


| Keysight Spectrum Analyzer - Occupied B | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|-------------------|
| LX/RL RF 50Ω AC                         | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SENSE:INT<br>r Freg: 5.755000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07:48:19 P<br>Radio Std                      | M Oct 25, 2019      | Trace/Detector    |
| NFE                                     | 🛶 Trig: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free Run Avg Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : 100/100                                    |                     |                   |
|                                         | #IFGain:Low #Atter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radio Dev                                    | vice: BTS           |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| 10 dB/div Ref 25.00 dB                  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| 15.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     | Clear Write       |
| 5.00                                    | والبالية والمارية والمارية والمراجعة و | Any month lade to be for the f |                                              |                     |                   |
| -5.00                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| -15.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| -25.0                                   | Martial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | With many many many many many many many many |                     | Average           |
| -35.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | the strates and the |                   |
| -45.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| -55.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     | Max Hold          |
| -65.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| Center 5.755 GHz<br>#Res BW 100 kHz     | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | 100 MHz<br>p 9.6 ms |                   |
| #Res BW 100 KHZ                         | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VDVV JUUKHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Swee                                         | p a.o ms            | Min Hold          |
| Occupied Bandwid                        | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.0 dBm                                     |                     |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| ্ৰ ব                                    | 6.217 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     | Detector<br>Peak► |
| Transmit Freq Error                     | -85.553 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % of OBW Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er 99.00 %                                   |                     | Auto <u>Man</u>   |
| x dB Bandwidth                          | 36.26 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.00 dB                                     |                     |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                   |
| MSG                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                       |                     |                   |
| MSG                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                       |                     |                   |

Plot 7-127. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)



Plot 7-128. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

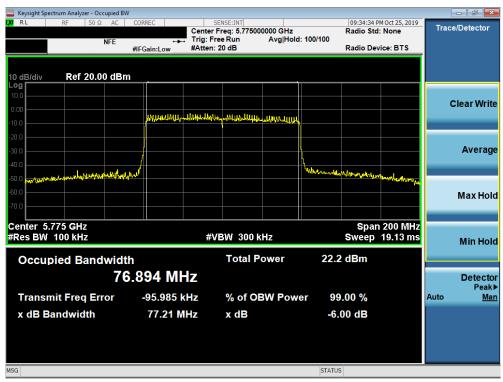
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 02 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 83 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



| Keysight Spectrum Analyzer - Occo | upied BW |                         |                        |                                                                                                                    |               |             |             |               |      | - • <b>•</b>        |
|-----------------------------------|----------|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|---------------|------|---------------------|
| <b>LXI</b> RL RF 50 Ω             | AC CORRE | C                       | SENSE:<br>Center Freq: |                                                                                                                    | 0000 GHz      |             | 09:30:44 P  | MOct 25, 2019 | Trac | e/Detector          |
|                                   | NFE      |                         | Trig: Free Ru          | in                                                                                                                 |               | d: 100/100  |             |               |      |                     |
|                                   | #IFGa    | in:Low                  | #Atten: 20 dE          | 3                                                                                                                  |               |             | Radio Dev   | ice: BTS      |      |                     |
|                                   |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| 10 dB/div Ref 20.00               | ) dBm    |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| Log<br>10.0                       |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| 0.00                              |          |                         |                        |                                                                                                                    |               |             |             |               |      | Clear Write         |
| -10.0                             | î        | والمالية المرالي المالي | evilateling and prov   | ر ماليوانية (مرارية).<br>مراجع المراجع الم | eshile/whomho |             |             |               |      |                     |
| -20.0                             | /        |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| -30.0                             |          |                         |                        |                                                                                                                    |               | \           |             |               |      | Average             |
|                                   | /        |                         |                        |                                                                                                                    |               | All an a    |             |               |      | Average             |
| -40.0<br>-50.0 -44,               | MW IN A  |                         |                        |                                                                                                                    |               | AND NOT ANY | Mr. Hickory | Witnesseller  |      |                     |
|                                   |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| -60.0                             |          |                         |                        |                                                                                                                    |               |             |             |               |      | Max Hold            |
| -70.0                             |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| Center 5.755 GHz                  |          |                         |                        |                                                                                                                    |               | 1           | Span        | 100 MHz       |      |                     |
| #Res BW 100 kHz                   |          |                         | #VBW                   | 300 k                                                                                                              | Hz            |             | Swee        | p 9.6 ms      |      | Min Hold            |
|                                   |          |                         | -                      | otal P                                                                                                             |               | 22.6        | dBm         |               |      |                     |
| Occupied Bandy                    |          |                         |                        |                                                                                                                    | ower          | 22.0        | авт         |               |      |                     |
|                                   | 37.53    | 60 MH                   | Ζ                      |                                                                                                                    |               |             |             |               |      | Detector            |
| Transmit Freq Err                 | or -1    | 23.71 kl                | Hz %                   | of OE                                                                                                              | 3W Pow        | ver 99      | .00 %       |               | Auto | Peak▶<br><u>Man</u> |
| x dB Bandwidth                    |          | 37.73 MI                | Hz x                   | dB                                                                                                                 |               | -6.         | 00 dB       |               |      |                     |
|                                   |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
|                                   |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
|                                   |          |                         |                        |                                                                                                                    |               |             |             |               |      |                     |
| MSG                               |          |                         |                        |                                                                                                                    |               | STATUS      |             |               |      |                     |

Plot 7-129. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)




Plot 7-130. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         |                                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 84 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



| 🔤 Keysight Spectrum Analyzer - O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ccupied BW       |                |                |                                        |             |                     |                         |                |      |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|----------------------------------------|-------------|---------------------|-------------------------|----------------|------|---------------------|
| LXI RL RF 50 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω AC COF         | RREC           |                | ISE:INT<br>eq: 5.77500                 | 0000 GHz    |                     | 07:55:13 F<br>Radio Std | M Oct 25, 2019 | Trac | e/Detector          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NFE              | ÷              | Trig: Free     | Run                                    |             | d: 100/100          |                         |                |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #IF              | Gain:Low       | #Atten: 2      | 0 dB                                   |             |                     | Radio De                | vice: BTS      |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                |                                        |             |                     |                         |                |      |                     |
| 10 dB/div Ref 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 dBm           | _              |                |                                        |             |                     |                         |                |      |                     |
| Log<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                |                |                                        |             |                     |                         |                |      |                     |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                |                |                                        |             |                     |                         |                |      | Clear Write         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Innin Lindli   | Mumph          | Inter Inter                            | Line Inco   |                     |                         |                |      |                     |
| -5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | MILLA-MINILMP- | SPORTED IN THE | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ∽√₩₩₩₩₩₩₩₩₩ |                     |                         |                |      |                     |
| -15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                |                |                                        |             |                     |                         |                |      |                     |
| -25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                |                |                                        |             | ₹                   |                         |                |      | Average             |
| -35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | un the while the |                |                |                                        |             | wood from the state | the share and the       | Muhan          |      | _                   |
| -45.0 - Add |                  |                |                |                                        |             |                     |                         |                |      |                     |
| -55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                |                |                                        |             |                     |                         |                |      | Max Hold            |
| -65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                |                |                                        |             |                     |                         |                |      | maxmora             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                |                                        |             |                     |                         |                |      |                     |
| Center 5.775 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                | -49 (15        |                                        |             |                     |                         | 1 200 MHz      |      |                     |
| #Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                | #VE            | W 300 K                                | HZ          |                     | sweep                   | 19.13 ms       |      | Min Hold            |
| Occupied Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dwidth           |                |                | Total P                                | ower        | 24.5                | 5 dBm                   |                |      |                     |
| Occupied Ball                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 07 84          |                |                                        |             |                     |                         |                |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / 5.5            | 07 MI          | ΠZ             |                                        |             |                     |                         |                |      | Detector<br>Peak►   |
| Transmit Freq E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rror             | -170.56        | kHz            | % of O                                 | 3W Pow      | ver 99              | .00 %                   |                | Auto | Peak⊯<br><u>Man</u> |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 75.72 N        | IHz            | x dB                                   |             | -6.                 | 00 dB                   |                |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                |                                        |             |                     |                         |                |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                |                                        |             |                     |                         |                |      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                |                                        |             |                     |                         |                |      |                     |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |                                        |             | OTATIK              |                         |                |      |                     |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |                                        |             | STATUS              |                         |                |      |                     |

Plot 7-131. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)



Plot 7-132. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         |                                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 85 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



## 7.4 UNII Output Power Measurement – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

#### Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW or 10 + 10 log10B, dBm.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm +  $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(29.58) = 25.71dBm$ . The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm +  $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(23.20) = 24.65dBm$ . The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

#### Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

#### Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



#### Figure 7-3. Test Instrument & Measurement Setup

#### Test Notes

Per RSS-247 Section 6.2.3, transmission on channels which overlap the 5600-5650 MHz is prohibited. This device operates under these frequencies only under the control of a certified master device and does not support active scanning on these channels. This device does not transmit any beacons or initiate any transmissions in UNII Bands 2A or 2C.

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dage 96 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 86 of 241                  |
| © 2020 PCTEST Engineering La | boratory. Inc.      | •                                     |         | V 9.0 02/01/2019                |



### SISO Antenna-1 Conducted Output Power Measurements

|          | Freq [MHz] | Channel | Detector |         | IEEE Transn | nission Mode |          | Conducted<br>Power Limit | Conducted<br>Power | Ant. Gain<br>[dBi] | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|----------|------------|---------|----------|---------|-------------|--------------|----------|--------------------------|--------------------|--------------------|-----------------------|-----------------------------|-------------------------|
| Ē        |            |         |          | 802.11a | 802.11n     | 802.11ac     | 802.11ax | [dBm]                    | Margin [dB]        | [0.2.]             | Land                  |                             |                         |
| width)   | 5180       | 36      | AVG      | 16.01   | 15.93       | 16.06        | 15.93    | 23.98                    | -7.92              | -6.45              | 9.61                  | 23.01                       | -13.40                  |
| Š        | 5200       | 40      | AVG      | 17.64   | 17.76       | 17.61        | 15.99    | 23.98                    | -6.22              | -6.69              | 11.07                 | 23.01                       | -11.94                  |
| and      | 5220       | 44      | AVG      | 17.72   | 17.71       | 17.56        | 15.92    | 23.98                    | -6.26              | -6.45              | 11.27                 | 23.01                       | -11.74                  |
| ar       | 5240       | 48      | AVG      | 17.67   | 17.66       | 17.51        | 15.97    | 23.98                    | -6.31              | -6.45              | 11.22                 | 23.01                       | -11.79                  |
| B        | 5260       | 52      | AVG      | 17.32   | 17.18       | 17.25        | 15.73    | 23.98                    | -6.66              | -6.45              | 10.87                 | 30.00                       | -19.13                  |
| Ŧ        | 5280       | 56      | AVG      | 17.96   | 17.96       | 17.94        | 15.59    | 23.98                    | -6.02              | -6.61              | 11.35                 | 30.00                       | -18.65                  |
| 5        | 5300       | 60      | AVG      | 17.84   | 17.77       | 17.77        | 15.34    | 23.98                    | -6.14              | -6.55              | 11.29                 | 30.00                       | -18.71                  |
| MO       | 5320       | 64      | AVG      | 16.14   | 16.12       | 16.16        | 15.97    | 23.98                    | -7.82              | -6.55              | 9.61                  | 30.00                       | -20.39                  |
| <u> </u> | 5500       | 100     | AVG      | 16.48   | 16.34       | 16.41        | 15.99    | 23.98                    | -7.50              | -6.99              | 9.49                  | 30.00                       | -20.51                  |
| 4        | 5600       | 120     | AVG      | 17.68   | 17.76       | 17.64        | 15.97    | 23.98                    | -6.22              | -6.99              | 10.77                 | -                           | -                       |
|          | 5720       | 144     | AVG      | 17.77   | 17.75       | 17.71        | 15.98    | 23.98                    | -6.21              | -6.99              | 10.78                 | 30.00                       | -19.22                  |
| 5G       | 5745       | 149     | AVG      | 17.98   | 17.35       | 17.29        | 15.48    | 30.00                    | -12.02             | -6.99              | 10.99                 | -                           | -                       |
|          | 5785       | 157     | AVG      | 17.73   | 17.74       | 17.72        | 15.98    | 30.00                    | -12.26             | -6.86              | 10.88                 | -                           | -                       |
|          | 5825       | 165     | AVG      | 17.74   | 17.84       | 17.77        | 15.97    | 30.00                    | -12.16             | -6.95              | 10.89                 | -                           |                         |

Table 7-6. SISO ANT1 20MHz BW (UNII) Maximum Conducted Output Power

|               | Freq [MHz] | Channel | Detector | IEEE    | Transmission | Mode     | Conducted<br>Power Limit | Conducted<br>Power | Ant. Gain<br>[dBi] | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|---------------|------------|---------|----------|---------|--------------|----------|--------------------------|--------------------|--------------------|-----------------------|-----------------------------|-------------------------|
|               |            |         |          | 802.11n | 802.11ac     | 802.11ax | [dBm]                    | Margin [dB]        | [abi]              | [abiii]               | Ennie [GBIII]               |                         |
| ₽ ⊂           | 5190       | 38      | AVG      | 13.02   | 13.05        | 13.33    | 23.98                    | -10.93             | -6.69              | 6.36                  | 23.01                       | -16.65                  |
| 두 단           | 5230       | 46      | AVG      | 16.49   | 16.50        | 13.75    | 23.98                    | -7.48              | -6.45              | 10.05                 | 23.01                       | -12.96                  |
| (40M<br>width | 5270       | 54      | AVG      | 16.97   | 16.99        | 13.53    | 23.98                    | -6.99              | -6.61              | 10.38                 | 30.00                       | -19.62                  |
| 4<br>V        | 5310       | 62      | AVG      | 12.51   | 13.48        | 13.97    | 23.98                    | -10.50             | -6.55              | 6.93                  | 30.00                       | -23.07                  |
| ΡČ            | 5510       | 102     | AVG      | 14.35   | 14.41        | 13.27    | 23.98                    | -9.57              | -6.99              | 7.42                  | 30.00                       | -22.58                  |
| GH<br>Bar     | 5590       | 118     | AVG      | 16.73   | 16.74        | 13.99    | 23.98                    | -7.24              | -6.99              | 9.75                  | -                           | -                       |
| 50            | 5630       | 126     | AVG      | 16.61   | 16.68        | 13.94    | 23.98                    | -7.30              | -6.99              | 9.69                  | -                           | -                       |
|               | 5710       | 142     | AVG      | 16.83   | 16.83        | 13.29    | 23.98                    | -7.15              | -6.86              | 9.97                  | 30.00                       | -20.03                  |
|               | 5755       | 151     | AVG      | 16.46   | 16.45        | 13.61    | 30.00                    | -13.54             | -6.86              | 9.60                  | -                           | -                       |
|               | 5795       | 159     | AVG      | 16.65   | 16.64        | 13.86    | 30.00                    | -13.35             | -6.95              | 9.70                  | -                           | -                       |

#### Table 7-7. SISO ANT1 40MHz BW (UNII) Maximum Conducted Output Power

|              | Freq [MHz] | Channel | Detector | IEEE Transn | nission Mode | Conducted<br>Power Limit | Conducted<br>Power | Ant. Gain<br>[dBi] | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|--------------|------------|---------|----------|-------------|--------------|--------------------------|--------------------|--------------------|-----------------------|-----------------------------|-------------------------|
| ₽<br>E       |            |         |          | 802.11ac    | 802.11ax     | [dBm]                    | Margin [dB]        | [abi]              | [abiii]               | Ennie [GBin]                |                         |
| d <u>t</u> N | 5210       | 42      | AVG      | 13.02       | 12.85        | 23.98                    | -10.96             | -6.45              | 6.57                  | 23.01                       | -16.44                  |
| <u>≥</u> (%  | 5290       | 58      | AVG      | 11.61       | 12.22        | 23.98                    | -12.37             | -6.55              | 5.06                  | 30.00                       | -24.94                  |
| 5GHz<br>Band | 5530       | 106     | AVG      | 12.36       | 12.98        | 23.98                    | -11.62             | -6.99              | 5.37                  | 30.00                       | -24.63                  |
| B 2          | 5610       | 122     | AVG      | 15.31       | 12.85        | 23.98                    | -8.67              | -6.99              | 8.32                  | -                           | -                       |
|              | 5690       | 138     | AVG      | 15.36       | 12.92        | 23.98                    | -8.62              | -6.86              | 8.50                  | 30.00                       | -21.50                  |
|              | 5775       | 155     | AVG      | 15.38       | 12.73        | 30.00                    | -14.62             | -6.86              | 8.52                  | -                           | -                       |

Table 7-8. SISO ANT1 80MHz BW (UNII) Maximum Conducted Output Power

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dage 07 of 044                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 87 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



### SISO Antenna-2 Conducted Output Power Measurements

|          | Freq [MHz] | Channel | Detector |         | IEEE Transn | nission Mode |          | Conducted<br>Power Limit | Conducted<br>Power | Ant. Gain<br>[dBi] | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|----------|------------|---------|----------|---------|-------------|--------------|----------|--------------------------|--------------------|--------------------|-----------------------|-----------------------------|-------------------------|
| Ē        |            |         |          | 802.11a | 802.11n     | 802.11ac     | 802.11ax | [dBm]                    | Margin [dB]        | [0.2.]             | Land                  |                             |                         |
| width)   | 5180       | 36      | AVG      | 16.20   | 16.16       | 16.13        | 15.55    | 23.98                    | -7.78              | -6.45              | 9.75                  | 23.01                       | -13.26                  |
| Š        | 5200       | 40      | AVG      | 17.25   | 17.21       | 17.36        | 15.54    | 23.98                    | -6.62              | -6.69              | 10.67                 | 23.01                       | -12.34                  |
| and      | 5220       | 44      | AVG      | 17.26   | 17.10       | 17.33        | 15.48    | 23.98                    | -6.65              | -6.45              | 10.88                 | 23.01                       | -12.13                  |
| ar       | 5240       | 48      | AVG      | 17.25   | 17.16       | 17.39        | 15.49    | 23.98                    | -6.59              | -6.45              | 10.94                 | 23.01                       | -12.07                  |
| B        | 5260       | 52      | AVG      | 17.26   | 17.25       | 17.44        | 15.59    | 23.98                    | -6.54              | -6.45              | 10.99                 | 30.00                       | -19.01                  |
| Ŧ        | 5280       | 56      | AVG      | 17.35   | 17.37       | 17.36        | 15.68    | 23.98                    | -6.61              | -6.61              | 10.76                 | 30.00                       | -19.24                  |
| ŧ        | 5300       | 60      | AVG      | 17.34   | 17.49       | 17.58        | 15.70    | 23.98                    | -6.40              | -6.55              | 11.03                 | 30.00                       | -18.97                  |
| MO       | 5320       | 64      | AVG      | 16.31   | 16.24       | 16.24        | 15.69    | 23.98                    | -7.67              | -6.55              | 9.76                  | 30.00                       | -20.24                  |
| <u> </u> | 5500       | 100     | AVG      | 16.08   | 16.02       | 16.06        | 15.32    | 23.98                    | -7.90              | -6.99              | 9.09                  | 30.00                       | -20.91                  |
| 4        | 5600       | 120     | AVG      | 17.53   | 17.16       | 17.23        | 15.55    | 23.98                    | -6.45              | -6.99              | 10.54                 | -                           | -                       |
|          | 5720       | 144     | AVG      | 17.29   | 17.91       | 17.15        | 15.40    | 23.98                    | -6.07              | -6.99              | 10.92                 | 30.00                       | -19.08                  |
| 5G       | 5745       | 149     | AVG      | 17.13   | 17.36       | 17.34        | 15.55    | 30.00                    | -12.64             | -6.99              | 10.37                 | -                           | -                       |
|          | 5785       | 157     | AVG      | 17.25   | 17.19       | 17.54        | 15.69    | 30.00                    | -12.46             | -6.86              | 10.68                 | -                           | -                       |
|          | 5825       | 165     | AVG      | 16.98   | 17.96       | 17.21        | 15.42    | 30.00                    | -12.04             | -6.95              | 11.01                 | -                           | -                       |

Table 7-9. SISO ANT2 20MHz BW (UNII) Maximum Conducted Output Power

|               | Freq [MHz] Ch | Channel | Detector | IEEE    | Transmission | Mode     | Conducted<br>Power Limit | Conducted<br>Power | Ant. Gain<br>[dBi] | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|---------------|---------------|---------|----------|---------|--------------|----------|--------------------------|--------------------|--------------------|-----------------------|-----------------------------|-------------------------|
|               |               |         |          | 802.11n | 802.11ac     | 802.11ax | [dBm]                    | Margin [dB]        | [abi]              | [abiii]               | Linik [dbin]                | mai gin [ab]            |
| ₽ ⊂           | 5190          | 38      | AVG      | 13.09   | 13.13        | 13.42    | 23.98                    | -10.85             | -6.69              | 6.44                  | 23.01                       | -16.57                  |
| 두 푼           | 5230          | 46      | AVG      | 16.50   | 16.49        | 13.79    | 23.98                    | -7.48              | -6.45              | 10.05                 | 23.01                       | -12.96                  |
| (40M<br>width | 5270          | 54      | AVG      | 16.54   | 16.38        | 13.58    | 23.98                    | -7.44              | -6.61              | 9.93                  | 30.00                       | -20.07                  |
| 4<br>V        | 5310          | 62      | AVG      | 13.03   | 13.09        | 13.41    | 23.98                    | -10.89             | -6.55              | 6.54                  | 30.00                       | -23.46                  |
| NĚ            | 5510          | 102     | AVG      | 14.82   | 14.81        | 13.49    | 23.98                    | -9.16              | -6.99              | 7.83                  | 30.00                       | -22.17                  |
| GH<br>Bar     | 5590          | 118     | AVG      | 16.26   | 16.37        | 13.56    | 23.98                    | -7.61              | -6.99              | 9.38                  | -                           | -                       |
| 50            | 5630          | 126     | AVG      | 16.44   | 16.33        | 13.53    | 23.98                    | -7.54              | -6.99              | 9.45                  | -                           | -                       |
|               | 5710          | 142     | AVG      | 16.19   | 16.98        | 13.39    | 23.98                    | -7.00              | -6.86              | 10.12                 | 30.00                       | -19.88                  |
|               | 5755          | 151     | AVG      | 16.25   | 16.28        | 13.70    | 30.00                    | -13.72             | -6.86              | 9.42                  | -                           | -                       |
|               | 5795          | 159     | AVG      | 16.98   | 16.97        | 13.31    | 30.00                    | -13.02             | -6.95              | 10.03                 | -                           | -                       |

#### Table 7-10. SISO ANT2 40MHz BW (UNII) Maximum Conducted Output Power

|            | Freq [MHz] | Channel | Detector | IEEE Transn | nission Mode | Conducted<br>Power Limit | Conducted<br>Power | Ant. Gain<br>[dBi] | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|------------|------------|---------|----------|-------------|--------------|--------------------------|--------------------|--------------------|-----------------------|-----------------------------|-------------------------|
| F (        |            |         |          | 802.11ac    | 802.11ax     | [dBm]                    | Margin [dB]        | [abi]              | [abiii]               | Ennie [GB/II]               | margin [ab]             |
| idth)      | 5210       | 42      | AVG      | 13.45       | 12.44        | 23.98                    | -10.53             | -6.45              | 7.00                  | 23.01                       | -16.01                  |
| 8) 2       | 5290       | 58      | AVG      | 11.59       | 12.88        | 23.98                    | -12.39             | -6.55              | 5.04                  | 30.00                       | -24.96                  |
| N 🚄        | 5530       | 106     | AVG      | 12.28       | 12.98        | 23.98                    | -11.70             | -6.99              | 5.29                  | 30.00                       | -24.71                  |
| 5GH<br>Bar | 5610       | 122     | AVG      | 15.65       | 12.45        | 23.98                    | -8.33              | -6.99              | 8.66                  | -                           | -                       |
|            | 5690       | 138     | AVG      | 15.59       | 12.83        | 23.98                    | -8.39              | -6.86              | 8.73                  | 30.00                       | -21.27                  |
|            | 5775       | 155     | AVG      | 15.34       | 12.42        | 30.00                    | -14.66             | -6.86              | 8.48                  | -                           | -                       |

Table 7-11. SISO ANT2 80MHz BW (UNII) Maximum Conducted Output Power

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dogo 89 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 88 of 241                  |
| © 2020 PCTEST Engineering La | boratory, Inc.      | •                                     |         | V 9.0 02/01/2019                |



## MIMO Maximum Conducted Output Power Measurements

|          | Freq [MHz] | Channel | Detector | Conc  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|----------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
| Ē.       |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | []                    |                             |                         |
| <u>q</u> | 5180       | 36      | AVG      | 16.01 | 16.20          | 19.12 | 23.98                    | -4.86              | -3.44                    | 15.68                 | 23.01                       | -7.33                   |
| 3        | 5200       | 40      | AVG      | 17.64 | 17.25          | 20.46 | 23.98                    | -3.52              | -3.68                    | 16.78                 | 23.01                       | -6.23                   |
| andwidth | 5220       | 44      | AVG      | 17.72 | 17.26          | 20.51 | 23.98                    | -3.47              | -3.44                    | 17.07                 | 23.01                       | -5.94                   |
| ar       | 5240       | 48      | AVG      | 17.67 | 17.25          | 20.48 | 23.98                    | -3.50              | -3.44                    | 17.04                 | 23.01                       | -5.97                   |
| â        | 5260       | 52      | AVG      | 17.32 | 17.26          | 20.30 | 23.98                    | -3.68              | -3.44                    | 16.86                 | 30.00                       | -13.14                  |
| Hz       | 5280       | 56      | AVG      | 17.96 | 17.35          | 20.68 | 23.98                    | -3.30              | -3.60                    | 17.08                 | 30.00                       | -12.92                  |
| 5        | 5300       | 60      | AVG      | 17.84 | 17.34          | 20.61 | 23.98                    | -3.37              | -3.54                    | 17.07                 | 30.00                       | -12.93                  |
| (20M     | 5320       | 64      | AVG      | 16.14 | 16.31          | 19.24 | 23.98                    | -4.74              | -3.54                    | 15.70                 | 30.00                       | -14.30                  |
| <u>9</u> | 5500       | 100     | AVG      | 16.48 | 16.08          | 19.29 | 23.98                    | -4.69              | -3.98                    | 15.31                 | 30.00                       | -14.69                  |
| N        | 5600       | 120     | AVG      | 17.68 | 17.53          | 20.62 | 23.98                    | -3.36              | -3.98                    | 16.64                 | -                           | -                       |
| Т        | 5720       | 144     | AVG      | 17.77 | 17.29          | 20.55 | 23.98                    | -3.43              | -3.98                    | 16.57                 | 30.00                       | -13.43                  |
| 5G       | 5745       | 149     | AVG      | 17.98 | 17.13          | 20.59 | 30.00                    | -9.41              | -3.98                    | 16.61                 | -                           | -                       |
|          | 5785       | 157     | AVG      | 17.73 | 17.25          | 20.51 | 30.00                    | -9.49              | -3.85                    | 16.66                 | -                           | -                       |
|          | 5825       | 165     | AVG      | 17.74 | 16.98          | 20.39 | 30.00                    | -9.61              | -3.94                    | 16.45                 | -                           | -                       |

Table 7-12. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

|          | Freq [MHz] | Channel | Detector | Cond  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|----------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
| Ē        |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | [abiii]               | Ennie [GB/II]               | margin [ab]             |
| <u>e</u> | 5180       | 36      | AVG      | 15.93 | 16.16          | 19.06 | 23.98                    | -4.92              | -3.44                    | 15.62                 | 23.01                       | -7.39                   |
| Š        | 5200       | 40      | AVG      | 17.76 | 17.21          | 20.50 | 23.98                    | -3.48              | -3.68                    | 16.82                 | 23.01                       | -6.19                   |
| andwidth | 5220       | 44      | AVG      | 17.71 | 17.10          | 20.43 | 23.98                    | -3.55              | -3.44                    | 16.99                 | 23.01                       | -6.02                   |
|          | 5240       | 48      | AVG      | 17.66 | 17.16          | 20.43 | 23.98                    | -3.55              | -3.44                    | 16.99                 | 23.01                       | -6.02                   |
| B        | 5260       | 52      | AVG      | 17.18 | 17.25          | 20.23 | 23.98                    | -3.75              | -3.44                    | 16.79                 | 30.00                       | -13.21                  |
| μ        | 5280       | 56      | AVG      | 17.96 | 17.37          | 20.69 | 23.98                    | -3.29              | -3.60                    | 17.09                 | 30.00                       | -12.91                  |
| ⇒        | 5300       | 60      | AVG      | 17.77 | 17.49          | 20.64 | 23.98                    | -3.34              | -3.54                    | 17.10                 | 30.00                       | -12.90                  |
| (20M     | 5320       | 64      | AVG      | 16.12 | 16.24          | 19.19 | 23.98                    | -4.79              | -3.54                    | 15.65                 | 30.00                       | -14.35                  |
| 2        | 5500       | 100     | AVG      | 16.34 | 16.02          | 19.19 | 23.98                    | -4.79              | -3.98                    | 15.21                 | 30.00                       | -14.79                  |
| N        | 5600       | 120     | AVG      | 17.76 | 17.16          | 20.48 | 23.98                    | -3.50              | -3.98                    | 16.50                 | -                           | -                       |
| В        | 5720       | 144     | AVG      | 17.75 | 17.91          | 20.84 | 23.98                    | -3.14              | -3.98                    | 16.86                 | 30.00                       | -13.14                  |
| 50       | 5745       | 149     | AVG      | 17.35 | 17.36          | 20.37 | 30.00                    | -9.63              | -3.98                    | 16.39                 | -                           | -                       |
|          | 5785       | 157     | AVG      | 17.74 | 17.19          | 20.48 | 30.00                    | -9.52              | -3.85                    | 16.63                 | -                           | -                       |
|          | 5825       | 165     | AVG      | 17.84 | 17.96          | 20.91 | 30.00                    | -9.09              | -3.94                    | 16.97                 | -                           | -                       |

Table 7-13. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dogo 90 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 89 of 241                  |
| © 2020 PCTEST Engineering La | boratory, Inc.      | •                                     |         | V 9.0 02/01/2019                |



|            | Freq [MHz] | Channel | Detector | Cond  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|------------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
| Ē          |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | []                    |                             |                         |
| <u>d</u>   | 5180       | 36      | AVG      | 16.06 | 16.13          | 19.11 | 23.98                    | -4.87              | -3.44                    | 15.67                 | 23.01                       | -7.34                   |
| ž          | 5200       | 40      | AVG      | 17.61 | 17.36          | 20.50 | 23.98                    | -3.48              | -3.68                    | 16.82                 | 23.01                       | -6.19                   |
| Bandwidth) | 5220       | 44      | AVG      | 17.56 | 17.33          | 20.46 | 23.98                    | -3.52              | -3.44                    | 17.02                 | 23.01                       | -5.99                   |
| ar         | 5240       | 48      | AVG      | 17.51 | 17.39          | 20.46 | 23.98                    | -3.52              | -3.44                    | 17.02                 | 23.01                       | -5.99                   |
|            | 5260       | 52      | AVG      | 17.25 | 17.44          | 20.36 | 23.98                    | -3.62              | -3.44                    | 16.92                 | 30.00                       | -13.08                  |
| Hz         | 5280       | 56      | AVG      | 17.94 | 17.36          | 20.67 | 23.98                    | -3.31              | -3.60                    | 17.07                 | 30.00                       | -12.93                  |
| ⇒          | 5300       | 60      | AVG      | 17.77 | 17.58          | 20.69 | 23.98                    | -3.29              | -3.54                    | 17.15                 | 30.00                       | -12.85                  |
| 20M        | 5320       | 64      | AVG      | 16.16 | 16.24          | 19.21 | 23.98                    | -4.77              | -3.54                    | 15.67                 | 30.00                       | -14.33                  |
| 3          | 5500       | 100     | AVG      | 16.41 | 16.06          | 19.25 | 23.98                    | -4.73              | -3.98                    | 15.27                 | 30.00                       | -14.73                  |
| N          | 5600       | 120     | AVG      | 17.64 | 17.23          | 20.45 | 23.98                    | -3.53              | -3.98                    | 16.47                 | -                           | -                       |
| GHS        | 5720       | 144     | AVG      | 17.71 | 17.15          | 20.45 | 23.98                    | -3.53              | -3.98                    | 16.47                 | 30.00                       | -13.53                  |
| 20         | 5745       | 149     | AVG      | 17.29 | 17.34          | 20.33 | 30.00                    | -9.67              | -3.98                    | 16.35                 | -                           | -                       |
|            | 5785       | 157     | AVG      | 17.72 | 17.54          | 20.64 | 30.00                    | -9.36              | -3.85                    | 16.79                 | -                           | -                       |
|            | 5825       | 165     | AVG      | 17.77 | 17.21          | 20.51 | 30.00                    | -9.49              | -3.94                    | 16.57                 | -                           | -                       |

Table 7-14. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

|          | Freq [MHz] | Channel | Detector | Conc  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|----------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
| Ē        |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | []                    |                             |                         |
| width)   | 5180       | 36      | AVG      | 11.91 | 12.54          | 15.25 | 23.98                    | -8.73              | -3.44                    | 11.81                 | 23.01                       | -11.20                  |
| 3        | 5200       | 40      | AVG      | 11.94 | 12.56          | 15.27 | 23.98                    | -8.71              | -3.68                    | 11.59                 | 23.01                       | -11.42                  |
| and      | 5220       | 44      | AVG      | 11.97 | 12.69          | 15.36 | 23.98                    | -8.62              | -3.44                    | 11.92                 | 23.01                       | -11.09                  |
| ar       | 5240       | 48      | AVG      | 12.01 | 12.73          | 15.40 | 23.98                    | -8.58              | -3.44                    | 11.96                 | 23.01                       | -11.05                  |
| В        | 5260       | 52      | AVG      | 12.91 | 12.57          | 15.75 | 23.98                    | -8.23              | -3.60                    | 12.15                 | 30.00                       | -17.85                  |
| μZ       | 5280       | 56      | AVG      | 13.03 | 12.65          | 15.85 | 23.98                    | -8.13              | -3.60                    | 12.25                 | 30.00                       | -17.75                  |
| ⇒        | 5300       | 60      | AVG      | 12.85 | 12.71          | 15.79 | 23.98                    | -8.19              | -3.54                    | 12.25                 | 30.00                       | -17.75                  |
| (20M     | 5320       | 64      | AVG      | 12.81 | 12.70          | 15.77 | 23.98                    | -8.21              | -3.54                    | 12.23                 | 30.00                       | -17.77                  |
| 5        | 5500       | 100     | AVG      | 13.23 | 12.51          | 15.90 | 23.98                    | -8.08              | -3.98                    | 11.92                 | 30.00                       | -18.08                  |
| <u>N</u> | 5600       | 120     | AVG      | 12.87 | 11.61          | 15.30 | 23.98                    | -8.68              | -3.98                    | 11.32                 | -                           |                         |
| ЧЭ       | 5720       | 144     | AVG      | 12.76 | 11.37          | 15.13 | 23.98                    | -8.85              | -3.85                    | 11.28                 | 30.00                       | -18.72                  |
| 20       | 5745       | 149     | AVG      | 12.81 | 12.76          | 15.80 | 30.00                    | -14.20             | -3.85                    | 11.95                 | -                           | -                       |
|          | 5785       | 157     | AVG      | 13.09 | 12.74          | 15.93 | 30.00                    | -14.07             | -3.85                    | 12.08                 | -                           | -                       |
|          | 5825       | 165     | AVG      | 12.34 | 11.78          | 15.08 | 30.00                    | -14.92             | -3.94                    | 11.14                 | -                           | -                       |

Table 7-15. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

|             | Freq [MHz] | Channel | Detector | Conc  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|-------------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
|             |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | [abiii]               | Ennie [GBIII]               | margin [ab]             |
| P C         | 5190       | 38      | AVG      | 13.02 | 13.09          | 16.07 | 23.98                    | -7.91              | -3.68                    | 12.39                 | 23.01                       | -10.62                  |
| oMH         | 5230       | 46      | AVG      | 16.49 | 16.50          | 19.51 | 23.98                    | -4.47              | -3.68                    | 15.83                 | 23.01                       | -7.18                   |
|             | 5270       | 54      | AVG      | 16.97 | 16.54          | 19.77 | 23.98                    | -4.21              | -3.68                    | 16.09                 | 30.00                       | -13.91                  |
| 4<br>2<br>2 | 5310       | 62      | AVG      | 12.51 | 13.03          | 15.79 | 23.98                    | -8.19              | -3.68                    | 12.11                 | 30.00                       | -17.89                  |
| Ρč          | 5510       | 102     | AVG      | 14.35 | 14.82          | 17.60 | 23.98                    | -6.38              | -3.68                    | 13.92                 | 30.00                       | -16.08                  |
| ъ В         | 5590       | 118     | AVG      | 16.73 | 16.26          | 19.51 | 23.98                    | -4.47              | -3.68                    | 15.83                 | -                           |                         |
| 50          | 5630       | 126     | AVG      | 16.61 | 16.44          | 19.54 | 23.98                    | -4.44              | -3.68                    | 15.86                 | -                           |                         |
|             | 5710       | 142     | AVG      | 16.83 | 16.19          | 19.53 | 23.98                    | -4.45              | -3.68                    | 15.85                 | 30.00                       | -14.15                  |
|             | 5755       | 151     | AVG      | 16.46 | 16.25          | 19.37 | 30.00                    | -10.63             | -3.68                    | 15.69                 | -                           | -                       |
|             | 5795       | 159     | AVG      | 16.65 | 16.98          | 19.83 | 30.00                    | -10.17             | -3.68                    | 16.15                 | -                           | -                       |

Table 7-16. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dogo 00 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 90 of 241                  |
| © 2020 PCTEST Engineering La | boratory. Inc.      | •                                     |         | V 9.0 02/01/2019                |



|          | Freq [MHz] | Channel | Detector | Cond  | lucted Power [ | [dBm] | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|----------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
|          |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | [abiii]               | Ennie [GBIII]               | margin [ab]             |
| ₽ ⊂      | 5190       | 38      | AVG      | 13.05 | 13.13          | 16.10 | 23.98                    | -7.88              | -3.68                    | 12.42                 | 23.01                       | -10.59                  |
| 북북       | 5230       | 46      | AVG      | 16.50 | 16.49          | 19.51 | 23.98                    | -4.47              | -3.68                    | 15.83                 | 23.01                       | -7.18                   |
| ⊂.≃      | 5270       | 54      | AVG      | 16.99 | 16.38          | 19.71 | 23.98                    | -4.27              | -3.68                    | 16.03                 | 30.00                       | -13.97                  |
| 4<br>8   | 5310       | 62      | AVG      | 13.48 | 13.09          | 16.30 | 23.98                    | -7.68              | -3.68                    | 12.62                 | 30.00                       | -17.38                  |
| Hz       | 5510       | 102     | AVG      | 14.41 | 14.81          | 17.62 | 23.98                    | -6.36              | -3.68                    | 13.94                 | 30.00                       | -16.06                  |
| Ва<br>Ва | 5590       | 118     | AVG      | 16.74 | 16.37          | 19.57 | 23.98                    | -4.41              | -3.68                    | 15.89                 | -                           |                         |
| 50       | 5630       | 126     | AVG      | 16.68 | 16.33          | 19.52 | 23.98                    | -4.46              | -3.68                    | 15.84                 | -                           | -                       |
|          | 5710       | 142     | AVG      | 16.83 | 16.98          | 19.92 | 23.98                    | -4.06              | -3.68                    | 16.24                 | 30.00                       | -13.76                  |
|          | 5755       | 151     | AVG      | 16.45 | 16.28          | 19.38 | 30.00                    | -10.62             | -3.68                    | 15.70                 | -                           | -                       |
|          | 5795       | 159     | AVG      | 16.64 | 16.97          | 19.82 | 30.00                    | -10.18             | -3.68                    | 16.14                 | -                           | -                       |

Table 7-17. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

|            | Freq [MHz] | Channel | Detector | Cond  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|------------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
|            |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | Lapud                 | Ennie [GB/1]                | margin [ab]             |
| Ϋ́Ξ        | 5190       | 38      | AVG      | 10.14 | 10.49          | 13.33 | 23.98                    | -10.65             | -3.68                    | 9.65                  | 23.01                       | -13.36                  |
| dt N       | 5230       | 46      | AVG      | 9.75  | 10.60          | 13.21 | 23.98                    | -10.77             | -3.68                    | 9.53                  | 23.01                       | -13.48                  |
|            | 5270       | 54      | AVG      | 10.41 | 10.37          | 13.40 | 23.98                    | -10.58             | -3.60                    | 9.80                  | 30.00                       | -20.20                  |
| 4)<br>dv   | 5310       | 62      | AVG      | 10.55 | 10.48          | 13.53 | 23.98                    | -10.45             | -3.54                    | 9.99                  | 30.00                       | -20.01                  |
| ΡĆ         | 5510       | 102     | AVG      | 11.22 | 10.33          | 13.81 | 23.98                    | -10.17             | -3.98                    | 9.83                  | 30.00                       | -20.17                  |
| GH<br>Bar  | 5590       | 118     | AVG      | 11.47 | 10.29          | 13.93 | 23.98                    | -10.05             | -3.98                    | 9.95                  | -                           | -                       |
| <u>г</u> 2 | 5630       | 126     | AVG      | 11.48 | 10.37          | 13.97 | 23.98                    | -10.01             | -3.98                    | 9.99                  | -                           | -                       |
|            | 5710       | 142     | AVG      | 10.73 | 9.30           | 13.08 | 23.98                    | -10.90             | -3.85                    | 9.23                  | 30.00                       | -20.77                  |
|            | 5755       | 151     | AVG      | 10.75 | 11.06          | 13.92 | 30.00                    | -16.08             | -3.85                    | 10.07                 | -                           | -                       |
|            | 5795       | 159     | AVG      | 10.97 | 10.93          | 13.96 | 30.00                    | -16.04             | -3.94                    | 10.02                 | -                           | -                       |

Table 7-18. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

|                  | Freq [MHz] | Channel | Detector | Cond  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|------------------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
| FT (c            |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | Lapud                 | Ennie [GB/1]                | margin [ab]             |
| (80MH:<br>width) | 5210       | 42      | AVG      | 13.02 | 13.45          | 16.25 | 23.98                    | -7.73              | -3.44                    | 12.81                 | 23.01                       | -10.20                  |
| <u>∞ ≥</u>       | 5290       | 58      | AVG      | 11.61 | 11.59          | 14.61 | 23.98                    | -9.37              | -3.54                    | 11.07                 | 30.00                       | -18.93                  |
| 5GHz<br>Band     | 5530       | 106     | AVG      | 12.36 | 12.28          | 15.33 | 23.98                    | -8.65              | -3.98                    | 11.35                 | 30.00                       | -18.65                  |
| B 3G             | 5610       | 122     | AVG      | 15.31 | 15.65          | 18.49 | 23.98                    | -5.49              | -3.98                    | 14.51                 | -                           | -                       |
|                  | 5690       | 138     | AVG      | 15.36 | 15.59          | 18.49 | 23.98                    | -5.49              | -3.85                    | 14.64                 | 30.00                       | -15.36                  |
|                  | 5775       | 155     | AVG      | 15.38 | 15.34          | 18.37 | 30.00                    | -11.63             | -3.85                    | 14.52                 | -                           | -                       |

Table 7-19. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

|               | Freq [MHz] | Channel | Detector | Cond  | lucted Power [ | dBm]  | Conducted<br>Power Limit | Conducted<br>Power | Directional<br>Ant. Gain | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p.<br>Margin [dB] |
|---------------|------------|---------|----------|-------|----------------|-------|--------------------------|--------------------|--------------------------|-----------------------|-----------------------------|-------------------------|
| Ϋ́ Ξ          |            |         |          | ANT1  | ANT2           | MIMO  | [dBm]                    | Margin [dB]        | [dBi]                    | Lapud                 | Ennic [GB/1]                | margin [ab]             |
| OMH;<br>idth) | 5210       | 42      | AVG      | 9.56  | 9.73           | 12.66 | 23.98                    | -11.32             | -3.44                    | 9.22                  | 23.01                       | -13.79                  |
| <u>×</u> (9   | 5290       | 58      | AVG      | 9.71  | 9.34           | 12.54 | 23.98                    | -11.44             | -3.54                    | 9.00                  | 30.00                       | -21.00                  |
| GHz<br>Banc   | 5530       | 106     | AVG      | 10.07 | 9.20           | 12.67 | 23.98                    | -11.31             | -3.98                    | 8.69                  | 30.00                       | -21.31                  |
| 5GI<br>Ba     | 5610       | 122     | AVG      | 10.32 | 9.30           | 12.85 | 23.98                    | -11.13             | -3.98                    | 8.87                  | -                           | -                       |
|               | 5690       | 138     | AVG      | 10.18 | 9.41           | 12.82 | 23.98                    | -11.16             | -3.85                    | 8.97                  | 30.00                       | -21.03                  |
|               | 5775       | 155     | AVG      | 9.92  | 9.41           | 12.68 | 30.00                    | -17.32             | -3.85                    | 8.83                  | -                           | -                       |

Table 7-20. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Daga 01 of 211                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 91 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



#### Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where  $G_N$  is the gain of the nth antenna and  $N_{ANT}$ , the total number of antennas used.

Directional gain =  $10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$ 

#### Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 15.93 dBm for Antenna-1 and 16.16 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(15.93 dBm + 16.16 dBm) = (39.17 mW + 41.30 mW) = 80.48 mW = 19.06 dBm

#### Sample e.i.r.p. Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO conducted power was calculated to be 19.06 dBm with directional gain of -3.44 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

19.06 dBm + -3.44 dBi = 15.62 dBm

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         |                                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 92 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



# 7.5 Maximum Power Spectral Density – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

#### **Test Overview and Limit**

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

## In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

#### Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

#### Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points  $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

#### Test Notes

#### None

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dage 02 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 93 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



## SISO Antenna-1 Power Spectral Density Measurements

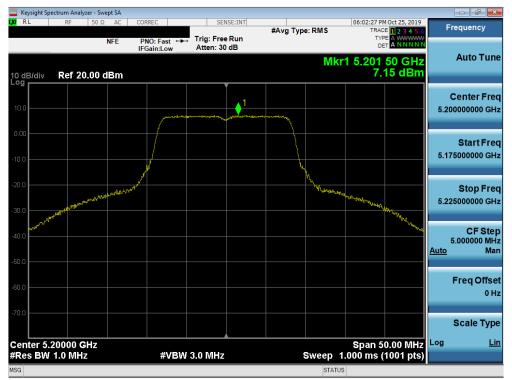
|             | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured<br>Power Density<br>[dBm] | Max Power<br>Density<br>[dBm/MHz] | Margin<br>[dB] |
|-------------|--------------------|----------------|-------------|------------------|------------------------------------|-----------------------------------|----------------|
|             | 5180               | 36             | а           | 6                | 4.84                               | 11.0                              | -6.16          |
|             | 5200               | 40             | а           | 6                | 7.15                               | 11.0                              | -3.85          |
|             | 5240               | 48             | а           | 6                | 7.49                               | 11.0                              | -3.51          |
|             | 5180               | 36             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.57                               | 11.0                              | -5.43          |
|             | 5200               | 40             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.88                               | 11.0                              | -4.12          |
|             | 5240               | 48             | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.16                               | 11.0                              | -3.84          |
| <del></del> | 5180               | 36             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.51                               | 11.0                              | -5.49          |
| Band 1      | 5200               | 40             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.13                               | 11.0                              | -5.87          |
| ä           | 5240               | 48             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.59                               | 11.0                              | -5.41          |
|             | 5190               | 38             | n (40MHz)   | 13.5/15 (MCS0)   | 4.18                               | 11.0                              | -6.82          |
|             | 5230               | 46             | n (40MHz)   | 13.5/15 (MCS0)   | 3.29                               | 11.0                              | -7.71          |
|             | 5190               | 38             | ax (40MHz)  | 13.5/15 (MCS0)   | -0.03                              | 11.0                              | -11.03         |
|             | 5230               | 46             | ax (40MHz)  | 13.5/15 (MCS0)   | 0.64                               | 11.0                              | -10.36         |
|             | 5210               | 42             | ac (80MHz)  | 29.3/32.5 (MCS0) | 0.04                               | 11.0                              | -10.96         |
|             | 5210               | 42             | ax (80MHz)  | 29.3/32.5 (MCS0) | -3.73                              | 11.0                              | -14.73         |
|             | 5260               | 52             | a           | 6                | 7.37                               | 11.0                              | -3.63          |
|             | 5280               | 56             | a           | 6                | 8.16                               | 11.0                              | -2.84          |
|             | 5320               | 64             | a           | 6                | 6.09                               | 11.0                              | -4.91          |
|             | 5260               | 52             | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.08                               | 11.0                              | -3.92          |
|             | 5280               | 56             | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.81                               | 11.0                              | -3.19          |
|             | 5320               | 64             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.67                               | 11.0                              | -5.33          |
| ∢           | 5260               | 52             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.36                               | 11.0                              | -5.64          |
| Band 2A     | 5280               | 56             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.98                               | 11.0                              | -6.02          |
| Ban         |                    |                | · · · ·     | . ,              | 4.90<br>5.87                       | 11.0                              |                |
| ш           | 5320               | 64<br>54       | ax (20MHz)  | 6.5/7.2 (MCS0)   | 3.98                               | 11.0                              | -5.13<br>-7.02 |
|             | 5270               |                | n (40MHz)   | 13.5/15 (MCS0)   |                                    |                                   |                |
|             | 5310               | 62             | n (40MHz)   | 13.5/15 (MCS0)   | 4.61                               | 11.0                              | -6.39          |
|             | 5270               | 54             | ax (40MHz)  | 13.5/15 (MCS0)   | 0.33                               | 11.0                              | -10.67         |
|             | 5310<br>5300       | 62             | ax (40MHz)  | 13.5/15 (MCS0)   | 1.12<br>0.48                       | 11.0<br>11.0                      | -9.88          |
|             | 5290               | 58             | ac (80MHz)  | 29.3/32.5 (MCS0) |                                    | -                                 | -10.52         |
|             | 5290               | 58             | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.29                              | 11.0                              | -15.29         |
|             | 5500               | 100            | a           | 6                | 6.17                               | 11.0                              | -4.83          |
|             | 5600               | 120            | а           | 6                | 7.35                               | 11.0                              | -3.65          |
|             | 5720               | 144            | a           | 6                | 7.82                               | 11.0                              | -3.18          |
|             | 5500               | 100            | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.69                               | 11.0                              | -5.31          |
|             | 5600               | 120            | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.06                               | 11.0                              | -3.94          |
|             | 5720               | 144            | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.54                               | 11.0                              | -3.46          |
|             | 5500               | 100            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.98                               | 11.0                              | -6.02          |
|             | 5600               | 120            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.08                               | 11.0                              | -5.92          |
|             | 5720               | 144            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.67                               | 11.0                              | -5.33          |
|             | 5510               | 102            | n (40MHz)   | 13.5/15 (MCS0)   | 4.17                               | 11.0                              | -6.83          |
| 2C          | 5590               | 118            | n (40MHz)   | 13.5/15 (MCS0)   | 3.20                               | 11.0                              | -7.80          |
| Band        | 5670               | 134            | n (40MHz)   | 13.5/15 (MCS0)   | 3.20                               | 11.0                              | -7.80          |
| ä           | 5710               | 142            | n (40MHz)   | 13.5/15 (MCS0)   | 3.70                               | 11.0                              | -7.30          |
|             | 5510               | 102            | ax (40MHz)  | 13.5/15 (MCS0)   | -0.61                              | 11.0                              | -11.61         |
|             | 5550               | 110            | ax (40MHz)  | 13.5/15 (MCS0)   | -0.61                              | 11.0                              | -11.61         |
|             | 5590               | 118            | ax (40MHz)  | 13.5/15 (MCS0)   | 0.75                               | 11.0                              | -10.25         |
|             | 5710               | 142            | ax (40MHz)  | 13.5/15 (MCS0)   | 0.06                               | 11.0                              | -10.94         |
|             | 5530               | 106            | ac (80MHz)  | 29.3/32.5 (MCS0) | -0.47                              | 11.0                              | -11.47         |
|             | 5610               | 122            | ac (80MHz)  | 29.3/32.5 (MCS0) | -1.61                              | 11.0                              | -12.61         |
|             | 5690               | 138            | ac (80MHz)  | 29.3/32.5 (MCS0) | -3.61                              | 11.0                              | -14.61         |
|             | 5530               | 106            | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.26                              | 11.0                              | -15.26         |
|             | 5610               | 122            | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.21                              | 11.0                              | -15.21         |
|             | 5690               | 138            | ax (80MHz)  | 29.3/32.5 (MCS0) | -6.20                              | 11.0                              | -17.20         |

Table 7-21. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT1

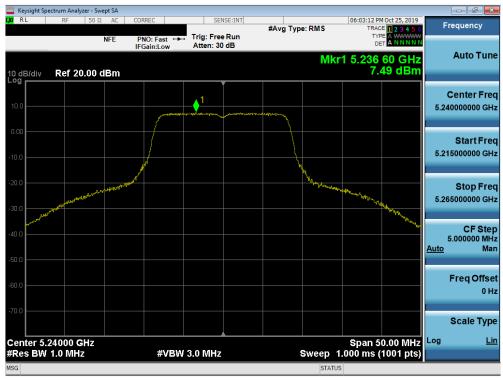
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dogo 04 of 244                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 94 of 241                  |
| © 2020 PCTEST Engineering La | V 9 0 02/01/2019    |                                       |         |                                 |



|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured<br>Power Density<br>[dBm] | Antenna Gain<br>[dBi] | e.i.r.p. Power<br>Density<br>[dBm/MHz] | ISED Max e.i.r.p.<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] |
|------|--------------------|----------------|-------------|------------------|------------------------------------|-----------------------|----------------------------------------|-------------------------------------------------|----------------|
|      | 5180               | 36             | а           | 6                | 4.84                               | -6.45                 | -1.61                                  | 10.0                                            | -11.61         |
|      | 5200               | 40             | а           | 6                | 7.15                               | -6.69                 | 0.46                                   | 10.0                                            | -9.54          |
|      | 5240               | 48             | а           | 6                | 7.49                               | -6.45                 | 1.04                                   | 10.0                                            | -8.96          |
|      | 5180               | 36             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.57                               | -6.45                 | -0.88                                  | 10.0                                            | -10.88         |
|      | 5200               | 40             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.88                               | -6.69                 | 0.19                                   | 10.0                                            | -9.81          |
|      | 5240               | 48             | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.16                               | -6.45                 | 0.71                                   | 10.0                                            | -9.29          |
| Ξ    | 5180               | 36             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.51                               | -6.45                 | -0.94                                  | 10.0                                            | -10.94         |
| Band | 5200               | 40             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.13                               | -6.69                 | -1.56                                  | 10.0                                            | -11.56         |
| ä    | 5240               | 48             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 5.59                               | -6.45                 | -0.86                                  | 10.0                                            | -10.86         |
|      | 5190               | 38             | n (40MHz)   | 13.5/15 (MCS0)   | 4.18                               | -6.45                 | -2.27                                  | 10.0                                            | -12.27         |
|      | 5230               | 46             | n (40MHz)   | 13.5/15 (MCS0)   | 3.29                               | -6.45                 | -3.16                                  | 10.0                                            | -13.16         |
|      | 5190               | 38             | ax (40MHz)  | 13.5/15 (MCS0)   | -0.03                              | -6.45                 | -6.48                                  | 10.0                                            | -16.48         |
|      | 5230               | 46             | ax (40MHz)  | 13.5/15 (MCS0)   | 0.64                               | -6.45                 | -5.81                                  | 10.0                                            | -15.81         |
|      | 5210               | 42             | ac (80MHz)  | 29.3/32.5 (MCS0) | 0.04                               | -6.45                 | -6.41                                  | 10.0                                            | -16.41         |
|      | 5210               | 42             | ax (80MHz)  | 29.3/32.5 (MCS0) | -3.73                              | -6.45                 | -10.18                                 | 10.0                                            | -20.18         |


Table 7-22. Band 1 e.i.r.p. Conducted Power Spectral Density Measurements (ISED) SISO ANT1




Plot 7-133. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 36)

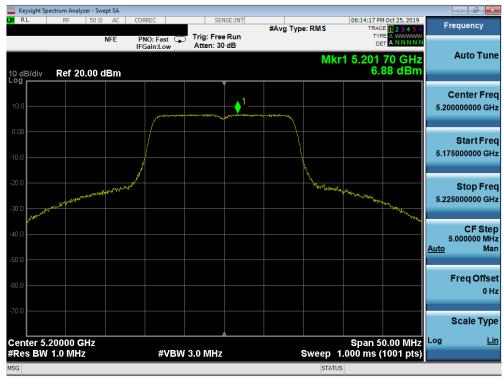
| FCC ID: A3LSMG986U           |                                            | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |  |  |
|------------------------------|--------------------------------------------|---------------------------------------|---------|---------------------------------|--|--|
| Test Report S/N:             | Test Dates:                                | EUT Type:                             |         | Dogo OF of 244                  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                        | Portable Handset                      |         | Page 95 of 241                  |  |  |
| © 2020 PCTEST Engineering La | © 2020 PCTEST Engineering Laboratory, Inc. |                                       |         |                                 |  |  |





Plot 7-134. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 40)




Plot 7-135. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 48)

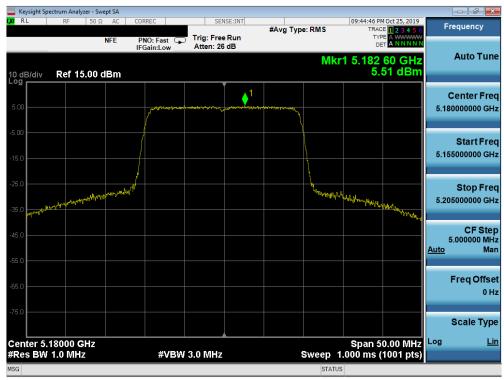
| FCC ID: A3LSMG986U           |                                            | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|--------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                                | EUT Type:                             | Dage 06 of 244                  |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                        | Portable Handset                      | Page 96 of 241                  |  |  |  |
| © 2020 PCTEST Engineering La | © 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-136. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

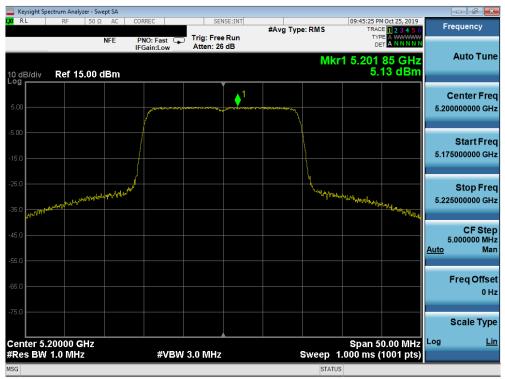



Plot 7-137. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

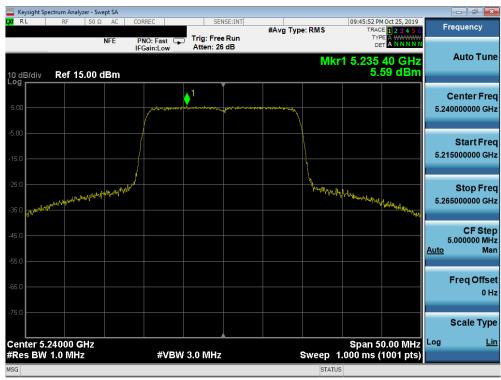
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 07 of 044                  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 97 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-138. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)




Plot 7-139. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 36)

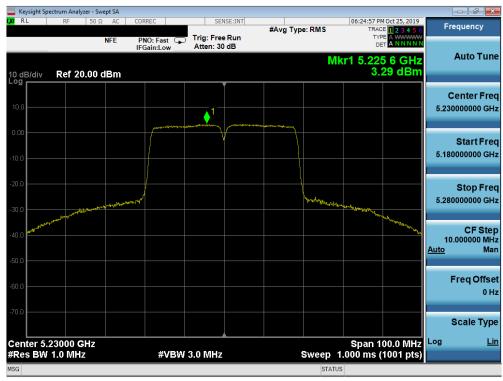
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |                                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 98 of 241                  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-140. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 40)

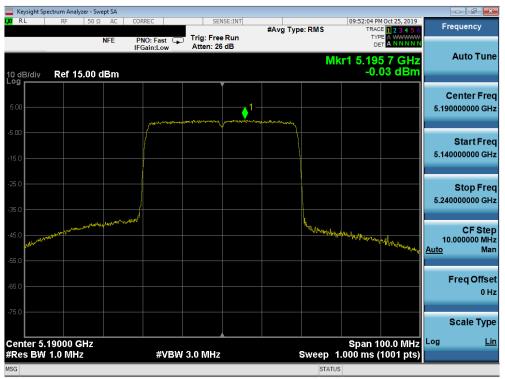



Plot 7-141. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 48)

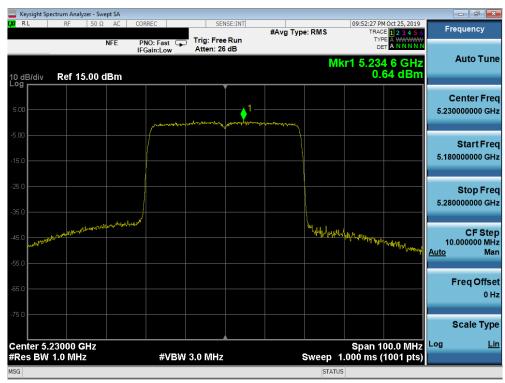
| FCC ID: A3LSMG986U           | MEASUREMENT REPORT<br>(CERTIFICATION)    |                  | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:        | Dage 00 of 244                  |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset | Page 99 of 241                  |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                  |                                 |  |  |  |






Plot 7-142. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)




Plot 7-143. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

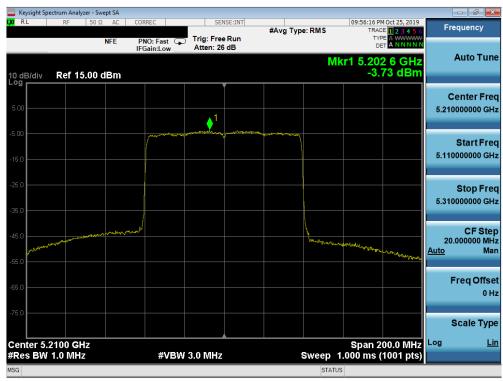
| FCC ID: A3LSMG986U           |                                          | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:                             | Dage 100 of 244                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset                      | Page 100 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-144. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 38)

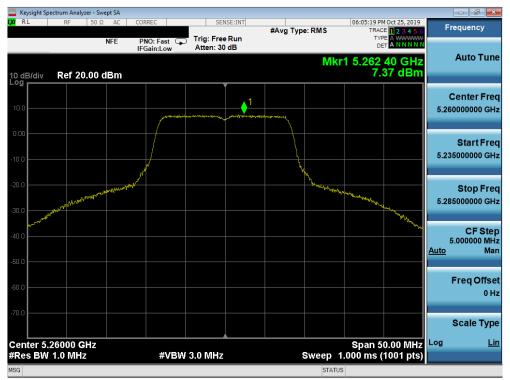



Plot 7-145. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 46)

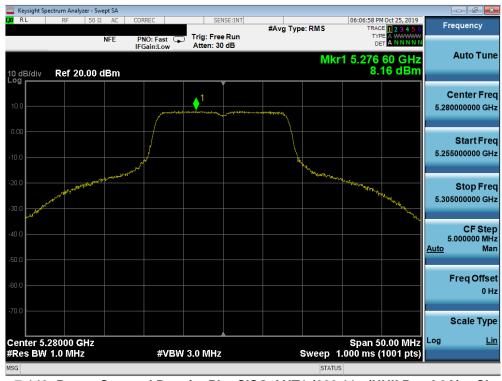
| FCC ID: A3LSMG986U           |                                          | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:                             | Dage 101 of 211                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset                      | Page 101 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |






Plot 7-146. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)




Plot 7-147. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 1) - Ch. 42)

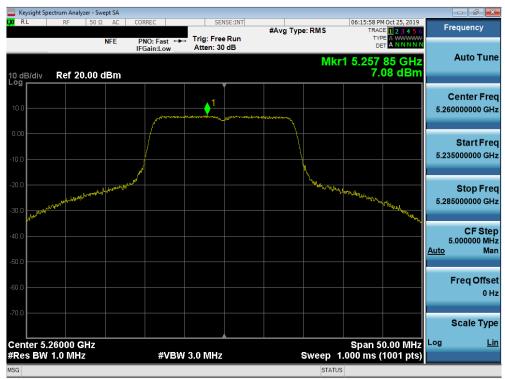
| FCC ID: A3LSMG986U           |                                          | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:                             | Dage 102 of 244                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset                      | Page 102 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-148. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 52)




Plot 7-149. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) – Ch. 56)

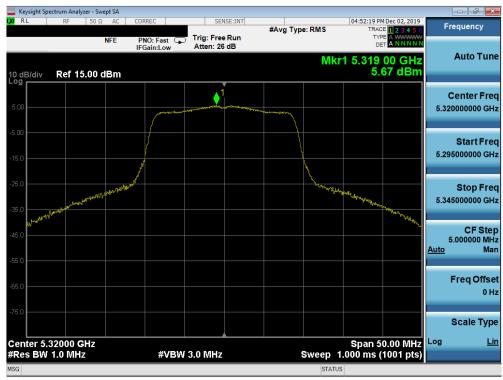
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 102 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 103 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-150. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 64)




Plot 7-151. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

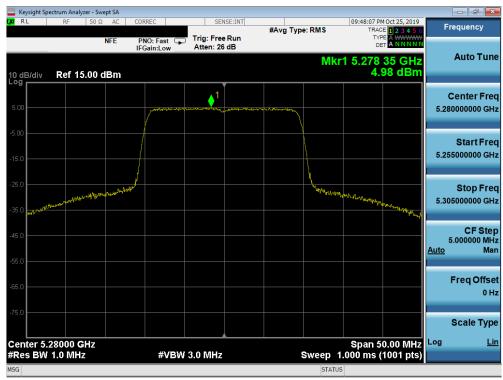
| FCC ID: A3LSMG986U           |                                          | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:                             | Dogo 104 of 244                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset                      | Page 104 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-152. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)




Plot 7-153. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

| FCC ID: A3LSMG986U           |                                          | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:                             | Dage 105 of 211                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset                      | Page 105 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-154. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 2A) - Ch. 52)



Plot 7-155. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 2A) - Ch. 56)

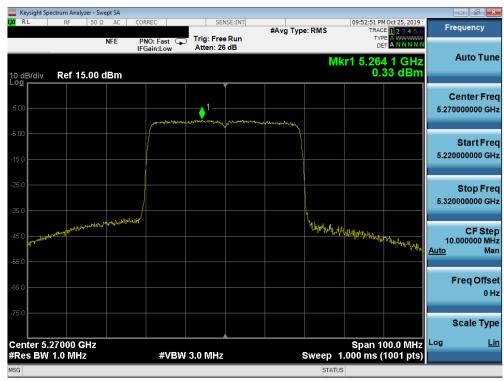
| FCC ID: A3LSMG986U           |                                          | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                              | EUT Type:                             | Dage 100 of 244                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                      | Portable Handset                      | Page 106 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-156. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 2A) - Ch. 64)




Plot 7-157. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

| FCC ID: A3LSMG986U           |                                            | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |  |  |
|------------------------------|--------------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| Test Report S/N:             | Test Dates:                                | EUT Type:                             | Dage 107 of 244                 |  |  |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                        | Portable Handset                      | Page 107 of 241                 |  |  |  |
| © 2020 PCTEST Engineering La | 0 2020 PCTEST Engineering Laboratory, Inc. |                                       |                                 |  |  |  |





Plot 7-158. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)



Plot 7-159. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 54)

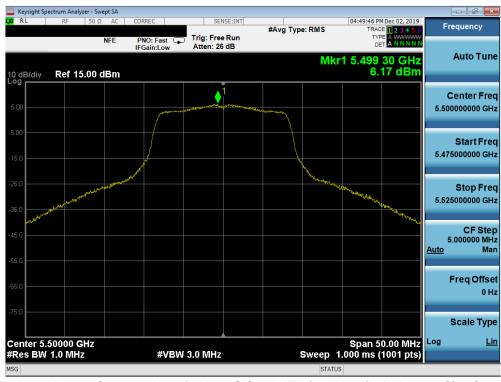
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dogo 100 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 108 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |





Plot 7-160. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 62)




Plot 7-161. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

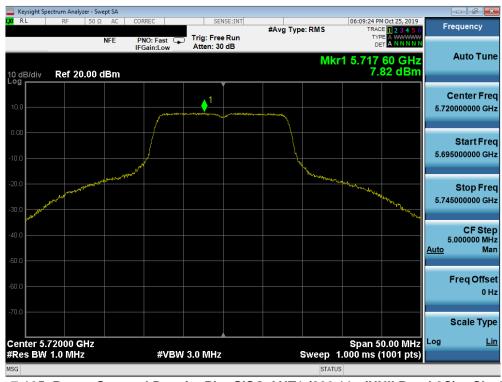
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Daga 100 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 109 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |



|                  | Spectrum Analy     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      |                   |
|------------------|--------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------|-------------------|----------------------|-------------------|
| LXI RL           | RF                 | 50 Ω AC                 | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEI                     | NSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #Avg Typ | e: RMS     |                | M Oct 25, 2019    | Freq                 | uency             |
|                  | _                  | NFE                     | PNO: Fast C<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trig: Free<br>Atten: 26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | TYF<br>De      |                   |                      |                   |
| 10 dB/div<br>Log | Ref 15             | 5.00 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Mk         | r1 5.27<br>-4. | 8 2 GHz<br>29 dBm | A                    | uto Tune          |
|                  |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                |                   |                      | nter Freq         |
| 5.00             |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▲1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   | 5.2900               | 00000 GHz         |
| -5.00            |                    |                         | The set of | A                       | and the second s | mannen   |            |                |                   | s                    | tart Freq         |
| -15.0            |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      | 00000 GHz         |
|                  |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      |                   |
| -25.0            |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      | top Freq          |
| -35.0            |                    |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   | 5.3900               | 00000 GHz         |
| 15.0             |                    |                         | 1.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      | CF Step           |
|                  | Jon for population | August and a second and |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Weenerghad | Hallweight     | aller Miller      | 20.00<br><u>Auto</u> | 00000 MHz<br>Man  |
| -55.0            |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      |                   |
| -65.0            |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   | Fr                   | eq Offset<br>0 Hz |
| 75.0             |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   |                      | 0 H2              |
| -75.0            |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                |                   | So                   | ale Type          |
| Center 5         | 5.2900 GH          | lz                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | Span 2         | 00.0 MHz          | Log                  | <u>Lin</u>        |
| #Res BV          | V 1.0 MH:          | z                       | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W 3.0 MHz               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Sweep 1    | .000 ms (      | 1001 pts)         |                      |                   |
| MSG              |                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | STATUS     |                |                   |                      |                   |


Plot 7-162. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2A) - Ch. 58)




Plot 7-163. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 100)

| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SUNG             | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|------------------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             |                  | Daga 110 of 211                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      |                  | Page 110 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       | V 9.0 02/01/2019 |                                 |






Plot 7-164. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 120)



Plot 7-165. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 144)

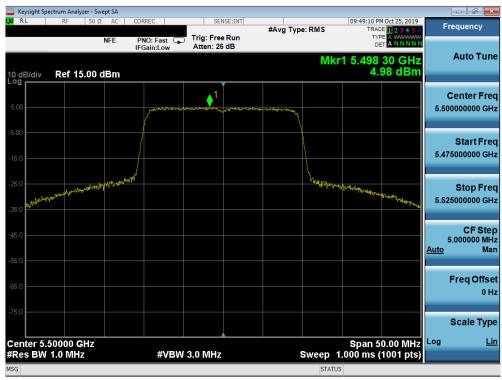
| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | ISUNG            | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|------------------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             |                  | Daga 111 of 211                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      |                  | Page 111 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       | V 9.0 02/01/2019 |                                 |





Plot 7-166. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)




Plot 7-167. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             | Dage 112 of 211                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      | Page 112 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       | V 9.0 02/01/2019                |






Plot 7-168. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)



Plot 7-169. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 2C) - Ch. 100)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 112 of 241                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 113 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-170. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 2C) - Ch. 120)

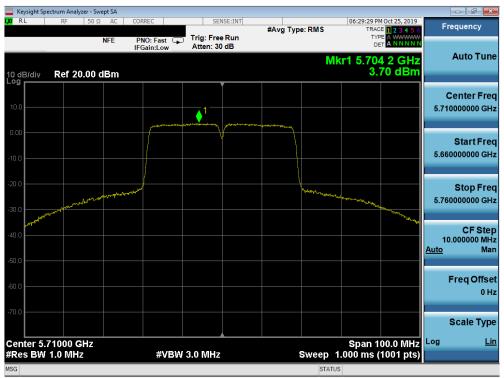


Plot 7-171. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 2C) - Ch. 144)

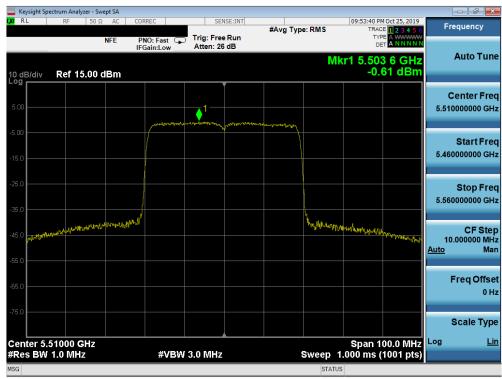
| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | MSUNG            | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|------------------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             |                  | Dage 111 of 211                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      |                  | Page 114 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       | V 9.0 02/01/2019 |                                 |






Plot 7-172. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)




Plot 7-173. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

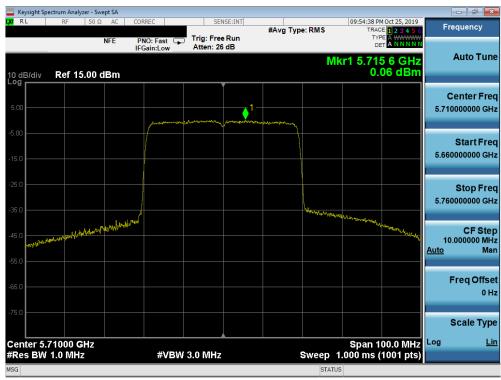
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 115 of 241                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 115 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-174. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)




Plot 7-175. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 102)

| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | UNG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|-----|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             |     | Dage 116 of 211                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      |     | Page 116 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       |     | V 9.0 02/01/2019                |





Plot 7-176. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 118)



Plot 7-177. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 142)

| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             | Dage 117 of 011                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      | Page 117 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       | V 9.0 02/01/2019                |





Plot 7-178. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)



Plot 7-179. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)

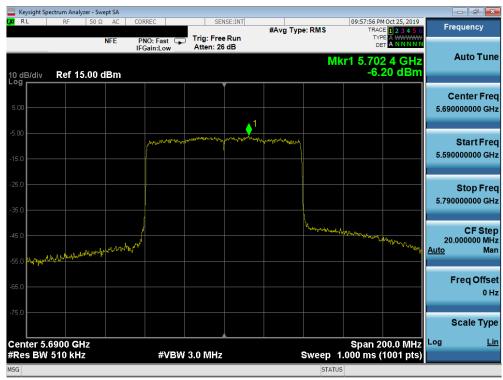
| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             |         | Dogo 110 of 211                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 118 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       |         | V 9.0 02/01/2019                |





Plot 7-180. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)




Plot 7-181. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 106)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 110 of 211                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 119 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



|                       | ectrum Analyzer              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|-----------------------|------------------------------|----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| L <mark>XI</mark> RL  | RF 5                         | 50Ω AC                                 | CORREC                  | SEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ISE:INT | #Avg Typ              | e RMS   |                                       | M Oct 25, 2019<br>DE 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency                        |
|                       |                              | NFE                                    | PNO: Fast<br>IFGain:Low | Trig: Free<br>Atten: 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | "B)H                  |         | TYI<br>Di                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto Turo                        |
| 10 dB/div<br>Log      | Ref 15.0                     | 0 dBm                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       | Mk      | (r1 5.60<br>-4.                       | 1 8 GHz<br>21 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Auto Tune                        |
| 209                   |                              |                                        |                         | ) j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Freq                      |
| 5.00                  |                              |                                        |                         | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.610000000 GHz                  |
| -5.00                 |                              |                                        | water                   | and a state of the | -       | and the second second |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| -15.0                 |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Freq<br>5.510000000 GHz    |
|                       |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| -25.0                 |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Freq                        |
| -35.0                 |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.710000000 GHz                  |
|                       |                              |                                        | . /                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       | mound   | al and the work of the                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CF Step                          |
| -45.0                 | and a support of the support | ¢Ω <sub>N</sub> <sup>12</sup> Nevder™V | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       | and the state of t | 20.000000 MHz<br><u>Auto</u> Man |
| -55.0                 |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| -65.0                 |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offset                      |
|                       |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Hz                             |
| -75.0                 |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale Type                       |
| O a m t a m E         |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         | 0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Log <u>Lin</u>                   |
| Center 5.0<br>#Res BW |                              |                                        | #VE                     | 3W 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                       | Sweep 1 | span 2<br>.000 ms (                   | 00.0 MHz<br>(1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
| MSG                   |                              |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       | STATUS  | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |

Plot 7-182. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 122)




Plot 7-183. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 138)

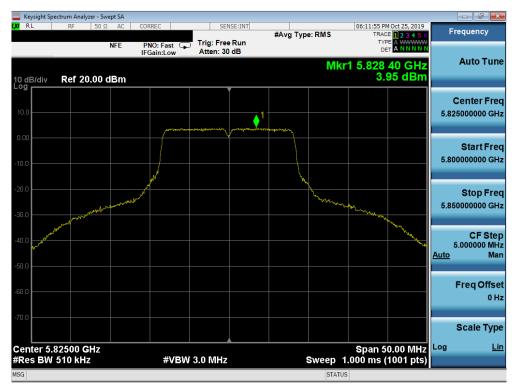
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 120 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 120 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured<br>Power Density<br>[dBm] | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] |
|------|--------------------|----------------|-------------|------------------|------------------------------------|--------------------------------------------------|----------------|
|      | 5745               | 149            | а           | 6                | 5.01                               | 30.0                                             | -24.99         |
|      | 5785               | 157            | а           | 6                | 4.06                               | 30.0                                             | -25.94         |
|      | 5825               | 165            | а           | 6                | 3.95                               | 30.0                                             | -26.05         |
|      | 5745               | 149            | n (20MHz)   | 6.5/7.2 (MCS0)   | 4.02                               | 30.0                                             | -25.98         |
|      | 5785               | 157            | n (20MHz)   | 6.5/7.2 (MCS0)   | 3.97                               | 30.0                                             | -26.03         |
|      | 5825               | 165            | n (20MHz)   | 6.5/7.2 (MCS0)   | 3.67                               | 30.0                                             | -26.33         |
| e    | 5745               | 149            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 1.90                               | 30.0                                             | -28.10         |
| Band | 5785               | 157            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 2.00                               | 30.0                                             | -28.00         |
| ä    | 5825               | 165            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 1.92                               | 30.0                                             | -28.08         |
|      | 5755               | 151            | n (40MHz)   | 13.5/15 (MCS0)   | -0.20                              | 30.0                                             | -30.20         |
|      | 5795               | 159            | n (40MHz)   | 13.5/15 (MCS0)   | 0.16                               | 30.0                                             | -29.84         |
|      | 5755               | 151            | ax (40MHz)  | 13.5/15 (MCS0)   | -2.89                              | 30.0                                             | -32.89         |
|      | 5795               | 159            | ax (40MHz)  | 13.5/15 (MCS0)   | -2.87                              | 30.0                                             | -32.87         |
|      | 5775               | 155            | ac (80MHz)  | 29.3/32.5 (MCS0) | -1.49                              | 30.0                                             | -31.49         |
|      | 5775               | 155            | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.16                              | 30.0                                             | -34.16         |

Table 7-23. Band 3 Conducted Power Spectral Density Measurements SISO ANT1

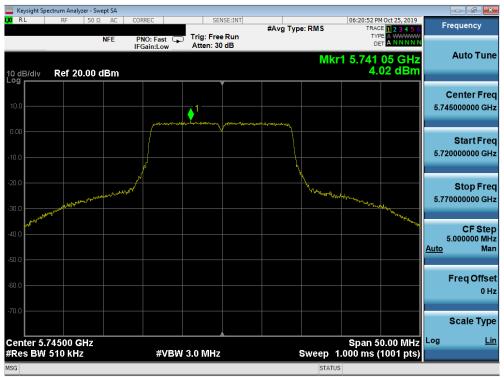



Plot 7-184. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) – Ch. 149)

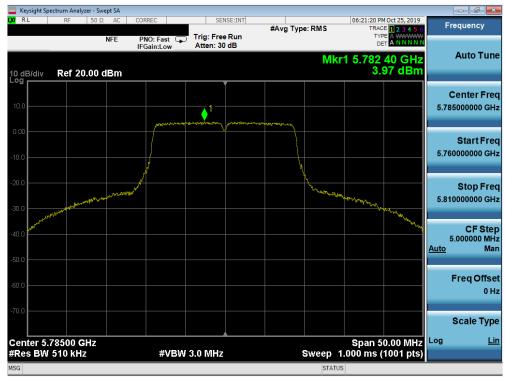
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dage 101 of 011                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 121 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |






Plot 7-185. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 157)




Plot 7-186. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 165)

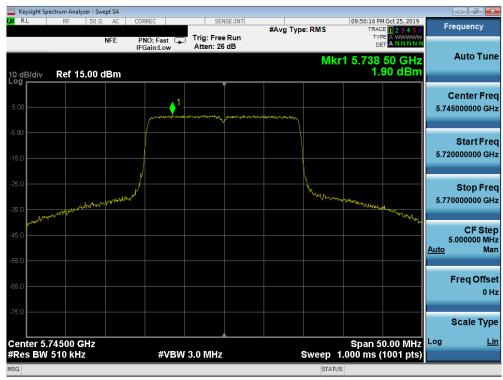
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 100 of 011                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 122 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-187. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)




Plot 7-188. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

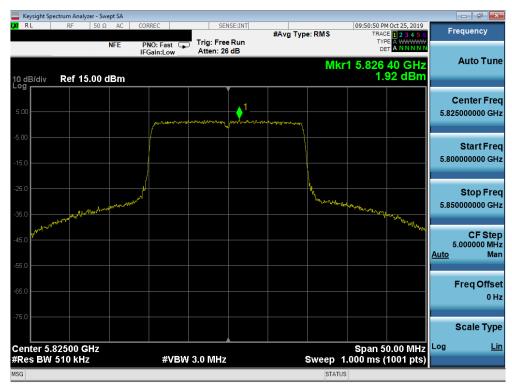
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dogo 102 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 123 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-189. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)




Plot 7-190. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 3) - Ch. 149)

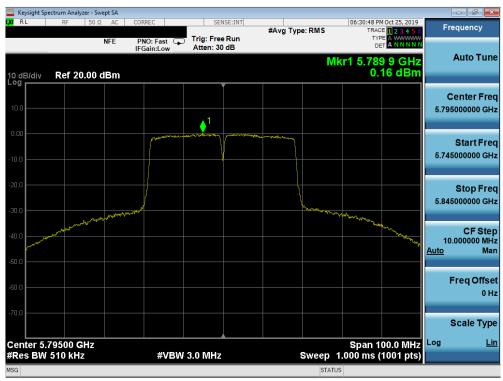
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 104 of 044                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 124 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-191. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 3) - Ch. 157)

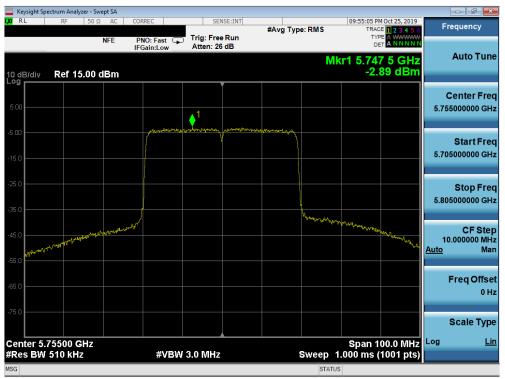



Plot 7-192. Power Spectral Density Plot SISO ANT1 (20MHz 802.11ax (UNII Band 3) - Ch. 165)

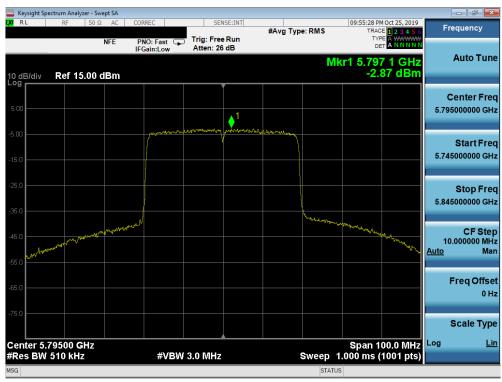
| FCC ID: A3LSMG986U                         |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | MSUNG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------------|---------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:         | EUT Type:                             |       | Dage 125 of 244                 |
| 1M1910220166-09.A3L                        | 10/11/19 - 01/15/20 | Portable Handset                      |       | Page 125 of 241                 |
| © 2020 PCTEST Engineering Laboratory, Inc. |                     |                                       |       | V 9.0 02/01/2019                |






Plot 7-193. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)




Plot 7-194. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

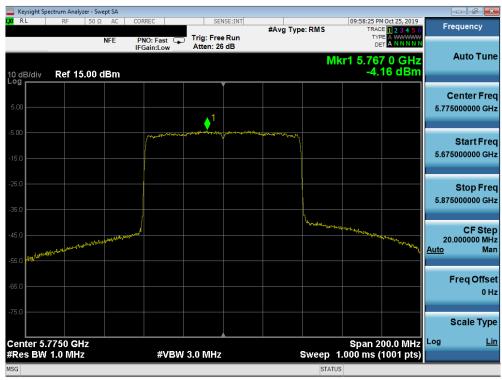
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dogo 126 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 126 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-195. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)




Plot 7-196. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 107 of 044                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 127 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-197. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)



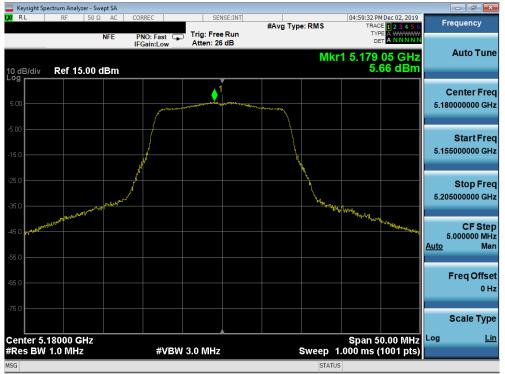
Plot 7-198. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 128 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 128 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



## SISO Antenna-2 Power Spectral Density Measurements

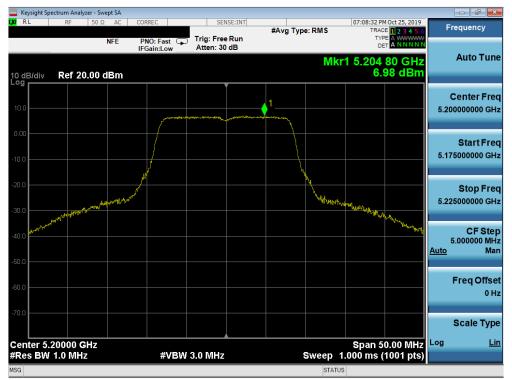
| Fund     5200     40     a     6     7.12     11.0     -4       5180     36     n (20MHz)     6.57.2 (MCS0)     6.57     11.0     -5       5200     40     n (20MHz)     6.57.2 (MCS0)     6.57     11.0     -4       5200     40     n (20MHz)     6.57.2 (MCS0)     4.63     11.0     -4       5200     40     ax (20MHz)     6.57.2 (MCS0)     4.46     11.0     -6       5200     40     ax (20MHz)     6.57.2 (MCS0)     4.43     11.0     -6       5200     40     ax (20MHz)     13.5715 (MCS0)     2.85     11.0     -7       5230     46     n (40MHz)     13.5715 (MCS0)     0.36     11.0     -1       5210     42     ac (80MHz)     23.32.5 (MCS0)     0.40     11.0     -1       5210     42     ac (80MHz)     23.32.5 (MCS0)     0.40     11.0     -1       5220     52     a     6     6.96     11.0     -4       5280     <                                                                                                                                                                                          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured<br>Power Density<br>[dBm] | Max Power<br>Density<br>[dBm/MHz] | Margin<br>[dB] |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------|------------------|------------------------------------|-----------------------------------|----------------|
| State     State <th< th=""><td>5180</td><td>36</td><td>а</td><td>6</td><td>5.66</td><td>11.0</td><td>-5.34</td></th<>                      | 5180               | 36             | а           | 6                | 5.66                               | 11.0                              | -5.34          |
| FTE     5180     36     n (20MHz)     6.5/7.2 (MCS0)     5.54     11.0     -4       5200     40     n (20MHz)     6.5/7.2 (MCS0)     6.79     11.0     -4       5240     48     n (20MHz)     6.5/7.2 (MCS0)     4.46     11.0     -6       5200     40     ax (20MHz)     6.5/7.2 (MCS0)     4.46     11.0     -6       5200     40     ax (20MHz)     6.5/7.2 (MCS0)     4.73     11.0     -6       5230     46     n (40MHz)     13.5/15 (MCS0)     -3.73     11.0     -7       5230     46     n (40MHz)     13.5/15 (MCS0)     -0.37     11.0     -1       5210     42     ac (80MHz)     23.3/2.5 (MCS0)     0.40     11.0     -1       5280     56     a     6     6.968     11.0     -4       5280     52     n (20MHz)     6.5/7.2 (MCS0)     6.47     11.0     -4       5280     56     a     6     6.565     11.0     -4       5280 <td>5200</td> <td>40</td> <td>а</td> <td>6</td> <td>6.98</td> <td>11.0</td> <td>-4.02</td>                                                                                              | 5200               | 40             | а           | 6                | 6.98                               | 11.0                              | -4.02          |
| Second     40     n (20MHz)     6.577.2 (MCS0)     6.57     11.0     -4       5240     48     n (20MHz)     6.577.2 (MCS0)     4.46     11.0     -6       5200     40     ax (20MHz)     6.577.2 (MCS0)     4.463     11.0     -6       5200     40     ax (20MHz)     6.577.2 (MCS0)     4.463     11.0     -6       5200     40     ax (20MHz)     6.577.2 (MCS0)     4.73     11.0     -6       5230     46     n (40MHz)     13.5715 (MCS0)     2.85     11.0     -7       5230     46     ax (40MHz)     13.5715 (MCS0)     0.37     11.0     -1       5230     46     ax (80MHz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5240     56     a     6     7.07     11.0     -4       5280     52     a     6     6.066     11.0     -4       5280     56     a     6     7.07     11.0     -4       5280     56     a                                                                                                                                                                                                     | 5240               | 48             | а           | 6                | 7.12                               | 11.0                              | -3.88          |
| State     State <th< th=""><td>5180</td><td>36</td><td>n (20MHz)</td><td>6.5/7.2 (MCS0)</td><td>5.54</td><td>11.0</td><td>-5.46</td></th<> | 5180               | 36             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.54                               | 11.0                              | -5.46          |
| Tegs     5180     36     ax (20MHz)     6.5/7.2 (MCS0)     4.46     11.0     -C       5200     40     ax (20MHz)     6.5/7.2 (MCS0)     4.63     11.0     -C       5240     48     ax (20MHz)     6.5/7.2 (MCS0)     4.73     11.0     -C       5240     48     ax (20MHz)     13.5/15 (MCS0)     2.85     11.0     -F       5230     46     n (40MHz)     13.5/15 (MCS0)     0.37     11.0     -1       5210     42     ac (80MHz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5210     42     ac (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5220     56     a     6     7.07     11.0     -4       5280     56     a     6     7.07     11.0     -4       5280     56     a     6     7.07     11.0     -4       5280     56     a     6     6.577.2 (MCS0)     6.05     11.0     -4       5280                                                                                                                                                                                                            | 5200               | 40             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.57                               | 11.0                              | -4.43          |
| Sec     5200     40     ax (20M+b2)     6.5/7.2 (MCS0)     4.63     11.0     -6       5240     48     ax (20M+b2)     6.5/7.2 (MCS0)     3.73     11.0     -7       5230     46     n (40M+b2)     13.5/15 (MCS0)     2.85     11.0     -7       5230     46     n (40M+b2)     13.5/15 (MCS0)     0.37     11.0     -1       5230     46     ax (40M+b2)     13.5/15 (MCS0)     0.26     11.0     -1       5210     42     ac (80M+b2)     33.25 (MCS0)     0.40     11.0     -1       5210     42     ax (80M+b2)     29.3/32.5 (MCS0)     0.40     11.0     -4       5220     64     a     6     6.05     11.0     -4       5220     64     a     6     6.05     11.0     -4       5280     56     n (20M+b2)     6.5/7.2 (MCS0)     6.05     11.0     -4       5280     56     ax (20M+b2)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280<                                                                                                                                                                                 | 5240               | 48             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.79                               | 11.0                              | -4.21          |
| Total     Total     Total     Total     Total     Total       5200     46     n (400Hz)     13.5/15 (MCS0)     2.85     11.0     -5       5230     46     n (400Hz)     13.5/15 (MCS0)     0.373     11.0     -1       5230     46     ax (400Hz)     13.5/15 (MCS0)     0.26     11.0     -1       5210     42     ax (800Hz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5210     42     ax (800Hz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5220     64     a     6     6.665     11.0     -4       5280     56     a     6     6.655     11.0     -4       5280     56     n (200Hz)     6.57.2 (MCS0)     6.76     11.0     -4       5280     56     ax (200Hz)     6.57.2 (MCS0)     6.77     11.0     -6       5280     56     ax (200Hz)     6.57.2 (MCS0)     4.87     11.0     -6       5270     54     ax (400Hz)                                                                                                                                                                                       | <del>~</del> 5180  | 36             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.46                               | 11.0                              | -6.54          |
| Total     Total     Total     Total     Total     Total       5200     46     n (400Hz)     13.5/15 (MCS0)     2.85     11.0     -5       5230     46     n (400Hz)     13.5/15 (MCS0)     0.373     11.0     -1       5230     46     ax (400Hz)     13.5/15 (MCS0)     0.26     11.0     -1       5210     42     ax (800Hz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5210     42     ax (800Hz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5220     64     a     6     6.665     11.0     -4       5280     56     a     6     6.655     11.0     -4       5280     56     n (200Hz)     6.57.2 (MCS0)     6.76     11.0     -4       5280     56     ax (200Hz)     6.57.2 (MCS0)     6.77     11.0     -6       5280     56     ax (200Hz)     6.57.2 (MCS0)     4.87     11.0     -6       5270     54     ax (400Hz)                                                                                                                                                                                       | 5200               | 40             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.63                               | 11.0                              | -6.37          |
| 5230     46     n (40MHz)     13.5/15 (MCS0)     2.85     11.0     -5       5190     38     ax (40MHz)     13.5/15 (MCS0)     -0.37     11.0     -1       5230     46     ax (40MHz)     13.5/15 (MCS0)     -0.26     11.0     -1       5210     42     ac (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -4       5280     56     a     6     7.07     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.05     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5                                                                                                                                                                    | <b>ö</b> 5240      | 48             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.73                               | 11.0                              | -6.27          |
| 5190     38     ax (40MHz)     13.5/15 (MCS0)     -0.37     11.0     -1       5230     46     ax (40MHz)     13.5/15 (MCS0)     0.26     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -4       5260     52     a     6     6.96     11.0     -4       5280     56     a     6     7.07     11.0     -3       5320     64     a     6     6.655     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.77     11.0     -4       5320     64     n (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5270     54     n (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MH                                                                                                                                                                                              | 5190               | 38             | n (40MHz)   | 13.5/15 (MCS0)   | 3.73                               | 11.0                              | -7.27          |
| 5230     46     ax (40MHz)     13.5/15 (MCS0)     0.26     11.0     -1       5210     42     ac (80MHz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5210     42     ac (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -4       5280     56     a     6     6.56     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.76     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.77     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5270     54     n (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       52                                                                                                                                                                    | 5230               | 46             | n (40MHz)   | 13.5/15 (MCS0)   | 2.85                               | 11.0                              | -8.15          |
| S210     42     ac (80MHz)     29.3/32.5 (MCS0)     0.40     11.0     -1       5210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1       5260     52     a     6     6.96     11.0     -4       5280     56     a     6     6.655     11.0     -4       5320     64     a     6     6.655     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.05     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5270     54     n (40MHz)     13.5/15 (MCS0)     3.80     11.0     -7       5270     54     ax (40MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ac (8                                                                                                                                                                                              | 5190               | 38             | ax (40MHz)  | 13.5/15 (MCS0)   | -0.37                              | 11.0                              | -11.37         |
| S210     42     ax (80MHz)     29.3/32.5 (MCS0)     -4.49     11.0     -1.1       5260     52     a     6     6.96     11.0     -4       5280     56     a     6     7.07     11.0     -2       5320     64     a     6     6.655     11.0     -4       5280     52     n (20MHz)     6.5/7.2 (MCS0)     6.76     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.05     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5320     64     ax (20MHz)     13.5/15 (MCS0)     2.81     11.0     -6       5320     54     n (40MHz)     13.5/15 (MCS0)     0.00     11.0     -7       5310     62     n (40MHz)     13.5/15 (MCS0)     0.27     11.0     -1       5290     58     ac (80MHz)                                                                                                                                                                                              | 5230               | 46             | ax (40MHz)  | 13.5/15 (MCS0)   | 0.26                               | 11.0                              | -10.74         |
| S260     52     a     6     6.96     11.0     .4       5280     56     a     6     7.07     11.0     -3       5320     64     a     6     6.655     11.0     -4       5280     56     n (20MHz)     6.577.2 (MCS0)     6.76     11.0     -4       5280     56     n (20MHz)     6.577.2 (MCS0)     6.05     11.0     -4       5320     64     n (20MHz)     6.577.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.577.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.577.2 (MCS0)     4.87     11.0     -6       5270     54     n (40MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5310     62     n (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5280     58     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -4       5290     58     ax (40MHz)                                                                                                                                                                                                   | 5210               | 42             | ac (80MHz)  | 29.3/32.5 (MCS0) | 0.40                               | 11.0                              | -10.60         |
| 5280     56     a     6     7.07     11.0     -3       5320     64     a     6     6.665     11.0     -4       5280     52     n (20MHz)     6.5/7.2 (MCS0)     6.76     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.05     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     6.77     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5270     54     n (40MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5270     54     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -7       5270     54     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5290     58                                                                                                                                                                                          | 5210               | 42             | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.49                              | 11.0                              | -15.49         |
| 5320     64     a     6     6.665     11.0     .4       5260     52     n (20MHz)     6.577.2 (MCS0)     6.76     11.0     .4       5280     56     n (20MHz)     6.577.2 (MCS0)     6.05     11.0     .4       5320     64     n (20MHz)     6.577.2 (MCS0)     6.77     11.0     .4       5280     56     ax (20MHz)     6.577.2 (MCS0)     4.87     11.0     .6       5280     56     ax (20MHz)     6.577.2 (MCS0)     4.87     11.0     .6       5280     64     ax (20MHz)     6.577.2 (MCS0)     4.87     11.0     .6       5280     64     ax (20MHz)     6.577.2 (MCS0)     4.77     11.0     .6       5270     54     n (40MHz)     13.5/15 (MCS0)     0.00     11.0     .7       5310     62     ax (40MHz)     13.5/15 (MCS0)     0.027     11.0     .1       5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -0.18     11.0     .1       5200                                                                                                                                                                         | 5260               | 52             | а           | 6                | 6.96                               | 11.0                              | -4.04          |
| Signal     5260     52     n (20MHz)     6.5/7.2 (MCS0)     6.76     11.0     -4       5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.05     11.0     -4       5320     64     n (20MHz)     6.5/7.2 (MCS0)     6.77     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.98     11.0     -6       5200     64     ax (20MHz)     6.5/7.2 (MCS0)     4.77     11.0     -6       5210     54     n (40MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5210     54     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5310     62     ax (40MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5200     58     ax (60MHz)     29.3/32.5 (MCS0)     -0.393     11.0 <td< th=""><td>5280</td><td>56</td><td>а</td><td>6</td><td>7.07</td><td>11.0</td><td>-3.93</td></td<>                                                 | 5280               | 56             | а           | 6                | 7.07                               | 11.0                              | -3.93          |
| Signed     5280     56     n (20MHz)     6.5/7.2 (MCS0)     6.05     11.0     -4       5320     64     n (20MHz)     6.5/7.2 (MCS0)     6.77     11.0     -4       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.98     11.0     -6       5320     64     ax (20MHz)     6.5/7.2 (MCS0)     4.77     11.0     -6       5320     64     ax (20MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5310     62     n (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5310     62     ax (40MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -4       5500     100     a     6     5.72     11.0     -4                                                                                                                                                                     | 5320               | 64             | а           | 6                | 6.65                               | 11.0                              | -4.35          |
| Signed     5320     64     n (20MHz)     6.5/7.2 (MCS0)     6.77     11.0     -4       5260     52     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.98     11.0     -6       5320     64     ax (20MHz)     6.5/7.2 (MCS0)     4.77     11.0     -6       5320     64     ax (20MHz)     13.5/15 (MCS0)     2.81     11.0     -6       5310     62     n (40MHz)     13.5/15 (MCS0)     3.80     11.0     -7       5310     62     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5270     54     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -4       5500     100     a     6     5.72     11.0     -3                                                                                                                                                                    | 5260               | 52             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.76                               | 11.0                              | -4.24          |
| Solution     5260     52     ax (20MHz)     6.5/7.2 (MCS0)     4.87     11.0     -6       5280     56     ax (20MHz)     6.5/7.2 (MCS0)     4.98     11.0     -6       5320     64     ax (20MHz)     6.5/7.2 (MCS0)     4.77     11.0     -6       5320     64     ax (20MHz)     6.5/7.2 (MCS0)     2.81     11.0     -6       5270     54     n (40MHz)     13.5/15 (MCS0)     2.81     11.0     -7       5270     54     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MHz)     13.5/15 (MCS0)     -0.18     11.0     -1       5310     62     ax (40MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5500     100     a     6     5.88     11.0     -2       5600     120     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4 <td>5280</td> <td>56</td> <td>n (20MHz)</td> <td></td> <td>6.05</td> <td>11.0</td> <td>-4.95</td>                                                               | 5280               | 56             | n (20MHz)   |                  | 6.05                               | 11.0                              | -4.95          |
| State     State <th< th=""><td>5320</td><td>64</td><td>n (20MHz)</td><td>6.5/7.2 (MCS0)</td><td>6.77</td><td>11.0</td><td>-4.23</td></th<> | 5320               | 64             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.77                               | 11.0                              | -4.23          |
| Open     Open <th< th=""><td>5260</td><td>52</td><td>ax (20MHz)</td><td>6.5/7.2 (MCS0)</td><td>4.87</td><td>11.0</td><td>-6.13</td></th<>                                                    | 5260               | 52             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.87                               | 11.0                              | -6.13          |
| Open     Open <th< th=""><td>5280</td><td>56</td><td>ax (20MHz)</td><td>6.5/7.2 (MCS0)</td><td>4.98</td><td>11.0</td><td>-6.02</td></th<>                                                    | 5280               | 56             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.98                               | 11.0                              | -6.02          |
| 5310     62     n (40MHz)     13.5/15 (MCS0)     3.80     11.0     -7       5270     54     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5500     100     a     6     5.88     11.0     -5       5600     120     a     6     6.72     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720 <t< th=""><td>5320</td><td>64</td><td>ax (20MHz)</td><td>6.5/7.2 (MCS0)</td><td>4.77</td><td>11.0</td><td>-6.23</td></t<>                                                          | 5320               | 64             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.77                               | 11.0                              | -6.23          |
| S270     54     ax (40MHz)     13.5/15 (MCS0)     0.00     11.0     -1       5310     62     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5500     100     a     6     5.88     11.0     -5       5600     120     a     6     6.72     11.0     -4       5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5510     102     <                                                                                                                                                                                          | 5270               | 54             | n (40MHz)   | 13.5/15 (MCS0)   | 2.81                               | 11.0                              | -8.19          |
| Single     62     ax (40MHz)     13.5/15 (MCS0)     -0.27     11.0     -1       5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5500     100     a     6     5.88     11.0     -5       5600     120     a     6     6.72     11.0     -4       5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.42     11.0     -6       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.42     11.0     -7       5510     102                                                                                                                                                                                             | 5310               | 62             | n (40MHz)   | 13.5/15 (MCS0)   | 3.80                               | 11.0                              | -7.20          |
| 5290     58     ac (80MHz)     29.3/32.5 (MCS0)     -0.18     11.0     -1       5290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1       5500     100     a     6     5.88     11.0     -5       5600     120     a     6     6.72     11.0     -4       5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4       5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)                                                                                                                                                                                                          | 5270               | 54             | ax (40MHz)  | 13.5/15 (MCS0)   | 0.00                               | 11.0                              | -11.00         |
| S290     58     ax (80MHz)     29.3/32.5 (MCS0)     -3.93     11.0     -1.       5500     100     a     6     5.88     11.0     -5       5600     120     a     6     6.72     11.0     -4       5720     144     a     6     7.22     11.0     -5       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -4       5600     120     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -4       5510     102     ax                                                                                                                                                                                               | 5310               | 62             | ax (40MHz)  | 13.5/15 (MCS0)   | -0.27                              | 11.0                              | -11.27         |
| Stop     100     a     6     5.88     11.0     -5       5600     120     a     6     6.72     11.0     -4       5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -5       5600     120     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -6       5720     144     n (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -1       5510     102     ax (40M                                                                                                                                                                                              | 5290               | 58             | ac (80MHz)  | 29.3/32.5 (MCS0) | -0.18                              | 11.0                              | -11.18         |
| 5600     120     a     6     6.72     11.0     -4       5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -5       5600     120     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -6       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5500     120     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5510     102                                                                                                                                                                                 | 5290               | 58             | ax (80MHz)  | 29.3/32.5 (MCS0) | -3.93                              | 11.0                              | -14.93         |
| 5720     144     a     6     7.22     11.0     -3       5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -5       5600     120     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5720     144     ax (20MHz)     13.5/15 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       551                                                                                                                                                                    | 5500               | 100            | а           | 6                | 5.88                               | 11.0                              | -5.12          |
| 5500     100     n (20MHz)     6.5/7.2 (MCS0)     5.53     11.0     -5       5600     120     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -5       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1                                                                                                                                                       | 5600               | 120            | а           | 6                | 6.72                               | 11.0                              | -4.28          |
| 5600     120     n (20MHz)     6.5/7.2 (MCS0)     6.95     11.0     -4       5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5710     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -6       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1                                                                                                                                                      | 5720               | 144            | а           | 6                | 7.22                               | 11.0                              | -3.78          |
| 5720     144     n (20MHz)     6.5/7.2 (MCS0)     7.49     11.0     -3       5500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -6       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1                                                                                                                                                     | 5500               | 100            | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.53                               | 11.0                              | -5.47          |
| S500     100     ax (20MHz)     6.5/7.2 (MCS0)     4.45     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5600     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5710     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -8       5710     142     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -7       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5510     102     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1                                                                                                                                                     | 5600               | 120            | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.95                               | 11.0                              | -4.05          |
| Second     120     ax (20MHz)     6.5/7.2 (MCS0)     4.62     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -8       5710     142     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -7       5510     102     ax (40MHz)     13.5/15 (MCS0)     2.69     11.0     -8       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1                                                                                                                                                | 5720               | 144            | n (20MHz)   | 6.5/7.2 (MCS0)   | 7.49                               | 11.0                              | -3.51          |
| S720     144     ax (20MHz)     6.5/7.2 (MCS0)     4.92     11.0     -6       5510     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -6       5710     142     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -6       5710     142     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -6       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1                                                                                                                                                | 5500               | 100            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.45                               | 11.0                              | -6.55          |
| Spin     5510     102     n (40MHz)     13.5/15 (MCS0)     3.86     11.0     -7       5590     118     n (40MHz)     13.5/15 (MCS0)     2.43     11.0     -8       5710     142     n (40MHz)     13.5/15 (MCS0)     2.69     11.0     -8       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5530     116     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0 </th <td>5600</td> <td>120</td> <td>ax (20MHz)</td> <td>6.5/7.2 (MCS0)</td> <td>4.62</td> <td>11.0</td> <td>-6.38</td>                 | 5600               | 120            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.62                               | 11.0                              | -6.38          |
| 5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1                                                                                                                                                                                                                                                                                                                                                                                 | 5720               | 144            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.92                               | 11.0                              | -6.08          |
| 5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1                                                                                                                                                                                                                                                                                                                                                                                 | <b>X</b> 5510      | 102            | n (40MHz)   | 13.5/15 (MCS0)   | 3.86                               | 11.0                              | -7.14          |
| 5510     102     ax (40MHz)     13.5/15 (MCS0)     -0.47     11.0     -1       5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1                                                                                                                                                                                                                                                                                                | <b>2</b> 5590      | 118            | n (40MHz)   | 13.5/15 (MCS0)   | 2.43                               | 11.0                              | -8.57          |
| 5590     118     ax (40MHz)     13.5/15 (MCS0)     -0.45     11.0     -1       5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>6</b> 5710      | 142            | n (40MHz)   | 13.5/15 (MCS0)   | 2.69                               | 11.0                              | -8.31          |
| 5710     142     ax (40MHz)     13.5/15 (MCS0)     0.08     11.0     -1       5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.10     11.0     -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5510               | 102            | ax (40MHz)  | 13.5/15 (MCS0)   | -0.47                              | 11.0                              | -11.47         |
| 5530     106     ac (80MHz)     29.3/32.5 (MCS0)     0.77     11.0     -1       5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5590               | 118            | ax (40MHz)  | 13.5/15 (MCS0)   | -0.45                              | 11.0                              | -11.45         |
| 5610     122     ac (80MHz)     29.3/32.5 (MCS0)     -0.68     11.0     -1       5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5710               | 142            | ax (40MHz)  | 13.5/15 (MCS0)   | 0.08                               | 11.0                              | -10.92         |
| 5690     138     ac (80MHz)     29.3/32.5 (MCS0)     -4.09     11.0     -1.1       5530     106     ax (80MHz)     29.3/32.5 (MCS0)     -4.11     11.0     -1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5530               | 106            | ac (80MHz)  | 29.3/32.5 (MCS0) | 0.77                               | 11.0                              | -10.23         |
| 5530 106 ax (80MHz) 29.3/32.5 (MCS0) -4.11 11.0 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5610               | 122            | ac (80MHz)  | 29.3/32.5 (MCS0) | -0.68                              | 11.0                              | -11.68         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5690               | 138            | ac (80MHz)  | 29.3/32.5 (MCS0) | -4.09                              | 11.0                              | -15.09         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5530               | 106            | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.11                              | 11.0                              | -15.11         |
| 5610 122 ax (8010Hz) 29.3/32.5 (MCS0) -4.23 11.0 -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5610               | 122            | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.23                              | 11.0                              | -15.23         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5690               | 138            |             |                  | -6.97                              | 11.0                              | -17.97         |


Table 7-24. Conducted Power Spectral Density Measurements SISO ANT2

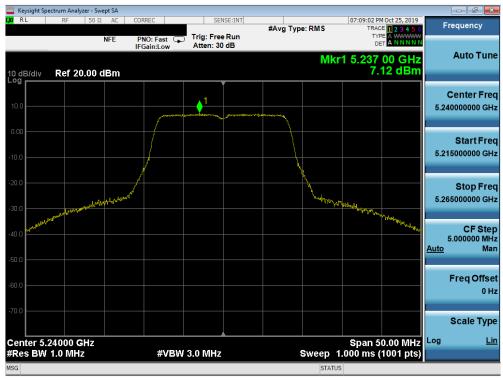
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dogo 120 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 129 of 241                 |
| © 2020 PCTEST Engineering La | V 9 0 02/01/2019    |                                       |         |                                 |



|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured<br>Power Density<br>[dBm] | Antenna Gain<br>[dBi] | e.i.r.p. Power<br>Density<br>[dBm/MHz] | ISED Max e.i.r.p.<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] |
|------|--------------------|----------------|-------------|------------------|------------------------------------|-----------------------|----------------------------------------|-------------------------------------------------|----------------|
|      | 5180               | 36             | а           | 6                | 5.66                               | -6.45                 | -0.79                                  | 10.0                                            | -10.79         |
|      | 5200               | 40             | а           | 6                | 6.98                               | -6.69                 | 0.29                                   | 10.0                                            | -9.71          |
|      | 5240               | 48             | а           | 6                | 7.12                               | -6.45                 | 0.67                                   | 10.0                                            | -9.33          |
|      | 5180               | 36             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.54                               | -6.45                 | -0.91                                  | 10.0                                            | -10.91         |
|      | 5200               | 40             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.57                               | -6.69                 | -0.12                                  | 10.0                                            | -10.12         |
|      | 5240               | 48             | n (20MHz)   | 6.5/7.2 (MCS0)   | 6.79                               | -6.45                 | 0.34                                   | 10.0                                            | -9.66          |
| -    | 5180               | 36             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.46                               | -6.45                 | -1.99                                  | 10.0                                            | -11.99         |
| Band | 5200               | 40             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.63                               | -6.69                 | -2.06                                  | 10.0                                            | -12.06         |
| ä    | 5240               | 48             | ax (20MHz)  | 6.5/7.2 (MCS0)   | 4.73                               | -6.45                 | -1.72                                  | 10.0                                            | -11.72         |
|      | 5190               | 38             | n (40MHz)   | 13.5/15 (MCS0)   | 3.73                               | -6.45                 | -2.72                                  | 10.0                                            | -12.72         |
|      | 5230               | 46             | n (40MHz)   | 13.5/15 (MCS0)   | 2.85                               | -6.45                 | -3.60                                  | 10.0                                            | -13.60         |
|      | 5190               | 38             | ax (40MHz)  | 13.5/15 (MCS0)   | -0.37                              | -6.45                 | -6.82                                  | 10.0                                            | -16.82         |
|      | 5230               | 46             | ax (40MHz)  | 13.5/15 (MCS0)   | 0.26                               | -6.45                 | -6.19                                  | 10.0                                            | -16.19         |
|      | 5210               | 42             | ac (80MHz)  | 29.3/32.5 (MCS0) | 0.40                               | -6.45                 | -6.05                                  | 10.0                                            | -16.05         |
|      | 5210               | 42             | ax (80MHz)  | 29.3/32.5 (MCS0) | -4.49                              | -6.45                 | -10.94                                 | 10.0                                            | -20.94         |


Table 7-25. Band 1 e.i.r.p. Conducted Power Spectral Density Measurements (ISED) SISO ANT2




Plot 7-199. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 36)

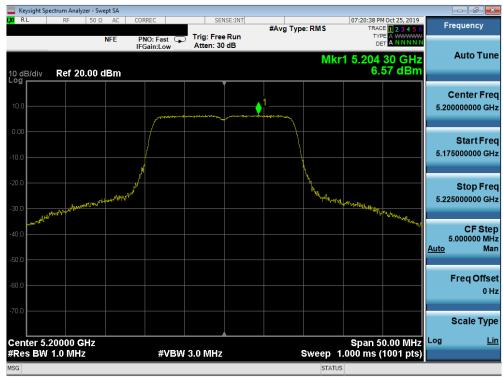
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) |  | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|--|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |  | Dogo 120 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |  | Page 130 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |  |                                 |





Plot 7-200. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 40)




Plot 7-201. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 48)

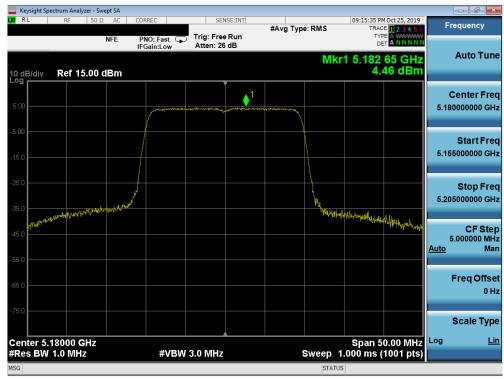
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 121 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 131 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-202. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

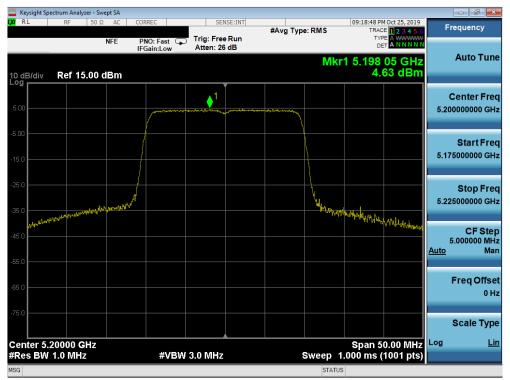



Plot 7-203. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

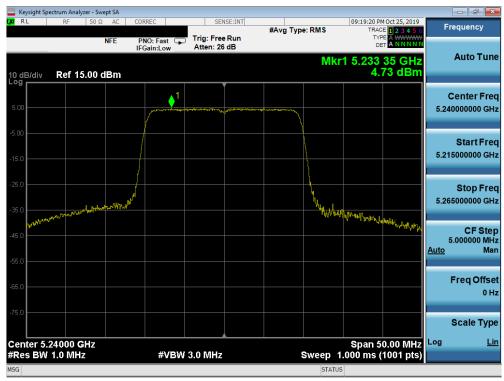
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 122 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 132 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-204. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)




Plot 7-205. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 1) - Ch. 36)

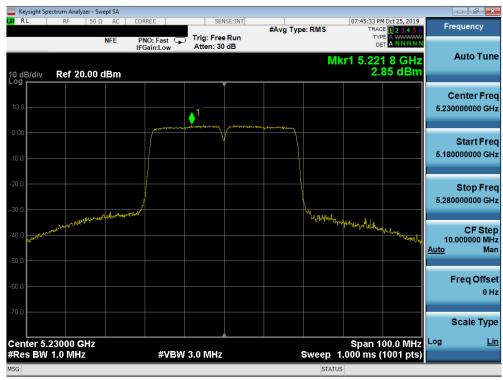
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |
|------------------------------|---------------------|---------------------------------------|---------------------------------|--|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 122 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 133 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |  |





Plot 7-206. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 1) - Ch. 40)




Plot 7-207. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 1) - Ch. 48)

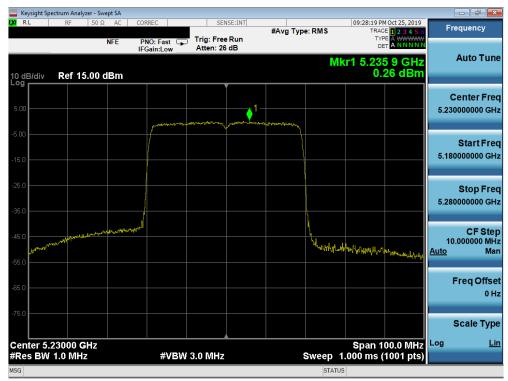
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 124 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 134 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-208. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)




Plot 7-209. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

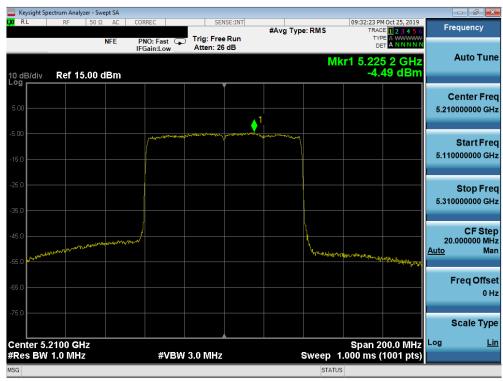
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 125 of 241                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 135 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



|                  | pectrum Analyzer -                      |                  |                     |            |                |                  |                     |                     |                                           |                   |                               |
|------------------|-----------------------------------------|------------------|---------------------|------------|----------------|------------------|---------------------|---------------------|-------------------------------------------|-------------------|-------------------------------|
| X/RL             | RF 50                                   | Ω AC             | CORREC<br>PNO: Fast | Trig: Free |                | #Avg Typ         | e: RMS              | TRAC                | E 1 2 3 4 5 6<br>A WWWWW<br>T A N N N N N | Fr                | equency                       |
| 10 dB/div<br>Log | Ref 15.00                               | ) dBm            | IFGain:Low          | Atten: 26  | dB             |                  | Mk                  | (r1 5.180           | -                                         |                   | Auto Tune                     |
| 5.00             |                                         |                  |                     | 1-         | representation | anglo-manufactor |                     |                     |                                           |                   | Center Freq<br>0000000 GHz    |
| -5.00            |                                         |                  |                     |            |                |                  |                     |                     |                                           | 5.14              | Start Freq<br>0000000 GHz     |
| -25.0            |                                         |                  |                     |            |                |                  |                     |                     |                                           | 5.24              | Stop Freq<br>0000000 GHz      |
| -45.0            | performant for the second second second | ebymp new hythur | two                 |            |                |                  | hy<br>hyberstwy.lph | Vistorytality       | Marian ally                               | 10<br><u>Auto</u> | CF Step<br>.000000 MHz<br>Man |
| -65.0            |                                         |                  |                     |            |                |                  |                     |                     |                                           |                   | Freq Offset<br>0 Hz           |
| -75.0            |                                         |                  |                     |            |                |                  |                     |                     |                                           |                   | Scale Type                    |
|                  | .19000 GHz<br>/ 1.0 MHz                 |                  | #VB                 | W 3.0 MHz  |                |                  | Sweep_1             | Span 1<br>.000 ms ( | 00.0 MHz<br>1001 pts)                     | Log               | <u>Lin</u>                    |
| MSG              |                                         |                  |                     |            |                |                  | STATUS              |                     |                                           |                   |                               |

Plot 7-210. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 1) - Ch. 38)




Plot 7-211. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 1) - Ch. 46)

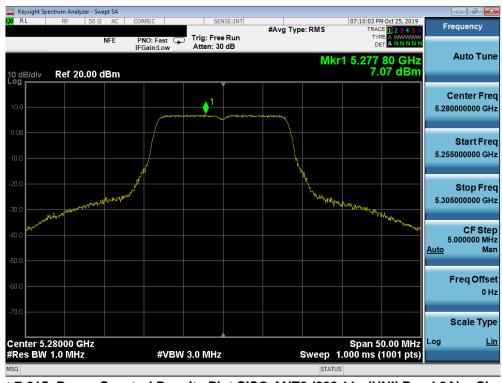
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |
|------------------------------|---------------------|---------------------------------------|---------------------------------|--|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 126 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 136 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |  |





Plot 7-212. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)




Plot 7-213. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 1) - Ch. 42)

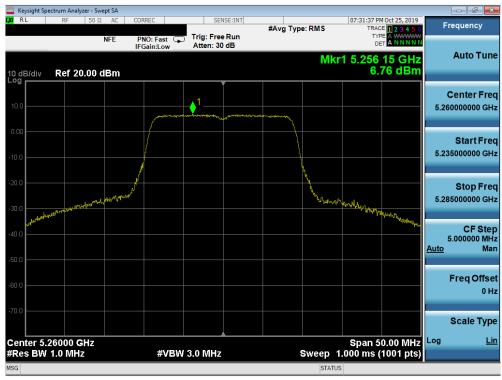
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 127 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 137 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-214. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 52)




Plot 7-215. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2A) – Ch. 56)

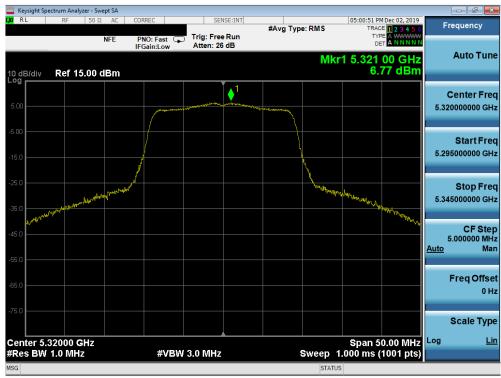
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 129 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 138 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |







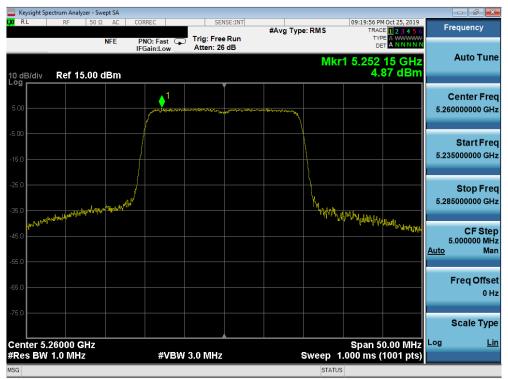



Plot 7-217. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

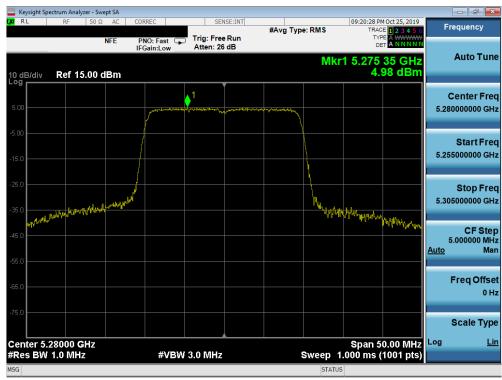
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 120 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 139 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-218. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

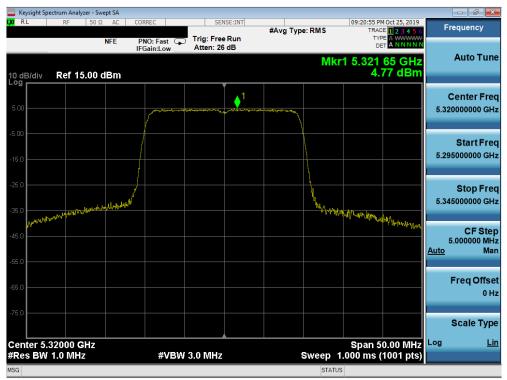



Plot 7-219. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 140 of 241                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 140 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-220. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 2A) - Ch. 52)



Plot 7-221. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (20MHz UNII Band 2A) - Ch. 56)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 111 of 211                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 141 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-222. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (20MHz UNII Band 2A) - Ch. 64)



Plot 7-223. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dogo 112 of 211                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 142 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-224. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)



Plot 7-225. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 54)

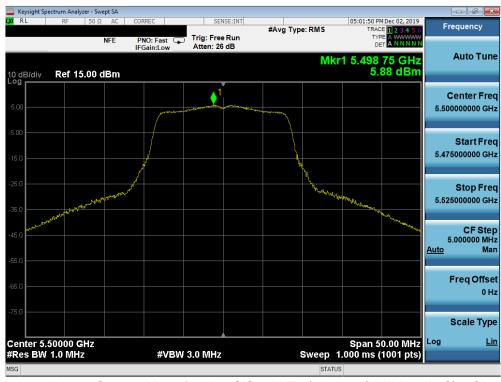
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 112 of 211                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 143 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



|                       | ctrum Analyzer                                                                                                  |                                                                                                                |                           |                           |                  |            |                   |                 |                                 |                               | ar 🗙                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------|------------|-------------------|-----------------|---------------------------------|-------------------------------|-----------------------|
| LX/RL                 | RF 5                                                                                                            | OΩ AC                                                                                                          | CORREC                    | SENS                      | E:INT            | #Avg Type  | DMS               |                 | 1 Oct 25, 2019<br>E 1 2 3 4 5 6 | Frequen                       | icy                   |
|                       |                                                                                                                 | NFE                                                                                                            | PNO: Fast ⊂<br>IFGain:Low | Trig: Free<br>Atten: 26 d | Run              | word i Abr |                   | TYP             |                                 |                               |                       |
| 10 dB/div<br>Log      | Ref 15.0                                                                                                        | 0 dBm                                                                                                          |                           |                           |                  |            | Mk                | r1 5.30<br>-0.: | 7 4 GHz<br>27 dBm               | Auto                          | Tune                  |
| 5.00                  |                                                                                                                 |                                                                                                                |                           | ↓ 1                       |                  |            |                   |                 |                                 | Cente<br>5.3100000            |                       |
| -5.00                 |                                                                                                                 |                                                                                                                |                           | -                         | - Martin - Labor |            |                   |                 |                                 | Star<br>5.2600000             | t Freq                |
| -15.0                 |                                                                                                                 |                                                                                                                |                           |                           |                  |            |                   |                 |                                 |                               | o Freq                |
| -35.0                 |                                                                                                                 |                                                                                                                |                           |                           |                  |            |                   |                 |                                 | 5.3600000                     |                       |
| -45.0                 | white and a second s | and and a second se |                           |                           |                  |            | h<br>hopeallhapph | nuhuhahhuhu     | WWWWWWWWWW                      | CF<br>10.00000<br><u>Auto</u> | Step<br>00 MHz<br>Man |
| -65.0                 |                                                                                                                 |                                                                                                                |                           |                           |                  |            |                   |                 |                                 | Freq                          | Offset<br>0 Hz        |
| -75.0                 |                                                                                                                 |                                                                                                                |                           |                           |                  |            |                   |                 |                                 |                               | е Туре                |
| Center 5.3<br>#Res BW |                                                                                                                 | z                                                                                                              | #VB                       | W 3.0 MHz                 |                  |            | Sween_1           | Span 1          | 00.0 MHz<br>1001 pts)           | Log                           | Lin                   |
| MSG                   |                                                                                                                 |                                                                                                                |                           |                           |                  |            | STATUS            | · · · ·         |                                 |                               |                       |

Plot 7-226. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 62)

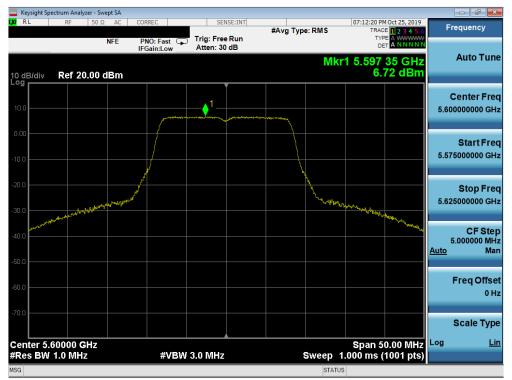



Plot 7-227. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

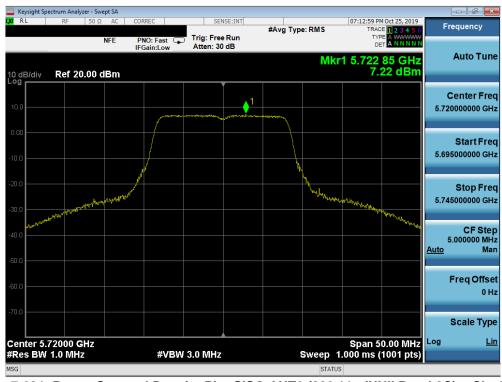
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) |  | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|--|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |  | Dege 111 of 211                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |  | Page 144 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |  |                                 |



|                       | ectrum Analyzer - Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                             |                                                                                                                |         |                       |                |                |                       |                  | d X                   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------|----------------|-----------------------|------------------|-----------------------|
| L <mark>XI</mark> RL  | RF 50 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ω AC                      | CORREC                      | SEN                                                                                                            | ISE:INT | #Avg Typ              | e: RMS         |                | HOct 25, 2019         | Freque           | ncy                   |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NFE                       | PNO: Fast<br>IFGain:Low     | Trig: Free<br>Atten: 26                                                                                        |         | •                     |                | TYP            |                       |                  |                       |
| 10 dB/div<br>Log      | Ref 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBm                       |                             |                                                                                                                |         |                       | Mk             | r1 5.27<br>-3. | 7 2 GHz<br>93 dBm     | Aut              | o Tune                |
| 5.00                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                             | <u>1</u>                                                                                                       |         |                       |                |                |                       | Cent<br>5.290000 | er Freq<br>000 GHz    |
| -5.00                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | /United and an and a second | , and the second se | ,       | and the second second |                |                |                       | Sta<br>5.190000  | irt Freq<br>000 GHz   |
| -25.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                             |                                                                                                                |         |                       |                |                |                       | Sto<br>5,390000  | op Freq               |
| -35.0                 | freeder restance and a series of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all and and an and and an | <i>"</i>                    |                                                                                                                |         |                       | <br> <br> <br> |                |                       | c                | F Step                |
| -55.0                 | for the second s |                           |                             |                                                                                                                |         |                       | Monegene       | nutraintypan   | when the works        | <u>Auto</u>      | Man                   |
| -65.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                             |                                                                                                                |         |                       |                |                |                       | Frec             | Offset<br>0 Hz        |
| -75.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                             |                                                                                                                |         |                       |                | <b>0</b>       |                       | Sca<br>Log       | le Type<br><u>Lin</u> |
| Center 5.2<br>#Res BW |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | #VBW                        | 3.0 MHz                                                                                                        |         |                       | Sweep 1        |                | 00.0 MHz<br>1001 pts) |                  | <u> - 11</u>          |
| MSG                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                             |                                                                                                                |         |                       | STATUS         |                |                       |                  |                       |


Plot 7-228. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2A) - Ch. 58)




Plot 7-229. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 100)

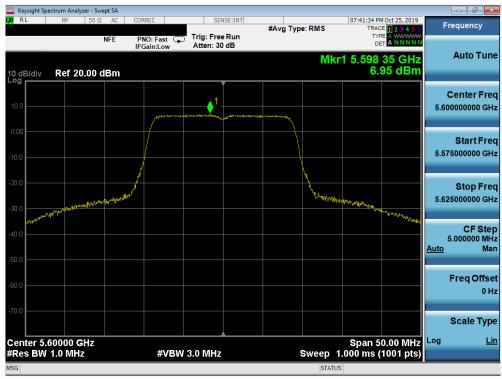
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dage 145 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 145 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |






Plot 7-230. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 120)




Plot 7-231. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 144)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 146 of 241                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 146 of 241                 |
| © 2020 PCTEST Engineering La | boratory, Inc.      |                                       | V 9.0 02/01/2019                |






Plot 7-232. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

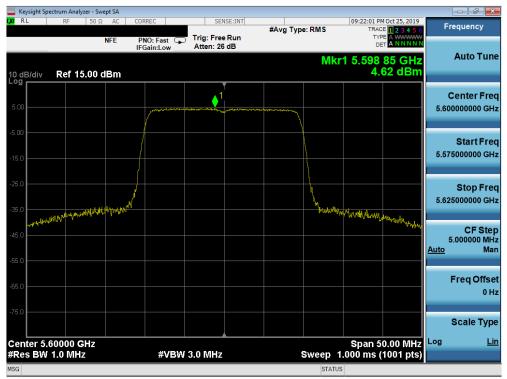


Plot 7-233. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

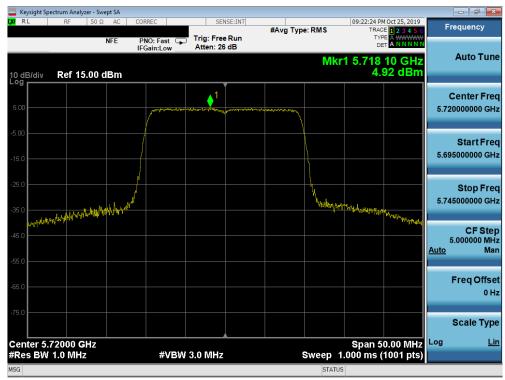
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 147 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 147 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-234. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)




Plot 7-235. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 2C) - Ch. 100)

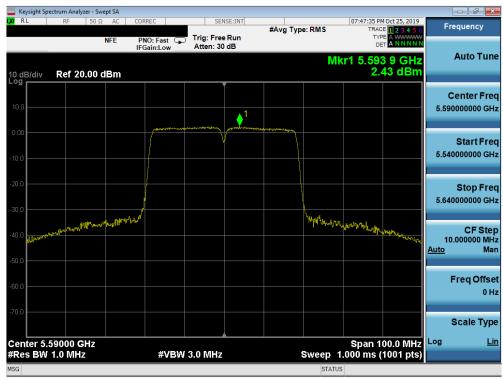
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dogo 149 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 148 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |





Plot 7-236. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 2C) - Ch. 120)

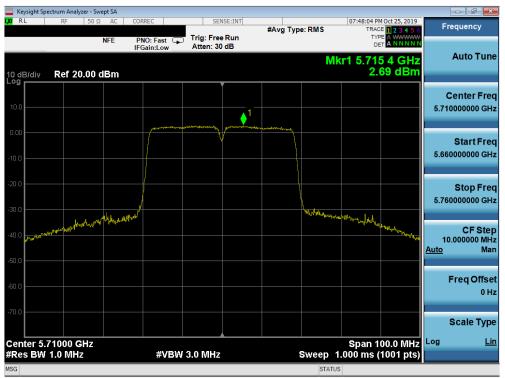



Plot 7-237. Power Spectral Density Plot SISO ANT2 (20MHz 802.11ax (UNII Band 2C) - Ch. 144)

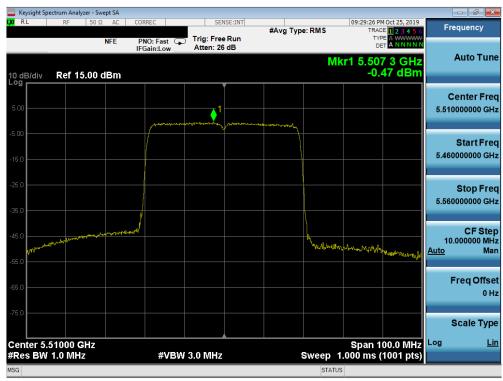
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 140 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 149 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |






Plot 7-238. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)




Plot 7-239. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

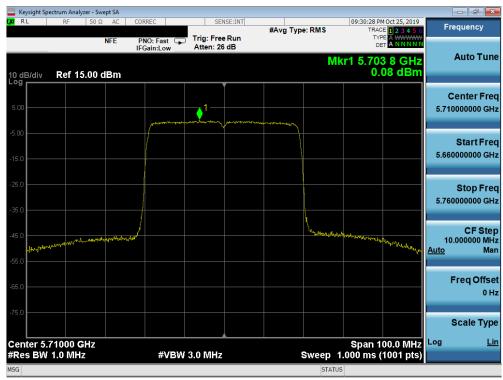
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) |  | SAMSUNG         |  | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|--|-----------------|--|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |  | Dage 150 of 244 |  |                                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |  | Page 150 of 241 |  |                                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |  |                 |  |                                 |





Plot 7-240. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)




Plot 7-241. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 102)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 151 of 241                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 151 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |



|                  | pectrum Analyz         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      |                     |                              |
|------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------------|----------------------|---------------------|------------------------------|
| LXI RL           | RF                     | 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CORREC                    | SEN                                                                                                            | SE:INT                                                                                                           | #Avg Typ | e RMS        |                   | Oct 25, 2019         | Fre                 | quency                       |
|                  | _                      | NFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PNO: Fast 🕞<br>IFGain:Low | Trig: Free<br>Atten: 26                                                                                        |                                                                                                                  | "a)P     |              | TYP               |                      |                     |                              |
| 10 dB/div<br>Log | Ref 15                 | .00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                                                                                                                |                                                                                                                  |          | Mł           | (r1 5.58)<br>-0.4 | 3 9 GHz<br>45 dBm    |                     | Auto Tune                    |
| 5.00             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1_                                                                                                             |                                                                                                                  |          |              |                   |                      |                     | enter Freq<br>000000 GHz     |
| -5.00            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | and a second and a second and a second | and the second |          |              |                   |                      |                     |                              |
| -15.0            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      |                     | Start Freq<br>000000 GHz     |
| -25.0            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      |                     | Stop Freq                    |
| -35.0            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      | 5.6400              | 000000 GHz                   |
| -45.0            | All Hornes Halensteine | and a start of the | للمربط<br>المربع          |                                                                                                                |                                                                                                                  |          | Awardershipe | (utvten, normani  | Varant Jardal ( some | 10.0<br><u>Auto</u> | CF Step<br>000000 MHz<br>Man |
| -55.0            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      |                     |                              |
| -65.0            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      | F                   | req Offset<br>0 Hz           |
| -75.0            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          |              |                   |                      | S                   | cale Type                    |
| Center 5         | .59000 G               | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                                                                                |                                                                                                                  |          |              | Span 1            | 00.0 MHz             | Log                 | Lin                          |
|                  | 1.0 MHz                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBV                      | V 3.0 MHz                                                                                                      |                                                                                                                  |          | Sweep 1      | .000 ms (         | 1001 pts)            |                     |                              |
| MSG              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                |                                                                                                                  |          | STATUS       | 5                 |                      |                     |                              |

Plot 7-242. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 118)

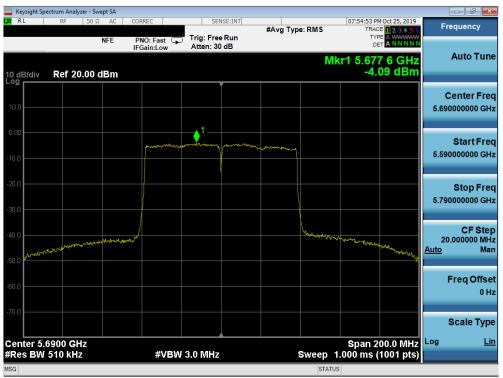


Plot 7-243. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 142)

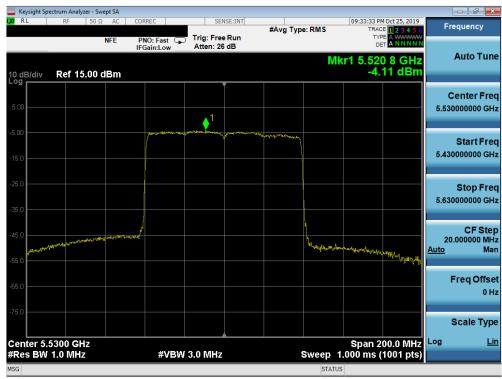
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |
|------------------------------|---------------------|---------------------------------------|---------------------------------|--|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 152 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 152 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |  |






Plot 7-244. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

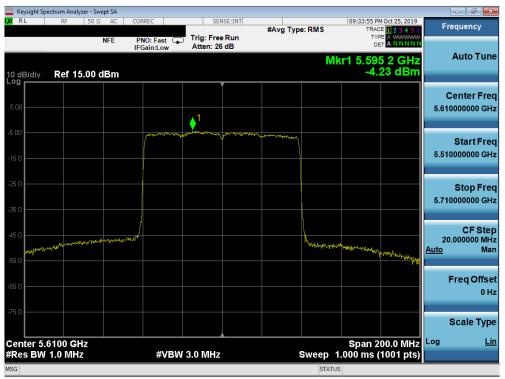



Plot 7-245. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)

| FCC ID: A3LSMG986U           | MEASUREMENT REPORT<br>(CERTIFICATION) |                  | AMSUNG | Approved by:<br>Quality Manager |  |
|------------------------------|---------------------------------------|------------------|--------|---------------------------------|--|
| Test Report S/N:             | Test Dates:                           | EUT Type:        |        | Daga 152 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20                   | Portable Handset |        | Page 153 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019                      |                  |        |                                 |  |






Plot 7-246. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)




Plot 7-247. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 106)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) |  | Approved by:<br>Quality Manager |  |
|------------------------------|---------------------|---------------------------------------|--|---------------------------------|--|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |  | Daga 154 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |  | Page 154 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |  |                                 |  |





Plot 7-248. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 122)

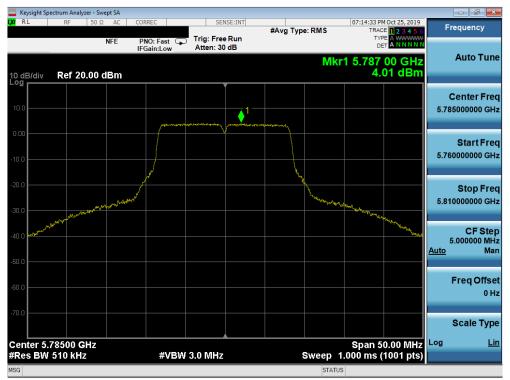


Plot 7-249. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 138)

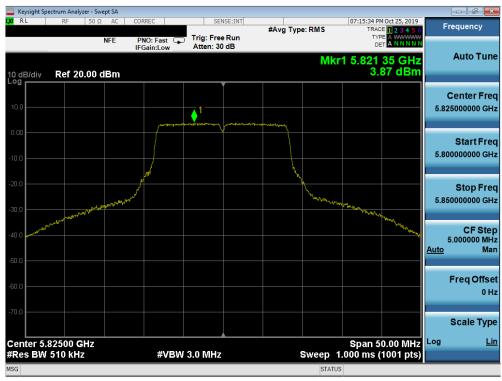
| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Quality Manager |  |
|------------------------------|---------------------|---------------------------------------|---------------------------------|--|
| Test Report S/N:             | Test Dates:         | EUT Type:                             | Dage 155 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      | Page 155 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |                                 |  |



|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured<br>Power Density<br>[dBm] | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] |
|------|--------------------|----------------|-------------|------------------|------------------------------------|--------------------------------------------------|----------------|
|      | 5745               | 149            | а           | 6                | 4.18                               | 30.0                                             | -25.82         |
|      | 5785               | 157            | а           | 6                | 4.01                               | 30.0                                             | -25.99         |
|      | 5825               | 165            | а           | 6                | 3.87                               | 30.0                                             | -26.13         |
|      | 5745               | 149            | n (20MHz)   | 6.5/7.2 (MCS0)   | 3.96                               | 30.0                                             | -26.04         |
|      | 5785               | 157            | n (20MHz)   | 6.5/7.2 (MCS0)   | 3.67                               | 30.0                                             | -26.33         |
|      | 5825               | 165            | n (20MHz)   | 6.5/7.2 (MCS0)   | 4.37                               | 30.0                                             | -25.63         |
| e    | 5745               | 149            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 2.37                               | 30.0                                             | -27.63         |
| Band | 5785               | 157            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 1.88                               | 30.0                                             | -28.12         |
| ä    | 5825               | 165            | ax (20MHz)  | 6.5/7.2 (MCS0)   | 1.79                               | 30.0                                             | -28.21         |
|      | 5755               | 151            | n (40MHz)   | 13.5/15 (MCS0)   | 0.21                               | 30.0                                             | -29.79         |
|      | 5795               | 159            | n (40MHz)   | 13.5/15 (MCS0)   | 0.95                               | 30.0                                             | -29.05         |
|      | 5755               | 151            | ax (40MHz)  | 13.5/15 (MCS0)   | -2.34                              | 30.0                                             | -32.34         |
|      | 5795               | 159            | ax (40MHz)  | 13.5/15 (MCS0)   | -2.72                              | 30.0                                             | -32.72         |
|      | 5775               | 155            | ac (80MHz)  | 29.3/32.5 (MCS0) | -0.88                              | 30.0                                             | -30.88         |
|      | 5775               | 155            | ax (80MHz)  | 29.3/32.5 (MCS0) | -3.48                              | 30.0                                             | -33.48         |


Table 7-26. Band 3 Conducted Power Spectral Density Measurements SISO ANT2




Plot 7-250. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 3) – Ch. 149)

| FCC ID: A3LSMG986U           |                     | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Quality Manager |
|------------------------------|---------------------|---------------------------------------|---------|---------------------------------|
| Test Report S/N:             | Test Dates:         | EUT Type:                             |         | Dage 156 of 244                 |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20 | Portable Handset                      |         | Page 156 of 241                 |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019    |                                       |         |                                 |





Plot 7-251. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 157)



Plot 7-252. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 165)

| FCC ID: A3LSMG986U           | INGINEERINE LANDRATORY, INC. | MEASUREMENT REPORT<br>(CERTIFICATION) |  | Approved by:<br>Quality Manager |  |
|------------------------------|------------------------------|---------------------------------------|--|---------------------------------|--|
| Test Report S/N:             | Test Dates:                  | EUT Type:                             |  | Dage 157 of 244                 |  |
| 1M1910220166-09.A3L          | 10/11/19 - 01/15/20          | Portable Handset                      |  | Page 157 of 241                 |  |
| © 2020 PCTEST Engineering La | V 9.0 02/01/2019             |                                       |  |                                 |  |