

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 / ISED RSS-247 WLAN 802.11b/g/n/ax

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 10/11/19 - 01/20/20 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1911010179-04.A3L

FCC ID: IC:

A3LSMG986W

649E-SMG986W

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model/HVIN: EUT Type: Frequency Range: FCC Classification: FCC Rule Part(s): ISED Specification: Test Procedure(s): Certification SM-G986W Portable Handset 2412 – 2462MHz Digital Transmission System (DTS) Part 15 Subpart C (15.247) RSS-247 Issue 2 ANSI C63.10-2013, KDB 558074 D01 v05r02, KDB 662911 D01 v02r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 1 of 103
© 2020 PCTEST	•	·		V 9.0 02/01/2019

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	7
	2.4	EMI Suppression Device(s)/Modifications	7
3.0	DESC	CRIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	AC Line Conducted Emissions	8
	3.3	Radiated Emissions	9
	3.4	Environmental Conditions	9
4.0	ANTE	ENNA REQUIREMENTS	10
5.0	MEAS	SUREMENT UNCERTAINTY	11
6.0	TEST	EQUIPMENT CALIBRATION DATA	12
7.0	TEST	RESULTS	13
	7.1	Summary	13
	7.2	6dB Bandwidth Measurement	14
	7.3	Output Power Measurement	29
	7.4	Power Spectral Density	
	7.5	Conducted Emissions at the Band Edge	51
	7.6	Conducted Spurious Emissions	64
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	72
		7.7.1 SISO Antenna-1 Radiated Spurious Emission Measurements	75
		7.7.2 SISO Antenna-2 Radiated Spurious Emission Measurements	79
		7.7.3 MIMO/CDD Radiated Spurious Emission Measurements	83
		7.7.4 SISO Antenna-1 Radiated Restricted Band Edge Measurements	87
		7.7.5 SISO Antenna-2 Radiated Restricted Band Edge Measurements	89
		7.7.6 CDD Radiated Restricted Band Edge Measurements	
		7.7.7 MIMO Radiated Restricted Band Edge Measurements	93
	7.8	Radiated Spurious Emissions Measurements – Below 1GHz	95
	7.9	Line-Conducted Test Data	99
8.0	CONC	CLUSION	.103

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 2 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 2 of 103
© 2020 PCTEST	-	·		V 9.0 02/01/2019

MEASUREMENT REPORT

			1A	NT1			1A	√T2			CDD/	MIMO	
	Ty Freework	Avg Cor	nducted	Peak Co	onducted	Avg Co	nducted	Peak Co	nducted	Avg Co	nducted	Peak Co	onducted
Mode	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)										
802.11b	2412 - 2462	119.399	20.77	203.704	23.09	122.462	20.88	223.357	23.49		N	/A	
802.11g	2412 - 2462	61.944	17.92	223.357	23.49	62.517	17.96	277.332	24.43	119.399	20.77	481.948	26.83
802.11n	2412 - 2462	58.345	17.66	225.944	23.54	62.517	17.96	304.789	24.84	117.220	20.69	530.884	27.25
802.11ax	2412 - 2462	45.499	16.58	194.536	22.89	47.098	16.73	249.459	23.97	48.865	16.89	278.612	24.45
	EUT Overview												

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 3 of 103
© 2020 PCTEST				V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 4 of 103
© 2020 PCTEST				V 9 0 02/01/2019

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMG986W**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0306M, 0071M, 0388M, 0337M, 0930H, 0764H

2.2 Device Capabilities

This device contains the following capabilities:

850 CDMA/EvDO Rev0/A, 1x Advanced (BC0), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (n71, n66, n41), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE), NFC, ANT+, Wireless Power Transfer

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles					
	ANT1	ANT2	MIMO/CDD		
802.11 Mode/Band		Duty Cycle	Duty Cycle [%]		
	[%]	[%]	Duty Cycle [%]		
b	99.9	99.9	N/A		
g	98.7	98.8	99.0		
n	98.7	98.7	98.7		
ax - SU	93.0	92.6	96.9		
	ode/Band b g n	ANT1 ode/Band Duty Cycle [%] 99.9 g 98.7 n 98.7	ANT1 ANT2 ode/Band Duty Cycle Duty Cycle [%] [%] [%] b 99.9 99.9 g 98.7 98.8 n 98.7 98.7		

Table 2-2. Measured Duty Cycles

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 5 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SDM		MIMO/CDD	
		ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11b	✓	✓	×	×	×	×
0.4011	11g	✓	✓	×	×	✓	✓
2.4GHz	11n	✓	✓	✓	✓	✓	✓
	11ax	✓	✓	✓	√	✓	✓

Table 2-3. Frequency / Channel Operations

 \checkmark = Support ; * = NOT Support

SISO = Single Input Single Output

CDD = Cyclic Delay Diversity

SDM = Spatial Diversity Multiplexing – MIMO function

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b) 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n) 13/14.4Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 78/86.7Mbps, 104/115.6Mbps, 117/130Mbps, 130/144.4Mbps (MIMO n)

This device supports simultaneous transmission operation, which allows for two SISO channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna. The following tables show the worst case configurations determined during testing. The data for these configurations is contained in the UNII test report.

Configuration 1: ANT1 transmitting in 2.4GHz mode and ANT2 in 5GHz mode

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1	2
Channel	6	157
Operating Frequency (MHz)	2437	5785
Data Rate (Mbps)	1	6.5/7.2
Mode	b	n

Table 2-4. Config-1 (ANT1 2.4GHz & ANT2 5GHz)

Configuration 2: ANT1 transmitting in 5GHz mode and ANT2 in 2.4GHz mode

Description	2.4 GHz Emission	5 GHz Emission
Antenna	2	1
Channel	6	149
Operating Frequency (MHz)	2437	5745
Data Rate (Mbps)	1	6
Mode	b	а

Table 2-5. Config-2 (ANT1 5GHz & ANT2 2.4GHz)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 6 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 6 of 103
© 2020 PCTEST				V 9.0 02/01/2019

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1, 2	1, 2
Channel	6	165
Operating Frequency (MHz)	2437	5825
Data Rate (Mbps)	6	6.5/7.2
Mode	g	n

Configuration 3: ANT1 and ANT2 both transmitting in 2.4GHz and 5GHz modes simultaneously

Table 2-6. Config-3 (ANT1 MIMO & ANT2 MIMO)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 7 of 103
© 2020 PCTEST				V 9.0.02/01/2019

DESCRIPTION OF TESTS 3.0

3.1 **Evaluation Procedure**

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz - 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT. support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 8 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 8 of 103
© 2020 PCTEST	•	•		V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 9 of 103	
© 2020 PCTEST		•		V 9 0 02/01/2019	

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 10 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 11 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	6/5/2019	Annual	6/5/2020	WL25-1
-	WL25-2	Conducted Cable Set (25GHz)	6/3/2019	Annual	6/3/2020	WL25-2
Agilent	N9038A	MXE EMI Receiver	7/17/2019	Annual	7/17/2020	MY51210133
Agilent	N9020A	MXA Signal Analyzer	4/20/2019	Annual	4/20/2020	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	6/12/2019	Annual	6/12/2020	MY52350166
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	5/10/2019	Annual	5/10/2020	441112
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	6/7/2018	Triennial	6/7/2021	9203-2178
Emco	3160-09	Small Horn (18 - 26.5GHz)	8/9/2018	Biennial	8/9/2020	00135427
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	6/18/2018	Biennial	6/18/2020	114451
Keysight Technologies	N9020A	MXA Signal Analyzer	4/29/2019	Annual	4/29/2020	MY54500644
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	6/3/2019	Annual	6/3/2020	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	6/5/2019	Annual	6/5/2020	100342
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 12 of 103	
© 2020 PCTEST	-	•		V 9.0 02/01/2019	

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Samsung</u>	Electronics Co.,	Ltd.
------------------------------	------------------	------

FCC ID: <u>A3LSMG986W</u>

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions ≥ 20dBc			PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.1.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 13 of 103
© 2020 PCTEST	•	·		V 9.0 02/01/2019

7.2 6dB Bandwidth Measurement §15.247(a.2); RSS-247 [5.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 14 of 103	
© 2020 PCTEST	•			V 9.0 02/01/2019	

SISO Antenna-1 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.086	0.500
2437	6	b	1	8.074	0.500
2462	11	b	1	8.562	0.500
2412	1	g	6	15.23	0.500
2437	6	g	6	16.05	0.500
2462	11	g	6	15.22	0.500
2412	1	n	6.5/7.2 (MCS0)	15.23	0.500
2437	6	n	6.5/7.2 (MCS0)	16.71	0.500
2462	11	n	6.5/7.2 (MCS0)	15.22	0.500
2412	1	ax	8.6 (MCS0)	16.79	0.500
2437	6	ax	8.6 (MCS0)	18.06	0.500
2462	11	ax	8.6 (MCS0)	18.07	0.500

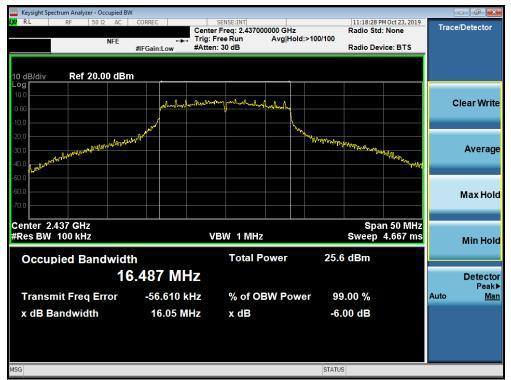
Table 7-2. Conducted Bandwidth Measurements SISO ANT1

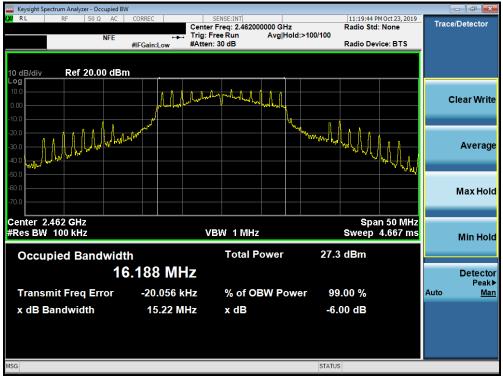
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 15 of 103
© 2020 PCTEST				V 9.0 02/01/2019



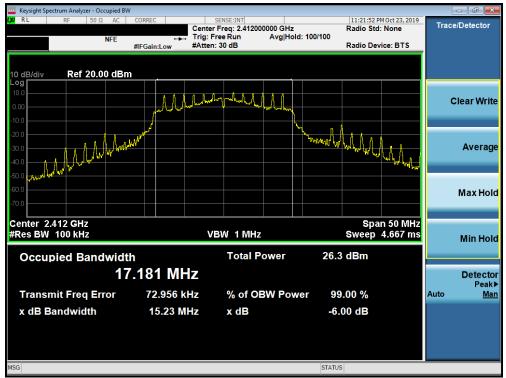
Plot 7-2. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 6)

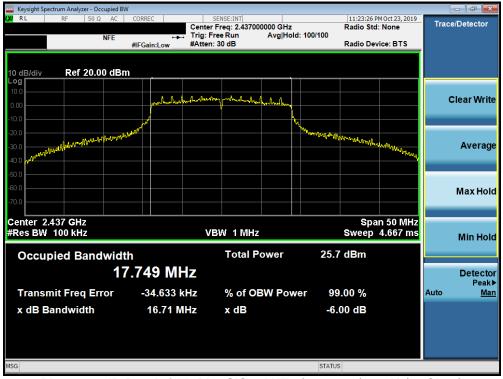
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	ortable Handset		Page 16 of 103	
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019	



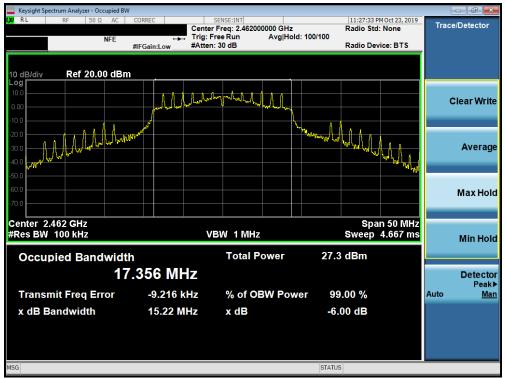

Plot 7-4. 6dB Bandwidth Plot SISO ANT1 (802.11g - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 17 of 103	
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019	



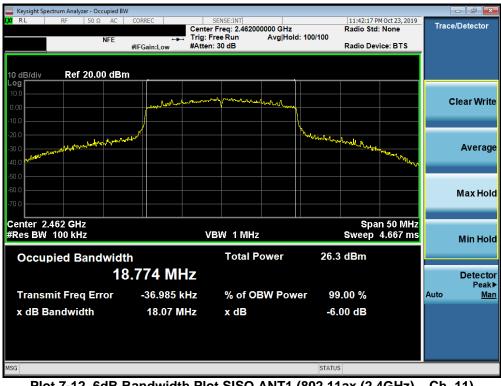

Plot 7-6. 6dB Bandwidth Plot SISO ANT1 (802.11g - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 100
1M1911010179-04.A3L	10/11/19 - 01/20/20	D Portable Handset		Page 18 of 103
© 2020 PCTEST	·	·		V 9.0 02/01/2019



Plot 7-8. 6dB Bandwidth Plot SISO ANT1 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 19 of 103	
© 2020 PCTEST				V 9.0 02/01/2019	


Plot 7-10. 6dB Bandwidth Plot SISO ANT1 (802.11ax (2.4GHz) - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 20 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019	

Keysight Spectrum Analyzer - Occupied BV							
α RL RF 50 Ω AC	🛶 Trig		Hz Hold:>100/100	Radio Std		Trace	/Detector
	#IFGain:Low #At	ten: 30 dB		Radio Dev	vice: BTS		
0 dB/div Ref 20.00 dBn	<u>ו</u>		_				
10.0						~	lear Writ
).00	- Antone	man man have have have have have have have have	~~~~ <mark>1</mark>			Ľ	lear write
0.0	— <u> </u> — — —						
0.0	More		Muhanda				
0.0 0.0 0.0 physicher of the standard of the s				A REAL AND AND AND A	Much March And		Averag
0.0							
60.0							Max Hol
0.0						_	_
enter 2.437 GHz				Spa	n 50 MHz		
Res BW 100 kHz		VBW 1 MHz		Sweep	4.667 ms		Min Ho
Occupied Bandwidt	h	Total Power	25.4	4 dBm			
							-
31	8.761 MHz						Detect
Transmit Freq Error	-52.737 kHz	% of OBW P	ower 99	9.00 %		Auto	Ma
x dB Bandwidth	18.06 MHz	x dB	-6.	00 dB			
G			STATU	s			

Plot 7-11. 6dB Bandwidth Plot SISO ANT1 (802.11ax (2.4GHz) - Ch. 6)

Plot 7-12. 6dB Bandwidth Plot SISO ANT1 (802.11ax (2.4GHz) – Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 01 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 21 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019	

SISO Antenna-2 6 dB Bandwidth Measurements


Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.078	0.500
2437	6	b	1	8.062	0.500
2462	11	b	1	8.538	0.500
2412	1	g	6	15.24	0.500
2437	6	g	6	15.72	0.500
2462	11	g	6	15.21	0.500
2412	1	n	6.5/7.2 (MCS0)	15.24	0.500
2437	6	n	6.5/7.2 (MCS0)	15.22	0.500
2462	11	n	6.5/7.2 (MCS0)	15.22	0.500
2412	1	ax	8.6 (MCS0)	17.97	0.500
2437	6	ax	8.6 (MCS0)	16.81	0.500
2462	11	ax	8.6 (MCS0)	18.15	0.500

Table 7-3. Conducted Bandwidth Measurements SISO ANT2

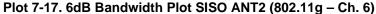
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20		Page 22 of 103	
© 2020 PCTEST	<u>.</u>	•		V 9.0 02/01/2019

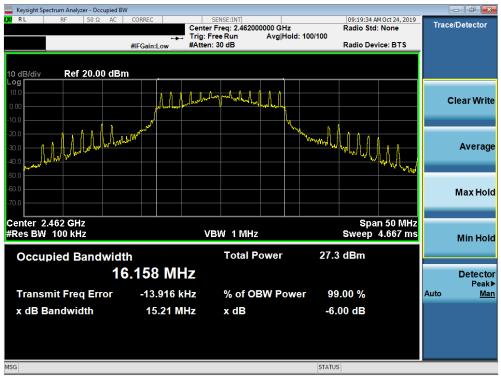



Plot 7-14. 6dB Bandwidth Plot SISO ANT2 (802.11b - Ch. 6)

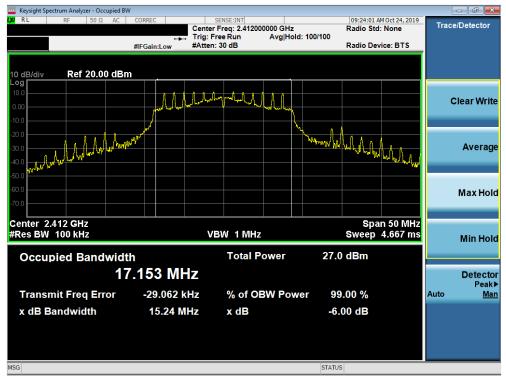
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 23 of 103
© 2020 PCTEST	-	•		V 9.0 02/01/2019





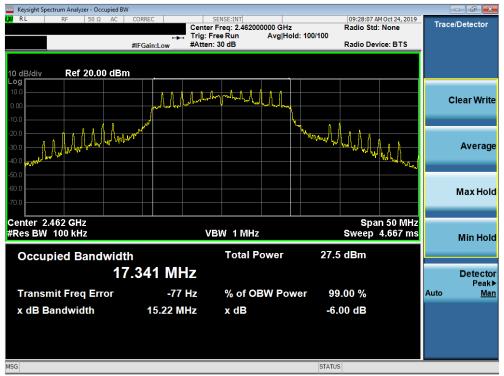

Plot 7-16. 6dB Bandwidth Plot SISO ANT2 (802.11g - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 24 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 24 of 103
© 2020 PCTEST	•	•		V 9.0 02/01/2019



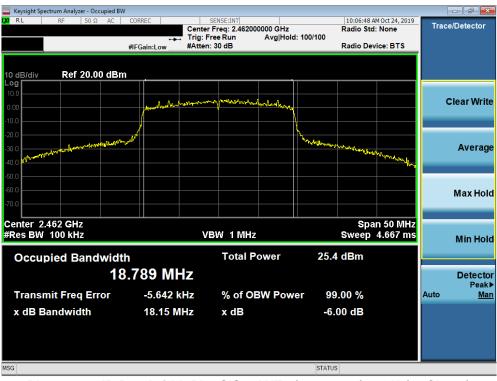
Plot 7-18. 6dB Bandwidth Plot SISO ANT2 (802.11g - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20		Page 25 of 103		
© 2020 PCTEST	·	•		V 9.0 02/01/2019	



Plot 7-20. 6dB Bandwidth Plot SISO ANT2 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 26 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 26 of 103	
© 2020 PCTEST	·			V 9.0 02/01/2019	


Plot 7-22. 6dB Bandwidth Plot SISO ANT2 (802.11ax (2.4GHz) - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 100	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 27 of 103	
© 2020 PCTEST	·	•		V 9.0 02/01/2019	

Keysight Spectrum Analyzer - Occupied BW						_	
XIRL RF 50Ω AC	CORREC	SENSE:INT Center Freg: 2.43700	0000 GHz	10:04:33 A Radio Std	M Oct 24, 2019	Trace	/Detector
		Trig: Free Run #Atten: 30 dB	/100 Radio Dev	vice: BTS			
10 dB/div Ref 20.00 dBm							
Log 10.0 0.00	- Andrew Andrew	haven have have the	hartenting			с	lear Write
20.0 30.0 40.0				nongeneration and and and and and and and and and an	March and the		Average
-50.0							Max Hold
Center 2.437 GHz #Res BW 100 kHz		VBW 1 MHz			n 50 MHz 4.667 ms		Min Hold
Occupied Bandwidth	ı	Total P	ower	25.5 dBm			
	.682 MH	Z					Detector Peak
Transmit Freq Error	5.935 k⊦	Iz % of OE	3W Power	99.00 %		Auto	Mar
x dB Bandwidth	16.81 MH	iz xdB		-6.00 dB			
ISG				STATUS			

Plot 7-23. 6dB Bandwidth Plot SISO ANT2 (802.11ax (2.4GHz) - Ch. 6)

Plot 7-24. 6dB Bandwidth Plot SISO ANT2 (802.11ax (2.4GHz) - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 28 of 103
© 2020 PCTEST				V 9.0 02/01/2019

7.3 Output Power Measurement §15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v05r02 – Section 8.3.1.3 PKPM1 Peak-reading Power Meter Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v05r02 – Section 8.3.2.3 Measurement using a Power Meter (PM) ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 29 of 103
© 2020 PCTEST	•	•		V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector		IEEE Transn	nission Mode		Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				802.11b	802.11g	802.11n	802.11ax	[dBm]	Margin [dB]	[ubi]	[ubiii]	1	
N	2412	1	AVG	20.51	17.92	17.35	16.47	30.00	-9.49	-6.46	14.05	36.02	-21.97
I			PEAK	22.91	23.49	23.32	22.54	30.00	-6.51	-6.46	17.03	36.02	-18.99
Ģ	2437	6	AVG	20.38	17.54	17.36	16.31	30.00	-9.62	-6.74	13.64	36.02	-22.38
7 5			PEAK	22.84	23.10	23.54	22.89	30.00	-6.46	-6.74	16.80	36.02	-19.22
"	2457	10	AVG	20.40	17.72	17.66	16.58	30.00	-9.60	-6.74	13.66	36.02	-22.36
			PEAK	22.88	23.39	23.38	22.83	30.00	-6.61	-6.74	16.65	36.02	-19.37
	2462	11	AVG	20.77	16.68	16.39	14.06	30.00	-9.23	-6.86	13.91	36.02	-22.11
			PEAK	23.09	23.01	22.68	22.54	30.00	-6.91	-6.86	16.23	36.02	-19.79

Table 7-4. Conducted Output Power Measurements SISO ANT1

	Freq [MHz]	Channel	Detector	IEEE Transmission Mode				Conducted Power Limit	Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				802.11b	802.11g	802.11n	802.11ax	[dBm]	Margin [dB]	[ubi]	[ubiii]		Margin [ab]
N	2412	1	AVG	20.86	17.25	17.15	16.73	30.00	-9.14	-6.43	14.43	36.02	-21.59
н			PEAK	23.32	23.87	23.92	23.87	30.00	-6.08	-6.43	17.49	36.02	-18.53
Ģ	2437	6	AVG	20.88	17.96	17.96	16.70	30.00	-9.12	-6.81	14.07	36.02	-21.95
2.4			PEAK	23.49	24.43	24.84	23.97	30.00	-5.16	-6.81	18.03	36.02	-17.99
~	2457	10	AVG	20.37	17.76	17.69	16.26	30.00	-9.63	-6.45	13.92	36.02	-22.10
			PEAK	22.82	23.71	23.81	23.21	30.00	-6.19	-6.45	17.36	36.02	-18.66
	2462	11	AVG	19.25	16.45	16.35	14.01	30.00	-10.75	-6.45	12.80	36.02	-23.22
			PEAK	21.82	23.27	23.21	22.39	30.00	-6.73	-6.45	16.82	36.02	-19.20

Table 7-5. Conducted Output Power Measurements SISO ANT2

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[]		margin [ab]
N	2412	1	AVG	17.92	17.25	20.61	30.00	-9.39	-3.43	17.18	36.02	-18.85
I			PEAK	23.49	23.87	26.69	30.00	-3.31	-3.43	23.26	36.02	-12.77
Ū.	2437	6	AVG	17.54	17.96	20.77	30.00	-9.23	-3.76	17.01	36.02	-19.02
5.4			PEAK	23.10	24.43	26.83	30.00	-3.17	-3.76	23.07	36.02	-12.96
~	2457	10	AVG	17.72	17.76	20.75	30.00	-9.25	-3.58	17.17	36.02	-18.85
			PEAK	23.39	23.71	26.56	30.00	-3.44	-3.58	22.98	36.02	-13.04
	2462	11	AVG	16.68	16.45	19.58	30.00	-10.42	-3.64	15.94	36.02	-20.08
			PEAK	23.01	23.27	26.15	30.00	-3.85	-3.64	22.51	36.02	-13.51

Table 7-6. Conducted Output Power Measurements MIMO (802.11g)

	Freq [MHz] Channel		Channel Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[margin [ab]
N	2412	1	AVG	17.35	17.15	20.26	30.00	-9.74	-3.43	16.83	36.02	-19.20
I			PEAK	23.32	23.92	26.64	30.00	-3.36	-3.43	23.21	36.02	-12.82
Ū.	2437	6	AVG	17.36	17.96	20.68	30.00	-9.32	-3.76	16.92	36.02	-19.11
2.4			PEAK	23.54	24.84	27.25	30.00	-2.75	-3.76	23.49	36.02	-12.54
~	2457	10	AVG	17.66	17.69	20.69	30.00	-9.31	-3.58	17.11	36.02	-18.91
			PEAK	23.38	23.81	26.61	30.00	-3.39	-3.58	23.03	36.02	-12.99
	2462	11	AVG	16.39	16.35	19.38	30.00	-10.62	-3.64	15.74	36.02	-20.28
			PEAK	22.68	23.21	25.96	30.00	-4.04	-3.64	22.32	36.02	-13.70

Table 7-7. Conducted Output Power Measurements MIMO (802.11n)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 102
1M1911010179-04.A3L 10/11/19 - 01/20/20		Portable Handset	Page 30 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019

Freq [N	Freq [MHz]	lz] Channel	Channel	Channel	Channel	Detector	Cond	lucted Power [[dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	Lapud	Ennie [GBIII]	inci giri [db]			
N	2412	1	AVG	13.74	13.91	16.84	30.00	-13.16	-3.43	13.41	36.02	-22.62			
н			PEAK	21.09	21.76	24.45	30.00	-5.55	-3.43	21.02	36.02	-15.01			
0	2437	6	AVG	13.89	13.86	16.89	30.00	-13.11	-3.76	13.13	36.02	-22.90			
2.4			PEAK	21.31	21.57	24.45	30.00	-5.55	-3.76	20.69	36.02	-15.34			
~	2457	10	AVG	13.82	13.61	16.73	30.00	-13.27	-3.58	13.15	36.02	-22.87			
			PEAK	21.23	21.10	24.18	30.00	-5.82	-3.58	20.60	36.02	-15.42			
	2462	11	AVG	10.84	10.67	13.77	30.00	-16.23	-3.64	10.13	36.02	-25.89			
			PEAK	19.53	19.39	22.47	30.00	-7.53	-3.64	18.83	36.02	-17.19			

Table 7-8. Conducted Output Power Measurements MIMO (802.11ax)

Note:

Per ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 17.35 dBm for Antenna-1 and 17.15 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(17.35 dBm + 17.15 dBm) = (54.33 mW + 51.88 mW) = 106.21 mW = 20.26 dBm

Sample e.i.r.p. Calculation:

At 2412MHz in 802.11n mode, the average MIMO conducted power was calculated to be 20.26 dBm with directional gain of -3.45 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

20.26 dBm -3.45 dBi = 16.81 dBm

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 102
1M1911010179-04.A3L 10/11/19 - 01/20		Portable Handset		Page 31 of 103
© 2020 PCTEST		•		V 9 0 02/01/2019

7.4 Power Spectral Density §15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

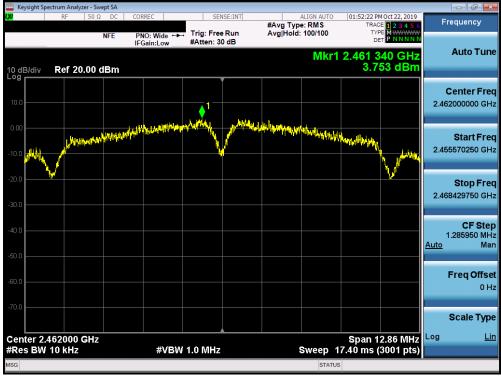
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 32 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 32 of 103	
© 2020 PCTEST				V 9.0 02/01/2019	

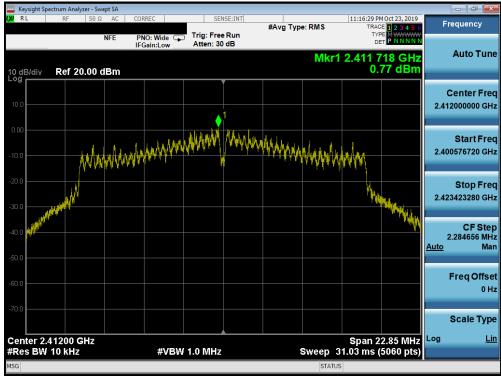

SISO Antenna-1 Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	4.24	8.00	-3.76	Pass
2437	6	b	1	3.93	8.00	-4.08	Pass
2462	11	b	1	3.75	8.00	-4.25	Pass
2412	1	g	6	0.77	8.00	-7.23	Pass
2437	6	g	6	-0.65	8.00	-8.65	Pass
2462	11	g	6	1.23	8.00	-6.77	Pass
2412	1	n	6.5/7.2 (MCS0)	1.65	8.00	-6.35	Pass
2437	6	n	6.5/7.2 (MCS0)	0.46	8.00	-7.54	Pass
2462	11	n	6.5/7.2 (MCS0)	2.65	8.00	-5.35	Pass
2412	1	ax	8.6 (MCS0)	-2.47	8.00	-10.47	Pass
2437	6	ax	8.6 (MCS0)	-3.00	8.00	-11.00	Pass
2462	11	ax	8.6 (MCS0)	-1.35	8.00	-9.35	Pass

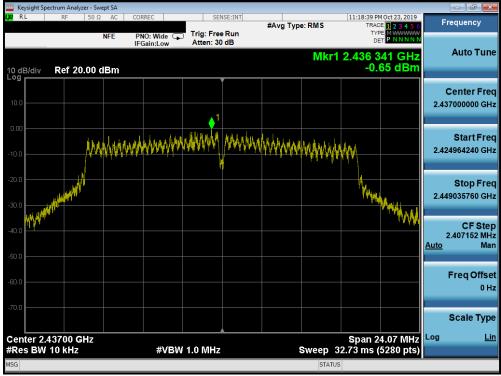
Table 7-9. Conducted Power Density Measurements SISO ANT1

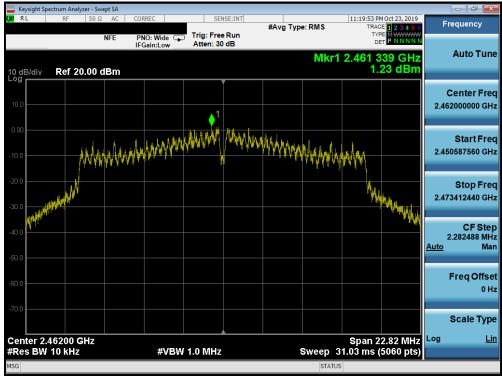
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	est Dates: EUT Type:		Dage 22 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 33 of 103
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-25. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 1)

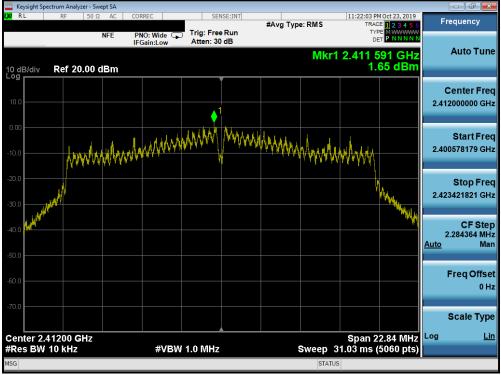

Plot 7-26. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 6)

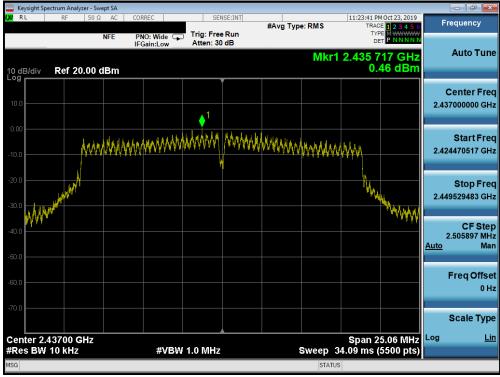
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 24 of 102
1M1911010179-04.A3L 10/11/19 - 01/20/20		Portable Handset	Page 34 of 103	
© 2020 PCTEST				V 9 0 02/01/2019


Plot 7-27. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 11)

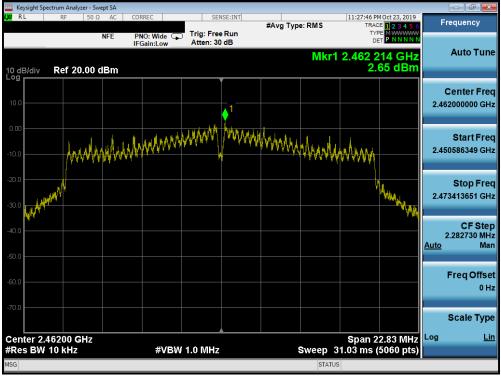

Plot 7-28. Power Spectral Density Plot SISO ANT1 (802.11g - Ch. 1)

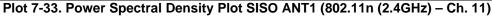
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 35 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

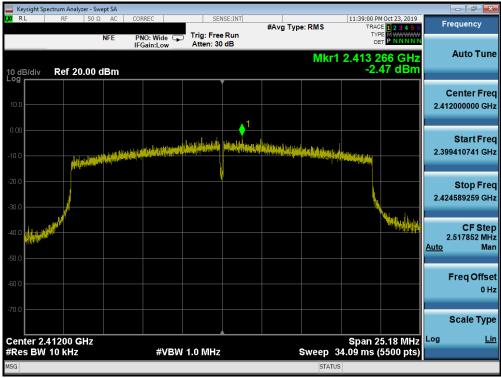

Plot 7-29. Power Spectral Density Plot SISO ANT1 (802.11g - Ch. 6)


Plot 7-30. Power Spectral Density Plot SISO ANT1 (802.11g - Ch. 11)

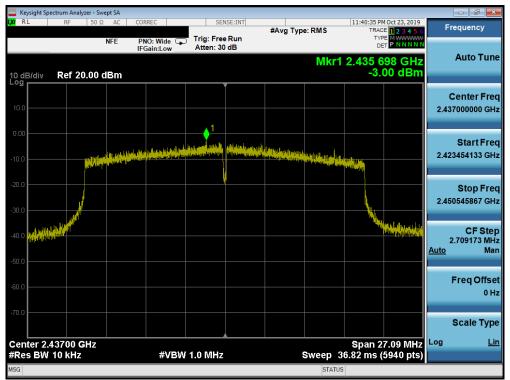
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 102
1M1911010179-04.A3L 10/11/19 - 01/20/20		Portable Handset	Page 36 of 103	
© 2020 PCTEST		•		V 9 0 02/01/2019

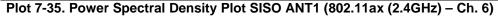


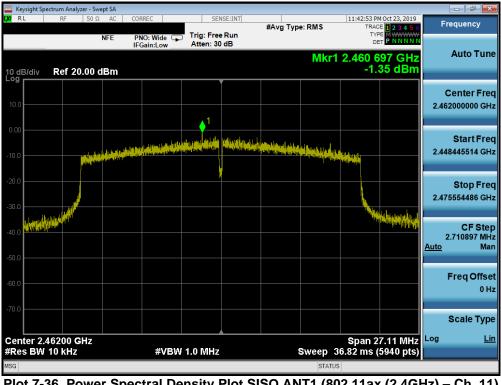



Plot 7-32. Power Spectral Density Plot SISO ANT1 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 27 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20		Page 37 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019






Plot 7-34. Power Spectral Density Plot SISO ANT1 (802.11ax (2.4GHz) - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 28 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 38 of 103
© 2020 PCTEST	-	•		V 9 0 02/01/2019

Plot 7-36. Power Spectral Density Plot SISO ANT1 (802.11ax (2.4GHz) - Ch. 11)

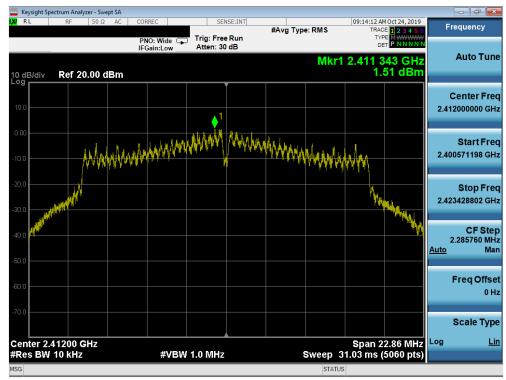
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 39 of 103	
© 2020 PCTEST		·		V 9.0 02/01/2019

SISO Antenna-2 Power Spectral Density Measurements

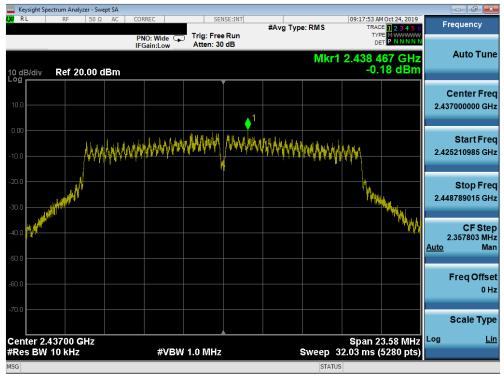
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	4.55	8.00	-3.45	Pass
2437	6	b	1	4.23	8.00	-3.77	Pass
2462	11	b	1	3.79	8.00	-4.21	Pass
2412	1	g	6	1.51	8.00	-6.49	Pass
2437	6	g	6	-0.18	8.00	-8.18	Pass
2462	11	g	6	1.49	8.00	-6.52	Pass
2412	1	n	6.5/7.2 (MCS0)	2.03	8.00	-5.97	Pass
2437	6	n	6.5/7.2 (MCS0)	0.50	8.00	-7.50	Pass
2462	11	n	6.5/7.2 (MCS0)	2.10	8.00	-5.90	Pass
2412	1	ax	8.6 (MCS0)	-6.73	8.00	-14.73	Pass
2437	6	ax	8.6 (MCS0)	-7.14	8.00	-15.14	Pass
2462	11	ax	8.6 (MCS0)	-6.65	8.00	-14.65	Pass

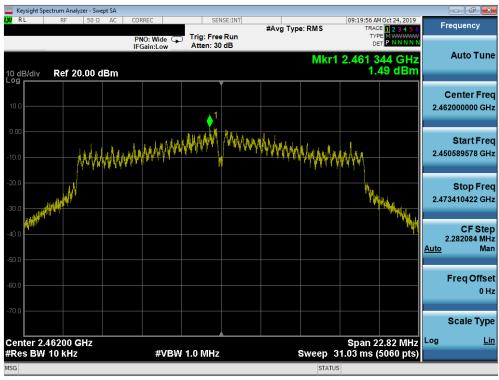
Table 7-10. Conducted Power Density Measurements SISO ANT2

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 402
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 40 of 103	
© 2020 PCTEST		·		V 9.0 02/01/2019


Plot 7-38. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 6)

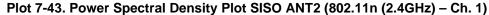
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 41 of 102
1M1911010179-04.A3L 10/11/19 - 01/20/20		Portable Handset		Page 41 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019


Plot 7-39. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 11)


Plot 7-40. Power Spectral Density Plot SISO ANT2 (802.11g - Ch. 1)

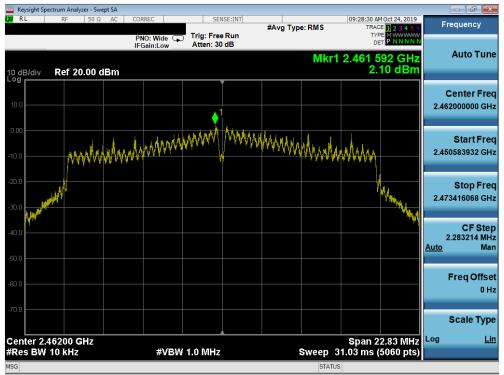
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 103		
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset				
© 2020 PCTEST				V 9 0 02/01/2019		

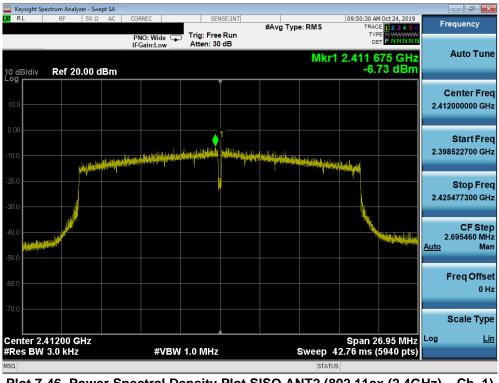
Plot 7-41. Power Spectral Density Plot SISO ANT2 (802.11g - Ch. 6)



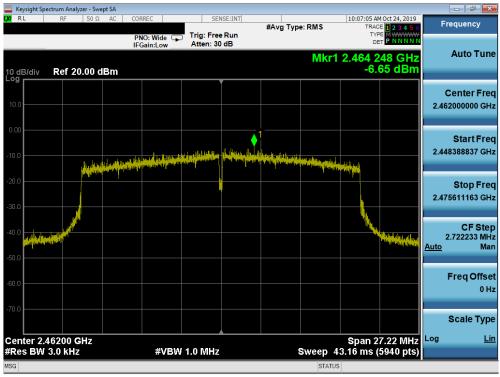
Plot 7-42. Power Spectral Density Plot SISO ANT2 (802.11g - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 402
1M1911010179-04.A3L 10/11/19 - 01/20/20 Portable Handset			Page 43 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019




Plot 7-44. Power Spectral Density Plot SISO ANT2 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 44 of 103
1M1911010179-04.A3L	10/11/19 - 01/20/20	10/11/19 - 01/20/20 Portable Handset		
© 2020 PCTEST	•	•		V 9.0 02/01/2019


Plot 7-46. Power Spectral Density Plot SISO ANT2 (802.11ax (2.4GHz) - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 45 of 103
© 2020 PCTEST	•	•		V 9.0 02/01/2019

	Spectrum A	nalyzer - Swe	ept SA									
LXI RL	RF	50 Ω	AC	CORREC		NSE:INT	#Avg Typ	e: RMS	TRAC	MOct 24, 2019 E 1 2 3 4 5 6 E M WWWW	F	requency
				PNO: Wide ⊂ IFGain:Low	Atten: 30			Miced	1 2.437 7			Auto Tune
10 dB/div Log	Ref	20.00 c	lBm					IVINI	-7.	41 GH2 14 dBm		
												Center Freq
10.0											2.43	7000000 GHz
0.00						1						Start Freq
-10.0			a til tandatila						անեւ .		2.42	4392840 GHz
-20.0		And a state of the		Lot	,							Stop Freq
-30.0						. <mark>.</mark>					2.44	9607160 GHz
-30.0										L.		CF Step
-40.0										The state of the second	: Auto	CF Step 2.521432 MHz Man
-50.0	11" 											
-60.0												Freq Offset 0 Hz
-70.0												• • •
												Scale Type
Center 2 #Res Bi				#\/P\	N 1.0 MHz			Swoon	Span 2 39.96 ms (5.21 MHz	Log	Lin
#Res Du	N 3.0 K	12		#VD				Sweep .		5500 pts)		

Plot 7-48. Power Spectral Density Plot SISO ANT2 (802.11ax (2.4GHz) - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 46 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 46 of 103	
© 2020 PCTEST				V 9.0 02/01/2019	

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	g	6	0.77	1.51	4.17	8.00	-3.83	Pass
2437	6	g	6	-0.65	-0.18	2.60	8.00	-5.40	Pass
2462	11	g	6	1.23	1.49	4.37	8.00	-3.63	Pass
2412	1	n	6.5/7.2 (MCS0)	1.65	2.03	4.86	8.00	-3.14	Pass
2437	6	n	6.5/7.2 (MCS0)	0.46	0.50	3.49	8.00	-4.51	Pass
2462	11	n	6.5/7.2 (MCS0)	2.65	2.10	5.39	8.00	-2.61	Pass
2412	1	ax	8.6 (MCS0)	-4.59	-5.72	-2.11	8.00	-10.11	Pass
2437	6	ax	8.6 (MCS0)	-5.55	-5.34	-2.43	8.00	-10.43	Pass
2462	11	ах	8.6 (MCS0)	-6.23	-6.13	-3.17	8.00	-11.17	Pass

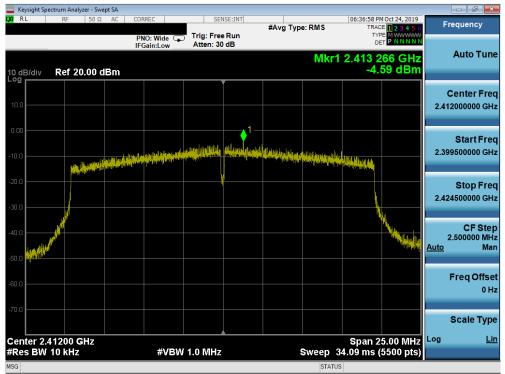
MIMO Power Spectral Density Measurements

Table 7-11.MIMO Conducted Power Density Measurements

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 D01 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:


At 2412MHz the average conducted power spectral density was measured to be 1.65 dBm for Antenna-1 and 2.03 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

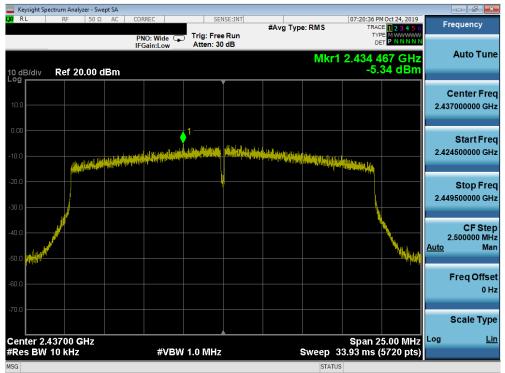
(1.65 dBm + 2.03 dBm) = (1.46 mW + 1.60 mW) = 3.06 mW = 4.86 dBm

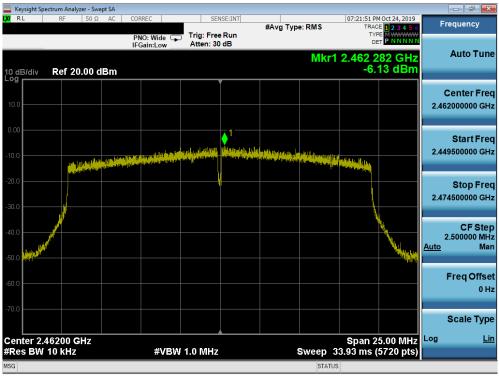
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 47 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

Plot 7-50. Power Spectral Density Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 6)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 48 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

		nalyzer - Swe											
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		MOct 24, 2019	F	requency
10 dB/div	Dof	20.00 d		PNO: Wid IFGain:Lo	le 🖵 w	Trig: Free Atten: 30				2.463 2	en Marine PNNNN 23 dBm		Auto Tune
10.0		20.00 0											Center Freq 2000000 GHz
-10.0				n program de la constante	uilealiaté prografi		ndelinger of sole	linder til Universite Tyrke byrgen synge				2.44	Start Freq 9500000 GHz
-20.0												2.47	Stop Freq 4500000 GHz
-40.0 -50.0	WWW										N	Auto	CF Step 2.500000 MHz Man
-60.0													Freq Offset 0 Hz
Center 2	.46200	GHz								Span 2	5.00 MHz		Scale Type <u>Lin</u>
#Res BW				#	VBW	1.0 MHz			Sweep 3	13.93 ms (5720 pts)		
MSG									STATU	S			




Plot 7-52. Power Spectral Density Plot MIMO ANT2 (802.11ax (2.4GHz) – Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 40 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 49 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

Plot 7-54. Power Spectral Density Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 50 of 103
© 2020 PCTEST				V 9.0 02/01/2019

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6.5/7.2Mbps for "n" mode, and 8.6Mbps for "ax" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

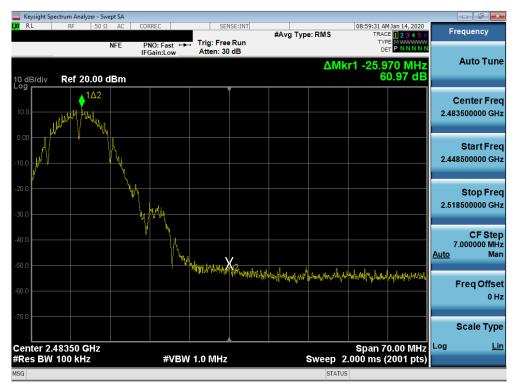
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Test Notes

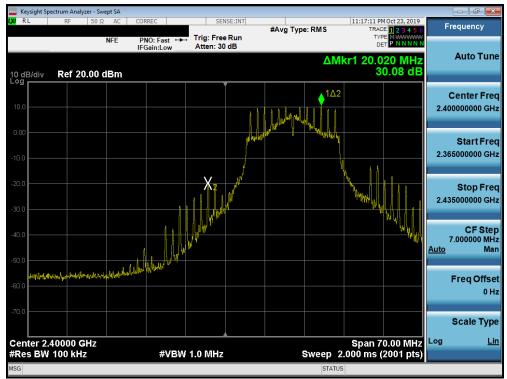
None


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 51 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 51 of 103
© 2020 PCTEST				V 9.0 02/01/2019

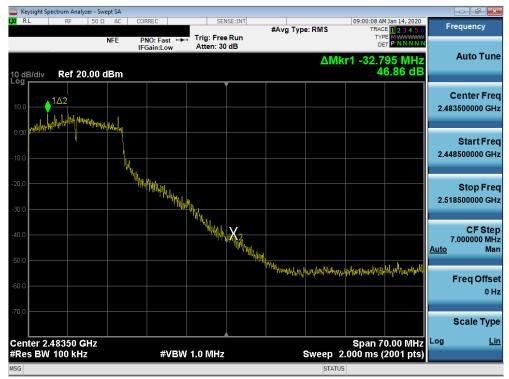
SISO Antenna-1 Conducted Emissions at the Band Edge

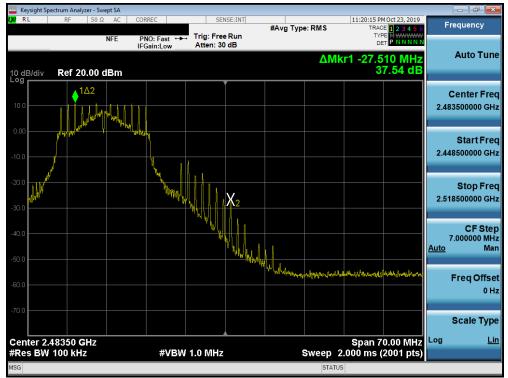
Plot 7-55. Band Edge Plot SISO ANT1 (802.11b - Ch. 1)

Plot 7-56. Band Edge Plot SISO ANT1 (802.11b - Ch. 10)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 52 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 52 of 103
© 2020 PCTEST	-	•		V 9.0 02/01/2019

2020 PCTES




Plot 7-58. Band Edge Plot SISO ANT1 (802.11g- Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 52 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 53 of 103
© 2020 PCTEST		•		V 9 0 02/01/2019

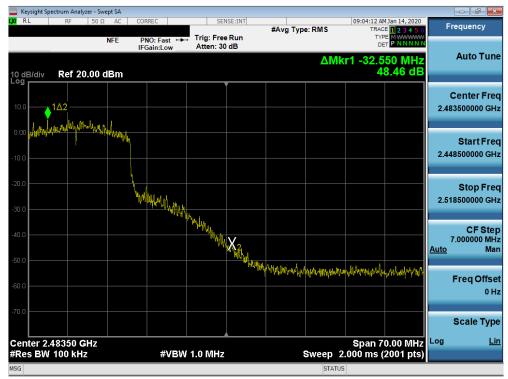

Plot 7-60. Band Edge Plot SISO ANT1 (802.11g - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E4 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 54 of 103
© 2020 PCTEST		•		V 9 0 02/01/2019

Plot 7-61. Band Edge Plot SISO ANT1 (802.11n (2.4GHz) - Ch. 1)

Plot 7-62. Band Edge Plot SISO ANT1 (802.11n (2.4GHz) - Ch. 10)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga EE of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 55 of 103
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-63. Band Edge Plot SISO ANT1 (802.11n (2.4GHz) - Ch. 11)

Plot 7-64. Band Edge Plot SISO ANT1 (802.11ax (2.4GHz) - Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 56 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 56 of 103
© 2020 PCTEST	<u>.</u>			V 9.0 02/01/2019

Plot 7-65. Band Edge Plot SISO ANT1 (802.11ax (2.4GHz) - Ch. 10)

Plot 7-66. Band Edge Plot SISO ANT1 (802.11ax (2.4GHz) – Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 57 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 57 of 103		
© 2020 PCTEST	-	•		V 9 0 02/01/2019	

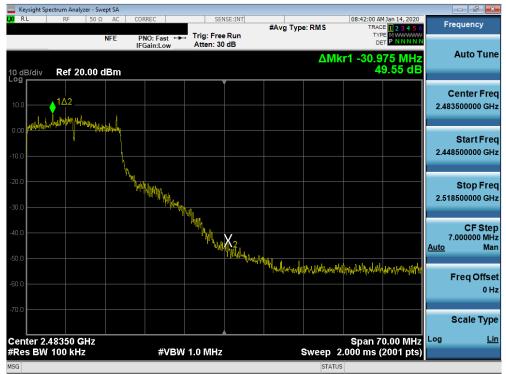
SISO Antenna-2 Conducted Emissions at the Band Edge

Plot 7-67. Band Edge Plot SISO ANT2 (802.11b - Ch. 1)

Plot 7-68. Band Edge Plot SISO ANT2 (802.11b - Ch. 10)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 59 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 58 of 103	
© 2020 PCTEST	•	·		V 9.0 02/01/2019

© 2020 PCTEST


Plot 7-69. Band Edge Plot SISO ANT2 (802.11b - Ch. 11)

Plot 7-70. Band Edge Plot SISO ANT2 (802.11g- Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 59 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019	

Plot 7-71. Band Edge Plot SISO ANT2 (802.11g - Ch. 10

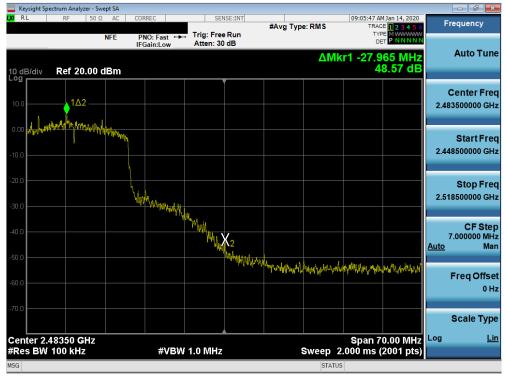
Plot 7-72. Band Edge Plot SISO ANT2 (802.11g - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 60 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 60 of 103
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-73. Band Edge Plot SISO ANT2 (802.11n (2.4GHz) - Ch. 1)

Plot 7-74. Band Edge Plot SISO ANT2 (802.11n (2.4GHz) - Ch. 10)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 61 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 61 of 103	
© 2020 PCTEST				V 9.0 02/01/2019	



Plot 7-76. Band Edge Plot SISO ANT2 (802.11ax (2.4GHz) – Ch. 1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 62 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 62 of 103	
© 2020 PCTEST				V 9 0 02/01/2019

Plot 7-77. Band Edge Plot SISO ANT2 (802.11ax (2.4GHz) - Ch. 10)

Plot 7-78. Band Edge Plot SISO ANT2 (802.11ax (2.4GHz) – Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 62 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 63 of 103	
© 2020 PCTEST		•		V 9 0 02/01/2019

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "n", "ax" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of ANSI C63.10-2013 and KDB 558074 D01 v05r02.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5 ANSI C63.10-2013 – Section 14.3.3 KDB 662911 D01 v02r01 – Section E)3)b)

Test Settings

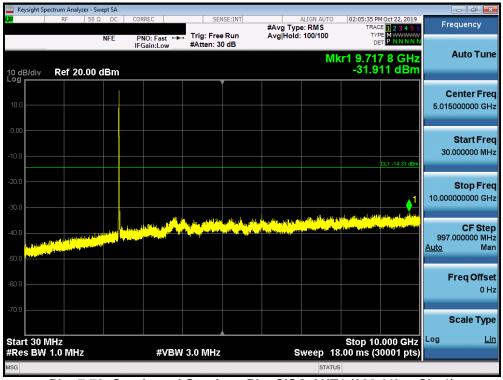
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

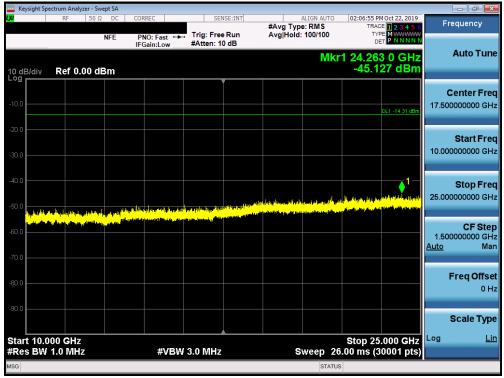
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 64 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 64 of 103		
© 2020 PCTEST				V 9 0 02/01/2019	


Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)3)b), it was unnecessary to show compliance through the summation of test results of the individual outputs.


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage CE of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 65 of 103		
© 2020 PCTEST				V 9.0 02/01/2019	

SISO Antenna-1 Conducted Spurious Emission

Plot 7-79. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 1)

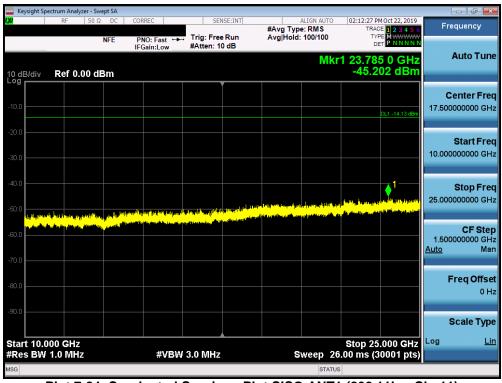
Plot 7-80. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 1)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 66 of 103	
© 2020 PCTEST		·		V 9.0 02/01/2019

V 9.0 02/01/2019

🔤 Keysight Sp	ectrum Analy												- # X
l <mark>,XI</mark>	RF	50 Ω	DC CC	RREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		PM Oct 22, 2019 ACE 1 2 3 4 5 6	Freq	uency
		NF		NO: Fas Gain:Lo		Trig: Fre #Atten: 3		Avg Hold	l: 100/100	т		_	
10 dB/div Log	Ref 20).00 dB	m						Μ	kr1 9.48 -32.	85 2 GHz 039 dBm	A	uto Tune
10.0													n ter Freq 00000 GHz
-10.0											DL1 -14.16 dBm		tart Fred
-20.0											1		top Free
-40.0			ululul Maria	darishud ar ^{ara} dan	y iriy				i de fan de f	FE CONTRACTO SUCCESSION OF THE CONTRACTOR		997.00 <u>Auto</u>	CF Step 00000 MH: Mar
-60.0												Fre	e q Offse 0 H
-70.0												Sc	ale Type: Lir
Start 30 N #Res BW		z		#\	vBW	3.0 MHz		s	Sweep 1	Stop 1 8.00 ms (0.000 GHz (30001 pts)	-	
MSG									STATU				

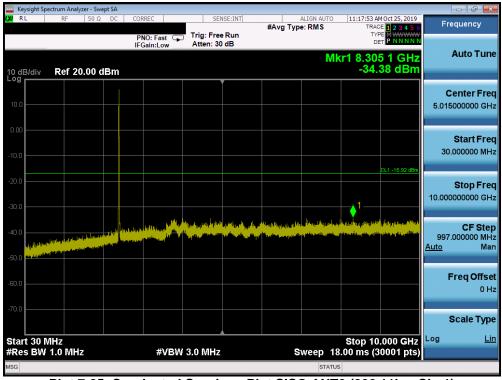
Plot 7-81. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 6)


Plot 7-62. Conducted Spurious Plot SISO ANTT (602.110 - Cll. 6)

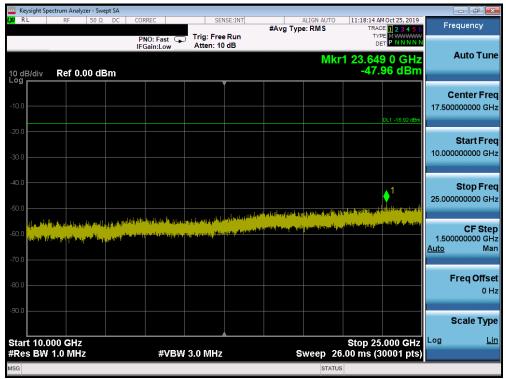
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset	Page 67 of 103	
© 2020 PCTEST				V 9.0 02/01/2019

NFE PNO: Fast Trig: Free Run IFGain: Low #Avg Type: RMS Avg Hold: 100/100 Trace Dist 4.35 (Def Dist 4.35) Frequency 0 dB/div Ref 20.00 dBm	Keysight Spec	ctrum Analyze												
Ref 20.00 dBm Center Fr 0.00 0.	CI IIII	RF		P	NO: Fast		Trig: Free	e Run			TR	ACE 1 2 3 4 5 6	Fre	equency
Center Fr 0.00 Center Fr <t< th=""><th></th><th>Ref 20.</th><th>00 dBm</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th>Μ</th><th>kr1 9.88 -32.0</th><th>33 0 GHz 018 dBm</th><th></th><th>Auto Tun</th></t<>		Ref 20.	00 dBm	1						Μ	kr1 9.88 -32.0	33 0 GHz 018 dBm		Auto Tun
10.0 1														
Stop Fr												DL1 -14.13 dBm	30.	Start Fre .000000 M⊦
40.0 The state of													10.000	Stop Fre 0000000 GH
ttart 30 MHz Stop 10.000 GHz								linder der seiten nationen der seiten	, <mark>Alden politika prince dan baran sana sana sana sana sana sana sana </mark>		andra a the professor presented and play for	n he werk op in der der der Regelenden sonen in Allen er		CF Ste .000000 MH Ma
tart 30 MHz Stop 10.000 GHz													F	F req Offs 0 H
		1Hz									Stop 1	0.000 GHz		Scale Typ L
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 18.00 ms (30001 pts)					#V	BW 3	3.0 MHz		ş	Sweep 1	8.00 ms (30001 pts)		

Plot 7-83. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 11)



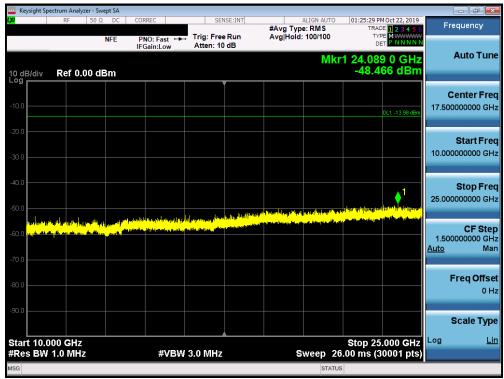
Plot 7-84. Conducted Spurious Plot SISO ANT1 (802.11b – Ch. 11)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 68 of 103
© 2020 PCTEST				V 9 0 02/01/2019

SISO Antenna-2 Conducted Spurious Emissions

Plot 7-85. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 1)

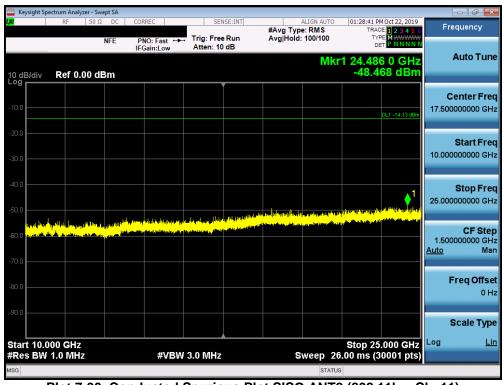
Plot 7-86. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 1)


FCC ID: A3LSMG986W		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 69 of 103
© 2020 PCTEST	•	·		V 9.0 02/01/2019

V 9.0 02/01/2019

Keysight Spe												
<mark>)X</mark>	RF	50Ω E	C C	ORREC		SE	NSE:INT	#Avg T	ALIGN AUTO		M Oct 22, 2019 DE 1 2 3 4 5 6	Frequency
		NFI		PNO: Fast FGain:Lov		Trig: Fre Atten: 3			d: 100/100	TY D		
10 dB/div	Ref 20	.00 dB	m						M	(r1 5.48 -34.5	5 3 GHz 41 dBm	Auto Tun
10.0												Center Fre 5.015000000 GH
10.00											DL1 -13.98 dBm	Start Fre 30.000000 MH
20.0							1-					Stop Fre 10.000000000 GH
40.0						de de la constante de la consta La constante de la constante de			landa Ala Ala Ala Ala		h dahan yati perdena Angga ngga ngga ngga ngga ngga ngga ngga	CF Ste 997.000000 M⊦ <u>Auto</u> Ma
60.0												Freq Offse 0 ⊦
70.0												Scale Typ
Start 30 M Res BW				#\	/BW :	3.0 MHz			Sweep 18	Stop 10 3.00 ms (3	.000 GHz 0001 pts)	Log <u>Li</u>
ISG									STATU	5		

Plot 7-87. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 6)


Plot 7-88. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 6)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 70 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

RF 50 Ω	DC	CORR									
	00	CORH	EC	S	ENSE:INT		ALIGN AUTO		4 Oct 22, 2019	Fre	quency
	NFE			Trig: Fr Atten:		#Avg Tyj Avg Hold	i: 100/100	TYP	E 1 2 3 4 5 6 E M WWWW T P N N N N N		
tef 20.00 d	lBm						M				Auto Tun
					Ĭ					C	enter Fre
										5.0150	000000 GH
											Start Fre
									DL1 -14.13 dBm	30.0	00000 MH
											Stop Fre
											000000 GH
				and the state	ىلى مەرەق يال	ահուս,	المراجعة والمراجع	na laker na stak.	و المالين		
a na an		alita da <mark>Angenar</mark>									CF Ste
and an and a line of a local distance of a local distance of the l										<u>Auto</u>	Ma
										F	req Offs
											0 H
										S	cale Typ
7								Stop 10	.000 GHz	Log	L
MHz			#VB	W 3.0 MH	z	\$	Sweep 18	.00 ms (3	0001 pts)		
	tef 20.00 c	Lef 20.00 dBm	Lef 20.00 dBm	Lef 20.00 dBm Image: Constraint of the second of	Atten: :	Image: Instant of the second secon	If Gain: Low Atten: 30 dB lef 20.00 dBm	If Gain: Low Atten: 30 dB If Gain: Low Atten: 30 dB	Inclusion Atten: 30 dB Inclusion Mkr1 3.76:	Inc. Inc. Atten: 30 dB Inc. IFGain:Low Atten: 30 dB Mkr1 3.767 8 GHz -34.619 dBm Mkr1 3.767 8 GHz -34.619 dBm	Intel Tride, rask Atten: 30 dB Det PINNINN Mkr1 3.767 8 GHz -34.619 dBm Image: State of the sta

Plot 7-89. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 11)

Plot 7-90. Conducted Spurious Plot SISO ANT2 (802.11b - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 71 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 71 of 103
© 2020 PCTEST				V 9.0 02/01/2019

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-12 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-12. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3 KDB 558074 D01 v05r02 – Sections 8.6, 8.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 72 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 72 of 103
© 2020 PCTEST				V 9 0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

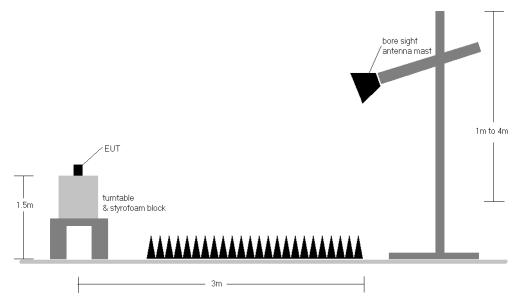


Figure 7-6. Test Instrument & Measurement Setup

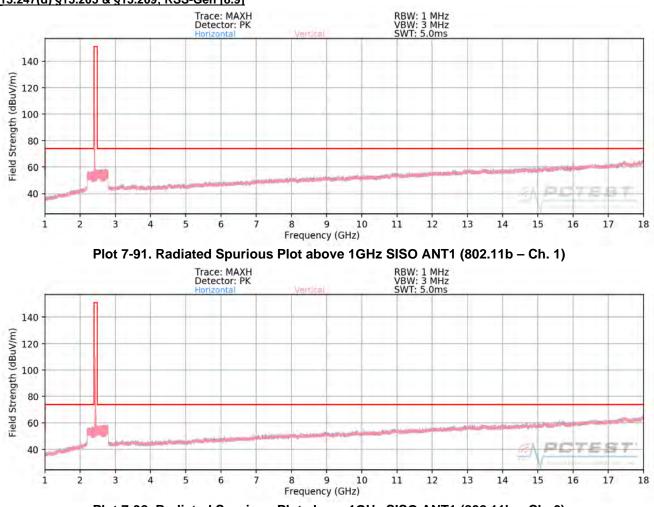
FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 73 of 103
© 2020 PCTEST				V 9.0 02/01/2019

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in Section 15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-12.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

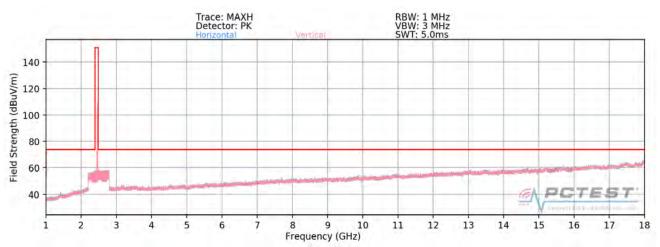
Determining Spurious Emissions Levels

- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- o Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

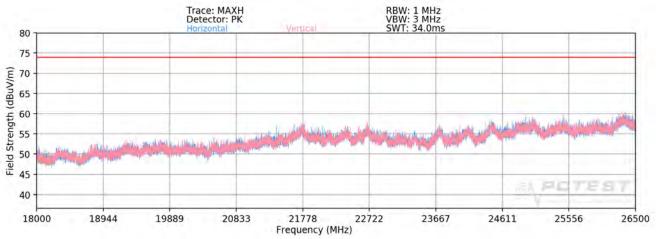

Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 74 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 74 of 103	
© 2020 PCTEST				V 9.0 02/01/2019	

7.7.1 SISO Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]



Plot 7-93. Radiated Spurious Plot above 1GHz SISO ANT1 (802.11b - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 75 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 75 of 103
© 2020 PCTEST				V 9 0 02/01/2019

SISO Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-94. Radiated Spurious Plot above 18GHz SISO ANT1

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 76 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 76 of 103
© 2020 PCTEST	-	•		V 9 0 02/01/2019

SISO Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	V	106	50	-74.18	6.91	39.73	53.98	-14.25
4824.00	Peak	V	106	50	-64.47	6.91	49.44	73.98	-24.54
12060.00	Avg	V	-	-	-78.20	18.16	46.96	53.98	-7.02
12060.00	Peak	V	-	-	-65.42	18.16	59.74	73.98	-14.24

Table 7-13. Radiated Measurements SISO ANT1

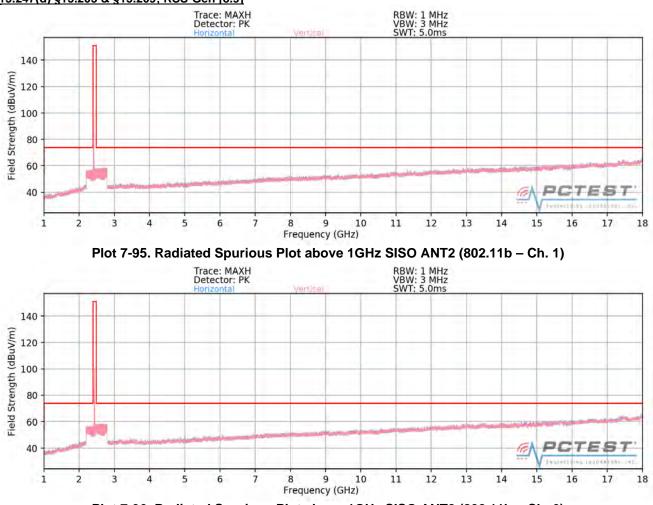
Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	V	116	41	-77.17	7.65	37.48	53.98	-16.50
4874.00	Peak	V	116	41	-64.78	7.65	49.87	73.98	-24.11
7311.00	Avg	V	-	-	-78.86	12.34	40.48	53.98	-13.50
7311.00	Peak	V	-	-	-65.66	12.34	53.68	73.98	-20.30
12185.00	Avg	V	-	-	-78.25	18.65	47.40	53.98	-6.58
12185.00	Peak	V	-	-	-65.16	18.65	60.49	73.98	-13.49

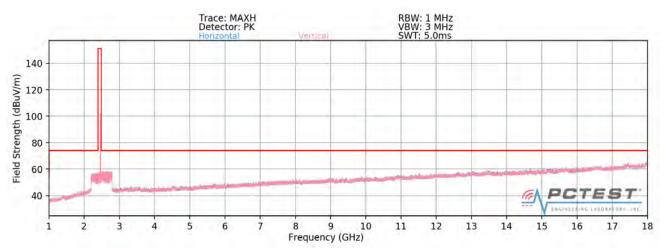
Table 7-14. Radiated Measurements SISO ANT1

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 77 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 77 of 103
© 2020 PCTEST		•		V 9 0 02/01/2019

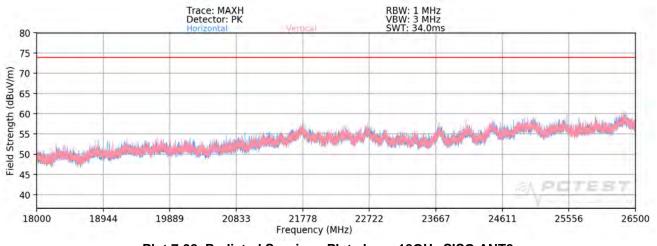

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	V	113	279	-74.77	7.61	39.84	53.98	-14.14
4924.00	Peak	V	113	279	-64.73	7.61	49.88	73.98	-24.10
7386.00	Avg	V	-	-	-77.82	12.18	41.36	53.98	-12.62
7386.00	Peak	V	-	-	-65.43	12.18	53.75	73.98	-20.23
12310.00	Avg	V	-	-	-78.45	18.89	47.44	53.98	-6.54
12310.00	Peak	V	-	-	-65.52	18.89	60.37	73.98	-13.61

Table 7-15. Radiated Measurements SISO ANT1


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 78 of 103
© 2020 PCTEST	•	•		V 9.0 02/01/2019

7.7.2 SISO Antenna-2 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]



Plot 7-97. Radiated Spurious Plot above 1GHz SISO ANT2 (802.11b - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 79 of 103
© 2020 PCTEST				V 9 0 02/01/2019

SISO Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-98. Radiated Spurious Plot above 18GHz SISO ANT2

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 90 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	01/20/20 Portable Handset		Page 80 of 103
© 2020 PCTEST				V 9 0 02/01/2019

SISO Antenna-2 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	V	180	243	-74.89	6.91	39.02	53.98	-14.96
4824.00	Peak	V	180	243	-64.10	6.91	49.81	73.98	-24.17
12060.00	Avg	V	-	-	-78.13	18.16	47.03	53.98	-6.95
12060.00	Peak	V	-	-	-66.90	18.16	58.26	73.98	-15.72

Table 7-16. Radiated Measurements SISO ANT2

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	V	147	315	-74.97	7.65	39.68	53.98	-14.30
4874.00	Peak	V	147	315	-64.96	7.65	49.69	73.98	-24.29
7311.00	Avg	V	-	-	-78.07	12.34	41.27	53.98	-12.71
7311.00	Peak	V	-	-	-66.33	12.34	53.01	73.98	-20.97
12185.00	Avg	V	-	-	-78.30	18.65	47.35	53.98	-6.63
12185.00	Peak	V	-	-	-67.12	18.65	58.53	73.98	-15.45

Table 7-17. Radiated Measurements SISO ANT2

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 01 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	20/20 Portable Handset		Page 81 of 103
© 2020 PCTEST				V 9 0 02/01/2019

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

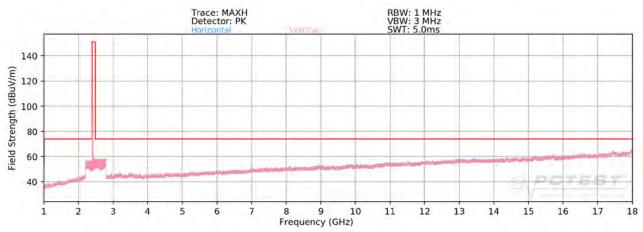
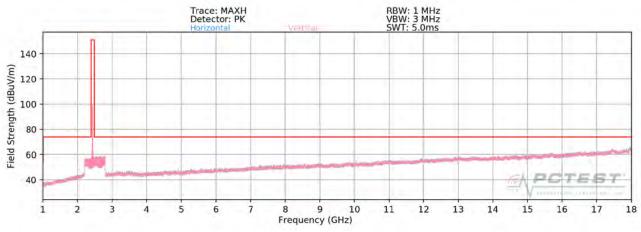
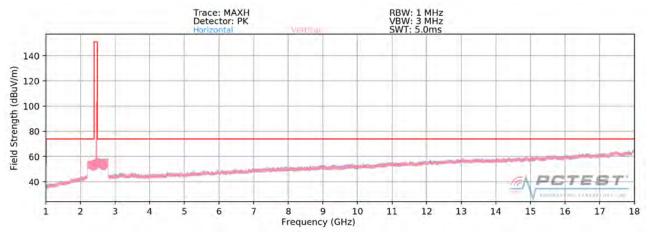
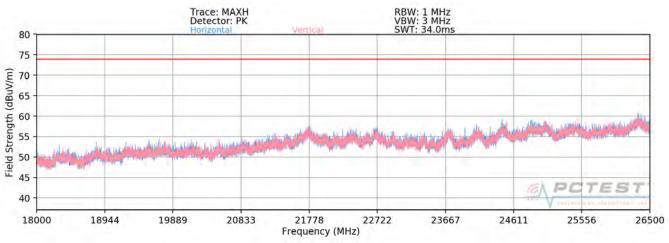

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	V	162	323	-74.86	7.61	39.75	53.98	-14.23
4924.00	Peak	V	162	323	-63.92	7.61	50.69	73.98	-23.29
7386.00	Avg	V	-	-	-77.81	12.18	41.37	53.98	-12.61
7386.00	Peak	V	-	-	-66.91	12.18	52.27	73.98	-21.71
12310.00	Avg	V	-	-	-78.46	18.89	47.43	53.98	-6.55
12310.00	Peak	V	-	-	-67.88	18.89	58.01	73.98	-15.97

Table 7-18. Radiated Measurements SISO ANT2


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 92 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 82 of 103
© 2020 PCTEST	•	•		V 9.0 02/01/2019


7.7.3 MIMO/CDD Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]



Plot 7-101. Radiated Spurious Plot above 1GHz MIMO/CDD (802.11g - Ch. 11)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 92 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 83 of 103
© 2020 PCTEST	<u>.</u>	•		V 9.0 02/01/2019

MIMO/CDD Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-102. Radiated Spurious Plot above 18GHz MIMO/CDD

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 94 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 84 of 103
© 2020 PCTEST	-	•		V 9.0 02/01/2019

MIMO/CDD Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11g
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	119	213	-79.62	6.91	34.29	53.98	-19.69
4824.00	Peak	Н	119	213	-68.52	6.91	45.39	73.98	-28.59
12060.00	Avg	Н	-	-	-80.92	18.16	44.24	53.98	-9.74
12060.00	Peak	Н	-	-	-70.10	18.16	55.06	73.98	-18.92

Table 7-19.	Radiated	Measurements	MIMO/CDD
-------------	----------	--------------	----------

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11g 6 Mbps 3 Meters 2437MHz 06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	220	26	-73.75	7.65	40.90	53.98	-13.08
4874.00	Peak	Н	220	26	-68.78	7.65	45.87	73.98	-28.11
7311.00	Avg	Н	-	-	-81.52	12.34	37.82	53.98	-16.16
7311.00	Peak	Н	-	-	-69.35	12.34	49.99	73.98	-23.99
12185.00	Avg	Н	-	-	-81.60	18.65	44.05	53.98	-9.93
12185.00	Peak	Н	-	-	-69.82	18.65	55.83	73.98	-18.15

Table 7-20. Radiated Measurements MIMO/CDD

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 05 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 85 of 103
© 2020 PCTEST		•		V 9 0 02/01/2019

Worst Case Mode:	802.11g
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	221	195	-80.02	7.61	34.59	53.98	-19.39
4924.00	Peak	Н	221	195	-68.17	7.61	46.44	73.98	-27.54
7386.00	Avg	Н	-	-	-81.04	12.18	38.14	53.98	-15.84
7386.00	Peak	Н	-	-	-70.38	12.18	48.80	73.98	-25.18
12310.00	Avg	Н	-	-	-82.35	18.89	43.54	53.98	-10.44
12310.00	Peak	Н	-	-	-71.53	18.89	54.36	73.98	-19.62

Table 7-21. Radiated Measurements MIMO/CDD

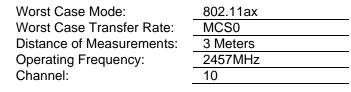
Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

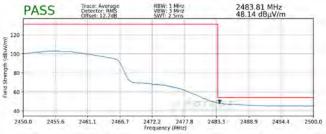
802.11g	
6 Mbps	
3 Meters	
2437MHz	
06	

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	100	219	-73.80	7.65	40.85	53.98	-13.13
4874.00	Peak	Н	100	219	-68.88	7.65	45.77	73.98	-28.21
7311.00	Avg	Н	-	-	-81.45	12.34	37.89	53.98	-16.09
7311.00	Peak	Н	-	-	-69.96	12.34	49.38	73.98	-24.60
12185.00	Avg	Н	-	-	-81.59	18.65	44.06	53.98	-9.92
12185.00	Peak	Н	-	-	-70.80	18.65	54.85	73.98	-19.13

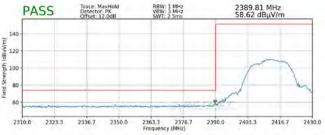
Table 7-22. Radiated Measurements MIMO/CDD with WCP

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 86 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 86 of 103
© 2020 PCTEST	·	•		V 0 0 02/01/2010

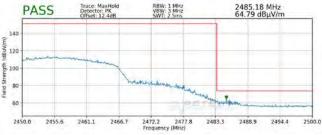

7.7.4 SISO Antenna-1 Radiated Restricted Band Edge Measurements §15.205 §15.209; RSS-Gen [8.9]


The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1



Plot 7-103. Radiated Restricted Lower Band Edge Measurement SISO ANT1 (Average)

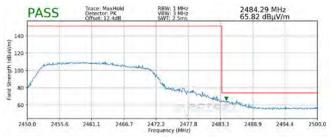


Plot 7-105. Radiated Restricted Upper Band Edge Measurement SISO ANT1 (Average)

Plot 7-104. Radiated Restricted Lower Band Edge Measurement SISO ANT1 (Peak)

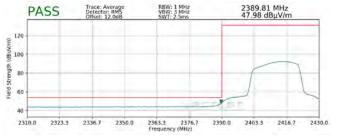


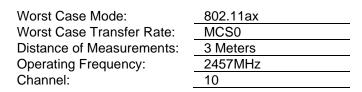
Plot 7-106. Radiated Restricted Upper Band Edge Measurement SISO ANT1 (Peak)

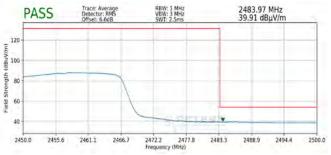

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 97 of 102	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 87 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019	

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

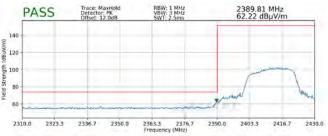
Plot 7-108. Radiated Restricted Upper Band Edge Measurement SISO ANT1 (Peak)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 88 of 103
© 2020 PCTEST				V 9 0 02/01/2019


7.7.5 SISO Antenna-2 Radiated Restricted Band Edge Measurements §15.205 §15.209; RSS-Gen [8.9]


The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

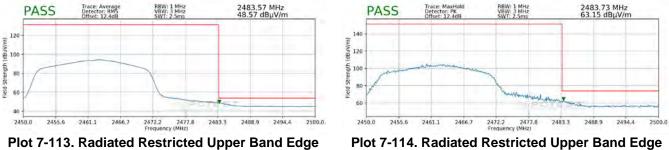
Worst Case Mode:802.11axWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:2412MHzChannel:1



Plot 7-109. Radiated Restricted Lower Band Edge Measurement SISO ANT2 (Average)

Plot 7-111. Radiated Restricted Upper Band Edge Measurement SISO ANT2 (Average)

Plot 7-110. Radiated Restricted Lower Band Edge Measurement SISO ANT2 (Peak)

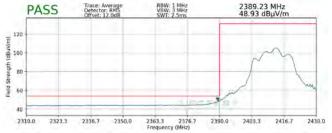


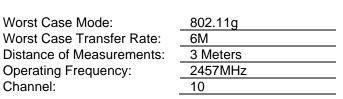
Plot 7-112. Radiated Restricted Upper Band Edge Measurement SISO ANT2 (Peak)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 90 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 89 of 103
© 2020 PCTEST				V 9 0 02/01/2019

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

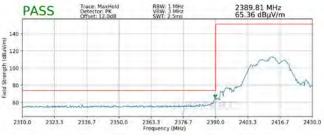
Measurement SISO ANT2 (Average)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 00 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 90 of 103
© 2020 PCTEST				V 9.0 02/01/2019

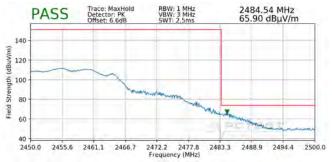

7.7.6 CDD Radiated Restricted Band Edge Measurements §15.209; RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:802.11gWorst Case Transfer Rate:6MDistance of Measurements:3 MetersOperating Frequency:2412MHzChannel:1

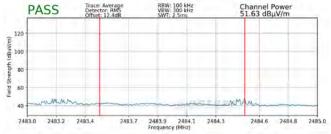


Plot 7-115. Radiated Restricted Lower Band Edge Measurement CDD (Average)

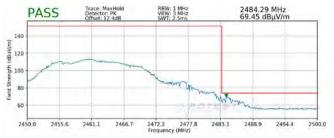


Plot 7-117. Radiated Restricted Upper Band Edge Measurement CDD (Average)

Plot 7-116. Radiated Restricted Lower Band Edge Measurement CDD (Peak)



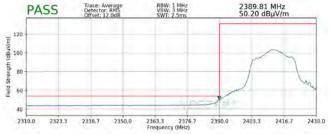
Plot 7-118. Radiated Restricted Upper Band Edge Measurement CDD (Peak)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 91 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

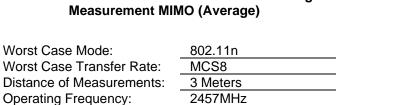
Worst Case Mode:802.11gWorst Case Transfer Rate:6MDistance of Measurements:3 MetersOperating Frequency:2462MHzChannel:11

Plot 7-120. Radiated Restricted Upper Band Edge Measurement CDD (Peak)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 02 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 92 of 103
© 2020 PCTEST				V 9 0 02/01/2019



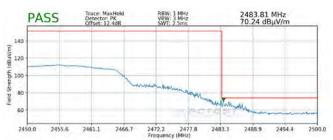
Channel:


7.7.7 MIMO Radiated Restricted Band Edge Measurements §15.205 §15.209; RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


Worst Case Mode: 802.11n Worst Case Transfer Rate: MCS8 **Distance of Measurements:** 3 Meters **Operating Frequency:** 2412MHz Channel: 1

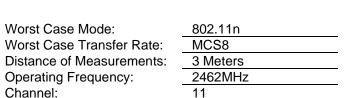
Plot 7-121. Radiated Restricted Lower Band Edge Measurement MIMO (Average)

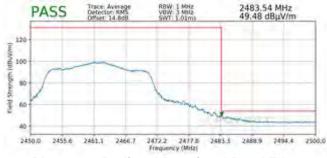

10

Plot 7-122. Radiated Restricted Lower Band Edge Measurement MIMO (Peak)

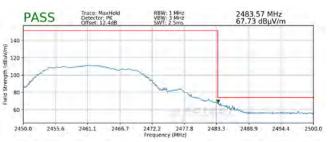
Plot 7-123. Radiated Restricted Upper Band Edge Measurement MIMO (Average)

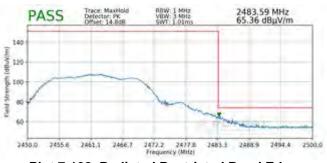
Plot 7-124. Radiated Restricted Upper Band Edge Measurement MIMO (Peak)


FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 93 of 103
© 2020 PCTEST				V 9.0 02/01/2019



Worst Case Mode:802.11nWorst Case Transfer Rate:MCS8Distance of Measurements:3 MetersOperating Frequency:2462MHzChannel:11





Plot 7-127. Radiated Restricted Band Edge Measurement MIMO with WCP (Average)

Plot 7-126. Radiated Restricted Upper Band Edge Measurement MIMO (Peak)

Plot 7-128. Radiated Restricted Band Edge Measurement MIMO with WCP (Peak)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 04 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 94 of 103
© 2020 PCTEST		•		V 9.0 02/01/2019

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-23 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-23. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 05 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 95 of 103
© 2020 PCTEST				V 9.0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

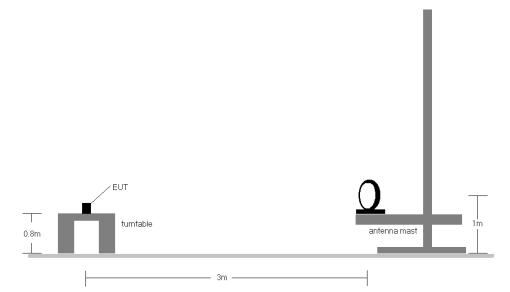
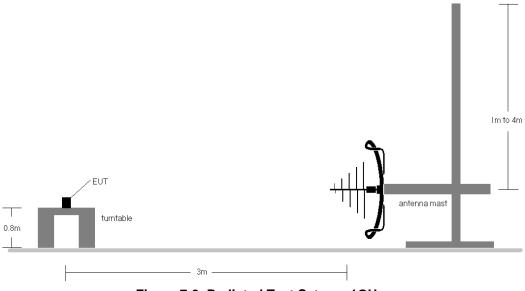
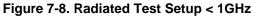
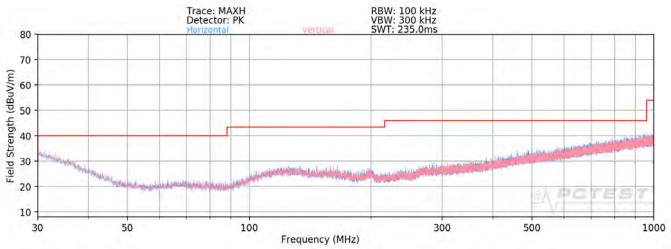




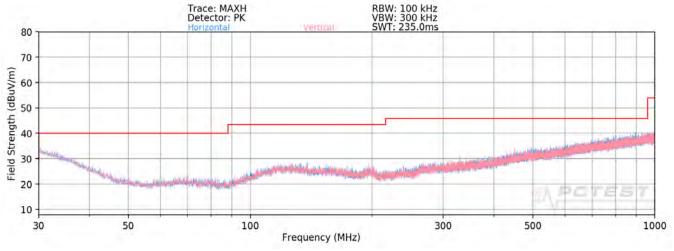
Figure 7-7. Radiated Test Setup < 30Mhz

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 96 of 103
© 2020 PCTEST	-	•		V 9.0 02/01/2019


Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen(8.10) are below the limit shown in Table 7-23.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 97 of 103
© 2020 PCTEST				V 9 0 02/01/2019



SISO Antenna-1 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-129. Radiated Spurious Plot below 1GHz SISO ANT1

SISO Antenna-2 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-130. Radiated Spurious Plot below 1GHz SISO ANT2

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dawa 00 at 400	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 98 of 103	
© 2020 PCTEST		•		V 9.0 02/01/2019	

7.9 Line-Conducted Test Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)		
(11112)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 - 30	60	50	

Table 7-24. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

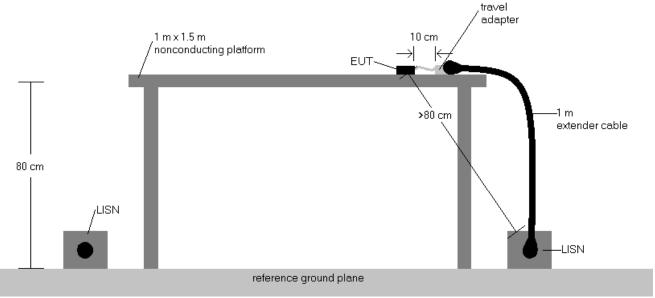
ANSI C63.10-2013, Section 6.2

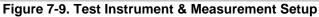
Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

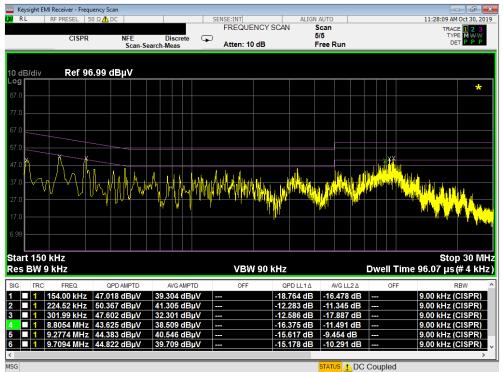
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

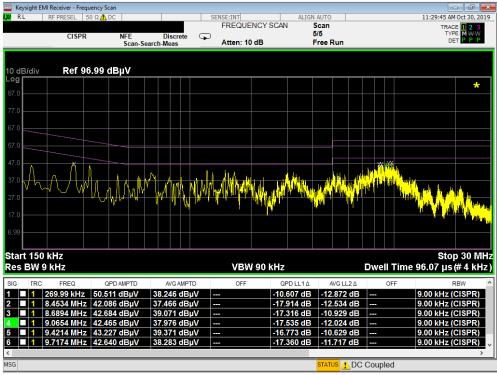

FCC ID: A3LSMG986W	CTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 99 of 103
© 2020 PCTEST		•		V 0 0 02/01/2010

Test Setup

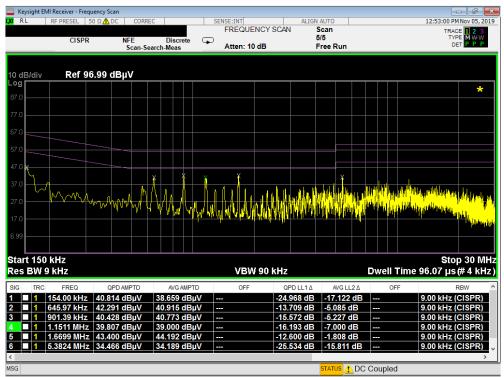
The EUT and measurement equipment were set up as shown in the diagram below.

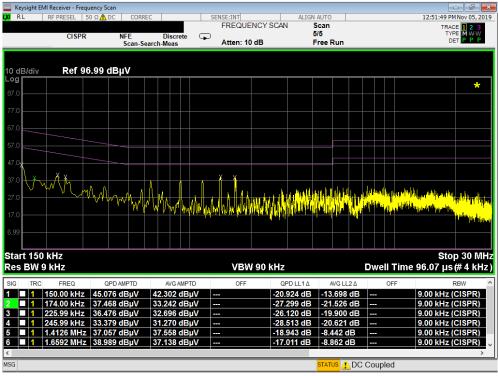


Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen(8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degre 100 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 100 of 103
© 2020 PCTEST	-	•		V 9.0 02/01/2019


Plot 7-131. Line Conducted Plot with 802.11b (L1)


Plot 7-132. Line Conducted Plot with 802.11b (N)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 404 - £400	
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 101 of 103	
© 2020 PCTEST	-	•		V 9.0 02/01/2019	

Plot 7-133. Line Conducted Plot with 802.11b with WCP (L1)

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 102 of 103
© 2020 PCTEST		·		V 9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG986W** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules.

FCC ID: A3LSMG986W	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 102
1M1911010179-04.A3L	10/11/19 - 01/20/20	Portable Handset		Page 103 of 103
© 2020 PCTEST				V 9.0 02/01/2019