

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT

FCC Part 22 & 90

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 10/11 - 12/06/2019 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1910220166-04.A3L

FCC ID:

A3LSMG986U

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification SM-G986U SM-G986U1, SM-G986XU Portable Handset PCS Licensed Transmitter Held to Ear (PCE) §2.1049, §22(H), §90(S), §90(R) ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01 KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Råndy Ortanez President

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 1 of 66
© 2020 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

All rights report or tassembly of contents thereof, please contact INFO@PCTEST.COM.

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEA	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAM	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	10
	7.2	Occupied Bandwidth	12
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	28
	7.4	Band Edge Emissions at Antenna Terminal	36
	7.5	Conducted Power Output Data	47
	7.6	Radiated Power (ERP)	49
	7.7	Radiated Spurious Emissions Measurements	52
	7.8	Frequency Stability / Temperature Variation	59
8.0	CON	CLUSION	66

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 2 of 66
© 2020 PCTEST Engineering Laboratory, Inc.			V 9.0 02/01/2019	

MEASUREMENT REPORT FCC Part 22 & 90

Mode	Tx Frequency (MHz)	Measurement	Max. Power (W)	Max. Power (dBm)	Emission Designator	Modulation
LTE Band 14	790.5 - 795.5	ERP	0.065	18.16	4M53G7D	QPSK
LTE Band 14	790.5 - 795.5	ERP	0.066	18.21	4M51W7D	16-QAM
LTE Band 14	790.5 - 795.5	ERP	0.052	17.17	4M55W7D	64-QAM
LTE Band 14	790.5 - 795.5	ERP	0.030	14.72	4M51W7D	256-QAM
LTE Band 14	793	ERP	0.069	18.37	9M02G7D	QPSK
LTE Band 14	793	ERP	0.055	17.42	8M99W7D	16-QAM
LTE Band 14	793	ERP	0.046	16.60	9M00W7D	64-QAM
LTE Band 14	793	ERP	0.030	14.74	8M99W7D	256-QAM
CDMA800 (BC10)	817.9 - 823.1	Conducted	0.284	24.53	1M27F9W	CDMA
LTE Band 26	814.7 - 823.3	Conducted	0.285	24.55	1M08G7D	QPSK
LTE Band 26	814.7 - 823.3	Conducted	0.245	23.89	1M09W7D	16-QAM
LTE Band 26	814.7 - 823.3	Conducted	0.191	22.80	1M08W7D	64-QAM
LTE Band 26	814.7 - 823.3	Conducted	0.094	19.75	1M08W7D	256-QAM
LTE Band 26	815.5 - 822.5	Conducted	0.295	24.70	2M69G7D	QPSK
LTE Band 26	815.5 - 822.5	Conducted	0.252	24.01	2M70W7D	16-QAM
LTE Band 26	815.5 - 822.5	Conducted	0.200	23.02	2M69W7D	64-QAM
LTE Band 26	815.5 - 822.5	Conducted	0.097	19.88	2M70W7D	256-QAM
LTE Band 26	816.5 - 821.5	Conducted	0.294	24.68	4M53G7D	QPSK
LTE Band 26	816.5 - 821.5	Conducted	0.255	24.07	4M51W7D	16-QAM
LTE Band 26	816.5 - 821.5	Conducted	0.199	22.98	4M52W7D	64-QAM
LTE Band 26	816.5 - 821.5	Conducted	0.097	19.87	4M50W7D	256-QAM
LTE Band 26	819	Conducted	0.284	24.53	8M96G7D	QPSK
LTE Band 26	819	Conducted	0.261	24.16	8M98W7D	16-QAM
LTE Band 26	819	Conducted	0.197	22.94	8M95W7D	64-QAM
LTE Band 26	819	Conducted	0.094	19.72	8M97W7D	256-QAM
LTE Band 26	821.5	Conducted	0.297	24.73	13M4G7D	QPSK
LTE Band 26	821.5	Conducted	0.262	24.19	13M5W7D	16-QAM
LTE Band 26	821.5	Conducted	0.202	23.05	13M5W7D	64-QAM
LTE Band 26	821.5	Conducted	0.096	19.84	13M4W7D	256-QAM
LTE Band 26	821.5	ERP	0.062	17.90	13M4G7D	QPSK
LTE Band 26	821.5	ERP	0.050	16.99	13M5W7D	16-QAM
LTE Band 26	821.5	ERP	0.039	15.96	13M5W7D	64-QAM
LTE Band 26	821.5	ERP	0.026	14.16	13M4W7D	256-QAM

EUT Overview

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset	Page 3 of 66

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMG986U	FCTEST	MEASUREMENT REPORT	SAMSUNG	Approved by:
FCC ID: A3LSMG9860	THEINTERING LABORATORY, INC.	(CERTIFICATION)	SAMSUNG	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 4 of 66
2020 PCTEST Engineering Laboratory, Inc.				V 9.0 02/01/2019

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMG986U**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part.

Test Device Serial No.: 0470M, 0898H, 0493M, 0918H

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (n71, n5, n66, n2, n41, n260, n261), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE), NFC, ANT+, Wireless Power Transfer

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 5 of 66
2020 PCTEST Engineering Laboratory Inc.				V 9 0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions

<u>§2.1053</u>

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \ [dBm]}$ – cable loss $_{[dB]}$.

For fundamental radiated power measurements, the guidance of KDB 971168 D01 v03r01 is used to record the EUT power level that is subsequently matched via the aforementioned substitution method given in ANSI/TIA-603-E-2016.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 66
1M1910220166-04.A3L 10/11 - 12/06/2019		Portable Handset		Page 6 of 66
© 2020 PCTEST Engineering La	V 9 0 02/01/2019			

MEASUREMENT UNCERTAINTY 4.0

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 7 of 66
© 2020 PCTEST Engineering Laboratory Inc.				V 9 0 02/01/2019

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	6/4/2019	Annual	6/4/2020	LTx1
-	LTx5	Licensed Transmitter Cable Set	6/5/2019	Annual	6/5/2020	LTx5
Agilent	N9020A	MXA Signal Analyzer	4/20/2019	Annual	4/20/2020	US46470561
Agilent	N9038A	MXE EMI Receiver	7/17/2019	Annual	7/17/2020	MY51210133
Agilent	N9030A	PXA Signal Analyzer (44GHz)	6/12/2019	Annual	6/12/2020	MY52350166
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	5/10/2019	Annual	5/10/2020	441112
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/9/2018	Biennial	8/9/2020	135427
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	2/14/2019	Biennial	2/14/2021	125518
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	2/22/2019	Biennial	2/22/2021	128338
Mini Circuits	TVA-11-422	RF Power Amp		N/A		QA1317001
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11208010032
Mini-Circuits	PWR-SEN-4RMS	USB Power Sensor	4/20/2019	Annual	4/20/2020	11210140001
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A	-	11403100002
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		100976
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	6/5/2019	Annual	6/5/2020	100342
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/11/2019	Annual	7/11/2020	102134
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	4/30/2018	Biennial	4/30/2020	9105-2403
Seekonk	NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	10/3/2019	Biennial	10/3/2021	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 9 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 8 of 66
2020 PCTEST Engineering Laboratory Inc				V 9 0 02/01/2019

6.0 SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission – BC10

Example: Channel 476 CDMA BC10 Mode 3rd Harmonic (2453.70MHz)

The average spectrum analzyer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 2453.70 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm -(-24.80) = 50.3 dBc.

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80).

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 0 of 66		
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 9 of 66		
© 2020 PCTEST Engineering Labo	aratory Inc			V 9 0 02/01/2019		

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMG986U
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>CDMA / LTE</u>
Band:	Band Class 10 / Band 26 / Band 14

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
2.1051 90(S).691(a) 90(R).543(a)	Conducted Band Edge / Spurious Emissions	On all frequencies between 769- 775 MHz and 799-805 MHz, attenuation by a factor not less than 65 + 10 log(P) dB in a 6.25 kHz band segment, for mobile and portable stations. On any frequency between 775- 788 MHz, above 805 MHz, and below 758 MHz, attenuation by at least 43 + 10 log(P) dB.(Band 14) > 43 + 10 log ₁₀ (P[Watts]) for all out-of-band emissions except > 50 + 10 log ₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions within 37.5kHz	CONDUCTED	PASS	Sections 7.3, 7.4
2.1055 90.213	Frequency Stability	of Block Edge (Band 26) < 2.5 ppm		PASS	Section 7.8
2.1046	Conducted Power	< 100 Watts		PASS	Section 7.5
22.913(a.2)	Effective Radiated Power (Band 26)	< 7 Watts max. ERP		PASS	Section 7.6
90.542(a)(7)	Effective Radiated Power (Band 14)	< 3 Watts max. ERP		PASS	Section 7.6
2.1053 90(R).543(e)	Radiated Spurious Emissions	 > 43 + 10 log₁₀ (P[Watts]) for all out-of-band emissions except > 50 + 10 log₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions within 37.5kHz of Block Edge 	RADIATED	PASS	Section 7.7

Table 7-1. Summary of Test Results

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of CC	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 10 of 66	
© 2020 PCTEST Engineering Labo	raton/ Inc			V 0 0 02/01/2010	

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 7.0 were taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation," Version 4.2.
- 5) For LTE B14 conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "LTE Automation," Version.5.3.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of CC		
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 11 of 66		
© 2020 PCTEST Engineering Labor	atory Inc	•		\/ 0 0 02/01/2010		

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

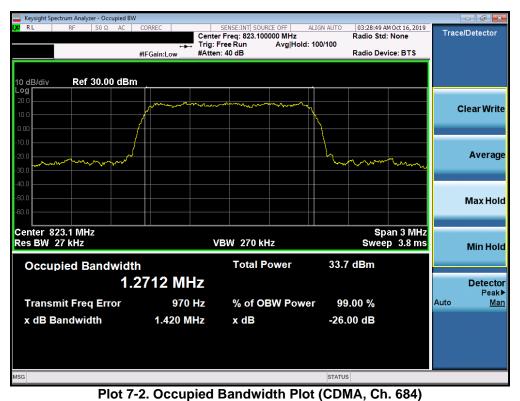
1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes


None.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 12 of 66
© 2020 PCTEST Engineering Labor	atory, Inc.			V 9.0 02/01/2019

Approved by: PCTEST MEASUREMENT REPORT SAMSUNG FCC ID: A3LSMG986U (CERTIFICATION) Quality Manager EUT Type: Test Report S/N: Test Dates: Page 13 of 66 1M1910220166-04.A3L 10/11 - 12/06/2019 Portable Handset V 9.0 02/01/2019

© 2020 PCTEST Engineering Laboratory, Inc.

	ectrum Analyz	er - Occup	ied BW											
LXI RL	RF	50 Ω	DC CO	ORREC			NSE:INT reg: 814.70		ALIGN AUT	ТО	10:54:30 A Radio Std	M Oct 28, 2019	Trac	e/Detector
						Trig: Fre	e Run	Avg Hold	: 100/100)				
,			#1	FGain:L	ow	#Atten: 4	0 dB				Radio Dev	vice: BTS		
10 dB/div	Ref	30.00 (dBm											
Log 20.0														
10.0			mon		\sim	\sim	\sim		·····					Clear Write
			/							\setminus				
0.00										\square				
-10.0														Average
-20.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~									hor was	man and the		Average
-30.0														
-40.0														
-50.0														Max Hold
-60.0														
Center 81	4 700 M	LI									- Chon 2	2.000 MHz		
Res BW		пг				VB	W 180 k	H7				5.733 ms		
											Uncop			Min Hold
Occu	pied Ba	andw	idth				Total F	Power	3	2.2	dBm			
			1.08	222	MH	7								Detector
				JUZ		2								Peak▶
Transn	nit Freq	Erro	r		-864	Hz	% of O	BW Pow	er	99	.00 %		Auto	<u>Man</u>
x dB B	andwid	th		1.2	22 MI	H7	x dB		-2	26.0	00 dB			
MSG									ST/	ATUS				

Plot 7-3. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz QPSK - Full RB Configuration)

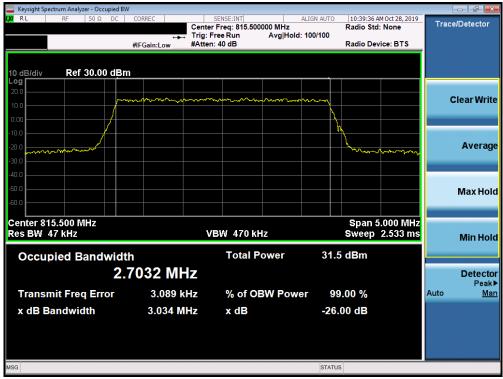
Plot 7-4. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 14 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 14 of 66
© 2020 PCTEST Engineering Labo	ratory, Inc.			V 9.0 02/01/2019

© 2020 PCTEST Engineering Laboratory, Inc.

Keysight Spectrum Analyzer - Occupied BW					
			I: 100/100	10:56:59 AM Oct 28, 20 Radio Std: None Radio Device: BTS	¹⁹ Trace/Detecto
10 dB/div Ref 30.00 dBm					
0.00					Clear Wi
				L.	Avera
0.0 0.0 0.0					MaxH
enter 814.700 MHz es BW 18 kHz	VB	W 180 kHz		Span 2.000 MI Sweep 5.733 n	
Occupied Bandwidth 1.0	835 MHz	Total Power	30.4	dBm	Detec
Transmit Freq Error x dB Bandwidth	1.046 kHz 1.228 MHz	% of OBW Pow x dB	er 99.(-26.0	00 % 0 dB	Auto <u>N</u>
G			STATUS		

Plot 7-5. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz 64-QAM - Full RB Configuration)


Plot 7-6. Occupied Bandwidth Plot (LTE Band 26 - 1.4MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 66		
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 15 of 66		
© 2020 PCTEST Engineering Labo	ratory, Inc.	•		V 9.0 02/01/2019		

Keysight Spectrur R L		DC		REC		SE	NSE:INT		ALIGN AU	го	10:38:59	AM Oct 28, 2019	_	
							req: 815.50				Radio St	d: None	Trac	e/Detector
						Trig: Fre #Atten: 4		Avg Hold	1: 100/100		Dadia Da	vice: BTS		
			#IF(Gain:Low		#Atten: 4	о ав				Radio De	VICE: BIS		
0 dB/div	Ref 30.0	0 dE	3m											
og														
0.0		, I	m	~~~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mm	h					Clear Wri
0.0		+ ł								t –				orear min
.00										4				
0.0		J.								۲,				
0.0	<u></u>									×	Sec. 1			Avera
0.0 mm.~~~											- 100 Carlor			
0.0		+												
0.0														Max Ho
0.0		+								\vdash				
enter 815.5												5.000 MHz		
es BW 47	KFIZ					VB	N 470 k	HZ			sweep	2.533 ms		Min Ho
Occupie	d Dand	havie	lth				Total F	ower	3	22	dBm			
Occupie					_		Total I	onor			abiii			
		2	68	85 I	ИH	Z								Detect
Transmit	Erog Er	ror		7	43 H	-	% of O	BW Pow	o.r.	00	00 %		Auto	Peal M
Transmit	Fled Ell	IOI		-/	43 г		% 01 U	DWFUW	er	99.	00 %		Auto	1410
x dB Ban	dwidth			2.979) MH	Z	x dB		-2	26.0	0 dB			
										-				
G									CT.	ATUS				

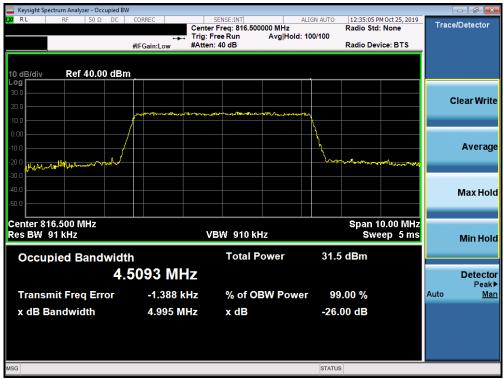
Plot 7-7. Occupied Bandwidth Plot (LTE Band 26 - 3MHz QPSK - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 26 - 3MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 16 of 66
© 2020 PCTEST Engineering Labora	atory, Inc.			V 9.0 02/01/2019

Keysight Spectrum Analyzer	- Occup 50 Ω		CORREC			SENSE:INT		ALIGN AU	то	10:42:50	AM Oct 28, 2019	_	
NE N	50 32		CONTREC			r Freq: 815.50 Free Run	0000 MHz Avg Holo			Radio Sto		Trac	e/Detector
			#IFGain			n: 40 dB			-	Radio De	vice: BTS		
0 dB/div Ref 3	0.00	d₿m	1						•—				
og 0.0													
0.0		\sim	m	$\sqrt{2}$	wow	mm	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Clear Wri
		4							X_				
0.0									λ				
0.0	م م کسم									\ <u>\</u>			Avera
0.0	~										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0.0													
0.0													
0.0													Max Ho
enter 815.500 MH	z										5.000 MHz		
es BW 47 kHz					V	'BW 470 k	(HZ			sweep	2.533 ms		Min Ho
Occupied Ba	ndw	/idt	h			Total	Power	3	0.6	dBm			
	iii a ii		687		L - ,								Detect
		Ζ.	00/		ΠΖ								Peal
Transmit Freq	Erro	r		335	Hz	% of C	BW Pow	/er	99	.00 %		Auto	M
x dB Bandwidt	h		2	.986 N	١Hz	x dB		_;	26.0	00 dB			
												_	

Plot 7-9. Occupied Bandwidth Plot (LTE Band 26 - 3MHz 64-QAM - Full RB Configuration)


Plot 7-10. Occupied Bandwidth Plot (LTE Band 26 - 3MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 17 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 17 of 66
© 2020 PCTEST Engineering Labora	atory, Inc.	·		V 9.0 02/01/2019

Keysight Spectrum Analyze	50 Ω [CORREC		5	ENSE:INT		AL TO	N AUTO	12:34:33	PM Oct 25, 2019	_	
NE IN	5032 1		CONTREC			Freq: 816.50	0000 MHz	ALIC	AUTO	Radio St		Trac	e/Detector
					Trig: Fr		Avg Ho	ld: 10	0/100				
		#	#IFGain:L	ow	#Atten:	40 dB				Radio De	evice: BTS		
0 dB/div Ref 4	40.00 d	dBm											
og													
0.0													Clear Wri
0.0				manno	1 m -	~~~~							
0.0							1047 (V. 1994)						
00									1				
0.0		- 71							X				Avera
		, M							N.		M. B. A. B.		Avera
0.0 Hapmanlopmon	and the second	~							- C.	- water	month like for the former		
0.0													
0.0													Max Ho
0.0													maxino
enter 816.500 M	Hz										10.00 MHz		
es BW/91 kHz					VE	W 910 k	Hz			Sw	/eep 5 ms		Min Ho
		1 -141-				Total	Douvor		22.4	dBm			
Occupied Ba						Total	ower		32.4	авт			
		4.5	331	МH	Z								Detect
	_												Pea
Transmit Freq	Erro	1	-18.	480 k	HZ	% of C	BW Pov	ver	99	.00 %		Auto	<u>M</u>
x dB Bandwid	th		4.9	82 M	Hz	x dB			-26.	00 dB			
G									STATUS	3			

Plot 7-11. Occupied Bandwidth Plot (LTE Band 26 - 5MHz QPSK - Full RB Configuration)

Plot 7-12. Occupied Bandwidth Plot (LTE Band 26 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 18 of 66	
© 2020 PCTEST Engineering Labora	V 9.0 02/01/2019				

Plot 7-13. Occupied Bandwidth Plot (LTE Band 26 - 5MHz 64-QAM - Full RB Configuration)

Plot 7-14. Occupied Bandwidth Plot (LTE Band 26 - 5MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 19 of 66
© 2020 PCTEST Engineering Labora	atory, Inc.			V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occupied BV	V				
LXI RL RF 50Ω DC	CORREC	SENSE:INT AL	IGN AUTO 01:03:22 P Radio Std	M Oct 25, 2019	Trace/Detector
	Trig:	Free Run Avg Hold: 1	00/100		
	#IFGain:Low #Atte	n: 40 dB	Radio Dev	vice: BTS	
10 dB/div Ref 30.00 dBn	n				
20.0					
	monterna	man man and a second			Clear Write
10.0					
0.00					
-10.0			Managella		
-20.0			handwalland	m how the	Average
-30.0					
-40.0					
-50.0					Max Hold
-60.0					
Center 819.00 MHz Res BW 180 kHz	1	/BW 1.8 MHz		20.00 MHz eep 1 ms	
Res BW 180 KH2			SW	eep mis	Min Hold
Occupied Bandwidt	h	Total Power	32.5 dBm		
					Detector
ð.	9609 MHz				Detector Peak▶
Transmit Freq Error	5.036 kHz	% of OBW Power	99.00 %		Auto <u>Man</u>
x dB Bandwidth	9.731 MHz	x dB	-26.00 dB		
	9.731 WHZ	X UB	-20.00 UB		
MSG			STATUS		

Plot 7-15. Occupied Bandwidth Plot (LTE Band 26 - 10MHz QPSK - Full RB Configuration)

Plot 7-16. Occupied Bandwidth Plot (LTE Band 26 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 20 of 66	
© 2020 PCTEST Engineering Labora	atory, Inc.	•		V 9.0 02/01/2019	

Keysight Spectrum Analyzer - Occupied B ¹	N						- •
KX RL RF 50Ω DC	- 	SENSE:INT Center Freq: 819.000 Trig: Free Run		Radio Std		Trace	/Detector
	#IFGain:Low	#Atten: 40 dB		Radio Dev	vice: BTS		
10 dB/div Ref 30.00 dBr	n						
	Marya Concernation	᠕ᡊ᠆ᠰᡄ᠋ᠧᢑᢛᠲᡉᢛᡏᡟᡨᡊ᠋ᠬᠴᠬᡅ᠕ᢏᠾᢞᡟ	holow margarely			с	lear Write
0.00				6			
-10.0 -20.0	/			hanner	mentheman		Average
-30.0 Annie (16.4 - 16							
-50.0							Max Hold
Center 819.00 MHz			<u> </u>		0.00 MHz		
Res BW 180 kHz		VBW 1.8 MF	12	500	eep 1 ms		Min Hold
Occupied Bandwid		Total P	ower	30.7 dBm			
8.	9543 MH	Ζ					Detector Peak►
Transmit Freq Error	7.908 kH	z % of OE	BW Power	99.00 %		Auto	<u>Man</u>
x dB Bandwidth	9.719 MF	lz xdB		-26.00 dB			
MSG				STATUS			

Plot 7-17. Occupied Bandwidth Plot (LTE Band 26 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-18. Occupied Bandwidth Plot (LTE Band 26 - 10MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 21 of 66	
© 2020 PCTEST Engineering Labora	V 9.0 02/01/2019				

Keysight Spectrum Analyzer - Occupi		ashes that			
0 RL RF 50Ω [ALIGN AUTO MHz vg Hold: 100/100	11:03:05 AM Oct 28, 2019 Radio Std: None	Trace/Detector
	#IFGain:Low	#Atten: 40 dB		Radio Device: BTS	
I0 dB/div Ref 30.00 d	dBm				
20.0			Dia an		
10.0	principal and the				Clear Writ
0.00	/		\		
10.0					
20.0	w/		- marine	and the second themes	Avera
30.0					
0.0					
i0.0					Max Ho
60.0					Maxino
enter 821.50 MHz es BW 270 kHz		VBW 2.7 MHz		Span 30.00 MHz Sweep 1 ms	
				erroop i mo	Min Ho
Occupied Bandw	idth	Total Pow	er 33.0	0 dBm	
	13.447 MH	Z			Detect
T	40 407 11		B		Peak Auto Ma
Transmit Freq Erro				9.00 %	Auto <u>Ma</u>
x dB Bandwidth	14.69 MI	Hz x dB	-26	.00 dB	
1					
G			STATU	S	

Plot 7-19. Occupied Bandwidth Plot (LTE Band 26 - 15MHz QPSK - Full RB Configuration)

Plot 7-20. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset			
© 2020 PCTEST Engineering Labora	V 9.0 02/01/2019				

Plot 7-21. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 64-QAM - Full RB Configuration)

Plot 7-22. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dara 00 at 00	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 23 of 66	
© 2020 PCTEST Engineering Labora	V 9.0 02/01/2019				

LTE Band 14

Keysight Spectrum Analyze	er - Occupied	BW							[- 6 ×
LXI RL RF	50 Ω DC	CORRE		SENSE:INT Center Freg: 793.	000000 MHz	ALIGN AUTO	01:44:26 A	M Oct 23, 2019	Trace	e/Detector
		#IEGai		Trig: Free Run #Atten: 36 dB	Avg Ho	ld:>100/100	Radio Dev	ice: BTS		
		#II Gal	n.cow ,							
	30.00 dE	3m								
20.0										
10.0				s	mann				C	lear Write
0.00		/				\				
-10.0						\				
-20.0 - An Mar Mar	man	-mart				June	ᠬᠬᢇᠴᡶᠬ᠘ᠵᠬ	M		Average
-30.0								. ANH CAN		
-40.0										
-50.0										Max Hold
-60.0										
Center 793.000 M	Hz							2.50 MHz		
Res BW 120 kHz				#VBW 39	0 kHz		Swe	ep 1 ms		Min Hold
Occupied Ba	andwid	lth		Tota	Power	32.8	3 dBm			
-			2 MHz	7						Detector
										Peak▶
Transmit Freq			1.447 kH		OBW Pov		9.00 %		Auto	<u>Man</u>
x dB Bandwid	th	5	5.051 MH	z xdB		-26.	00 dB			
MSG						STATU	5			
									_	

Plot 7-23. Occupied Bandwidth Plot (LTE Band 14 - 5MHz QPSK - Full RB Configuration)

Keysight Spectrum Analyzer - Occupied BW	CORREC	SENSE:INT	ALIGN AUTO	01:44:44 AM Oct 23, 2019	
KL K- 5032 DC	Ce →→ Tri	nter Freq: 793.000000 I		Radio Device: BTS	Trace/Detector
10 dB/div Ref 30.00 dBm -og					
0.00		, and a second and a second and a second			Clear Writ
10.0 20.0 30.0 pm M. Mar M. Marian				mannan	Averag
0.0					Max Hol
enter 793.000 MHz es BW 120 kHz		#VBW 390 kHz		Span 12.50 MHz Sweep 1 ms	Min Ho
Occupied Bandwidtl 4.	ո 5089 MHz	Total Pow	er 31.3	3 dBm	Detecto
Transmit Freq Error x dB Bandwidth	900 Hz 4.991 MHz			0.00 % 00 dB	Auto <u>Ma</u>
G			STATUS	3	


Plot 7-24. Occupied Bandwidth Plot (LTE Band 14 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 24 of 66
© 2020 DOTECT Engineering Labor	atan (laa	•		1/ 0 0 00/01/2010

Plot 7-25. Occupied Bandwidth Plot (LTE Band 14 - 5MHz 64-QAM - Full RB Configuration)

Plot 7-26. Occupied Bandwidth Plot (LTE Band 14 - 5MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 05 at 00	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 25 of 66	
© 2020 PCTEST Engineering Lab	V 9.0 02/01/2019				

Plot 7-27. Occupied Bandwidth Plot (LTE Band 14 - 10MHz QPSK - Full RB Configuration)

Plot 7-28. Occupied Bandwidth Plot (LTE Band 14 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 af 00	
1M1910220166-04.A3L	10/11 - 12/06/2019	10/11 - 12/06/2019 Portable Handset		Page 26 of 66	
© 2020 PCTEST Engineering Lab	V 9.0 02/01/2019				

Keysight Spectrum Analyzer - Occupied BW						
RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO	01:27:33 PM Oct 25, 2019 Radio Std: None	Trace/Detector	
		Trig: Free Run	Avg Hold:>100/100	Radio Sta. None		
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS		
0 dB/div Ref 40.00 dBn	n					
0.0					.	
0.0					Clear Wri	
0.0	mun	ward way and a second	Mar mar Muyle			
	1		N N			
	/				Avera	
0.0					Avera	
0.0 hope-calman water	1. A.		V-nas-lala	manna		
0.0 Angeneration of the contraction of the contract				manghoursof		
0.0					Max Ho	
0.0					Muxito	
enter 793.00 MHz				Span 25.00 MHz		
es BW 240 kHz		#VBW 750 k	(Hz	Sweep 1 ms Min H		
		Total P		.7 dBm		
Occupied Bandwidt			ower 30	./ aBm		
9.	0016 MH	Z			Detect	
					Pea	
Transmit Freq Error	-2.632 kl	IZ % of O	BW Power 9	99.00 %	Auto <u>M</u>	
x dB Bandwidth	9.902 MI	lz xdB	-2	6.00 dB		
G			STAT	US		

Plot 7-29. Occupied Bandwidth Plot (LTE Band 14 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-30. Occupied Bandwidth Plot (LTE Band 14 - 10MHz 256-QAM - Full RB Configuration)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 07 at 00	
1M1910220166-04.A3L	10/11 - 12/06/2019	rtable Handset		Page 27 of 66	
© 2020 PCTEST Engineering Laboration	atory, Inc.			V 9.0 02/01/2019	

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

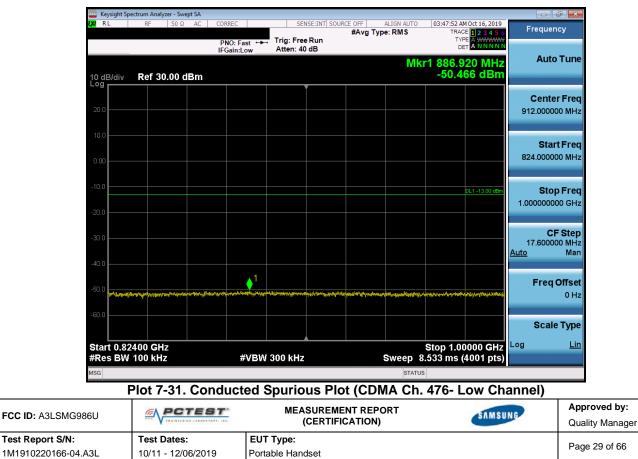
Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. RBW ≥ 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup


Test Notes

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	0/11 - 12/06/2019 Portable Handset		Page 28 of 66	
© 2020 PCTEST Engineering Lab	oratory. Inc.			V 9.0 02/01/2019	

	pectrum Analy										[- 0
XU RL	RF	50 Ω	AC	CORREC			NSE:INT SC	ALIGN AUTO	TRAC	M Oct 16, 2019 DE 1 2 3 4 5 6	Fre	quency
	_			PNO: I IFGain:	ast ↔ Low	Trig: Fre Atten: 4			D			
								Mkr1	813.96	0 8 MHz		Auto Tun
0 dB/div	Ref 3	0.00 dl	Вm				•		-47.	20 dBm		
											С	enter Fre
20.0											422.	000000 MH
10.0												
												Start Fre
0.00											30.	000000 MH
10.0												04 a
										DL1 -13.00 dBm	814.	Stop Fre
-20.0												
30.0												CF Ste
											78. <u>Auto</u>	400000 MH Ma
40.0										<u> </u>		
-50.0										-	F	req Offs
												0 H
60.0												
												Scale Typ
Start 30.		_			#\/D\4	200 644		Swoon -27	Stop 8	14.0 MHz	Log	L
Res BW	100 kH	2			#VBW	300 kHz		Sweep 37		2000 T pts)		

Plot 7-31. Conducted Spurious Plot (CDMA Ch. 476- Low Channel)

V 9.0 02/01/2019

© 2020 PCTEST Engineering Laboratory, Inc.

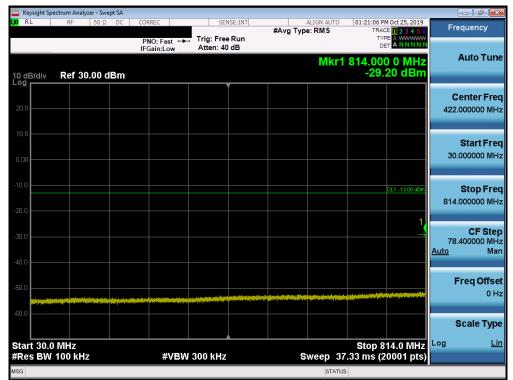
	ectrum Analyz										-0	.
X RL	RF	50 Ω	AC	CORREC		S	ENSE:INT SC	ALIGN AUTO		M Oct 16, 2019	Frequ	ency
				PNO: F IFGain:I	ast ⊶⊷ _ow	Trig: Fr Atten: 4		 	TY D			_
10 dB/div Log	Ref 30	.00 dE	3m					Mk	1 7.526 -32.9	80 GHz 74 dBm	Au	to Tune
20.0											Cent 5.500000	ter Fre 1000 GH
0.00											Sta 1.000000	art Fre
-10.0										DL1 -13.00 dBm	St 10.000000	op Fre 1000 GH
-30.0		,	Maria Maria	-					~~~~	~~~	900.000 <u>Auto</u>	CF Ste 1000 MH Ma
50.0											Fre	qOffs e 0⊦
-60.0											Sca	le Typ
Start 1.00 #Res BW		:			#VBW	3.0 MH	z	Sweep 1	Stop 10 6.00 ms (2		Log	Li
ISG								STATU				

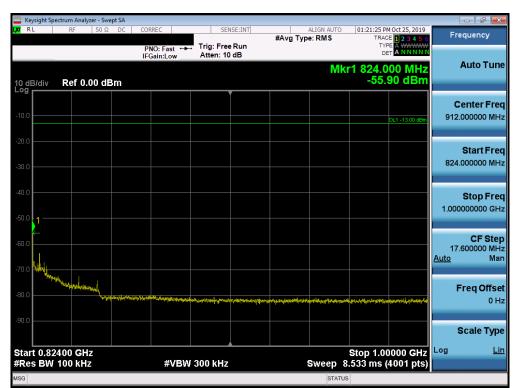
Plot 7-31. Conducted Spurious Plot (CDMA Ch. 476- Low Channel)

Plot 7-31. Conducted Spurious Plot (CDMA Ch. 684- High Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 66
1M1910220166-04.A3L	-04.A3L 10/11 - 12/06/2019 Portable Handset			Page 30 of 66
© 2020 PCTEST Engineering Labors	atony Inc			V 0 0 02/01/2010

	ectrum Analyz												
XIRL	RF	50 Ω	AC	CORREC		SEN	ISE:INT SO		ALIGN AUTO		AM Oct 16, 2019 CE 1 2 3 4 5 6	Fre	quency
				PNO: F IFGain:I	ast ↔ ow	Trig: Free Atten: 40		#A¥9 1	ype. Nino	T) E			
10 dB/div	Ref 30	.00 d	Bm						Mk	r1 824.0 -24.6	000 MHz 516 dBm		Auto Tune
20.0													enter Fred 000000 MH;
0.00												824.	Start Freq 000000 MHz
-10.0 -20.0 \ 1											DL1 -13.00 dBm	1.000	Stop Fred 000000 GH2
-30.0												17. <u>Auto</u>	CF Step 600000 MH Mar
-50.0	tagan faji si na pagang	perijika Maselo	ال معرد المراجعين ال	ىلىرىيى ئىلىرىيى ئەرىمىلى مەرىمىلى مەرىمىلى مەرىمىلى مەرىمىلى مەرىمىلى مەرىمىلىرى مەرىمىلىرى مەرىمىل	699,10 7-48 4 41-	Julie Program Basellow	and a second	data) office your advecting the de	ted a la clica i por a	galage skips op in to be a firme	2+17473-1-18-18-18-18-18-18-18-18-18-18-18-18-1	F	F req Offse 0 H
-60.0													Scale Type
Start 0.82 #Res BW				-	#VBW :	300 kHz			Sweep	Stop 1.0 3.533 ms	0000 GHz (4001 pts)	Log	Lir
MSG									STATU	s			


Plot 7-31. Conducted Spurious Plot (CDMA Ch. 684- High Channel)


Plot 7-31. Conducted Spurious Plot (CDMA Ch. 684- High Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019 Portable Handset			Page 31 of 66
© 2020 PCTEST Engineering Labora	V 9 0 02/01/2019			

Plot 7-31. Conducted Spurious Plot (LTE Band 26 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-32. Conducted Spurious Plot (LTE Band 26 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 66
1M1910220166-04.A3L	11910220166-04.A3L 10/11 - 12/06/2019 Portable Handset			Page 32 of 66
© 2020 PCTEST Engineering Labora	V 9.0 02/01/2019			

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Plot 7-33. Conducted Spurious Plot (LTE Band 26 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 22 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019 Portable Handset			Page 33 of 66	
© 2020 PCTEST Engineering Labor	V 9 0 02/01/2019				

LTE Band 14

	ectrum Analyz								[- 6 ×
X/RL	RF	50 Ω DC	CORREC PNO: Fast		#Avg Type	LIGN AUTO : RMS	TRAC	I Oct 23, 2019 E 1 2 3 4 5 6 E A WWWW T A N N N N N	Fre	equency
10 dB/div Log	Ref 20	.00 dBm	IFGain:Low			M	kr1 788.			Auto Tune
10.0										enter Fred 000000 MH:
-10.0								DL1 -13.00 dBm		Start Fred 000000 MH;
-20.0								1	788.	Stop Fred 000000 MH;
40.0									75. <u>Auto</u>	CF Stej 800000 MH Ma
60.0	<u>an an a</u>	gering helen geringen				n nig by an a statistical of a statement of			F	r eq Offse 0 H
70.0										Scale Type
Start 30.0 #Res BW			#VI	BW 300 kHz	Sv	veep 36	Stop 78 .38 ms (1:	20.0 191112	Log	Lir
//SG						STATUS				

Plot 7-34. Conducted Spurious Plot (LTE Band 14 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

								ectrum Analyzer -	
Frequency	01:26:46 AM Oct 23, 2019 TRACE 1 2 3 4 5 6	ALIGN AUTO	#Avg Ty	ENSE:INT	SE	CORREC	0Ω DC	RF 5	RL
	TYPE A WWWWW DET A NNNNN	e. RIVIS	#Avg I)		Trig: Free Atten: 30	PNO: Fast 🕞 IFGain:Low			
Auto Tur	kr1 798.00 MHz -55.16 dBm	Mł					0 dBm	Ref 20.0	0 dB/div
Center Fre									
899.000000 MH									10.0
									3.00
Start Fre 798.000000 MH									
	DL1 -13.00 dBm								
Stop Fre									20.0
1.000000000 GH									30.0
CF Ste									
20.200000 MH									10.0
									50.0 <mark> 1</mark>
Freq Offs									;0.0 -
01	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	arderio franceiro y delega	****	*****	an a	antere all the standard and have a	19.19. a	*****	tisles and the second
Scale Typ									0.0
.og L									
	Stop 1.0000 GHz .696 ms (4041 pts)	Sween 9		7	300 kHz	#VBW		80 GHZ 100 kHz	tart 0.79 Res BW

Plot 7-35. Conducted Spurious Plot (LTE Band 14 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Dage 24 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 34 of 66	
© 2020 PCTEST Engineering Labor	V 9.0 02/01/2019				

Plot 7-36. Conducted Spurious Plot (LTE Band 14 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	- 12/06/2019 Portable Handset		Page 35 of 66	
© 2020 PCTEST Engineering Labor	V 9 0 02/01/2019				

7.4 Band Edge Emissions at Antenna Terminal §2.1051

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

For LTE B26 operation under Part 90.691, the minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by greater than 37.5 kHz is $43 + 10\log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts. The minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by up to and including 37.5 kHz is $50 + 10\log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Span was set large enough so as to capture all out of band emissions near the band edge
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = RMS
- 5. Trace mode = trace average
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 26 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019 Portable Handset			Page 36 of 66
© 2020 PCTEST Engineering Labo	V 9 0 02/01/2019			

For channel edge emission, the signal analyzer's "ACP" measurement capability is used.

Per 22.917(b) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

For LTE Band 14 operation under Part 90.543, the power of any emission must be reduced below the mean output power (P) by at least 43 + 10log (P) dB measured in a 100 kHz bandwidth for frequencies less than 1 GHz, and in a 1 MHz bandwidth for frequencies greater than 1 GHz.

Additionally, for LTE Band 14 operation, on all frequencies between 769-775 MHz and 799-805 MHz, the power of any emission shall be attenuated by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

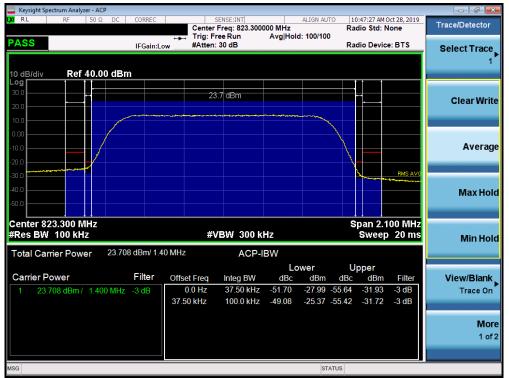
FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 27 of 66
1M1910220166-04.A3L 10/11 - 12/06/2019 Portable Handset		Portable Handset		Page 37 of 66
© 2020 PCTEST Engineering Labo	vratory Inc			V 0 0 02/01/2010

CDMA BC10

Plot 7-37. Channel Edge Plot (CDMA BC10 - Ch. 476)

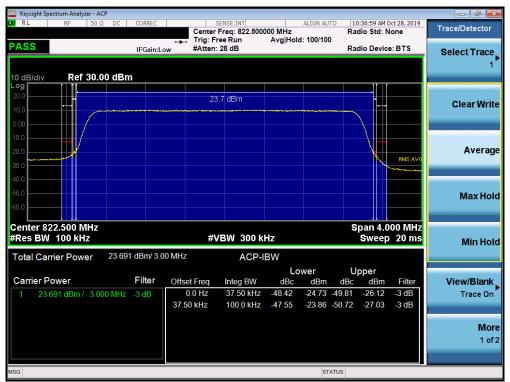


Plot 7-38. Channel Edge Plot (CDMA BC10 - Ch. 684)


FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 28 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	ortable Handset		Page 38 of 66
© 2020 PCTEST Engineering Labor	V 9.0 02/01/2019			

© 2020 PCTEST Engineering Laboratory, Inc.

Plot 7-39. Channel Edge Plot (LTE Band 26 - 1.4MHz QPSK - Low Channel)


Plot 7-40. Channel Edge Plot (LTE Band 26 - 1.4MHz QPSK - High Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 39 of 66
© 2020 PCTEST Engineering Labo	V 9.0 02/01/2019			

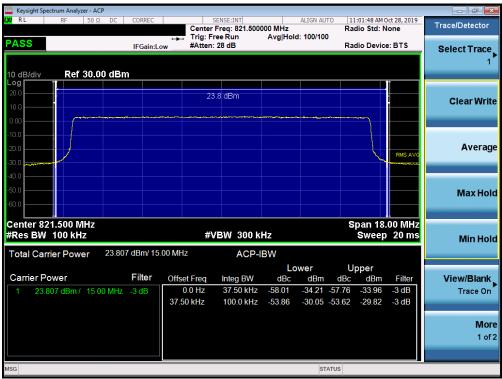
🤐 Keysight Spectrum Analyzer - ACP				
K RL RF 50 Ω DC CORREC	SENSE:INT Center Freg: 815.5000	ALIGN AUTO	10:38:25 AM Oct 28, 2019 Radio Std: None	Trace/Detector
PASS IFGain:Lc	🛶 Trig: Free Run	Avg Hold: 100/100	Radio Device: BTS	Select Trace
10 dB/div Ref 40.00 dBm				1
30.0	23.7 dBm			Clear Write
10.0				Average
-20.0 -30.0 -40.0 -50.0			RMS AVC	Max Hold
Center 815.500 MHz #Res BW 100 kHz Total Carrier Power 23.724 dBm/ 3.0	#VBW 300 k		Span 4.000 MHz Sweep 20 ms	Min Hold
Total Carrier Power 23.724 dBm/ 3.0	0 MHz ACP-I		l les en	
Carrier Power Filter	Offset Freg Integ BW	Lower dBc dBm c	Upper IBc dBm Filter	View/Blank
1 23.724 dBm / 3.000 MHz -3 dB	0.0 Hz 37.50 kHz 37.50 kHz 100.0 kHz	-48.54 -24.82 -48		Trace On
				More 1 of 2
MSG		STATUS	_	


Plot 7-42. Channel Edge Plot (LTE Band 26 - 3MHz QPSK - High Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	ortable Handset		Page 40 of 66
© 2020 PCTEST Engineering Labor	V 9 0 02/01/2019			

Keysight Spectrum Analyzer - ACI	p							
<mark>LX/</mark> RL RF 50Ω	DC CORREC		SENSE:INT er Freq: 816.500		ALIGN AUTO	12:57:04 PM Radio Std:		Trace/Detector
24.00		Trig:	Free Run	Avg Hold	: 100/100			
PASS	IFGain	Low #Atte	n: 30 dB			Radio Devid	e: BTS	Select Trace
								1
10 dB/div Ref 30.0	0 dBm							
20.0								
			23.4 dBm			j.		Clear Write
10.0				****				
0.00								
-10.0								
-20.0						N.	RMS AVG	Average
-30.0						N		
-40.0								
-50.0								Max Hold
-60.0								WidA Hold
Center 816.500 MHz							500 MHz	
#Res BW 100 kHz			#VBW 300 k	Hz		Swee	o 20 ms	Min Hold
Total Carrier Power	23.372 dBm/ 5	.00 MHz	ACP-I	BW				
				Lov	ver	Upper		
Carrier Power	Filter	Offset Freq	Integ BW	dBc	dBm d	IBc dBm	Filter	View/Blank
1 23.372 dBm / 5.00	0 MHz -3 dB	0.0 Hz	37.50 kHz			.92 -29.55		Trace On
		37.50 kHz	100.0 kHz	-50.82	-27.45 -50.	.39 -27.02	-3 dB	
								More
								1 of 2
ASG					STATUS			

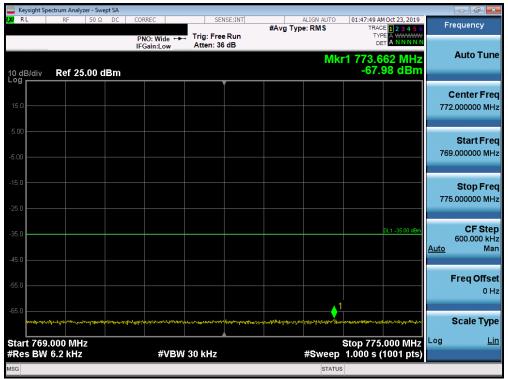
Plot 7-43. Channel Edge Plot (LTE Band 26 - 5MHz QPSK - Low Channel)


Plot 7-44. Channel Edge Plot (LTE Band 26 - 5MHz QPSK - High Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 41 of 66
1M1910220166-04.A3L 10/11 - 12/06/2019 Portable Handset			Page 41 of 66	
© 2020 PCTEST Engineering Labora	V 9 0 02/01/2019			

Keysight Spectrum Analyzer - ACP						- 6 💌
XV RL RF 50Ω DC CORREC	SENSE	:INT : 819.000000 MHz	ALIGN AUTO	01:19:41 PM Oc Radio Std: No		Trace/Detector
PASS IFGain:Lo	Trig: Free R	un Avg Hole	d: 100/100	Radio Device		Select Trace
10 dB/div Ref 30.00 dBm						1
Log 20.0 10.0 0.00	23.7 df	3m				Clear Write
-10.0					RMS AVG	Averag
						Max Hol
Center 819.000 MHz #Res BW 100 kHz		/ 300 kHz		Span 12.0 Sweep		Min Hol
Total Carrier Power 23.703 dBm/ 10.	00 MHz	ACP-IBW				
				Upper		
Carrier Power Filter		teg BW dBc	dBm dB		Filter	View/Blank
1 23.703 dBm / 10.00 MHz -3 dB		7.50 kHz -56.96 00.0 kHz -53.23	-33.26 -57.6 -29.53 -54.3		-3 dB -3 dB	Trace On
						Mo 1 of
MSG			STATUS			

Plot 7-45. Channel Edge Plot (LTE Band 26 - 10MHz QPSK - Mid Channel)


Plot 7-46. Channel Edge Plot (LTE Band 26 - 15MHz QPSK - Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 66
1M1910220166-04.A3L 10/11 - 12/06/2019 Portable Handset			Page 42 of 66	
© 2020 PCTEST Engineering Labor	atory Inc			V 9 0 02/01/2019

Plot 7-47. Lower Band Edge Plot (LTE Band 14, 5MHz QPSK - RB Size 25)

Plot 7-48. Lower Emission Mask Plot (LTE Band 14, 5MHz QPSK - RB Size 25)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 43 of 66
© 2020 PCTEST Engineering Labo	V 9.0 02/01/2019			

🔤 Keysight Spectru											
LXI RL	RF 50)Ω DC	CORREC	SEN	SE:INT	#Avg Typ	ALIGN AUTO		1 Oct 23, 2019 E 1 2 3 4 5 6	Fi	requency
			PNO: Wide ↔ IFGain:Low	Trig: Free Atten: 36				TYF DE			Auto Tune
10 dB/div R	Ref 25.00) dBm					MK	r1 798.0 -25.4	04 MHz 95 dBm		Auto Tulk
										(Center Free
15.0										798	3.000000 MH
5.00	umm.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
-5.00										796	Start Fre 5.000000 MH
-5.00									DL1 -13.00 dBm		
-15.0											Stop Fre
-25.0				54	1					800	0.000000 MH
				V	home						CF Ste
-35.0					1. Marca	the manager	ᢣᢏᠰᡇᠣᡃᡴᠣᡃᡡᡔᢑᡔᠧᢦᠰ	www.www.www.		Auto	400.000 kH Ma
-45.0										Auto	Ind
-55.0											Freq Offse
											0 H
-65.0											Scale Typ
0 700								0	000 8414		Li
Center 798.0 #Res BW 10			#VBW	/ 300 kHz			Sweep 2	span 4 .000 m <u>s (</u>	.000 MHz 1001 pts)	209	
MSG							STATUS	5			

Plot 7-49. Upper Band Edge Plot (LTE Band 14, 5MHz QPSK - RB Size 25)

Plot 7-50. Upper Emission Mask Plot (LTE Band 14, 5MHz QPSK - RB Size 25)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 66
1M1910220166-04.A3L 10/11 - 12/06/2019 Portable Handset			Page 44 of 66	
© 2020 PCTEST Engineering Labo	V 9 0 02/01/2019			

Keysight Spect							
RL	RF	50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:29:50 AM Oct 23, 2019 TRACE 1 2 3 4 5 6	Frequency
			PNO: Wide ↔ IFGain:Low	⊢ Trig: Free Run Atten: 36 dB		DET A NNNN	
0 dB/div	Ref 25.0	0 dBm			Mk	r1 787.928 MHz -28.382 dBm	Auto Tur
15.0							Center Fre 788.000000 MH
5.00					N - Land Land Marana Land and a san and a san and a san a	ay Jardana ay ford any ang tangkang tangkang ang tangkang ang tangkang tangkang tangkang tangkang tangkang tang	
5.00							Start Fre 784.000000 MH
5.0						DL1 -13.00 dBm	Stop Fro
25.0				1 mar and a start			792.000000 Mł
95.0 van stade	anna a faile an	all a second	ann grandel fingen and have been a				CF Ste 800.000 kl <u>Auto</u> M
5.0							Freq Offs
5.0							0
							Scale Typ
enter 788 Res BW 1		Z	#VB\	V 300 kHz	Sweep 4	Span 8.000 MHz 4.000 ms (1001 pts)	
SG					STATU	s	

Plot 7-51. Lower Band Edge Plot (LTE Band 14, 10MHz QPSK - RB Size 50)

RL	RF	50 Ω		CORREC	1	CE	NSE:INT		ALIGN AUTO	01-20-42 01	4 Oct 23, 2019	_	
	10	5032			ide ↔	Trig: Fre	e Run	#Avg Typ		TRAC		F	requency
dB/div	Ref 25	.00 dE	3m	II Guill.					Mk	r1 774.7 -68.3	24 MHz 36 dBm		Auto Tur
5.0													Center Fr 2.000000 Mi
												76	Start Fr 9.000000 M
.0												77	Stop Fr 5.000000 M
i.o											DL1 -35.00 dBm	<u>Auto</u>	CF Sto 600.000 k M
i.0													Freq Offs 0
5.0	and a second	rfaftar, A. Ayybaa	- Performente		and the second states of the	ىرى <mark>رىمىرەر مەر</mark> مەر	Jerr-mittelsandshik	r-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	กรุ่งสุดสามาระบริเคาและเ			1.00	Scale Ty
	.000 MH 6.2 kHz			ţ	≠vbw	30 kHz			#Sweep	Stop 775. 1.000 s (.000 MHz 1001 pts)	Log	Ĺ
G									STATUS				

Plot 7-52. Lower Emission Mask Plot (LTE Band 14, 10MHz QPSK - RB Size 50)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 45 of 66
© 2020 PCTEST Engineering Labor	atony Inc	·		V 0 0 02/01/2010

	ectrum Analyze												
K <mark>I</mark> RL	RF	50 Ω [DC	CORREC		SE	NSE:INT	#Avg Ty	ALIGN AUTO		M Oct 23, 2019 CE 1 2 3 4 5 6	F	requency
				PNO: W IFGain:L	ide ↔ .ow	Trig: Fre Atten: 3				TY D			
0 dB/div	Ref 25.	.00 dB	m						Mk	r1 798.(-28.4	024 MHz 59 dBm		Auto Tur
													Center Fre
15.0												79	8.000000 MH
5.00 <mark> </mark>	and the second	and	~y~~~	n ter we de ter ter ter ter ter ter ter ter ter te	all and a second se	~						70	Start Fre
5.00											DL1 -13.00 dBm	79	4.000000 MH
15.0													Stop Fre
25.0						h	•1					80	2.000000 MH
i5.0							series and	when the work	man and	er war surger and	and and and a glad and any to		CF Ste 800.000 ki
15.0												<u>Auto</u>	M
55.0													Freq Offs
i5.0													01
													Scale Typ
	8.000 M				¢VBW	300 kHz			Sweep 4	Span 8 .000 ms	3.000 MHz (1001 pts)	Log	L
G									STATUS		/		

Plot 7-54. Upper Emission Mask Plot (LTE Band 14, 10MHz QPSK - RB Size 50)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 46 of 66
© 2020 PCTEST Engineering Labo	ratory Inc			V 9 0 02/01/2019

7.5 **Conducted Power Output Data**

<u>§2.1046</u>

Frequency [MHz]	BC10 [Channel]	Battery Type	Cond. PWR [dBm]	Cond. PWR [Watts]	Cond. PWR Limit [dBm]	Margin [dB]
817.90	476	Standard	24.50	0.282	50.00	-25.50
823.10	684	Standard	24.53	0.284	50.00	-25.47

Table 7-2. CDMA BC10 Conducted Power Output Data

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Cond. PWR [dBm]	Cond. PWR [Watts]	Cond. PWR Limit [dBm]	Margin [dB]
814.70	1.4	QPSK	24.55	0.285	50.00	-25.45
823.30	1.4	QPSK	24.52	0.283	50.00	-25.48
814.70	1.4	16-QAM	23.89	0.245	50.00	-26.11
823.30	1.4	16-QAM	23.88	0.244	50.00	-26.12
814.70	1.4	64-QAM	22.80	0.191	50.00	-27.20
823.30	1.4	64-QAM	22.74	0.188	50.00	-27.26
814.70	1.4	256-QAM	19.60	0.091	50.00	-30.40
823.30	1.4	256-QAM	19.75	0.094	50.00	-30.25
815.50	3	QPSK	24.70	0.295	50.00	-25.30
822.50	3	QPSK	24.58	0.287	50.00	-25.42
815.50	3	16-QAM	24.01	0.252	50.00	-25.99
822.50	3	16-QAM	23.95	0.248	50.00	-26.05
815.50	3	64-QAM	23.02	0.200	50.00	-26.98
822.50	3	64-QAM	22.86	0.193	50.00	-27.14
815.50	3	256-QAM	19.88	0.097	50.00	-30.12
822.50	3	256-QAM	19.79	0.095	50.00	-30.21
816.50	5	QPSK	24.68	0.294	50.00	-25.32
821.50	5	QPSK	24.57	0.286	50.00	-25.43
816.50	5	16-QAM	24.07	0.255	50.00	-25.93
821.50	5	16-QAM	23.94	0.248	50.00	-26.06
816.50	5	64-QAM	22.98	0.199	50.00	-27.02
821.50	5	64-QAM	22.93	0.196	50.00	-27.07
816.50	5	256-QAM	19.87	0.097	50.00	-30.13
821.50	5	256-QAM	19.81	0.096	50.00	-30.19
819.00	10	QPSK	24.53	0.284	50.00	-25.47
819.00	10	16-QAM	24.16	0.261	50.00	-25.84
819.00	10	64-QAM	22.94	0.197	50.00	-27.06
819.00	10	256-QAM	19.72	0.094	50.00	-30.28
821.50	15	QPSK	24.73	0.297	50.00	-25.27
821.50	15	16-QAM	24.19	0.262	50.00	-25.81
821.50	15	64-QAM	23.05	0.202	50.00	-26.95
821.50	15	256-QAM	19.84	0.096	50.00	-30.16

Table 7-3. LTE B26 Conducted Power Output Data

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 66	
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 47 of 66	
O AGOS DOTEOTE :	4 I			11000001010010	

- 1. For CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.
- 2. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 3. This unit was tested with its standard battery.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 49 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 48 of 66
© 2020 PCTEST Engineering Labora	atory Inc			V 9 0 02/01/2019

7.6 Radiated Power (ERP) §90.542(a)(7), §22.913(a)(2)

Test Overview

Effective Radiated Power (ERP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 40 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 49 of 66
© 2020 PCTEST Engineering Labo	ratory Inc			V 9 0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

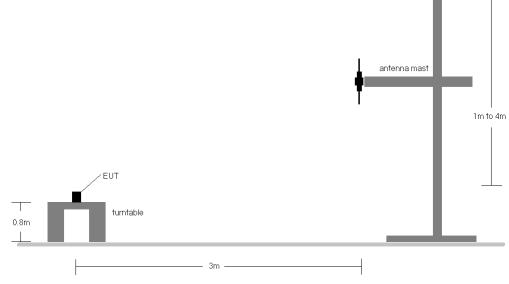


Figure 7-4. Radiated Test Setup <1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E0 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 50 of 66
© 2020 PCTEST Engineering Labo	ratory, Inc.			V 9.0 02/01/2019

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
821.50	15	QPSK	Н	141	284	1 / 74	13.35	6.70	17.90	0.062	38.45	-20.55
821.50	15	16-QAM	н	141	284	1 / 74	12.44	6.70	16.99	0.050	38.45	-21.46
821.50	15	64-QAM	Н	141	284	1 / 74	11.41	6.70	15.96	0.039	38.45	-22.49
821.50	15	256-QAM	Н	141	284	1 / 74	9.61	6.70	14.16	0.026	38.45	-24.29
821.50	15	QPSK	V	326	185	1 / 0	11.92	6.70	16.47	0.044	38.45	-21.98
821.50	15 (WCP)	QPSK	Н	100	270	1 / 74	11.12	6.70	15.67	0.037	38.45	-22.78

Table 7-55. ERP Data (Band 26)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
790.50	5	QPSK	Н	208	283	1 / 24	14.18	6.00	18.03	0.064	34.77	-16.74
793.00	5	QPSK	Н	208	281	1 / 24	14.21	6.10	18.16	0.065	34.77	-16.61
795.50	5	QPSK	н	207	280	1 / 0	13.89	6.20	17.94	0.062	34.77	-16.83
793.00	5	16-QAM	Н	208	281	1 / 24	14.26	6.10	18.21	0.066	34.77	-16.56
793.00	5	64-QAM	Н	208	281	1 / 24	13.22	6.10	17.17	0.052	34.77	-17.60
793.00	5	256-QAM	Н	208	281	1 / 24	10.77	6.10	14.72	0.030	34.77	-20.05
793.00	10	QPSK	Н	207	279	1 / 49	14.42	6.10	18.37	0.069	34.77	-16.40
793.00	10	16-QAM	н	207	279	1 / 0	13.47	6.10	17.42	0.055	34.77	-17.35
793.00	10	64-QAM	Н	207	279	1 / 49	12.65	6.10	16.60	0.046	34.77	-18.17
793.00	10	256-QAM	Н	207	279	1 / 49	10.79	6.10	14.74	0.030	34.77	-20.03
793.00	10	QPSK	V	169	242	1 / 49	13.94	6.10	17.89	0.062	34.77	-16.88
793.00	10 (WCP)	QPSK	Н	212	260	1 / 49	13.92	6.10	17.87	0.061	34.77	-16.90

Table 7-56. ERP Data (Band 14)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 51 of 66
© 2020 PCTEST Engineering Labor	atony Inc			V 0 0 02/01/2010

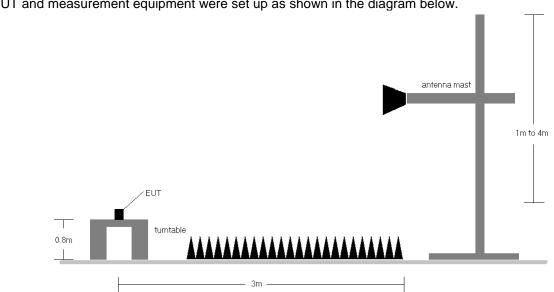
7.7 Radiated Spurious Emissions Measurements §2.1053

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

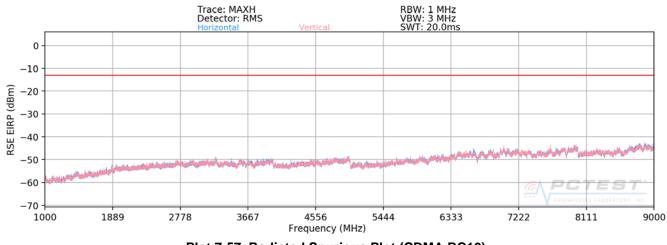

ANSI/TIA-603-E-2016 - Section 2.2.12

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \ge 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 52 of 66
© 2020 PCTEST Engineering Lab	oratory. Inc.			V 9.0 02/01/2019

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-5. Test Instrument & Measurement Setup

Test Notes

- 1. For CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.
- 2. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 3. This unit was tested with its standard battery.
- 4. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 5. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 6. Per 90(R)(f), emissions in the 1559 1610MHz band are subject to a limit of -40dBm/MHz for wideband signals. These emission measurements are shown in this section below.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 52 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 53 of 66
© 2020 PCTEST Engineering Labor	atory Inc	•		V 9 0 02/01/2019

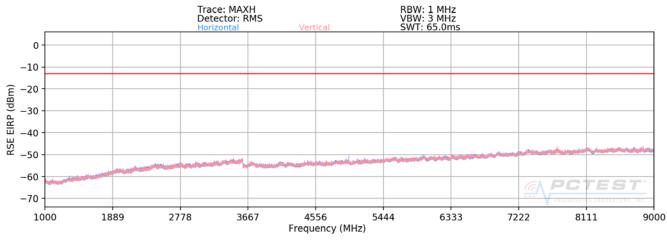
Plot 7-57. Radiated Spurious Plot (CDMA BC10)

OPERATING FREQUENCY:		817.90	MHz
MODULATION SIGNAL:	CDMA	_	
DISTANCE:	3	meters	
LIMIT:	-13.00	dBm	

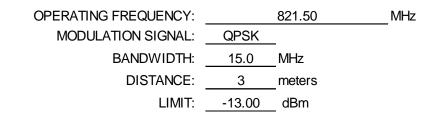
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1635.80	V	-	-	-73.99	9.82	-64.16	-51.2
2453.70	V	120	58	-67.51	9.53	-57.97	-45.0
3271.60	V	-	-	-67.06	7.92	-59.14	-46.1
4089.50	V	-	-	-66.10	7.56	-58.54	-45.5

Table 7-4. CDMA BC10 Radiated Spurious Data (Ch. 476)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E4 of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 54 of 66
© 2020 PCTEST Engineering Labor	ratory Inc.			V 9 0 02/01/2019

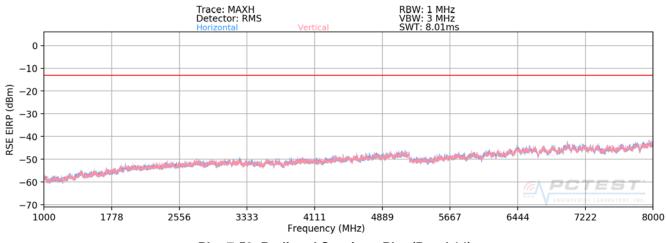

OPERATING FREQUENCY:		823.10	MHz
MODULATION SIGNAL:	CDMA	_	
DISTANCE:	3	meters	
LIMIT:	-13.00	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1646.20	V	-	-	-74.02	9.85	-64.16	-51.2
2469.30	V	118	120	-63.82	9.49	-54.33	-41.3
3292.40	V	-	-	-67.07	7.75	-59.33	-46.3
4115.50	V	-	-	-66.32	7.89	-58.42	-45.4


Table 7-5. CDMA BC10 Radiated Spurious Data (Ch. 684)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo EE of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 55 of 66
© 2020 PCTEST Engineering Labor	atory Inc			\/ 0 0 02/01/2010

Plot 7-58. Radiated Spurious Plot (Band 26)



Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1643.00	V	223	167	-69.53	3.60	-65.94	-52.9
2464.50	V	115	100	-65.15	4.19	-60.96	-48.0
3286.00	V	-	-	-67.56	5.74	-61.83	-48.8
4107.50	V	-	-	-68.87	7.56	-61.31	-48.3

Table 7-6. Radiated Spurious Data (LTE Band 26 – Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege EC of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 56 of 66
© 2020 PCTEST Engineering Labo	ratory Inc			V 9 0 02/01/2019

Plot 7-59. Radiated Spurious Plot (Band 14)

OPERATING FREQUENCY:	793.00		MHz
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	10.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2379.00	V	117	75	-69.76	9.97	-59.80	-46.8
3172.00	V	-	-	-68.60	8.41	-60.19	-47.2
3965.00	V	-	-	-66.86	6.60	-60.25	-47.3

Table 7-7. Radiated Spurious Data (LTE Band 14 – Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 57 of 66
© 2020 PCTEST Engineering Laboratory Inc				V 9 0 02/01/2019

MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	10.00	MHz
DISTANCE:	3	meters
NARROWBAND EMISSION LIMIT:	-50	dBm
WIDEBAND EMISSION LIMIT:	-40	dBm/MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1586.00	V	193	355	-76.13	9.61	-66.51	-26.5

Table 7-8. Radiated Spurious Data (LTE Band 14 – Mid Channel)

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege E0 of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 58 of 66
© 2020 PCTEST Engineering Labo	ratory Inc			V 9 0 02/01/2019

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental a.) chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 66	
1M1910220166-04.A3L 10/11 - 12/06/2019		Portable Handset		Page 59 of 66	
© 2020 PCTEST Engineering Labor	V 0 0 02/01/2010				

OPERATING FREQUENCY:	817,900,000	_Hz
REFERENCE VOLTAGE:	4.19	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.19	- 30	817,899,826	-174	-0.0000213
100 %		- 20	817,900,362	362	0.0000443
100 %		- 10	817,900,235	235	0.0000287
100 %		0	817,899,769	-231	-0.0000282
100 %		+ 10	817,899,711	-289	-0.0000353
100 %		+ 20	817,899,903	-97	-0.0000119
100 %		+ 30	817,900,189	189	0.0000231
100 %		+ 40	817,900,135	135	0.0000165
100 %		+ 50	817,899,897	-103	-0.0000126
BATT. ENDPOINT	3.79	+ 20	817,899,939	-61	-0.0000075

Table 7-9. CDMA BC10 Frequency Stability Data

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 60 of 66
© 2020 PCTEST Engineering Laboratory Inc				V 9 0 02/01/2019

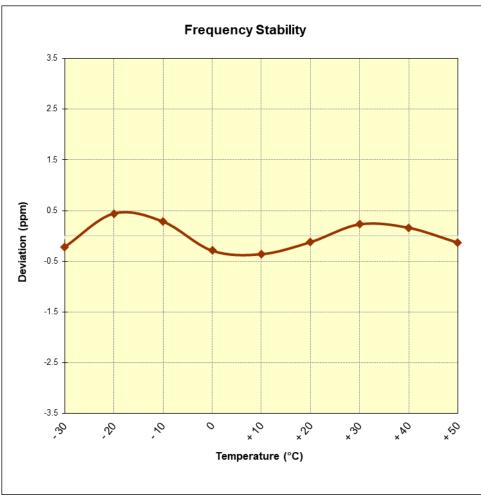


Table 7-9. CDMA BC10 Frequency Stability Chart

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 61 of 66
© 2020 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

OPERATING FREQUENCY:	819,000,000	Hz
REFERENCE VOLTAGE:	4.19	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.19	- 30	819,000,024	24	0.0000029
100 %		- 20	819,000,332	332	0.0000405
100 %		- 10	819,000,078	78	0.0000095
100 %		0	819,000,076	76	0.0000093
100 %		+ 10	818,999,816	-184	-0.0000225
100 %		+ 20	819,000,095	95	0.0000116
100 %		+ 30	818,999,916	-84	-0.0000103
100 %		+ 40	819,000,139	139	0.0000170
100 %		+ 50	819,000,386	386	0.0000471
BATT. ENDPOINT	3.79	+ 20	819,000,059	59	0.0000072

Table 7-9. LTE Band 26 Frequency Stability Data

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 62 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 62 of 66
© 2020 PCTEST Engineering Laboratory Inc				V 9 0 02/01/2019

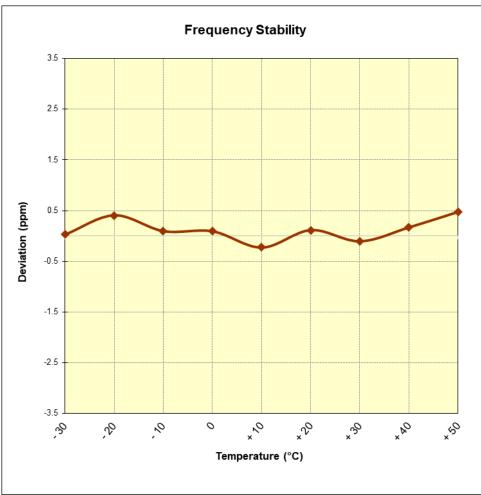


Table 7-9. LTE Band 26 Frequency Stability Chart

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 63 of 66
© 2020 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

OPERATING FREQUENCY:	793,000,000	Hz
REFERENCE VOLTAGE:	4.19	VDC

VOLTAGE (%)	POWER (VDC)	ТЕМР (°С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.19	- 30	793,000,104	104	0.0000131
100 %		- 20	793,000,080	80	0.0000101
100 %		- 10	793,000,069	69	0.0000087
100 %		0	793,000,271	271	0.0000342
100 %		+ 10	792,999,871	-129	-0.0000163
100 %		+ 20	793,000,141	141	0.0000178
100 %		+ 30	793,000,155	155	0.0000195
100 %		+ 40	793,000,009	9	0.0000011
100 %		+ 50	792,999,576	-424	-0.0000535
BATT. ENDPOINT	3.79	+ 20	793,000,078	78	0.0000098

Table 7-9. LTE Band 14 Frequency Stability Data

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	EUT Type:			Dege 64 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 64 of 66

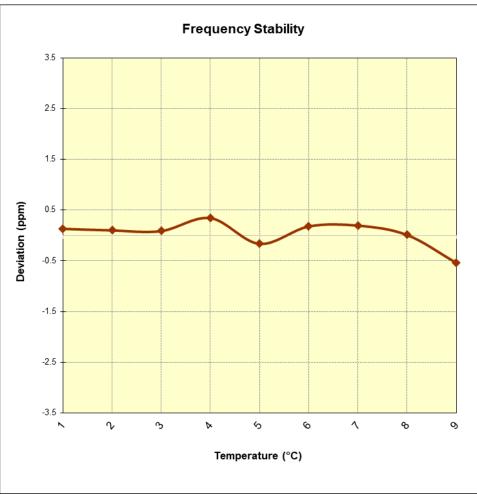


Table 7-9. LTE Band 14 Frequency Stability Chart

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage CE of CC
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 65 of 66
© 2020 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG986U** complies with all the requirements of Parts 22(H) and 90 of the FCC rules.

FCC ID: A3LSMG986U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N: Test Dates: E		EUT Type:		Page 66 of 66
1M1910220166-04.A3L	10/11 - 12/06/2019	Portable Handset		Page 00 01 00
© 2020 PCTEST Engineering Laboratory Inc.				V 9 0 02/01/2019