

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

Date of Testing: 3/16/2020 - 3/20/2020 Test Site/Location: PCTEST, Columbia, MD, USA Test Report Serial No.: 1M2003120045-15.A3L Date of Issue: 4/8/2020

FCC ID:

A3LSMG986W

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

Scope of Test:						
Application Type:						
FCC Rule Part(s):						
HAC Standard:						

DUT Type: Model: Test Device Serial No.: Class II Permissive Change(s): Original Grant Date: Audio Band Magnetic Testing (T-Coil) Class II Permissive Change CFR §20.19(b) ANSI C63.19-2011 285076 D01 HAC Guidance v05 285076 D02 T-Coil testing for CMRS IP v03 Portable Handset SM-G986W *Pre-Production Sample* [S/N: 1019M, 0268M] *See FCC Change Document* 2/21/2020

C63.19-2011 HAC Category: T4 (SIGNAL TO NOISE CATEGORY, NR Only)

This report and category pertain only to NR modes supported by this wireless portable device. The overall category rating of the device is determined by the lowest rating obtained over all air interfaces supported by the device. This wireless portable device has been shown to be hearing-aid compatible for NR modes, under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. Test results reported herein relate only to the item(s) tested. North America bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMG986W	POTEST. Provid to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dego 1 of 11
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 1 of 41
© 2020 PCTEST	•			REV 3.5.M

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	5
4.	METHOD OF MEASUREMENT	7
5.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	16
6.	T-COIL TEST SUMMARY	18
7.	MEASUREMENT UNCERTAINTY	22
8.	EQUIPMENT LIST	23
9.	TEST DATA	24
10.	CALIBRATION CERTIFICATES	29
11.	CONCLUSION	36
12.	REFERENCES	37
13.	TEST SETUP PHOTOGRAPHS	39

FCC ID: A3LSMG986W	Portest Prod to be pet of @ merced	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Darra 0 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 2 of 41
© 2020 PCTEST	•			REV 3.5.M

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMG986W	POTEST Provid to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 2 of 44	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 3 of 41	
© 2020 PCTEST	•	•		REV 3.5.M	

2. DUT DESCRIPTION

FCC ID:	A3LSMG986W
Applicant:	Samsung Electronics Co., Ltd.
	129, Samsung-ro, Maetan dong,
	Yeongtong-gu, Suwon-si
	Gyeonggi-do 16677, Korea
Model:	SM-G986W
Serial Number:	1019M, 0268M
HW Version:	Rev.1.0
SW Version:	G986WVLU1ATBW
Antenna:	Internal Antenna
DUT Type:	Portable Handset

I. Device Serial Numbers

Several samples with identical hardware were used to support HAC testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 6.

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated
	835	VO	No1	Yes: WIFI or BT	CMRS Voice	EVRC
CDMA	EvDO	VD	No1	Yes: WIFI or BT	Google Duo	OPUS
	850	vo	No ¹	Yes: WIFI or BT	CMRS Voice	EFR
GSM	1900	-				
	GPRS/EDGE	VD	No1	Yes: WIFI or BT	Google Duo	OPUS
	850					
UMTS	1700	VD	No1	Yes: WIFI or BT	CMRS Voice	NB AMR
OIVITS	1900					
	HSPA	VD	No1	Yes: WIFI or BT	Google Duo	OPUS
	680 (B71)		No1			
	700 (B12)					
	780 (B13)					
	850 (B5)	0	VoLTE: NB AMR, WB AMR, EV Google Duo: OPUS			
	1700 (B4)					
LTE (FDD)	1700 (B66)	(82) (825)				
•	1900 (B2)					
	1900 (B25)					
	2300 (B30)					
	2500 (B7)					
	2600 (B38)					VoLTE: NB AMR, WB AMR, E
LTE (TDD)	2600 (B41)	VD	No1	Yes: WIFI or BT	VoLTE, Google Duo	Google Duo: OPUS
	680 (n71)		Yes ¹³			-
NR (FDD)	1700 (n66)	VD	Yes1	Yes: WIFI or BT	Google Duo ²	OPUS
NR (TDD)	2600 (n41)	VD	Yes1	Yes: WIFI or BT	Google Duo ²	OPUS
	2450				-	
	5200 (U-NII 1)	t				
WIFI	5300 (U-NII 2A)	VD	No1	Yes: CDMA, GSM, UMTS, LTE, or NR	VoWIFI, Google Duo	VoWIFI: NB AMR, WB AMR,
	5500 (U-NII 2C)				,	Google Duo: OPUS
	5800 (U-NII 3)					
BT	2450	DT	No	Yes: CDMA, GSM, UMTS, LTE, or NR	N/A	N/A
ype Transport O = Voice Only T = Digital Dat		Voice Services	Notes: 1. This report of 1M191101017 2. Reference le 3. NR n71, whi	only pertains to NR modes. For full data, please	refer to the Original Certification Tes	t Report (Report S/N:

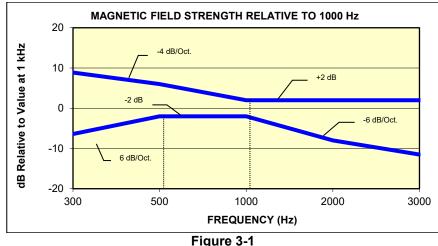
 Table 2-1

 A3LSMG986W HAC Air Interfaces

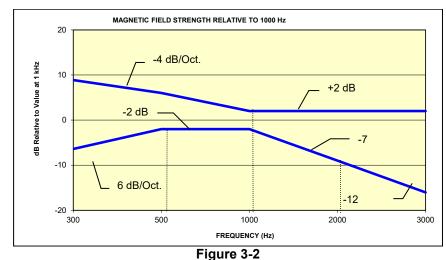
FCC ID: A3LSMG986W	PCTEST Proved to be post of & othersed	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 4 of 44	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 4 of 41	
© 2020 PCTEST	•	· · ·		REV 3.5.M	

REV 3.5.M 3/2/2020

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES


I. MAGNETIC COUPLING

Axial and Radial Field Intensity


All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per §8.3.2.

Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: A3LSMG986W	PCTEST Nová la De port al & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga E of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 5 of 41
© 2020 PCTEST				REV 3.5.M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Cotogomy	Telephone RF Parameters				
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]				
T1	0 to 10 dB				
T2	10 to 20 dB				
Т3	20 to 30 dB				
T4	> 30 dB				
Table 3-1 Magnetic Coupling Parameters					

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

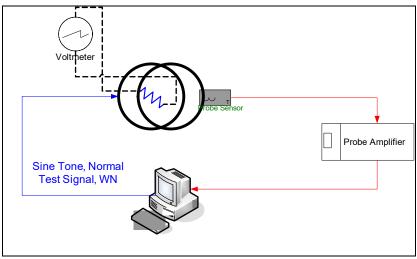
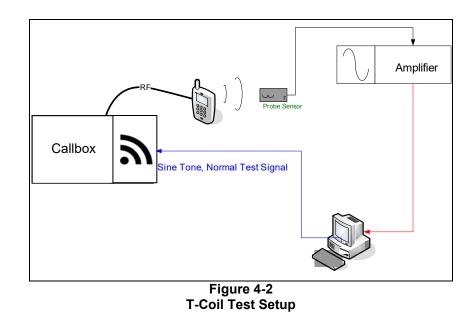
FCC ID: A3LSMG986W	PCTEST Provid to be port of & enterned	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama Caf 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 6 of 41
© 2020 PCTEST	•	•		REV 3.5.M

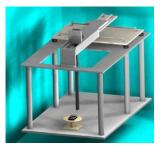
^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:


Figure 4-1 Validation Setup with Helmholtz Coil

FCC ID: A3LSMG986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago Z of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 7 of 41
© 2020 PCTEST	•	•		REV 3.5.M

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

III. 3GPP2 Normal Test Signal (Speech)

Manufacturer:	3GPP2 (TIA 1042 §3.3.1)	
	Modified-IRS weighted, multi-talker speech signal, 4 Male and 4	
Stimulus Type:	Female speakers (alternating)	
Single Sample Duration:	51.62 seconds	
Activity Level:	77.4%	

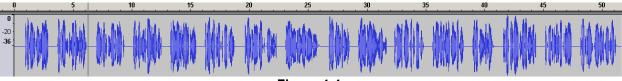
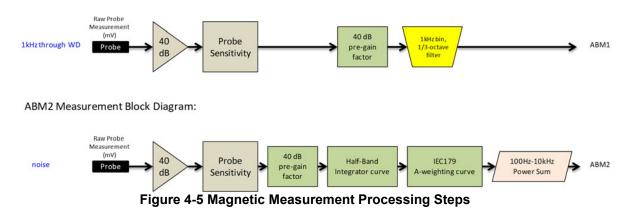



Figure 4-4 Temporal Characteristic of Normal Test Signal

FCC ID: A3LSMG986W	PCTEST Proved to be poet of @ interset	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 8 of 41	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset			
© 2020 PCTEST		•		REV 3.5.M	

ABM1 Measurement Block Diagram:

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - ABM1 Validation The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_{c} = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^{3}}} = 0.316A/m \approx -10dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe

FCC ID: A3LSMG986W	PCTEST Proved to be poet at & dimensional	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 0 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 9 of 41
© 2020 PCTEST				REV 3.5.M

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

measurement at -10dB(A/m). This was verified to be within \pm 0.5 dB of the -10dB(A/m) value (see Page 20).

c. Frequency Response Validation

The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the Normal signal as shown below:

Figure 4-6 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

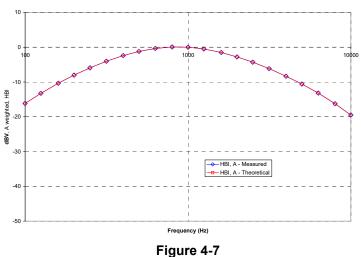
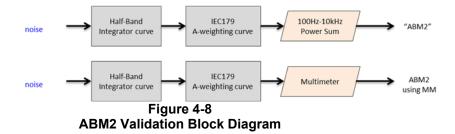

ABM2 Frequency Response Validation				
	HBI, A -	HBI, A -		
f (Hz)	Measured	Theoretical	dB Var.	
	(dB re 1kHz)	(dB re 1kHz)		
100	-16.180	-16.170	-0.010	
125	-13.257	-13.250	-0.007	
160	-10.347	-10.340	-0.007	
200	-8.017	-8.010	-0.007	
250	-5.925	-5.920	-0.005	
315	-4.045	-4.040	-0.005	
400	-2.405	-2.400	-0.005	
500	-1.212	-1.210	-0.002	
630	-0.349	-0.350	0.001	
800	0.071	0.070	0.001	
1000	0.000	0.000	0.000	
1250	-0.503	-0.500	-0.003	
1600	-1.513	-1.510	-0.003	
2000	-2.778	-2.780	0.002	
2500	-4.316	-4.320	0.004	
3150	-6.166	-6.170	0.004	
4000	-8.322	-8.330	0.008	
5000	-10.573	-10.590	0.017	
6300	-13.178	-13.200	0.022	
8000	-16.241	-16.270	0.029	
10000	-19.495	-19.520	0.025	

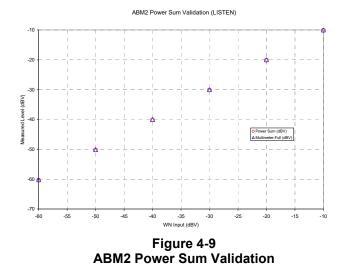
 Table 4-1

 ABM2 Frequency Response Validation

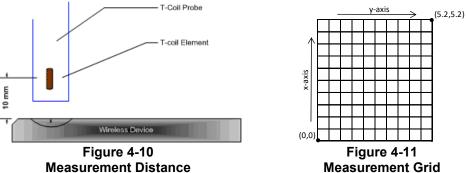

FCC ID: A3LSMG986W	PCTEST Proud to be port at @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 10 of 11
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 10 of 41
© 2020 PCTEST	•	· · · ·		REV 3.5.M

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation


The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-8). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.


Table 4-2 ABM2 Power Sum Validation					
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)		
-60	-60.36	-60.2	0.16		
-50	-50.19	-50.13	0.06		
-40	-40.14	-40.03	0.11		
-30	-30.13	-30.01	0.12		
-20	-20.12	-20	0.12		
-10	-10.14	-10	0.14		

FCC ID: A3LSMG986W	PCTEST Proud to be pert of & minuted	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 44 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 11 of 41
© 2020 PCTEST	•	•		REV 3.5.M

3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-11, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-13 after a T-coil orientation was fully measured with the SoundCheck system.
 b. Speech Signal Setup to Base Station Simulator
 - . Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: A3LSMG986W	POTEST Provide bit port of @ reference	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 12 of 11
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 12 of 41
© 2020 PCTEST				REV 3.5.M


REV 3.5.M 3/2/2020

- ii. See Section 5 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (NR configuration information can be found in Section 5).
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-6. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: A3LSMG986W	Portest Prod to be part at @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 12 of 11
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 13 of 41
© 2020 PCTEST	•	· · · · · · · · · · · · · · · · · · ·		REV 3.5.M

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

V. Test Setup

Audio Magnetic Field Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

VIII. Wireless Device Channels and Frequencies

1. 5G (NR) Modes

The middle channel and supported bandwidths from the worst-case FDD band according to Table 5-2 was evaluated with OTT VoIP for each probe orientation. TDD was evaluated with n41. For both FDD and TDD, the band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. See Tables 6-2 to 6-3 for NR bandwidths and channels.

FCC ID: A3LSMG986W	PCTEST Proof to be pert of @ internet	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 44 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 14 of 41
© 2020 PCTEST	•			REV 3.5.M

IX. Test Flow

The flow diagram below was followed (From C63.19):

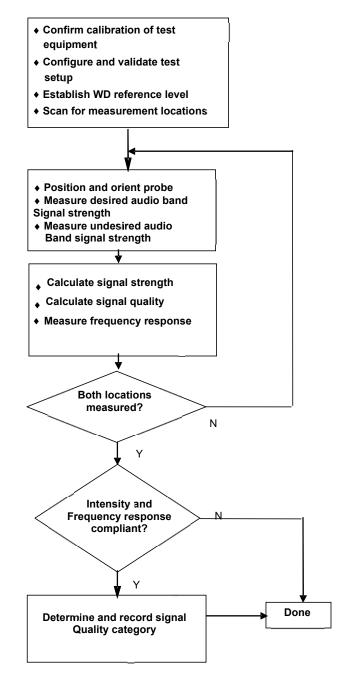


Figure 4-13 C63.19 T-Coil Signal Test Process

FCC ID: A3LSMG986W	PCTEST Proved to be poet of & othersed	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dage 15 of 11	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 15 of 41	
© 2020 PCTEST	-	•		REV 3.5.M	

REV 3.5.M 3/2/2020

5. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation². The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

Note: The green highlighted text is approved by FCC under the TCB PAG Re-Use Policy 388624 D01 IV. D. for T-Coil Testing for WI-FI calling and Google Duo.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: A3LSMG986W	POTEST Proud to be part of & clinitered	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 16 of 11
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 16 of 41
© 2020 PCTEST	<u>.</u>	·		REV 3.5.M

REV 3.5.M 3/2/2020

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Radio Configuration for OTT VoIP (NR)

An investigation was performed to determine the RB configuration to be used for testing. Due to equipment limitations, ABM1 measurements were not possible. Therefore, additional ABM1 measurements with LTE OTT VoIP were used from the Original Certification Test Report and combined with NR ABM2 measurements to obtain SNNR values. DFT-s-OFDM π /2-BPSK, 1RB, 50% RB offset was determined to be the worst-case configuration for the handset and will be used for full testing in Section 6.

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	1	1	10.83	-47.41	58.24
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	1	53	10.83	-46.95	57.78
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	1	104	10.83	-47.21	58.04
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	50	0	10.83	-48.59	59.42
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	50	28	10.83	-48.26	59.09
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	50	56	10.83	-48.02	58.85
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	100	0	10.83	-47.74	58.57

Table 5-1 NR OTT VoIP SNNR by Radio Configuration (DFT-s-OFDM)

An investigation was performed to determine the worst-case NR FDD band to be used for OTT VoIP testing. NR FDD n71 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different NR bands:

Table 5-2 OTT VoIP (NR) SNNR by Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
n71	680.5	136100	20	DFT-s-OFDM	π/2-BPSK	1	53	10.83	-46.55	57.38	
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	1	53	10.83	-48.18	59.01	

FCC ID: A3LSMG986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dana 47 of 44	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 17 of 41	
© 2020 PCTEST	•	•		REV 3.5.M	

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

T-COIL TEST SUMMARY 6.

Table 6-1 **Consolidated Tabled Results**

		-	esponse gin	•	netic / Verdict	FCC SNNR Verdict		Margin from FCC Limit	C63.19-2011
C62.10	9 Section	8.3	3.2	8.3	3.1	1 8.3.4		(dB)	Rating
C03. 18	Section	Axial	Radial	Axial	Radial	Axial	Radial		
NR FDD (OTT VoIP)	n71	NA	NA	PASS	PASS	PASS	PASS	-28.63	Τ4
NR TDD (OTT VoIP)	n41	NA	NA	PASS	PASS	PASS	PASS	-14.50	Τ4

I. **Raw Handset Data**

Raw Data Results for NR FDD n71 (OTT VoIP) Frequency Response Margin (dB) Margin from FCC Limit ABM1 [dB(A/m)] ABM2 [dB(A/m)] Ambient Noise [dB(A/m)] S+N/N (dB) FCC Limit C63.19-2011 Test Channel Sample S/N Orientation Bandwidth Mode Coordinate (dB) Rating (dB) 20MHz 1019M 137600 10.83 -46.15 56.98 20.00 Τ4 36.9 20MHz 136100 1019M 10.83 -46.30 57.13 20.00 Τ4 20MHz 134600 1019M 10.83 -46.88 57.71 20.00 Τ4 -37.7 -58.13 N/A 0.8, 2.4 Axial 15MHz 136100 1019M 10.83 -48.11 58.94 20.00 T4 10MHz 136100 1019M 10.83 -47.90 58.73 20.00 Τ4 T4 T4 5MHz 136100 1019M 10.83 -46.91 57.74 20.00 NR n71 -45.97 20MHz 136100 1019M 3.11 49.08 20.00 29. 1019M Τ4 15MHz 136100 3.11 -45.82 48.93 20.00 10MHz 136100 1019M 3.11 -45.65 48.76 20.00 T4 -58.89 0.8, 1.6 Radial N/A -45.81 5MHz 139100 1019M 3.11 48.92 20.00 Τ4 -28.9 5MHz 136100 1019M 3.11 -45.52 48.63 20.00 T4 5MHz 133100 1019M 3.11 -46.02 49.13 20.00 Τ4

Table 6-2

Table 6-3						
aw Data Results for NR TDD n41 (OTT VoIP)					

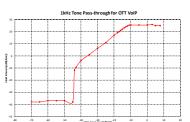
	Raw Data Results for NR TDD n41 (OTT VoIP)												
Mode	Orientation	Bandwidth	Channel	Sample S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		100MHz	528000	0268M	10.83	-27.64			38.47	20.00	-18.47	T4	
		100MHz	523302	0268M	10.83	-27.64		38.47	20.00	-18.47	T4		
		100MHz	518598	0268M	10.83	-27.41			38.24	20.00	-18.24	T4	
		100MHz	513900	0268M	10.83	-25.68			36.51	20.00	-16.51	T4	
		100MHz	509202	0268M	10.83	-28.33			39.16	20.00	-19.16	T4	
	Axial	90MHz	518598	0268M	10.83	-27.75	-58.13	N/A	38.58	20.00	-18.58	T4	0.8, 2.4
		80MHz	518598	0268M	10.83	-30.15			40.98	20.00	-20.98	T4	
		60MHz	518598	0268M	10.83	-28.08			38.91	20.00	-18.91	T4	
		50MHz	518598	0268M	10.83	-28.26			39.09	20.00	-19.09	T4	
		40MHz	518598	0268M	10.83	-28.10			38.93	20.00	-18.93	T4	
NR n41		20MHz	518598	0268M	10.83	-27.65			38.48	20.00	-18.48	T4	
141		100MHz	518598	0268M	3.11	-35.71			38.82	20.00	-18.82	T4	
		90MHz	518598	0268M	3.11	-36.06			39.17	20.00	-19.17	T4	
		80MHz	518598	0268M	3.11	-35.72			38.83	20.00	-18.83	T4	
		60MHz	518598	0268M	3.11	-36.17			39.28	20.00	-19.28	T4	
		50MHz	518598	0268M	3.11	-34.68			37.79	20.00	-17.79	T4	
	Radial	40MHz	518598	0268M	3.11	-34.79	-58.89	N/A	37.90	20.00	-17.90	T4	0.8, 1.6
		20MHz	535998	0268M	3.11	-31.39			34.50	20.00	-14.50	T4	
		20MHz	527298	0268M	3.11	-32.82			35.93	20.00	-15.93	T4	1
		20MHz	518598	0268M	3.11	-33.38			36.49	20.00	-16.49	T4	1
		20MHz	509898	0268M	3.11	-34.49			37.60	20.00	-17.60	T4	1
		20MHz	501204	0268M	3.11	-34.38			37.49	20.00	-17.49	T4]

FCC ID: A3LSMG986W	POTEST Proud to be port of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dega 19 of 11	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 18 of 41	
© 2020 PCTEST	•			REV 3.5.M	

II. Test Notes

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Bluetooth and WIFI were disabled while testing 5G modes.
- 4. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).


B. OTT VoIP

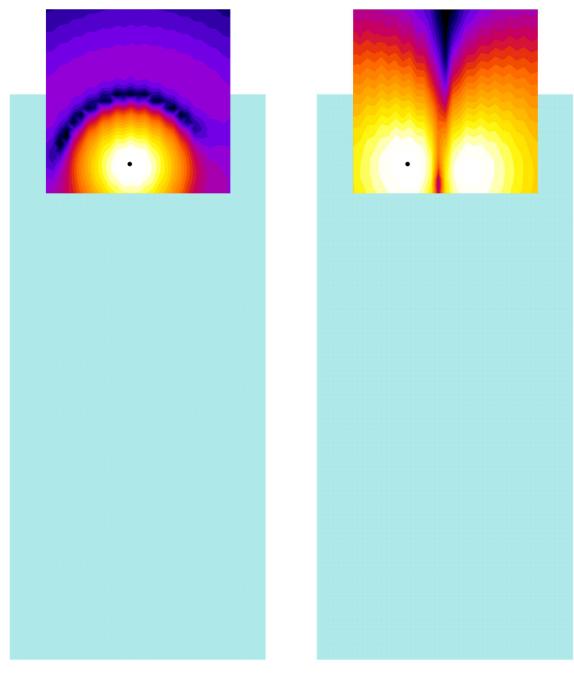
- 1. Vocoder Configuration: 75kbps
- 2. NR FDD Configuration
 - a. Power Configuration: TxAGC is set such that the DUT operates at max power.
 - b. Radio Configuration: DFT-s-OFDM π/2-BPSK, 1RB, 50% RB Offset
 - c. NR n71 was the worst-case band from Table 5-2 and was used to test both Axial and Radial probe orientations.
 - d. Due to equipment limitations, ABM1 measurements were not possible. Therefore, additional ABM1 measurements with LTE OTT VoIP were used from the Original Certification Test Report and combined with NR ABM2 measurements to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR FDD n71 at 20MHz is the worst-case for the Axial probe orientation. NR FDD n71 at 5MHz bandwidth is the worst-case for the Radial probe orientation.
- 3. NR TDD Configuration
 - a. Power Configuration: TxAGC is set such that the DUT operates at max power.
 - b. Radio Configuration: DFT-s-OFDM, π /2-BPSK, 1RB, 50% RB Offset
 - c. Due to equipment limitations, ABM1 measurements were not possible. Therefore, additional ABM1 measurements with LTE OTT VoIP were used from the Original Certification Test Report and combined with NR ABM2 measurements to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR TDD n41 at 100MHz is the worst-case for the Axial probe orientation. NR TDD n41 at 20MHz bandwidth is the worst-case for the Radial probe orientation.

FCC ID: A3LSMG986W	Portest Prod to be pet of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dega 10 of 11	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 19 of 41	
© 2020 PCTEST	•	•		REV 3.5.M	

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for OTT VoIP. This measurement was taken in the axial configuration above the maximum location.


IV. T-Coil Validation Test Results

Helmholtz Coil Validation Table of Results							
Item	Result	Verdict					
Axial							
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.952	PASS				
Environmental Noise	< -58 dBA/m	-58.13	PASS				
Frequency Response, from limits	> 0 dB	0.80	PASS				
Radial							
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.059	PASS				
Environmental Noise	< -58 dBA/m	-58.89	PASS				
Frequency Response, from limits	> 0 dB	0.80	PASS				

Table 6-4Helmholtz Coil Validation Table of Results

FCC ID: A3LSMG986W	PCTEST Nová la De port al & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 00 of 44	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 20 of 41	
© 2020 PCTEST	•			REV 3.5.M	

V. ABM1 Magnetic Field Distribution Scan Overlays

Axial

Radial (Transverse)

Figure 6-1 T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: A3LSMG986W	PCTEST Houd to be pet al @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 21 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 21 of 41
© 2020 PCTEST				REV 3.5.M

MEASUREMENT UNCERTAINTY 7.

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty	/, uc (k=1)					17.7%	0.71
Expanded uncertainty (k=2),	95% cont	idence lev	/el			35.3%	1.31

Table 7-1 **Uncertainty Estimation Table**

Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297. 1.

All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in 2

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: A3LSMG986W	PCTEST Proof to be post of @ internet	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 00 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 22 of 41
© 2020 PCTEST				REV 3.5.M

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including ph and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report of the report of and microfilm, without permission in writing from PCTES of contents thereof, please contact INFO@PCTEST.COM.

8. EQUIPMENT LIST

Table 8-1 Equipment List

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291463
Dell	Latitude E6540	SoundCheck Acoustic Analyzer Laptop	9/6/2018	Biennial	9/6/2020	2655082910
Listen	SoundConnect	Microphone Power Supply	9/6/2018	Biennial	9/6/2020	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/6/2018	Biennial	9/6/2020	23792992
Seekonk	NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	21053
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1129
TEM	Helmholtz Coil	Helmholtz Coil	10/10/2018	Biennial	10/10/2020	SBI 1052

FCC ID: A3LSMG986W	Portest Prod to be pet of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 22 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 23 of 41
© 2020 PCTEST	•	•		REV 3.5.M

REV 3.5.M 3/2/2020

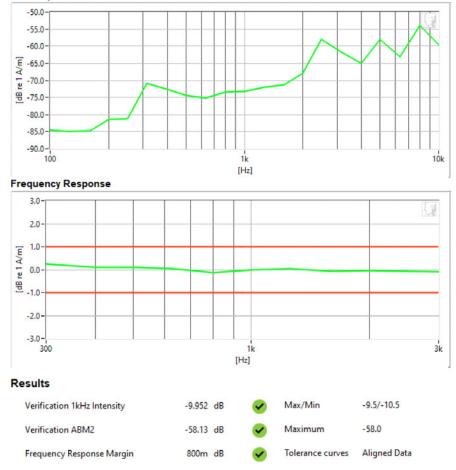
9. TEST DATA

FCC ID: A3LSMG986W	PCTEST Proved to be poet of @ interset	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 04 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 24 of 41
© 2020 PCTEST		•		REV 3.5.M

3/2/2020

3/16/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

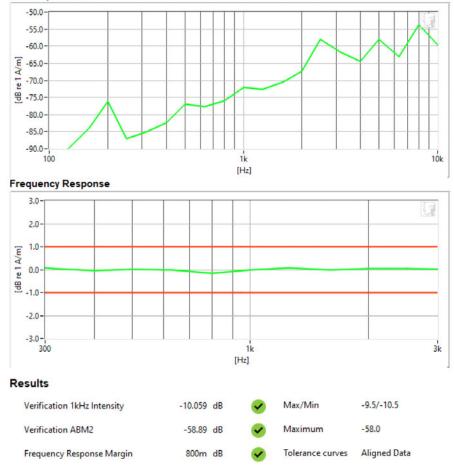
Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMG986W	PCTEST Proud to be port at @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 25 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 25 of 41
© 2020 PCTEST	•			REV 3.5.M

3/16/2020


DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

PCTEST 2020

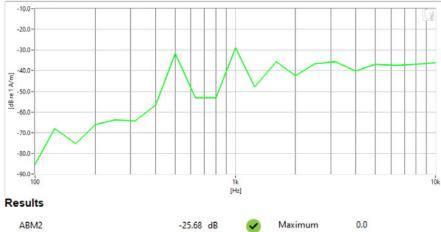
FCC ID: A3LSMG986W	PCTEST Proud to be port of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 26 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 26 of 41
© 2020 PCTEST	•	· ·		REV 3.5.M

3/20/2020

DUT: A3LSMG986W Type: Portable Handset

Serial: 0268M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: NR TDD n41
- Bandwidth: 100MHz
- Channel: 513900

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMG986W	PCTEST Prod to be part at @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 27 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 27 of 41
© 2020 PCTEST		•		REV 3.5.M

3/20/2020

DUT: A3LSMG986W Type: Portable Handset

Serial: 0268M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

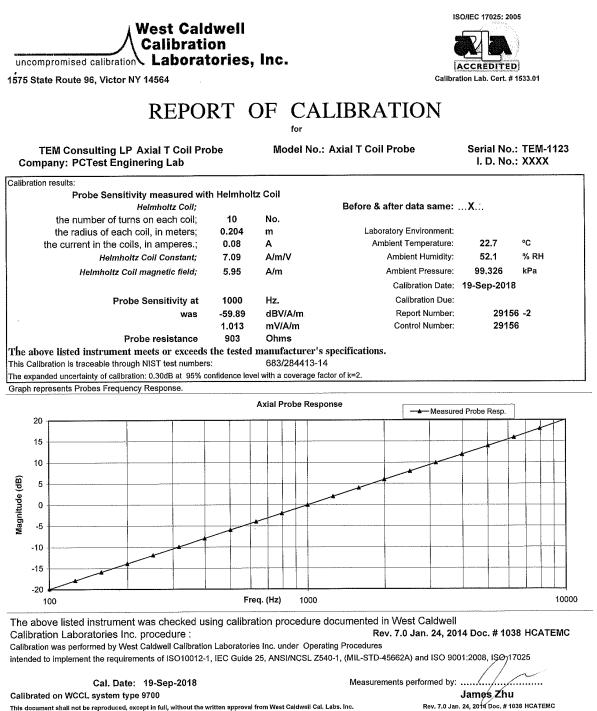
- VolP Application: Google Duo
- Mode: NR TDD n41
- · Bandwidth: 20MHz
- Channel: 535998

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMG986W	PCTEST Prod to be part at @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 29 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 28 of 41
© 2020 PCTEST		•		REV 3.5.M

10. CALIBRATION CERTIFICATES


FCC ID: A3LSMG986W	Portest Prod to be pet of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 20 of 44
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 29 of 41
© 2020 PCTEST	•	•		REV 3.5.M

REV 3.5.M 3/2/2020

West	Caldwell Ca	libration]	Laborato	ories Inc.	
Cort	ificate	of	alihı	otion	
	incate	UIU	and	auon	
		for			<u>e</u>
	AXIA Manufactured	L T COIL PROE	E Em consulti	NG LP	
	Model No:	АУ	KIAL T COIL P		
	Serial No: Calibration R		EM-1123 156		1.000 c
		Submitted By:			
	Customer:	Andrew Har	well		
	Company: Address:	PCTest Engi 6660-B Dobl	••		
		Columbia		MD 21045	
submitter.	ies that the instrumen			-	
	ration Laboratories P		AXIAL T C TEM		1000
	ibration, the instrume	nt was tound to d	e:	V aA 12/4/2019	
Withi	n (X)				S
	cated specification. Se plied relates to the cal	-			
West Caldwell Calib	ration Laboratories' c 5662A, ANSI/NCSL Z	alibration contro	l system meets t		1.000
Note: With this Certificate	e, Report of Calibration is	included.	Approved	l by: Fc	1000 1000 1000 1000 1000 1000
Calibration Date:	19-Sep-18		Felix Chi	ristopher (QA Mgr.)	
Certificate No:	29156 -2		150	/IEC 17025:2005	
QA Doc. #1051 Rev. 2.0 10/1/01		ificate Page 1 of 1			Ċ
\/	Nest Caldwell Calibration		Į		
uncompromised calibration				CCREDITED	

FCC ID: A3LSMG986W	PCTEST Proud & be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 20 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 30 of 41
© 2020 PCTEST	•			REV 3.5.M

HCATEMC_TEM-1123_Sep-19-2018

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Page 1 of 2

FCC ID: A3LSMG986W	POTEST Provid to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 21 of 11
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 31 of 41
© 2020 PCTEST	•	-		REV 3.5.M

^{3/2/2020}

HCATEMC_TEM-1123_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564

Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab for Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Test	Function	Tolera	Tolerance		Measured values		
•••••				Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-59.89			
	······································		dB			-	
2.0	Probe Level Linearity		6	6.03			
		Ref. (0 dB)	0	0.00			
•			-6	-6.03			
			-12	-12.05			
	N****//		Hz				
3.0	Probe Frequency Response		100	-19.9			
			126	-17.9			
			158	-15.9			
			200	-13.9			
			251	-11.9			
			316	-9.9			
			398	-7.9			
			501	-6.0			
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	5.9			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
•			6310	15.9			
			7943	18.0			
			10000	20.1			

Instruments used for c	alibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

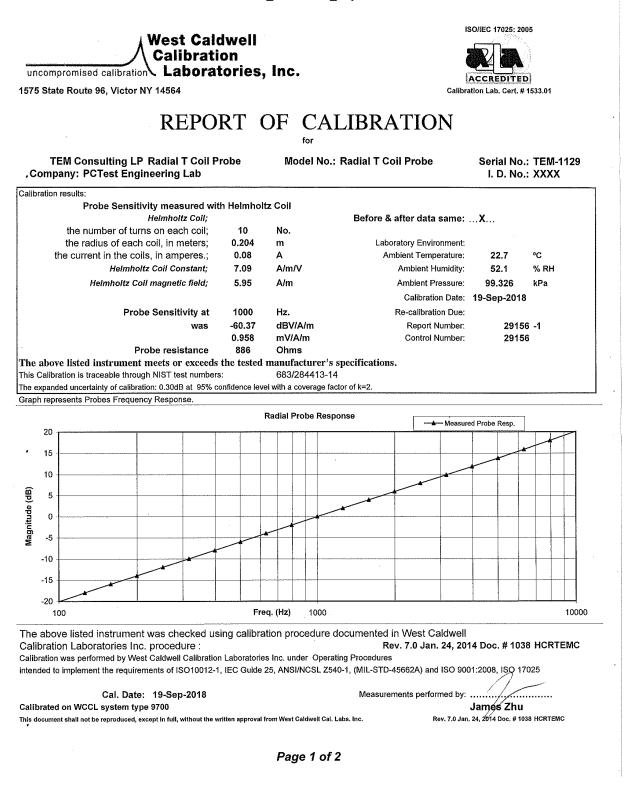
Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC


Page 2 of 2

FCC ID: A3LSMG986W	POTEST: Provid to be post of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dage 22 of 41	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 32 of 41	
© 2020 PCTEST	•	•		REV 3.5.M	

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		aldwell Calibrati	on Laboratories Inc.	
Manufactured by: TEM CONSULTING LP Model No: Model No: RADIAL T COLL PROBE Serial No: Serial No: TEM-1129 Calibration Recall No: Customer: Andrew Harwell Company: PCTest Engineering Lab Address: Address: 6660-B Dobbin Road Columbia MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C Upon receipt for Calibration, the instrument was found to be: July 44/2019 Within (X) 12/4/2019 tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. Max West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) Certificate No: 29156 -1 ISO/IEC 17025:2005	Certif		Calibration	
Model No: TEM-1129 Calibration Recall No: 29156 Submitted By: Submitted By: Customer: Andrew Harwell Company: PCTest Engineering Lab Address: Address: 6660-B Dobbin Road Columbia The subject Instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C MAC Upon receipt for Calibration, the instrument was found to be: MAC Vithin (X) 12/4/2018 Note: With this Certificate, Report of Calibration. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. Approved by: Fc. Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) Certificate No: 29156 -1 ISO/IEC 17025:2005				
Submitted By:Customer:Andrew HarwellCompany:CPC Test Engineering Lab:Address:G660-B Dobbin RoadColumbiaMD 21045The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.West Caldwell Calibration Laboratories Procedure No.RADIAL T TEMC Upon receipt for Calibration, the instrument was found to be: $I2/4/2013$ Within(X) $I2/4/2013$ tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO JO12-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.Note: With the Certificate. Report of Calibration is included.Approved by: FCCalibration Date:19-Sep-18Felix Christopher (QA Mgr.)Certificate No:2915 f-1ISO/IEC 17025:2005		Model No: Serial No:	RADIAL T COIL PROBE TEM-1129	
Customer: Andrew Harwell Company: PCTest Engineering Lab: Address: 6660-B Dobbin Road Columbia MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration, the instrument was found to be: July 1/2018 Within (X.) Within (X.) Note: With this Certification Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate. Note: With this Certificate. Peppore of Calibration is included. Approved by: FC. Calibration Date: 19-Sep-18 Certificate No: 29156 -1				1000
Company: Address:PCTest Engineering Lab 660-B Dobbin Road ColumbiaMD 21045The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.West Caldwell Calibration Laboratories Procedure No.RADIAL T TEMC Upon receipt for Calibration, the instrument was found to be: $1244/2018$ Within(X)tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.Note: With this Certificate, Report of Calibration is included.Approved by: FCCalibration Date:19-Sep-18Felix Christopher (QA Mgr.)Certificate No:29156 -1ISO/IEC 17025:2005			-	8
Address: 6660-B Dobbin Road Columbia MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C Mest Calibration, the instrument was found to be: Image: Comparison of Calibration. 12/4/2018 Vithin (X) 12/4/2018 tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. Image: Comparison of Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) Certificate No: 29156 -1 ISO/IEC 17025:2005				1000
National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C Upon receipt for Calibration, the instrument was found to be: Image: Constant in the instrument was found to be: Within (X) tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) ISO/IEC 17025:2005		Address: 6660-H	3 Dobbin Road	
Upon receipt for Calibration, the instrument was found to be: July 44/2018 Within (X) tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) ISO/IEC 17025:2005	National Institute of Star This document certifies t	ndards and Technology or to	accepted values of natural physical constants.	
Within (X) tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) ISO/IEC 17025:2005				
Within (X) tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) ISO/IEC 17025:2005	Upon receipt for Calibra	ition, the instrument was foun	ad to be: $V / V N$	
The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025. Note: With this Certificate, Report of Calibration is included. Approved by: FC. Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) Certificate No: 29156 -1 ISO/IEC 17025:2005	Within	(X)	127-1122 0	9
Calibration Date: 19-Sep-18 Felix Christopher (QA Mgr.) Certificate No: 29156 -1 ISO/IEC 17025:2005	The information supplie West Caldwell Calibrati	d relates to the calibrated iten on Laboratories' calibration of	n listed above. control system meets the requirements, ISO	
Certificate No: 29156 -1 ISO/IEC 17025:2005	Note: With this Certificate, R	eport of Callbration is included.	Approved by: FC	9
ISO/IEC 17025:2005	Calibration Date:	19-Sep-18	Felix Christopher (QA Mgr.)	
ISO/IEC 17025:2005		29156 -1		
		**	ISO/IEC 17025:2005	G
West Caldwell	Certificate No:	Certificate Page	1 of 1	Si Can
compromised calibration Laboratories, Inc.	Certificate No: QA Doc. #1051 Rov. 2.0 10/1/01	st Caldwell	1 of 1	

FCC ID: A3LSMG986W	PCTEST Proof to be port of the internet	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 22 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 33 of 41
© 2020 PCTEST				REV 3.5.M

HCRTEMC_TEM-1129_Sep-19-2018

 FCC ID: A3LSMG986W
 Image: Test Dates:
 DUT Type:

 1M2003120045-15.A3L
 3/16/2020 - 3/20/2020
 Portable Handset

REV 3.5.M 3/2/2020

HCRTEMC_TEM-1129_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab ^{for} Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Test	Function	Tolera	Tolerance		Measured values		
				Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37			
			dB				
2.0	Probe Level Linearity		6	6.03			
		Ref. (0 dB)	0	0.00			
			-6	-6.03			
			-12	-12.05			
			Hz				
3.0	Probe Frequency Response		100	-20.0			
			126	-17.9			
			158	-15.9			
			200	-14.0			
			251	-12.0			
			316	-10.0			
			398	-8.0			
			501	-6.0			
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	6.0			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
			6310	15.9			
			7943	18.0			
			10000	20.1			

Instruments used for a	alibration:		Date of Cal.	Traceability No.	Due Date
' HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMG986W	PCTEST Proud to be port of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 25 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 35 of 41
© 2020 PCTEST	<u>.</u>	<u>.</u>		REV 3.5.M

11. CONCLUSION

The measurements indicate that NR modes of the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMG986W	PCTEST Proved to be poet at & dimensional	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dage 26 of 41	
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 36 of 41	
© 2020 PCTEST				REV 3.5.M	

REV 3.5.M 3/2/2020

12. REFERENCES

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- 2. FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.

FCC ID: A3LSMG986W	PCTEST Proved to be poet of & internet	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dego 27 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		Page 37 of 41
© 2020 PCTEST	•	· ·		REV 3.5.M

- Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMG986W	PCTEST Proof to be perford & internet	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 41
1M2003120045-15.A3L	3/16/2020 - 3/20/2020	Portable Handset		
© 2020 PCTEST				REV 3.5.M