43 dB 5.15 dB 20 MHz 0.1 % 5.25 dB 0.1% 6.13 dB 5.65 dB 0.01 % 0.01 % 6.54 dB 0.001 % 5.88 dB 0.001 % 6.77 dB 0.0001 % 6.04 dB 0.0001 % 6.98 dB 6.05 dB 28.87 dBm 6.98 dB 28.81 dBm Peak Peak 0 dB Info BW 20.000 MHz 0 dB Info BW 20.000 MHz LTE B41 20MHz QPSK Mid channel LTE B41 20MHz 16QAM Mid channel Average Power Average Power 22.83 dBm 21.85 dBm 45.44 % at 0dB 44.94 % at 0dB LTE Band 41 10.0 % 2.49 dB 10.0 % 2.93 dB 4.64 dB 1.0 % 1.0 % 5.17 dB 5.48 dB 6.12 dB 15 MHz 0.01% 5.90 dB 0.01% 6.79 dB 0.001 % 6.07 dB 0.001 % 7.01 dB 0.0001 % 6.21 dB 0.0001 % 7.10 dB 0.001 Peak 6.25 dB 29.08 dBm Peak 7.11 dB 28.96 dBm 20 dB 20 dB 0 dB Info BW 15.000 MHz 0 dB Info BW 15.000 MHz LTE B41 15MHz QPSK Mid channel LTE B41 15MHz 16QAM Mid channel 22.85 dBm 21.90 dBm 46.52 % at 0dB 45.12 % at 0dB LTE Band 41 2.34 dB 2.84 dB 1.0 % 4.43 dB 1.0 % 5.02 dB 5.32 dB 0.1 % 6.04 dB 10 MHz 0.1% 5.88 dB 0.01 0.001 % 6.18 dB 0.001 % 6.91 dB 0.0001 % 7.02 dB 0.0001 % 6.25 dB 6.25 dB 29.10 dBm Peak Peak 0 dB Info BW 10.000 MHz 0 dB Info BW 10.000 MHz LTE B41 10MHz QPSK Mid channel LTE B41 10MHz 16QAM Mid channel 22.96 dBm 22.00 dBm 47.37 % at 0dB 46.02 % at 0dB LTE Band 41 10.0 % 2.38 dB 2.81 dB 10.0 % 4.44 dB 1.0 % 1.0 % 4.89 dB 0.1 % 5.34 dB 0.1% 6.00 dB 5 MHz 5.76 dB 0.01 % 0.01 % 6.66 dB 0.001 % 5.97 dB 0.0001 % 6.00 dB 0.0001 % 7.18 dB Peak 6.00 dB 28.96 dBm Peak 7.19 dB 29.19 dBm 20 dB 20 dB 0 dB Info BW 5.0000 MHz 0 dB Info BW 5.0000 MHz LTE B41 5MHz QPSK Mid channel LTE B41 5MHz 16QAM Mid channel

9. LIMITS AND CONDUCTED RESULTS

OCCUPIED BANDWIDTH 9.1.

RULE PART(S)

FCC: §2.1049

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v03r01)

RESULTS

See the following pages.

<u>- GSM</u>

Band	Modulation	Channel	f [MHz]	99% BW (kHz)	-26dB BW (kHz)
CCMOEO	GPRS	190	836.6	246.50	310.70
GSM850	EGPRS	190	636.6	245.11	294.70
CSM1000	GPRS	661	1000.0	244.20	321.60
GSM1900	EGPRS	001	1880.0	237.61	308.70

- WCDMA

Band	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)
MCDMADE	Rel. 99	4183	936 6	4.154	4.680
WCDMAB5	HSDPA	4103	836.6	4.146	4.683

- LTE Band 4

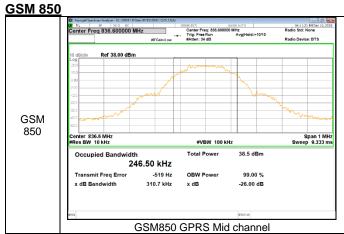
Band	BW	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)
	20M	QPSK	20175	1732.5	17.846	19.290
	20171	16QAM	20175	1732.3	17.877	19.280
1514	15M	QPSK	20175	1722 5	13.414	14.540
	ועוכו	16QAM	20175	1732.5	13.429	14.470
	10M	QPSK	20175	1732.5	8.944	9.729
LTE B4	TOIVI	16QAM	20175	1732.3	8.927	9.732
LIE D4	5M	QPSK	20175	1732.5	4.478	4.911
	الااد	16QAM	20175		4.474	4.890
	3M	QPSK	20175	1722 5	2.699	2.964
	SIVI	16QAM	20175	1732.5	2.694	3.003
	1.4M	QPSK	20175	1722 5	1.092	1.236
		16QAM	20175	1732.5	1.084	1.230

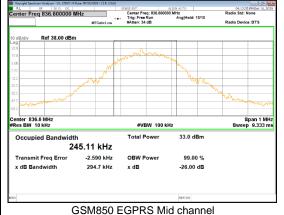
- LTE Band 5

LIL Dai	<u>.u.u</u>					
Band	BW	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)
1	10M	QPSK	23095	707.5	8.929	9.730
	TUIVI	16QAM	23095	707.5	8.922	9.737
	5M	QPSK	23095	707.5	4.505	4.940
LTE B5	JIVI	16QAM	23093		4.487	4.942
LIE BS	21/1	QPSK	23095	707.5	2.686	2.975
3M 1.4M	الااد	16QAM			2.690	2.996
	1 ///	QPSK	00005	707.5	1.086	1.234
	16QAM	23095 707.5		1.087	1.226	

- LTE Band 12

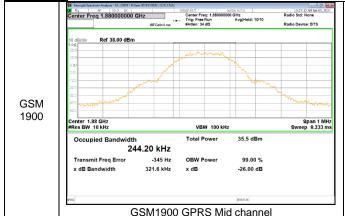
Band	BW	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)
	10M	QPSK	23095	707.5	8.942	9.723
	10101	16QAM	23095	707.5	8.916	9.628
- FN	5M	QPSK	23095	707.5	4.512	4.959
LTE B12	JIVI	16QAM	23095	707.5	4.488	4.946
LIEBIZ	3M	QPSK	23095	707.5	2.692	2.992
		16QAM			2.689	2.953
	1 /11/	QPSK	00005	707.5	1.079	1.226
	1.4M	16QAM	23095	707.5	1.083	1.225

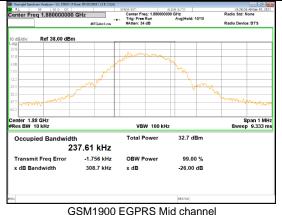

- LTE Band 13

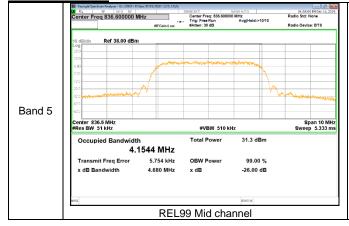

<u> </u>								
Band	BW	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)		
	10M	QPSK	23095	702.0	8.907	9.687		
LTE D12	TOIVI	16QAM	23095	782.0	8.913	9.623		
LTE B13	5M	QPSK	22005	700.0	4.479	4.929		
	الااد	16QAM	23095	782.0	4.476	4.921		

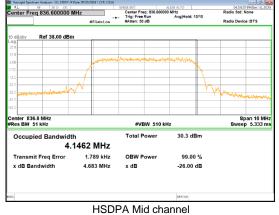
- LTE Band 41

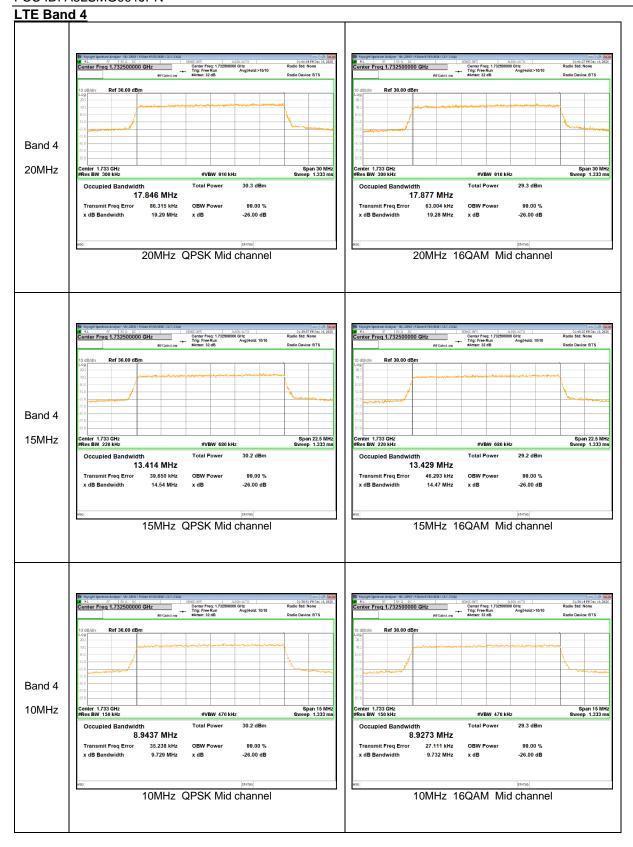
- LTL Band 41						
Band	BW	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)
LTE B41	20M	QPSK	40620	2593.0	17.875	19.260
		16QAM			17.877	19.220
	15M	QPSK	40620	2593.0	13.426	14.520
		16QAM			13.431	14.480
	10M	QPSK	40620	2593.0	8.941	9.796
		16QAM			8.982	9.705
	5M	QPSK	40620	2593.0	4.494	4.968
		16QAM			4.483	4.947

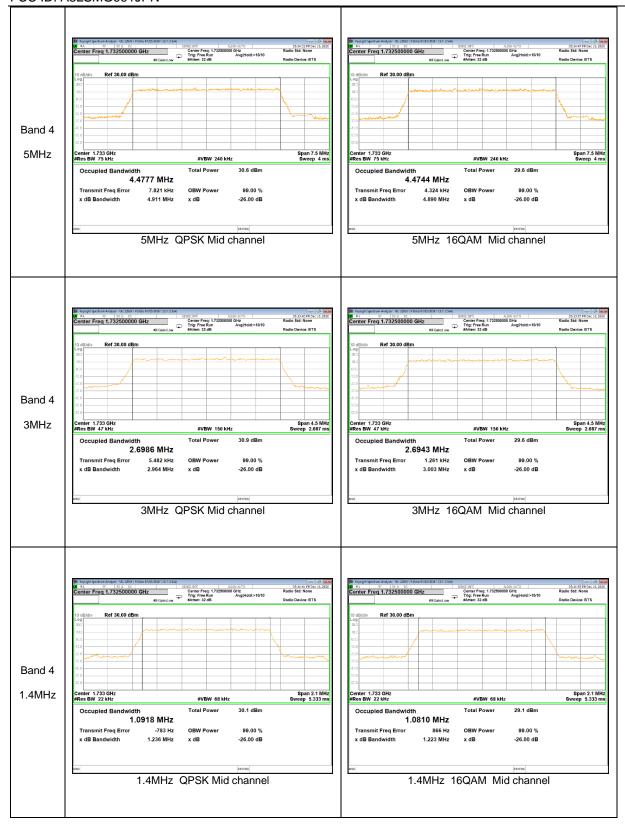

9.1.1. OCCUPIED BANDWIDTH RESULTS




DATE: FEB 08, 2021

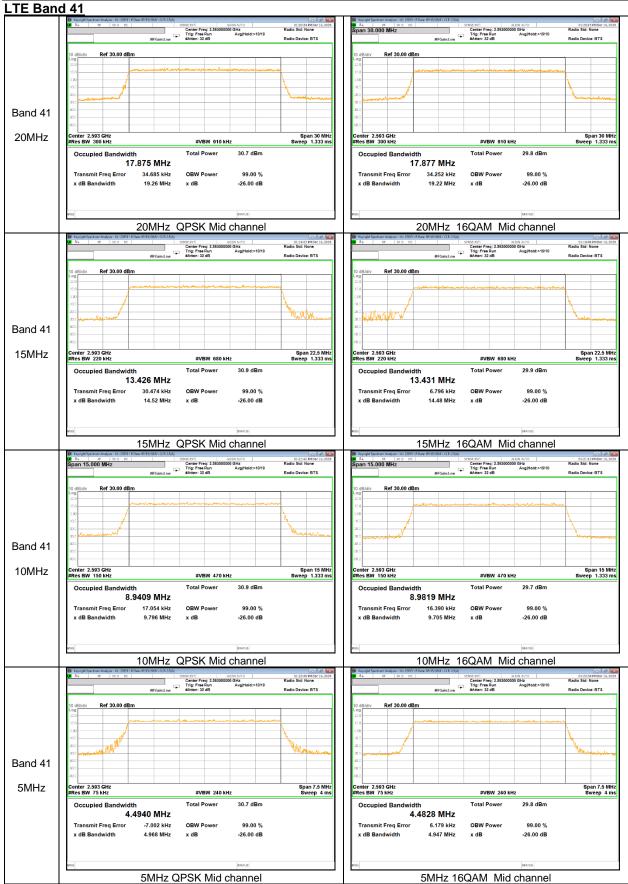

GSM 1900






WCDMA Band 5





Page 33 of 121

9.2. BAND EDGE EMISSIONS

RULE PART(S)

FCC: §22.359, §22.917, §24.238, §27. 53

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

Part 27 53

- (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (4) On all frequencies between 763-775 MHz and 793-806 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB.
- (h) The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P) dB$.
- (m) (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

GSM

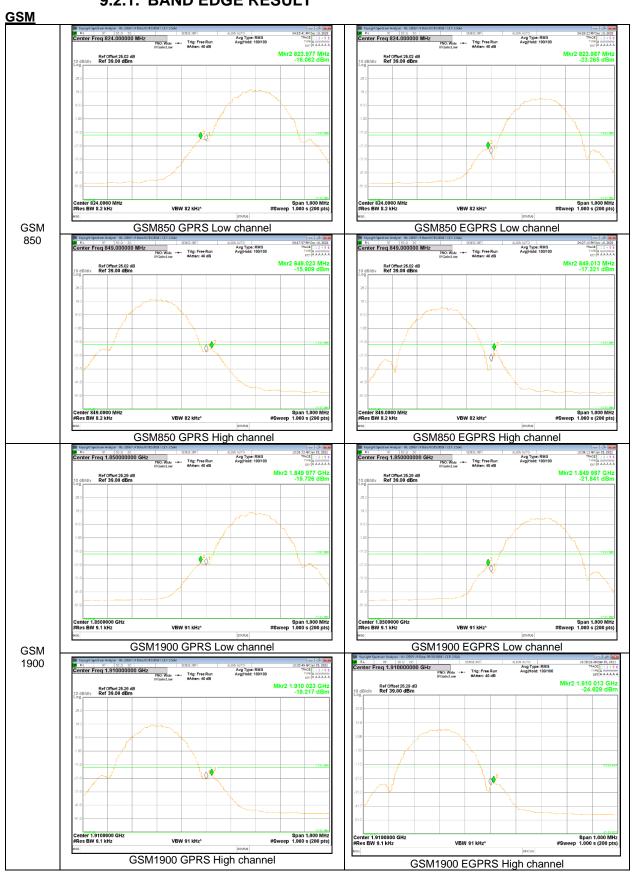
- a) Set the RBW = $1 \sim 5\%$ of OBW(GSM850 8.2KHz, GSM1900 9.1KHz)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = 1S;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average(100);
- h) Add duty cycle correction factor (9dB)

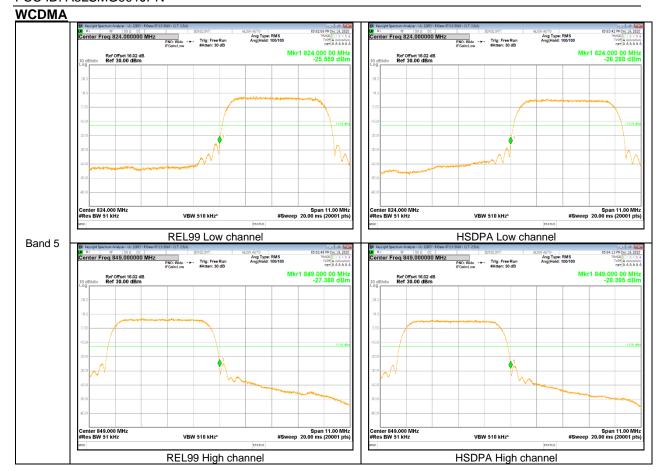
WCDMA/LTE

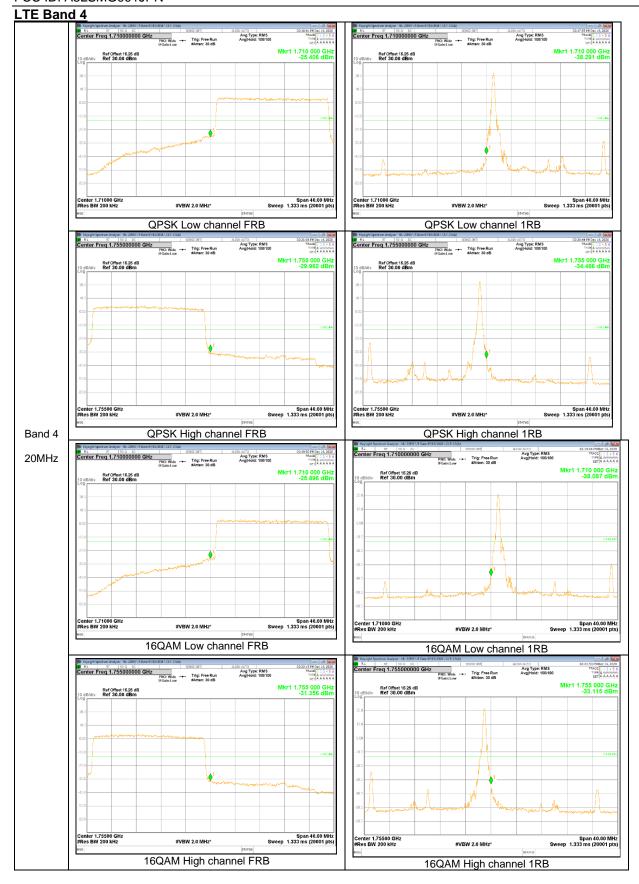
- a) Set the RBW = 1 ~ 1.5 % of OBW(Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time ≥ Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average (100);

NOTE1: For frequency range of 763-775 MHz and 793-806 MHz.(LTE Band 13)

- a) Set the RBW = 6.2kHz
- b) Set VBW \geq 3 × RBW;
- c) Sweep time = 1 second;
- d) Detector = RMS;
- e) Ensure that the number of measurement points ≥ 2*Span/RBW;
- f) Trace mode = Average;


NOTE2


Note that the spurious emissions outside of the channel include narrowband signals. These signals are all below the -13dBm / -25dBm limits. Although the measurement bandwidth is less than the reference bandwidth of 1MHz no additional correction is applied as ANSI C63.26 section 4.2.3 only requires the correction to be applied when the OBW of the emission being measured is wider than the measurement bandwidth (Where the OBW of the signal under measurement is less than the RBW of the measuring instrument, no bandwidth correction or integration will be required.) Plots for low and high channels show the level of the emission measured with the reduced bandwidth and the level of the same emission measured using the integration method over the 1MHz reference bandwidth are very close, indicating the emissions are narrowband.


RESULTS

See the following pages.

9.2.1. BAND EDGE RESULT

