

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 10/23/19 - 12/18/19 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.:

1M1910220165-01-R1.A3L

FCC ID: A3LSMG981U

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: SM-G981U

Additional Model(s): SM-G981U1, SM-G981W, SM-G981XU

Equipment	Band & Mode	T. F.	SAR			
Class	Band & Mode	Tx Frequency	1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)
PCE	CDMA/EVDO BC10 (§90S)	817.90 - 823.10 MHz	0.27	0.41	0.43	N/A
PCE	CDMA/EVDO BC0 (§22H)	824.70 - 848.31 MHz	0.31	0.33	0.51	N/A
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.22	0.25	0.43	N/A
PCE	UMTS 850	826.40 - 846.60 MHz	0.29	0.36	0.47	N/A
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.21	0.94	0.95	2.69
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.28	1.03	1.13	3.09
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	< 0.1	0.31	0.98	3.11
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.29	0.98	1.23	2.49
PCE	LTE Band 71	665.5 - 695.5 MHz	0.17	0.28	0.38	N/A
PCE	LTE Band 12	699.7 - 715.3 MHz	0.23	0.37	0.50	N/A
PCE	LTE Band 13	779.5 - 784.5 MHz	0.30	0.32	0.52	N/A
PCE	LTE Band 14	790.5 - 795.5 MHz	0.31	0.42	0.59	N/A
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.25	0.30	0.48	N/A
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.26	0.29	0.52	N/A
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.22	0.87	0.83	2.32
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.29	0.89	1.25	3.09
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.31	0.86	1.23	3.13
PCE	LTE Band 30	2307.5 - 2312.5 MHz	0.12	0.84	1.24	2.63
PCE	LTE Band 7	2502.5 - 2567.5 MHz	0.13	0.67	0.88	2.23
CBE	LTE Band 48	3552.5 - 3697.5 MHz	0.81	0.40	0.87	N/A
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.16	0.55	1.18	2.67
PCE	LTE Band 38	2572.5 - 2617.5 MHz	N/A	N/A	N/A	N/A
PCE	NR Band n71	665.5 - 695.5 MHz	0.19	0.29	0.42	N/A
PCE	NR Band n5	826.5 - 846.5 MHz	0.25	0.28	0.48	N/A
PCE	NR Band n66	1712.5 - 1777.5 MHz	0.24	0.73	0.94	2.34
PCE	NR Band n2	1852.5 - 1907.5 MHz	0.21	0.77	0.90	2.47
PCE	NR Band n41	2506.02 - 2679.99 MHz	1.07	0.12	0.44	N/A
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.76	0.14	0.54	N/A
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	N/A	N/A
NII	U-NII-2A	5260 - 5320 MHz	< 0.1	0.17	N/A	1.15
NII	U-NII-2C	5500 - 5720 MHz	< 0.1	0.23	N/A	1.21
NII	U-NII-3	5745 - 5825 MHz	0.10	0.24	0.44	N/A
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.40	< 0.1	< 0.1	N/A
Simultaneous	SAR per KDB 690783 D01v01r03		1.59	1.58	1.59	3.99

Note: This revised test report (S/N: 1M1910220165-01-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dago 1 of 209
	1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 1 of 298
201	O DOTEST Engineering Laboratory Inc.			DEV/ 21 / M

TABLE OF CONTENTS

	FCC ID: A3LSMC	981U	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Approved by:	
APF	PENDIX I:	PROBE A	ND DIPOLE CALIBI	RATION CERTIFICATES		T	
APF	PENDIX H:	802.11ax	RU SAR EXCLUSIO	ON			
	PENDIX G:		REDUCTION VERIF				
APF	PENDIX F:			IDUCTED POWERS			
APF	PENDIX E:	DUT ANTE	ENNA DIAGRAM &	SAR TEST SETUP PHOTOGI	RAPHS		
APF	PENDIX D:	SAR SYS	ΓΕΜ VALIDATION				
	PENDIX C:		UE SPECIFICATIO				
	PENDIX B:		LE VERIFICATION	I PLOTS			
	PENDIX A:	SAR TES					
18	REFERI	ENCES					297
17	CONCL	USION					296
16	MEASU	REMENT UI	NCERTAINTIES				295
15	EQUIPN	MENT LIST					294
14	ADDITIO	ONAL TEST	NG PER FCC GUI	DANCE			281
13	SAR ME	ASUREME	NT VARIABILITY				279
12	FCC MU	JLTI-TX AND	ANTENNA SAR C	ONSIDERATIONS			246
11	SAR DA	TA SUMMA	RY				204
10	SYSTE	M VERIFICA	TION				196
9							
8							
7							
6							
5				S			
4							
3							
2							
1	DEVICE	UNDER TE	ST				3

1M1910220165-01-R1.A3L © 2020 PCTEST Engineering Laboratory, Inc. Test Dates:

10/23/19 - 12/18/19

Document S/N:

Page 2 of 298

Quality Manager

DUT Type:

Portable Handset

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
CDMA/EVDO BC0 (§22H)	Voice/Data	824.70 - 848.31 MHz
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 14	Voice/Data	790.5 - 795.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 48	Voice/Data	3552.5 - 3697.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
LTE Band 38	Voice/Data	2572.5 - 2617.5 MHz
NR Band n71	Data	665.5 - 695.5 MHz
NR Band n5	Data	826.5 - 846.5 MHz
NR Band n66	Data	1712.5 - 1777.5 MHz
NR Band n2	Data	1852.5 - 1907.5 MHz
NR Band n41	Data	2506.02 - 2679.99 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
ANT+	Data	2402 - 2480 MHz
MST	Data	555 Hz - 8.33 kHz

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 2 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 3 of 298

1.2 Time-Averaging Algorithm for RF Exposure Compliance

The equipment under test (EUT) contains:

- a. Qualcomm® SM8250 modem supporting 2G/3G/4G WWAN technologies
- b. Qualcomm® SDX55M modem supporting 5G NR

Both of Qualcomm® SM8250 and SDX55M modems are enabled with Qualcomm® Smart Transmit feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. Refer to Compliance Summary document for detailed description of Qualcomm® Smart Transmit feature (report SN could be found in Section 1.11 – Bibliography).

Note that WLAN operations are not enabled with Smart Transmit.

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of SAR design target, below the predefined time-averaged power limit (i.e., Plimit for sub-6 radio), for each characterized technology and band (see RF Exposure Part 0 Test Report, report SN could be found in Section 1.11 - Bibliography).

Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to P_{limit} . Below table shows P_{limit} EFS settings and maximum tune up output power P_{max} configured for this EUT for various transmit conditions (Device State Index DSI). Note that the device uncertainty for sub-6GHz WWAN is 1.0dB for this EUT.

Exposure Scenario	:	Body-Worn	Phablet	Phablet	Head	Hotspot	Earjack	
Averaging Volume:		1g	10g	10g	1g	1g	10g	Maximum Tune-up
Spacing:		15 mm	6, 8, 11 mm	0 mm	0 mm	10 mm	0 mm	Output Power*
DSI:		0	0	1	2	3	4	
Technology/Band	Antenna		Plimit corres	ponding to 1n	nW/g (SAR_de	esign_target)		
GSM/GPRS/EDGE 850 MHz	А	30.5	30.5	29.1	31.1	29.9	29.1	25.5
GSM/GPRS/EDGE 1900 MHz	А	26.6	26.6	20.1	31.9	19.3	20.1	22.5
UMTS B5	А	29.9	29.9	26.7	30.9	28.8	26.7	24.5
UMTS B4	А	24.7	24.7	19.0	31.3	18.5	19.0	23.5
UMTS B2	Α	24.6	24.6	19.0	29.9	18.5	19.0	23.5
CDMA/EVDO BC10	А	29.7	29.7	27.0	31.6	29.4	27.0	24.8
CDMA/EVDO BC0	А	30.7	30.7	27.8	30.9	28.7	27.8	24.8
CDMA/EVDO BC1	А	24.4	24.4	20.0	30.1	18.5	20.0	23.5
LTE FDD B71	А	31.0	31.0	28.0	33.0	29.6	28.0	24.8
LTE FDD B12	А	29.9	29.9	27.6	32.1	28.6	27.6	24.8
LTE FDD B13	А	30.4	30.4	26.5	30.9	28.5	26.5	24.8
LTE FDD B14	А	29.4	29.4	26.7	30.9	28.1	26.7	24.8
LTE FDD B26	А	30.4	30.4	26.5	31.4	28.5	26.5	24.8
LTE FDD B5	А	31.0	31.0	25.9	31.7	28.6	25.9	24.8
LTE FDD B66/4	А	24.9	24.9	19.0	31.2	18.5	19.0	23.5
LTE FDD B25	А	24.5	24.5	19.0	29.3	18.0	19.0	23.0
LTE FDD B2	А	24.7	24.7	19.0	29.1	18.0	19.0	23.0
LTE FDD B30	А	25.3	25.3	21.5	33.9	18.5	21.5	23.5
LTE FDD B7	А	25.8	25.8	19.0	32.7	18.5	19.0	23.0
LTE TDD B48	G	21.8	21.8	21.3	15.5	22.2	21.3	20.5
LTE TDD B38	А	27.3	27.3	20.0	32.2	19.0	20.0	22.0
LTE TDD B41 (PC3)	А	27.3	27.3	20.0	32.2	19.0	20.0	22.0
LTE TDD B41 (PC2)	А	27.3	27.3	20.0	32.2	19.0	20.0	23.4
NR FDD n71	А	31.2	31.2	29.0	33.1	29.6	29.0	24.8
NR FDD n5	А	30.8	30.8	27.0	31.8	29.0	27.0	24.8
NR FDD n66	А	26.0	26.0	19.0	30.7	18.5	19.0	23.5
NR FDD n2	А	25.3	25.3	19.0	30.8	18.0	19.0	23.0
NR TDD n41	F	22.1	22.1	22.1	18.7	22.6	22.1	18.0

FCC ID: A3LSMG981U	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 4 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 4 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

*Note all P_{limit} EFS and maximum tune up output power P_{max} levels entered in above Table correspond to average power levels after accounting for duty cycle in the case of TDD modulation schemes (for e.g., GSM & LTE TDD).

*Maximum tune up output power P_{max} is used to configure EUT during RF tune up procedure. The maximum allowed output power is equal to maximum Tune up output power + 1dB device design uncertainty.

The maximum time-averaged output power (dBm) for any 2G/3G/4G WWAN technology, band, and DSI = minimum of " P_{limit} EFS" and "Maximum tune up output power P_{max} " + 1dB device uncertainty. SAR values in this report were scaled to this maximum time-averaged output power to determine compliance per KDB Publication 447498 D01v06.

The purpose of this report (Part 1 test) is to demonstrate that the EUT meets FCC SAR limits when transmitting in static transmission scenario at maximum allowable time-averaged power levels.

Measurement Condition: All conducted power and SAR measurements in this report (Part 1 test) were performed by setting Reserve_power_margin (Smart Transmit EFS entry) to 0dB.

1.3 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN operations when 5G NR is active and also during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 5 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 5 of 298

1.4 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.4.1 2G/3G/4G/5G Output Power

GSM/GPRS/EDGE 850										
Device State Index	Voice (in dBm)			Data - Burst Average GMSK (in dBm)			Dat	a - Burst Avera	nge 8-PSK (in d	lBm)
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
All DSI	Max allowed power	33.7	33.7	32.7	30.6	28.7	28.2	26.2	24.1	23.2
All D3i	Nominal	32.7	32.7	31.7	29.6	27.7	27.2	25.2	23.1	22.2
			GSM/GPF	RS/EDGE 19	00				•	•
Device State Index	Voice Data - Burst Average GMSK (in dBm) Data - Burst Average 8-PSK (in dBm)			Data - Burst Average GMSK (in dBm)			age 8-PSK (in d	Bm)		
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
DSI = 0 (Body-Worn or Phablet	Max allowed power	30.7	30.7	29.7	27.6	25.7	27.2	25.2	23.1	22.2
Max); DSI = 2 (Head)	Nominal	29.7	29.7	28.7	26.6	24.7	26.2	24.2	22.1	21.2
DCI = 3 (Untonet)	Max allowed power	N/A	29.5	26.5	24.7	23.5	27.2	25.2	23.1	22.2
DSI = 3 (Hotspot)	Nominal	N/A	28.5	25.5	23.7	22.5	26.2	24.2	22.1	21.2
DSI = 1 (Phablet Reduced); DSI = 4 (Earjack)	Max allowed power	30.3	30.3	27.3	25.5	24.3	27.2	25.2	23.1	22.2
	Nominal	29.3	29.3	26.3	24.5	23.3	26.2	24.2	22.1	21.2

	UMTS Band 5 (850) MHz)			
		Modulate	d Average Out (in dBm)	put Power	
Device State Index		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8
All DSI	Max allowed power	25.5	24.5	24.5	24.5
All D3i	Nominal	24.5	23.5	23.5	23.5
	UMTS Band 4 (175	0 MHz)			
		Modulate	d Average Out (in dBm)	put Power	
Device State Index		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8
DSI = 0 (Body-Worn or Phablet	Max allowed power	24.5	23.5	23.5	23.5
Max); DSI = 2 (Head)	Nominal	23.5	22.5	22.5	22.5
DSI = 3 (Hotspot)	Max allowed power	19.5	18.5	18.5	18.5
D31 = 3 (Hotspot)	Nominal	18.5	17.5	17.5	17.5
DSI = 1 (Phablet Reduced); DSI =	Max allowed power	20.0	19.0	19.0	19.0
4 (Earjack)	Nominal	19.0	18.0	18.0	18.0
	UMTS Band 2 (190	0 MHz)			
		Modulated	d Average Out (in dBm)	put Power	
Device State Index		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8
DSI = 0 (Body-Worn or Phablet	Max allowed power	24.5	23.5	23.5	23.5
Max); DSI = 2 (Head)	Nominal	23.5	22.5	22.5	22.5
DSI = 3 (Hotspot)	Max allowed power	19.5	18.5	18.5	18.5
231 – 3 (Hotspot)	Nominal	18.5	17.5	17.5	17.5
DSI = 1 (Phablet Reduced); DSI =	Max allowed power	20.0	19.0	19.0	19.0
4 (Earjack)	Nominal	19.0	18.0	18.0	18.0

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manage
Document S/N:	Test Dates:	DUT Type:	Do so C of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 6 of 298

CDMA BC10 (850 MHz)						
Device State Index			d Average Out (in dBm)	put Power		
		1x-RTT	EVDO Rev 0	EVDO Rev A		
All DSI	Max allowed power	25.8	25.8	25.8		
All DSI	Nominal	24.8	24.8	24.8		
	CDMA BC0 (850 MH	z)				
		Modulate	d Average Out	put Power		
Device State Index			(in dBm)			
		1x-RTT	EVDO Rev 0	EVDO Rev A		
All DSI	Max allowed power	25.8	25.8	25.8		
All DSI	Nominal	24.8	24.8	24.8		
	CDMA BC1 (1900 MF	lz)				
		Modulate	d Average Out	put Power		
Device State Index			(in dBm)			
		1x-RTT	EVDO Rev 0	EVDO Rev A		
DSI = 0 (Body-Worn or Phablet	Max allowed power	24.5	24.5	24.5		
Max); DSI = 2 (Head)	Nominal	23.5	23.5	23.5		
DSI = 2 (Hotopot)	Max allowed power	19.5	19.5	19.5		
DSI = 3 (Hotspot)	Nominal	18.5	18.5	18.5		
DSI = 1 (Phablet Reduced); DSI =	Max allowed power	21.0	21.0	21.0		
4 (Earjack)	Nominal	20.0	20.0	20.0		

		Modulated Average Output Power (in dBm)								
Mode / Band		DSI = 0 (Body-Worn or Phablet Max)	DSI = 2 (Head)	DSI = 3 (Hotspot)	DSI = 1 (Phablet Reduced); DSI = 4 (Earjack)					
LTE FDD Band 71	Max allowed power	25.8	25.8	25.8	25.8					
ETET DD Danid 71	Nominal	24.8	24.8	24.8	24.8					
LTE FDD Band 12	Max allowed power	25.8	25.8	25.8	25.8					
ETET DD Danid 12	Nominal	24.8	24.8	24.8	24.8					
LTE FDD Band 13	Max allowed power	25.8	25.8	25.8	25.8					
LIL FDD Ballu 13	Nominal	24.8	24.8	24.8	24.8					
LTE FDD Band 14	Max allowed power	25.8	25.8	25.8	25.8					
LTL FDD Ballu 14	Nominal	24.8	24.8	24.8	24.8					
LTE FDD Band 5	Max allowed power	25.8	25.8	25.8	25.8					
ETE FDD Ballu 3	Nominal	24.8	24.8	24.8	24.8					
LTE FDD Band 26	Max allowed power	25.8	25.8	25.8	25.8					
LTL FDD Ballu 20	Nominal	24.8	24.8	24.8	24.8					
LTE FDD Band 4	Max allowed power	24.5	24.5	19.5	20.0					
LIE PDD Ballu 4	Nominal	23.5	23.5	18.5	19.0					
LTE FDD Band 66	Max allowed power	24.5	24.5	19.5	20.0					
LIE FDD Ballu 00	Nominal	23.5	23.5	18.5	19.0					
LTE FDD Band 2	Max allowed power	24.0	24.0	19.0	20.0					
LTE FDD Ballu 2	Nominal	23.0	23.0	18.0	19.0					
LTE FDD Band 25	Max allowed power	24.0	24.0	19.0	20.0					
LIE FDD Ballu 25	Nominal	23.0	23.0	18.0	19.0					
LTE FDD Band 30	Max allowed power	24.5	24.5	19.5	22.5					
LIE FDD Ballu 30	Nominal	23.5	23.5	18.5	21.5					
LTE FDD Band 7	Max allowed power	24.0	24.0	19.5	20.0					
LIE FDD Ballu 7	Nominal	23.0	23.0	18.5	19.0					
LTE TDD Band 38	Max allowed power	25.0	25.0	22.0	23.0					
LIE IDD Ballu 36	Nominal	24.0	24.0	21.0	22.0					
LTE TDD Band 48	Max allowed power	23.5	18.5	23.5	23.5					
LIE IDD Dallu 48	Nominal	22.5	17.5	22.5	22.5					
LTE TDD Band 41 (PC3)	Max allowed power	25.0	25.0	22.0	23.0					
LIE IDD Balla 41 (PC3)	Nominal	24.0	24.0	21.0	22.0					
LTE TDD Band 41 (PC2)	Max allowed power	28.0	28.0	23.6	24.6					
LIL IDD Ballu 41 (PC2)	Nominal	27.0	27.0	22.6	23.6					

			Modulated Average O	utput Power (in dBm)	
Mode / Band		DSI = 0 (Body-Worn or Phablet Max)	DSI = 2 (Head)	DSI = 3 (Hotspot)	DSI = 1 (Phablet Reduced); DSI = 4 (Earjack)
NR FDD Band n71	Max allowed power	25.8	25.8	25.8	25.8
NK FDD Band N/1	Nominal	24.8	24.8	24.8	24.8
NR FDD Band n5	Max allowed power	25.8	25.8	25.8	25.8
INK FUU BAHU IIS	Nominal	24.8	24.8	24.8	24.8
NR FDD Band n66	Max allowed power	24.5	24.5	19.5	20.0
INK FUU Ballu 1100	Nominal	23.5	23.5	18.5	19.0
NR FDD Band n2	Max allowed power	24.0	24.0	19.0	20.0
NR FDD Band n2	Nominal	23.0	23.0	18.0	19.0
NR TDD Band n41	Max allowed power	25.0	25.0	25.0	25.0
INK 100 Band N41	Nominal	24.0	24.0	24.0	24.0

FCC ID: A3LSMG981U	PCTEST INDICATE LADACIDAT. INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 7 of 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 7 of 298

Maximum Bluetooth and SISO/MIMO WLAN Output 1.4.2 **Power**

Note: Targets for 802.11ax RU operations can be found in Appendix H

Mode / Band	Modulated Average - Single Tx Chain (dBm)					
	1	2-10	11			
IEEE 802.11b (2.4 GHz)	Maximum	21.0				
TEEE 802.110 (2.4 GHZ)	Nominal	20.0				
IEEE 902 11 a /2 4 CHa)	Maximum	18.5				
IEEE 802.11g (2.4 GHz)	Nominal	17.5				
IEEE 802 115 /2 4 CH5)	Maximum		18.5			
IEEE 802.11n (2.4 GHz)	Nominal		17.5			
IEEE 802.11ax SU (2.4 GHz)	Maximum	15.5	16.0	13.0		
IEEE 602.11aX 30 (2.4 GHZ)	Nominal	14.5	15.0	12.0		

Mode / Band		Modulated Average - Single Tx Chain (dBm)												
,		20 MHz Bandwidth					40 MHz Bandwidth				80 MHz Bandwidth			
	Channel	36	36 40 - 60 64 100 - 165		38	46 - 54	62	102	110 - 159	42	58	106	122 - 155	
IEEE 802.11a (5 GHz)	Maximum		16.5											
IEEE 802.11a (5 GHZ)	Nominal		15.5											
IEEE 803 115 (E CUS)	Maximum		16	5.5		14.5	16.0	14.5	15.5	16.0				
IEEE 802.11n (5 GHz)	Nominal		15	5.5		13.5	15.0	13.5	14.5	15.0				
IEEE 802.11ac (5 GHz)	Maximum		16	5.5		14.5	16.0	14.5	15.5	16.0	13.5	13.5	14.0	16.0
IEEE OUZ.IIdC (5 GHZ)	Nominal		15.5		13.5	15.0	13.5	14.5	15.0	12.5	12.5	13.0	15.0	
IEEE 802.11ax SU (5 GHz)	Maximum	14.5	16.5	15.0	16.5	12.0	16.0	10.5	14.0	16.0	13.0	11.0	12.5	15.0
TEEE 802.11ax 30 (5 GH2)	Nominal	13.5	15.5	14.0	15.5	11.0	15.0	9.5	13.0	15.0	12.0	10.0	11.5	14.0

Mode / Band	Modulated Average - MIMO (dBm)						
Wode / Band	20 MHz Bandwidth						
	1	2-10	11				
IFFF 902 44 ~ /2 4 CU-)	Maximum	21.5					
IEEE 802.11g (2.4 GHz)	Nominal		20.5				
IEEE 802.11n (2.4 GHz)	Maximum		21.5				
1666 802.1111 (2.4 GHZ)	Nominal		20.5				
IEEE 802.11ax SU (2.4 GHz)	Maximum	15.5	16.0	13.0			
1EEE 802.11ax 30 (2.4 GHz)	Nominal	14.5	15.0	12.0			

Mode / Band			Modulated Average - MIMO (dBm)														
			20 MHz Bandwidth						40 MHz B	andwidth				80 MHz Bandwidth			
	Channel	36	40 - 60	64	100-144	149 - 165	38	46 - 54	62	102	110-142	151 - 159	42	58	106	122 - 138	155
IEEE 802.11a (5 GHz)	Maximum	19.5	19.5	19.5	18.5	17.5											
1000 002.114 (5 01/2)	Nominal	18.5	18.5	18.5	17.5	16.5											
IEEE 802.11n (5 GHz)	Maximum	19.5	19.5	19.5	18.5	17.5	17.5	19.0	17.5	18.0	18.0	17.0					
IEEE 802.11II (5 GHZ)	Nominal	18.5	18.5	18.5	17.5	16.5	16.5	18.0	16.5	17.0	17.0	16.0					
IEEE 802.11ac (5 GHz)	Maximum	19.5	19.5	19.5	18.5	17.5	17.5	19.0	17.5	18.0	18.0	17.0	16.5	16.5	17.0	18.0	17.0
TEEE 802.11ac (3 GH2)	Nominal	18.5	18.5	18.5	17.5	16.5	16.5	18.0	16.5	17.0	17.0	16.0	15.5	15.5	16.0	17.0	16.0
IEEE 802.11ax SU (5 GHz)	Maximum	14.5	17.0	15.0	17.0	17.0	12.0	16.0	10.5	14.0	16.0	16.0	13.0	11.0	12.5	15.0	15.0
IEEE 802.11ax 30 (5 GH2)	Nominal	13.5	16.0	14.0	16.0	16.0	11.0	15.0	9.5	13.0	15.0	15.0	12.0	10.0	11.5	14.0	14.0

Mode / Band	Modulated Average (dBm)	
Bluetooth	Maximum	13.5
Biuetootii	Nominal	12.5
Bluetooth EDR	Maximum	12.5
Bidetootii EDK	Nominal	11.5
Divistanta LE (2.84bps)	Maximum	9.0
Bluetooth LE (2 Mbps)	Nominal	8.0
Bluetooth LE (1 Mbps,	Maximum	7.5
125/500 Kbps)	Nominal	6.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 0 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 8 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

1.4.3 2.4 GHz Reduced WLAN Output Powers

Note: Targets for 802.11ax RU operations can be found in Appendix H

The below table is applicable in the following conditions:

- Head Conditions
- Simultaneous conditions with 2.4 GHz WLAN and 5 GHz WLAN
- Simultaneous conditions with 5G NR and 2.4 GHz WLAN and/or 5 GHz WLAN

Mode / Band	Modulated Average - Single Tx Chain (dBm)						
	1	2-10	11				
IEEE 802.11b (2.4 GHz)	Maximum		17.0				
TEEE 802.110 (2.4 GHZ)	Nominal		16.0				
IFFF 902 11 - /2 4 CU-)	Maximum		17.0				
IEEE 802.11g (2.4 GHz)	Nominal		16.0				
IFFE 902 11 - /2 4 CU-)	Maximum		17.0				
IEEE 802.11n (2.4 GHz)	Nominal	16.0					
JEEE 003 44 CU /2 4 CU-)	Maximum	15.5	16.0	13.0			
IEEE 802.11ax SU (2.4 GHz)	Nominal 14.5		15.0	12.0			
Mode / Band		Modulated Average - MIMO (dBm)					
		20 MHz Bandwidth					
	Channel	1	2-10	11			
IEEE 802.11g (2.4 GHz)	Maximum		20.0				
1222 302.215 (2.4 3112)	Nominal		19.0				
IFFE 002 11 = /2 4 CU-)	Maximum		20.0				
IEEE 802.11n (2.4 GHz)	Nominal	19.0					
JEEE 003 44 CU /2 4 CU-)	Maximum	15.5	16.0	13.0			
IEEE 802.11ax SU (2.4 GHz)	Nominal	14.5	15.0	12.0			

The below table is applicable in the following conditions:

- Head Conditions during simultaneous conditions with 2.4 GHz WLAN and 5 GHz WLAN
- Head Conditions during simultaneous conditions with 5G NR and 2.4 GHz WLAN and/or 5 GHz WLAN

Mode / Band		Modulated Average (dBm)					
	Channel	1	2-10	11			
IFFE 902 115 /2 4 CU-V	Maximum	14.0					
IEEE 802.11b (2.4 GHz)	Nominal		13.0				
IFFE 903 11 - /3 4 CU-\	Maximum		14.0				
IEEE 802.11g (2.4 GHz)	Nominal	13.0					
IFFE 903 11 = /3 4 CH-\	Maximum	14.0					
IEEE 802.11n (2.4 GHz)	Nominal	13.0					
IFFF 902 44 \$11 /2 4 \$11-\	Maximum	14.0	14.0	13.0			
IEEE 802.11ax SU (2.4 GHz)	Nominal	13.0	12.0				
		Modulated Average - MIMO					
Mode / Band		(dBm)					
		20 MHz Bandwidth					
	Channel	1	2-10	11			
IEEE 802.11g (2.4 GHz)	Maximum		17.0				
1222 302.11g (2.4 3112)	Nominal		16.0				
IFFE 902 11 = /2 4 CH-\	Maximum		17.0				
IEEE 802.11n (2.4 GHz)	Nominal		16.0				
JEEE 002 44 CU /2 4 CU-)	Maximum	15.5	16.0	13.0			
IEEE 802.11ax SU (2.4 GHz)	Nominal	14.5	15.0	12.0			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 9 01 296

© 2020 PCTEST Engineering Laboratory, Inc.

1.4.4 5 GHz Reduced WLAN Output Powers

Note: Targets for 802.11ax RU operations can be found in Appendix H

The below table is applicable in the following conditions:

- Head Conditions
- Simultaneous conditions with 2.4 GHz WLAN and 5 GHz WLAN
- Simultaneous conditions with 5G NR and 2.4 GHz WLAN and/or 5 GHz WLAN
- Head Conditions during simultaneous conditions with 2.4 GHz WLAN and 5 GHz WLAN
- Head Conditions during simultaneous conditions with 5G NR and 2.4 GHz WLAN and/or 5 GHz WLAN

Mode / Band	Modulated Average - Single Tx Chain Mode / Band (dBm)															
20 MHz Bandwidth						40 MHz E	Bandwidth			80 MHz Bandwidth						
Channel 36 - 165			38	46 - 54	62		102 - 159		42	58	106	122 - 155				
1555 000 44 (5 011)	Maximum		14.0													
IEEE 802.11a (5 GHz)	Nominal			13.0												
IEEE 802.11n (5 GHz)	Maximum		14.0		14.0	14.0	14.0		14.0							
IEEE 802.11n (5 GHZ)	Nominal			13.0			13.0	13.0	13.0		13.0					
IEEE 802.11ac (5 GHz)	Maximum		14.0		14.0	14.0	14.0		14.0		13.5	13.5	14.0	14.0		
1EEE 802.11aC (3 GH2)	Nominal			13.0			13.0	13.0	13.0		13.0		12.5	12.5	13.0	13.0
IEEE 802.11ax SU (5 GHz) Maximum				14.0			12.0	14.0	10.5		14.0		13.0	11.0	12.5	14.0
1EEE 002.118x 30 (3 G112)	Nominal		13.0 11.0 13.0			9.5		13.0		12.0	10.0	11.5	13.0			
		Modulated Average - MIMO														
Mode / Band			(dBm)													
		20 MHz Bandwidth			40 MHz Bandwidth					80	MHz Bandw	idth				
	Channel	36	40 - 60	64	100-144	149 - 165	38	46 - 54	62	102	110-142	151 - 159	42	58	106	122 - 155
IEEE 802.11a (5 GHz)	Maximum			17.0												
ILLE 802.118 (5 GHZ)	Nominal			16.0												
1555 000 44 (5 611)	Maximum			17.0					1	7.0						
IEEE 802.11n (5 GHz)	Nominal			16.0					10	6.0						
IFFE 002 44 (F CU-)	Maximum			17.0					1	7.0			16.5	16.5	17.0	17.0
IEEE 802.11ac (5 GHz)	Nominal			16.0					10	6.0			15.5	15.5	16.0	16.0
IEEE 802.11ax SU (5 GHz)	Maximum	14.5	17.0	15.0	17.0	17.0	12.0	16.0	10.5	14.0	16.0	16.0	13.0	11.0	12.5	15.0
IEEE OUZ.11dX SU (5 GHZ)	Nominal	13.5	16.0	14.0	16.0	16.0	11.0	15.0	9.5	13.0	15.0	15.0	12.0	10.0	11.5	14.0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 40 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 10 of 298	

1.5 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is ≤160 mm and the diagonal display is ≤150 mm. A diagram showing the location of the device antennas can be found in Appendix E. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Table 1-1
Device Edges/Sides for SAR Testing

Dev	ice Eage	S/Sides	IOI SAR	resting		
Mode	Back	Front	Тор	Bottom	Right	Left
EVDO BC10 (§90S)	Yes	Yes	No	Yes	Yes	Yes
EVDO BC0 (§22H)	Yes	Yes	No	Yes	Yes	Yes
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1750	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 71	Yes	Yes	No	Yes	Yes	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 14	Yes	Yes	No	Yes	Yes	Yes
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 66 (AWS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 25 (PCS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 30	Yes	Yes	No	Yes	Yes	Yes
LTE Band 7	Yes	Yes	No	Yes	Yes	Yes
LTE Band 48	Yes	Yes	Yes	No	No	Yes
LTE Band 41	Yes	Yes	No	Yes	Yes	Yes
NR Band n71	Yes	Yes	No	Yes	Yes	Yes
NR Band n5	Yes	Yes	No	Yes	Yes	Yes
NR Band n66	Yes	Yes	No	Yes	Yes	Yes
NR Band n2	Yes	Yes	No	Yes	Yes	Yes
NR Band n41	Yes	Yes	Yes	No	No	Yes
2.4 GHz WLAN Ant 1	Yes	Yes	Yes	No	No	Yes
2.4 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes
2.4 GHz WLAN MIMO	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN Ant 1	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN MIMO	Yes	Yes	Yes	No	No	Yes
Bluetooth	Yes	Yes	Yes	No	No	Yes
III odgos woro not rogu	irod to be	ovaluat	od for wir	oloce rou	tor SAD	

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-1, U-NII-2A, U-NII-2C operations are disabled.

1.6 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix E.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 11 of 298	

© 2020 PCTEST Engineering Laboratory, Inc.

1.7 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

> Table 1-2 **Simultaneous Transmission Scenarios**

No.	Capable Transmit Configuration	Head	Body-Wom Accessory	Wireless Router	Phablet	Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	1x CDMA voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
3	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
4	1x CDMA voice + 2.4 GHz Bluetooth + 5GHz WI-FI	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
5	1x CDMA voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	Diddiodii Folloring to constacted
6	1x CDMA voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
7	1x CDMA voice + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
8	1x CDMA voice + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
9	1x CDMA voice + 2.4 GHz Bluetooth + 5GHz WI-FI MIMO	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
10	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	Didetooti Fetrering is considered
11	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
12	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
13	GSM voice + 2.4 GHz Bluetooth + 5GHz WI-FI	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
						- Bidetootii Tetrieriig is considered
14	GSM voice + 2.4 GHz WI-FI MIMO GSM voice + 5 GHz WI-FI MIMO	Yes Yes	Yes Yes	N/A N/A	Yes Yes	
15						
16	GSM voice + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
17	GSM voice + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
18	GSM voice + 2.4 GHz Bluetooth + 5GHz WI-FI MIMO	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
19	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
20	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
21	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
22	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
23	UMTS + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
24	UMTS + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
25	UMTS + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
26	UMTS + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
27	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
28	LTE + 5G NR	Yes	Yes	N/A	Yes	
29	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
30	LTE + 2.4 GHz WI-FI + 5G NR	Yes	Yes	Yes	Yes	
31	LTE + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
32	LTE + 5 GHz WI-FI + 5G NR	Yes	Yes	Yes	Yes	
33	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
34	LTE + 2.4 GHz Bluetooth + 5G NR	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
35	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
36	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI + 5G NR	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
37	LTE + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
38	LTE + 2.4 GHz WI-FI MIMO + 5G NR	Yes	Yes	Yes	Yes	
39	LTE + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
40	LTE + 5 GHz WI-FI MIMO + 5G NR	Yes	Yes	Yes	Yes	
41	LTE + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
42	LTE + 2.4 GHz WI-FI + 5 GHz WI-FI + 5G NR	Yes	Yes	Yes	Yes	
43	LTE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
44	LTE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO + 5G NR	Yes	Yes	Yes	Yes	
45				Yes^	Yes	A Pluotooth Tethoring in considered
	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes^	Yes			^Bluetooth Tethering is considered
46	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO + 5G NR	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
47	CDMWEVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
48	CDMWEVDO data + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
49	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered *Bluetooth Tethering is considered
50	CDMA/EVDO data + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^Bluetooth Tethering is considered
51	CDMVEVDO data + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
52	CDMVEVDO data + 5 GHz W1-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
53	CDMVEVDO data + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
54	CDMA/EVDO data + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
55	CDMA/EVDO data + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^Bluetooth Tethering is considered
56	GPRS/EDGE + 2.4 GHz WI-FI	N/A	N/A	Yes	Yes	y
57	GPRS/EDGE + 5 GHz WI-FI	N/A	N/A	Yes	Yes	
58	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	N/A	Yes^	Yes	^Bluetooth Tethering is considered
59	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI	N/A	N/A	Yes^	Yes	^Bluetooth Tethering is considered
60	GPRS/EDGE + 2.4 GHz WI-FI MIMO	N/A	N/A	Yes	Yes	
61	GPRS/EDGE + 5 GHz WI-FI MIMO	N/A	N/A	Yes	Yes	
62	GPRS/EDGE + 5 GHz WI-FI WIWO GPRS/EDGE + 2.4 GHz WI-FI + 5 GHz WI-FI	N/A	N/A	Yes	Yes	
63	GPRS/EDGE + 2.4 GHZ WI-FI + 5 GHZ WI-FI MIMO GPRS/EDGE + 2.4 GHZ WI-FI MIMO + 5 GHZ WI-FI MIMO	N/A	N/A	Yes	Yes	
64		N/A	N/A			A Plustooth Tothering in considered
64	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	N/A	N/A	Yes^	Yes	^Bluetooth Tethering is considered

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 12 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 12 of 298	

- 5. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII-2A, and U-NII-2C were not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac/ax. 802.11a/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 7. This device supports VOLTE.
- 8. This device supports VOWIFI.
- This device supports Bluetooth Tethering.
- 10. LTE + 5G NR FR1 Scenarios are limited to LTE Anchor Bands, LTE Band 2/7/66/5/12/13/30/48/25/41.

1.8 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A & U-NII-2C WIFI, only 2.4 GHz and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ax with the following features:

- a) Up to 80 MHz Bandwidth only for 5 GHz
- b) Up to 20 MHz Bandwidth only for 2.4 GHz
- c) No aggregate channel configurations
- d) 2 Tx antenna output
- e) Up to 1024 QAM is supported
- f) TDWR and Band gap channels are supported for 5 GHz
- g) MU-MIMO UL Operations are not supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-1, U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for Bluetooth, 2.4 GHz and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

Per April 2019 TCB Workshop Notes, SAR testing was not required for 802.11ax when applying the initial test configuration procedures of KDB 248227, with 802.11ax considered a higher order 802.11 mode.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 13 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 13 01 298

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1x Advanced was not more than 0.25 dB higher than the maximum powers for 1x and the measured SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg per FCC KDB Publication 941225 D01v03r01.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix F.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

This device supports downlink 4x4 MIMO operations for some LTE Bands. Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device supports both Power Class 2 (PC2) and Power Class 3 (PC3) for LTE Band 41. Per May 2017 TCB Workshop Notes. SAR tests were performed with Power Class 3 (given the specific UL/DL limitations for Power Class 2). Additionally, SAR testing for the power class condition was evaluated for the highest configuration in Power Class 3 for each test configuration to confirm the results were scalable linearly (See Section 14.2).

This device supports LTE Carrier Aggregation (CA) for LTE Band 5, LTE Band 66, LTE Band 48, and LTE Band 41 with two component carriers in the uplink. SAR Measurements and conducted powers were evaluated per 2017 Fall TCB Workshop Notes.

This device supports 64QAM and 256QAM on the uplink and 256QAM on the downlink for LTE Operations. Conducted powers for 64QAM and 256QAM uplink configurations were measured per Section 5.1 of FCC KDB Publication 941225D05v02r05. SAR was not required for 64QAM or 256QAM since the highest maximum output power for 64QAM and 256QAM is ≤ ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45W/kg, per Section 5.2.4 of FCC KDB Publication 941225 D05v02r05.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 14 of 298	

NR implementation of n71, n5, n66, n2, and n41 is limited to EN-DC operations only, with LTE Band 2/7/66/5/12/13/30/48/25/41 acting as the anchor band. Per FCC Guidance. SAR tests were performed separately for NR Bands and LTE Anchor Bands. Please see Section 11 for more details.

1.9 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE 4x4 Downlink MIMO, LTE Band 41 Power Class 2/3)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)
- April 2019 TCB Workshop Notes (IEEE 802.11ax, Dynamic Antenna Tuning)

1.10 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

Device Serial Numbers 1.11

Report Type	Report Serial Number
RF Exposure Part 0 Test Report	1M1910220165-17-R1.A3L
RF Exposure Part 2 Test Report	80-W5681-3 Rev. C
RF Exposure Compliance Summary Report	1M1910220165-18.A3L

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 15 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 15 of 298

	Ľ	TE Information			
Form Factor		, man	Portable Handset	MUN	
requency Range of each LTE transmission band			Band 71 (665.5 - 695.5 Band 12 (699.7 - 715.3		
F			Band 13 (779.5 - 784.5		
		LTE E	Band 14 (790.5 - 795.5	MHz)	
-			nd 26 (Cell) (814.7 - 84		
F		LIE Bai	nd 5 (Cell) (824.7 - 848 66 (AWS) (1710.7 - 17	3.3 MHz) 779 3 MHz)	
F			14 (AWS) (1710.7 - 17		
			25 (PCS) (1850.7 - 19		
			d 2 (PCS) (1850.7 - 19		
-			and 30 (2307.5 - 2312.		
-			and 7 (2502.5 - 2567.5 and 48 (3552.5 - 3697.		
		LTE B:	and 41 (2498.5 - 2687.	5 MHz)	
			and 38 (2572.5 - 2617.		
hannel Bandwidths			1: 5 MHz, 10 MHz, 15 M 2: 1.4 MHz, 3 MHz, 5 M		
F			E Band 13: 5 MHz, 10 f		
		LTE	E Band 14: 5 MHz, 10 f	ИHz	
-			: 1.4 MHz, 3 MHz, 5 MI		
F	Ľ	TE Band 66 (AWS): 1.4	Cell): 1.4 MHz, 3 MHz, 5 4 MHz, 3 MHz, 5 MHz,	10 MHz, 15 MHz, 20 MH	-tz
				0 MHz, 15 MHz, 20 MH	
-	<u> </u>	TE Band 25 (PCS): 1.4	MHz, 3 MHz, 5 MHz,	10 MHz, 15 MHz, 20 MH	łz
-	l		MHz, 3 MHz, 5 MHz, 1 E Band 30: 5 MHz, 10 f	0 MHz, 15 MHz, 20 MH	Z
			7: 5 MHz, 10 MHz, 15 N		
		LTE Band 4	8: 5 MHz, 10 MHz, 15 f	MHz, 20 MHz	
-		LTE Band 4	1: 5 MHz, 10 MHz, 15 l 8: 5 MHz, 10 MHz, 15 l	MHz, 20 MHz MHz, 20 MHz	
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High
TE Band 71: 5 MHz	665.5 (680.5 (133297)	695.5 (133447)
TE Band 71: 10 MHz	668 (1		680.5 (133297)	693 (1	33422)
TE Band 71: 15 MHz TE Band 71: 20 MHz	670.5 (1 673 (1		680.5 (133297) 680.5 (133297)	690.5 (688 (1	133397) 33372)
TE Band 12: 1.4 MHz	699.7 (707.5 (23095)	715.3 (
TE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)
TE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)
TE Band 12: 10 MHz TE Band 13: 5 MHz	704 (2 779.5 (707.5 (23095) 782 (23230)	711 (2 784.5 (
TE Band 13: 10 MHz	779.5 (782 (23230)	784.3 (N	
TE Band 14: 5 MHz	790.5 (793 (23330)	795.5 (
TE Band 14: 10 MHz	N	'A	793 (23330)	N	
TE Band 26 (Cell): 1.4 MHz	814.7 (831.5 (26865)	848.3 (27033)	
TE Band 26 (Cell): 3 MHz TE Band 26 (Cell): 5 MHz	815.5 (816.5 (26705)	831.5 (26865) 831.5 (26865)	847.5 (27025) 846.5 (27015)	
TE Band 26 (Cell): 10 MHz	816.5 (26715) 819 (26740)		831.5 (26865)	844 (26990)	
TE Band 26 (Cell): 15 MHz	821.5 (26765)		831.5 (26865)	841.5 (26965)	
TE Band 5 (Cell): 1.4 MHz	824.7 (20407)		836.5 (20525)	848.3 (20643) 847.5 (20635)	
TE Band 5 (Cell): 3 MHz TE Band 5 (Cell): 5 MHz	825.5 (20415)		836.5 (20525) 836.5 (20525)	847.5 (846.5 (
TE Band 5 (Cell): 10 MHz	826.5 (20425) 829 (20450)		836.5 (20525)		20600)
TE Band 66 (AWS): 1.4 MHz	1710.7 (131979)		1745 (132322)	1779.3 (
TE Band 66 (AWS): 3 MHz	1711.5 (1745 (132322)	1778.5 (132657) 1777.5 (132647)	
TE Band 66 (AWS): 5 MHz TE Band 66 (AWS): 10 MHz	1712.5 (1715 (1		1745 (132322) 1745 (132322)	1777.5 (132647) 1775 (132622)	
TE Band 66 (AWS): 15 MHz	1717.5 (1745 (132322)	1772.5 (
TE Band 66 (AWS): 20 MHz	1720 (1		1745 (132322)	1770 (132572)	
TE Band 4 (AWS): 1.4 MHz	1710.7		1732.5 (20175)	1754.3 (20393) 1753.5 (20385)	
TE Band 4 (AWS): 3 MHz TE Band 4 (AWS): 5 MHz	1711.5 1712.5		1732.5 (20175) 1732.5 (20175)	1753.5	
TE Band 4 (AWS): 10 MHz	1715 (1732.5 (20175)		20350)
TE Band 4 (AWS): 15 MHz	1717.5	(20025)	1732.5 (20175)	1747.5 (20325)	
TE Band 4 (AWS): 20 MHz	1720 (1732.5 (20175)	1745 (20300)	
TE Band 25 (PCS): 1.4 MHz TE Band 25 (PCS): 3 MHz	1850.7 1851.5		1882.5 (26365) 1882.5 (26365)	1914.3 (26683)	
TE Band 25 (PCS): 5 MHz	1852.5		1882.5 (26365)	1913.5 (26675) 1912.5 (26665)	
TE Band 25 (PCS): 10 MHz	1855 (26090)	1882.5 (26365)	1912.5 (26665)	
TE Band 25 (PCS): 15 MHz	1857.5		1882.5 (26365)	1907.5	
TE Band 25 (PCS): 20 MHz TE Band 2 (PCS): 1.4 MHz	1860 (: 1850.7		1882.5 (26365) 1880 (18900)		26590) (19193)
TE Band 2 (PCS): 3 MHz	1851.5		1880 (18900)	1908.5	(19185)
TE Band 2 (PCS): 5 MHz	1852.5	(18625)	1880 (18900)	1907.5	(19175)
TE Band 2 (PCS): 10 MHz	1855 (1880 (18900)		19150)
TE Band 2 (PCS): 15 MHz TE Band 2 (PCS): 20 MHz	1857.5 1860 (1880 (18900) 1880 (18900)	1902.5	(19125) 19100)
TE Band 30: 5 MHz	2307.5		2310 (27710)	2312.5	
TE Band 30: 10 MHz	N	'A	2310 (27710)	N	/A
TE Band 7: 5 MHz	2502.5		2535 (21100)	2567.5	
TE Band 7: 10 MHz TE Band 7: 15 MHz	2505 (2507.5		2535 (21100) 2535 (21100)	2565 (2562.5	21400)
TE Band 7: 10 MHz	2510 (2535 (21100)	2560 (21350)
TE Band 48: 5 MHz	3552.5 (55265)	3600.8 (55748)	N/A	3649.2 (56232)	3697.5 (56715
TE Band 48: 10 MHz	3555 (55290)	3601.7 (55757)	N/A	3648.3 (56223)	3695 (56690)
TE Band 48: 15 MHz TE Band 48: 20 MHz	3557.5 (55315) 3560 (55340)	3602.5 (55765) 3603.3 (55773)	N/A N/A	3647.5 (56215) 3646.7 (56207)	3692.5 (56668 3690 (56640)
TE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
TE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
TE Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
TE Band 41: 20 MHz TE Band 38: 5 MHz	2506 (39750) 2572.5	2549.5 (40185) (37775)	2593 (40620) 2595 (38000)	2636.5 (41055) 2617.5	2680 (41490) (38225)
TE Band 38: 10 MHz	2572.5 2575 (2595 (38000) 2595 (38000)		38200)
TE Band 38: 15 MHz	2577.5	(37825)	2595 (38000)	2612.5	(38175)
TE Band 38: 20 MHz	2580 (37850)	2595 (38000)	2610 (38150)
IE Category fodulations Supported in UL			. UE Cat 20, UL UE Ca K, 16QAM, 64QAM, 25		
TE MPR Permanently implemented per 3GPP TS		UP3I	n, rownini, onumini, 20	July 191	
6.101 section 6.2.3-6.2.5? (manufacturer attestation			YES		
be provided)			YES		
N-MPR (Additional MPR) disabled for SAR Testing? TE Carrier Aggregation Possible Combinations					
	The tec	chnical description inclu	udes all the possible ca	rrier aggregation combi	nations
TE Additional Information	MIMO, and LAA feat	ures as shown in Secti	on 9 and Appendix F. A	6. It supports carrier ag All uplink communication PCC unless otherwise sp	s are identical to t

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dags 46 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 16 of 298	

© 2020 PCTEST Engineering Laboratory, Inc.

	N	IR Information					
Form Factor			Portable Handset				
Frequency Range of each LTE transmission band		NR B	and n71 (665.5 - 695.5	MHz)			
		NR Ban	id n5 (Cell) (826.5 - 846	6.5 MHz)			
		NR Band n66 (AWS) (1712.5 - 1777.5 MHz)					
	NR Band n2 (PCS) (1852.5 - 1907.5 MHz)						
		NR Ban	nd n41 (2506.02 - 2679.	99 MHz)			
Channel Bandwidths		NR Band n7	1: 5 MHz, 10 MHz, 15 N	ЛHz, 20 MHz			
		NR Band n5 (0	Cell): 5 MHz, 10 MHz, 1:	5 MHz, 20 MHz			
		NR Band n66 (A	WS): 5 MHz, 10 MHz,	15 MHz, 20 MHz			
		NR Band n2 (F	PCS): 5 MHz, 10 MHz, 1	5 MHz, 20 MHz			
	NR	Band n41: 20 MHz, 40	MHz, 50MHz, 60 MHz,	80 MHz, 90 MHz, 100 I	MHz		
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High		
NR Band n71: 5 MHz	665.5 (*	133100)	680.5 (136100)	695.5 (139100)		
NR Band n71: 10 MHz	668 (1:		680.5 (136100)		38600)		
NR Band n71: 15 MHz	670.5 (1		N/A		138100)		
NR Band n71: 20 MHz	673 (1	34600)	680.5 (136100)	688 (1	37600)		
NR Band n5 (Cell): 5 MHz	826.5 (*		836.5 (167300)	846.5 (169300)			
NR Band n5 (Cell): 10 MHz	829 (1)	65800)	N/A	844 (1	68800)		
NR Band n5 (Cell): 15 MHz	831.5 (1		836.5 (167300)		168300)		
NR Band n5 (Cell): 20 MHz	834 (1)		836.5 (167300)	839 (1	67800)		
NR Band n66 (AWS): 5 MHz	1712.5 (342500)	1734.1 (346820)	N/A	1755.8 (351160)	1777.5 (355500)		
NR Band n66 (AWS): 10 MHz	1715 (343000)	1735 (347000)	N/A	1755 (351000)	1775 (355000)		
NR Band n66 (AWS): 15 MHz	1717.5 (343500)	1735.8 (347160)	N/A	1754.1 (350820)	1772.5 (354500)		
NR Band n66 (AWS): 20 MHz	1720 (3	344000)	1745 (349000)	1770 (354000)			
NR Band n2 (PCS): 5 MHz	1852.5 (370500)	1880 (376000)	1907.5 (381500)			
NR Band n2 (PCS): 10 MHz	1855 (3	371000)	1880 (376000)	1905 (3	381000)		
NR Band n2 (PCS): 15 MHz	1857.5 (1880 (376000)		(380500)		
NR Band n2 (PCS): 20 MHz	1860 (3	72000)	1880 (376000)	1900 (3	380000)		
NR Band n41: 20 MHz	2506.02 (501204)	2549.49 (509898)	2592.99 (518598)	2636.49 (527298)	2679.99 (535998)		
NR Band n41: 40 MHz	2516.01 (503202)	2567.34 (513468)	N/A	2618.67 (523734)	2670 (534000)		
NR Band n41: 50 MHz	2521.02	(504204)	2592.99 (518598)	2664.99	(532998)		
NR Band n41: 60 MHz	2526 (5	(05200)	2592.99 (518598)	2659.98	(531996)		
NR Band n41: 80 MHz	2536.02	(507204)	N/A	2649.99	(529998)		
NR Band n41: 90 MHz	2541 (5	508200)	N/A	2644.98	(528996)		
NR Band n41: 100 MHz	N	'A	2592.99 (518598)	N	/A		
NR Band n71/n5/n2/n66 SCS			15 kHZ	•			
NR Band n41 SCS			30 kHz				
Modulations Supported in UL			M: QPSK, 16QAM, 64Q	,			
		CP-OFDM:	: QPSK, 16QAM, 64QAI	M, 256QAM			
A-MPR (Additional MPR) disabled for SAR Testing?			YES				
EN-DC Carrier Aggregation Possible Combinations	The tec	chnical description incl	udes all the possible car	rier aggregation combi	nations		
LTE Anchor Bands for NR Band n71			LTE Band 2/7/66				
LTE Anchor Bands for NR Band n5			LTE Band 2/30/66				
LTE Anchor Bands for NR Band n66			LTE Band 5/12/13/48				
LTE Anchor Bands for NR Band n2	1		LTE Band 5/12/13				
	-						
LTE Anchor Bands for NR Band n41	ļ		LTE Band 2/25/41/66				

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 17 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 17 of 298

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 18 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	NSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 6000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 19 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 20 of 298

dditional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 21 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 21 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 22 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 22 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 23 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 23 01 296

© 2020 PCTEST Engineering Laboratory, Inc.

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a nonreduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 24 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 24 of 298

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 25 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 25 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do ao 26 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 26 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1
Parameters for Max. Power for RC1

Parameter	Units	Value
Ĩог	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 8-2
Parameters for Max. Power for RC3

Parameter	Units	Value	
I _{or}	dBm/1.23 MHz	-86	
Pilot E _c	dB	-7	
Traffic E _c	dB	-7.4	

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

	FCC ID: A3LSMG981U	PCTEST'	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 27 of 298
	1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 27 01 298
٦:	O PCTEST Engineering Laboratory Inc			REV/ 21 / M

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.4.6 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers are measured using SO75 with RC8 on the uplink and RC11 on the downlink per FCC KDB Publication 941225 D01v03r01. Smart blanking is disabled for all measurements. The EUT is configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers are measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

The 3G SAR test reduction procedure is applied to the 1x-Advanced transmission mode with 1x RTT RC3 as the primary mode. When SAR measurement is required, the 1x-Advanced power measurement configurations are used. The1x Advanced SAR procedures are applied separately to head, body-worn accessory and other exposure conditions.

8.5 SAR Measurement Conditions for UMTS

8.5.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 20 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 28 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.5.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.5.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

SAR Measurement Conditions for DC-HSDPA 8.5.6

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.6 **SAR Measurement Conditions for LTE**

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: A3LSMG981U	PCTEST INGINITION INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 29 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 29 01 296

8.6.2 **MPR**

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- Per Section 5.2.4 and 5.3. SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.6.5 **TDD**

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 20 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 30 of 298	

power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.7 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.7.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands. SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.3 U-NII-2C and U-NII-3

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled. SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.7.4 **Initial Test Position Procedure**

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 31 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 31 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

OFDM Transmission Mode and SAR Test Channel Selection 8.7.6

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.7.7 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMG981U	PCTEST SIGNIFICATION INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 32 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 32 01 296

8.7.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.9 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 33 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 33 01 298

9 RF CONDUCTED POWERS

All conducted power measurements for 2G/3G/4G WWAN technologies and bands in this section were performed by setting Reserve_power_margin (Qualcomm® Smart Transmit EFS entry) to 0dB, so that the EUT transmits continuously at minimum (Plimit, maximum tune up output power Pmax).

9.1 CDMA Conducted Powers

Table 9-1 Measured *P_{max}*

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
Cellular	564	90S	820.1	24.67	24.67	24.66	24.66	24.66	24.66	24.63
	1013	22H	824.7	25.61	25.60	25.62	25.58	25.57	25.50	25.51
Cellular	384	22H	836.52	25.35	25.36	25.38	25.32	25.32	25.29	25.28
	777	22H	848.31	25.23	25.23	25.30	25.22	25.22	25.18	25.17
	25	24E	1851.25	23.86	23.83	23.77	23.83	23.85	23.82	23.75
PCS	600	24E	1880	23.63	23.62	23.58	23.62	23.64	23.68	23.60
	1175	24E	1908.75	23.49	23.52	23.56	23.52	23.51	23.48	23.52

Table 9-2
Measured *P_{limit}* for DSI = 3 (Hotspot Mode)

Band	Channel	Rule Part	Frequency	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	FCH+SCH	FCH	(RTAP)	(RETAP)
	25	24E	1851.25	18.64	18.66	18.67	18.74
PCS	600	24E	1880	18.58	18.60	18.61	18.70
	1175	24E	1908.75	18.62	18.64	18.63	18.69

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Domo 24 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 34 of 298	

Table 9-3

Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active)

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
	25	24E	1851.25	20.10	20.20	20.39	20.23	20.23	20.30	20.22
PCS	600	24E	1880	20.12	20.15	20.23	20.18	20.20	20.28	20.16
	1175	24E	1908.75	20.14	20.18	20.21	20.19	20.21	20.17	20.19

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.

Figure 9-1
Power Measurement Setup

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 25 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 35 of 298	

9.2 **GSM Conducted Powers**

Table 9-4 Measured Pmax

Wiedsureu Fmax										
Maximum Burst-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	32.91	32.93	31.89	29.61	27.67	27.12	25.52	23.20	22.06
GSM 850	190	32.85	32.78	31.86	29.68	27.65	27.03	25.56	23.52	22.42
	251	32.65	32.66	31.48	29.44	27.31	26.91	25.35	23.31	22.17
GSM 1900	512	29.45	29.55	28.12	26.39	24.95	25.33	23.93	22.22	21.35
	661	29.35	29.42	27.93	26.40	24.73	24.91	23.66	22.19	21.32
	810	28.90	29.02	27.70	25.93	24.35	25.07	23.44	22.72	20.71

Calculated Maximum Frame-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	23.88	23.90	25.87	25.35	24.66	18.09	19.50	18.94	19.05
GSM 850	190	23.82	23.75	25.84	25.42	24.64	18.00	19.54	19.26	19.41
	251	23.62	23.63	25.46	25.18	24.30	17.88	19.33	19.05	19.16
	512	20.42	20.52	22.10	22.13	21.94	16.30	17.91	17.96	18.34
GSM 1900	661	20.32	20.39	21.91	22.14	21.72	15.88	17.64	17.93	18.31
	810	19.87	19.99	21.68	21.67	21.34	16.04	17.42	18.46	17.70
GSM 850	Frame	23.50	23.50	25.51	25.17	24.52	18.00	19.01	18.67	19.02
GSM 1900	Avg.Targets:	20.50	20.50	22.51	22.17	21.52	17.00	18.01	17.67	18.02

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 36 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 30 01 296

Table 9-5 Measured Plimit for DSI = 3 (Hotspot mode)

	Measured Flimit 101 D31 = 3 (Hotspot Mode)										
	Maximum Burst-Averaged Output Power										
		GPRS/EDGE Data EDGE Data (GMSK) (8-PSK)									
Band	Channel	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot			
	512	29.11	26.22	24.46	23.31	25.33	23.93	22.22	21.35		
GSM 1900	661	29.19	26.28	24.66	23.50	24.91	23.66	22.19	21.32		
	810	28.87	25.90	24.28	23.18	25.07	23.44	22.72	20.71		

	Calculated Maximum Frame-Averaged Output Power									
				DGE Data NSK)		EDGE Data (8-PSK)				
Band	Channel	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	512	20.08	20.20	20.20	20.30	16.30	17.91	17.96	18.34	
GSM 1900	661	20.16	20.26	20.40	20.49	15.88	17.64	17.93	18.31	
	810	19.84	19.88	20.02	20.17	16.04	17.42	18.46	17.70	
GSM 1900	Frame Avg.Targets:	19.30	19.31	19.27	19.32	17.00	18.01	17.67	18.02	

Table 9-6 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active)

acarca 7 m	Maximum Burst-Averaged Output Power											
		Voice		GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	512	29.16	29.14	26.29	24.66	23.15	25.33	23.93	22.22	21.35		
GSM 1900	661	29.16	29.12	26.40	24.41	23.46	24.91	23.66	22.19	21.32		
1	810	28.84	28.86	26.04	24.35	23.30	25.07	23.44	22.72	20.71		

		Calculated	Maximum	Frame-A	veraged O	utput Pov	ver			
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	512	20.13	20.11	20.27	20.40	20.14	16.30	17.91	17.96	18.34
GSM 1900	661	20.13	20.09	20.38	20.15	20.45	15.88	17.64	17.93	18.31
	810	19.81	19.83	20.02	20.09	20.29	16.04	17.42	18.46	17.70
•										
GSM 1900	Frame Avg.Targets:	20.10	20.10	20.11	20.07	20.12	17.00	18.01	17.67	18.02

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 27 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 37 of 298

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 33 (Max 4 Tx uplink slots) EDGE Multislot class: 33 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-2
Power Measurement Setup

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 20 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 38 of 298

9.3 **UMTS Conducted Powers**

Table 9-7

Weasured P _{max}												
3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	AWS Band [dBm]			PCS Band [dBm]			3GPP MPR [dB]
Version		Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	լսեյ
99	WCDMA	12.2 kbps RMC	24.75	24.74	24.49	24.40	24.42	24.30	23.42	23.38	23.21	-
99	WCDIVIA	12.2 kbps AMR	24.70	24.61	24.50	24.48	24.39	24.31	23.39	23.43	23.15	-
6		Subtest 1	23.86	23.76	23.64	23.45	23.37	23.22	22.47	22.24	22.00	0
6	HSDPA	Subtest 2	23.86	23.75	23.65	23.44	23.41	23.25	22.42	22.24	22.03	0
6	TIODEA	Subtest 3	23.38	23.26	23.14	22.89	22.86	22.80	21.96	21.71	21.51	0.5
6		Subtest 4	23.37	23.22	23.13	22.95	22.89	22.75	21.75	21.76	21.53	0.5
6		Subtest 1	23.86	23.75	23.63	23.24	23.20	23.08	22.46	22.23	22.02	0
6		Subtest 2	21.87	21.75	21.63	21.29	21.18	21.05	20.42	20.20	20.00	2
6	HSUPA	Subtest 3	22.87	22.75	22.67	22.24	22.16	22.06	21.40	21.20	21.01	1
6		Subtest 4	21.85	21.73	21.55	21.48	21.50	21.38	20.42	20.22	20.03	2
6		Subtest 5	23.84	23.68	23.61	23.25	23.18	23.05	22.45	22.20	22.05	0
8		Subtest 1	23.79	23.69	23.58	23.46	23.37	23.23	22.46	22.22	22.02	0
8	DC HCDC	Subtest 2	23.78	23.67	23.50	23.44	23.38	23.27	22.47	22.21	22.01	0
8	DC-HSDPA	Subtest 3	23.31	23.17	23.10	22.95	22.88	22.75	21.95	21.72	21.50	0.5
8		Subtest 4	23.30	23.15	23.08	22.76	22.87	22.76	21.96	21.75	21.50	0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 39 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 39 01 298

Table 9-8 Measured P_{limit} for DSI = 3 (Hotspot mode)

3GPP Release	Mode	3GPP 34.121 Subtest	AW	S Band [d	Bm]	PCS	S Band [dl	Bm]	3GPP MPR [dB]
Version		Cubicst	1312	1412	1513	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	19.50	19.48	19.38	19.40	19.28	19.35	-
99	VVCDIVIA	12.2 kbps AMR	19.48	19.49	19.34	19.39	19.32	19.21	-
6		Subtest 1	18.50	18.49	18.41	18.48	18.29	18.05	0
6	HSDPA	Subtest 2	18.39	18.41	18.32	18.42	18.26	18.09	0
6	HODEA	Subtest 3	18.00	17.86	17.81	17.91	17.75	17.55	0.5
6		Subtest 4	17.99	17.94	17.81	17.74	17.72	17.57	0.5
6		Subtest 1	18.47	18.42	18.30	18.41	18.21	18.07	0
6		Subtest 2	16.49	16.43	16.29	16.40	16.22	16.06	2
6	HSUPA	Subtest 3	17.49	17.42	17.28	17.44	17.20	17.07	1
6		Subtest 4	16.48	16.41	16.32	16.43	16.22	16.06	2
6		Subtest 5	18.46	18.43	18.33	18.44	18.24	18.06	0
8		Subtest 1	18.42	18.33	18.31	18.36	18.31	18.15	0
8	DC-HSDPA	Subtest 2	18.40	18.37	18.29	18.35	18.36	18.30	0
8	DC-USDPA	Subtest 3	18.00	17.88	17.70	17.93	17.87	17.85	0.5
8		Subtest 4	17.92	17.88	17.70	17.95	17.85	17.85	0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 40 of 298

Table 9-9

Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active)

3GPP Release	Mode	3GPP 34.121 Subtest	AW	S Band [d	Bm]	PCS	6 Band [di	Bm]	3GPP MPR
Version		Sublest	1312	1412	1513	9262	9400	9538	[dB]
99	WCDMA	12.2 kbps RMC	20.00	19.99	19.89	19.93	19.82	19.70	-
99	VVCDIVIA	12.2 kbps AMR	19.99	19.95	19.94	19.92	19.79	19.71	-
6		Subtest 1	19.00	18.92	18.85	18.76	18.86	18.75	0
6	HSDPA	Subtest 2	18.99	18.92	18.84	18.80	18.84	18.70	0
6	HODEA	Subtest 3	18.50	18.42	18.34	18.35	18.35	18.24	0.5
6		Subtest 4	18.49	18.44	18.32	18.32	18.35	18.27	0.5
6		Subtest 1	18.75	18.60	18.58	18.75	18.78	18.76	0
6		Subtest 2	16.98	16.95	16.94	16.77	16.81	16.72	2
6	HSUPA	Subtest 3	18.00	17.98	17.89	17.37	17.40	17.31	1
6		Subtest 4	17.00	16.98	16.94	16.75	16.81	16.70	2
6		Subtest 5	18.81	18.62	18.59	18.79	18.81	18.71	0
8		Subtest 1	18.97	18.94	18.94	18.81	18.84	18.72	0
8	DC-HSDB4	Subtest 2	19.00	18.99	18.87	18.80	18.83	18.71	0
8	DC-HSDPA	Subtest 3	18.50	18.48	18.49	18.30	18.12	18.23	0.5
8		Subtest 4	18.49	18.47	18.46	18.34	18.36	18.23	0.5

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 9-3
Power Measurement Setup

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 44 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 41 of 298

9.4 LTE Conducted Powers

9.4.1 LTE Band 71

Table 9-10
LTE Band 71 Measured P_{max} for all DSI - 20 MHz Bandwidth

	LTE Band 71 Measured P _{max} for all DSI - 20 MHz Bandwidth LTE Band 71 20 MHz Bandwidth									
Modulation	RB Size	RB Offset	Mid Channel 133297 (680.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]					
	1	0	24.23		0					
	1	50	23.98	0	0					
	1	99	23.83		0					
QPSK	50	0	23.24		1					
	50	25	23.15		1					
	50	50	22.98	0-1	1					
	100	0	23.08		1					
	1	0	23.67		1					
	1	50	23.44	0-1	1					
	1	99	23.39		1					
16QAM	50	0	22.26		2					
	50	25	22.14		2					
	50	50	22.00	0-2	2					
	100	0	22.06		2					
	1	0	22.56		2					
	1	50	22.27	0-2	2					
	1	99	22.14		2					
64QAM	50	0	21.27		3					
	50	25	21.17	0-3	3					
	50	50	21.05	0-3	3					
	100	0	21.08		3					
	1	0	19.15		5					
	1	50	19.26		5					
	1	99	18.94		5					
256QAM	50	0	19.18	0-5	5					
	50	25	19.12		5					
	50	50	19.08		5					
	100	0	19.05		5					

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 42 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 42 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 9-11
LTE Band 71 Measured Pmax for all DSI - 15 MHz Bandwidth

LTE Band 71 Measured P_{max} for all DSI - 15 MHz Bandwidth LTE Band 71 15 MHz Bandwidth Mid Channel 133297 MPR Allowed per Modulation **RB Size RB Offset** MPR [dB] (680.5 MHz) 3GPP [dB] **Conducted Power** [dBm] 1 0 24.36 0 1 36 24.12 0 0 1 74 24.06 0 **QPSK** 36 0 23.42 1 36 18 23.27 1 0-1 36 37 23.20 1 75 0 23.25 1 1 0 23.77 1 1 36 23.41 0-1 1 1 74 23.46 1 2 16QAM 36 0 22.40 36 18 22.22 2 0-2 36 37 22.26 2 2 75 22.23 0 1 0 22.82 2 36 22.43 0-2 2 1 74 22.37 2 1 3 64QAM 36 0 21.44 21.38 3 36 18 0-3 36 37 21.25 3 75 0 21.27 3 5 0 19.35 1 1 36 19.29 5 1 74 19.23 5 256QAM 36 0 19.36 0-5 5 36 19.31 5 18 5 36 37 19.33

Note: LTE Band 71 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

19.33

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 42 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 43 of 298

75

0

Table 9-12 LTF Band 71 Measured Pmax for all DSI - 10 MHz Bandwidth

				red P_{max} for all D			
				10 MHz Bandwidth			
Modulation RB \$	RB Size	RB Size RB Offset	133172 (668.0 MHz)	Mid Channel 133297 (680.5 MHz)	High Channel 133422 (693.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			•	Conducted Power [dBm]		
	1	0	24.28	24.19	23.92		0
	1	25	24.35	23.98	23.99	0	0
	1	49	24.15	23.71	23.98	1	0
QPSK	25	0	23.44	23.17	23.01		1
	25	12	23.42	23.12	23.04] 01	1
	25	25	23.27	23.07	22.94	0-1	1
	50	0	23.34	23.02	22.84		1
	1	0	23.87	23.58	23.58		1
	1	25	23.58	23.49	23.22	0-1	1
	1	49	23.62	23.37	23.25		1
16QAM	25	0	22.35	22.15	21.95		2
	25	12	22.45	22.11	22.00	0-2	2
	25	25	22.44	22.04	22.06	0-2	2
	50	0	22.33	22.05	21.90		2
	1	0	22.64	22.48	22.34		2
	1	25	22.32	21.94	22.12	0-2	2
	1	49	22.43	22.29	21.93]	2
64QAM	25	0	21.45	21.22	21.05		3
	25	12	21.52	21.25	21.19	0-3	3
	25	25	21.43	21.09	21.16] 0-3	3
	50	0	21.44	21.19	21.05	1	3
	1	0	19.36	19.15	18.96		5
	1	25	19.45	19.23	19.12	1 1	5
	1	49	19.35	18.98	19.08	1 1	5
256QAM	25	0	19.20	19.04	18.92	0-5	5
	25	12	19.29	19.23	18.97	1 1	5
	25	25	19.16	19.06	18.80	1 1	5
	50	0	19.28	19.02	18.96	1	5

FCC ID: A3LSMG981U	PCTEST SEGMENTS LADVATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 44 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 44 of 298

Table 9-13 LTF Band 71 Measured Pmax for all DSI - 5 MHz Bandwidth

				LTE Band 71 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 133147 (665.5 MHz)	Mid Channel 133297 (680.5 MHz)	High Channel 133447 (695.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.34	23.98	23.82		0
	1	12	24.31	24.07	23.90	0	0
	1	24	24.14	24.02	23.88	1	0
QPSK	12	0	23.41	23.15	22.94		1
	12	6	23.41	23.12	23.04	0-1	1
	12	13	23.42	23.10	23.04]	1
	25	0	23.45	23.11	22.95	<u>]</u>	1
	1	0	23.70	23.45	23.59		1
	1	12	23.69	23.44	23.30	0-1	1
	1	24	23.68	23.39	23.22	_	1
16QAM	12	0	22.47	22.18	21.88		2
	12	6	22.60	22.25	22.14	0-2	2
	12	13	22.62	22.13	22.13] 0-2	2
	25	0	22.46	22.04	22.05]	2
	1	0	22.60	22.43	22.25		2
	1	12	22.48	22.20	22.17	0-2	2
	1	24	22.47	22.34	22.09	1	2
64QAM	12	0	21.48	21.15	21.00		3
	12	6	21.63	21.22	21.13	1 ,, [3
	12	13	21.44	21.15	21.14	0-3	3
	25	0	21.41	21.11	20.93	1 1	3
	1	0	19.49	19.27	18.91		5
	1	12	19.44	19.16	19.19	1	5
	1	24	19.47	19.10	19.05	† †	5
256QAM	12	0	19.51	19.04	19.13	0-5	5
· • • • · · · ·	12	6	19.44	19.14	19.12	† · · · · · · · · · · · · · · · · · · ·	5
	12	13	19.35	19.05	19.07	1	5
	25	0	19.37	19.10	18.99	†	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 45 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 45 of 298

9.4.2 LTE Band 12

Table 9-14
LTE Band 12 Measured P_{max} for all DSI - 10 MHz Bandwidth

	LTE Band 12 Measured <i>P_{max}</i> for all DSI - 10 MHz Bandwidth LTE Band 12								
			10 MHz Bandwidth						
			Mid Channel						
Modulation	RB Size	RB Offset	23095 (707.5 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]				
			[dBm]						
	1	0	23.96		0				
	1	25	23.92	0	0				
	1	49	24.03		0				
QPSK	25	0	22.94		1				
	25	12	23.10		1				
	25	25	22.99	0-1	1				
	50	0	22.98		1				
	1	0	23.34		1				
	1	25	23.32	0-1	1				
	1	49	23.45		1				
16QAM	25	0	21.94		2				
	25	12	22.06	0-2	2				
	25	25	21.95	0-2	2				
	50	0	22.02		2				
	1	0	22.13		2				
	1	25	22.25	0-2	2				
	1	49	22.19		2				
64QAM	25	0	20.94		3				
	25	12	21.19	0-3	3				
	25	25	21.01	0-3	3				
	50	0	21.06		3				
	1	0	18.91		5				
	1	25	19.14		5				
	1	49	19.22		5				
256QAM	25	0	19.12	0-5	5				
	25	12	19.12		5				
	25	25	19.06		5				
	50	0	19.11		5				

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 46 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 46 of 298

Table 9-15 LTE Band 12 Measured Pmax for all DSI - 5 MHz Bandwidth

		<u> </u>	Dana 12 Measu	TER Pmax for all L	JOI - J WII IZ Dai	iawiatii	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035	23095	23155	MPR Allowed per	MPR [dB]
Modulation	112 0120	112 011001	(701.5 MHz)	(707.5 MHz)	(713.5 MHz)	3GPP [dB]	iii k [db]
				Conducted Power [dBm]		
	1	0	23.91	24.10	24.08		0
	1	12	24.17	24.06	24.15	0	0
	1	24	23.94	23.99	24.12		0
QPSK	12	0	22.98	23.11	23.15		1
	12	6	23.02	23.20	23.26	0-1	1
	12	13	22.90	23.16	23.19	0-1	1
	25	0	23.00	23.15	23.21		1
	1	0	23.33	23.35	23.59		1
	1	12	23.26	23.40	23.58	0-1	1
	1	24	23.27	23.37	23.59		1
16QAM	12	0	22.05	21.90	22.20		2
	12	6	22.11	22.10	22.20	0-2	2
	12	13	22.07	22.07	22.35	0-2	2
	25	0	22.01	22.14	22.24		2
	1	0	22.01	22.29	22.23		2
	1	12	22.20	22.28	22.23	0-2	2
	1	24	22.10	22.27	22.11		2
64QAM	12	0	21.00	21.21	21.16		3
	12	6	21.04	21.19	21.34	0-3	3
	12	13	21.02	21.12	21.15	0-3	3
	25	0	21.01	21.23	21.29		3
	1	0	19.04	19.18	19.31		5
	1	12	19.04	19.35	19.42		5
	1	24	19.15	19.38	19.34		5
256QAM	12	0	18.98	19.17	19.18	0-5	5
	12	6	19.10	19.20	19.13		5
	12	13	19.10	19.05	19.18		5
	25	0	18.97	19.20	19.26]	5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manage
Document S/N:	Test Dates:	DUT Type:	Page 47 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 47 01 296

Table 9-16 LTE Band 12 Measured Pmax for all DSI - 3 MHz Bandwidth

		<u> </u>	Daria 12 Micasa	LTE Band 12	JOI - J MILIZ Dai	Idwidtii	
				3 MHz Bandwidth			
Modulation RB Size	RB Size	B Size RB Offset	Low Channel 23025	Mid Channel	High Channel 23165	MPR Allowed per	MPR [dB]
			(700.5 MHz)	(707.5 MHz)	(714.5 MHz)	3GPP [dB]	
	1	0		Conducted Power [dBm	.		0
	1	7	23.93	23.98 24.07	24.18 24.14	- o - F	0
	1		23.92	-		-l ' l	
QPSK	1 8	14 0	23.95	24.05 23.07	24.20		0 1
QPSK					23.11	-	
	8	7	22.98	23.13	23.23	0-1	1
	8		22.97	23.11	23.24	-	1
	15	0	23.02	23.11	23.26		1
	1	0	23.22	23.58	23.62	4	1
	1	7	23.55	23.38	23.67	0-1	1
400414	1	14	23.36	23.44	23.37		1
16QAM	8	0	22.03	22.10	22.23	-	2
	8	4	22.07	22.26	22.37	0-2	2
	8	7	22.10	22.20	22.23	-	2
	15	0	22.03	22.17	22.33		2
	1	0	22.13	22.25	22.47		2
	1	7	21.92	22.40	22.35	0-2	2
	1	14	22.20	22.25	22.26		2
64QAM	8	0	20.96	21.23	21.23	4	3
	8	4	21.09	21.18	21.15	0-3	3
	8	7	21.06	21.20	21.26	'	3
	15	0	21.02	21.28	21.30		3
	1	0	19.04	19.21	19.45	_	5
	1	7	19.14	19.27	19.59	<u> </u>	5
	1	14	19.05	19.23	19.24	_	5
256QAM	8	0	19.00	19.12	19.35	0-5	5
	8	4	19.02	19.24	19.24	_	5
	8	7	19.05	19.20	19.31	<u> </u>	5
	15	0	19.23	19.21	19.26	1	5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 48 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 46 01 296

Table 9-17 I TE Rand 12 Measured P. for all DSI -1 4 MHz Randwidth

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz) Conducted Power [dBm	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.86	24.02	24.04		0
	1	2	23.85	24.05	24.24	† F	0
	1	5	23.90	24.00	24.15	┪ ├	0
QPSK	3	0	23.79	23.99	24.08	0 -	0
Si Oil	3	2	23.92	24.10	24.21	┪ ├	0
	3	3	23.79	24.07	24.10	┥ ├	0
	6	0	22.92	23.08	23.12	0-1	1
	1	0	23.18	23.31	23.55	<u> </u>	 1
	1	2	23.08	23.24	23.48	┪ ├	1
	1	5	23.15	23.27	23.40	┪ ├	1
16QAM 3	0	22.96	23.17	23.35	0-1	1	
	3	2	23.11	23.28	23.49	<u> </u>	1
	3	3	23.01	23.26	23.28	† F	1
	6	0	22.04	22.09	22.16	0-2	2
	1	0	22.00	22.25	22.25		2
	1	2	22.22	22.30	22.06	1	2
	1	5	22.18	22.30	22.17	0-2	2
64QAM	3	0	21.98	22.14	22.05	T 0-2 F	2
	3	2	22.13	22.31	22.19] [2
	3	3	22.00	22.13	22.18	<u>]</u> _	2
	6	0	21.09	21.15	21.15	0-3	3
	1	0	18.99	19.15	19.22		5
	1	2	19.10	19.14	19.47		5
	1	5	19.22	19.28	19.21		5
256QAM	3	0	19.05	19.20	19.31	0-5	5
	3	2	19.08	19.15	19.42] [5
	3	3	19.13	19.27	19.46	_	5
	6	0	19.18	19.12	19.20		5

FCC ID: A3LSMG981U	PCTEST SEGMENTS LADVATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 40 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 49 of 298

9.4.3 LTE Band 13

Table 9-18 LTE Band 13 Measured P_{max} for all DSI - 10 MHz Bandwidth

LIE Band 13 Measured P _{max} for all DSI - 10 MHz Bandwidth LTE Band 13								
	10 MHz Bandwidth							
			Mid Channel					
			23230	MPR Allowed per				
Modulation	RB Size	RB Offset	(782.0 MHz)	3GPP [dB]	MPR [dB]			
			Conducted Power					
			[dBm]					
	1	0	24.08		0			
	1	25	24.03	0	0			
	1	49	23.86		0			
QPSK	25	0	23.04		1			
	25	12	22.99	0-1	1			
	25	25	22.97		1			
	50	0	23.00		1			
	1	0	23.48		1			
	1	25	23.47	0-1	1			
	1	49	23.34		1			
16QAM	25	0	22.05		2			
	25	12	22.04	0-2	2			
	25	25	22.01		2			
	50	0	21.94		2			
	1	0	22.34		2			
	1	25	22.29	0-2	2			
	1	49	22.14		2			
64QAM	25	0	21.09		3			
	25	12	21.05	0.0	3			
	25	25	21.07	0-3	3			
	50	0	21.01		3			
	1	0	18.92		5			
	1	25	19.18		5			
	1	49	18.94		5			
256QAM	25	0	19.06	0-5	5			
	25	12	19.02		5			
	25	25	18.93		5			
	50	0	18.98		5			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 50 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 50 of 298

Table 9-19 LTE Band 13 Measured Pmax for all DSI - 5 MHz Bandwidth

LTE Band 13 Measured Fmax for all DSI - 3 MHZ Bandwidth					
			5 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	24.24		0
	1	12	24.26	0	0
	1	24	24.23		0
QPSK	12	0	23.27		1
	12	6	23.31	0.4	1
	12	13	23.27	0-1	1
	25	0	23.27		1
	1	0	23.57		1
	1	12	23.51	0-1	1
	1	24	23.42		1
16QAM	12	0	22.30		2
	12	6	22.34		2
	12	13	22.33	0-2	2
	25	0	22.32		2
	1	0	22.43		2
	1	12	22.48	0-2	2
	1	24	22.36		2
64QAM	12	0	21.27		3
	12	6	21.28	0.0	3
	12	13	21.29	0-3	3
	25	0	21.19		3
	1	0	18.95		5
	1	12	19.11		5
	1	24	19.10		5
256QAM	12	0	19.26	0-5	5
	12	6	19.28		5
	12	13	19.31		5
	25	0	19.27		5

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 54 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 51 of 298

9.4.4 LTE Band 14

Table 9-20 LTE Band 14 Measured Pmax for all DSI - 10 MHz Bandwidth

LIE Band 14 Measured P _{max} for all DSI - 10 MHz Bandwidth LTE Band 14								
	10 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 23330 (793.0 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]			
			[dBm]					
	1	0	24.06		0			
	1	25	23.85	0	0			
	1	49	23.81		0			
QPSK	25	0	22.99		1			
	25	12	22.96	0-1	1			
	25	25	22.81		1			
	50	0	22.88		1			
	1	0	23.54		1			
	1	25	23.24	0-1	1			
	1	49	23.20		1			
16QAM	25	0	22.03	0-2	2			
	25	12	21.98		2			
	25	25	21.88		2			
	50	0	21.87		2			
	1	0	22.35		2			
	1	25	22.21	0-2	2			
	1	49	22.17		2			
64QAM	25	0	20.98		3			
	25	12	20.99	0.2	3			
	25	25	20.89	0-3	3			
	50	0	20.96		3			
	1	0	18.90		5			
	1	25	18.89		5			
	1	49	18.82		5			
256QAM	25	0	18.99	0-5	5			
	25	12	19.02		5			
	25	25	18.78		5			
	50	0	18.93		5			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 52 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 52 of 298

Table 9-21
LTE Band 14 Measured *P_{max}* for all DSI - 5 MHz Bandwidth

	LTE Band 14 Measured Fmax for all DSI - 3 MH2 Bandwidth						
			5 MHz Bandwidth				
			Mid Channel				
Modulation	RB Size	RB Offset	23330 (793.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			Conducted Power [dBm]				
	1	0	24.18		0		
	1	12	24.15	0	0		
	1	24	24.07		0		
QPSK	12	0	23.20		1		
	12	6	23.21	0-1	1		
	12	13	23.06	0-1	1		
	25	0	23.19		1		
	1	0	23.43		1		
	1	12	23.52	0-1	1		
	1	24	23.34		1		
16QAM	12	0	22.24		2		
	12	6	22.22	0.0	2		
	12	13	22.10	0-2	2		
	25	0	22.19		2		
	1	0	22.42		2		
	1	12	22.38	0-2	2		
	1	24	22.39		2		
64QAM	12	0	21.22		3		
	12	6	21.22	0.0	3		
	12	13	21.09	0-3	3		
	25	0	21.19		3		
	1	0	19.28		5		
	1	12	19.35		5		
	1	24	19.17		5		
256QAM	12	0	19.29	0-5	5		
	12	6	19.29		5		
	12	13	19.20		5		
	25	0	19.19		5		

Note: LTE Band 14 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 53 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 53 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

9.4.5 LTE Band 26 (Cell)

Table 9-22 LTE Band 26 (Cell) Measured P_{max} for all DSI - 15 MHz Bandwidth

			LTE Band 26 (Cell)	o	
			15 MHz Bandwidth		
			Mid Channel		
			26865	MDD Allowed nor	
Modulation	RB Size	RB Offset	(831.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power	JOFF [UD]	
			[dBm]		
	1	0	24.34		0
	1	36	24.19	0	0
	1	74	24.21		0
QPSK	36	0	23.22		1
	36	18	23.34	0-1	1
	36	37	23.27	0-1	1
	75	0	23.26		1
	1	0	23.61		1
	1	36	23.69	0-1	1
	1	74	23.56		1
16QAM	36	0	22.33	0-2	2
	36	18	22.39		2
	36	37	22.35		2
	75	0	22.30		2
	1	0	22.43		2
	1	36	22.58	0-2	2
	1	74	22.53		2
64QAM	36	0	21.32		3
	36	18	21.48	0-3	3
	36	37	21.38	0-3	3
	75	0	21.36		3
	1	0	19.28		5
	1	36	19.42		5
	1	74	19.31		5
256QAM	36	0	19.24	0-5	5
	36	18	19.46	1	5
	36	37	19.34		5
	75	0	19.28		5
N . LTE D	1.00 (0.11)		1 1 1 1		1 1 5 1/55

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 54 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 54 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 9-23 LTE Band 26 (Cell) Measured P_{max} for all DSI - 10 MHz Bandwidth

				LTE Band 26 (Cell)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26740	26865	26990	MPR Allowed per	MPR [dB]
			(819.0 MHz)	(831.5 MHz)	(844.0 MHz)	3GPP [dB]	
	_			Conducted Power [dBm	-		•
	1	0	24.42	24.23	24.25	1 ,	0
	1	25	24.20	24.12	24.19	0	0
00014	1	49	24.45	24.10	24.25		0
QPSK	25	0	23.20	23.12	23.15	_	1
	25	12	23.41	23.25	23.34	0-1	1
	25	25	23.22	23.17	23.24	4	1
	50	0	23.25	23.16	23.13		1
	1	0	23.65	23.57	23.63		1
	1	25	23.52	23.59	23.44	0-1	1
	1	49	23.42	23.55	23.54		1
16QAM	25	0	22.17	22.07	22.14		2
	25	12	22.36	22.33	22.30	0-2	2
	25	25	22.27	22.20	22.25		2
	50	0	22.21	22.14	22.28		2
	1	0	22.49	22.31	22.48		2
	1	25	22.41	22.40	22.45	0-2	2
	1	49	22.42	22.42	22.33		2
64QAM	25	0	21.25	21.12	21.17]	3
	25	12	21.43	21.36	21.30	0-3	3
	25	25	21.25	21.22	21.29] 0-3	3
	50	0	21.36	21.20	21.22		3
	1	0	19.07	19.15	19.22		5
	1	25	19.40	19.23	19.42]	5
	1	49	19.25	19.19	19.27		5
256QAM	25	0	19.22	19.10	19.15	0-5	5
	25	12	19.33	19.21	19.23		5
	25	25	19.26	19.12	19.20	1	5
	50	0	19.30	19.18	19.14	1	5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 55 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 55 01 298

Table 9-24 LTE Band 26 (Cell) Measured Pmax for all DSI - 5 MHz Bandwidth

				LTE Band 26 (Cell)			
		1	Low Channel	5 MHz Bandwidth Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	High Channel 27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.12	24.16	24.21	_	0
	1	12	24.23	24.20	24.22	0	0
	1	24	24.16	24.22	24.24		0
QPSK	12	0	23.28	23.20	23.29		1
	12	6	23.32	23.31	23.34	0-1	1
	12	13	23.31	23.25	23.30		1
	25	0	23.28	23.21	23.31		1
	1	0	23.45	23.48	23.57		1
	1	12	23.39	23.36	23.63	0-1	1
	1	24	23.27	23.42	23.27		1
16QAM	12	0	22.34	22.22	22.41	_	2
	12	6	22.40	22.35	22.28	0-2	2
	12	13	22.41	22.34	22.31		2
	25	0	22.33	22.23	22.28		2
	1	0	22.38	22.30	22.63	_	2
	1	12	22.63	22.46	22.51	0-2	2
	1	24	22.47	22.44	22.36		2
64QAM	12	0	21.35	21.19	21.31		3
	12	6	21.43	21.30	21.41	0-3	3
	12	13	21.36	21.27	21.38	0-3	3
	25	0	21.37	21.27	21.28		3
	1	0	19.31	19.13	19.32		5
	1	12	19.71	19.34	19.25] [5
	1	24	19.36	19.30	19.32] [5
256QAM	12	0	19.31	19.28	19.23	0-5	5
	12	6	19.28	19.27	19.34] [5
	12	13	19.43	19.20	19.30] [5
	25	0	19.30	19.18	19.25] [5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 56 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	raye 30 01 298

Table 9-25 LTE Band 26 (Cell) Measured Pmax for all DSI - 3 MHz Bandwidth

		LIL Dai	ia 20 (Ocii) ilice	LTE Band 26 (Cell)		Banawiath	
				3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26705 (815.5 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBn	1]		
	1	0	24.26	24.12	24.23		0
	1	7	24.23	24.29	24.20	0	0
	1	14	24.27	24.25	24.18		0
QPSK	8	0	23.38	23.18	23.35		1
	8	4	23.38	23.30	23.32	0-1	1
	8	7	23.34	23.32	23.39	0-1	1
	15	0	23.39	23.27	23.32		1
	1	0	23.37	23.64	23.44		1
	1	7	23.32	23.54	23.13	0-1	1
	1	14	23.59	23.49	23.48		1
16QAM	8	0	22.45	22.33	22.44		2
	8	4	22.49	22.32	22.45	0-2	2
	8	7	22.48	22.42	22.33	0-2	2
	15	0	22.42	22.30	22.37		2
	1	0	22.51	22.39	22.47		2
	1	7	22.68	22.47	22.53	0-2	2
	1	14	22.45	22.43	22.26		2
64QAM	8	0	21.39	21.27	21.36		3
	8	4	21.42	21.39	21.25	0-3	3
	8	7	21.39	21.42	21.29		3
	15	0	21.43	21.37	21.21		3
	1	0	19.40	19.30	19.33		5
	1	7	19.54	19.20	19.38		5
	1	14	19.41	19.36	19.42		5
256QAM	8	0	19.41	19.14	19.34	0-5	5
	8	4	19.40	19.38	19.36		5
	8	7	19.41	19.29	19.36	<u> </u>	5
	15	0	19.38	19.32	19.26		5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 57 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 57 01 298

Table 9-26 LTE Band 26 (Cell) Measured Pmax for all DSI -1.4 MHz Bandwidth

		LIL Dan	a zo (ocii) ivica	LTE Band 26 (Cell)	11 001 - 1.4 111112	Danawiatii	
				1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.13	24.14	24.10	_	0
	1	2	24.27	24.16	24.09	_	0
	1	5	24.19	24.10	24.16	0	0
QPSK	3	0	24.17	24.04	24.15	_	0
	3	2	24.23	24.12	24.26	_ _	0
	3	3	24.26	24.13	24.18		0
	6	0	23.32	23.23	23.17	0-1	1
	1	0	23.53	23.42	23.46		1
	1	2	23.65	23.53	23.36		1
	1	5	23.48	23.47	23.53	0-1	1
16QAM	3	0	23.42	23.23	23.16		1
	3	2	23.39	23.37	23.45		1
	3	3	23.46	23.29	23.29		1
	6	0	22.34	22.24	22.27	0-2	2
	1	0	22.44	22.28	22.23		2
	1	2	22.36	22.45	22.23		2
	1	5	22.45	22.37	22.04	0-2	2
64QAM	3	0	22.36	22.23	22.13		2
	3	2	22.45	22.25	22.09		2
	3	3	22.29	22.29	22.02		2
	6	0	21.36	21.24	21.80	0-3	3
	1	0	19.34	19.25	19.42		5
	1	2	19.42	19.53	19.36	1	5
	1	5	19.36	19.29	19.40] [5
256QAM	3	0	19.44	19.21	19.44	0-5	5
	3	2	19.45	19.35	19.42] [5
	3	3	19.39	19.29	19.39] [5
	6	0	19.30	19.23	19.21] [5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 58 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 38 01 298

9.4.6 LTE Band 5 (Cell)

Table 9-27 LTE Band 5 (Cell) Measured P_{max} for all DSI - 10 MHz Bandwidth

	2120	una o (oen) in	LTE Band 5 (Cell)	SI - 10 MHZ Bandwidtr	
			10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power		
	4	0	[dBm]		0
	1	0	24.12		0
	1	25	24.00	0	0
ODOK	1	49	24.09		0
QPSK	25	0	23.12		1
	25	12	23.09	0-1	1
	25	25	23.10		1
	50	0	23.07		1
	1	0	23.58		1
	1	25	23.68	0-1	1
	1	49	23.47		1
16QAM	25	0	22.11		2
	25	12	22.09	0-2	2
	25	25	22.05		2
	50	0	22.14		2
	1	0	22.26		2
	1	25	22.20	0-2	2
	1	49	22.27		2
64QAM	25	0	21.08		3
	25	12	21.15	0-3	3
	25	25	21.13	0-3	3
	50	0	21.12		3
	1	0	19.12		5
	1	25	19.26		5
	1	49	19.14		5
256QAM	25	0	19.17	0-5	5
	25	12	19.14	1	5
	25	25	19.12		5
	50	0	19.16		5

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 50 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 59 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 9-28 LTE Band 5 (Cell) Measured Pmax for all DSI - 5 MHz Bandwidth

			(() / /	LTE Band 5 (Cell)			
				5 MHz Bandwidth		1	
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	Mid Channel 20525 (836.5 MHz) Conducted Power [dBm	High Channel 20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.14	24.15	24.20		0
	1	12	24.14	24.15	24.20		0
	1	24	24.12	24.29	24.05		0
QPSK	12	0	23.18	23.20	23.29		1
QFSK	12	6	23.16	23.21	23.29		<u></u>
	12	13	23.29	23.26	23.36	0-1	1
	25	0	23.32	23.28	23.33	-	1
	1	0	23.62	23.50	23.48		1
	1	12	23.62	23.75	23.46	- 1 ₀₋₁	1
	1	24	23.21	23.61	23.45	0-1	1
16QAM	12	0	22.24	22.27	22.30		2
1000/11/1	12	6	22.40	22.34	22.42	1	2
	12	13	22.29	22.31	22.38	0-2	2
	25	0	22.30	22.33	22.35	1	2
	1	0	22.18	22.39	22.43		2
	1	12	22.45	22.45	22.56	0-2	2
	1	24	22.20	22.34	22.33	† ° -	2
64QAM	12	0	21.23	21.27	21.36		3
0.00	12	6	21.35	21.32	21.46	†	3
	12	13	21.28	21.40	21.37	0-3	3
	25	0	21.36	21.29	21.44		3
	1	0	19.23	19.23	19.37		5
	1	12	19.27	19.21	19.25	† †	5
	1	24	19.23	19.22	19.18	†	5
256QAM	12	0	19.25	19.28	19.30	0-5	5
	12	6	19.32	19.34	19.42	†	5
	12	13	19.31	19.25	19.26	†	5
	25	0	19.35	19.30	19.36	†	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 60 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 60 of 298

Table 9-29 LTE Band 5 (Cell) Measured Pmax for all DSI - 3 MHz Bandwidth

			(() / /	LTE Band 5 (Cell)			
			Low Channel	3 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	n]		
	1	0	24.11	24.16	24.23		0
	1	7	24.19	24.14	24.22	0	0
	1	14	24.17	24.27	24.12		0
QPSK	8	0	23.34	23.22	23.29		1
	8	4	23.31	23.28	23.42	0-1	1
	8	7	23.29	23.24	23.35	0-1	1
	15	0	23.31	23.34	23.30		1
	1	0	23.62	23.48	23.56		1
	1	7	23.29	23.76	23.73	0-1	1
	1	14	23.35	23.42	23.34		1
16QAM	8	0	22.36	22.32	22.34		2
	8	4	22.48	22.39	22.50	0-2	2
	8	7	22.37	22.30	22.43	0-2	2
	15	0	22.31	22.37	22.38		2
	1	0	22.38	22.47	22.57		2
	1	7	22.45	22.53	22.61	0-2	2
	1	14	22.31	22.09	22.44		2
64QAM	8	0	21.25	21.22	21.30		3
	8	4	21.33	21.35	21.45	0-3	3
	8	7	21.28	21.25	21.39]	3
	15	0	21.41	21.25	21.37] [3
	1	0	19.30	19.21	19.26		5
	1	7	19.35	19.32	19.17] [5
	1	14	19.39	19.26	19.22] [5
256QAM	8	0	19.23	19.39	19.34	0-5	5
	8	4	19.39	19.38	19.38] [5
	8	7	19.25	19.31	19.31		5
	15	0	19.39	19.39	19.45] [5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 61 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 01 01 298

Table 9-30 LTE Band 5 (Cell) Measured Pmax for all DSI -1.4 MHz Bandwidth

		LIL Dai	id 5 (Ocii) Mcas	LTE Band 5 (Cell)	1 001 - 1.4 1011 12 1	Danawiath	
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	l	
Modulation	n RB Size RB Offset	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.08	24.12	24.13		0
	1	2	24.22	24.18	24.20		0
	1	5	24.13	24.15	24.10		0
QPSK	3	0	24.20	24.04	24.23	0	0
	3	2	24.20	24.16	24.29		0
	3	3	24.19	24.25	24.22		0
	6	0	23.25	23.27	23.20	0-1	1
	1	0	23.75	23.47	23.43		1
	1	2	23.36	23.65	23.57		1
	1	5	23.31	23.49	23.34	0-1	1
16QAM	3	0	23.29	23.35	23.41		1
	3	2	23.38	23.24	23.43	1	1
	3	3	23.38	23.39	23.36	1	1
	6	0	22.32	22.29	22.31	0-2	2
	1	0	22.30	22.24	22.40		2
	1	2	22.50	22.36	22.33		2
	1	5	22.29	22.42	22.29	0-2	2
64QAM	3	0	22.37	22.19	22.37] 0-2	2
	3	2	22.36	22.34	22.34]	2
	3	3	22.29	22.43	22.20	<u> </u>	2
	6	0	21.24	21.33	21.35	0-3	3
	1	0	19.32	19.28	19.28		5
	1	2	19.10	19.10	19.22]	5
	1	5	19.33	19.31	19.33]	5
256QAM	3	0	19.40	19.29	19.34	0-5	5
	3	2	19.27	19.33	19.36	7	5
	3	3	19.41	19.24	19.33]	5
	6	0	19.23	19.24	19.35]	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 62 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 62 of 298

LTE Band 66 (AWS) 9.4.7

Table 9-31 LTE Band 66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

			not triggt	LTE Band 66 (AWS)	anawiani		
				20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 132072 (1720.0 MHz)	Mid Channel 132322 (1745.0 MHz) Conducted Power [dBm]	High Channel 132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.29	23.36	23.70		0
	1	50	23.40	23.49	23.65	0	0
	1	99	23.26	23.30	23.51		0
QPSK	50	0	22.53	22.49	22.66		1
	50	25	22.60	22.67	22.77		1
	50	50	22.48	22.58	22.65	0-1	1
	100	0	22.57	22.56	22.69		1
	1	0	22.51	22.47	22.65		1
	1	50	22.69	22.66	22.61	0-1	1
	1	99	22.49	22.64	22.63	1	1
16QAM	50	0	21.60	21.52	21.66		2
	50	25	21.51	21.70	21.75	0-2	2
	50	50	21.45	21.58	21.63	0-2	2
	100	0	21.49	21.55	21.73		2
	1	0	21.59	21.48	21.86		2
	1	50	21.78	21.67	21.78	0-2	2
	1	99	21.60	21.50	21.80		2
64QAM	50	0	20.53	20.53	20.64		3
	50	25	20.63	20.69	20.78	0-3	3
	50	50	20.52	20.61	20.69	0-3	3
	100	0	20.54	20.62	20.73		3
	1	0	18.58	18.48	18.54		5
	1	50	18.65	18.61	18.83		5
	1	99	18.44	18.55	18.46		5
256QAM	50	0	18.49	18.51	18.47	0-5	5
	50	25	18.60	18.71	18.65		5
	50	50	18.47	18.57	18.60		5
	100	0	18.52	18.59	18.59		5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 63 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 63 01 296

Table 9-32 LTE Band 66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

				LTE Band 66 (AWS)			
			Low Channel	15 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz) Conducted Power [dBm	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.32	23.41	23.67		0
	1	36	23.49	23.61	23.66	- o - F	0
	1	74	23.21	23.39	23.52	-l	0
QPSK	36	0	22.40	22.69	22.73		1
QI SIX	36	18	22.48	22.79	22.70	┥ ├	<u>'</u> 1
	36	37		22.79	22.70	0-1	<u> </u>
	75		22.41			┥ ├	<u></u>
	1	0	22.42 22.35	22.69 22.57	22.62 22.52		<u>1</u> 1
	1	36	22.52	22.57	22.52	0-1	<u>1</u> 1
	1						
400414		74	22.29	22.68	22.56		1
16QAM	36 36	0 18	21.46 21.52	21.70 21.79	21.76 21.76		2
						0-2	
	36	37	21.48	21.71	21.72		2
	75	0	21.42	21.73	21.71		2
	1	0	21.64	21.46	21.69	0-2	2
	1	36	21.78	21.76	21.64	0-2	2
64QAM	1	74	21.63	21.55	21.55		2
64QAIVI	36	0	20.43	20.70	20.75	-	3
	36	18	20.52	20.75	20.82	0-3	3
	36	37	20.41	20.71	20.79		3
	75	0	20.48	20.69	20.71		3
	1	0	18.56	18.69	18.62	-	5
	1	36	18.58	18.83	18.91		5
2500444	1	74	18.64	18.68	18.39	1 05	5
256QAM	36	0	18.65	18.63	18.58	0-5	5
	36	18	18.77	18.73	18.53	-	5
	36	37	18.58	18.65	18.48	↓	5
	75	0	18.64	18.71	18.45		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 64 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 64 of 298

Table 9-33 LTE Band 66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

				LTE Band 66 (AWS)			
			Low Channel	10 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz) Conducted Power [dBm	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.11	23.08	23.21		0
	1	25	23.19	23.33	23.27	0	0
	1	49	22.99	23.20	23.13	1	0
QPSK	25	0	22.30	22.37	22.11		1
	25	12	22.38	22.51	22.21	0.4	1
	25	25	22.23	22.37	22.10	0-1	1
	50	0	22.28	22.42	22.17		1
	1	0	22.19	22.22	22.09		1
	1	25	22.03	22.51	22.36	0-1	1
	1	49	22.19	22.29	22.10		1
16QAM	25	0	21.34	21.36	21.18		2
	25	12	21.35	21.49	21.25	0-2	2
	25	25	21.26	21.42	21.17		2
	50	0	21.31	21.43	21.21		2
	1	0	21.57	21.55	21.51		2
	1	25	21.68	21.62	21.73	0-2	2
	1	49	21.54	21.57	21.48		2
64QAM	25	0	20.42	20.47	20.17		3
	25	12	20.40	20.63	20.28	0-3	3
	25	25	20.34	20.54	20.16		3
	50	0	20.36	20.50	20.24		3
	1	0	18.30	18.55	18.25]	5
	1	25	18.52	18.51	18.35]	5
	1	49	18.45	18.49	18.22]	5
256QAM	25	0	18.55	18.45	18.27	0-5	5
	25	12	18.58	18.53	18.39]	5
	25	25	18.48	18.35	18.24]	5
	50	0	18.50	18.42	18.31		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 65 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 65 of 298

Table 9-34 LTE Band 66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 131997 (1712.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
ļ	11	0	23.30	23.31	23.28	┩ . ┝	0
	1	12	23.39	23.39	23.33	0	0
	1	24	23.31	23.28	23.21		0
QPSK	12	0	22.43	22.41	22.46	↓	1
ļ	12	6	22.46	22.46	22.43	0-1	1
ļ	12	13	22.36	22.35	22.41] " [1
	25	0	22.44	22.40	22.44		1
	1	0	22.60	22.35	22.54		1
	1	12	22.63	22.48	22.61	0-1	1
	1	24	22.58	22.36	22.50		1
16QAM	12	0	21.50	21.43	21.47		2
	12	6	21.48	21.49	21.47	T [2
	12	13	21.39	21.37	21.48	0-2	2
l	25	0	21.41	21.42	21.47	1	2
	1	0	21.43	21.45	21.55		2
l	1	12	21.56	21.53	21.60	0-2	2
ľ	1	24	21.44	21.41	21.47	1	2
64QAM	12	0	20.49	20.46	20.45		3
ľ	12	6	20.27	20.34	20.25	1 <u>. </u>	3
İ	12	13	20.18	20.22	20.24	0-3	3
ľ	25	0	20.30	20.22	20.22	† F	3
	1	0	18.55	18.59	18.53		5
ŀ	1	12	18.76	18.65	18.51	┪ ┣	5
ľ	1	24	18.66	18.57	18.30	┪ ┡	5
256QAM	12	0	18.74	18.55	18.37	0-5	5
	12	6	18.68	18.62	18.27	†	5
ŀ	12	13	18.54	18.49	18.26	┪ ├	5
ŀ	25	0	18.56	18.53	18.31	╡ ├	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 66 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 66 of 298

Table 9-35 LTE Band 66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 3 MHz Bandwidth

				LTE Band 66 (AWS) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 131987 (1711.5 MHz)	Mid Channel 132322 (1745.0 MHz) Conducted Power [dBm	High Channel 132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.29	23.37	23.27		0
	1	7	23.27	23.45	23.24	0	0
	1	14	23.50	23.35	23.24	1	0
QPSK	8	0	22.42	22.48	22.39		1
	8	4	22.41	22.58	22.48	0-1	1
	8	7	22.36	22.50	22.37	0-1	1
	15	0	22.41	22.54	22.43		1
	1	0	22.40	22.67	22.62		1
	1	7	22.39	22.65	22.58	0-1	1
	1	14	22.36	22.63	22.45		1
16QAM	8	0	21.32	21.41	21.49		2
	8	4	21.32	21.47	21.47	0-2	2
	8	7	21.24	21.40	21.49	0-2	2
	15	0	21.50	21.60	21.54		2
	1	0	21.58	21.56	21.58		2
	1	7	21.61	21.51	21.67	0-2	2
	1	14	21.56	21.48	21.56		2
64QAM	8	0	20.54	20.53	20.52		3
	8	4	20.55	20.61	20.59	0-3	3
	8	7	20.47	20.52	20.52	0-3	3
	15	0	20.53	20.63	20.47		3
	1	0	18.76	18.57	18.36		5
	1	7	18.43	18.56	18.46		5
	1	14	18.56	18.53	18.41		5
256QAM	8	8 0	18.66	18.47	18.28	0-5	5
	8	4	18.66	18.58	18.35		5
	8	7	18.56	18.60	18.30		5
	15	0	18.71	18.58	18.37		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 67 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 67 of 298

Table 9-36 LTE Band 66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) -1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.25	23.30	23.29		0
	1	2	23.32	23.21	23.38		0
	1	5	23.20	23.13	23.25	0	0
QPSK	3	0	23.29	23.20	23.39		0
	3	2	23.29	23.25	23.36		0
	3	3	23.27	23.19	23.44		0
	6	0	22.32	22.26	22.41	0-1	1
	1	0	22.20	22.27	22.45		1
	1	2	22.19	22.20	22.35		1
	1	5	22.07	22.22	22.40	0-1	1
16QAM	3	0	22.47	22.40	22.45] " [1
	3	2	22.50	22.44	22.42		1
	3	3	22.42	22.35	22.28		1
	6	0	21.31	21.19	21.41	0-2	2
	1	0	21.17	21.19	21.26		2
	1	2	21.20	21.15	21.25		2
	1	5	21.19	21.23	21.31	0-2	2
64QAM	3	0	21.48	21.40	21.37] 0-2	2
	3	2	21.51	21.41	21.28	1 [2
	3	3	21.47	21.36	21.30	1 [2
	6	0	20.37	20.27	20.35	0-3	3
	1	0	18.62	18.53	18.32		5
	1	2	18.71	18.71	18.42	1	5
	1	5	18.47	18.35	18.32	1	5
256QAM	3	0	18.53	18.56	18.32	0-5	5
	3	2	18.50	18.50	18.40	†	5
	3	3	18.61	18.52	18.32	†	5
	6	0	18.45	18.45	18.21	† F	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 60 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 68 of 298

Table 9-37 LTE Band 66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

	212 Bui	ia 00 (71110	y modearod 1 m	LTE Band 66 (AWS)	otopot modo,	20 MINZ Balluwi	utii
			Low Channel	20 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	•		
	1	0	18.22	18.63	18.91		0
	1	50	18.50	18.90	18.90	0	0
	1	99	18.19	18.70	18.77		0
QPSK	50	0	18.80	18.86	18.89		0
	50	25	18.87	18.96	19.00	0-1	0
	50	50	18.74	18.84	18.90		0
	100	0	18.81	18.85	18.90		0
	1	0	18.61	18.77	18.98	0-1	0
	1	50	18.80	18.90	18.86		0
	1	99	18.59	18.71	18.69		0
16QAM	50	0	18.79	18.86	18.88		0
	50	25	18.96	19.04	18.94	0-2	0
	50	50	18.80	18.93	18.87	0-2	0
	100	0	18.87	18.96	18.91		0
	1	0	18.90	19.00	18.99		0
	1	50	19.00	19.13	18.82	0-2	0
	1	99	18.94	19.15	18.90		0
64QAM	50	0	18.80	18.89	18.94		0
	50	25	18.95	19.09	18.90	0-3	0
	50	50	18.77	18.97	18.94	0-3	0
	100	0	18.75	18.97	18.94		0
	1	0	19.05	18.97	18.99		0
	1	50	19.01	19.11	18.89		0
	1	99	19.01	19.03	18.90		0
256QAM	50	0	18.80	18.93	18.94	0-5	0
	50	25	18.92	19.10	18.88		0
	50	50	18.78	18.98	18.92		0
	100	0	18.75	18.98	18.92	7	0

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 69 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 69 01 298

Table 9-38 LTE Band 66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

		10. 00 (11110	,	LTE Band 66 (AWS)	сторот постој	13 WILL Ballawi	
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			,	Conducted Power [dBm			
	1	0	18.45	18.57	18.77		0
	1	36	18.60	18.78	18.78	0	0
	1	74	18.36	18.53	18.69		0
QPSK	36	0	18.71	18.76	18.86		0
	36	18	18.82	18.84	18.82	0-1	0
	36	37	18.74	18.82	18.76	0-1	0
	75	0	18.77	18.83	19.21		0
	1	0	18.84	18.88	19.15		0
	1	36	18.92	19.10	19.29	0-1	0
	1	74	18.71	18.82	18.89		0
16QAM	36	0	18.80	18.73	18.87		0
	36	18	18.83	18.94	18.93	0-2	0
	36	37	18.79	18.83	18.80	0-2	0
	75	0	18.77	18.75	18.86		0
	1	0	18.82	18.84	19.11		0
	1	36	18.96	18.87	18.92	0-2	0
	1	74	18.77	18.90	18.93		0
64QAM	36	0	18.76	18.72	18.89		0
	36	18	18.79	18.82	19.00	0-3	0
	36	37	18.77	18.85	18.87		0
	75	0	18.79	18.87	18.80		0
	1	0	18.76	18.77	18.77		0
	1	36	18.94	19.04	18.89		0
	1	74	18.89	18.96	18.85		0
256QAM	36	0	18.75	18.93	18.89	0-5	0
	36	18	18.82	19.04	18.87		0
	36	37	18.70	18.98	18.83		0
	75	0	18.67	18.85	18.77		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 70 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 70 of 298

Table 9-39 LTE Band 66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

			y measured r iii	LTE Band 66 (AWS)	otopot modo)	TO WITTE DATION	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	18.31	18.38	18.41		0
	1	25	18.49	18.56	18.62	0	0
	1	49	18.30	18.45	18.44		0
QPSK	25	0	18.69	18.60	18.68		0
	25	12	18.73	18.73	18.85	0-1	0
	25	25	18.62	18.62	18.68] 0-1	0
	50	0	18.65	18.72	18.73		0
	1	0	18.74	18.52	18.99		0
	1	25	18.94	18.93	19.08	0-1	0
	1	49	18.62	18.78	18.95		0
16QAM	25	0	18.61	18.62	18.87		0
	25	12	18.79	18.81	18.83	0-2	0
	25	25	18.60	18.64	18.67	0-2	0
	50	0	18.69	18.77	18.79		0
	1	0	18.84	18.69	18.75		0
	1	25	18.89	18.85	18.78	0-2	0
	1	49	18.75	18.86	18.62		0
64QAM	25	0	18.76	18.75	18.72		0
	25	12	18.61	18.98	18.88	0-3	0
	25	25	18.91	18.92	18.66	0-3	0
	50	0	18.79	18.89	18.84		0
	1	0	18.86	18.52	18.73		0
	1	25	18.80	18.68	18.79		0
	1	49	18.83	18.94	18.79		0
256QAM	25	0	18.74	18.74	18.81	0-5	0
	25	12	18.88	18.82	18.71		0
	25	25	18.87	18.83	18.73		0
	50	0	18.85	18.79	18.72		0

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 71 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 71 01 296

Table 9-40 LTE Band 66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

	2.2.54	00 (, 1111	-,	LTE Band 66 (AWS) 5 MHz Bandwidth		- 5 MHZ Bandwid	
		RB Size RB Offset	Low Channel 131997	Mid Channel 132322	High Channel 132647	MPR Allowed per	
Modulation	RB Size		(1712.5 MHz)	(1745.0 MHz)	(1777.5 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	18.38	18.58	18.60		0
	1	12	18.53	18.63	18.67	0	0
	1	24	18.35	18.54	18.60		0
QPSK	12	0	18.69	18.68	18.75		0
	12	6	18.68	18.75	18.80	0-1	0
	12	13	18.55	18.69	18.77	U-1	0
	25	0	18.66	18.70	18.72		0
	1	0	18.71	18.77	18.80	0-1	0
	1	12	18.93	18.87	18.77		0
	1	24	18.66	18.80	18.84		0
16QAM	12	0	18.75	18.70	18.77		0
	12	6	18.76	18.80	18.71	0-2	0
	12	13	18.63	18.74	18.71	0-2	0
	25	0	18.67	18.72	18.64		0
	1	0	18.66	18.79	18.80		0
	1	12	18.80	18.87	18.85	0-2	0
	1	24	18.67	18.78	18.85		0
64QAM	12	0	18.66	18.71	18.72		0
	12	6	18.71	18.79	18.72	0-3	0
	12	13	18.78	18.72	18.70	U-S	0
	25	0	18.65	18.75	18.63		0
	1	0	18.90	18.72	18.75		0
	1	12	18.79	18.80	18.80		0
	1	24	18.70	18.80	18.79		0
256QAM	12	0	18.80	18.73	18.67	0-5	0
	12	6	18.72	18.75	18.69		0
	12	13	18.59	18.73	18.66		0
	25	0	18.61	18.74	18.62		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 72 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset			

Table 9-41 LTE Band 66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 3 MHz Bandwidth

	LILDa	iid oo (Avv	oj Measurea i i	LTE Band 66 (AWS)	iotapot illoue)	- 5 WILLS Dallawic	1611
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MPR Allowed per	
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	18.30	18.48	18.77		0
	1	7	18.52	18.75	18.76	0	0
	1	14	18.28	18.57	18.65		0
QPSK	8	0	18.65	18.70	18.85		0
	8	4	18.68	18.73	18.89	0-1	0
	8	7	18.60	18.65	18.81] "-1	0
	15	0	18.62	18.67	18.85		0
	1	0	18.63	18.85	18.83		0
	1	7	18.63	18.76	18.78	0-1	0
	1	14	18.59	18.85	18.80		0
16QAM	8	0	18.72	18.69	18.74		0
	8	4	18.76	18.77	18.77	0-2	0
	8	7	18.67	18.70	18.81	0-2	0
	15	0	18.70	18.75	18.81		0
	1	0	18.89	18.82	18.74		0
	1	7	18.94	18.87	18.73	0-2	0
	1	14	18.76	18.75	18.69		0
64QAM	8	0	18.69	18.73	18.78		0
	8	4	18.77	18.76	18.85	0-3	0
	8	7	18.76	18.69	18.75	0-3	0
	15	0	18.69	18.80	18.77		0
·	1	0	18.86	18.85	18.63		0
	1	7	18.81	18.75	18.73		0
	1	14	18.82	18.77	18.64		0
256QAM	8	0	18.65	18.70	18.58	0-5	0
	8	4	18.82	18.77	18.63		0
	8	7	18.73	18.70	18.56		0
	15	0	18.76	18.79	18.64		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 72 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 73 of 298

Table 9-42 LTE Band 66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) -1.4 MHz Bandwidth

		,	,	LTE Band 66 (AWS)		1.4 WINZ Balluwi	
			Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	18.47	18.45	18.62		0
	1	2	18.66	18.61	18.72		0
	1	5	18.37	18.53	18.62	0	0
QPSK	3	0	18.67	18.60	18.63	U	0
	3	2	18.69	18.60	18.73		0
	3	3	18.67	18.57	18.59		0
	6	0	18.76	18.67	18.67	0-1	0
	1	0	18.79	18.70	18.68		0
	1	2	18.86	18.81	18.77	0-1	0
	1	5	18.79	18.73	18.72		0
16QAM	3	0	18.75	18.64	18.58		0
	3	2	18.77	18.81	18.66		0
	3	3	18.65	18.76	18.63		0
	6	0	18.60	18.82	18.67	0-2	0
	1	0	18.82	18.82	18.92		0
	1	2	18.91	18.96	18.79		0
	1	5	18.87	18.84	18.96	0-2	0
64QAM	3	0	18.77	18.93	18.78	0-2	0
	3	2	18.75	18.89	18.84		0
	3	3	18.80	18.81	18.79		0
	6	0	18.70	18.80	18.72	0-3	0
	1	0	18.83	18.84	18.92		0
	1	2	18.91	18.96	19.14		0
	1	5	18.87	18.88	18.90	†	0
256QAM	3	0	18.78	18.89	18.79	0-5	0
	3	2	18.83	18.84	18.88	1	0
	3	3	18.76	18.82	18.81	†	0
	6	0	18.73	18.91	18.72	†	0
					-		

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 74 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 74 of 298

Table 9-43 LTE Band 66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

			23070	LTE Band 66 (AWS) 20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 132072 (1720.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	18.90	18.84	19.25		0
	1	50	19.13	19.13	19.17	0	0
	1	99	18.93	19.03	19.13		0
QPSK	50	0	19.15	19.20	19.21		0
	50	25	19.17	19.17	19.25	0-1	0
	50	50	19.18	19.08	19.17] "	0
	100	0	19.14	19.14	19.16		0
	1	0	19.15	19.00	19.06	_	0
	1	50	19.05	19.06	19.09	0-1	0
	1	99	19.18	18.87	18.91		0
16QAM	50	0	18.84	18.95	18.83		0
	50	25	18.74	18.80	18.92	0-2	0
	50	50	18.91	18.87	18.87		0
	100	0	18.76	18.76	18.96		0
	1	0	18.74	18.76	18.88		0
	1	50	18.72	18.89	18.84	0-2	0
	1	99	18.66	18.84	18.72		0
64QAM	50	0	18.92	18.84	18.79		0
	50	25	18.85	18.98	18.92	0-3	0
	50	50	18.91	18.89	18.80	0-3	0
	100	0	18.98	18.85	18.89		0
	1	0	18.86	18.67	18.68		0.5
	1	50	18.86	18.89	18.68		0.5
	1	99	18.80	18.63	18.55		0.5
256QAM	50	0	18.55	18.61	18.65	0-5	0.5
	50	25	18.69	18.80	18.68		0.5
	50	50	18.56	18.67	18.72		0.5
	100	0	18.64	18.63	18.74		0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 75 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 75 of 298

Table 9-44 LTE Band 66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

			active	E) - 15 MHZ Band LTE Band 66 (AWS)	awiatii		
				15 MHz Bandwidth			
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	19.14	19.04	19.29		0
	1	36	19.27	19.25	19.20	0	0
	1	74	18.97	19.01	19.13	1	0
QPSK	36	0	19.21	19.25	19.40		0
	36	18	19.28	19.40	19.39	0-1	0
	36	37	19.21	19.30	19.22	0-1	0
	75	0	19.22	19.30	19.30		0
	1	0	19.18	18.98	19.00		0
	1	36	19.33	19.12	19.04	0-1	0
	1	74	19.12	18.90	19.22		0
16QAM	36	0	19.13	19.08	18.88		0
	36	18	18.97	18.91	19.01	0-2	0
	36	37	19.12	18.95	18.87	0-2	0
	75	0	19.00	18.93	19.05		0
	1	0	18.97	18.97	19.11		0
	1	36	18.89	19.10	19.02	0-2	0
	1	74	18.85	18.99	18.91		0
64QAM	36	0	18.89	18.73	18.85		0
	36	18	18.75	18.78	18.79	0-3	0
	36	37	18.77	18.84	18.85		0
	75	0	18.84	18.70	18.96		0
	1	0	18.73	18.79	18.62		0.5
	1	36	18.88	19.00	18.73	_	0.5
	1	74	18.61	18.75	18.54	_	0.5
256QAM	36	0	18.76	18.83	18.72	0-5	0.5
	36	18	18.82	18.90	18.75		0.5
	36	37	18.73	18.89	18.73		0.5
	75	0	18.78	18.83	18.70		0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	NSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 76 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 70 01 298

Table 9-45 LTE Band 66 (AWS) Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

				LTE Band 66 (AWS) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 132022 (1715.0 MHz)	Mid Channel 132322 (1745.0 MHz) Conducted Power [dBm]	High Channel 132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	18.89	18.71	18.92		0
	1	25	19.01	19.04	19.02	0	0
	1	49	18.84	18.85	18.83	†	0
QPSK	25	0	19.16	19.03	19.19		0
	25	12	19.21	19.19	19.31	-	0
	25	25	19.08	19.07	19.21	0-1	0
	50	0	19.13	19.11	19.26	1	0
	1	0	19.14	18.91	18.99		0
	1	25	18.95	19.06	19.21	0-1	0
	1	49	18.88	18.89	19.08		0
16QAM	25	0	18.92	18.92	19.09		0
	25	12	19.01	19.06	19.22		0
	25	25	18.87	18.96	19.14	0-2	0
	50	0	18.90	19.01	19.16		0
	1	0	18.83	18.62	19.00		0
	1	25	18.69	18.93	18.74	0-2	0
	1	49	18.87	18.75	18.83		0
64QAM	25	0	19.00	19.08	19.06		0
	25	12	19.06	19.00	19.08	0-3	0
	25	25	18.92	19.10	19.16	0-3	0
	50	0	18.99	19.01	19.13		0
	1	0	18.79	18.77	18.49		0.5
	1	25	19.05	18.84	18.56		0.5
	1	49	18.86	18.67	18.39		0.5
256QAM	25	0	18.65	18.53	18.53	0-5	0.5
	25	12	18.76	18.65	18.63		0.5
	25	25	18.65	18.57	18.55		0.5
	50	0	18.63	18.59	18.60		0.5

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do ao 77 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 77 of 298

Table 9-46 LTE Band 66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

				LTE Band 66 (AWS)			
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997	132322	132647	MPR Allowed per	MPR [dB]
Wodulation	ND Size	IND Offset	(1712.5 MHz)	(1745.0 MHz)	(1777.5 MHz)	3GPP [dB]	MIFIX [UD]
				Conducted Power [dBm]		
	1	0	18.95	18.97	18.93		0
	1	12	19.06	19.01	18.96	0	0
	1	24	18.82	18.92	18.88		0
QPSK	12	0	18.97	19.06	19.14		0
	12	6	19.05	19.09	19.12	0-1	0
	12	13	18.97	19.06	19.11	J-1	0
	25	0	18.96	19.06	19.09		0
	1	0	19.13	18.99	19.16		0
	1	12	19.18	19.09	19.20	0-1	0
	1	24	19.11	18.97	19.10		0
16QAM	12	0	19.04	19.06	19.11		0
	12	6	19.04	19.14	19.15	0-2	0
	12	13	18.92	19.04	19.12	0-2	0
	25	0	18.96	19.05	19.14		0
	1	0	18.97	19.12	19.08		0
	1	12	19.08	18.91	19.18	0-2	0
	1	24	18.92	18.77	19.07		0
64QAM	12	0	19.04	18.83	19.08		0
	12	6	19.06	18.81	19.03	0-3	0
	12	13	18.93	19.05	18.89		0
	25	0	19.02	19.02	18.80		0
	1	0	18.78	18.54	18.75		0.5
	1	12	18.87	18.69	18.78		0.5
	1	24	18.77	18.56	18.67		0.5
256QAM	12	0	18.73	18.55	18.55	0-5	0.5
	12	6	18.75	18.63	18.57		0.5
	12	13	18.74	18.51	18.54		0.5
	25	0	18.71	18.70	18.41		0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 70 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 78 of 298

Table 9-47 LTE Band 66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 3 MHz Bandwidth

				e) - 3 MHz Band LTE Band 66 (AWS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 132322 (1711.5 MHz) (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted Power [dBm]		
	1	0	18.89	18.87	19.02		0
	1	7	18.87	18.94	18.98	0	0
	1	14	18.84	18.84	18.92	1	0
QPSK	8	0	18.96	18.99	19.07		0
	8	4	18.95	19.06	19.17	0-1	0
	8	7	18.89	19.00	19.08] 0-1	0
	15	0	18.95	19.05	19.13	1	0
	1	0	18.66	19.11	19.27		0
	1	7	18.95	19.03	19.26	0-1	0
T	1	14	18.75	19.08	19.09		0
16QAM	8	0	18.90	18.88	19.12	0-2	0
	8	4	18.90	18.92	19.19		0
	8	7	18.77	18.84	19.15		0
	15	0	18.95	19.08	19.14		0
	1	0	18.69	18.99	18.70		0
	1	7	18.78	18.94	18.84	0-2	0
	1	14	18.67	18.94	18.79		0
64QAM	8	0	18.80	19.00	18.85		0
	8	4	19.08	19.07	19.02	0-3	0
	8	7	19.01	18.99	19.11	0-3	0
	15	0	19.09	19.08	18.97		0
	1	0	18.85	18.87	18.61		0.5
	1	7	18.66	18.91	18.50		0.5
F	1	14	18.63	18.83	18.70] [0.5
256QAM	8	0	18.84	18.69	18.50	0-5	0.5
	8	4	18.86	18.74	18.54		0.5
	8	7	18.85	18.71	18.50		0.5
	15	0	18.79	18.68	18.61	7	0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do so 70 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 79 of 298

Table 9-48 LTE Band 66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) -1.4 MHz Bandwidth

				LTE Band 66 (AWS)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979	132322 132665	MPR Allowed per	MPR [dB]	
Wodulation	ND SIZE	IND Offset	(1710.7 MHz)	(1745.0 MHz)	(1779.3 MHz)	3GPP [dB]	MIF IX [GD]
			(Conducted Power [dBm]		
	1	0	18.85	18.87	18.98		0
	1	2	18.95	18.91	19.07		0
	1	5	18.87	18.79	18.92	0	0
QPSK	3	0	18.80	18.90	18.93		0
	3	2	18.80	18.93	19.01		0
	3	3	18.76	18.85	19.02		0
	6	0	18.87	18.95	18.99	0-1	0
	1	0	19.03	18.73	18.87	0-1	0
	1	2	19.06	18.74	18.85		0
	1	5	19.05	18.81	18.73		0
16QAM	3	0	18.88	19.03	19.09		0
	3	2	18.94	19.08	19.12		0
	3	3	18.93	18.98	19.14		0
	6	0	18.85	18.90	18.89	0-2	0
	1	0	18.86	18.72	18.90		0
	1	2	18.91	18.85	19.00		0
	1	5	18.82	18.73	18.92	0-2	0
64QAM	3	0	18.99	19.07	19.11	0-2	0
	3	2	18.95	19.09	19.05		0
	3	3	18.86	19.01	19.11		0
	6	0	18.94	18.94	18.96	0-3	0
	1	0	18.67	18.88	18.46		0.5
	1	2	18.72	18.62	18.50	1	0.5
	1	5	18.66	18.60	18.55	1	0.5
256QAM	3	0	18.63	18.53	18.41	0-5	0.5
	3	2	18.76	18.45	18.31	1	0.5
	3	3	18.63	18.40	18.55	†	0.5
	6	0	18.64	18.58	18.60	1	0.5

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 90 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 80 of 298

LTE Band 25 (PCS) 9.4.8

Table 9-49 LTE Band 25 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

				LTE Band 25 (PCS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	23.26	23.22	23.00		0
	1	50	23.18	23.09	22.94	0	0
	1	99	23.27	23.10	22.95		0
QPSK	50	0	22.38	22.31	22.12		1
	50	25	22.40	22.26	22.16	0-1	1
	50	50	22.34	22.15	22.12	U-1	1
	100	0	22.19	22.13	22.10		1
	1	0	22.59	22.64	22.29		1
	1	50	22.63	22.48	22.24	0-1	1
16QAM	1	99	22.65	22.47	22.21		1
	50	0	21.40	21.33	21.19		2
	50	25	21.42	21.38	21.12		2
	50	50	21.28	21.36	21.12		2
	100	0	21.28	21.11	21.09		2
	1	0	21.50	21.69	21.15		2
	1	50	21.50	21.48	21.17	0-2	2
	1	99	21.48	21.24	21.27		2
64QAM	50	0	20.47	20.31	20.16		3
	50	25	20.46	20.32	20.19	0-3	3
	50	50	20.35	20.14	20.21	0-3	3
	100	0	20.33	20.17	20.05		3
	1	0	18.33	18.03	17.97		5
	1	50	18.43	18.34	17.92		5
	1	99	18.46	17.97	18.01	1	5
256QAM	50	0	18.36	18.18	18.02	0-5	5
	50	25	18.36	18.29	18.17	1	5
	50	50	18.19	18.10	18.11	1	5
	100	0	18.35	18.10	17.93	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 94 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 81 of 298

Table 9-50 LTE Band 25 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

			not trigg	LTE Band 25 (PCS)	Barrawiatri		
				15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.10	23.19	23.13		0
	1	36	23.25	23.22	23.19	0	0
	1	74	23.19	23.35	23.25		0
QPSK	36	0	22.15	22.23	22.24		1
	36	18	22.23	22.36	22.34	0-1	1
	36	37	22.25	22.27	22.30	0-1	1
	75	0	22.17	22.20	22.28		1
	1	0	22.42	22.71	22.43	0-1	1
	1	36	22.62	22.57	22.34		1
•	1	74	22.64	22.54	22.42		1
16QAM	36	0	21.20	21.23	21.27		2
	36	18	21.30	21.34	21.36	0-2	2
	36	37	21.31	21.29	21.41		2
	75	0	21.15	21.25	21.32		2
	1	0	21.45	21.67	21.30		2
	1	36	21.63	21.54	21.26	0-2	2
	1	74	21.59	21.46	21.31		2
64QAM	36	0	20.27	20.34	20.34		3
	36	18	20.23	20.46	20.45	0-3	3
	36	37	20.27	20.37	20.49		3
	75	0	20.24	20.22	20.27		3
	1	0	18.12	18.11	18.25		5
	1	36	18.12	17.90	18.08		5
	1	74	18.29	18.37	18.19		5
256QAM	36	0	18.25	18.15	18.12	0-5	5
	36	18	18.38	18.24	18.31]	5
	36	37	18.27	18.14	18.19		5
	75	0	18.23	18.08	18.15		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 92 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 82 of 298

Table 9-51 LTE Band 25 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered)- 10 MHz Bandwidth

				LTE Band 25 (PCS)			
				10 MHz Bandwidth			
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.08	23.29	23.11		0
	1	25	23.25	23.07	23.15	1 0	0
	1	49	23.19	23.18	23.25	1 1	0
QPSK	25	0	22.07	22.20	22.19		1
	25	12	22.16	22.31	22.30	1	1
	25	25	22.12	22.26	22.28	0-1	1
	50	0	22.08	22.24	22.25	1	1
	1	0	22.34	22.60	22.26		1
	1	25	22.54	22.42	22.20	0-1	1
	1	49	22.29	22.26	22.37		1
16QAM	25	0	21.28	21.25	21.37		2
	25	12	21.29	21.36	21.35		2
	25	25	21.32	21.29	21.36		2
	50	0	21.22	21.27	21.28		2
	1	0	21.25	21.29	21.33		2
	1	25	21.25	21.31	21.27	0-2	2
	1	49	21.37	21.28	21.29		2
64QAM	25	0	20.27	20.31	20.20		3
	25	12	20.35	20.36	20.33	0-3	3
	25	25	20.24	20.37	20.34] 0-3	3
	50	0	20.14	20.31	20.24		3
	1	0	18.44	18.07	18.12		5
	1	25	18.44	18.25	18.02		5
	1	49	18.33	17.90	17.85]	5
256QAM	25	0	18.13	17.86	17.88	0-5	5
	25	12	18.17	17.84	18.08]	5
	25	25	18.15	17.98	17.98] [5
	50	0	18.16	17.93	18.04		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 92 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 83 of 298

Table 9-52 LTE Band 25 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

				LTE Band 25 (PCS)						
	5 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	23.11	23.13	23.06		0			
	1	12	23.03	23.24	23.09	0	0			
	1	24	23.10	23.27	23.14		0			
QPSK	12	0	22.13	22.27	22.22		1			
	12	6	22.17	22.28	22.27	1	1			
	12	13	22.18	22.30	22.31	0-1	1			
	25	0	22.08	22.21	22.26		1			
	1	0	22.47	22.44	22.33		1			
	1	12	22.45	22.37	22.46	0-1	1			
16QAM	1	24	22.48	22.46	22.22		1			
	12	0	21.21	21.23	21.23		2			
	12	6	21.20	21.34	21.35	0-2	2			
	12	13	21.22	21.36	21.35		2			
	25	0	21.13	21.24	21.29		2			
	1	0	21.30	21.27	21.38		2			
	1	12	21.44	21.38	21.42	0-2	2			
	1	24	21.45	21.36	21.44		2			
64QAM	12	0	20.24	20.29	20.23		3			
	12	6	20.25	20.29	20.31	0-3	3			
	12	13	20.21	20.31	20.29	0-3	3			
	25	0	20.15	20.33	20.19		3			
	1	0	18.18	18.59	18.26		5			
	1	12	18.19	18.25	18.33		5			
	1	24	18.12	18.11	18.11		5			
256QAM	12	0	18.15	17.85	17.98	0-5	5			
	12	6	18.17	18.10	18.09]	5			
	12	13	18.11	18.00	18.07		5			
	25	0	18.09	18.04	18.05		5			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 94 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 84 of 298

Table 9-53 LTE Band 25 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 3 MHz Bandwidth

			<u></u>	LTE Band 25 (PCS)			
				3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.27	23.16	23.12		0
	1	7	23.02	23.18	23.11	0	0
	1	14	23.16	23.14	23.20		0
QPSK	8	0	22.15	22.19	22.27		1
	8	4	22.20	22.20	22.30	0-1	1
	8	7	22.19	22.23	22.29	J 0-1	1
	15	0	22.16	22.17	22.28		1
	1	0	22.38	22.37	22.50	0-1	1
	1	7	22.45	22.39	22.51		1
	1	14	22.55	22.38	22.49		1
16QAM	8	0	21.19	21.20	21.34	0-2	2
	8	4	21.02	21.22	21.37		2
	8	7	21.02	21.22	21.38		2
	15	0	21.12	21.27	21.26		2
	1	0	21.09	21.35	21.15		2
	1	7	21.06	21.33	21.29	0-2	2
	1	14	21.14	21.29	21.19		2
64QAM	8	0	20.15	20.28	20.22		3
	8	4	20.24	20.33	20.43	0-3	3
	8	7	20.18	20.31	20.41		3
	15	0	20.17	20.33	20.32		3
	1	0	18.29	18.02	18.28		5
	1	7	18.29	18.18	18.08]	5
	1	14	18.29	18.05	17.89] [5
256QAM	8	0	18.09	17.98	18.41	0-5	5
	8	4	18.15	18.05	18.17]	5
	8	7	18.07	18.15	18.05]	5
	15	0	18.18	18.02	18.08		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 85 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 65 01 298

Table 9-54 LTE Band 25 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) -1.4 MHz Bandwidth

				LTE Band 25 (PCS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.25	23.12	23.12		0
	1	2	23.11	23.12	23.12	 	0
	1	5	23.19	23.15	23.22	 	0
QPSK	3	0	23.03	23.09	23.34	0	0
Qi SiX	3	2	23.09	23.22	23.26	 	0
	3	3	23.04	23.18	23.22	-	0
	6	0	22.07	22.16	22.30	0-1	1
	1	0	22.33	22.35	22.33	0-1	<u></u> 1
	1	2	22.45	22.41	22.44	0-1	<u></u>
	1	5	22.49	22.39	22.44		<u></u>
16QAM	3	0	22.12	22.39	22.33		<u></u>
100/11/1	3	2	22.17	22.38	22.38		<u></u>
	3	3	22.09	22.34	22.30		<u></u>
	6	0	21.10	21.12	21.22	0-2	2
	1	0	21.33	21.32	21.30	02	2
	1	2	21.34	21.28	21.29	 	2
	1	5	21.37	21.22	21.29	 	2
64QAM	3	0	21.08	21.33	21.33	0-2	2
0+Q/ (W	3	2	21.11	21.38	21.35	-	2
	3	3	21.06	21.32	21.31	-	2
	6	0	20.08	20.21	20.27	0-3	3
	1	0	18.04	18.09	17.97	0-5	5
	1	2	18.28	18.36	17.85	-	5
	1	5	17.95	17.95	17.85	-	5 5
256QAM	3	0	18.14	18.00	18.01	0-5	5
2000/1111	3	2	17.98	17.94	18.03	 	5 5
	3	3	18.05	18.05	18.18	-	5
	6	0	17.96	17.98	18.01	-	5 5
	Ö	U	17.30	17.90	10.01	1	ວ

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do ac 96 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 86 of 298

Table 9-55 LTE Band 25 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

		11G 20 (1 C	o, modearea i n	LTE Band 25 (PCS)	iotopot iniodo)	20 MHz Bandwi	u (
				20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	18.20	18.21	17.80		0
	1	50	18.18	18.00	17.75		0
	1	99	18.11	17.90	17.75	⊣ ′	0
QPSK	50	0	18.25	18.29	17.94		0
QFSK						-	
	50 50	25 50	18.27 18.17	18.14 18.03	17.78 17.97	0-1	0
	100	0	18.17	18.03	17.97		0
	100	0	18.07	18.12	18.01		0
	1	50				0-1	0
100111			18.57	18.35	18.11		
	1	99	18.42	18.25	18.05	0-2	0
16QAM	50	0	18.35	18.24	17.91		0
	50	25 50	18.30 18.17	18.15	17.88 17.83		0
	50 100	0	18.17	18.00 17.95	17.85		0
	100	0	18.52	18.47	18.11		0
	1	50	18.44	18.36	18.09	0-2	0
	· ·	99	18.42	18.32	17.93	- 0-2	0
64QAM	1 50						
04QAIVI	50	0	18.40	18.25	17.91	-	0
	50	25	18.43	18.15	17.89	0-3	0
	50	50	18.34	18.06	17.88	-	0
	100	0	18.14	17.95	17.80		0
	1	0	18.22	18.02	17.60	-	0
	1	50	18.49	18.22	17.84	-	0
0500414	1 50	99	18.11	17.75	17.70		0
256QAM	50	0	18.26	18.12	17.75	0-5	0
	50	25	18.20	18.22	17.83	4 -	0
	50	50	18.17	17.98	17.85		0
	100	0	18.14	17.96	17.84		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 07 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 87 of 298

Table 9-56 LTE Band 25 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

		•	•	LTE Band 25 (PCS)		15 MHZ Bandwi		
15 MHz Bandwidth								
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
	1	0	18.27	18.16	18.02		0	
	1	36	18.33	18.27	18.09	0	0	
	1	74	18.20	18.16	18.10		0	
QPSK	36	0	18.37	18.24	17.96		0	
	36	18	18.38	18.27	18.11	1 04	0	
	36	37	18.30	18.20	18.12	0-1	0	
	75	0	18.31	18.24	18.04		0	
	1	0	18.42	18.61	18.09	0-1	0	
1 1 16QAM 36	1	36	18.30	18.45	18.16		0	
	1	74	18.45	18.47	18.25		0	
	36	0	18.38	18.21	18.00	0-2	0	
	36	18	18.51	18.31	18.19		0	
	36	37	18.47	18.14	18.17		0	
	75	0	18.46	18.13	18.06		0	
	1	0	18.59	18.50	18.28		0	
	1	36	18.35	18.55	18.23	0-2	0	
	1	74	18.56	18.56	18.20		0	
64QAM	36	0	18.48	18.41	18.01		0	
	36	18	18.50	18.48	18.16	0-3	0	
	36	37	18.47	18.40	18.19		0	
	75	0	18.38	18.20	18.14		0	
	1	0	18.22	18.16	17.80]	0	
	1	36	18.18	18.27	18.15		0	
	1	74	18.05	18.12	18.09		0	
256QAM	36	0	18.24	18.10	17.93	0-5	0	
	36	18	18.25	18.22	18.07] [0	
	36	37	18.29	18.10	18.14]	0	
	75	0	18.25	18.06	18.05		0	

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	IMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 99 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 88 of 298

Table 9-57 LTE Band 25 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

		(o, measarear n	LTE Band 25 (PCS)	iotopot illouo,	10 WITIZ Dalluwi	•
				10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	18.21	18.22	18.05		0
	1	25	18.22	18.18	17.96	0	0
	1	49	18.17	18.11	17.92		0
QPSK	25	0	18.19	18.19	17.96		0
	25	12	18.31	18.16	18.01	0-1	0
	25	25	18.22	18.10	17.99		0
	50	0	18.19	18.10	17.93		0
	1	0	18.51	18.55	18.21		0
	1	25	18.64	18.46	18.07	0-1	0
	1	49	18.62	18.44	18.31		0
16QAM	25	0	18.22	18.30	17.94	0-2	0
	25	12	18.34	18.33	17.98		0
	25	25	18.25	18.14	18.00		0
	50	0	18.24	18.17	17.96		0
	1	0	18.61	18.67	18.04		0
	1	25	18.53	18.62	18.10	0-2	0
	1	49	18.44	18.59	18.16		0
64QAM	25	0	18.34	18.51	18.04		0
	25	12	18.45	18.25	17.99	0-3	0
	25	25	18.36	18.24	17.92		0
	50	0	18.25	18.19	17.94		0
	1	0	18.11	17.98	17.70		0
	1	25	18.05	18.12	17.81]	0
	1	49	17.91	18.00	17.74]	0
256QAM	25	0	18.19	17.94	17.85	0-5	0
	25	12	18.20	18.01	17.94]	0
	25	25	18.12	17.96	17.92		0
	50	0	18.11	17.96	17.81		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 90 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 89 of 298

Table 9-58 LTE Band 25 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

	LIEDO	and 25 (PC	(3) Weasureu P	LTE Band 25 (PCS)	notspot mode)	- 5 MHz Bandwid	auri
				5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	,	0		Conducted Power [dBm			
	1	0	18.14	18.17	17.94		0
	1	12	18.18	18.16	17.98	0	0
00014	1	24	18.18	18.11	17.93		0
QPSK	12	0	18.27	18.18	17.97	-	0
	12	6	18.30	18.19	17.99	0-1	0
	12	13	18.29	18.16	17.93	4	0
	25	0	18.25	18.17	17.88		0
	1	0	18.51	18.44	17.90	0-1	0
	1	12	18.55	18.48	18.03		0
	1	24	18.56	18.53	17.93		0
16QAM	12	0	18.25	18.19	18.02		0
	12	6	18.32	18.20	17.96		0
	12	13	18.32	18.20	18.10		0
	25	0	18.32	18.18	17.94		0
	1	0	18.47	18.52	17.98]	0
	1	12	18.54	18.48	18.12	0-2	0
	1	24	18.59	18.28	18.21		0
64QAM	12	0	18.33	18.20	18.07]	0
	12	6	18.37	18.36	17.98	0-3	0
	12	13	18.39	18.19	17.92		0
	25	0	18.28	18.24	17.97		0
	1	0	18.08	17.90	18.00		0
	1	12	18.19	17.94	18.24] [0
	1	24	18.20	17.92	18.07] [0
256QAM	12	0	18.16	17.70	17.81	0-5	0
	12	6	18.19	17.97	17.92	1	0
	12	13	18.18	17.96	17.97] [0
	25	0	18.05	17.92	17.83]	0

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 00 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 90 of 298

Table 9-59 LTE Band 25 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 3 MHz Bandwidth

				LTE Band 25 (PCS)			
			Law Channal	3 MHz Bandwidth	High Channel		
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	18.19	18.02	17.92		0
	1	7	18.21	18.22	17.99	0	0
	1	14	18.09	18.09	17.97		0
QPSK	8	0	18.35	18.14	17.91		0
	8	4	18.36	18.10	17.92		0
	8	7	18.29	18.14	17.87	0-1	0
	15	0	18.33	18.21	17.85	1	0
	1	0	18.49	18.46	17.97	0-1	0
	1	7	18.42	18.45	17.95		0
l l	1	14	18.36	18.50	17.89	1	0
16QAM	8	0	18.28	18.11	17.86		0
	8	4	18.26	18.20	17.88	0-2	0
	8	7	18.18	18.27	17.94		0
	15	0	18.44	18.12	17.93	1	0
	1	0	18.41	18.42	18.25		0
	1	7	18.31	18.40	18.28	0-2	0
	1	14	18.45	18.46	18.20		0
64QAM	8	0	18.39	18.23	17.89		0
	8	4	18.40	18.28	17.93	0-3	0
	8	7	18.33	18.22	17.91	0-3	0
	15	0	18.39	18.24	17.89		0
	1	0	18.00	18.08	17.75		0
	1	7	18.25	18.07	17.84		0
	1	14	17.94	18.09	17.86		0
256QAM	8	0	18.08	17.94	17.70	0-5	0
	8	4	18.15	18.02	17.78		0
	8	7	18.11	17.97	17.85		0
	15	0	18.17	17.88	17.82	1	0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dagg 04 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 91 of 298

Table 9-60 LTE Band 25 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) -1.4 MHz Bandwidth

				LTE Band 25 (PCS)			
		1		1.4 MHz Bandwidth		1	
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	18.09	18.17	18.01		0
	1	2	18.16	18.11	17.96	1	0
	1	5	18.07	18.16	18.01	1 , [0
QPSK	3	0	18.18	18.13	18.05	0	0
	3	2	18.22	18.17	18.08		0
	3	3	18.17	18.22	17.95		0
	6	0	18.29	18.19	17.97	0-1	0
	1	0	18.41	18.62	18.07	0-1	0
	1	2	18.45	18.49	18.24		0
16QAM	1	5	18.36	18.28	18.22		0
	3	0	18.34	18.26	17.94		0
	3	2	18.38	18.21	17.95		0
	3	3	18.26	18.10	17.96		0
	6	0	18.28	18.17	17.91	0-2	0
	1	0	18.41	18.36	18.10		0
	1	2	18.43	18.52	18.19		0
	1	5	18.40	18.61	18.09	0-2	0
64QAM	3	0	18.23	18.16	18.04	0-2	0
	3	2	18.29	18.18	17.91		0
	3	3	18.19	18.13	17.96		0
	6	0	18.27	18.21	17.94	0-3	0
	1	0	18.03	17.93	17.74		0
	1	2	18.02	18.00	17.85	_	0
	1	5	18.06	17.97	17.82	<u> </u>	0
256QAM	3	0	17.92	18.02	17.78	0-5	0
	3	2	18.02	18.04	17.79		0
	3	3	17.97	17.98	17.77	_	0
	6	0	18.06	17.99	17.77		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 02 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 92 of 298

Table 9-61 LTE Band 25 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

				LTE Band 25 (PCS)				
				20 MHz Bandwidth				
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	26140	26365	26590	MPR Allowed per	MPR [dB]	
			112 011001	(1860.0 MHz)	(1882.5 MHz) Conducted Power [dBm	(1905.0 MHz)	3GPP [dB]	•
	4	0						
	1	0	19.15	19.12	18.86		0	
	1	50	19.20	19.04	18.97	0	0	
	1	99	19.21	19.01	19.00		0	
QPSK	50	0	19.24	19.22	18.88	4	0	
	50	25	19.25	19.16	18.84	0-1	0	
	50	50	19.21	19.03	19.01	4	0	
	100	0	19.15	19.18	18.85		0	
	1	0	19.53	19.40	19.14	1	0	
	1	50	19.52	19.41	19.09	0-1	0	
	1	99	19.60	19.28	19.15		0	
16QAM	50	0	19.30	19.25	18.87	0-2	0	
	50	25	19.36	19.19	18.91		0	
	50	50	19.19	19.06	18.92		0	
	100	0	19.20	19.02	18.90		0	
	1	0	19.46	19.49	18.86]	0	
	1	50	19.30	19.36	19.03	0-2	0	
	1	99	19.38	19.35	19.09		0	
64QAM	50	0	19.34	19.30	19.08		0	
	50	25	19.35	19.25	18.92	0-3	0	
	50	50	19.21	19.28	18.96		0	
	100	0	19.40	19.26	18.90		0	
	1	0	18.07	18.00	17.74		1	
	1	50	18.25	18.27	17.95]	1	
	1	99	18.14	17.94	17.86]	1	
256QAM	50	0	18.18	18.05	17.80	0-5	1	
	50	25	18.36	18.15	17.79	1 1	1	
	50	50	18.23	17.93	17.95		1	
	100	0	18.15	18.00	17.90	<u> </u>	1	

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 02 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 93 of 298

Table 9-62 LTE Band 25 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

			401.1	LTE Band 25 (PCS)	41114111		
				15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	19.18	19.12	18.91		0
	1	36	19.47	19.18	18.90	0	0
	1	74	19.31	19.08	18.88		0
QPSK	36	0	19.34	19.21	18.89		0
	36	18	19.40	19.32	19.02	0-1	0
	36	37	19.46	19.21	19.06	0-1	0
	75	0	19.37	19.17	18.91		0
	1	0	19.42	19.34	19.10	0-1	0
	1	36	19.55	19.37	19.25		0
	1	74	19.49	19.29	19.24		0
16QAM	36	0	19.44	19.23	18.90	0-2	0
	36	18	19.51	19.36	19.10		0
	36	37	19.52	19.26	19.07		0
	75	0	19.42	19.22	19.01		0
	1	0	19.61	19.33	19.40		0
	1	36	19.54	19.34	19.25	0-2	0
	1	74	19.64	19.49	19.46		0
64QAM	36	0	19.41	19.33	19.01		0
	36	18	19.51	19.43	19.15	0-3	0
	36	37	19.48	19.35	19.18		0
	75	0	19.46	19.24	18.92		0
	1	0	18.01	18.03	17.78		1
	1	36	18.23	18.19	17.98		1
	1	74	18.05	18.11	18.00	0-5	1
256QAM	36	0	18.22	18.13	17.70		1
	36	18	18.31	18.16	17.75		1
	36	37	18.35	18.11	17.75		1
	75	0	18.17	18.04	17.86		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 04 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 94 of 298

Table 9-63 LTE Band 25 (PCS) Measured *P_{limit}* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

				LTE Band 25 (PCS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	19.25	19.09	18.89		0
	1	25	19.27	19.06	18.87	0	0
	1	49	19.19	19.17	18.96		0
QPSK	25	0	19.22	19.24	18.99		0
	25	12	19.27	19.27	18.87	0-1	0
	25	25	19.21	19.11	19.03	J 0-1	0
	50	0	19.21	19.31	18.86		0
	1	0	19.35	19.42	18.93		0
	1	25	19.40	19.54	18.90	0-1	0
	1	49	19.27	19.34	19.08		0
16QAM	25	0	19.22	19.13	18.98	0-2	0
	25	12	19.29	19.12	18.88		0
	25	25	19.24	19.11	18.83		0
	50	0	19.34	19.10	18.96		0
	1	0	19.55	19.58	19.22		0
	1	25	19.59	19.42	19.21	0-2	0
	1	49	19.57	19.48	19.35		0
64QAM	25	0	19.30	19.08	19.17		0
	25	12	19.42	19.19	18.88	0-3	0
	25	25	19.34	19.12	18.79		0
	50	0	19.25	19.06	18.74		0
	1	0	17.80	17.83	17.91		1
	1	25	18.12	18.03	18.27]	1
	1	49	17.95	17.86	18.11] [1
256QAM	25	0	18.05	17.89	17.77	0-5	1
	25	12	18.19	18.01	17.90]	1
	25	25	18.07	17.90	17.88]	1
	50	0	18.09	17.90	17.78		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do so OF of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 95 of 298

Table 9-64 LTE Band 25 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

			4011	LTE Band 25 (PCS)			
				5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	19.22	19.11	18.99		0
	1	12	19.18	19.08	18.95	0	0
	1	24	19.17	19.09	18.97		0
QPSK	12	0	19.28	19.07	18.85		0
	12	6	19.24	19.06	18.90	0-1	0
	12	13	19.28	19.04	18.94		0
	25	0	19.25	19.03	18.97		0
	1	0	19.42	19.21	18.88	0-1	0
	1	12	19.55	19.24	18.95		0
	1	24	19.44	19.26	19.16		0
16QAM	12	0	19.27	19.16	19.24	- 0-2	0
	12	6	19.33	19.13	18.96		0
	12	13	19.28	19.14	18.90		0
	25	0	19.25	19.21	18.92		0
	1	0	19.48	19.23	19.21		0
	1	12	19.54	19.32	19.28	0-2	0
	1	24	19.55	19.32	19.22		0
64QAM	12	0	19.31	19.15	19.01		0
	12	6	19.31	19.20	19.09	0-3	0
	12	13	19.32	19.29	19.07	0-3	0
	25	0	19.23	19.13	19.12		0
	1	0	18.13	17.86	17.74		1
	1	12	18.25	17.93	17.99		1
	1	24	18.09	17.92	17.83		1
256QAM	12	0	18.06	17.98	17.75	0-5	1
	12	6	18.14	17.98	17.87		1
	12	13	18.16	17.99	17.83		1
	25	0	18.08	17.86	17.79		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 06 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 96 of 298

Table 9-65 LTE Band 25 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 3 MHz Bandwidth

				LTE Band 25 (PCS)			
				3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	19.19	19.17	18.96		0
	1	7	19.15	19.21	18.91	0	0
	1	14	19.24	19.16	18.93		0
QPSK	8	0	19.32	19.25	18.96		0
	8	4	19.32	19.18	18.92	0-1	0
	8	7	19.33	19.24	19.07		0
	15	0	19.38	19.12	18.98		0
	1	0	19.45	19.36	19.05		0
	1	7	19.46	19.46	19.13	0-1	0
	1	14	19.50	19.20	19.10		0
16QAM	8	0	19.20	19.16	18.94	0-2	0
	8	4	19.27	19.06	18.96		0
	8	7	19.25	19.09	18.96		0
	15	0	19.37	19.10	18.95		0
	1	0	19.32	19.27	19.39		0
	1	7	19.29	19.32	19.35	0-2	0
	1	14	19.35	19.48	19.41		0
64QAM	8	0	19.33	19.21	18.99		0
	8	4	19.41	19.22	19.02	0-3	0
	8	7	19.34	19.22	19.00	0-3	0
	15	0	19.41	19.18	18.91		0
	1	0	17.83	18.07	17.81		1
	1	7	17.98	18.06	17.75		1
	1	14	17.90	18.12	17.82		1
256QAM	8	0	18.06	18.01	17.69	0-5	1
	8	4	18.11	18.00	17.74		1
	8	7	18.14	18.02	17.75		1
	15	0	18.18	17.86	17.55		1

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 07 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 97 of 298

Table 9-66 LTE Band 25 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) -1.4 MHz Bandwidth

				LTE Band 25 (PCS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26047 (1850.7 MHz)	26365 (1882.5 MHz)	26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	19.27	19.09	19.01		0
	1	2	19.21	19.11	19.11		0
	1	5	19.22	19.15	18.98	0	0
QPSK	3	0	19.26	19.34	18.95		0
	3	2	19.28	19.33	18.91		0
	3	3	19.27	19.24	19.26		0
	6	0	19.28	19.13	19.12	0-1	0
	1	0	19.45	19.17	19.01		0
	1	2	19.41	19.15	19.18	0-1	0
	1	5	19.59	19.08	19.14		0
16QAM	3	0	19.22	19.26	19.27		0
	3	2	19.28	19.17	19.18		0
	3	3	19.25	19.28	19.16		0
	6	0	19.25	19.21	18.95	0-2	0
	1	0	19.47	19.33	18.98		0
	1	2	19.41	19.42	19.22		0
	1	5	19.56	19.34	19.24	0-2	0
64QAM	3	0	19.24	19.45	19.26		0
	3	2	19.31	19.02	19.23		0
	3	3	19.27	19.35	19.25		0
	6	0	19.24	19.25	19.13	0-3	0
	1	0	17.75	17.79	17.78		1
	1	2	17.96	17.83	17.81		1
	1	5	17.88	17.83	17.87] [1
256QAM	3	0	17.91	17.88	17.77	0-5	1
	3	2	17.96	17.94	17.84]	1
	3	3	18.00	17.96	17.79	_[1
	6	0	18.03	17.87	17.75		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 00 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 98 of 298

LTE Band 2 (PCS) 9.4.9

Table 9-67 LTE Band 2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

				LTE Band 2 (PCS) 20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18700 (1860.0 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
		0		Conducted Power [dBm			
	1	0	23.18	23.18	23.14	-	0
	1	50	23.19	23.10	23.05	0	0
QPSK	1	99	23.21	23.05	23.01		0
QPSK	50	0	22.23	22.22	22.15	-	1
	50	25	22.30	22.27	22.25	0-1	1
	50	50	22.37	22.15	22.16		1
	100	0	22.13	22.13	22.20		1
	1	0	22.39	22.46	22.47	0-1	1
	1	50	22.51	22.40	22.45		1
	1 ===	99	22.35	22.39	22.28		1
16QAM	50	0	21.24	21.23	21.17	0-2	2
	50	25	21.39	21.20	21.35		2
	50	50	21.38	21.15	21.13	-	2
	100	0	21.34	21.12	21.17		2
	1	0	21.23	21.36	21.44	<u>.</u>	2
	1	50	21.25	21.21	21.37	0-2	2
	1	99	21.27	21.18	21.21		2
64QAM	50	0	20.30	20.26	20.20		3
	50	25	20.39	20.31	20.30	0-3	3
	50	50	20.32	20.19	20.15]	3
	100	0	20.34	20.09	20.14		3
	1	0	18.22	18.10	18.20		5
	1	50	18.40	18.31	18.18		5
	1	99	18.15	18.07	18.11	1	5
256QAM	50	0	18.26	18.22	18.18	0-5	5
	50	25	18.39	18.30	18.26	†	5
	50	50	18.35	18.14	18.17		5
	100	0	18.28	18.15	18.16		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 00 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 99 of 298

Table 9-68 LTE Band 2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

			triggert	LTE Band 2 (PCS)	- Id Widti		
		1		15 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675	18900	19125	MPR Allowed per	MPR [dB]
			(1857.5 MHz)	(1880.0 MHz)	(1902.5 MHz)	3GPP [dB]	
	,			Conducted Power [dBm			
	1	0	23.00	23.07	22.93		0
	1	36	23.05	23.03	22.89	0	0
	1	74	23.18	23.01	22.93		0
QPSK	36	0	22.14	22.12	21.97		1
	36	18	22.30	22.24	22.09	0-1	1
	36	37	22.27	22.11	22.10		1
	75	0	22.22	22.07	22.00		11
	1	0	22.22	22.38	22.38	0-1	1
	1	36	22.52	22.49	22.50		1
	1	74	22.43	22.32	22.32		1
16QAM	36	0	21.32	21.24	21.07	0-2	2
	36	18	21.25	21.19	21.05		2
	36	37	21.33	21.22	21.11		2
	75	0	21.26	21.09	21.10		2
	1	0	21.28	21.44	21.40		2
	1	36	21.50	21.42	21.22	0-2	2
	1	74	21.41	21.23	21.30		2
64QAM	36	0	20.24	20.20	20.06		3
	36	18	20.33	20.25	20.12	0.0	3
	36	37	20.40	20.17	20.08	0-3	3
	75	0	20.29	20.12	20.07		3
	1	0	18.26	18.15	18.08		5
	1	36	18.41	18.36	18.08		5
	1	74	18.41	18.10	18.06		5
256QAM	36	0	18.23	18.21	18.03	0-5	5
	36	18	18.34	18.31	18.13		5
	36	37	18.34	18.11	18.07		5
	75	0	18.33	18.08	18.00	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 400 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 100 of 298

Table 9-69 LTE Band 2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

			950	LTE Band 2 (PCS)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18650	18900	19150	MPR Allowed per	MPR [dB]
Wiodulation	ND SIZE	KB Oliset	(1855.0 MHz)	(1880.0 MHz)	(1905.0 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	22.85	22.91	22.99		0
	1	25	23.00	23.04	22.87	0	0
	1	49	22.99	22.91	22.84		0
QPSK	25	0	22.14	22.18	21.85		1
	25	12	22.24	22.26	22.02	0-1	1
	25	25	22.14	22.15	21.93	- 0-1	1
	50	0	22.13	22.17	21.89		1
	1	0	22.20	22.26	22.45	0-1	1
	1	25	22.51	22.43	22.38		1
	1	49	22.28	22.22	22.33		1
16QAM	25	0	21.04	21.15	20.83	0-2	2
	25	12	21.24	21.28	20.99		2
	25	25	21.15	21.16	20.99		2
	50	0	21.09	21.13	20.91		2
	1	0	21.04	21.19	21.33]	2
	1	25	21.18	21.24	21.19	0-2	2
	1	49	21.10	21.15	21.21		2
64QAM	25	0	20.26	20.14	19.91]	3
	25	12	20.28	20.30	20.04	0-3	3
	25	25	20.13	20.07	19.99		3
	50	0	20.14	20.20	19.91		3
	1	0	18.13	18.07	17.93	1	5
	1	25	18.25	18.19	18.23]	5
	1	49	18.10	18.06	17.95] [5
256QAM	25	0	18.11	18.23	18.04	0-5	5
	25	12	18.25	18.30	18.05		5
	25	25	18.16	18.10	18.04]	5
	50	0	18.27	18.14	17.99		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 404 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 101 of 298

Table 9-70 LTE Band 2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

				LTE Band 2 (PCS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18625 (1852.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	22.89	22.87	22.86		0
	1	12	22.97	23.07	22.93	0	0
	1	24	22.80	22.86	22.92		0
QPSK	12	0	21.98	22.03	22.00		1
	12	6	22.08	21.99	22.08	0-1	1
	12	13	22.00	21.88	21.98] 0-1	1
	25	0	22.04	21.97	21.93		1
	1	0	22.23	22.21	22.26		1
	1	12	22.42	22.19	22.18	0-1	1
	1	24	22.22	22.07	22.15		1
16QAM	12	0	21.10	21.04	21.06		2
	12	6	21.12	20.99	21.08	0-2	2
	12	13	21.07	20.94	21.05	0-2	2
	25	0	21.00	20.97	20.97		2
	1	0	21.11	21.09	21.24		2
	1	12	21.34	21.18	21.46	0-2	2
	1	24	21.20	21.03	21.15		2
64QAM	12	0	20.07	20.03	20.02		3
	12	6	20.10	20.12	20.17	0-3	3
	12	13	20.01	19.97	20.01	0-3	3
	25	0	20.06	19.92	19.99		3
	1	0	18.06	18.04	18.12		5
	1	12	18.21	18.12	18.12	_	5
	1	24	18.09	17.98	18.04		5
256QAM	12	0	18.06	17.99	18.03	0-5	5
	12	6	18.09	18.02	18.04		5
	12	13	18.00	17.94	17.99	_	5
	25	0	18.11	17.93	18.13		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 402 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 102 of 298

Table 9-71 LTE Band 2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 3 MHz Bandwidth

				LTE Band 2 (PCS) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18615 (1851.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			· , , , , , , , , , , , , , , , , , , ,	Conducted Power [dBm]]		
	1	0	22.98	22.92	22.94		0
	1	7	22.92	22.85	22.94	0	0
	1	14	22.90	22.81	22.88		0
QPSK	8	0	22.03	22.05	22.08		1
	8	4	22.03	21.98	22.00	0-1	1
	8	7	21.95	21.91	21.96] 0-1	1
	15	0	21.99	21.95	21.99		1
	1	0	22.13	22.31	22.13		1
	1	7	22.17	22.13	22.25	0-1	1
	1	14	22.26	22.25	22.37		1
16QAM	8	0	21.15	21.17	21.02		2
	8	4	21.12	21.11	21.03	0-2	2
	8	7	21.04	20.97	21.05	0-2	2
	15	0	21.06	20.99	21.07		2
	1	0	21.07	21.25	21.20		2
	1	7	21.02	21.13	21.44	0-2	2
	1	14	21.16	21.12	21.15		2
64QAM	8	0	20.10	20.08	20.02		3
	8	4	20.08	20.00	20.06	0-3	3
	8	7	20.04	20.00	20.05] 0-3	3
	15	0	20.06	20.07	20.01		3
	1	0	18.21	18.12	18.13		5
	1	7	18.11	18.10	17.96] [5
	1	14	18.09	18.05	18.08		5
256QAM	8	0	18.06	18.08	18.10	0-5	5
	8	4	18.04	18.01	18.10		5
	8	7	18.07	18.01	18.17		5
	15	0	18.06	18.04	17.99	1	5

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 102 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 103 of 298

Table 9-72 LTE Band 2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) -1.4 MHz Bandwidth

				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	22.83	22.87	22.85		0
	1	2	22.92	22.85	22.93		0
	1	5	22.84	22.73	22.88	0	0
QPSK	3	0	22.89	22.75	22.92		0
	3	2	22.92	22.80	22.99		0
	3	3	22.86	22.75	22.90		0
	6	0	21.95	21.87	22.01	0-1	1
	1	0	22.27	22.12	22.28		1
	1	2	22.22	22.19	22.48	0-1	1
	1	5	22.21	22.25	22.19		1
16QAM	3	0	22.11	21.96	22.15		1
	3	2	22.16	22.03	22.14		1
	3	3	22.04	21.94	22.07		1
	6	0	21.02	20.95	21.01	0-2	2
	1	0	21.18	20.83	21.04		2
	1	2	21.18	21.00	21.20		2
	1	5	21.12	20.97	21.12	0-2	2
64QAM	3	0	21.15	20.99	21.09	0-2	2
	3	2	21.03	21.19	20.99		2
	3	3	21.02	20.98	21.04		2
	6	0	19.91	19.89	19.97	0-3	3
	1	0	18.02	18.02	17.96		5
	1	2	18.06	18.10	18.10		5
	1	5	18.04	17.95	18.07		5
256QAM	3	0	18.08	18.05	18.24	0-5	5
	3	2	18.00	18.05	17.96	†	5
	3	3	18.17	18.19	18.07		5
	6	0	17.99	17.91	17.91		5

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 104 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 104 01 298

Table 9-73 LTE Band 2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

	LILDA	11u z (PCS)	ivicasui eu Fiim	LTE Band 2 (PCS)	rispot mode) -	20 MHZ Bandwid	uı
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	18.08	18.05	17.77		0
	1	50	18.06	17.88	17.68	0	0
	1	99	18.18	17.82	17.66] [0
QPSK	50	0	18.23	18.16	17.79		0
	50	25	18.27	18.17	17.82	0-1	0
	50	50	18.32	18.00	17.83	J 0-1	0
	100	0	18.15	17.99	17.82	1	0
	1	0	18.52	18.42	18.23		0
	1	50	18.44	18.44	18.03	0-1	0
	1	99	18.47	18.31	18.08		0
16QAM	50	0	18.12	18.09	17.85		0
	50	25	18.21	18.20	17.86		0
	50	50	18.20	18.05	17.80	0-2	0
	100	0	18.15	18.08	17.83		0
	1	0	18.49	18.40	18.10		0
	1	50	18.41	18.30	18.02	0-2	0
	1	99	18.35	18.39	17.98] [0
64QAM	50	0	18.19	18.14	17.83		0
	50	25	18.30	18.25	17.88	0-3	0
	50	50	18.25	18.09	17.84	0-3	0
	100	0	18.19	18.06	17.82		0
	1	0	18.20	18.01	17.80		0
	1	50	18.32	18.30	17.94		0
ŀ	1	99	18.17	17.90	17.68		0
256QAM	50	0	18.07	18.18	17.84	0-5	0
	50	25	18.23	18.21	17.86]	0
	50	50	18.21	18.11	17.87]	0
	100	0	18.25	18.04	17.86	1	0

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 105 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 105 01 296

Table 9-74 LTE Band 2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

				LTE Band 2 (PCS)	, , , , , , , , , , , , , , , , , , , ,	15 MHz Bandwid	
				15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18675 (1857.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]	1	
	1	0	18.23	17.94	17.67		0
	1	36	18.32	18.11	17.61	0	0
	1	74	18.27	18.01	17.60	1 [0
QPSK	36	0	18.38	18.04	17.53		0
	36	18	18.42	18.15	17.65	0-1	0
	36	37	18.38	18.01	17.67]	0
	75	0	18.35	18.00	17.69		0
	1	0	18.40	18.32	18.07		0
	1	36	18.51	18.43	18.06	0-1	0
	1	74	18.38	18.40	18.22		0
16QAM	36	0	18.40	18.07	17.83	0-2	0
	36	18	18.51	18.20	17.94		0
	36	37	18.48	18.10	17.94	0-2	0
	75	0	18.38	18.05	17.87		0
	1	0	18.54	18.27	18.02		0
	1	36	18.59	18.37	18.06	0-2	0
	1	74	18.57	18.42	18.04		0
64QAM	36	0	18.40	18.17	17.70		0
	36	18	18.44	18.28	17.71	0-3	0
	36	37	18.42	18.19	17.69	J 0-3	0
	75	0	18.47	18.09	17.91		0
	1	0	18.15	18.11	17.91		0
	1	36	18.40	18.31	17.95		0
ļ	1	74	18.26	18.09	18.16		0
256QAM	36	0	18.30	18.16	18.00	0-5	0
	36	18	18.39	18.26	18.11		0
	36	37	18.37	18.12	18.11		0
	75	0	18.34	18.09	18.05	7	0

FCC ID: A3LSMG981U	POTEST*	SAR EVALUATION REPORT	NSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 106 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 100 01 298

Table 9-75 LTE Band 2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

		, ,		LTE Band 2 (PCS)		10 MHZ Bandwid	
		1	Ob	10 MHz Bandwidth	History Observed		
Modulation	RB Size	RB Offset	Low Channel 18650 (1855.0 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
1	1	0	18.23	18.17	17.73		0
	1	25	18.29	18.00	17.80	0	0
	1	49	18.27	18.07	17.77		0
QPSK	25	0	18.30	18.13	17.76		0
	25	12	18.38	18.13	17.74	0-1	0
	25	25	18.25	18.01	17.85]	0
	50	0	18.27	18.14	17.79		0
	1	0	18.43	18.32	18.00		0
	1	25	18.48	18.31	17.92	0-1	0
	1	49	18.49	18.47	18.11		0
16QAM	25	0	18.32	18.12	17.93		0
	25	12	18.38	18.21	17.74	0-2	0
	25	25	18.32	18.10	17.73		0
	50	0	18.33	18.09	17.71		0
	1	0	18.56	18.51	18.21		0
	1	25	18.47	18.44	18.13	0-2	0
	1	49	18.49	18.41	18.23		0
64QAM	25	0	18.43	18.17	17.76		0
	25	12	18.51	18.23	17.71	0-3	0
	25	25	18.44	18.16	17.75	0-3	0
	50	0	18.33	18.14	17.68	1	0
	1	0	18.13	17.82	17.80		0
	1	25	18.44	18.10	18.05		0
	1	49	18.13	17.79	17.86	1	0
256QAM	25	0	18.32	17.98	17.83	0-5	0
	25	12	18.44	18.11	17.97		0
	25	25	18.31	17.95	17.89		0
	50	0	18.29	17.97	17.84]	0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 407 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 107 of 298

Table 9-76 LTE Band 2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

			,	LTE Band 2 (PCS) 5 MHz Bandwidth		5 MHZ Bandwidt	
Modulation	RB Size	RB Offset	Low Channel 18625	Mid Channel 18900	High Channel 19175	MPR Allowed per	MPR [dB]
		1.2 0001	(1852.5 MHz)	(1880.0 MHz)	(1907.5 MHz)	3GPP [dB]	[]
	4	0		Conducted Power [dBm			
	1	0	18.21	18.13	17.77	_	0
	1	12	18.29	18.11	17.85	0	0
QPSK	1	24	18.18	18.16	17.69		0
QPSK	12	0	18.38	18.11	17.79	-	0
	12	6	18.42	18.12	17.73	0-1	0
	12	13	18.36	18.14	17.71	-	0
	25	0	18.35	18.11	17.74		0
	1	0	18.37	18.29	18.12		0
	1	12	18.39	18.28	18.03	0-1	0
	1	24	18.54	18.17	18.29		0
16QAM	12	0	18.45	18.23	17.87	0-2	0
	12	6	18.48	18.24	17.83		0
	12	13	18.34	18.12	17.70	4	0
	25	0	18.39	18.11	17.72		0
	1	0	18.54	18.49	17.96		0
	1	12	18.59	18.50	17.92	0-2	0
	1	24	18.47	18.11	17.93		0
64QAM	12	0	18.49	18.19	17.81	_	0
	12	6	18.51	18.22	17.76	0-3	0
	12	13	18.39	18.13	17.73		0
	25	0	18.39	18.18	17.73		0
	1	0	18.13	17.96	17.91	_	0
	1	12	18.23	18.00	18.05	<u> </u>	0
[1	24	18.14	18.04	17.89	_	0
256QAM	12	0	18.25	17.91	17.88	0-5	0
	12	6	18.27	18.05	17.95		0
	12	13	18.18	17.95	17.89		0
	25	0	18.12	17.98	17.81		0

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 100 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 108 of 298

Table 9-77 LTE Band 2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 3 MHz Bandwidth

	LIL D	and 2 (1 00	j Wcasarca i iii	LTE Band 2 (PCS)	otspot mode) =	3 MHZ Bangwigt	
				3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18615 (1851.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
		Conducted Power [dBm]					
	1	0	18.24	18.13	17.81		0
	1	7	18.26	18.17	17.73	0	0
	1	14	18.14	18.09	17.75	1	0
QPSK	8	0	18.40	18.14	17.77		0
	8	4	18.41	18.10	17.78	1 04	0
	8	7	18.34	18.14	17.69	0-1	0
	15	0	18.38	18.18	17.78	1	0
	1	0	18.54	18.31	18.17		0
	1	7	18.47	18.30	18.15	0-1	0
	1	14	18.51	18.37	18.09		0
16QAM	8	0	18.33	18.02	17.66		0
	8	4	18.31	18.12	17.81		0
	8	7	18.34	18.31	17.76		0
	15	0	18.49	18.12	17.77	1 [0
	1	0	18.46	18.47	18.02		0
	1	7	18.36	18.45	18.18	0-2	0
	1	14	18.29	18.48	18.10] [0
64QAM	8	0	18.44	18.23	17.69		0
	8	4	18.45	18.28	17.73	0-3	0
	8	7	18.38	18.22	17.71	0-3	0
	15	0	18.44	18.24	17.69		0
	1	0	18.10	18.12	17.91		0
	1	7	18.23	18.12	17.83		0
	1	14	18.24	17.99	18.12		0
256QAM	8	0	18.27	17.90	18.11	0-5	0
	8	4	18.28	17.93	17.86] [0
	8	7	18.21	17.93	17.89		0
	15	0	18.17	18.01	17.93	7 [0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 400 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 109 of 298

Table 9-78 LTE Band 2 (PCS) Measured Pimit for DSI = 3 (Hotspot mode) -1.4 MHz Bandwidth

	LILDa	114 2 (1 65)	ivicasurea i iiii	LTE Band 2 (PCS)	tspot mode) -	1.4 MHZ Bandwid	LI I
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]			
	1	0	18.14	18.30	17.81		0
	1	2	18.21	18.17	17.75		0
	1	5	18.33	18.11	17.77] 0	0
QPSK	3	0	18.23	18.24	17.72		0
	3	2	18.27	18.22	17.73		0
	3	3	18.22	18.21	17.75		0
	6	0	18.34	18.21	17.71	0-1	0
	1	0	18.46	18.40	18.25		0
	1	2	18.46	18.43	18.32	0-1	0
1	1	5	18.51	18.45	18.31		0
16QAM	3	0	18.55	18.26	17.85		0
	3	2	18.43	18.36	17.77		0
	3	3	18.31	18.24	17.76		0
	6	0	18.33	18.20	17.79	0-2	0
	1	0	18.47	18.52	18.05		0
	1	2	18.38	18.44	17.99	1 [0
	1	5	18.46	18.47	17.89	0-2	0
64QAM	3	0	18.28	18.21	17.76] 0-2	0
	3	2	18.34	18.23	17.78	1 [0
	3	3	18.24	18.18	17.74] [0
	6	0	18.32	18.13	17.72	0-3	0
	1	0	17.92	17.88	17.86		0
	1	2	17.99	17.98	17.85] [0
	1	5	17.92	17.88	17.84	1	0
256QAM	3	0	18.03	17.99	17.83	0-5	0
	3	2	18.09	18.04	17.85	†	0
	3	3	18.03	17.97	17.78		0
	6	0	18.15	18.00	17.85	7	0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 110 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 110 of 298

Table 9-79 LTE Band 2 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

				LTE Band 2 (PCS) 20 MHz Bandwidth			
		1	Low Channel	Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz) Conducted Power [dBm	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	19.05	18.96	18.70		0
	1	50	19.06	18.95	18.91	1 o F	0
	1	99	19.02	18.82	18.66	1 · · ·	0
QPSK	50	0	19.08	18.99	18.75		0
	50	25	19.15	19.06	18.86	1 <u>.</u> .	0
	50	50	19.14	18.90	18.80	0-1	0
	100	0	19.05	18.94	18.79	1	0
	1	0	19.52	19.35	19.18		0
	1	50	19.31	19.20	19.05	0-1	0
	1	99	19.38	19.00	19.10		0
16QAM	50	0	19.09	19.01	18.80		0
	50	25	19.26	19.14	18.87	0-2	0
	50	50	19.18	18.99	18.79	0-2	0
	100	0	19.11	18.88	18.80		0
	1	0	19.35	19.26	19.03		0
	1	50	19.25	19.20	18.97	0-2	0
	1	99	19.27	19.09	18.98		0
64QAM	50	0	19.11	19.04	18.81		0
	50	25	19.23	19.05	18.90	0-3	0
	50	50	19.17	19.06	18.86	0-3	0
	100	0	19.14	18.97	18.82		0
	1	0	17.88	18.00	18.06		1
	1	50	18.30	18.19	17.96		1
	1	99	18.15	17.93	17.90		1
256QAM	50	0	18.11	18.04	18.00	0-5	1
	50	25	18.20	18.11	18.01		1
	50	50	18.16	17.95	18.06] [1
	100	0	18.15	17.95	18.05] Γ	1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 444 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 111 of 298

Table 9-80 LTE Band 2 (PCS) Measured *P_{limit}* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

			40117	LTE Band 2 (PCS)			
		1	Low Channel	15 MHz Bandwidth Mid Channel	High Channel	T	
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz) Conducted Power [dBm	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	19.00	19.01	18.80		0
	1	36	19.19	18.99	18.88	0	0
	1	74	19.08	18.93	18.85	†	0
QPSK	36	0	19.08	19.08	18.97		0
	36	18	19.21	19.18	19.10	†	0
	36	37	19.20	19.10	19.10	0-1	0
	75	0	19.14	19.04	18.98		0
	1	0	19.53	19.00	19.19		0
	1	36	19.26	19.06	19.29	0-1	0
	1	74	19.24	19.00	19.27	1	0
16QAM	36	0	19.17	19.10	19.04	0-2	0
	36	18	19.30	19.23	19.06		0
	36	37	19.25	19.11	19.06	0-2	0
	75	0	19.19	19.07	19.07	1	0
	1	0	19.42	18.92	19.30		0
	1	36	19.39	19.14	19.27	0-2	0
	1	74	19.14	19.08	19.31		0
64QAM	36	0	19.12	19.23	19.08		0
	36	18	19.22	19.29	19.19	0-3	0
	36	37	19.23	19.19	19.22	0-3	0
	75	0	19.26	19.09	19.00		0
	1	0	17.94	18.17	17.90		1
	1	36	18.21	18.21	18.13	_[1
	1	74	18.15	18.19	18.11	_[1
256QAM	36	0	18.05	18.20	18.10	0-5	1
	36	18	18.15	18.18	18.16]	1
	36	37	18.17	18.20	18.18	_[1
	75	0	18.16	18.16	18.09		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 442 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 112 of 298

Table 9-81 LTE Band 2 (PCS) Measured *P_{limit}* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

				LTE Band 2 (PCS) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18650 (1855.0 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			,	Conducted Power [dBm	, ,		
	1	0	19.11	18.89	18.87		0
	1	25	18.98	18.87	18.95	0	0
	1	49	18.94	18.95	18.78		0
QPSK	25	0	18.98	18.90	18.94		0
	25	12	19.10	19.01	18.91	0-1	0
	25	25	18.99	18.90	18.97	0-1	0
50	0	18.97	18.95	18.84		0	
	1	0	19.22	19.15	19.03		0
	1	25	19.15	19.17	18.97	0-1	0
	1	49	19.45	19.04	19.02		0
16QAM	25	0	19.05	18.99	18.82		0
	25	12	19.17	19.09	18.92	0-2	0
	25	25	19.18	18.99	18.82	0-2	0
	50	0	19.02	18.98	18.83		0
	1	0	19.14	19.15	19.16		0
	1	25	19.26	19.37	19.13	0-2	0
	1	49	19.48	19.29	19.08		0
64QAM	25	0	19.07	18.95	18.91		0
	25	12	19.18	19.05	19.04	0-3	0
	25	25	19.07	18.96	19.00		0
	50	0	19.04	18.94	18.84		0
	1	0	18.00	17.85	17.70		1
	1	25	18.17	18.06	17.96		1
	1	49	17.96	17.90	17.76		1
256QAM	25	0	18.01	18.02	17.85	0-5	1
	25	12	18.13	18.09	18.03		1
	25	25	18.07	18.02	17.87		1
	50	0	18.03	18.01	17.88		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 442 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 113 of 298

Table 9-82 LTE Band 2 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

			uotiv	LTE Band 2 (PCS)	Width		
				5 MHz Bandwidth			
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	,	- SGFF [db]	
	1	0	19.00	18.90	18.88		0
	1	12	19.01	18.97	18.96	0	0
	1	24	18.90	18.85	18.85	† · ·	0
QPSK	12	0	19.11	19.01	18.89		0
	12	6	19.16	19.07	18.87	† †	0
	12	13	19.03	18.92	18.85	0-1	0
	25	0	19.08	19.01	18.87		0
	1	0	19.34	19.13	18.85		0
	1	12	19.39	19.19	18.98	0-1	0
	1	24	19.35	19.09	18.87		0
16QAM	12	0	19.13	19.10	18.92		0
	12	6	19.20	19.10	18.96		0
	12	13	19.06	18.99	18.91	0-2	0
	25	0	19.12	18.97	18.88		0
	1	0	19.33	19.06	19.11		0
	1	12	19.36	19.14	19.04	0-2	0
	1	24	19.25	18.99	19.00		0
64QAM	12	0	19.16	19.06	18.85		0
	12	6	19.19	19.11	18.92	0-3	0
	12	13	19.10	19.02	18.80	0-3	0
	25	0	19.05	19.09	18.90		0
	1	0	18.12	17.97	17.99		1
	1	12	18.02	18.07	18.11		1
	1	24	18.06	17.91	18.08		1
256QAM	12	0	18.08	18.04	17.95	0-5	1
	12	6	18.07	18.09	17.97	j	1
	12	13	18.02	18.02	17.93		1
	25	0	18.05	18.04	17.87] [1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 114 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 114 of 298

Table 9-83 LTE Band 2 (PCS) Measured *P_{limit}* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 3 MHz Bandwidth

			dotiv	LTE Band 2 (PCS)	Width		
		1	I avv Channal	3 MHz Bandwidth	High Channel	1	
Modulation	RB Size	RB Offset	Low Channel 18615 (1851.5 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	18.91	18.86	18.71		0
	1	7	18.84	18.90	18.74	0	0
	1	14	18.83	18.97	18.65		0
QPSK	8	0	19.08	18.99	18.89		0
	8	4	19.09	18.95	18.90	0-1	0
	8	7	19.01	18.94	18.83		0
	15	0	19.05	18.99	18.86		0
	1	0	19.40	19.22	19.03		0
	1	7	19.36	19.12	19.04	0-1	0
	1	14	19.34	19.24	18.98		0
16QAM	8	0	18.99	18.97	18.97		0
	8	4	19.00	19.18	18.99	0-2	0
	8	7	18.93	18.92	18.94		0
	15	0	19.11	18.97	18.99		0
	1	0	19.30	19.04	19.25		0
	1	7	19.22	19.01	19.20	0-2	0
	1	14	19.38	19.00	19.11		0
64QAM	8	0	19.10	19.09	18.99		0
	8	4	19.13	19.07	19.00	0-3	0
	8	7	19.02	19.00	18.98	0-3	0
	15	0	19.13	19.09	18.93		0
	1	0	18.09	18.00	17.81		1
	1	7	18.07	18.10	17.78		1
	1	14	18.01	18.09	17.78		1
256QAM	8	0	17.88	18.12	18.00	0-5	1
	8	4	17.93	18.17	18.02		1
	8	7	17.86	18.12	18.01		1
	15	0	18.05	18.07	18.07		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 445 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 115 of 298

Table 9-84 LTE Band 2 (PCS) Measured *P_{limit}* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) -1.4 MHz Bandwidth

				LTE Band 2 (PCS)			
		1	L Ob	1.4 MHz Bandwidth	History Observed		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	19.01	18.95	19.00		0
	1	2	18.98	18.98	18.97		0
	1	5	19.01	19.04	18.98] ₀ [0
QPSK	3	0	18.90	18.82	18.96] "	0
	3	2	18.97	18.84	18.94		0
	3	3	18.94	19.04	18.95		0
	6	0	19.03	18.93	19.01	0-1	0
	1	0	19.32	19.16	18.94		0
	1	2	19.40	19.14	18.98	0-1	0
	1	5	19.33	18.98	18.92		0
16QAM	3	0	19.03	18.98	18.86		0
3	3	2	19.09	19.07	18.90		0
	3	3	19.03	18.94	18.85		0
	6	0	19.05	18.85	18.85	0-2	0
	1	0	19.34	18.92	19.08		0
	1	2	19.34	19.27	19.12		0
	1	5	19.30	19.25	19.05	0-2	0
64QAM	3	0	18.92	18.99	18.88	0-2	0
	3	2	19.00	19.05	18.90		0
	3	3	18.93	18.98	18.97		0
	6	0	19.00	18.86	18.93	0-3	0
	1	0	17.97	17.92	17.96		1
	1	2	17.99	18.03	18.01		1
	1	5	17.96	17.89	17.92		1
256QAM	3	0	18.03	18.04	18.04	0-5	1
	3	2	18.04	18.07	17.79	-	1
	3	3	18.02	18.01	17.75		1
	6	0	17.94	18.00	18.04	1	1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 446 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 116 of 298

9.4.10 LTE Band 30

Table 9-85 LTE Band 30 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

LTE Band 30								
	10 MHz Bandwidth							
			Mid Channel					
	DD 0:	DD 0"	27710	MPR Allowed per	MDD (ID)			
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]			
			Conducted Power					
	1	0	[dBm] 23.59		0			
	1	25	23.58	0	0			
	1	49	23.50	U	0			
QPSK					1			
QPSK	25	0 12	22.70					
	25		22.72	0-1	1			
	25	25	22.61		1			
	50	0	22.64		1			
	1	0	23.02		1			
	1	25	22.99	0-1	1			
_	1	49	22.90		1			
16QAM	25	0	21.70		2			
	25	12	21.74	0-2	2			
	25	25	21.65		2			
	50	0	21.64		2			
	1	0	21.88		2			
	1	25	21.99	0-2	2			
	1	49	21.79		2			
64QAM	25	0	20.68		3			
	25	12	20.77	0.0	3			
	25	25	20.70	0-3	3			
	50	0	20.70		3			
	1	0	18.60		5			
	1	25	18.99		5			
	1	49	18.42		5			
256QAM	25	0	18.69	0-5	5			
	25	12	18.74		5			
	25	25	18.68		5			
	50	0	18.60		5			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 447 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 117 of 298

Table 9-86 LTE Band 30 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

	LTE Band 30 5 MHz Bandwidth						
			Mid Channel				
Modulation	RB Size	RB Offset	27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1	0	23.58		0		
	1	12	23.57	0	0		
	1	24	23.52		0		
QPSK	12	0	22.72		1		
	12	6	22.77	0-1	1		
	12	13	22.76	0-1	1		
	25	0	22.69		1		
	1	0	22.96		1		
	1	12	22.99	0-1	1		
	1	24	22.85		1		
16QAM	12	0	21.77		2		
	12	6	21.79	0-2	2		
	12	13	21.76	0-2	2		
	25	0	21.74		2		
	1	0	21.78		2		
	1	12	21.82	0-2	2		
	1	24	21.83		2		
64QAM	12	0	20.75		3		
	12	6	20.74	0-3	3		
	12	13	20.84	0-3	3		
	25	0	20.75		3		
	1	0	18.80		5		
	1	12	18.93		5		
	1	24	18.82		5		
256QAM	12	0	18.77	0-5	5		
	12	6	18.77		5		
	12	13	18.79		5		
	25	0	18.72		5		

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 119 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 118 of 298	

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 9-87 LTE Band 30 Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

LTE Band 30 Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth LTE Band 30							
10 MHz Bandwidth							
			Mid Channel				
			27710	MPR Allowed per			
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]		
			Conducted Power	OCIT [db]			
			[dBm]				
	1	0	18.36		0		
	1	25	18.47	0	0		
	1	49	18.33		0		
QPSK	25	0	18.44		0		
	25	12	18.46	0-1	0		
	25	25	18.45	0-1	0		
	50	0	18.40		0		
	1	0	18.76		0		
	1	25	18.67	0-1	0		
	1	49	18.68		0		
16QAM	25	0	18.49		0		
	25	12	18.48	0-2	0		
	25	25	18.42	0-2	0		
	50	0	18.44		0		
	1	0	18.67		0		
	1	25	18.69	0-2	0		
	1	49	18.65		0		
64QAM	25	0	18.47		0		
	25	12	18.53	0.0	0		
	25	25	18.49	0-3	0		
	50	0	18.43		0		
	1	0	18.26		0		
	1	25	18.51		0		
	1	49	18.06		0		
256QAM	25	0	18.43	0-5	0		
	25	12	18.43		0		
	25	25	18.46		0		
	50	0	18.39		0		

FCC ID: A3LSMG981U	PCTEST SEGMENTS LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 119 of 298

Table 9-88 LTE Band 30 Measured P_{limit} for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

LTE Band 30 Measured P _{limit} for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth LTE Band 30								
	5 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	18.30		0			
	1	12	18.41	0	0			
	1	24	18.21		0			
QPSK	12	0	18.45		0			
	12	6	18.46	0-1	0			
	12	13	18.50	0-1	0			
	25	0	18.45		0			
	1	0	18.57		0			
	1	12	18.80	0-1	0			
	1	24	18.54		0			
16QAM	12	0	18.44		0			
	12	6	18.55	0-2	0			
	12	13	18.54	0-2	0			
	25	0	18.44		0			
	1	0	18.50		0			
	1	12	18.57	0-2	0			
	1	24	18.74		0			
64QAM	12	0	18.45		0			
	12	6	18.48	0-3	0			
	12	13	18.61	0-3	0			
	25	0	18.34		0			
	1	0	18.47		0			
	1	12	18.61		0			
	1	24	18.34		0			
256QAM	12	0	18.35	0-5	0			
	12	6	18.44		0			
	12	13	18.41		0			
	25	0	18.43		0			

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 120 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 120 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

Table 9-89 LTE Band 30 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

	LTE Band 30 10 MHz Bandwidth									
			Mid Channel							
			07740							
Modulation	RB Size	RB Offset	(2310.0 MHz)	MPR Allowed per	MPR [dB]					
			Conducted Power	3GPP [dB]						
			[dBm]							
	1	0	21.34		0					
	1	25	21.38	0	0					
	1	49	21.32		0					
QPSK	25	0	21.47		0					
	25	12	21.50	0-1	0					
	25	25	21.47	0-1	0					
	50	0	21.37		0					
	1	0	21.63		0					
	1	25	21.76	0-1	0					
	1	49	21.67		0					
16QAM	25	0	21.61		0					
	25	12	21.61	0-2	0					
	25	25	21.61	0-2	0					
	50	0	21.42		0					
	1	0	21.35		0					
	1	25	21.53	0-2	0					
	1	49	21.48		0					
64QAM	25	0	20.55		1					
	25	12	20.68	0-3	1					
	25	25	20.61	0-3	1					
	50	0	20.52		1					
	1	0	18.59		3					
	1	25	18.80		3					
	1	49	18.59		3					
256QAM	25	0	18.70	0-5	3					
	25	12	18.68		3					
	25	25	18.62		3					
	50	0	18.68		3					

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 124 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 121 of 298

Table 9-90
LTE Band 30 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5
MHz Bandwidth

	LTE Band 30 5 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]					
	1	0	21.27		0					
	1	12	21.23	0	0					
	1	24	21.25		0					
QPSK	12	0	21.40		0					
	12	6	21.56	0.4	0					
	12	13	21.41	0-1	0					
	25	0	21.38		0					
	1	0	21.64		0					
	1	12	21.75	0-1	0					
	1	24	21.58		0					
16QAM	12	0	21.48		0					
	12	6	21.53	0-2	0					
	12	13	21.50	0-2	0					
	25	0	21.47		0					
	1	0	21.54		0					
	1	12	21.64	0-2	0					
	1	24	21.51		0					
64QAM	12	0	20.48		1					
	12	6	20.50	0-3	1					
	12	13	20.59	0-3	1					
	25	0	20.30		1					
	1	0	18.44		3					
	1	12	18.62		3					
	1	24	18.45		3					
256QAM	12	0	18.45	0-5	3					
	12	6	18.46		3					
	12	13	18.48		3					
	25	0	18.40		3					

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 122 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 122 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

9.4.1 LTE Band 7

Table 9-91 LTE Band 7 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

				LTE Band 7			
		1		20 MHz Bandwidth		1	
Modulation	RB Size	RB Offset	Low Channel 20850 (2510.0 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	4	0					0
	1	0 50	23.39 23.56	23.53 23.42	23.43 23.41	0	0
	1	99	23.58	23.35	23.50	U	0
QPSK	50	0	22.61	22.63	22.50		1
Qi Oit	50	25	22.74	22.55	22.62	-	1
	50	50	22.73	22.46	22.67	0-1	<u> </u>
	100	0	22.63	22.59	22.43	_	<u>.</u> 1
	1	0	22.55	22.65	22.55		1
	1	50	22.57	22.40	22.50	0-1	1
	1	99	22.58	22.34	22.48		1
16QAM	50	0	21.29	21.30	21.41		2
	50	25	21.44	21.30	21.38	0.0	2
	50	50	21.42	21.21	21.32	0-2	2
	100	0	21.34	21.28	21.35		2
	1	0	21.36	21.43	21.45		2
	1	50	21.54	21.36	21.42	0-2	2
	1	99	21.62	21.29	21.52		2
64QAM	50	0	20.34	20.34	20.21		3
	50	25	20.39	20.27	20.37	0-3	3
	50	50	20.42	20.25	20.33	0-3	3
	100	0	20.30	20.18	20.19		3
	1	0	18.15	18.45	18.32		5
	1	50	18.26	18.67	18.79		5
	1	99	18.20	18.52	18.42		5
256QAM	50	0	18.41	18.54	18.48	0-5	5
	50	25	18.55	18.56	18.64		5
	50	50	18.56	18.45	18.54		5
	100	0	18.52	18.51	18.49		5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 122 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 123 of 298

Table 9-92 LTE Band 7 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

			- 33-	LTE Band 7			
	ı			15 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20825	21100	21375	MPR Allowed per	MPR [dB]
			(2507.5 MHz)	(2535.0 MHz)	(2562.5 MHz)	3GPP [dB]	• •
		-		Conducted Power [dBm			
	1	0	23.50	23.23	23.25		0
	1	36	23.55	23.25	23.29	0	0
	1	74	23.72	23.20	23.34		0
QPSK	36	0	22.48	22.40	22.42		1
	36	18	22.57	22.38	22.43	0-1	1
	36	37	22.54	22.38	22.55	_	1
	75	0	22.48	22.32	22.35		1
	1	0	22.49	22.31	22.68		1
	1	36	22.62	22.22	22.65	0-1	1
	1	74	22.74	22.22	22.68		1
16QAM	36	0	21.53	21.44	21.42		2
	36	18	21.59	21.40	21.47	0-2	2
	36	37	21.60	21.41	21.56	0-2	2
	75	0	21.46	21.39	21.41		2
	1	0	21.41	21.63	21.50		2
	1	36	21.52	21.55	21.66	0-2	2
	1	74	21.61	21.67	21.62		2
64QAM	36	0	20.44	20.53	20.53		3
	36	18	20.56	20.41	20.63	0-3	3
	36	37	20.62	20.47	20.66	0-3	3
	75	0	20.59	20.36	20.37		3
	1	0	17.93	18.60	18.53		5
	1	36	18.18	18.65	18.88		5
	1	74	18.14	18.40	18.68		5
256QAM	36	0	18.27	18.62	18.55	0-5	5
	36	18	18.51	18.49	18.52		5
	36	37	18.55	18.40	18.63		5
	75	0	18.44	18.41	18.56	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 124 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 124 of 298

Table 9-93 LTE Band 7 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

			triggor	LTE Band 7	ila Wiatii		
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20800	21100	21400	MPR Allowed per	MPR [dB]
Woddiation	ND SIZE	KB Oliset	(2505.0 MHz)	(2535.0 MHz)	(2565.0 MHz)	3GPP [dB]	wii ix [ub]
				Conducted Power [dBm			
	1	0	23.29	23.24	23.28		0
	1	25	23.17	23.21	23.30	0	0
	1	49	23.23	23.18	23.30		0
QPSK	25	0	22.31	22.39	22.31		1
	25	12	22.41	22.30	22.41	0-1	1
	25	25	22.40	22.34	22.40		1
	50	0	22.36	22.31	22.27		1
	1	0	22.40	22.47	22.62		1
	1	25	22.46	22.56	22.62	0-1	1
	1	49	22.55	22.65	22.56		1
16QAM	25	0	21.34	21.40	21.39		2
	25	12	21.42	21.49	21.63	0-2	2
	25	25	21.44	21.50	21.55	0-2	2
	50	0	21.48	21.54	21.52		2
	1	0	21.48	21.39	21.60		2
	1	25	21.38	21.54	21.73	0-2	2
	1	49	21.40	21.51	21.69		2
64QAM	25	0	20.46	20.46	20.39		3
	25	12	20.56	20.43	20.52	0-3	3
	25	25	20.56	20.46	20.45	0-3	3
	50	0	20.37	20.31	20.31		3
	1	0	18.11	18.29	18.30		5
	1	25	18.49	18.53	18.83		5
	1	49	18.29	18.30	18.43		5
256QAM	25	0	18.27	18.46	18.36	0-5	5
	25	12	18.45	18.47	18.49		5
	25	25	18.34	18.52	18.32		5
	50	0	18.38	18.44	18.39		5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 425 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 125 of 298

Table 9-94 LTE Band 7 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

				LTE Band 7			
	<u> </u>	1	Low Channel	5 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20775 (2502.5 MHz)	21100 (2535.0 MHz) Conducted Power [dBm	21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.16	23.32	23.15		0
	1	12	23.24	23.31	23.24	0	0
	1	24	23.34	23.37	23.24		0
QPSK	12	0	22.28	22.32	22.29		1
	12	6	22.49	22.35	22.42	1 ,	1
	12	13	22.40	22.37	22.35	0-1	1
	25	0	22.33	22.27	22.40	1	1
	1	0	22.35	22.53	22.46		1
	1	12	22.40	22.56	22.54	0-1	1
	1	24	22.46	22.60	22.48	1	1
16QAM	12	0	21.41	21.51	21.49		2
	12	6	21.42	21.40	21.47		2
	12	13	21.37	21.41	21.51	0-2	2
	25	0	21.44	21.53	21.65		2
	1	0	21.51	21.46	21.42		2
	1	12	21.60	21.60	21.53	0-2	2
	1	24	21.68	21.51	21.50		2
64QAM	12	0	20.32	20.39	20.30		3
	12	6	20.44	20.40	20.43	0.0	3
	12	13	20.46	20.38	20.34	0-3	3
	25	0	20.38	20.40	20.36		3
	1	0	18.21	18.48	18.56		5
	1	12	18.45	18.43	18.62]	5
	1	24	18.43	18.54	18.54		5
256QAM	12	0	18.40	18.28	18.42	0-5	5
	12	6	18.55	18.40	18.51]	5
	12	13	18.52	18.34	18.50]	5
	25	0	18.43	18.31	18.45]	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 120 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 126 of 298

Table 9-95 LTE Band 7 Measured Plimit for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

			iododiod i illiliti	LTE Band 7	pot modo, zo	mile Banaman	
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850	21100	21350	MPR Allowed per	MPR [dB]
	ND SIZE	KB Oliset	(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	18.90	18.91	18.92]	0
	1	50	18.94	19.10	18.90	0	0
	1	99	18.91	18.70	18.87		0
QPSK	50	0	19.00	18.97	19.11]	0
	50	25	19.03	18.90	19.04	0-1	0
	50	50	19.01	19.13	19.09]	0
	100	0	19.05	19.06	19.07		0
	1	0	19.27	19.42	19.10]	0
	1	50	19.23	19.30	19.32	0-1	0
	1	99	19.32	19.17	19.23		0
16QAM	50	0	19.04	19.02	19.10	0-2	0
	50	25	19.21	19.11	19.03		0
	50	50	19.24	18.99	19.14		0
	100	0	19.11	19.16	19.00		0
	1	0	19.23	19.28	19.13		0
	1	50	19.45	19.17	19.32	0-2	0
	1	99	19.43	19.31	19.34] [0
64QAM	50	0	19.19	19.10	19.00		0
	50	25	19.26	19.02	19.27]	0
	50	50	19.24	19.16	19.19	0-3	0
	100	0	19.10	18.93	18.97	1	0
	1	0	18.57	18.30	18.24		0.5
	1	50	18.64	18.57	18.62	1	0.5
	1	99	18.21	18.02	18.42	1 1	0.5
256QAM	50	0	18.46	18.68	18.46	0-5	0.5
	50	25	18.66	18.69	18.66	1 1	0.5
	50	50	18.51	18.48	18.54	1 1	0.5
	100	0	18.55	18.48	18.45	1 1	0.5

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 427 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 127 of 298

Table 9-96 LTE Band 7 Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

				LTE Band 7		WINZ Bandwidth	
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		MPR [dB]
Modulation	RB Size	RB Offset	20825	21100	21375	MPR Allowed per	
	ND OILO	IND CHOOL	(2507.5 MHz)	(2535.0 MHz)	(2562.5 MHz)	3GPP [dB]	iii ii [ub]
				Conducted Power [dBm			
	1	0	18.91	18.76	18.80		0
	1	36	18.95	18.88	18.88	0	0
	1	74	19.00	18.79	18.81		0
QPSK	36	0	18.99	18.96	19.05		0
	36	18	19.05	18.95	19.06	0-1	0
	36	37	19.12	18.96	19.03] "	0
	75	0	19.10	18.90	19.11		0
	1	0	19.04	19.22	19.11		0
	1	36	19.26	19.20	19.07	0-1	0
	1	74	19.33	19.12	19.02		0
16QAM	36	0	18.96	19.06	19.00	0-2	0
	36	18	19.10	19.01	19.08		0
	36	37	19.03	19.01	19.13		0
	75	0	19.05	18.90	19.05		0
	1	0	19.13	19.32	19.14		0
	1	36	19.20	19.13	19.29	0-2	0
	1	74	19.25	19.05	19.16		0
64QAM	36	0	19.03	19.09	19.16		0
	36	18	19.15	19.05	19.18	0.0	0
	36	37	19.15	19.07	19.15	0-3	0
	75	0	19.10	18.95	19.10		0
	1	0	18.42	18.53	18.21		0.5
	1	36	18.61	18.49	18.61]	0.5
	1	74	18.35	18.14	18.42]	0.5
256QAM	36	0	18.39	18.50	18.47	0-5	0.5
	36	18	18.51	18.48	18.55	1	0.5
	36	37	18.52	18.48	18.60]	0.5
	75	0	18.49	18.45	18.46	1	0.5

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 128 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 126 01 296

Table 9-97 LTE Band 7 Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

				LTE Band 7	, , , , , , , , , , , , , , , , , , , ,	WINZ Bandwidth	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		MPR [dB]
Modulation	RB Size	RB Offset	20800	21100	21400	MPR Allowed per	
	NB 0120	IND GIIGGE	(2505.0 MHz)	(2535.0 MHz)	(2565.0 MHz)	3GPP [dB]	iii ii [ub]
				Conducted Power [dBm			
	1	0	18.78	18.68	18.85		0
	1	25	18.87	18.86	18.75	0	0
	1	49	18.85	18.51	18.77		0
QPSK	25	0	18.89	18.80	18.91		0
	25	12	19.11	18.77	18.93	0-1	0
	25	25	19.05	18.76	19.04]	0
	50	0	19.05	18.75	18.86		0
	1	0	19.08	19.30	19.28		0
	1	25	19.22	19.21	19.32	0-1	0
	1	49	19.34	19.26	19.35		0
16QAM	25	0	18.77	18.82	18.93	0-2	0
	25	12	18.85	18.90	18.97		0
	25	25	18.97	18.81	18.90		0
	50	0	18.92	18.81	18.74		0
	1	0	19.05	19.02	19.07		0
	1	25	19.19	19.14	19.06	0-2	0
	1	49	19.14	19.12	19.04		0
64QAM	25	0	18.91	18.82	18.86		0
	25	12	18.89	18.87	19.04	0.0	0
	25	25	18.93	18.86	18.95	0-3	0
	50	0	18.90	18.73	18.81		0
	1	0	18.31	18.28	18.17		0.5
	1	25	18.50	18.40	18.51]	0.5
	1	49	18.28	18.14	18.30	1	0.5
256QAM	25	0	18.28	18.20	18.23	0-5	0.5
	25	12	18.42	18.32	18.47	1	0.5
	25	25	18.25	18.23	18.36]	0.5
	50	0	18.33	18.23	18.22	1	0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 120 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 129 of 298

Table 9-98 LTE Band 7 Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

				LTE Band 7	pot mode, or		
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20775	21100	21425	MPR Allowed per	MPR [dB]
	ND SIZE	KB Oliset	(2502.5 MHz)	(2535.0 MHz)	(2567.5 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	18.79	18.76	18.75		0
	1	12	18.87	18.65	18.81	0	0
	1	24	18.87	18.64	18.87		0
QPSK	12	0	18.88	18.81	18.87		0
	12	6	18.96	18.87	18.97	0-1	0
	12	13	19.00	18.86	18.93	0-1	0
	25	0	18.95	18.86	18.85		0
	1	0	19.18	19.13	19.17		0
	1	12	19.19	19.15	19.13	0-1	0
	1	24	19.23	19.15	19.17		0
16QAM	12	0	19.04	18.93	18.91	0-2	0
	12	6	19.07	18.95	19.08		0
	12	13	19.07	18.94	19.05		0
	25	0	19.01	18.86	18.93		0
	1	0	19.14	19.06	19.13		0
	1	12	19.19	19.02	19.09	0-2	0
	1	24	19.21	19.06	19.12		0
64QAM	12	0	18.95	18.91	18.94		0
	12	6	19.09	18.95	19.03		0
	12	13	19.04	18.94	18.99	0-3	0
	25	0	19.04	18.91	18.95		0
	1	0	18.51	18.37	18.30		0.5
	1	12	18.64	18.52	18.54		0.5
	1	24	18.59	18.54	18.43		0.5
256QAM	12	0	18.43	18.54	18.38	0-5	0.5
	12	6	18.54	18.42	18.52		0.5
	12	13	18.55	18.38	18.46		0.5
	25	0	18.46	18.35	18.40		0.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 130 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 130 of 298	

Table 9-99 LTE Band 7 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

				LTE Band 7			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850 21100 21350 MPR A	MPR Allowed per	MPR [dB]		
Wodulation	ND SIZE	KB Oliset	(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	19.38	19.50	19.44		0
	1	50	19.55	19.44	19.40	0	0
	1	99	19.45	19.30	19.42		0
QPSK	50	0	19.53	19.53	19.45		0
	50	25	19.59	19.46	19.55	0-1	0
	50	50	19.65	19.49	19.57		0
	100	0	19.50	19.41	19.49		0
	1	0	19.82	19.87	19.80		0
	1	50	19.87	19.82	19.75	0-1	0
	1	99	19.88	19.68	19.81		0
16QAM	50	0	19.54	19.62	19.49	0-2	0
	50	25	19.66	19.43	19.61		0
	50	50	19.62	19.48	19.60		0
	100	0	19.58	19.40	19.42		0
	1	0	19.69	19.77	19.75		0
	1	50	19.81	19.81	19.69	0-2	0
	1	99	19.87	19.62	19.80		0
64QAM	50	0	19.58	19.60	19.53		0
	50	25	19.69	19.54	19.63		0
	50	50	19.58	19.55	19.68	0-3	0
	100	0	19.60	19.46	19.48		0
	1	0	18.25	18.52	18.49		1
	1	50	18.78	18.65	18.63		1
	1	99	18.49	18.24	18.33		1
256QAM	50	0	18.51	18.52	18.42	0-5	1
	50	25	18.60	18.51	18.62	†	1
	50	50	18.59	18.47	18.61		1
	100	0	18.65	18.46	18.46	1	1

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 131 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 131 01 298

Table 9-100 LTE Band 7 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

				LTE Band 7 15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	19.43	19.42	19.43		0
	1	36	19.26	19.49	19.44	0	0
	1	74	19.41	19.34	19.53		0
QPSK	36	0	19.56	19.59	19.55		0
	36	18	19.68	19.52	19.54	0-1	0
	36	37	19.65	19.55	19.60] 0-1	0
	75	0	19.59	19.48	19.51		0
	1	0	19.68	19.93	19.75		0
	1	36	19.92	19.84	19.92	0-1	0
	1	74	19.95	19.77	19.94		0
16QAM	36	0	19.60	19.58	19.58		0
	36	18	19.71	19.54	19.53		0
	36	37	19.66	19.57	19.70		0
	75	0	19.62	19.53	19.49		0
	1	0	19.74	19.93	19.86		0
	1	36	19.81	19.62	19.79	0-2	0
	1	74	19.89	19.65	19.88		0
64QAM	36	0	19.62	19.57	19.63		0
	36	18	19.76	19.58	19.71	0-3	0
	36	37	19.66	19.59	19.60		0
	75	0	19.65	19.50	19.56		0
	1	0	18.30	18.65	18.46		1
	1	36	18.64	18.66	18.54]	1
	1	74	18.87	18.48	18.50]	1
256QAM	36	0	18.54	18.50	18.60	0-5	1
	36	18	18.78	18.63	18.66	_	1
	36	37	18.70	18.54	18.58]	1
	75	0	18.72	18.47	18.62		1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 422 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 132 of 298

Table 9-101 LTE Band 7 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

				LTE Band 7 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20800 (2505.0 MHz)	20800 21100 21		MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	19.22	19.36	19.21		0
	1	25	19.20	19.31	19.33	0	0
	1	49	19.25	19.25	19.24	1	0
QPSK	25	0	19.35	19.36	19.29		0
	25	12	19.47	19.39	19.44	0-1	0
	25	25	19.45	19.26	19.44] 0-1	0
	50	0	19.41	19.28	19.27		0
	1	0	19.72	19.91	19.78		0
16QAM	1	25	19.85	19.86	19.84	0-1	0
	1	49	19.89	19.87	19.77		0
	25	0	19.35	19.44	19.35		0
	25	12	19.46	19.39	19.53	0-2	0
	25	25	19.49	19.37	19.48	0-2	0
	50	0	19.58	19.30	19.44		0
	1	0	19.51	19.62	19.33		0
	1	25	19.54	19.50	19.63	0-2	0
	1	49	19.60	19.40	19.61] [0
64QAM	25	0	19.31	19.37	19.61		0
	25	12	19.48	19.41	19.40	0-3	0
	25	25	19.47	19.45	19.42	0-3	0
	50	0	19.45	19.34	19.37		0
	1	0	18.27	18.42	18.23		1
	1	25	18.50	18.56	18.54] [1
	1	49	18.35	18.20	18.40] [1
256QAM	25	0	18.27	18.36	18.33	0-5	1
	25	12	18.44	18.37	18.52] [1
	25	25	18.32	18.39	18.55] [1
	50	0	18.41	18.29	18.31] [1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 122 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 133 of 298

Table 9-102 LTE Band 7 Measured Plimit for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

				LTE Band 7			
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	I	
Modulation	RB Size	RB Offset	20775	21100	21425	MPR Allowed per	MPR [dB]
			(2502.5 MHz)	(2535.0 MHz) Conducted Power [dBm	(2567.5 MHz)	3GPP [dB]	
	1	0	19.13	19.30	19.26		0
	1	12	19.34	19.31	19.25	0	0
	1	24	19.22	19.26	19.13	1	0
QPSK	12	0	19.37	19.33	19.13		0
Qi Oit	12	6	19.41	19.40	19.47	1	0
	12	13	19.34	19.37	19.39	0-1	0
	25	0	19.30	19.33	19.35	1 1	0
16QAM	1	0	19.63	19.71	19.54		0
	1	12	19.60	19.67	19.67	0-1	0
	1	24	19.69	19.73	19.69	i i	0
	12	0	19.32	19.44	19.36		0
	12	6	19.45	19.50	19.48	1 1	0
	12	13	19.46	19.43	19.44	0-2	0
	25	0	19.34	19.38	19.34	1	0
	1	0	19.42	19.35	19.55		0
	1	12	19.53	19.54	19.51	0-2	0
	1	24	19.56	19.61	19.50	1	0
64QAM	12	0	19.32	19.43	19.45		0
	12	6	19.43	19.45	19.32	0-3	0
	12	13	19.42	19.46	19.46] 0-3	0
	25	0	19.41	19.34	19.34] [0
	1	0	18.35	18.49	18.46		1
	1	12	18.56	18.50	18.55] [1
	1	24	18.40	18.40	18.39] [1
256QAM	12	0	18.37	18.35	18.34	0-5	1
	12	6	18.42	18.33	18.41] [1
	12	13	18.45	18.41	18.46] [1
	25	0	18.44	18.32	18.31	<u> </u>	1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 424 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 134 of 298

9.4.2 LTE Band 48

Table 9-103

LTE Band 48 Measured P_{max} for DSI = 0 (Body-worn, or Phablet with grip sensor not triggered), or DSI = 1 (Phablet with grip sensor active), or DSI = 3 (Hotspot Mode), or DSI = 4 (Earjack active) - 20 MHz Bandwidth

	LTE Band 48 20 MHz Bandwidth									
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	55340 (3560.0 MHz)	55773 (3603.3 MHz)	56207 (3646.7 MHz)	56640 (3690.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted	Power [dBm]					
	1	0	22.35	22.46	22.28	22.40		0		
	1	50	22.59	22.62	22.61	22.61	0	0		
	1	99	22.35	22.35	22.41	22.23		0		
QPSK	50	0	21.62	21.68	21.54	21.64		1		
	50	25	21.64	21.55	21.59	21.65	0-1	1		
	50	50	21.54	21.49	21.51	21.60		1		
	100	0	21.55	21.39	21.61	21.62		1		
	1	0	21.46	21.48	21.34	21.59		1		
	1	50	21.87	21.65	21.68	21.75	0-1	1		
	1	99	21.52	21.53	21.37	21.54		1		
16QAM	50	0	20.60	20.64	20.60	20.60		2		
	50	25	20.64	20.59	20.73	20.69	0-2	2		
	50	50	20.47	20.44	20.65	20.60		2		
	100	0	20.55	20.49	20.64	20.66		2		
	1	0	20.57	20.43	20.52	20.56		2		
	1	50	20.68	20.59	20.67	20.59	0-2	2		
	1	99	20.52	20.27	20.69	20.43		2		
64QAM	50	0	19.69	19.64	19.72	19.57		3		
	50	25	19.61	19.58	19.83	19.65	0-3	3		
	50	50	19.57	19.41	19.67	19.54	0-3	3		
	100	0	19.48	19.47	19.68	19.61		3		
	1	0	17.59	17.18	17.46	17.55		5		
	1	50	17.54	17.25	17.63	17.61		5		
	1	99	17.43	17.17	17.68	17.74	0-5	5		
256QAM	50	0	17.69	17.53	17.58	17.66		5		
	50	25	17.66	17.45	17.76	17.74		5		
	50	50	17.54	17.24	17.58	17.65		5		
	100	0	17.48	17.34	17.56	17.63		5		

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 425 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 135 of 298

Table 9-104 LTE Band 48 Measured P_{max} for DSI = 0 (Body-worn, or Phablet with grip sensor not triggered), or DSI = 1 (Phablet with grip sensor active), or DSI = 3 (Hotspot Mode), or DSI = 4 (Earjack active) - 15 MHz Bandwidth

	LTE Band 48 15 MHz Bandwidth									
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	55315 (3557.5 MHz)	55765 (3602.5 MHz)	56215 (3647.5 MHz)	56665 (3692.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted	Power [dBm]					
	1	0	22.55	22.57	22.45	22.60		0		
	1	36	22.82	22.80	22.54	22.63	0	0		
	1	74	22.58	22.50	22.60	22.56		0		
QPSK	36	0	21.86	21.84	21.77	21.53		1		
	36	18	21.98	21.82	21.89	21.50	0-1	1		
	36	37	21.84	21.72	21.70	21.70	0-1	1		
	75	0	21.70	21.57	21.53	21.89		1		
	1	0	21.63	21.62	21.62	21.70		1		
	1	36	21.85	21.62	21.40	21.63	0-1	1		
	1	74	21.82	21.70	21.60	21.75		1		
16QAM	36	0	20.50	20.73	20.69	20.42		2		
	36	18	20.48	20.69	20.75	20.58	0-2	2		
	36	37	20.81	20.62	20.64	20.68		2		
	75	0	20.70	20.69	20.65	20.55		2		
	1	0	20.64	20.50	20.72	20.62		2		
	1	36	20.65	20.59	20.88	20.50	0-2	2		
	1	74	20.59	20.43	20.90	20.59		2		
64QAM	36	0	19.45	19.81	19.57	19.23		3		
	36	18	19.53	19.75	19.54	19.25	0-3	3		
	36	37	19.52	19.77	19.72	19.42	0-3	3		
	75	0	19.53	19.66	19.62	19.41		3		
	1	0	17.55	17.25	17.68	17.53		5		
	1	36	17.31	17.17	17.66	17.65	_[5		
	1	74	17.48	17.27	17.75	17.81	0-5	5		
256QAM	36	0	17.49	17.31	17.43	17.44		5		
	36	18	17.52	17.42	17.66	17.64		5		
	36	37	17.41	17.39	17.73	17.68	_[5		
	75	0	17.42	17.34	17.61	17.61		5		

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 420 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 136 of 298

Table 9-105

LTE Band 48 Measured P_{max} for DSI = 0 (Body-worn, or Phablet with grip sensor not triggered), or DSI = 1 (Phablet with grip sensor active), or DSI = 3 (Hotspot Mode), or DSI = 4 (Earjack active) - 10 MHz Bandwidth

				LTE Bar 10 MHz Bar				
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	55290 (3555.0 MHz)	55757 (3601.7 MHz)	56223 (3648.3 MHz)	56690 (3695.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted	Power [dBm]			
	1	0	22.33	22.39	22.47	22.75		0
	1	25	22.71	22.62	22.70	22.99	0	0
	1	49	22.52	22.54	22.81	22.96		0
QPSK	25	0	21.62	21.46	21.66	22.00		1
	25	12	21.72	21.50	21.62	21.97	0-1	1
	25	25	21.66	21.53	21.77	21.94	0-1	1
	50	0	21.65	21.54	21.65	21.92		1
	1	0	21.30	21.55	21.74	21.93		1
	1	25	21.71	21.70	21.89	21.87	0-1	1
	1	49	21.51	21.66	21.89	21.98	1	1
16QAM	25	0	20.56	20.60	20.64	20.96		2
	25	12	20.63	20.64	20.76	20.87	0-2	2
	25	25	20.62	20.51	20.85	20.91		2
	50	0	20.62	20.52	20.66	20.96	1	2
	1	0	20.63	20.46	20.45	20.81		2
	1	25	20.87	20.73	20.47	20.96	0-2	2
	1	49	20.77	20.61	20.84	20.87		2
64QAM	25	0	19.63	19.53	19.63	19.94		3
	25	12	19.72	19.64	19.55	19.87	0-3	3
	25	25	19.66	19.51	19.67	19.79	0-3	3
	50	0	19.65	19.55	19.62	19.83		3
	1	0	17.41	17.05	17.52	17.73		5
	1	25	17.40	17.25	17.65	17.80	1	5
	1	49	17.33	17.47	17.56	17.71	0-5	5
256QAM	25	0	17.60	17.46	17.56	17.68		5
	25	12	17.69	17.53	17.63	17.58		5
	25	25	17.60	17.44	17.65	17.70	1	5
	50	0	17.67	17.48	17.49	17.54]	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 427 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 137 of 298

Table 9-106

LTE Band 48 Measured P_{max} for DSI = 0 (Body-worn, or Phablet with grip sensor not triggered), or DSI = 1 (Phablet with grip sensor active), or DSI = 3 (Hotspot Mode), or DSI = 4 (Earjack active) - 5 MHz Bandwidth

				LTE Bar 5 MHz Ban				
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	55265 (3552.5 MHz)	55748 (3600.8 MHz)		MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted	Power [dBm]			
	1	0	22.51	22.44	22.53	22.95		0
	1	12	22.67	22.49	22.83	22.98	0	0
	1	24	22.50	22.47	22.72	22.87		0
QPSK	12	0	21.72	21.55	21.74	21.96		1
	12	6	21.82	21.65	21.87	21.95	0-1	1
	12	13	21.82	21.56	21.85	21.79	0-1	1
	25	0	21.77	21.60	21.85	21.98		1
	1	0	21.63	21.57	21.49	21.93		1
16QAM	1	12	21.70	21.69	21.55	21.98	0-1	1
	1	24	21.77	21.66	21.70	21.94		1
	12	0	20.77	20.57	20.86	20.68		2
	12	6	20.88	20.67	20.85	20.94	0-2	2
	12	13	20.78	20.59	20.83	20.85		2
	25	0	20.77	20.63	20.84	20.96		2
	1	0	20.72	20.39	20.65	20.85		2
	1	12	20.81	20.41	20.79	20.94	0-2	2
	1	24	20.87	20.44	20.75	20.96		2
64QAM	12	0	19.82	19.49	19.50	19.63		3
	12	6	19.85	19.55	19.63	19.71	0-3	3
	12	13	19.86	19.52	19.67	19.74] "	3
	25	0	19.78	19.63	19.77	19.81		3
	1	0	17.66	17.13	17.75	17.75		5
	1	12	17.72	17.19	17.60	17.84		5
	1	24	17.69	17.29	17.71	17.65]	5
256QAM	12	0	17.60	17.52	17.62	17.68	0-5	5
	12	6	17.73	17.63	17.80	17.64		5
	12	13	17.72	17.56	17.77	17.73	_	5
	25	0	17.74	17.59	17.72	17.68		5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 138 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 136 01 296	

Table 9-107 LTE Band 48 Measured Plimit for DSI = 2 (Head) - 20 MHz Bandwidth

		LIL Dani	u 40 Measure	LTE Bar	ol = 2 (Head) -	ZU WII IZ Dali	awiatii	
				20 MHz Bai	ndwidth			
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	(3560.0 MHz) (3603.3 MHz)	55773 (3603.3 MHz)	56207 (3646.7 MHz)	56640 (3690.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted	Power [dBm]			
	1	0	17.34	17.36	17.13	17.30		0
	1	50	17.51	17.57	17.16	17.70	0	0
	1	99	17.28	17.28	17.13	17.54		0
QPSK	50	0	17.45	17.54	17.14	17.62		0
	50	25	17.45	17.64	17.15	17.69	0-1	0
	50	50	17.44	17.61	17.13	17.55	0-1	0
	100	0	17.55	17.54	17.12	17.53		0
	1	0	17.40	17.46	17.14	17.39	<u> </u>	0
	1	50	17.40	17.63	17.16	17.32	0-1	0
	1	99	17.42	17.42	17.14	17.34		0
16QAM	50	0	17.38	17.55	17.20	17.40	0-2	0
	50	25	17.40	17.63	17.22	17.62		0
	50	50	17.38	17.49	17.23	17.67	0-2	0
	100	0	17.37	17.54	17.22	17.51		0
	1	0	17.39	17.35	17.12	17.38		0
	1	50	17.37	17.35	17.10	17.54	0-2	0
	1	99	17.41	17.33	17.15	17.38		0
64QAM	50	0	17.40	17.60	17.09	17.47		0
	50	25	17.40	17.50	17.19	17.61	0-3	0
	50	50	17.38	17.53	17.24	17.55	0-3	0
	100	0	17.36	17.32	17.23	17.52		0
	1	0	17.17	17.43	17.46	17.40		0
	1	50	17.51	17.31	17.62	17.60		0
	1	99	17.28	17.35	17.53	17.49	0-5	0
256QAM	50	0	17.43	17.53	17.62	17.61		0
	50	25	17.46	17.46	17.77	17.62	1	0
	50	50	17.47	17.61	17.62	17.71	1	0
	100	0	17.41	17.48	17.61	17.52	1	0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 120 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 139 of 298	

Table 9-108 LTE Band 48 Measured Plimit for DSI = 2 (Head) - 15 MHz Bandwidth

	LTE Band 48											
				15 MHz Baı	ndwidth							
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel						
Modulation	RB Size	RB Offset	55315 (3557.5 MHz)	55765 (3602.5 MHz)	56215 (3647.5 MHz)	56665 (3692.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted	Power [dBm]							
	1	0	17.40	17.41	16.98	17.38		0				
	1	36	17.69	17.42	17.05	17.50	0	0				
	1	74	17.56	17.39	16.96	17.48		0				
QPSK	36	0	17.59	17.50	17.05	17.49		0				
	36	18	17.67	17.45	17.13	17.61	0-1	0				
	36	37	17.52	17.38	17.22	17.59	0-1	0				
	75	0	17.47	17.40	17.03	17.53		0				
	1	0	17.55	17.56	17.05	17.50		0				
	1	36	17.72	17.54	17.12	17.69	0-1	0				
	1	74	17.69	17.47	17.03	17.62		0				
16QAM	36	0	17.58	17.52	17.04	17.48		0				
	36	18	17.62	17.44	17.08	17.58	0-2	0				
	36	37	17.48	17.32	17.06	17.55	0-2	0				
	75	0	17.59	17.40	17.15	17.35		0				
	1	0	17.17	17.13	16.89	17.52		0				
	1	36	17.36	17.18	16.98	17.45	0-2	0				
	1	74	17.17	16.90	16.81	17.49		0				
64QAM	36	0	17.74	17.58	17.05	17.56		0				
	36	18	17.66	17.50	17.18	17.63	0-3	0				
	36	37	17.56	17.40	17.08	17.56	0-3	0				
	75	0	17.60	17.47	17.12	17.60		0				
	1	0	17.27	17.33	17.40	17.51		0				
	1	36	17.60	17.35	17.46	17.59		0				
	1	74	17.28	17.10	17.35	17.62	0-5	0				
256QAM	36	0	17.67	17.48	17.63	17.84		0				
	36	18	17.75	17.45	17.66	17.89		0				
	36	37	17.58	17.40	17.63	17.70		0				
	75	0	17.48	17.42	17.60	17.75		0				

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 440 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 140 of 298	

Table 9-109 LTE Band 48 Measured Plimit for DSI = 2 (Head) - 10 MHz Bandwidth

				LTE Bar	nd 48	TO WITE Ball		
		I		10 MHz Baı	ndwidth		1	
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	55290 (3555.0 MHz)	55757 (3601.7 MHz)	56223 (3648.3 MHz)	56690 (3695.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted	Power [dBm]			
	1	0	17.47	17.46	17.23	17.44		0
	1	25	17.64	17.69	17.27	17.65	0	0
QPSK	1	49	17.72	17.58	17.35	17.41		0
	25	0	17.66	17.72	17.06	17.72		0
	25	12	17.75	17.75	17.07	17.71	0-1	0
	25	25	17.67	17.71	17.15	17.69	0-1	0
	50	0	17.65	17.72	17.17	17.64		0
	1	0	17.50	17.60	17.20	17.51		0
16QAM	1	25	17.66	17.62	17.05	17.48	0-1	0
	1	49	17.59	17.75	17.18	17.62		0
	25	0	17.48	17.49	17.19	17.56		0
	25	12	17.56	17.45	17.27	17.55	0-2	0
	25	25	17.49	17.59	17.14	17.47		0
	50	0	17.50	17.50	17.21	17.62		0
	1	0	17.25	17.24	17.15	17.65		0
	1	25	17.57	17.36	17.14	17.58	0-2	0
	1	49	17.33	17.51	17.05	17.47		0
64QAM	25	0	17.48	17.51	17.17	17.55		0
	25	12	17.56	17.44	17.24	17.51	0-3	0
	25	25	17.49	17.38	17.23	17.39	0-3	0
	50	0	17.54	17.48	17.19	17.68	1	0
	1	0	17.28	17.58	17.58	17.52		0
	1	25	17.59	17.63	17.68	17.64]	0
	1	49	17.37	17.66	17.64	17.55	1	0
256QAM	25	0	17.53	17.53	17.63	17.81	0-5	0
	25	12	17.60	17.61	17.67	17.65	1	0
	25	25	17.50	17.47	17.54	17.69	1	0
	50	0	17.49	17.67	17.64	17.62	1	0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 141 of 209		
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 141 of 298	

Table 9-110 LTE Band 48 Measured Plimit for DSI = 2 (Head) - 5 MHz Bandwidth

		LIL Dan	u 40 Measur	LTE Bar	SI = 2 (Head) - nd 48	3 WII IZ Dalie	awiatii	
				5 MHz Ban	dwidth		1	
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	55265 (3552.5 MHz)	55748 (3600.8 MHz)	56232 (3649.2 MHz)	56715 (3697.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted	Power [dBm]			
	1	0	17.59	17.51	17.23	17.54		0
	1	12	17.54	17.57	17.27	17.51	0	0
	1	24	17.62	17.45	17.35	17.52		0
QPSK	12	0	17.56	17.52	17.27	17.56		0
	12	6	17.65	17.46	17.14	17.58	0-1	0
	12	13	17.56	17.49	17.34	17.39	J 0-1	0
	25	0	17.66	17.43	17.31	17.50	1	0
	1	0	17.60	17.55	17.20	17.52		0
	1	12	17.63	17.46	17.25	17.38	0-1	0
	1	24	17.69	17.55	17.37	17.34		0
16QAM	12	0	17.54	17.61	17.26	17.26		0
	12	6	17.70	17.62	17.34	17.35	0-2	0
	12	13	17.58	17.55	17.22	17.36	0-2	0
	25	0	17.66	17.35	17.14	17.26	1	0
	1	0	17.50	17.50	17.28	17.35		0
	1	12	17.55	17.56	17.16	17.38	0-2	0
	1	24	17.52	17.51	17.28	17.54	1	0
64QAM	12	0	17.63	17.48	17.39	17.48		0
	12	6	17.61	17.44	17.30	17.34	0-3	0
	12	13	17.70	17.45	17.43	17.35	0-3	0
	25	0	17.63	17.52	17.26	17.54		0
	1	0	17.47	17.44	17.58	17.52		0
	1	12	17.64	17.58	17.49	17.47	1	0
	1	24	17.58	17.57	17.71	17.36	1	0
256QAM	12	0	17.55	17.72	17.56	17.58	0-5	0
	12	6	17.62	17.56	17.49	17.55	1	0
	12	13	17.49	17.65	17.59	17.41	1	0
	25	0	17.56	17.57	17.56	17.48		0

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dage 142 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 142 of 298	

9.4.3 LTE Band 41

Table 9-111 LTE Band 41 PC3 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

					LTE Band 41				
			Low Channel	Low-Mid Channel	0 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	3 Size RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.25	24.29	24.32	23.89	23.88		0
	1	50	24.19	24.30	24.30	23.99	24.01	0	0
	1	99	24.15	24.31	24.21	23.78	23.80		0
QPSK	50	0	23.39	23.31	23.37	23.06	22.95		1
	50	25	23.36	23.37	23.50	23.13	23.05	0-1	1
	50	50	23.30	23.33	23.34	22.98	23.07	0-1	1
	100	0	23.28	23.23	23.38	23.02	22.97		1
	1	0	23.40	23.45	23.24	22.97	22.96		1
1	1	50	23.38	23.40	23.50	23.14	23.02	0-1	1
	1	99	23.33	23.44	23.13	22.91	22.89		1
16QAM	50	0	22.43	22.32	22.41	22.11	21.98	0-2	2
	50	25	22.42	22.41	22.53	22.19	22.09		2
	50	50	22.34	22.37	22.40	21.96	22.11		2
	100	0	22.32	22.35	22.42	22.04	22.10		2
	1	0	22.06	21.94	21.84	22.00	21.86		2
	1	50	22.00	22.00	22.17	22.06	21.95	0-2	2
	1	99	21.92	21.97	21.94	21.85	22.08		2
64QAM	50	0	21.44	21.35	21.50	21.12	21.03		3
	50	25	21.47	21.44	21.62	21.22	21.14		3
	50	50	21.39	21.37	21.45	21.31	21.17	0-3	3
	100	0	21.39	21.34	21.50	21.27	21.04		3
	1	0	19.00	18.80	18.99	19.02	18.93		5
	1	50	19.23	19.23	19.29	19.21	19.19		5
	1	99	18.89	18.84	18.90	19.08	19.12	1	5
256QAM	50	0	19.34	19.31	19.43	19.48	19.32	0-5	5
	50	25	19.43	19.46	19.54	19.42	19.27		5
	50	50	19.36	19.30	19.38	19.38	19.31		5
	100	0	19.33	19.32	19.36	19.35	19.28	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 143 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		

Table 9-112 LTE Band 41 PC3 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

					LTE Band 41 5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation F	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	24.40	23.96	24.22	24.00	24.07		0
	1	36	24.39	24.18	24.42	24.14	24.24	0	0
	1	74	24.21	24.05	24.12	23.89	23.91		0
QPSK	36	0	23.43	23.18	23.26	23.24	23.24		1
	36	18	23.42	23.33	23.36	23.27	23.29	0-1	1
	36	37	23.38	23.25	23.41	23.24	23.30	0-1	1
	75	0	23.33	23.18	23.35	23.21	23.20		1
	1	0	23.53	23.28	23.41	23.14	23.24		1
	1	36	23.41	23.49	23.52	23.37	23.29	0-1	1
	1	74	23.39	23.38	23.37	22.91	23.24		1
16QAM	36	0	22.44	22.17	22.29	22.23	22.22		2
	36	18	22.45	22.34	22.39	22.25	22.38	0-2	2
	36	37	22.40	22.18	22.40	22.18	22.38	J 0-2	2
	75	0	22.41	22.25	22.39	22.18	22.30		2
	1	0	22.28	22.00	22.04	22.10	21.91		2
	1	36	22.33	22.29	22.33	22.33	22.29	0-2	2
	1	74	22.22	22.01	22.10	21.92	22.22		2
64QAM	36	0	21.49	21.12	21.31	21.38	21.21		3
	36	18	21.46	21.24	21.39	21.42	21.33		3
	36	37	21.35	21.16	21.39	21.41	21.36	0-3	3
	75	0	21.35	21.27	21.40	21.42	21.26]	3
	1	0	18.97	18.98	19.24	19.35	19.25		5
	1	36	19.09	19.35	19.18	19.46	19.45]	5
	1	74	18.89	19.08	19.00	19.20	19.33	1	5
256QAM	36	0	19.15	19.44	19.55	19.61	19.50	0-5	5
	36	18	19.35	19.53	19.56	19.58	19.54		5
	36	37	19.22	19.35	19.49	19.54	19.55		5
	75	0	19.21	19.46	19.54	19.56	19.49	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 144 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		

Table 9-113 LTE Band 41 PC3 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

					LTE Band 41 0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	24.25	23.97	24.13	23.86	23.95		0
	1	25	24.23	24.22	24.26	24.11	24.16	0	0
	1	49	24.07	23.89	24.00	23.87	23.75		0
QPSK	25	0	23.25	23.09	23.23	23.11	23.06		1
	25	12	23.11	23.24	23.30	23.19	23.12	0-1	1
	25	25	23.14	23.11	23.18	23.16	23.11] 0-1	1
	50	0	23.16	23.14	23.25	23.19	23.04		1
	1	0	23.34	23.20	23.21	23.16	23.05		1
	1	25	23.28	23.40	23.34	23.40	22.96	0-1	1
	1	49	23.11	23.22	23.05	23.16	22.97		1
16QAM	25	0	22.26	22.10	22.21	22.03	22.13		2
	25	12	22.27	22.24	22.36	22.16	22.16	1	2
	25	25	22.25	22.12	22.23	22.10	22.13	0-2	2
	50	0	22.22	22.18	22.29	22.16	22.03		2
	1	0	22.20	21.93	22.08	21.90	22.02		2
	1	25	22.18	22.17	22.30	22.15	22.16	0-2	2
	1	49	22.10	21.96	21.97	21.87	22.03		2
64QAM	25	0	21.29	21.19	21.27	21.21	21.13		3
	25	12	21.29	21.33	21.38	21.26	21.25	0-3	3
	25	25	21.21	21.22	21.24	21.23	21.11	0-3	3
	50	0	21.24	21.20	21.29	21.31	21.12		3
	1	0	18.83	18.83	19.05	18.99	18.88		5
	1	25	18.96	19.07	19.16	19.33	19.19	1	5
	1	49	18.91	18.97	18.94	19.05	19.08		5
256QAM	25	0	19.12	19.31	19.27	19.48	19.28	0-5	5
	25	12	19.11	19.37	19.36	19.36	19.40	1	5
	25	25	19.03	19.31	19.20	19.32	19.32]	5
	50	0	19.20	19.37	19.32	19.36	19.38	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 145 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19		Page 145 of 298	

Table 9-114 LTE Band 41 PC3 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

					LTE Band 41				
			Low Channel	Low-Mid Channel	MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
•				Co	nducted Power [dE	Bm]			
	1	0	24.26	24.15	24.24	24.01	24.10		0
	1	12	24.15	24.21	24.24	24.12	24.12	0	0
	1	24	24.14	24.10	24.23	24.08	24.11		0
QPSK	12	0	23.24	23.15	23.28	23.21	23.10		1
	12	6	23.21	23.26	23.29	23.21	23.12	0-1	1
	12	13	23.18	23.21	23.27	23.23	23.17] "" [1
	25	0	23.23	23.19	23.28	23.23	23.09		1
	1	0	23.34	23.19	23.30	22.93	23.17		1
	1	12	23.31	23.38	23.34	23.17	23.28	0-1	1
	1	24	23.22	23.20	23.32	23.08	23.19		1
16QAM	12	0	22.33	22.20	22.37	22.30	22.27		2
	12	6	22.35	22.29	22.44	22.27	22.26	0.2	2
	12	13	22.32	22.23	22.42	22.34	22.26	0-2	2
	25	0	22.17	22.20	22.27	22.25	22.07		2
	1	0	22.35	22.15	22.12	22.25	22.18		2
	1	12	22.23	22.13	22.41	22.27	22.22	0-2	2
	1	24	22.27	22.16	22.14	22.11	22.15		2
64QAM	12	0	21.29	21.26	21.29	21.17	21.19		3
	12	6	21.25	21.34	21.40	21.23	21.17	0-3	3
	12	13	21.22	21.31	21.30	21.25	21.21	0-3	3
	25	0	21.15	21.20	21.22	21.22	21.04		3
	1	0	18.97	19.04	19.00	19.15	19.19		5
	1	12	19.05	19.13	19.07	19.09	19.17		5
	1	24	18.87	19.02	19.13	19.20	19.14		5
256QAM	12	0	19.19	19.43	19.40	19.35	19.34	0-5	5
	12	6	19.23	19.48	19.47	19.49	19.42		5
	12	13	19.15	19.43	19.40	19.49	19.39		5
	25	0	19.13	19.33	19.39	19.39	19.27		5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	MSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dago 146 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 146 of 298	

Table 9-115 LTE Band 41 PC3 Measured Plimit for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

		Dana 41	1 00 Mcast	area Plimit 101	LTE Band 41	otspot mode) - 20 WII IZ	Danawiath	
				2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	lm]			
	1	0	21.37	21.37	21.45	20.95	21.07		0
	1	50	21.29	21.36	21.73	21.13	21.24	0	0
	1	99	21.20	21.41	21.34	20.73	21.15		0
QPSK	50	0	21.51	21.45	21.68	21.33	21.25		0
	50	25	21.50	21.53	21.82	21.35	21.35	0-1	0
	50	50	21.41	21.50	21.67	21.13	21.40	0-1	0
	100	0	21.41	21.41	21.72	21.24	21.32		0
	1	0	21.60	21.70	21.43	21.25	20.97		0
	1	50	21.49	21.58	21.82	21.34	21.48	0-1	0
	1	99	21.47	21.65	21.50	21.20	21.41		0
16QAM	50	0	21.56	21.53	21.71	21.30	21.30		0
	50	25	21.55	21.62	21.87	21.35	21.46	0-2	0
	50	50	21.51	21.59	21.70	21.15	21.48	0-2	0
	100	0	21.48	21.51	21.77	21.27	21.36		0
	1	0	21.41	21.16	21.09	21.08	20.88		0
	1	50	21.34	21.20	21.45	21.28	21.15	0-2	0
	1	99	21.25	21.23	21.08	20.96	20.93		0
64QAM	50	0	21.60	21.60	21.76	21.33	21.32		0
	50	25	21.59	21.64	21.90	21.40	21.43	1 ,,	0
	50	50	21.54	21.59	21.76	21.20	21.49	0-3	0
	100	0	21.46	21.50	21.76	21.29	21.32		0
	1	0	19.44	19.19	19.24	18.94	19.07		2
	1	50	19.38	19.42	19.62	19.16	19.30		2
	1	99	19.53	19.31	19.26	18.68	19.15] [2
256QAM	50	0	19.52	19.52	19.73	19.34	19.37	0-5	2
	50	25	19.63	19.65	19.89	19.41	19.50		2
	50	50	19.57	19.54	19.74	19.21	19.57	1	2
	100	0	19.53	19.55	19.75	19.30	19.39	1	2

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 147 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 147 01 298

Table 9-116 LTE Band 41 PC3 Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

		Barra 41	T GG IIIGGG		LTE Band 41	otspot mode	, 10 111112	Banawiani	
			Low Channel	Low-Mid Channel	5 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	21.54	21.32	21.39	21.10	21.15		0
	1	36	21.56	21.41	21.60	21.23	21.43	0	0
	1	74	21.44	21.32	21.29	20.94	21.31		0
QPSK	36	0	21.62	21.53	21.54	21.21	21.37		0
	36	18	21.65	21.63	21.63	21.26	21.48] ,, [0
	36	37	21.62	21.55	21.65	21.23	21.54	0-1	0
	75	0	21.55	21.53	21.64	21.22	21.38		0
	1	0	21.48	21.52	21.32	21.38	21.11		0
	1	36	21.51	21.74	21.57	21.45	21.42	0-1	0
	1	74	21.39	21.54	21.47	21.07	21.25		0
16QAM	36	0	21.71	21.55	21.62	21.14	21.45		0
	36	18	21.74	21.70	21.69	21.19	21.59	0-2	0
	36	37	21.65	21.56	21.71	21.14	21.60	0-2	0
	75	0	21.58	21.55	21.62	21.17	21.44		0
	1	0	21.31	21.13	21.19	21.16	20.89		0
	1	36	21.33	21.43	21.44	21.35	21.31	0-2	0
	1	74	21.27	21.13	21.19	20.93	21.13		0
64QAM	36	0	21.70	21.52	21.63	21.09	21.41		0
	36	18	21.72	21.64	21.74	21.16	21.54	0-3	0
	36	37	21.67	21.51	21.73	21.14	21.56	0-3	0
	75	0	21.61	21.54	21.69	21.30	21.39		0
	1	0	19.45	19.27	19.35	18.71	19.20		2
	1	36	19.57	19.29	19.48	18.84	19.25	1	2
	1	74	19.63	19.46	19.57	18.59	19.39	1	2
256QAM	36	0	19.55	19.37	19.66	19.22	19.42	0-5	2
	36	18	19.65	19.52	19.66	19.25	19.49		2
	36	37	19.43	19.47	19.58	19.24	19.51] [2
	75	0	19.41	19.45	19.69	19.26	19.40	1	2

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 440 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19		Page 148 of 298	

Table 9-117 LTE Band 41 PC3 Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

					LTE Band 41 0 MHz Bandwidth	otspot mode	,,		
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	0 0 0 0 0 0 0 0 0 0 0 0
				Co	nducted Power [dE	Bm]			
	1	0	21.45	21.25	21.29	21.05	21.10		0
	1	25	21.44	21.37	21.48	21.30	21.25	0	0
	1	49	21.34	21.36	21.29	21.04	21.42		0
QPSK	25	0	21.43	21.31	21.38	21.25	21.16		0
	25	12	21.45	21.44	21.48	21.34	21.22	0-1	0
	25	25	21.41	21.34	21.42	21.30	21.16	0-1	0
	50	0	21.35	21.36	21.41	21.26	21.15		0
	1	0	21.49	21.35	21.37	21.36	21.05		0
	1	25	21.41	21.61	21.52	21.58	21.23	0-1	0
	1	49	21.47	21.37	21.52	21.44	21.21		0
16QAM	25	0	21.49	21.36	21.43	21.20	21.18		0
	25	12	21.51	21.51	21.55	21.31	21.26	1	0
	25	25	21.46	21.38	21.47	21.24	21.22	0-2	0
	50	0	21.40	21.45	21.48	21.33	21.17		0
	1	0	21.47	21.22	21.19	21.23	21.09		0
	1	25	21.46	21.19	21.47	21.24	21.26	0-2	0
	1	49	21.39	21.27	21.23	21.17	21.29		0
64QAM	25	0	21.47	21.40	21.43	21.35	21.23		0
	25	12	21.50	21.55	21.63	21.33	21.30	0-3	0
	25	25	21.44	21.41	21.50	21.27	21.22	0-3	0
	50	0	21.47	21.45	21.44	21.34	21.13		0
	1	0	19.23	19.30	19.13	18.85	18.90		2
	1	25	19.41	19.58	19.41	19.07	19.16	1	2
	1	49	19.19	19.31	19.01	18.87	18.92	1	2
256QAM	25	0	19.53	19.29	19.40	19.39	19.20	0-5	2
	25	12	19.60	19.46	19.58	19.47	19.27	-	2
	25	25	19.57	19.47	19.46	19.42	19.24	1	2
	50	0	19.48	19.41	19.51	19.48	19.18	1	2

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 149 of 298
1M1910220165-01-R1.A3L	I-R1.A3L 10/23/19 - 12/18/19 Portable Handset			

Table 9-118 LTE Band 41 PC3 Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

					LTE Band 41 MHz Bandwidth	otspot mou	<u> </u>		
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	21.43	21.36	21.45	21.09	20.99		0
	1	12	21.42	21.41	21.50	21.34	21.24	0	0
	1	24	21.45	21.40	21.51	21.25	21.28		0
QPSK	12	0	21.41	21.40	21.48	21.34	21.25		0
	12	6	21.42	21.47	21.56	21.37	21.26	0-1	0
	12	13	21.41	21.43	21.46	21.40	21.28		0
	25	0	21.42	21.46	21.51	21.24	21.22		0
	1	0	21.47	21.55	21.49	21.10	21.24		0
	1	12	21.51	21.39	21.61	21.18	21.36	0-1	0
	1	24	21.49	21.56	21.54	21.60	21.25		0
16QAM	12	0	21.48	21.43	21.65	21.42	21.34		0
	12	6	21.54	21.58	21.65	21.46	21.34	0-2	0
	12	13	21.52	21.50	21.62	21.49	21.38		0
	25	0	21.40	21.43	21.47	21.41	21.20		0
	1	0	21.48	21.35	21.23	21.19	21.02		0
	1	12	21.51	21.33	21.71	21.17	21.25	0-2	0
	1	24	21.56	21.38	21.36	21.23	20.89		0
64QAM	12	0	21.49	21.49	21.49	21.35	21.25		0
	12	6	21.45	21.56	21.60	21.46	21.29	0-3	0
	12	13	21.43	21.54	21.54	21.41	21.32		0
	25	0	21.34	21.46	21.46	21.40	21.16		0
	1	0	19.64	19.34	19.09	18.95	19.15		2
	1	12	19.66	19.49	19.39	18.96	19.31	1	2
	1	24	19.73	19.56	19.15	19.03	19.28	1	2
256QAM	12	0	19.36	19.36	19.45	19.33	19.18	0-5	2
	12	6	19.37	19.41	19.55	19.36	19.21		2
	12	13	19.35	19.38	19.51	19.40	19.17]	2
	25	0	19.38	19.44	19.54	19.42	19.22		2

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 450 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19		Page 150 of 298	

Table 9-119 LTE Band 41 PC3 Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

				•	LTE Band 41	amatii			
			Low Channel	Low-Mid Channel	0 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Sm]			
	1	0	22.33	22.33	22.25	21.71	21.86		0
	1	50	22.24	22.19	22.50	21.75	22.02	0	0
	1	99	22.19	22.35	21.97	21.74	21.95		0
QPSK	50	0	22.48	22.30	22.35	21.90	22.00		0
	50	25	22.49	22.34	22.50	21.93	22.11	0-1	0
	50	50	22.45	22.19	22.33	21.70	22.15	0-1	0
	100	0	22.45	22.15	22.46	21.80	22.04		0
	1	0	22.60	22.28	22.22	21.88	21.80		0
	1	50	22.63	22.21	22.38	21.86	22.17	0-1	0
	1	99	22.57	22.20	22.10	21.90	22.14		0
16QAM	50	0	21.99	21.82	21.88	21.89	21.92		0
	50	25	22.07	21.85	21.98	21.82	22.03	0-2	0
	50	50	21.94	21.70	21.85	21.81	22.05		0
	100	0	21.86	21.95	21.87	21.81	21.91		0
	1	0	22.00	21.88	21.80	21.85	22.08		0
	1	50	21.98	21.87	21.88	21.88	22.06	0-2	0
	1	99	21.90	21.81	21.83	21.75	21.95		0
64QAM	50	0	21.06	20.90	20.92	20.86	20.86		1
	50	25	21.05	20.81	21.03	20.77	21.05	1 ,,	1
	50	50	21.00	20.77	20.81	20.88	21.06	0-3	1
	100	0	20.96	20.73	20.86	20.75	20.97	1	1
	1	0	19.52	19.41	19.41	19.33	19.34		3
	1	50	19.68	19.51	19.52	19.53	19.55	1 [3
	1	99	19.36	19.53	19.58	19.37	19.60	1	3
256QAM	50	0	19.54	19.68	19.40	19.42	19.60	0-5	3
	50	25	19.60	19.57	19.58	19.55	19.61		3
	50	50	19.61	19.56	19.61	19.46	19.66	1	3
	100	0	19.56	19.55	19.63	19.48	19.47	1	3

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 151 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 151 of 298	

Table 9-120 LTE Band 41 PC3 Measured *P_{limit}* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

				•	LTE Band 41				
			Low Channel	Low-Mid Channel	5 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.54	22.38	22.42	21.78	22.04		0
	1	36	22.35	22.23	22.50	21.86	22.16	0	0
	1	74	22.22	22.35	22.13	21.78	22.15		0
QPSK	36	0	22.50	22.44	22.44	21.91	22.14		0
	36	18	22.54	22.40	22.51	21.92	22.25	0-1	0
	36	37	22.50	22.46	22.49	21.82	22.27	0-1	0
	75	0	22.58	22.23	22.39	21.89	22.19		0
	1	0	22.51	22.34	22.36	21.88	21.95		0
	1	36	22.54	22.33	22.37	21.79	22.15	0-1	0
	1	74	22.42	22.25	22.35	21.80	22.24		0
16QAM	36	0	22.08	21.97	21.90	21.86	21.93		0
	36	18	22.27	21.99	21.96	21.91	21.96	0-2	0
	36	37	21.97	21.96	21.87	21.89	21.99		0
	75	0	21.90	22.01	21.93	21.95	22.02		0
	1	0	22.10	21.71	21.97	21.91	22.11		0
	1	36	22.14	21.84	22.01	21.70	21.92	0-2	0
	1	74	21.98	21.75	21.93	21.85	21.86		0
64QAM	36	0	21.10	20.92	20.98	20.87	20.78		1
	36	18	21.19	21.00	21.18	20.70	20.97	0-3	1
	36	37	21.00	20.91	20.90	20.94	20.89] 0-3	1
	75	0	21.14	20.92	21.00	20.68	20.79		1
	1	0	19.32	19.42	19.35	19.30	19.46		3
	1	36	19.54	19.38	19.34	19.49	19.57		3
	1	74	19.44	19.54	19.39	19.35	19.61		3
256QAM	36	0	19.63	19.41	19.59	19.43	19.60	0-5	3
	36	18	19.69	19.44	19.44	19.57	19.58		3
	36	37	19.67	19.53	19.50	19.56	19.64		3
	75	0	19.63	19.45	19.70	19.58	19.64	1	3

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 452 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 152 of 298	

Table 9-121 LTE Band 41 PC3 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

					LTE Band 41 0 MHz Bandwidth				
		B Size RB Offset	Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size		39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.43	22.21	22.45	21.83	22.02		0
	1	25	22.40	22.30	22.52	21.81	22.14	0	0
	1	49	22.31	22.12	22.09	21.71	22.15		0
QPSK	25	0	22.44	22.37	22.42	21.96	22.10		0
	25	12	22.38	22.31	22.54	22.22	22.21	0-1	0
	25	25	22.36	22.29	22.44	22.19	22.20	0-1	0
	50	0	22.35	22.34	22.50	22.00	22.19	1	0
	1	0	22.58	22.36	22.43	22.05	21.84		0
	1	25	22.48	22.30	22.31	21.99	22.22	0-1	0
	1	49	22.49	22.40	22.02	22.21	21.99	1	0
16QAM	25	0	22.17	21.98	21.89	21.96	21.92		0
	25	12	22.15	22.28	21.93	22.00	22.21	1 , ,	0
	25	25	22.01	21.92	21.87	21.86	21.89	0-2	0
	50	0	21.93	22.04	21.93	21.74	21.87		0
	1	0	21.98	21.80	21.76	21.73	21.91		0
	1	25	21.90	21.97	21.73	21.86	21.90	0-2	0
	1	49	21.92	21.84	21.88	21.86	21.85		0
64QAM	25	0	21.14	21.00	21.08	21.00	21.22		1
	25	12	21.37	21.28	20.81	20.79	20.93	0-3	1
	25	25	21.12	20.97	20.91	20.72	20.86	0-3	1
	50	0	21.04	20.94	21.02	20.81	21.09		1
	1	0	19.42	19.33	19.55	19.47	19.36		3
	1	25	19.48	19.50	19.56	19.49	19.49		3
	1	49	19.42	19.47	19.51	19.39	19.53		3
256QAM	25	0	19.44	19.37	19.47	19.40	19.37	0-5	3
	25	12	19.45	19.39	19.44	19.45	19.35		3
	25	25	19.39	19.47	19.54	19.40	19.36		3
	50	0	19.42	19.41	19.53	19.43	19.38	1	3

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 153 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	- 12/18/19 Portable Handset			

Table 9-122 LTE Band 41 PC3 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

					LTE Band 41 MHz Bandwidth	a widii			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [de	Bm]			
	1	0	22.49	22.42	22.50	21.86	22.12		0
	1	12	22.40	22.42	22.51	21.97	22.19	0	0
	1	24	22.41	22.24	22.11	21.81	22.03		0
QPSK	12	0	22.44	22.43	22.46	22.19	22.12		0
	12	6	22.44	22.51	22.59	22.19	22.24	0-1	0
	12	13	22.40	22.28	22.41	22.17	22.28	0-1	0
	25	0	22.42	22.27	22.53	22.00	22.30		0
	1	0	22.54	22.16	22.45	21.90	22.00		0
	1	12	22.57	22.23	22.46	21.93	22.25	0-1	0
	1	24	22.50	22.16	22.26	21.94	22.27		0
16QAM	12	0	22.04	21.96	22.09	21.86	21.92		0
	12	6	22.04	21.85	21.78	21.87	21.88	1	0
	12	13	22.09	21.84	21.91	21.82	21.87	0-2	0
	25	0	21.80	21.77	21.83	21.82	21.76		0
	1	0	22.04	22.11	21.83	21.98	21.84		0
	1	12	22.22	22.28	21.78	22.01	21.98	0-2	0
	1	24	22.14	22.23	22.02	21.92	22.29		0
64QAM	12	0	21.00	21.50	21.05	21.04	21.05		1
	12	6	20.98	21.16	21.12	21.03	21.05	0-3	1
	12	13	20.96	21.14	21.06	21.04	21.04	0-3	1
	25	0	20.90	21.06	21.01	21.02	20.93		1
	1	0	19.40	19.37	19.24	19.30	19.27		3
	1	12	19.35	19.51	19.38	19.34	19.25		3
	1	24	19.34	19.41	19.30	19.30	19.29		3
256QAM	12	0	19.54	19.68	19.47	19.48	19.45	0-5	3
	12	6	19.53	19.53	19.58	19.51	19.46		3
	12	13	19.50	19.56	19.52	19.33	19.43		3
	25	0	19.45	19.69	19.49	19.46	19.38		3

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	AMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 154 of 298	

Table 9-123 LTE Band 41 PC2 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

				triggerea	LTE Band 41	mawiath			
				. 2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	lm]			
	1	0	26.81	26.74	26.88	26.85	26.84		0
	1	50	26.77	26.77	26.83	26.81	26.69	0	0
	1	99	26.71	26.74	26.64	26.79	26.81		0
QPSK	50	0	26.40	26.25	26.33	26.20	26.29		1
	50	25	26.39	26.32	26.44	26.27	26.28	0-1	1
	50	50	26.32	26.32	26.33	26.14	26.27		1
	100	0	26.31	26.24	26.38	26.26	26.20		1
	1	0	26.64	26.53	26.37	26.34	26.23		1
	1	50	26.57	26.50	26.63	26.31	26.38	0-1	1
	1	99	26.44	26.53	26.29	26.22	26.32		1
16QAM	50	0	25.41	25.32	25.19	25.27	25.21		2
	50	25	25.38	25.38	25.09	25.36	25.30	0-2	2
	50	50	25.36	25.28	25.16	25.18	25.35		2
	100	0	25.31	25.34	25.10	25.25	25.25		2
	1	0	24.81	24.88	25.05	24.97	25.08		2
	1	50	24.74	24.95	25.19	24.84	25.11	0-2	2
	1	99	24.73	25.17	25.00	24.71	25.06		2
64QAM	50	0	23.70	23.95	24.18	23.77	24.19		3
	50	25	23.74	24.09	24.05	23.70	24.18	0-3	3
	50	50	23.76	24.10	23.92	23.84	24.13	0-3	3
	100	0	23.67	23.91	23.81	23.60	24.06		3
-	1	0	22.11	22.00	22.17	22.27	22.12		5
	1	50	22.28	22.35	22.38	22.41	22.13	1	5
	1	99	22.06	21.94	22.03	22.22	22.11] [5
256QAM	50	0	22.21	22.31	22.19	22.23	22.22	0-5	5
	50	25	22.14	22.44	22.17	22.37	22.23		5
	50	50	22.09	22.22	22.18	22.26	22.25	1	5
	100	0	22.07	22.29	22.28	22.21	22.20	1 [5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 155 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19				

Table 9-124 LTE Band 41 PC2 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

				triggerea)	LTE Band 41 5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	26.63	26.89	26.93	26.92	26.81		0
	1	36	26.75	26.87	26.84	26.89	26.74	0	0
	1	74	26.64	26.72	26.70	26.72	26.88		0
QPSK	36	0	26.36	26.21	26.15	26.23	26.44		1
	36	18	26.25	26.33	26.19	26.18	26.49	0-1	1
	36	37	26.24	26.23	26.06	26.37	26.28	0-1	1
	75	0	26.37	26.23	26.08	26.15	26.21		1
	1	0	26.55	26.37	26.38	26.35	26.36		1
	1	36	26.37	26.59	26.53	26.37	26.26	0-1	1
	1	74	26.28	26.33	26.34	26.37	26.28		1
16QAM	36	0	25.34	25.36	24.97	25.23	25.33	0-2	2
	36	18	25.32	25.46	24.93	25.25	25.27		2
	36	37	25.22	25.24	24.87	25.19	25.31		2
	75	0	25.21	25.27	25.11	25.12	25.22		2
	1	0	24.67	25.02	24.96	24.82	25.24		2
	1	36	24.93	25.21	24.87	24.77	25.23	0-2	2
	1	74	24.68	25.11	24.91	24.79	25.22		2
64QAM	36	0	23.74	24.24	23.93	23.71	24.21		3
	36	18	23.88	24.23	23.84	23.81	24.22	0-3	3
	36	37	23.75	24.28	23.69	23.85	24.34	0-3	3
	75	0	23.85	24.17	23.68	23.69	24.11		3
	1	0	22.03	22.06	22.21	22.44	22.26		5
	1	36	22.09	22.18	22.41	22.42	22.27]	5
	1	74	22.00	22.19	22.21	22.37	22.30]	5
256QAM	36	0	22.18	22.34	22.34	22.49	22.29	0-5	5
	36	18	22.35	22.42	22.44	22.47	22.26		5
	36	37	22.23	22.40	22.44	22.41	22.29		5
	75	0	22.28	22.37	22.45	22.39	22.24		5

FCC ID: A3LSMG981U	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 156 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 136 01 298	

Table 9-125 LTE Band 41 PC2 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

					LTE Band 41				
			Low Channel	Low-Mid Channel	0 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	26.69	26.85	26.74	26.92	26.87		0
	1	25	26.65	26.92	26.71	26.78	26.74	0	0
	1	49	26.66	26.75	26.61	26.82	26.83		0
QPSK	QPSK 25 0	0	26.23	26.21	26.11	26.23	26.44		1
	25	12	26.32	26.33	26.22	26.18	26.49	0-1	1
	25	25	26.31	26.40	26.26	26.37	26.57] 0-1	1
	50	0	26.19	26.23	26.08	26.15	26.43		1
	1	0	26.45	26.33	26.38	26.32	26.40		1
	1	25	26.37	26.59	26.43	26.37	26.37	0-1	1
	1	49	26.22	26.33	26.35	26.29	26.40		1
16QAM	25	0	25.25	25.36	25.09	25.22	25.39		2
	25	12	25.17	25.37	24.93	25.29	25.40	0-2	2
	25	25	25.20	25.38	25.01	25.16	25.24	0-2	2
	50	0	25.16	25.21	25.12	25.26	25.44		2
	1	0	24.78	25.02	24.96	24.80	25.29		2
	1	25	24.85	25.14	25.11	24.77	25.33	0-2	2
	1	49	24.82	25.24	25.01	24.79	25.19		2
64QAM	25	0	23.65	24.07	23.89	23.81	24.17		3
	25	12	23.72	24.19	23.85	23.85	24.21	0-3	3
	25	25	23.77	24.22	23.75	23.92	24.26	0-3	3
	50	0	23.68	24.17	23.61	23.69	24.25		3
	1	0	21.98	21.86	22.05	22.31	22.18		5
	1	25	22.05	22.26	22.25	22.48	22.23		5
	1	49	21.81	21.89	21.95	22.19	22.18	Ī	5
256QAM	25	0	21.92	22.22	22.20	22.44	22.39	0-5	5
	25	12	22.17	22.24	22.32	22.49	22.45		5
	25	25	22.09	22.14	22.28	22.44	22.36		5
	50	0	22.07	22.18	22.24	22.52	22.36		5

FCC ID: A3LSMG981U	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 157 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 137 01 298

Table 9-126 LTE Band 41 PC2 Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

				triggerea	LTE Band 41	iiawiatii			
	I	1			MHz Bandwidth			1	
	RB Size	RB Size RB Offset	Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	26.68	26.86	26.65	26.89	26.90		0
	1	12	26.66	26.90	26.60	26.88	26.80	0	0
	1	24	26.68	26.74	26.67	26.91	26.84	1	0
QPSK	12	0	26.28	26.13	26.39	26.21	26.35		1
	12	6	26.21	26.21	26.08	26.26	26.30	0-1	1
	12	13	26.22	26.11	26.07	26.11	26.23	U-1	1
	25	0	26.19	26.12	26.06	26.13	26.14	1	1
	1	0	26.47	26.28	26.22	26.42	26.34		1
	1	12	26.32	26.43	26.44	26.31	26.56	0-1	1
	1	24	26.21	26.21	26.14	26.25	26.56	1	1
16QAM	12	0	25.27	25.10	24.96	25.23	25.19		2
	12	6	25.28	25.23	24.92	25.11	25.21	0-2	2
	12	13	25.34	25.15	24.82	25.17	25.18	0-2	2
	25	0	25.19	25.18	24.94	25.14	25.15	1	2
	1	0	24.87	25.17	24.94	24.86	25.10		2
	1	12	24.76	25.30	24.88	24.89	25.25	0-2	2
	1	24	24.78	25.14	25.11	24.90	25.12	1	2
64QAM	12	0	23.63	23.93	23.96	23.74	24.22		3
	12	6	23.70	24.05	23.86	23.78	24.28	0-3	3
	12	13	23.68	23.93	23.78	23.77	24.20	0-3	3
	25	0	23.64	24.06	23.71	23.65	24.15		3
	1	0	21.99	21.96	21.95	22.43	22.33		5
	1	12	21.90	22.11	22.21	22.51	22.37		5
	1	24	21.90	21.89	22.00	22.47	22.34		5
256QAM	12	0	22.01	22.10	22.16	22.55	22.51	0-5	5
	12	6	22.09	22.19	22.25	22.58	22.47		5
	12	13	22.11	22.09	22.22	22.57	22.47		5
	25	0	22.05	22.15	22.23	22.51	22.36	1	5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 450 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 158 of 298	

Table 9-127 LTE Band 41 PC2 Measured Plimit for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

		Dana Ti	1 OZ WICZS	area Plimit 101	LTE Band 41	otapot mode) - 20 WII IZ	Danawiatii	
				2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.93	22.93	22.82	22.71	22.55		0
	1	50	22.83	22.94	23.06	22.98	22.85	0	0
	1	99	22.77	22.99	22.72	22.55	22.64		0
QPSK	50	0	23.03	22.95	23.09	23.18	22.81		0
	50	25	23.02	23.00	23.21	23.14	22.92	0-1	0
	50	50	22.99	22.98	23.09	22.98	22.95	0-1	0
	100	0	23.00	22.91	23.05	23.05	22.84		0
	1	0	23.26	23.13	23.05	23.20	23.10		0
	1	50	23.24	23.16	23.40	23.41	23.32	0-1	0
	1	99	23.15	23.18	23.17	22.97	22.81		0
16QAM	50	0	23.11	22.94	23.14	23.04	23.04		0
	50	25	23.02	22.93	23.26	23.16	23.14	0-2	0
	50	50	23.00	22.98	23.10	22.98	22.95		0
	100	0	23.03	22.94	23.20	23.07	23.06		0
	1	0	23.01	22.91	22.76	22.77	22.76		0
	1	50	22.93	22.89	23.14	23.06	23.03	0-2	0
	1	99	22.93	22.95	22.77	22.76	22.81		0
64QAM	50	0	23.15	23.10	23.16	23.14	23.10		0
	50	25	22.94	23.11	23.29	23.22	23.21	0-3	0
	50	50	22.84	23.05	23.16	23.02	23.03	0-3	0
	100	0	22.91	22.98	23.17	23.10	23.09		0
	1	0	22.12	22.33	22.39	22.42	22.44		0.6
	1	50	22.38	22.52	22.60	22.70	22.74] [0.6
	1	99	22.09	22.27	22.22	22.32	22.31]	0.6
256QAM	50	0	22.45	22.66	22.60	22.73	22.74	0-5	0.6
	50	25	22.45	22.65	22.77	22.83	22.82		0.6
	50	50	22.43	22.60	22.58	22.68	22.67		0.6
	100	0	22.39	22.58	22.58	22.69	22.61	1 1	0.6

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 159 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 159 01 298

Table 9-128 LTE Band 41 PC2 Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

			1 02 111040		LTE Band 41 5 MHz Bandwidth	otspot mode	, 10 111112		
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	22.87	22.81	22.95	22.89	22.66		0
	1	36	23.00	23.08	23.04	23.07	22.83	0	0
	1	74	22.70	22.84	22.64	22.69	22.83		0
QPSK	36	0	23.07	23.05	23.09	23.08	22.86		0
	36	18	23.05	23.16	23.22	23.05	22.87	0-1	0
	36	37	23.05	23.09	23.12	23.06	22.96	0-1	0
	75	0	23.07	23.09	23.17	23.09	22.87		0
	1	0	23.29	23.18	23.30	23.29	22.99		0
	1	36	23.33	23.35	23.41	23.33	23.22	0-1	0
Ī	1	74	22.99	23.17	23.21	22.97	23.15	1	0
16QAM	36	0	23.00	23.03	23.12	22.90	22.73		0
	36	18	23.01	23.14	23.09	23.02	22.87	0-2	0
	36	37	22.99	23.01	23.06	22.97	22.79		0
	75	0	23.07	23.14	23.20	23.09	22.91		0
	1	0	22.96	22.79	22.98	22.96	22.77		0
	1	36	23.07	23.04	23.13	23.11	22.95	0-2	0
	1	74	22.76	22.86	22.88	22.80	22.75		0
64QAM	36	0	23.09	23.11	23.18	23.07	22.91		0
	36	18	23.08	23.18	23.17	23.10	23.00	0-3	0
	36	37	22.97	23.11	23.22	23.05	23.02	0-3	0
	75	0	23.11	23.15	23.21	23.13	22.97		0
-	1	0	22.18	22.25	22.47	22.52	22.39		0.6
	1	36	22.31	22.55	22.59	22.45	22.60] [0.6
	1	74	22.02	22.37	22.32	22.50	22.48] [0.6
256QAM	36	0	22.31	22.53	22.58	22.71	22.53	0-5	0.6
	36	18	22.34	22.59	22.59	22.68	22.60		0.6
	36	37	22.27	22.51	22.58	22.75	22.62]	0.6
	75	0	22.33	22.53	22.66	22.72	22.56] [0.6

FCC ID: A3LSMG981U	POTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 160 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset			

Table 9-129 LTE Band 41 PC2 Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

		Build 11	T GZ IIIGGG		LTE Band 41 0 MHz Bandwidth	otspot mode	, 10 111112	Banawiatii	
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.94	22.86	22.70	22.61	22.48		0
	1	25	22.92	22.93	22.76	22.84	22.68	0	0
	1	49	22.70	22.80	22.79	22.56	22.35		0
QPSK	25	0	23.10	22.87	22.76	22.93	22.70		0
	25	12	23.10	23.02	23.07	23.03	22.75	0-1	0
	25	25	23.05	22.92	22.91	22.91	22.74	0-1	0
	50	0	23.04	23.02	23.00	23.09	22.65		0
	1	0	23.40	23.04	23.05	23.04	22.86		0
	1	25	23.33	23.31	23.29	23.36	23.00	0-1	0
Ī	1	49	23.26	23.02	22.91	22.99	23.04		0
16QAM	25	0	23.04	22.82	22.84	22.94	22.76		0
	25	12	23.08	23.11	22.98	23.01	22.85	0-2	0
	25	25	23.04	22.83	22.89	22.93	22.82	0-2	0
	50	0	23.06	22.98	23.01	22.96	22.74		0
	1	0	23.05	22.86	22.73	22.65	22.61		0
	1	25	22.95	22.88	22.87	22.89	22.78	0-2	0
	1	49	22.96	22.89	22.69	22.84	22.59		0
64QAM	25	0	23.10	22.89	22.92	22.96	22.71		0
	25	12	23.13	23.04	23.03	22.91	22.98	0-3	0
	25	25	23.07	22.91	22.89	23.00	22.74	0-3	0
	50	0	23.11	23.11	22.99	23.19	22.76		0
	1	0	22.24	22.45	22.26	22.58	22.35		0.6
	1	25	22.39	22.30	22.41	22.49	22.61		0.6
	1	49	22.19	22.34	22.19	22.53	22.33		0.6
256QAM	25	0	22.55	22.49	22.38	22.51	22.53	0-5	0.6
	25	12	22.57	22.39	22.45	22.57	22.68		0.6
	25	25	22.45	22.40	22.36	22.64	22.61		0.6
	50	0	22.49	22.48	22.33	22.60	22.60		0.6

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 161 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 161 01 298

Table 9-130 LTE Band 41 PC2 Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

		- Bana 4	11 02 111040		LTE Band 41 MHz Bandwidth	otspot mou	o, o	Jana Wilatii	
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.90	22.76	22.76	22.84	22.72		0
	1	12	22.89	22.81	22.89	22.86	22.70	0	0
	1	24	22.84	22.80	22.70	22.71	22.71		0
QPSK	12	0	23.03	22.85	22.86	22.88	22.82		0
	12	6	23.00	22.95	22.92	22.88	22.84	0-1	0
	12	13	22.99	22.89	22.87	22.88	22.85	0-1	0
	25	0	22.97	22.93	22.90	22.85	22.79		0
	1	0	23.17	23.16	23.29	23.19	23.07		0
	1	12	23.22	23.16	23.16	23.25	23.03	0-1	0
	1	24	23.25	23.00	23.05	23.18	23.04		0
16QAM	12	0	22.99	22.95	22.80	22.89	22.80		0
	12	6	23.00	22.90	22.86	22.86	22.82	0-2	0
	12	13	22.99	22.99	22.83	22.95	22.81	0-2	0
	25	0	23.04	22.89	22.91	23.08	22.90		0
	1	0	22.95	22.87	22.73	22.86	22.79		0
	1	12	22.91	22.84	23.00	22.91	22.84	0-2	0
	1	24	22.92	22.83	22.75	22.92	22.81		0
64QAM	12	0	23.00	22.84	22.95	22.90	22.87		0
	12	6	22.95	22.91	22.83	22.98	22.83	0-3	0
	12	13	22.97	22.88	22.87	23.01	22.88] 0-3	0
	25	0	22.89	22.93	22.90	23.00	22.86		0
	1	0	22.38	22.22	22.20	22.55	22.47] [0.6
	1	12	22.29	22.38	22.45	22.58	22.60]	0.6
	1	24	22.34	22.28	22.22	22.56	22.47] [0.6
256QAM	12	0	22.52	22.37	22.42	22.70	22.53	0-5	0.6
	12	6	22.53	22.46	22.53	22.69	22.56		0.6
	12	13	22.48	22.42	22.44	22.71	22.62]	0.6
į	25	0	22.40	22.37	22.46	22.61	22.49		0.6

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	MSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 162 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 162 01 298	

Table 9-131 LTE Band 41 PC2 Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

					LTE Band 41 0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	24.00	23.71	23.71	23.24	23.21		0
	1	50	23.92	23.80	23.79	23.26	23.55	0	0
	1	99	23.72	23.73	23.60	22.92	23.35		0
QPSK	50	0	24.17	23.85	23.82	23.41	23.52		0
	50	25	24.09	23.89	23.84	23.43	23.73	0-1	0
	50	50	24.04	23.82	23.89	23.24	23.69	0-1	0
	100	0	24.05	23.79	23.88	23.38	23.60		0
	1	0	24.36	24.25	23.93	23.31	23.51		0
	1	50	24.24	24.13	24.10	23.60	23.97	0-1	0
	1	99	24.31	24.03	23.72	23.58	23.83		0
16QAM	50	0	24.13	23.86	23.76	23.23	23.59		0
	50	25	24.13	23.89	23.90	23.50	23.65	0-2	0
	50	50	24.02	23.92	23.85	23.56	23.74	0-2	0
	100	0	24.05	23.93	23.82	23.41	23.62		0
	1	0	24.20	23.78	23.81	23.34	23.45		0
	1	50	24.10	23.94	24.06	23.47	23.70	0-2	0
	1	99	24.07	23.89	23.79	23.34	23.56		0
64QAM	50	0	24.08	23.85	23.71	23.51	23.63		0
	50	25	24.10	23.87	23.81	23.52	23.75	1	0
	50	50	24.02	23.84	23.67	23.41	23.83	0-3	0
	100	0	23.99	23.75	23.66	23.40	23.71		0
	1	0	22.48	22.30	22.35	22.20	22.53		1.6
	1	50	22.65	22.53	22.54	22.26	22.49		1.6
	1	99	22.40	22.25	22.38	22.28	22.51	1	1.6
256QAM	50	0	22.59	22.51	22.55	22.30	22.52	0-5	1.6
	50	25	22.50	22.64	22.63	22.19	22.57		1.6
	50	50	22.61	22.50	22.50	22.15	22.48		1.6
	100	0	22.72	22.54	22.59	22.28	22.42		1.6

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 462 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 163 of 298

Table 9-132 LTE Band 41 PC2 Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

					LTE Band 41 5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	23.94	23.85	23.78	23.31	23.40		0
	1	36	23.87	24.08	23.84	23.43	23.54	0	0
	1	74	23.84	23.90	23.56	23.13	23.44		0
QPSK	36	0	24.02	24.03	24.00	23.45	23.56		0
	36	18	24.00	24.11	24.02	23.42	23.60	0-1	0
	36	37	23.91	24.10	23.99	23.46	23.61	0-1	0
	75	0	23.92	24.09	23.95	23.48	23.57		0
	1	0	24.19	24.20	24.13	23.41	23.72		0
	1	36	24.11	24.20	24.06	23.52	23.79	0-1	0
	1	74	24.09	24.18	24.06	23.47	23.82	1	0
16QAM	36	0	23.88	24.03	24.01	23.45	23.53		0
	36	18	23.82	24.05	24.06	23.42	23.59	0-2	0
	36	37	23.77	24.07	24.04	23.43	23.63	0-2	0
	75	0	23.86	24.13	24.03	23.51	23.62	1	0
	1	0	23.99	23.82	23.89	23.38	23.42		0
	1	36	24.07	24.09	23.97	23.49	23.65	0-2	0
	1	74	23.97	23.93	23.82	23.21	23.55		0
64QAM	36	0	23.98	24.01	23.81	23.42	23.59		0
	36	18	23.95	24.10	23.82	23.49	23.67	0-3	0
	36	37	23.95	24.00	23.80	23.59	23.73	0-3	0
	75	0	23.92	24.04	23.87	23.51	23.59		0
	1	0	22.47	22.28	22.34	22.00	22.41		1.6
	1	36	22.60	22.55	22.60	22.26	22.55		1.6
	1	74	22.34	22.36	22.35	21.98	22.43		1.6
256QAM	36	0	22.58	22.46	22.65	22.06	22.52	0-5	1.6
	36	18	22.59	22.61	22.59	21.92	22.60] [1.6
	36	37	22.59	22.55	22.63	22.00	22.62] [1.6
	75	0	22.62	22.53	22.68	22.30	22.55	1	1.6

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 464 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 164 of 298

Table 9-133 LTE Band 41 PC2 Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

				•	LTE Band 41				
			Low Channel	Low-Mid Channel	0 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	23.91	23.70	23.72	23.53	23.47		0
	1	25	23.78	23.93	23.83	23.54	23.61	0	0
	1	49	23.82	23.62	23.49	23.21	23.30		0
QPSK	25	0	24.04	23.87	23.88	23.44	23.63		0
	25	12	24.01	24.06	24.04	23.52	23.71	0-1	0
	25	25	24.02	23.92	23.89	23.47	23.64	0-1	0
	50	0	23.92	23.92	23.91	23.50	23.67		0
	1	0	24.32	24.05	24.07	23.52	23.70		0
	1	25	24.31	24.26	24.13	23.71	23.88	0-1	0
	1	49	24.31	23.95	23.94	23.60	23.75		0
16QAM	25	0	24.38	23.84	23.88	23.44	23.66		0
	25	12	24.35	24.03	24.05	23.56	23.74	1	0
	25	25	24.29	23.93	23.95	23.49	23.67	0-2	0
	50	0	24.06	23.97	23.97	23.56	23.71		0
	1	0	24.06	23.83	23.71	23.23	23.55		0
	1	25	23.81	23.88	23.88	23.51	23.70	0-2	0
	1	49	23.78	23.68	23.65	23.27	23.45		0
64QAM	25	0	23.80	23.89	23.83	23.51	23.72		0
	25	12	23.81	24.05	23.91	23.63	23.78		0
	25	25	23.74	23.93	23.80	23.62	23.69	0-3	0
	50	0	23.75	24.00	23.82	23.55	23.76		0
	1	0	22.50	22.10	22.13	21.90	22.43		1.6
	1	25	22.61	22.35	22.36	22.10	22.45	1	1.6
	1	49	22.41	22.10	22.24	21.90	22.39	1	1.6
256QAM	25	0	22.70	22.37	22.38	22.11	22.41	0-5	1.6
	25	12	22.73	22.52	22.40	21.98	22.42	1	1.6
	25	25	22.65	22.36	22.53	21.90	22.36	1	1.6
	50	0	22.64	22.40	22.45	22.21	22.40	1	1.6

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 465 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 165 of 298

Table 9-134 LTE Band 41 PC2 Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

				aotivoj	LTE Band 41	awidii			
				5	MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Sm]			
	1	0	24.02	23.89	23.88	23.31	23.44		0
	1	12	23.93	24.02	23.86	23.28	23.45	0	0
	1	24	24.00	23.94	23.86	23.22	23.43		0
QPSK	12	0	24.05	23.95	24.00	23.32	23.73		0
	12	6	24.06	24.06	24.01	23.33	23.76	0-1	0
	12	13	24.08	24.00	24.03	23.36	23.75	0-1	0
	25	0	24.04	24.02	23.98	23.40	23.69		0
	1	0	24.36	24.02	24.17	23.57	23.74		0
	1	12	24.35	23.92	24.30	23.69	24.06	0-1	0
	1	24	24.20	23.90	24.11	23.63	23.96		0
16QAM	12	0	24.05	23.90	23.94	23.31	23.70		0
	12	6	24.08	24.05	24.02	23.33	23.72	0-2	0
	12	13	24.04	24.04	23.98	23.37	23.77	0-2	0
	25	0	24.10	24.01	24.06	23.45	23.77		0
	1	0	24.11	23.93	23.89	23.27	23.67		0
	1	12	24.00	24.00	23.95	23.36	23.94	0-2	0
	1	24	24.10	23.94	23.89	23.32	23.80		0
64QAM	12	0	23.83	23.95	23.98	23.58	23.74		0
	12	6	23.79	24.05	24.05	23.63	23.79	0-3	0
	12	13	23.85	24.00	23.91	23.64	23.78		0
	25	0	23.82	24.07	23.74	23.57	23.41		0
	1	0	22.37	22.35	22.47	22.38	22.38		1.6
	1	12	22.40	22.38	22.39	22.30	22.36		1.6
	1	24	22.34	22.29	22.39	22.23	22.43]	1.6
256QAM	12	0	22.50	22.49	22.49	22.26	22.38	0-5	1.6
	12	6	22.54	22.56	22.58	22.31	22.52]	1.6
	12	13	22.48	22.55	22.53	22.22	22.50		1.6
	25	0	22.43	22.47	22.51	22.34	22.54		1.6

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 466 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 166 of 298

LTE Uplink Carrier Aggregation Conducted Powers

Table 9-135

LTE Uplink Carrier Aggregation Measured P_{max} for

LTE Band 5/66/48/41 DSI = 0 (Body-worn, or Phablet with grip sensor not triggered)

• I TF Band 5/66/41 DSI = 2 (Head)

	● L										iu 5	1001	<u> 141 D</u>	<u> </u>	<u> </u>	ieau								
						PCC											SCC						Po	wer
Combination	PCC Band	Ban	PCC dwidth MHz]	PCC UL Channel	PCC UL Frequenc [MHz]	PCC D	Frequ	ency Mod	dulation		PCC UL RB Offset	SCC Ban	SCC nd Bandwid [MHz]		Frequency [N	uency //Hz]	SCC DL Channel	SCC DL requency [MHz]	Modu	ılation	SCC UL# R	SCC UL RB Offset	LTE Tx.Powe with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_5B	LTE B5		10	20525	836.5	2525	883	1.5	QPSK	1	0	LTE B5	5 5	2045	3 82	29.3	2453	874.3	QF	PSK	1	24	24.33	24.12
						PCC										scc							Power	
Combination	PCC Band	PC Bandv [MF	vidth	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC DL Channel	PCC DL Frequency [MHz]	Modulatio	PCC UL	# PCC UL RB Offse	SCC Bar	nd Band		Fre	C (UL) quency MHz]	SCC (DL) Channel	SCC (DI Frequen [MHz]		ation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power w Enabled (d		LTE Single Carrier Tx Power (dBm)
CA_66C	LTE B66	20		132572	1770.0	67036	2170.0	QPSK	1	0	LTE B6				750.2	66838	2150.2			1	99	24.10		23.70
CA_66B	LTE B66	10)	132622	1775.0	67086	2175.0	QPSK	1	0	LTE B6	6 1	10 13	2523 1	765.1	66987	2165.1	QPS	SK	1	49	23.60		23.21
						PCC									SC	c						Powe	r	
Combination	PCC Ba	ınd	Band		PCC (UL/DL) Channel	PCC (UL/D Frequer	rcy Mo	dulation	PCC UL # RB	PCC UL RB Offset	SCC Ba	and Ba	SCC andwidth [MHz]	SCC (UL/DI Channe	(UI Freq	SCC L/DL) quency MHz]	Modula	ion UL RE	#	C UL RB ffset		ower with U bled (dBm)		E Single arrier Tx Power (dBm)
CA 48C	LTE B4	48	2	10	55773	3603.	3	QPSK	1	0	LTE B	48	20	55575	35	583.5	QPSk	1		99		23.32		22,46
						PCC						_			sc	r						Powe	r	
Combination	PCC Ba	ind	Band		PCC (UL/DL) Channel	PCC (UL/D Frequer [MHz	rcy Mo	dulation	PCC UL # RB	PCC UL RB Offset	SCC Ba	ınd Ba	SCC andwidth [MHz]	SCC (UL/DI Channe	(UI	SCC	Modula	ion UL RE	#	CC UL RB ffset		ower with Ulbled (dBm)	Ľ	E Single arrier Tx Power (dBm)
CA_41C	LTE B	41	2	20	40620	2593.	0	QPSK	1	0	LTE B	41	20	40422	25	573.2	QPSk	1		99		24.73		24.32
						PCC									sc	c						Powe	r	
Combination	PCC Ba	ınd	Band		PCC (UL/DL) Channel	PCC (UL/D Frequer [MHz	rcy Mo	dulation	PCC UL# RB	PCC UL RB Offset	SCC Ba	and Ba	SCC andwidth [MHz]	SCC (UL/DI Channe	(UI	SCC	Modula	ion UL	#	CC UL RB ffset		ower with Ulbled (dBm)	L CA C	E Single arrier Tx Power (dBm)
CA_41C	LTE B4		2	.0	40620	2593.	0	QPSK	1	0	LTE B		20	40422	25	573.2	QPSk	1		99		27.66		26.88

Table 9-136

LTE Uplink Carrier Aggregation Measured Plimit for DSI = 3 (Hotspot mode)

				Opini	yau	O11 1	vicas	uico	ı ı ıımı	t IOI	וטט	. – ၁	, (1.16	λισμυί	11100	u c j					
					PCC									S	CC					Power	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC DL Channel	PCC DL Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offse	SCC Band	SCC Bandwidtl [MHz]	SCC (UL) Channe		ncy SCC	C (DL)	SCC (DL) Frequency [MHz]	Modulation		SCC UL RB Offset	LTE Tx.Power with UL C Enabled (dBm)	LTE Single A Carrier Tx Power (dBm)
CA_66C	LTE B66	20	132572	1770.0	67036	2170.0	QPSK	1	0	LTE B66	20	132374	1750.2	2 66	6838	2150.2	QPSK	1	99	19.39	18.91
CA_66B	LTE B66	10	132622	1775.0	67086	2175.0	QPSK	1	0	LTE B66	10	132523	1765.1	1 66	6987	2165.1	QPSK	1	49	18.82	18.41
					PCC									SCC						Power	
Combination	n PCC E	and Ban		PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulati	on PCC U	L# PC	C UL Offset	CC Band	SCC Bandwid [MHz]	SCC (UL/D Chann	L) (UL/ Frequ	/DL) iency	Modula	ation S	CC UL# RB	Offset		r.Power with UL CA nabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41C	LTE I	341	20	41055	2636.5	QPSK	50		0	LTE B41	20	4085	7 261	16.7	QPS	iK	50	50		21.72	21.33
					PCC									scc						Power	
Combination	PCC	Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulat	ion PCC U	L# PCC	C UL Offset	SCC Bar		SCC ndwidth [MHz]	SCC (UL/DL) Channel	SCC (UL/DI Frequen [MHz]	L) ncy	odulation	SCC UL# R	SCC UL Offse		Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41C	LTE B	41 PC2	20	41055	2636.5	QPSK	50		0	LTE B41 F	PC2	20	40857	2616.7	7	QPSK	50	50		23.60	23.18

FCC ID: A3LSMG981U	PCTEST SIGNIFICATION INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 167 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 167 01 296

Table 9-137 LTE Uplink Carrier Aggregation Measured Plimit for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Fariack active)

								(La	ıjacr	acı	1 V C)										
					PCC										SCC					Power	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC DL Channel	PCC DL Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offse		SCC Bandwid [MHz]	SCC (U Chann	L) Free		SCC (DL) Channel	SCC (DL) Frequenc [MHz]	y Modulation		SCC UL RB Offset	LTE Tx.Power with UL C Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_66C	LTE B66	20	132322	1745.0	66786	2145.0	QPSK	50	0	LTE B66	20	13212	4 1	.725.2	66588	2125.2	QPSK	50	50	19.90	19.20
CA_66B	LTE B66	10	132322	1745.0	66786	2145.0	QPSK	25	0	LTE B66	10	13222	3 1	735.1	66687	2135.1	QPSK	25	25	19.30	19.03
					PCC									scc						Power	
Combination	n PCC B	and Ban		PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulati	ion PCC L		C UL Offset	CC Band	SCC Bandwic [MHz]		DL) (SCC (UL/DL) requency [MHz]	Modu	ulation	SCC UL# RB	SCC UL RE Offset		r.Power with UL CA nabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41C	LTE E	341	20	39750	2506.0	QPSK	1		99	LTE B41	20	399	48	2525.8	QI	PSK	1	0		22.79	22.19
					PCC									SC	С					Power	
Combination	PCC	Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulat	PCC U			SCC Ban	nd B	SCC andwidth [MHz]	SCC (UL/D Chann	OL) Frequ	CC /DL) uency IHz]	Modulatio	on SCC UL# F	SCC UL Offse		Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41C	LTE B	41 PC2	20	39750	2506.0	QPSK	1	9	19	LTE B41 P	PC2	20	3994	18 252	25.8	QPSK	1	0		24.30	23.72

Table 9-138 LTE Uplink Carrier Aggregation Plimit for DSI = 2 (Head)

				<u> </u>	IIIIN Ou		, ,99	. ogut	· · · · · · · · · · · · · · · · · · ·	<i>IIIL</i> : •:		~ \ou	<u> ~, </u>			
	PCC							SCC						Power		
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulation	PCC UL # RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL/DL) Channel	SCC (UL/DL) Frequency [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA	LTE Single Carrier Tx Power (dBm)
CA 48C	LTE B48	20	56640	3690.0	QPSK	50	0	LTE B48	20	56442	3670.2	QPSK	50	50	18.21	17.62

Notes:

- This device supports uplink carrier aggregation for LTE CA_5B, LTE CA_66B, LTE CA_66C, LTE CA_ 48C, and LTE CA 41C with a maximum of two component carriers. For intraband contiguous carrier aggregation scenarios, 3GPP 36.101 Table 6.2.2A-1 specifies that the aggregate maximum allowed output power is equivalent to the single carrier scenario. 3GPP 36.101 6.2.3A allows for several dB of MPR to be applied when non-contiguous RB allocation is implemented. The conducted powers and MPR settings in this device are permanently implemented per the above 3GPP requirements.
- 2. Per FCC Guidance, the output power with uplink CA active was measured for the configuration with the highest reported SAR with single carrier for each exposure condition. The power was measured with wideband signal integration over both component carriers.

Figure 9-4 **Power Measurement Setup**

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 168 of 298	

9.5 NR Conducted Powers

9.5.1 NR Band n71

Table 9-139
NR Band n71 Measured P_{max} for all DSI - 20 MHz Bandwidth

	NR Band n71								
		20 N	MHz Bandwidth	1					
			Channel						
Modulation	RB Size	RB Offset	136100 (680.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]						
	1	1	23.69		0				
	1	53	24.27	0	0				
DFT-s-OFDM	1	104	23.84		0				
QPSK	50	0	22.70	0-1	1				
Qi SiX	50	28	24.32	0	0				
	50	56	23.33	0-1	1				
	100	0	23.07	0-1	1				
DFT-s-OFDM 16QAM	1	1	22.75	0-1	1				
CP-OFDM QPSK	1	1	22.15	0-1.5	1.5				

Note: NR Band n71 at 20 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		5 400 4000	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 169 of 298	

Table 9-140 NR Band n71 Measured P_{max} for all DSI - 15 MHz Bandwidth

	NR Band n71 15 MHz Bandwidth										
			Cha	nnel							
Modulation	RB Size	RB Offset	134100 (670.5 MHz)	138100 (690.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted	Power [dBm]							
	1	1	23.30	24.10		0					
	1	40	23.56	23.72	0	0					
DFT-s-OFDM	1	77	23.32	23.63		0					
QPSK	36	0	23.11	23.06	0-1	1					
Qi Sit	36	22	23.61	23.93	0	0					
	36	43	22.46	23.02	0-1	1					
	75	0	22.59	23.01	0-1	1					
DFT-s-OFDM 16QAM	1	1	22.56	23.43	0-1	1					
CP-OFDM QPSK	1	1	21.82	22.67	0-1.5	1.5					

Table 9-141 NR Band n71 Measured Pmax for all DSI - 10 MHz Bandwidth

	NR Band n71 10 MHz Bandwidth										
				Channel	=						
Modulation	RB Size	RB Offset	133600 (668 MHz)	136100 (680.5 MHz)	138600 (693 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Cor	nducted Power [d							
	1	1	23.32	23.50	23.63		0				
	1	26	23.73	24.03	23.92	0	0				
DFT-s-OFDM	1	50	23.55	23.61	23.54		0				
QPSK	25	0	22.78	23.31	22.78	0-1	1				
Qr SiX	25	14	23.60	24.50	23.94	0	0				
	25	27	22.53	23.49	23.12	0-1	1				
	50	0	22.56	23.41	22.97	U- I	1				
DFT-s-OFDM 16QAM	1	1	22.33	23.19	22.81	0-1	1				
CP-OFDM QPSK	1	1	21.80	22.03	22.32	0-1.5	1.5				

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	B 470 (000	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 170 of 298	

Table 9-142
NR Band n71 Measured P_{max} for all DSI - 5 MHz Bandwidth

	NR Band n71										
			5 N	IHz Bandwidth							
				Channel	_						
Modulation	RB Size	RB Offset	133100 (665.5 MHz)	136100 (680.5 MHz)	139100 (695.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Cor	nducted Power [d							
	1	1	23.72	24.02	23.69		0				
	1	13	24.12	24.24	23.99	0	0				
DFT-s-OFDM	1	23	24.09	24.27	23.55		0				
QPSK	12	0	22.83	23.62	23.37	0-1	1				
QI OIT	12	7	24.06	24.61	24.19	0	0				
	12	13	23.25	23.65	22.79	0-1	1				
	25	0	23.08	23.67	23.00	0-1	1				
DFT-s-OFDM 16QAM	1	1	22.69	23.51	22.88	0-1	1				
CP-OFDM QPSK	1	1	22.25	22.99	22.26	0-1.5	1.5				

9.5.2 NR Band n5 (Cell)

Table 9-143 NR Band n5 (Cell) Measured P_{max} for all DSI - 20 MHz Bandwidth

	NR Band n5 20 MHz Bandwidth									
		∠U IV	Channel							
Modulation	RB Size	RB Offset	167300 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	1	24.53		0					
	1	53	24.44	0	0					
DFT-s-OFDM	1	104	23.96		0					
QPSK	50	0	23.58	0-1	1					
QFSIX	50	28	24.35	0	0					
	50	56	23.19	0-1	1					
	100	0	23.36	0-1	1					
DFT-s-OFDM 16QAM	1	1	23.88	0-1	1					
CP-OFDM QPSK	1	1	23.01	0-1.5	1.5					

Note: NR Band n5 (Cell) at 20 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 171 of 298	

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 9-144 NR Band n5 (Cell) Measured P_{max} for all DSI - 15 MHz Bandwidth

	NR Band n5 15 MHz Bandwidth									
			Channel							
Modulation	RB Size	RB Offset	167300 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	1	24.61		0					
	1	40	24.51	0	0					
DFT-s-OFDM	1	77	24.16		0					
QPSK	36	0	23.53	0-1	1					
QI OIX	36	22	24.53	0	0					
	36	43	23.78	0-1	1					
	75	0	23.57	0-1	1					
DFT-s-OFDM 16QAM	1	1	24.02	0-1	1					
CP-OFDM QPSK	1	1	23.11	0-1.5	1.5					

Note: NR Band n5 (Cell) at 15 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-145 NR Band n5 (Cell) Measured P_{max} for all DSI - 10 MHz Bandwidth

	NR Band n5 10 MHz Bandwidth									
	<u> </u>	<u> </u>		nnel	7	MPR [dB]				
Modulation	RB Size	RB Offset	165800 (829 MHz)	168800 (844 MHz)	MPR Allowed per 3GPP [dB]					
			Conducted	Power [dBm]						
	1	1	24.20	24.41		0				
	1	26	24.46	24.42	0	0				
DFT-s-OFDM	1	50	23.82	23.82		0				
QPSK	25	0	23.80	23.71	0-1	1				
QI OIV	25	14	24.78	24.53	0	0				
	25	27	23.60	23.63	0-1	1				
	50	0	23.67	23.49	0-1	1				
DFT-s-OFDM 16QAM	1	1	23.01	23.53	0-1	1				
CP-OFDM QPSK	1	1	23.16	23.05	0-1.5	1.5				

FCC ID: A3LSMG981U	PCTEST SEGMENTS LADORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 172 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 172 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

Table 9-146 NR Band n5 (Cell) Measured Pmax for all DSI - 5 MHz Bandwidth

				NR Band n5 IHz Bandwidth			
				Channel			
Modulation	RB Size	RB Offset	165300 (826.5 MHz)	167300 (836.5 MHz)	169300 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	nducted Power [d			
	1	1	24.52	24.40	24.38		0
	1	13	24.52	24.52	24.34	0	0
DFT-s-OFDM	1	23	24.26	24.36	23.87		0
QPSK	12	0	23.73	24.22	23.35	0-1	1
Qi Oit	12	7	24.74	24.26	24.32	0	0
	12	13	23.80	24.25	23.52	0-1	1
	25	0	23.71	24.19	23.43	0-1	1
DFT-s-OFDM 16QAM	1	1	23.74	23.56	23.41	0-1	1
CP-OFDM QPSK	1	1	23.50	22.80	22.82	0-1.5	1.5

9.5.3 NR Band n66 (AWS)

Table 9-147 NR Band n66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

				IR Band n66 IHz Bandwidth			
				Channel			
Modulation	RB Size	RB Offset	344000 (1720 MHz)	349000 (1745 MHz)	354000 (1770 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	nducted Power [d			
	1	1	24.03	23.47	23.15		0
	1	53	24.11	24.35	23.85	0	0
DFT-s-OFDM	1	104	23.26	24.18	23.89		0
QPSK	50	0	23.25	23.20	21.92	0-1	1
Qi Oit	50	28	23.70	24.34	23.40	0	0
	50	56	22.36	23.36	22.90	0-1	1
	100	0	22.92	22.99	22.40	0-1	1
DFT-s-OFDM 16QAM	1	1	22.83	22.41	22.52	0-1	1
CP-OFDM QPSK	1	1	22.39	22.40	21.80	0-1.5	1.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 472 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 173 of 298

Table 9-148 NR Band n66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

				NR Band				
				Cha	nnel			
Modulation	RB Size	RB Offset	343500 (1717.5 MHz)	347160 (1735.8 MHz)	350820 (1754.1 MHz)	354500 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted				
	1	1	23.73	23.34	24.16	23.04		0
	1	40	23.94	23.70	24.18	24.02	0	0
DFT-s-OFDM	1	77	23.34	24.25	23.27	23.69		0
QPSK	36	0	23.19	22.28	23.24	22.17	0-1	1
QFSR	36	22	23.90	23.40	23.70	23.83	0	0
	36	43	22.60	23.28	22.25	23.04	0-1	1
	75	0	22.82	22.61	22.80	22.56	0-1	1
DFT-s-OFDM 16QAM	1	1	22.93	22.30	22.76	22.10	0-1	1
CP-OFDM QPSK	1	1	22.23	21.83	22.66	21.56	0-1.5	1.5

Table 9-149

NR Band n66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

				NR Band I				
				Cha	nnel			MPR [dB]
Modulation	RB Size	RB Offset	343000 (1715 MHz)	347000 (1735 MHz)	351000 (1755 MHz)	355000 (1775 MHz)	MPR Allowed per 3GPP [dB]	
				Conducted				
	1	1	23.44	22.94	24.23	23.62		0
	1	26	24.01	23.36	24.10	23.92	0	0
DET a OFDM	1	50	23.65	23.81	23.30	23.73		0
DFT-s-OFDM QPSK	25	0	23.15	21.93	23.13	22.62	0-1	1
Qi Sit	25	14	24.13	23.26	23.68	23.66	0	0
	25	27	22.98	22.80	22.23	22.01	0-1	1
	50	0	22.87	22.80	22.64	22.60	0-1	1
DFT-s-OFDM 16QAM	1	1	22.18	21.92	23.18	22.28	0-1	1
CP-OFDM QPSK	1	1	21.99	21.65	22.48	21.80	0-1.5	1.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 474 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 174 of 298

Table 9-150 NR Band n66 (AWS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

			_	NR Band i 5 MHz Band				
				Cha	nnel			
Modulation	RB Size	RB Offset	342500 (1712.5 MHz)	346820 (1734.1 MHz)	351160 (1755.8 MHz)	355500 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted				
	1	1	24.09	23.39	24.12	24.08		0
	1	13	24.31	23.60	23.90	24.10	0	0
DFT-s-OFDM	1	23	24.45	23.75	23.55	23.87		0
QPSK	12	0	23.37	22.27	22.71	23.22	0-1	1
Qi Sit	12	7	24.44	23.31	23.44	24.00	0	0
	12	13	23.41	22.48	22.26	22.78	0-1	1
	25	0	23.44	22.32	22.19	22.60	0-1	1
DFT-s-OFDM 16QAM	1	1	23.13	22.19	23.11	22.91	0-1	1
CP-OFDM QPSK	1	1	22.85	21.69	22.24	22.47	0-1.5	1.5

Table 9-151
NR Band n66 (AWS) Measured *P_{limit}* for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

		, , , , , , , , , , , , , , , , , , , ,	N	NR Band n66	,		
			20 N	MHz Bandwidth			
				Channel			
Modulation	RB Size	RB Offset	344000 (1720 MHz)	349000 (1745 MHz)	354000 (1770 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	nducted Power [d			
	1	1	19.47	19.29	19.48		0
	1	53	19.40	19.18	19.42	0	0
DFT-s-OFDM	1	104	19.44	19.42	19.38		0
QPSK	50	0	19.39	19.33	19.46	0-1	0
QFSR	50	28	19.33	19.31	19.48	0	0
	50	56	19.37	19.37	19.43	0-1	0
	100	0	19.38	19.34	19.47	0-1	0
DFT-s-OFDM 16QAM	1	1	19.49	19.29	19.43	0-1	0
CP-OFDM QPSK	1	1	19.29	19.42	19.45	0-1.5	0

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 475 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 175 of 298

Table 9-152 NR Band n66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

	The Date in the (1997) indicated is immediately and in the Date in										
				NR Band							
				15 MHz Band							
				Cha	nnel		•				
Modulation	RB Size	RB Offset	343500 (1717.5 MHz)	347160 (1735.8 MHz)	350820 (1754.1 MHz)	354500 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted							
	1	1	19.19	19.08	19.00	18.98	0	0			
	1	40	19.15	18.98	19.10	18.84		0			
DFT-s-OFDM	1	77	19.22	19.17	19.09	18.85		0			
QPSK	36	0	19.23	19.13	19.09	19.02	0-1	0			
Qi Sit	36	22	19.12	19.15	19.09	18.92	0	0			
	36	43	19.23	19.20	19.05	18.94	0-1	0			
	75	0	19.20	19.16	19.10	18.97	U- I	0			
DFT-s-OFDM 16QAM	1	1	19.16	18.61	18.84	18.51	0-1	0			
CP-OFDM QPSK	1	1	19.47	18.90	19.06	19.06	0-1.5	0			

Table 9-153 NR Band n66 (AWS) Measured Plimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

_	The Band new (Atto) medicared 7 mineral Band - 0 (Notespec medic) 10 mine Bandwidth										
				NR Band							
			1	10 MHz Band							
				Cha	nnel		_				
Modulation	RB Size	RB Offset	343000 (1715 MHz)	347000 (1735 MHz)	351000 (1755 MHz)	355000 (1775 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted							
	1	1	18.79	18.73	18.96	18.66		0			
	1	26	18.73	18.85	18.88	18.57	0	0			
DET a OFDM	1	50	18.77	18.83	18.87	18.54		0			
DFT-s-OFDM QPSK	25	0	18.84	18.77	18.97	18.53	0-1	0			
QFSK	25	14	18.88	18.76	18.85	18.66	0	0			
	25	27	18.80	18.78	18.89	18.55	0-1	0			
	50	0	18.87	18.72	18.89	18.65	0-1	0			
DFT-s-OFDM 16QAM	1	1	19.19	19.06	18.43	18.37	0-1	0			
CP-OFDM QPSK	1	1	18.89	18.53	18.92	18.73	0-1.5	0			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 470 6000	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 176 of 298	

Table 9-154 NR Band n66 (AWS) Measured P_{limit} for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

			•	NR Band	n66	•	MHZ BAHUWIUL	
				Cha	nnel			
Modulation	RB Size	RB Offset	342500 (1712.5 MHz)	346820 (1734.1 MHz)	351160 (1755.8 MHz)	355500 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted				
	1	1	18.81	18.69	18.73	18.82		0
	1	13	18.78	18.75	18.71	18.86	0	0
DFT-s-OFDM	1	23	18.80	18.78	18.73	18.70		0
QPSK	12	0	18.93	18.71	18.80	18.65	0-1	0
Qi Sit	12	7	18.83	18.76	18.78	18.73	0	0
	12	13	18.87	18.72	18.80	18.66	0-1	0
	25	0	18.86	18.78	18.86	18.70	0-1	0
DFT-s-OFDM 16QAM	1	1	19.07	18.47	18.81	18.49	0-1	0
CP-OFDM QPSK	1	1	18.89	18.66	18.85	18.69	0-1.5	0

Table 9-155

NR Band n66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

				IR Band n66 /IHz Bandwidth				
				Channel				
Modulation	RB Size	RB Offset	344000 (1720 MHz)	349000 (1745 MHz)	354000 (1770 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			Cor	nducted Power [d	Bm]			
	1	1	19.89	19.93	19.91	0	0	
	1	53	19.70	19.98	19.65		0	
DFT-s-OFDM	1	104	19.87	19.97	19.68		0	
QPSK	50	0	19.84	19.90	19.95	0-1	0	
QI OIL	50	28	19.77	19.88	19.88	0	0	
	50	56	19.78	19.96	19.91	0-1	0	
	100	0	19.84	19.95	19.90	0-1	0	
DFT-s-OFDM 16QAM	1	1	19.92	19.98	19.97	0-1	0	
CP-OFDM QPSK	1	1	19.83	19.92	19.93	0-1.5	0	

FCC ID: A3LSMG981U	PCTEST 180 NATIONAL TAXABLE TA	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 177 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 177 of 298	

Table 9-156 NR Band n66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

				NR Band I				
				Cha	nnel			
Modulation	RB Size	RB Offset	343500 (1717.5 MHz)	347160 (1735.8 MHz)	350820 (1754.1 MHz)	354500 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted				
	1	1	19.81	19.77	19.85	19.73		0
	1	40	19.80	19.72	19.86	19.54	0	0
DFT-s-OFDM	1	77	19.87	19.94	19.99	19.82		0
QPSK	36	0	19.83	19.83	19.85	19.68	0-1	0
Qi Sit	36	22	19.75	19.82	19.90	19.66	0	0
	36	43	19.77	19.88	19.93	19.56	0-1	0
	75	0	19.78	19.86	19.99	19.68	0-1	0
DFT-s-OFDM 16QAM	1	1	19.57	19.96	19.93	20.00	0-1	0
CP-OFDM QPSK	1	1	19.97	19.82	19.92	19.73	0-1.5	0

Table 9-157 NR Band n66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

			uoti	NR Band				
				10 MHz Band				
				Cha	nnel			
Modulation	RB Size	RB Offset	343000 (1715 MHz)	347000 (1735 MHz)	351000 (1755 MHz)	355000 (1775 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted				
	1	1	19.48	19.66	19.65	19.85		0
	1	26	19.65	19.70	19.64	19.82	0	0
DFT-s-OFDM	1	50	19.56	19.75	19.69	19.74		0
QPSK	25	0	19.63	19.56	19.61	19.82	0-1	0
Qi SiX	25	14	19.57	19.60	19.62	19.81	0	0
	25	27	19.55	19.60	19.65	19.73	0-1	0
	50	0	19.60	19.53	19.60	19.78	0-1	0
DFT-s-OFDM 16QAM	1	1	19.96	19.75	20.00	19.68	0-1	0
CP-OFDM QPSK	1	1	19.47	19.43	19.72	19.85	0-1.5	0

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 479 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 178 of 298

Table 9-158 NR Band n66 (AWS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

	NR Band n66 5 MHz Bandwidth											
					nnel							
Modulation	RB Size	RB Offset	342500 (1712.5 MHz)	346820 (1734.1 MHz)	351160 (1755.8 MHz)	355500 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted								
	1	1	19.56	19.56	19.78	19.75		0				
	1	13	19.54	19.59	19.75	19.82	0	0				
DFT-s-OFDM	1	23	19.59	19.45	19.86	19.75		0				
QPSK	12	0	19.62	19.53	19.82	19.62	0-1	0				
QI SIX	12	7	19.67	19.56	19.82	19.66	0	0				
	12	13	19.45	19.52	19.77	19.63	0-1	0				
	25	0	19.63	19.54	19.89	19.73	0-1	0				
DFT-s-OFDM 16QAM	1	1	19.81	19.44	19.68	19.46	0-1	0				
CP-OFDM QPSK	1	1	19.63	19.78	19.69	19.68	0-1.5	0				

9.5.4 NR Band n2 (PCS)

Table 9-159 NR Band n2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 20 MHz Bandwidth

				NR Band n2 MHz Bandwidth			
Modulation	RB Size	RB Offset	372000 (1860 MHz)	376000 (1880 MHz)	380000 (1900 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	nducted Power [di			
	1	1	23.02	23.86	23.73		0
	1	53	23.38	23.90	23.56	0	0
DFT-s-OFDM	1	104	23.76	23.95	23.20		0
QPSK	50	0	22.21	22.92	22.92	0-1	1
QI OIL	50	28	22.86	23.95	23.68	0	0
	50	56	22.16	22.96	22.90	0-1	1
	100	0	21.98	23.00	22.99	0-1	1
DFT-s-OFDM 16QAM	1	1	22.32	22.46	22.96	0-1	1
CP-OFDM QPSK	1	1	21.71	22.47	22.50	0-1.5	1.5

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 179 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset			

Table 9-160 NR Band n2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 15 MHz Bandwidth

				NR Band n2			
			15 N	/IHz Bandwidth Channel			
Modulation	RB Size	RB Offset	371500 (1857.5 MHz)	376000 (1880 MHz)	380500 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	nducted Power [d			
	1	1	23.42	23.96	23.61		0
	1	40	23.45	23.91	23.43	0	0
DFT-s-OFDM	1	77	23.80	23.90	23.38		0
QPSK	36	0	22.03	22.98	23.00	0-1	1
Qron	36	22	22.92	23.83	23.52	0	0
	36	43	22.04	23.00	22.68	0-1	1
	75	0	22.01	22.98	22.78	0-1	1
DFT-s-OFDM 16QAM	1	1	22.63	22.95	22.98	0-1	1
CP-OFDM QPSK	1	1	22.00	22.37	22.50	0-1.5	1.5

Table 9-161 NR Band n2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 10 MHz Bandwidth

				NR Band n2 MHz Bandwidth			
				Channel			
Modulation	RB Size	RB Offset	371000 (1855 MHz)	376000 (1880 MHz)	381000 (1905 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Сог	nducted Power [d			
	1	1	23.32	23.72	23.59		0
	1	26	23.47	23.64	23.52	0	0
DFT-s-OFDM	1	50	23.36	23.77	23.23		0
QPSK	25	0	21.85	23.00	23.00	0-1	1
Qi Sit	25	14	22.82	23.66	23.42	0	0
	25	27	21.91	22.91	22.41	0-1	1
	50	0	21.88	22.90	22.59	0-1	1
DFT-s-OFDM 16QAM	1	1	22.82	23.00	22.99	0-1	1
CP-OFDM QPSK	1	1	22.00	22.49	22.50	0-1.5	1.5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 180 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	

Table 9-162 NR Band n2 (PCS) Measured P_{max} for DSI = 2 (Head) or DSI = 0 (Body-worn, or Phablet with grip sensor not triggered) - 5 MHz Bandwidth

				NR Band n2 Hz Bandwidth			
			070500	Channel]		
Modulation	RB Size	RB Offset	370500 (1852.5 MHz)	376000 (1880 MHz)	381500 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	ducted Power [d	Bm]		
	1	1	23.62	23.14	23.23		0
	1	13	23.86	23.14	23.32	0	0
DFT-s-OFDM	1	23	23.79	23.17	23.35		0
QPSK	12	0	22.66	22.17	22.34	0-1	1
Qi Oit	12	7	23.74	23.16	23.35	0	0
	12	13	22.70	22.07	22.47	0-1	1
	25	0	22.59	22.11	22.38	0-1	1
DFT-s-OFDM 16QAM	1	1	22.56	22.15	22.46	0-1	1
CP-OFDM QPSK	1	1	22.03	21.72	21.90	0-1.5	1.5

Table 9-163 NR Band n2 (PCS) Measured P_{limit} for DSI = 3 (Hotspot mode) - 20 MHz Bandwidth

			NR Band				
			20 MHz Bar				
				Channel		_	MPR [dB]
Modulation	RB Size	RB Offset	372000 (1860 MHz)	376000 (1880 MHz)	380000 (1900 MHz)	MPR Allowed per 3GPP	
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	18.99	19.00	18.83		0
	1	53	18.91	18.91	18.60	0	0
DFT-s-OFDM	1	104	18.92	18.84	18.72		0
QPSK	50	0	18.97	19.00	18.73	0-1	0
QI SIX	50	28	18.96	18.92	18.71	0	0
	50	56	18.97	18.86	18.68	0-1	0
	100	0	18.89	18.94	18.74	0-1	0
DFT-s-OFDM 16QAM	1	1	19.00	19.00	18.78	0-1	0
CP-OFDM QPSK	1	1	18.87	18.99	18.70	0-1.5	0

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 494 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 181 of 298

Table 9-164 NR Band n2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 15 MHz Bandwidth

			NR Band 15 MHz Ban				
				Channel			
Modulation	RB Size	RB Offset	371500 (1857.5 MHz)	376000 (1880 MHz)	380500 (1902.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	18.86	18.73	18.79	0	0
	1	40	18.70	18.58	18.67		0
DFT-s-OFDM	1	77	18.91	18.61	18.68		0
QPSK	36	0	18.73	18.49	18.69	0-1	0
Qi Sit	36	22	18.81	18.54	18.56	0	0
	36	43	18.84	18.51	18.69	0-1	0
	75	0	18.83	18.54	18.68	0-1	0
DFT-s-OFDM 16QAM	1	1	18.95	18.79	18.82	0-1	0
CP-OFDM QPSK	1	1	18.79	18.80	18.62	0-1.5	0

Table 9-165 NR Band n2 (PCS) Measured Piimit for DSI = 3 (Hotspot mode) - 10 MHz Bandwidth

			NR Band	d n2	de) 10 m/12 B		
			10 MHz Bar	ndwidth			
				Channel		_	
Modulation	RB Size	RB Offset	371000 (1855 MHz)	376000 (1880 MHz)	381000 (1905 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	18.89	18.56	18.59		0
	1	26	18.82	18.61	18.62	0	0
DFT-s-OFDM	1	50	18.87	18.53	18.65		0
QPSK	25	0	18.54	18.46	18.51	0-1	0
Qi Oit	25	14	18.53	18.37	18.54	0	0
	25	27	18.67	18.31	18.52	0-1	0
	50	0	18.63	18.32	18.46	0-1	0
DFT-s-OFDM 16QAM	1	1	18.62	18.52	18.73	0-1	0
CP-OFDM QPSK	1	1	18.46	18.41	18.53	0-1.5	0

FCC ID: A3LSMG981U	SEGNICISED LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 482 of 208
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 182 of 298

Table 9-166 NR Band n2 (PCS) Measured Plimit for DSI = 3 (Hotspot mode) - 5 MHz Bandwidth

			NR Band 5 MHz Band				
				Channel		_	
Modulation	RB Size	RB Offset	370500 (1852.5 MHz)	376000 (1880 MHz)	381500 (1907.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	18.61	18.37	18.57	0	0
	1	13	18.69	18.43	18.60		0
DFT-s-OFDM	1	23	18.56	18.37	18.54		0
QPSK	12	0	18.52	18.22	18.46	0-1	0
QI OIL	12	7	18.53	18.24	18.42	0	0
	12	13	18.49	18.21	18.47	0-1	0
	25	0	18.53	18.26	18.46	0-1	0
DFT-s-OFDM 16QAM	1	1	18.72	18.56	18.75	0-1	0
CP-OFDM QPSK	1	1	18.34	18.32	18.49	0-1.5	0

Table 9-167 NR Band n2 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 20 MHz Bandwidth

			NR Band				
			20 MHz Bar	Channel			
Modulation	RB Size	RB Offset	372000 (1860 MHz)	376000 (1880 MHz)	380000 (1900 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Col	nducted Power [d	Bm]	[dB]	,
	1	1	19.86	19.66	19.37	0	0
	1	53	19.73	19.37	19.22		0
DFT-s-OFDM	1	104	19.80	19.50	19.27		0
QPSK	50	0	19.84	19.70	19.31	0-1	0
QFSR	50	28	19.73	19.65	19.26	0	0
	50	56	19.75	19.60	19.32	0-1	0
	100	0	19.83	19.62	19.31	0-1	0
DFT-s-OFDM 16QAM	1	1	19.96	19.74	19.41	0-1	0
CP-OFDM QPSK	1	1	19.97	19.81	19.35	0-1.5	0

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 402 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 183 of 298

Table 9-168 NR Band n2 (PCS) Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 15 MHz Bandwidth

			NR Band				
			15 MHz Ban	Channel			
Modulation	RB Size	RB Offset	371500 (1857.5 MHz)	376000 (1880 MHz)	380500 (1902.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	19.91	19.54	19.72	0	0
	1	40	19.72	19.35	19.58		0
DFT-s-OFDM	1	77	19.93	19.51	19.78		0
QPSK	36	0	19.74	19.43	19.61	0-1	0
QF SIX	36	22	19.75	19.36	19.53	0	0
	36	43	19.81	19.37	19.61	0-1	0
	75	0	19.75	19.38	19.60	0-1	0
DFT-s-OFDM 16QAM	1	1	19.96	19.56	19.84	0-1	0
CP-OFDM QPSK	1	1	19.97	19.45	19.67	0-1.5	0

Table 9-169 NR Band n2 (PCS) Measured P_{limit} for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 10 MHz Bandwidth

			NR Band 10 MHz Ban				
				Channel			
Modulation	RB Size	RB Offset	371000 (1855 MHz)	376000 (1880 MHz)	381000 (1905 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Coi	nducted Power [di	Bm]	[dB]	
	1	1	19.65	19.42	19.47	0	0
	1	26	19.73	19.43	19.46		0
DFT-s-OFDM	1	50	19.68	19.36	19.44		0
QPSK	25	0	19.64	19.18	19.37	0-1	0
QFOR	25	14	19.63	19.16	19.37	0	0
	25	27	19.65	19.17	19.29	0-1	0
	50	0	19.62	19.26	19.35	0-1	0
DFT-s-OFDM 16QAM	1	1	19.81	19.52	19.52	0-1	0
CP-OFDM QPSK	1	1	19.62	19.15	19.53	0-1.5	0

FCC ID: A3LSMG981U	PCTEST SEGMENTS LADVATERY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 404 - 6000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 184 of 298

Table 9-170

NR Band n2 (PCS) Measured *Plimit* for DSI = 1 (Phablet with grip sensor active) and/or DSI = 4 (Earjack active) - 5 MHz Bandwidth

			NR Band						
5 MHz Bandwidth Channel									
Modulation	RB Size	RB Offset	370500 (1852.5 MHz)	376000 (1880 MHz)	381500 (1907.5 MHz)	MPR Allowed per 3GPP	MPR [dB]		
			Cor	Conducted Power [dBm] 3GPP [dB]					
	1	1	19.53	19.41	19.56		0		
	1	13	19.62	19.46	19.52	0	0		
DFT-s-OFDM	1	23	19.57	19.46	19.54		0		
QPSK	12	0	19.49	19.18	19.36	0-1	0		
QFSIX	12	7	19.48	19.17	19.33	0	0		
	12	13	19.52	19.13	19.31	0-1	0		
	25	0	19.53	19.22	19.14	0-1	0		
DFT-s-OFDM 16QAM	1	1	19.67	19.47	19.59	0-1	0		
CP-OFDM QPSK	1	1	19.53	19.31	19.34	0-1.5	0		

9.5.5 NR Band n41

Table 9-171 NR Band n41 Measured P_{max} for all DSI - 100 MHz Bandwidth

NR Band n41									
	100 MHz Bandwidth								
		Channel							
Modulation	RB Size	DP Officet	518598 (2592.99 MHz)	MPR Allowed per 3GPP	MPR [dB]				
Wodulation	RD Size	RB Offset Conducted Power [dBm]		[dB]	լսոյ				
	1	1	23.53		0				
	1	137	24.28	0	0				
DET a OEDM	1	271	23.81		0				
DFT-s-OFDM QPSK	135	0	22.51	0-1	1				
QF SIX	135	69	24.16	0	0				
	135	138	22.88	0-1	1				
	270	0	22.60	0-1	1				
DFT-s-OFDM 16QAM	1	1	22.97	0-1	1				
CP-OFDM QPSK	1	1	23.00	0-1.5	1.5				

Note: NR Band n41 at 100 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG981U	PCTEST SIGNIFICATION INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 185 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 165 01 296

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 9-172 NR Band n41 Measured Pmax for all DSI - 90 MHz Bandwidth

	NR Band n41 90 MHz Bandwidth							
			Cha	nnel				
Modulation			MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]					
	1	1	23.25	23.70		0		
	1	123	24.04	23.80	0	0		
DFT-s-OFDM	1	243	23.60	23.85		0		
QPSK	120	0	22.91	22.76	0-1	1		
QI OIX	120	63	24.01	23.92	0	0		
	120	125	22.77	22.93	0-1	1		
	243	0	23.03	23.02	U- 1	1		
DFT-s-OFDM 16QAM	1	1	22.68	22.82	0-1	1		
CP-OFDM QPSK	1	1	21.87	22.85	0-1.5	1.5		

Table 9-173
NR Band n41 Measured P_{max} for all DSI - 80 MHz Bandwidth

	NR Band n41 80 MHz Bandwidth							
			Cha	nnel				
Modulation	(2536.02 VIHZ) (2649.99 VIHZ)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted	Conducted Power [dBm]				
	1	1	23.54	23.89		0		
	1	109	23.70	23.62	0	0		
DFT-s-OFDM	1	215	23.87	24.12		0		
QPSK	108	0	22.80	23.25	0-1	1		
Qi SiX	108	55	23.51	24.22	0	0		
	108	109	22.85	23.24	0-1	1		
	216	0	22.65	23.22	U-1	1		
DFT-s-OFDM 16QAM	1	1	22.49	22.90	0-1	1		
CP-OFDM QPSK	1	1	21.73	21.81	0-1.5	1.5		

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 196 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 186 of 298

Table 9-174 NR Band n41 Measured Pmax for all DSI - 60 MHz Bandwidth

				Band n41	00 IIII 12 2 a.i.		
				z Bandwidth			
			OU IVIN	Channel			
Modulation	RB Size	RB Size RB Offset	505200 (2526 MHz)	518598 (2592.99 MHz)	531996 (2659.98 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Cor	nducted Power [d			
	1	1	23.52	23.61	23.49	0	0
	1	81	23.68	23.55	23.57		0
DET - OFDM	1	160	23.70	23.28	23.11		0
DFT-s-OFDM QPSK	81	0	22.63	22.75	22.74	0-1	1
QF3N	81	41	23.70	23.54	23.60	0	0
	81	81	22.50	22.52	22.77	0.1	1
	162	0	22.61	22.70	22.82	0-1	1
DFT-s-OFDM 16QAM	1	1	22.66	23.00	22.42	0-1	1
CP-OFDM QPSK	1	1	22.10	22.21	21.98	0-1.5	1.5

Table 9-175 NR Band n41 Measured P_{max} for all DSI - 50 MHz Bandwidth

				Band n41			
			50 IVIH	z Bandwidth Channel			
Modulation RB Size RB Offset	504204 (2521.02 MHz)	518598 (2592.99 MHz)	532998 (2664.99 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			Cor	nducted Power [d	Bm]		
	1	1	23.37	23.82	24.08	0	0
	1	67	23.14	23.72	23.40		0
DFT-s-OFDM	1	131	23.12	23.54	23.90		0
QPSK	64	0	22.18	22.82	23.06	0-1	1
QF3N	64	35	23.07	23.67	24.00	0	0
	64	69	22.11	22.68	23.12	0-1	1
	128	0	22.02	22.77	23.09	1 0-1	1
DFT-s-OFDM 16QAM	1	1	22.23	22.53	23.00	0-1	1
CP-OFDM QPSK	1	1	21.67	22.45	22.90	0-1.5	1.5

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 107 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 187 of 298

Table 9-176 NR Band n41 Measured Pmax for all DSI - 40 MHz Bandwidth

		The Danier	· · · · · · · · · · · · · · · · · · ·	NR Band n4				
					nnel			
Modulation	RB Size RB Offset		503202 (2516.01 MHz)	513468 (2567.34 MHz)	523734 (2618.67 MHz)	534000 (2670 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	1	24.16	24.06	24.18	24.09		0
	1	53	23.55	24.47	24.42	24.82	0	0
DFT-s-OFDM	1	104	23.58	24.61	24.03	24.20		0
QPSK	50	0	22.77	23.59	23.48	23.92	0-1	1
QF3N	50	28	23.52	24.19	24.12	24.77	0	0
ſ	50	56	22.85	23.63	23.36	24.00	0-1	1
ſ	100	0	22.61	23.37	23.52	23.93	0-1	1
DFT-s-OFDM 16QAM	1	1	23.17	23.12	23.32	23.90	0-1	1
CP-OFDM QPSK	1	1	22.51	22.32	22.89	23.50	0-1.5	1.5

Table 9-177 NR Band n41 Measured Pmax for all DSI - 20 MHz Bandwidth

			IIU II4 I WIE		Band n41				
					z Bandwidth				
	Channel								
Modulation	RB Size	RB Offset	501204 (2506.02 MHz)	509898 (2549.49 MHz)	518598 (2592.99 MHz)	527298 (2636.49 MHz)	535998 (2679.99 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Cor	ducted Power [d	Bm]			
	1	1	24.02	24.61	23.51	23.95	24.02		0
	1	26	23.94	24.18	23.54	23.85	23.93	0	0
DFT-s-OFDM	1	49	23.72	24.60	23.57	23.82	23.29		0
QPSK	25	0	22.53	22.62	22.64	23.07	23.16	0-1	1
QI OIL	25	13	23.58	23.70	23.69	23.79	23.95	0	0
	25	26	23.08	22.96	23.34	22.92	22.58	0-1	1
	50	0	22.79	22.84	22.57	23.05	23.05	0-1	1
DFT-s-OFDM 16QAM	1	1	22.57	23.00	23.00	23.19	23.22	0-1	1
CP-OFDM QPSK	1	1	22.00	22.90	22.25	22.82	22.78	0-1.5	1.5

Figure 9-5 **Power Measurement Setup**

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 488 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 188 of 298

WLAN Conducted Powers 9.6

Table 9-178 2.4 GHz WLAN Maximum Average RF Power - Ant 1

2.4GHz Conducted Power [dBm]						
			IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ax	
		Average	Average	Average	Average	
2412	1	20.86	18.13	18.04	15.31	
2437	6	20.81	18.42	18.33	15.87	
2462	11	20.59	18.48	18.19	12.75	

Table 9-179 2.4 GHz WLAN Maximum Average RF Power - Ant 2

2.4GHz Conducted Power [dBm]						
			IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ax	
		Average	Average	Average	Average	
2412	1	20.48	18.45	18.47	15.38	
2437	6	20.59	18.36	18.28	15.31	
2462	11	20.97	18.06	17.79	12.72	

Table 9-180 Max Output Powers During Conditions with 2.4 GHz and 5 GHz WLAN

2.4GHz 802.11n Conducted Power [dBm]						
Freq [MHz] Channel ANT1 ANT2						
2412	1	16.45	16.22			
2437	6	16.53	15.80			
2462	11	16.66	16.01			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	MSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 189 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 169 01 298

Table 9-181 5 GHz WLAN Maximum Average RF Power - Ant 1

	5GHz (20MHz) Conducted Power [dBm]						
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11a	802.11n	802.11ac	802.11ax		
		Average	Average	Average	Average		
5180	36	16.23	16.19	16.31	13.54		
5200	40	16.15	16.27	16.35	16.48		
5220	44	16.23	16.26	16.32	15.59		
5240	48	16.25	16.42	16.32	15.57		
5260	52	16.46	16.43	16.41	15.67		
5280	56	16.40	16.47	16.44	15.79		
5300	60	16.47	16.37	16.48	15.66		
5320	64	16.17	16.12	16.13	14.78		
5500	100	15.80	15.78	15.72	16.05		
5600	120	15.94	15.98	15.91	16.07		
5620	124	15.67	15.79	15.69	15.83		
5720	144	15.64	15.61	15.70	15.77		
5745	149	15.77	15.59	15.57	15.62		
5785	157	16.07	16.23	16.20	16.26		
5825	165	15.97	16.09	16.11	15.95		

Table 9-182 5 GHz WLAN Maximum Average RF Power - Ant 2

5GHz (20MHz) Conducted Power [dBm]						
		IEEE Transmission Mode				
Freq [MHz]	Channel	802.11a	802.11n	802.11ac	802.11ax	
		Average	Average	Average	Average	
5180	36	16.29	16.09	16.13	13.80	
5200	40	16.29	16.19	16.20	16.48	
5220	44	16.12	16.12	16.21	16.46	
5240	48	16.11	16.10	16.16	16.43	
5260	52	15.83	15.90	15.89	16.16	
5280	56	15.97	16.00	15.96	16.10	
5300	60	15.95	15.91	15.98	16.22	
5320	64	15.95	15.86	15.88	14.48	
5500	100	15.88	15.78	15.79	16.20	
5600	120	15.96	15.98	15.98	16.31	
5620	124	16.05	16.07	16.15	16.32	
5720	144	16.21	16.13	16.10	16.45	
5745	149	16.29	16.39	16.34	15.70	
5785	157	16.42	16.30	16.40	15.69	
5825	165	16.22	16.26	16.23	16.47	

FCC ID: A3LSMG981U	PCTEST INGINITION INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 400 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 190 of 298

Table 9-183 5 GHz WLAN Maximum Average RF Power - MIMO

5GH	5GHz (20MHz) 802.11n Conducted Power [dBm]							
Freq [MHz]	Channel	ANT1	ANT2	MIMO				
5180	36	16.19	16.09	19.15				
5200	40	16.27	16.19	19.24				
5220	44	16.26	16.12	19.20				
5240	48	16.42	16.10	19.27				
5260	52	16.43	15.90	19.18				
5280	56	16.47	16.00	19.25				
5300	60	16.37	15.91	19.16				
5320	64	16.12	15.86	19.00				
5500	100	14.97	15.20	18.10				
5600	120	15.01	14.98	18.00				
5620	124	15.12	14.89	18.02				
5720	144	15.07	14.58	17.84				
5745	149	14.42	13.73	17.10				
5785	157	14.38	13.92	17.17				
5825	165	14.22	13.78	17.02				

Table 9-184 2.4 GHz WLAN Reduced Average RF Power - Ant 1

2.4GHz Conducted Power [dBm]						
		IEEE Transmission Mode				
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ax	
		Average	Average	Average	Average	
2412	1	16.88	16.95	16.45	14.61	
2437	6	16.17	16.80	16.53	15.84	
2462	11	16.69	16.89	16.66	12.76	

Table 9-185 2.4 GHz WLAN Reduced Average RF Power – Ant 2

2.4GHz Conducted Power [dBm]						
			IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ax	
		Average	Average	Average	Average	
2412	1	16.38	16.18	16.22	14.56	
2437	6	16.51	16.05	15.80	15.17	
2462	11	16.37	16.23	16.01	12.56	

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 191 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 191 01 296

Table 9-186 5 GHz WLAN Reduced Average RF Power - Ant 1

	5GHz (40MHz) Conducted Power [dBm]						
		IEEE '	Transmission	Mode			
Freq [MHz]	Channel	802.11n 802.11ac 802.1					
		Average	Average	Average			
5190	38	13.77	13.71	11.22			
5230	46	13.10	13.73	13.32			
5270	54	13.28	13.21	13.52			
5310	62	13.95	13.93	10.46			

5GHz (80MHz) Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11ac	802.11ax				
		Average	Average				
5530	106	13.33	12.15				
5610	122	13.22	13.44				
5690	138	13.48	13.89				
5775	155	13.82	13.97				

Table 9-187 5 GHz WLAN Reduced Average RF Power - Ant 2

5GHz (40MHz) Conducted Power [dBm]						
		IEEE Transmission Mode				
Freq [MHz]	Channel	802.11n	802.11ac	802.11ax		
		Average	Average	Average		
5190	38	13.37	13.36	11.77		
5230	46	13.65	13.57	13.86		
5270	54	13.35	13.46	13.69		
5310	62	13.12	13.21	9.77		

5GHz (80MHz) Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11ac	802.11ax				
		Average	Average				
5530	106	13.88	11.72				
5610	122	13.84	13.39				
5690	138	13.78	13.57				
5775	155	13.80	13.68				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 402 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	- 12/18/19 Portable Handset		Page 192 of 298	

Table 9-188
Reduced Output Powers During Conditions with 2.4 GHz and 5 GHz WLAN

2.4GHz 802.11n Conducted Power [dBm]								
Freq [MHz]	Channel	ANT1	ANT2					
2412	1	13.96	13.15					
2437	6	13.09	13.78					
2462	11	13.35	13.98					

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Figure 9-6
Power Measurement Setup

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 402 of 200	
1M1910220165-01-R1.A3L 10/23/19 - 12/18/19 Port		Portable Handset	Page 193 of 298		

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.7 **Bluetooth Conducted Powers**

Table 9-189 Bluetooth Average RF Power

	requency Data Channel Channel No.		Avg Conducted Power			
Frequency [MHz]			[dBm]	[mW]		
2402	1.0	0	12.77	18.919		
2441	1.0	39	12.08	16.154		
2480	1.0	78	11.54	14.241		
2402	2.0	0	10.49	11.205		
2441	2.0	39	11.70	14.801		
2480	2.0	78	7.89	6.156		
2402	3.0	0	10.44	11.070		
2441	3.0	39	11.68	14.711		
2480	3.0	78	7.84	6.086		

Note: The bolded data rates and channel above were tested for SAR.

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 404 of 209	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 194 of 298	

Figure 9-7 **Bluetooth Transmission Plot**

Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.91 ms}{3.75 ms} * 100\% = 77.6\%$$

Figure 9-8 **Power Measurement Setup**

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 405 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 195 of 298

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties - Head

					Opo. ti				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			680	0.872	40.895	0.888	42.305	-1.80%	-3.33%
			695	0.876	40.854	0.889	42.227	-1.46%	-3.25%
			700	0.878	40.840	0.889	42.201	-1.24%	-3.23%
10/28/2019	750 Head	22.3	710	0.881	40.813	0.890	42.149	-1.01%	-3.17%
			750	0.895	40.706	0.894	41.942	0.11%	-2.95%
			785	0.907	40.615	0.896	41.760	1.23%	-2.74%
			800	0.913	40.570	0.897	41.682	1.78%	-2.67%
			680	0.861	41.735	0.888	42.305	-3.04%	-1.35%
44/07/0040	750 111	00.4	695	0.866	41.698	0.889	42.227	-2.59%	-1.25%
11/07/2019	750 Head	20.4	750 770	0.885	41.547 41.484	0.894 0.895	41.942 41.838	-1.01% -0.22%	-0.94% -0.85%
			770	0.893	41.484	0.895	41.838	0.22%	-0.85%
			820	0.881	40.084	0.899	41.700	-2.00%	-3.59%
10/23/2019	835 Head	20.1	835	0.886	40.029	0.900	41.500	-1.56%	-3.54%
10/20/2010	000 1 1000	20.1	850	0.892	40.017	0.916	41.500	-2.62%	-3.57%
			820	0.925	40.530	0.899	41.578	2.89%	-2.52%
10/31/2019	835 Head	20.9	835	0.930	40.489	0.900	41.500	3.33%	-2.44%
			850	0.934	40.455	0.916	41.500	1.97%	-2.52%
			820	0.894	40.475	0.899	41.578	-0.56%	-2.65%
11/11/2019	835 Head	20.0	835	0.899	40.431	0.900	41.500	-0.11%	-2.58%
			850	0.905	40.385	0.916	41.500	-1.20%	-2.69%
			820	0.912	41.413	0.899	41.578	1.45%	-0.40%
11/14/2019	835 Head	20.3	835	0.918	41.382	0.900	41.500	2.00%	-0.28%
			850	0.924	41.348	0.916	41.500	0.87%	-0.37%
			1710	1.336	39.200	1.348	40.142	-0.89%	-2.35%
			1720	1.343	39.181	1.354	40.126	-0.81%	-2.36%
10/28/2019	1750 Head	21.0	1745	1.359	39.127	1.368	40.087	-0.66%	-2.39%
			1750	1.362	39.117	1.371	40.079	-0.66%	-2.40%
			1770 1790	1.374 1.385	39.078 39.053	1.383 1.394	40.047 40.016	-0.65% -0.65%	-2.42% -2.41%
			1710	1.328	40.609	1.348	40.010	-1.48%	1.16%
			1710	1.333	40.584	1.354	40.142	-1.55%	1.14%
			1745	1.348	40.526	1.368	40.087	-1.46%	1.10%
11/13/2019	1750 Head	20.6	1750	1.351	40.518	1.371	40.079	-1.46%	1.10%
			1770	1.364	40.498	1.383	40.047	-1.37%	1.13%
			1790	1.376	40.489	1.394	40.016	-1.29%	1.18%
			1710	1.336	38.943	1.348	40.142	-0.89%	-2.99%
			1720	1.341	38.926	1.354	40.126	-0.96%	-2.99%
11/25/2019	1750 Head	21.3	1745	1.355	38.893	1.368	40.087	-0.95%	-2.98%
11/20/2010	170011000	21.0	1750	1.359	38.889	1.371	40.079	-0.88%	-2.97%
			1770	1.371	38.872	1.383	40.047	-0.87%	-2.93%
			1790	1.382	38.849	1.394	40.016	-0.86%	-2.92%
			1850	1.397	40.392	1.400	40.000	-0.21%	0.98%
			1860	1.407	40.349	1.400	40.000	0.50%	0.87%
10/28/2019	1900 Head	22.5	1880 1900	1.429 1.452	40.265 40.184	1.400 1.400	40.000 40.000	2.07% 3.71%	0.66%
			1905	1.452	40.163	1.400	40.000	4.07%	0.41%
			1910	1.463	40.163	1.400	40.000	4.50%	0.41%
			1850	1.395	40.142	1.400	40.000	-0.36%	1.03%
			1860	1.406	40.369	1.400	40.000	0.43%	0.92%
			1880	1.428	40.281	1.400	40.000	2.00%	0.70%
10/30/2019	1900 Head	21.9	1900	1.449	40.194	1.400	40.000	3.50%	0.49%
			1905	1.454	40.172	1.400	40.000	3.86%	0.43%
			1910	1.459	40.150	1.400	40.000	4.21%	0.37%
			1850	1.410	40.374	1.400	40.000	0.71%	0.94%
			1860	1.416	40.353	1.400	40.000	1.14%	0.88%
11/13/2019	1900 Head	20.6	1880	1.428	40.323	1.400	40.000	2.00%	0.81%
11/13/2019	130011680	20.0	1900	1.441	40.308	1.400	40.000	2.93%	0.77%
			1905	1.444	40.305	1.400	40.000	3.14%	0.76%
			1910	1.447	40.303	1.400	40.000	3.36%	0.76%
			1850	1.418	38.719	1.400	40.000	1.29%	-3.20%
			1860	1.424	38.704	1.400	40.000	1.71%	-3.24%
11/25/2019	1900 Head	21.3	1880	1.435	38.678	1.400	40.000	2.50%	-3.31%
	,		1900	1.445	38.648	1.400	40.000	3.21%	-3.38%
			1905 1910	1.447 1.450	38.641 38.631	1.400 1.400	40.000 40.000	3.36% 3.57%	-3.40% -3.42%

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Down 100 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 196 of 298	

Table 10-2 Measured Tissue Properties - Head Cont'd

		Wieasuie	<u></u>	e riope		eau Con	t u		
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			2300	1.742	38.732	1.670	39.500	4.31%	-1.94%
10/29/2019	2450 Head	20.4	2310	1.750	38.717	1.679	39.480	4.23%	-1.93%
			2320	1.758	38.702	1.687	39.460	4.21%	-1.92%
			2400	1.776	37.556	1.756	39.289	1.14%	-4.41%
11/04/2019	2450 Head	20.7	2450	1.816	37.492	1.800	39,200	0.89%	-4.36%
			2500	1.851	37.398	1.855	39.136	-0.22%	-4.44%
			2560	1.939	37.532	1.920	39.060	0.99%	-3.91%
11/08/2019	2450 Head	20.4	2600	1.969	37.468	1.964	39.009	0.25%	-3.95%
11/00/2010	2400 1 1000	20.4	2650	2.011	37.358	2.018	38.945	-0.35%	-4.07%
			2400	1.824	39.072		39.289	3.87%	
11/11/2010	2450 Head	19.2			38.982	1.756 1.800			-0.55%
11/11/2019	2450 Head	19.2	2450	1.866			39.200	3.67%	-0.56%
			2500	1.905	38.887	1.855	39.136	2.70%	-0.64%
			2450	1.849	38.818	1.800	39.200	2.72%	-0.97%
12/09/2019	2450 Head	19.8	2500	1.888	38.743	1.855	39.136	1.78%	-1.00%
			2510	1.896	38.724	1.866	39.123	1.61%	-1.02%
			2560	1.940	38.488	1.920	39.060	1.04%	-1.46%
12/16/2019	2450 Head	19.2	2600	1.972	38.422	1.964	39.009	0.41%	-1.50%
			2650	2.015	38.319	2.018	38.945	-0.15%	-1.61%
			3500	2.946	36.892	2.913	37.929	1.13%	-2.73%
			3550	2.983	36.817	2.964	37.871	0.64%	-2.78%
			3560	2.991	36.799	2.974	37.860	0.57%	-2.80%
12/16/2019	3500 Head	20.3	3600	3.026	36.756	3.015	37.814	0.36%	-2.80%
			3650	3.068	36.686	3.066	37.757	0.07%	-2.84%
			3690	3.099	36.636	3.107	37.711	-0.26%	-2.85%
			3700	3.107	36.624	3.117	37.700	-0.32%	-2.85%
			5180	4.651	36.038	4.635	36.009	0.35%	0.08%
			5190	4.661	36.024	4.645	35.998	0.34%	0.07%
			5200	4.670	36.014	4.655	35.986	0.32%	0.08%
			5210	4.680	36.002	4.666	35.975	0.30%	0.08%
			5220	4.690	35.976	4.676	35.963	0.30%	0.04%
			5240	4.713	35.920	4.696	35.940	0.36%	-0.06%
			5250	4.726	35.896	4.706	35.929	0.42%	-0.09%
			5260	4.740	35.873	4.717	35.917	0.49%	-0.12%
			5270	4.753	35.852	4.727	35.906	0.55%	-0.15%
			5280	4.764	35.845	4.737	35.894	0.57%	-0.14%
			5290	4.774	35.836	4.748	35.883	0.55%	-0.13%
			5300	4.787	35.817	4.758	35.871	0.61%	-0.15%
			5310	4.800	35.796	4.768	35.860	0.67%	-0.18%
			5320	4.809			35.849	0.65%	
					35.774	4.778			-0.21%
			5500	5.013	35.432	4.963	35.643	1.01%	-0.59%
			5510	5.028	35.417	4.973	35.632	1.11%	-0.60%
			5520	5.040	35.394	4.983	35.620	1.14%	-0.63%
			5530	5.051	35.378	4.994	35.609	1.14%	-0.65%
			5540	5.061	35.366	5.004	35.597	1.14%	-0.65%
			5550	5.069	35.337	5.014	35.586	1.10%	-0.70%
	5000		5560	5.075	35.306	5.024	35.574	1.02%	-0.75%
11/10/2019	5200- 5800 Head	20.1	5580	5.099	35.270	5.045	35.551	1.07%	-0.79%
	Sout Head		5600	5.133	35.238	5.065	35.529	1.34%	-0.82%
			5610	5.145	35.215	5.076	35.518	1.36%	-0.85%
			5620	5.158	35.200	5.086	35.506	1.42%	-0.86%
			5640	5.183	35.169	5.106	35.483	1.51%	-0.88%
			5660	5.200	35.122	5.127	35.460	1.42%	-0.95%
							35.449		
			5670	5.211	35.102	5.137		1.44%	-0.98%
			5680	5.220	35.075	5.147	35.437	1.42%	-1.02%
			5690	5.233	35.045	5.158	35.426	1.45%	-1.08%
			5700	5.245	35.024	5.168	35.414	1.49%	-1.10%
			5710	5.260	35.014	5.178	35.403	1.58%	-1.10%
			5720	5.274	35.011	5.188	35.391	1.66%	-1.07%
			5745	5.304	34.972	5.214	35.363	1.73%	-1.11%
			5750	5.309	34.961	5.219	35.357	1.72%	-1.12%
			5755	5.314	34.951	5.224	35.351	1.72%	-1.13%
			5765	5.324	34.933	5.234	35.340	1.72%	-1.15%
			5775	5.332	34.920	5.245	35.329	1.66%	-1.16%
			5785	5.344	34.903	5.255	35.317	1.69%	-1.17%
			5795	5.359	34.880	5.265	35.305	1.79%	-1.20%
								1.79%	
	[5800	5.366	34.868	5.270	35.300		-1.22%
			5805	5.372	34.860	5.275	35.294	1.84%	-1.23%
			5825	5.394	34.831	5.296	35.271	1.85%	-1.25%

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 407 6000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 197 of 298

Table 10-3 Measured Tissue Properties - Body

		IVICas	surea i	13346 1 1	operties	- воау			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			680	0.912	57.547	0.958	55.804	-4.80%	3.12%
			695	0.924	57.422	0.959	55.745	-3.65%	3.01%
			700	0.929	57.379	0.959	55.726	-3.13%	2.97%
10/28/2019	750 Body	23.1	710	0.937	57.295	0.960	55.687	-2.40%	2.89%
			750	0.974	56.945	0.964	55.531	1.04%	2.55%
			770	0.993	56.757	0.965	55.453	2.90%	2.35%
			785	1.007	56.622	0.966	55.395	4.24%	2.22%
			750	0.967	56.339	0.964	55.531	0.31%	1.46%
10/29/2019	750 Body	21.4	785	0.999	56.036	0.966	55.395	3.42%	1.16%
			800	1.014	55.905	0.967	55.336	4.86%	1.03%
			680	0.914	57.723	0.958	55.804	-4.59%	3.44%
11/06/2019	750 Body	23.6	695	0.927	57.594	0.959	55.745	-3.34%	3.32%
			750	0.977	57.111	0.964	55.531	1.35%	2.85%
			820	0.943	55.733	0.969	55.258	-2.68%	0.86%
11/04/2019	835 Body	19.9	835	0.957	55.565	0.970	55.200	-1.34%	0.66%
			850	0.973	55.412	0.988	55.154	-1.52%	0.47%
			820	0.942	54.683	0.969	55.258	-2.79%	-1.04%
11/06/2019	835 Body	20.1	835	0.958	54.531	0.970	55.200	-1.24%	-1.21%
			850	0.974	54.381	0.988	55.154	-1.42%	-1.40%
			820	0.940	54.840	0.969	55.258	-2.99%	-0.76%
11/13/2019	835 Body	20.3	835	0.956	54.694	0.970	55.200	-1.44%	-0.92%
			850	0.972	54.542	0.988	55.154	-1.62%	-1.11%
			820	0.951	56.241	0.969	55.258	-1.86%	1.78%
11/18/2019	835 Body	20	835	0.967	56.103	0.970	55.200	-0.31%	1.64%
			850	0.982	55.964	0.988	55.154	-0.61%	1.47%
			1710	1.484	51.157	1.463	53.537	1.44%	-4.45%
			1720	1.496	51.119	1.469	53.511	1.84%	-4.47%
10/28/2019	1750 Body	20.3	1745	1.525	51.025	1.485	53.445	2.69%	-4.53%
	,		1750	1.530	51.004	1.488	53.432	2.82%	-4.54%
			1770	1.552	50.918	1.501	53.379	3.40%	-4.61%
			1790	1.575	50.828	1.514	53.326	4.03%	-4.68%
			1710	1.460	51.554	1.463	53.537	-0.21%	-3.70%
			1720	1.471	51.516	1.469	53.511	0.14%	-3.73%
11/11/2019	1750 Body	22.5	1745	1.499	51.430	1.485	53.445	0.94%	-3.77%
	,		1750	1.505	51.413	1.488	53.432	1.14%	-3.78%
			1770	1.526	51.329	1.501	53.379	1.67%	-3.84%
			1790	1.547	51.245	1.514	53.326	2.18%	-3.90%
			1710	1.486	53.262	1.463	53.537	1.57%	-0.51%
			1720	1.498	53.215	1.469	53.511	1.97%	-0.55%
11/25/2019	1750 Body	20.3	1745	1.528	53.106	1.485	53.445	2.90%	-0.63%
	,		1750	1.534	53.086	1.488	53.432	3.09%	-0.65%
			1770	1.556	53.005	1.501	53.379	3.66%	-0.70%
			1790	1.578	52.916	1.514	53.326	4.23%	-0.77%
			1710	1.474	52.523	1.463	53.537	0.75%	-1.89%
			1720	1.486	52.483	1.469	53.511	1.16%	-1.92%
11/28/2019	1750 Body	21.3	1745	1.515	52.381	1.485	53.445	2.02%	-1.99%
			1750	1.521	52.360	1.488	53.432	2.22%	-2.01%
			1770	1.543	52.285	1.501	53.379	2.80%	-2.05%
			1790	1.564	52.213	1.514	53.326	3.30%	-2.09%
40/4/0040	4750 D /	00.0	1710	1.494	52.692	1.463	53.537	2.12%	-1.58%
12/1/2019	1750 Body	20.3	1750	1.541	52.542	1.488	53.432	3.56%	-1.67%
			1790	1.585	52.370	1.514	53.326	4.69%	-1.79%
			1710	1.483	52.891	1.463	53.537	1.37%	-1.21%
			1720	1.496	52.853	1.469	53.511	1.84%	-1.23%
12/03/2019	1750 Body	20.2	1745	1.526	52.755	1.485	53.445	2.76%	-1.29%
	ĺ ,		1750	1.532	52.733	1.488	53.432	2.96%	-1.31%
			1770	1.555	52.646	1.501	53.379	3.60%	-1.37%
			1790	1.577	52.553	1.514	53.326	4.16%	-1.45%
			1710	1.488	52.275	1.463	53.537	1.71%	-2.36%
			1720	1.499	52.238	1.469	53.511	2.04%	-2.38%
12/16/2019	1750 Body	20.3	1745	1.527	52.151	1.485	53.445	2.83%	-2.42%
	,		1750	1.533	52.134	1.488	53.432	3.02%	-2.43%
	l	1	1770	1.556	52.063	1.501	53.379	3.66%	-2.47%
			1790	1.579	51.985	1.514	53.326	4.29%	-2.51%

FCC ID: A3LSMG981U	PCTEST INGINISTRATING	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 100 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 198 of 298

Table 10-4 Measured Tissue Properties - Body Cont'd

	weasured i		ssue	Prope	erties -	- Boay	/ Con	t a	
Calibrated for Tests	Tissue	Tissue Temp During Calibration	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	% dev
Performed on:	Type	('C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε		
			1850	1.514	52.201	1.520	53.300	-0.39%	-2.06%
			1860	1.525	52.158	1.520	53.300	0.33%	-2.14%
10/30/2019	1900 Body	21.5	1880	1.549	52.081	1.520	53.300	1.91%	-2.29%
			1900	1.571	52.013	1.520	53.300	3.36%	-2.41%
			1905 1910	1.577	51.994 51.977	1.520 1.520	53.300 53.300	3.75% 4.14%	-2.459 -2.489
			1910	1.583	51.977	1.520	53.300	-0.59%	-2.48% -2.58%
			1850	1.511	51.927	1.520	53.300	-0.59%	
			1880	1.522				1.51%	-2.649 -2.759
11/11/2019	1900 Body	23.7	1900		51.835	1.520 1.520	53.300 53.300		-2.759
			1900	1.565 1.570	51.780 51.764	1.520	53.300	2.96%	-2.889
			1910	1.576	51.764	1.520	53.300	3.68%	-2.887
			1850	1.576	51.746	1.520	53.300	-0.59%	-3.299
			1860	1.522	51.540	1.520	53.300	0.13%	-3.29%
			1880	1.544	51.465	1.520	53.300	1.58%	-3.449
11/26/2019	1900 Body	23.4	1900	1.567	51.401	1.520	53.300	3.09%	-3.569
			1905	1.573	51 383	1.520	53.300	3.49%	-3.60%
			1910	1.578	51.366	1.520	53.300	3.82%	-3.639
			1850	1.522	51.044	1.520	53.300	0.13%	-4.239
			1860	1.533	51.012	1.520	53.300	0.86%	-4.299
			1880	1.555	50.942	1.520	53.300	2.30%	-4.429
12/02/2019	1900 Body	23.2	1900	1.575	50.866	1.520	53.300	3.62%	-4.579
			1905	1.581	50.848	1.520	53.300	4.01%	-4.609
			1910	1.586	50.828	1.520	53.300	4.34%	-4.649
			1850	1.514	52.071	1.520	53.300	-0.39%	-2.319
			1860	1.525	52.038	1.520	53.300	0.33%	-2.379
40/05/0010	4000 5	00.0	1880	1.548	51.969	1.520	53.300	1.84%	-2.50%
12/05/2019	1900 Body	23.3	1900	1.571	51.896	1.520	53.300	3.36%	-2.63%
		1	1905	1.577	51.877	1.520	53.300	3.75%	-2.679
		1	1910	1.582	51.858	1.520	53.300	4.08%	-2.719
		i	1850	1.527	51.939	1.520	53.300	0.46%	-2.55%
			1860	1.538	51.903	1.520	53.300	1.18%	-2.629
			1880	1.560	51.836	1.520	53.300	2.63%	-2.75%
12/09/2019	1900 Body	23.3	1900	1.582	51.779	1.520	53.300	4.08%	-2.859
			1905	1.587	51.770	1.520	53.300	4.41%	-2.879
			1910	1.593	51.763	1.520	53.300	4.80%	-2.889
			1850	1.501	52,298	1,520	53.300	-1.25%	-1.889
			1860	1.512	52,269	1,520	53.300	-0.53%	-1.939
			1880	1.535	52.207	1.520	53.300	0.99%	-2.059
12/14/2019	1900 Body	24.5	1900	1.558	52.138	1.520	53.300	2.50%	-2.189
			1905	1.563	52.118	1.520	53.300	2.83%	-2.229
			1910	1.569	52.100	1.520	53.300	3.22%	-2.259
			1850	1.524	51.618	1.520	53.300	0.26%	-3.169
			1860	1.534	51.597	1.520	53.300	0.92%	-3.209
12/16/2019	1900 Body	23.2	1880	1.558	51.539	1.520	53.300	2.50%	-3.309
12/16/2019	1900 Body	23.2	1900	1.581	51.468	1.520	53.300	4.01%	-3.449
			1905	1.587	51.447	1.520	53.300	4.41%	-3.489
			1910	1.593	51.428	1.520	53.300	4.80%	-3.519
			2400	1.937	51.815	1.902	52.767	1.84%	-1.809
10/30/2019	2450 Body	22.5	2450	1.999	51.589	1.950	52.700	2.51%	-2.119
			2500	2.068	51.443	2.021	52.636	2.33%	-2.279
			2300	1.864	53.268	1.809	52.900	3.04%	0.70%
10/31/2019	2450 Body	22.9	2310	1.876	53.244	1.816	52.887	3.30%	0.68%
			2320	1.888	53.221	1.826	52.873	3.40%	0.66%
			2560	2.155	51.345	2.106	52.560	2.33%	-2.319
11/07/2019	2450 Body	23.7	2600	2.201	51.240	2.163	52.509	1.76%	-2.429
			2650	2.261	51.073	2.234	52.445	1.21%	-2.629
			2450	2.046	51.458	1.950	52.700	4.92%	-2.369
11/11/2019	2450 Body	23.2	2500	2.104	51.297	2.021	52.636	4.11%	-2.549
			2510	2.115	51.264	2.035	52.623	3.93%	-2.589
44/44/0040	2450 Body	20	2400	1.980	52.161	1.902	52.767	4.10%	-1.159
11/14/2019	2450 Body	23	2450	2.040	52.022	1.950	52.700	4.62%	-1.299
	-	-	2500	2.097	51.862		52.636	3.76% 4.62%	-1.479
		1	2450	2.040	52.155	1.950	52.700		-1.039
		1	2500 2510	2.097 2.110	52.001 51.970	2.021	52.636 52.623	3.76%	-1.219 -1.249
		1		2.110	51.970				
12/03/2019	2450 Body	23	2535 2550			2.071	52.592	3.28%	-1.329
12/03/2019	2450 Body	23		2.157	51.861 51.837		52.573	3.11%	-1.359
		1	2560	2.169		2.106	52.560 52.509	2.99%	-1.389 -1.519
		1	2600	2.218 2.278	51.718	2.163		2.54%	-1.519
		1	2650	2.278	51.562 51.478	2.234	52.445 52.407	1.97%	-1.689 -1.779
		1	2680 2300	2.317 1.798	51.478 51.601	1.809	52.407 52.900	1.76%	-1.779
		1	2300	1.798	51.601	1.809	52.900	-0.61%	-2.489
		1	2310	1.809	51.551	1.816	52.887	-0.39%	-2.489
12/06/2019	2450 Body	21.5	2400	1.820	51.551	1.826	52.873	-0.33%	-2.509
12/00/2018	2400 BUUY	21.0	2450	1.964	51.249	1.902	52.700	0.72%	-2.759
		1	2500	2.021	51.249	2.021	52.700	0.72%	-2.759
		1	2510	2.021	51.115	2.021	52.623	-0.10%	-2.897
		 	2510	1.859	51.088	1.809	52.623	-0.10% 2.76%	-1.159
	2450 Body	23.1	2310	1.859	52.265	1.816	52.887	3.03%	-1.189
12/09/2019		23.1	2320	1.883	52.235	1.826	52.887	3.03%	-1.189
12/09/2019	2430 Body		2560	2.173	52.235	2.106	52.873	3.12%	-0.359
12/09/2019	2430 Body				52.255		52.500	2.73%	
		22		2 222		2.163	UZ.0U9		-0.489
12/09/2019	2450 Body	23	2600	2.222		2 224	E2 445		0.00
		23	2600 2650	2.285	52.090	2.234	52.445	2.28%	
		23	2600 2650 2450	2.285 2.030	52.090 52.738	1.950	52.700	2.28% 4.10%	0.079
		23	2600 2650 2450 2500	2.285 2.030 2.089	52.090 52.738 52.606	1.950 2.021	52.700 52.636	2.28% 4.10% 3.36%	-0.069
		23	2600 2650 2450 2500 2510	2.285 2.030 2.089 2.100	52.090 52.738 52.606 52.577	1.950 2.021 2.035	52.700 52.636 52.623	2.28% 4.10% 3.36% 3.19%	-0.069 -0.099
12/12/2019	2450 Body		2600 2650 2450 2500 2510 2535	2.285 2.030 2.089 2.100 2.131	52.090 52.738 52.606 52.577 52.497	1.950 2.021 2.035 2.071	52.700 52.636 52.623 52.592	2.28% 4.10% 3.36% 3.19% 2.90%	0.07% -0.06% -0.09% -0.18%
		23	2600 2650 2450 2500 2510 2535 2550	2.285 2.030 2.089 2.100 2.131 2.151	52.090 52.738 52.606 52.577 52.497 52.457	1.950 2.021 2.035 2.071 2.092	52.700 52.636 52.623 52.592 52.573	2.28% 4.10% 3.36% 3.19% 2.90% 2.82%	0.07% -0.069 -0.099 -0.189 -0.229
12/12/2019	2450 Body		2600 2650 2450 2500 2510 2535 2550 2560	2.285 2.030 2.089 2.100 2.131 2.151 2.163	52.090 52.738 52.606 52.577 52.497 52.457 52.432	1.950 2.021 2.035 2.071 2.092 2.106	52.700 52.636 52.623 52.592 52.573 52.560	2.28% 4.10% 3.36% 3.19% 2.90% 2.82% 2.71%	0.07% -0.06% -0.09% -0.18% -0.22% -0.24%
12/12/2019	2450 Body		2600 2650 2450 2500 2510 2535 2550	2.285 2.030 2.089 2.100 2.131 2.151	52.090 52.738 52.606 52.577 52.497 52.457	1.950 2.021 2.035 2.071 2.092	52.700 52.636 52.623 52.592 52.573	2.28% 4.10% 3.36% 3.19% 2.90% 2.82%	-0.689 0.07% -0.069 -0.099 -0.189 -0.229 -0.249 -0.369 -0.579

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 400 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 199 of 298

Table 10-5
Measured Tissue Properties – Body Cont'd

	neasi	urea 11	ssue	FIOPE	ines.	<u>– Dou</u>	y Cor	ı u	
Calibrated for Tests	Tissue Type	Tissue Temp During Calibration	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	% dev
erformed on:	Туре	('C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε	4.0004	
			3500	3.458	50.084	3.314	51.321	4.35%	-2.419 -2.549
			3550	3.513	49.953 49.920	3.372	51.254	4.18%	-2.549 -2.589
			3560	3.522		3.384	51.240	4.08%	
12/02/2019	3500 Body	20.1	3600	3.562	49.850	3.431	51.186	3.82%	-2.619
			3650	3.623	49.809	3.489	51.118	3.84%	-2.569
			3690	3.668	49.709 49.678	3.536	51.063	3.73%	-2.65
			3700 3600	3.677 3.462	49.678	3.548 3.431	51.050 51.186	3.64% 0.90%	-2.69 -3.66
			3650		49.311	3.489		0.90%	-3.67
12/18/2019	3500 Body	21.1	3690	3.515 3.557	49.244	3.489	51.118	0.75%	-3.68
			3700	3.566		3.536	51.063		-3.69
			5180	5.418	49.166 47.636		51.050 49.041	0.51% 2.69%	-3.69
						5.276			
			5190 5200	5.428 5.439	47.618 47.593	5.288 5.299	49.028 49.014	2.65%	-2.88 -2.90
			5210	5.459	47.593	5.299	49.014	2.65%	-2.90
			5210	5.464	47.556	5.323	48.987	2.65%	-2.92
					47.522				-2.94
			5240 5250	5.492 5.505	47.502	5.346 5.358	48.960 48.947	2.73%	-2.94
			5260	5.520	47.302	5.369	48.933	2.81%	-2.93
			5270	5.533	47.467	5.381	48.919	2.82%	-2.97
			5280	5.551	47.467	5.393	48.906		
			5280	5.564	47.449	5.404	48.892	2.93%	-2.98 -2.97
			5300	5.574	47.438	5.404		2.90%	-2.98
					47.424		48.879		
		l	5310 5320	5.585 5.596	47.405 47.384	5.428 5.439	48.865 48.851	2.89%	-2.99 -3.00
		l	5320 5500	5.596 5.837	47.384 47.097	5.439 5.650	48.851 48.607	2.89%	
		l							-3.11
		l	5510	5.850	47.086	5.661	48.594	3.34%	-3.10
		l	5520	5.862	47.074	5.673	48.580	3.33%	-3.10
		l	5530	5.874	47.060	5.685	48.566	3.32%	-3.10
			5540 5550	5.887 5.896	47.041 47.017	5.696 5.708	48.553 48.539	3.35%	-3.11 -3.14
12/09/2019	5200-	21.8	5560	5.896	46.984	5.708	48.539	3.29%	-3.18
	5800 Body		5580	5.943	46.944	5.743	48.499	3.48%	-3.10
			5600	5.981	46.917	5.766	48.471	3.73%	-3.21
			5610	5.996	46.899	5.778	48.458	3.77%	-3.22
			5620	6.009	46.888	5.790	48.444	3.78%	-3.21
			5640	6.034	46.877	5.813	48.417	3.80%	-3.18
			5660	6.052	46.839 46.807	5.837	48.390 48.376	3.68%	-3.21
			5670 5680	6.064	46.807	5.848 5.860	48.363	3.75%	-3.24
			5690	6.097	46.771	5.872	48.349	3.83%	-3.29
			5700	6.113	46.710	5.883	48.336	3.91%	-3.36
			5710	6.130	46.708	5.895	48.322	3.99%	-3.34
			5720	6.148	46.714	5.907	48.309	4.08%	-3.30
			5745	6.184	46.704	5.936	48.275	4.18%	-3.25
			5750	6.190	46.693	5.942	48.268	4.17%	-3.26
			5755 5765	6.194	46.683	5.947	48.261	4.15% 4.11%	-3.27
			5775	6.204 6.215	46.669 46.642	5.959 5.971	48.248 48.234	4.11%	-3.27
			5785	6.229	46.617	5.982	48.220	4.13%	-3.32
			5795	6.245	46.597	5.994	48.207	4.19%	-3.34
			5800	6.252	46.585	6.000	48.200	4.20%	-3.35
			5805	6.259	46.574	6.006	48.193	4.21%	-3.36
			5825	6.295	46.540	6.029	48.166	4.41%	-3.38
			5180	5.422 5.431	47.168	5.276	49.041	2.77%	-3.82
			5190 5200	5.431	47.159 47.149	5.288 5.299	49.028 49.014	2.70%	-3.81 -3.81
			5210	5.460	47.128	5.311	49.001	2.81%	-3.82
			5220	5.473	47.099	5.323	48.987	2.82%	-3.85
			5240	5.502	47.067	5.346	48.960	2.92%	-3.87
		l	5250	5.515	47.044	5.358	48.947	2.93%	-3.89
		l	5260	5.527	47.025	5.369	48.933	2.94%	-3.90
		1	5270	5.540	47.001	5.381	48.919	2.95%	-3.92
		l	5280 5290	5.556 5.572	46.988 46.978	5.393 5.404	48.906 48.892	3.02%	-3.92 -3.91
		l	5300	5.585	46.962	5.404	48.892	3.11%	-3.91
		l	5310	5.597	46.947	5.428	48.865	3.11%	-3.93
		l	5320	5.605	46.916	5.439	48.851	3.05%	-3.96
		1	5500	5.846	46.600	5.650	48.607	3.47%	-4.13
		l	5510	5.864	46.593	5.661	48.594	3.59%	-4.12
		l	5520 5530	5.876 5.888	46.577 46.566	5.673 5.685	48.580 48.566	3.58%	-4.12 -4.12
		l	5540	5.898	46.545	5.696	48.553	3.55%	-4.12 -4.14
		l	5550	5.908	46.530	5.708	48.539	3.50%	-4.14
	5200-	l	5560	5.920	46.515	5.720	48.526	3.50%	-4.14
12/16/2019	5200- 5800 Body	22	5580	5.948	46.481	5.743	48.499	3.57%	-4.16
	5009	l	5600	5.980	46.434	5.766	48.471	3.71%	-4.20
		l	5610	5.995	46.418 46.413	5.778 5.790	48.458	3.76%	-4.21
		l	5620 5640	6.011 6.041	46.413 46.397	5.790	48.444 48.417	3.82%	-4.19 -4.17
		l	5660	6.066	46.350	5.837	48.390	3.92%	-4.22
		l	5670	6.080	46.322	5.848	48.376	3.97%	-4.25
		l	5680	6.092	46.303	5.860	48.363	3.96%	-4.26
		l	5690	6.103	46.282	5.872	48.349	3.93%	-4.28
		1	5700	6.118	46.261	5.883	48.336	3.99%	-4.29
		l	5710	6.131	46.247 46.232	5.895	48.322	4.00%	-4.29
		l	5720 5745	6.146 6.183	46.232 46.216	5.907 5.936	48.309 48.275	4.05% 4.16%	-4.30 -4.27
		l	5750	6.190	46.203	5.942	48.268	4.17%	-4.28
		l	5755	6.197	46.190	5.947	48.261	4.20%	-4.29
		l	5765	6.207	46.170	5.959	48.248	4.16%	-4.31
		l	5775	6.222	46.154	5.971	48.234	4.20%	-4.31
		1	5785	6.236	46.139	5.982	48.220	4.25%	-4.32
		1	5795	6.251	46.116	5.994	48.207	4.29%	-4.34 -4.35
		i	5800	6.259	46.103	6.000	48.200	4.32%	-4.35
			EDUE	6 000	46 007	6 000	49 402	4 220/	120
			5805 5825	6.266 6.295	46.097 46.069	6.006 6.029	48.193 48.166	4.33% 4.41%	-4.35 -4.35

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 200 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 10-6 System Verification Results – 1g

						ystem Ve RGET & N						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR ₁₉ (W/kg)	Deviation _{1g} (%)
Р	750	HEAD	10/28/2019	23.4	22.3	0.200	1054	7551	1.690	8.290	8.450	1.93%
Р	750	HEAD	11/07/2019	24.5	20.4	0.200	1054	7551	1.630	8.290	8.150	-1.69%
Р	835	HEAD	10/23/2019	21.5	20.1	0.200	4d047	7551	1.890	9.420	9.450	0.32%
Р	835	HEAD	10/31/2019	21.3	20.9	0.200	4d047	7551	2.000	9.420	10.000	6.16%
Р	835	HEAD	11/11/2019	20.5	20.5	0.200	4d047	7551	1.960	9.420	9.800	4.03%
Е	835	HEAD	11/14/2019	22.1	21.3	0.200	4d132	7417	1.880	9.590	9.400	-1.98%
G	1750	HEAD	10/28/2019	21.9	21.0	0.100	1150	7409	3.680	36.500	36.800	0.82%
Р	1750	HEAD	11/13/2019	22.0	20.6	0.100	1150	7551	3.650	36.500	36.500	0.00%
Р	1750	HEAD	11/25/2019	22.2	21.3	0.100	1150	7551	3.680	36.500	36.800	0.82%
D	1900	HEAD	10/28/2019	21.7	21.3	0.100	5d080	3914	4.220	39.800	42.200	6.03%
D	1900	HEAD	10/30/2019	21.6	21.4	0.100	5d149	3914	4.220	39.300	42.200	7.38%
Р	1900	HEAD	11/13/2019	22.0	20.6	0.100	5d148	7551	4.170	39.100	41.700	6.65%
Р	1900	HEAD	11/25/2019	22.2	21.3	0.100	5d080	7551	4.060	39.800	40.600	2.01%
Е	2300	HEAD	10/29/2019	23.8	21.5	0.100	1064	7417	5.110	47.600	51.100	7.35%
Е	2450	HEAD	11/04/2019	22.3	20.7	0.100	797	7417	5.120	52.700	51.200	-2.85%
Е	2450	HEAD	11/11/2019	21.3	19.2	0.100	981	7417	5.290	52.300	52.900	1.15%
Е	2450	HEAD	12/09/2019	20.8	19.8	0.100	981	7417	5.400	52.300	54.000	3.25%
Е	2600	HEAD	11/08/2019	22.3	21.5	0.100	1004	7417	5.920	55.900	59.200	5.90%
Е	2600	HEAD	12/16/2019	20.1	19.2	0.100	1064	7417	6.010	58.100	60.100	3.44%
Н	3500	HEAD	12/16/2019	20.4	20.3	0.100	1059	3589	6.910	64.600	69.100	6.97%
Н	3700	HEAD	12/16/2019	20.4	20.3	0.100	1018	3589	7.010	65.800	70.100	6.53%
Н	5250	HEAD	11/10/2019	21.0	20.1	0.050	1237	7406	3.860	81.300	77.200	-5.04%
Н	5600	HEAD	11/10/2019	21.0	20.1	0.050	1237	7406	4.020	85.700	80.400	-6.18%
Н	5750	HEAD	11/10/2019	21.0	20.1	0.050	1237	7406	3.830	80.600	76.600	-4.96%

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 204 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 201 of 298

Table 10-7 System Verification Results - 1g Cont'd

	-			Juli		ystem Ve			ig Cont	<u>u</u>		
					TAF	RGET & N	MEASURI	ED				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR ₁₉ (W/kg)	Deviation _{1g} (%)
L	750	BODY	10/28/2019	21.3	21.3	0.200	1003	7410	1.730	8.580	8.650	0.82%
L	750	BODY	10/29/2019	23.0	21.1	0.200	1161	7410	1.760	8.430	8.800	4.39%
L	750	BODY	11/06/2019	22.2	23.5	0.200	1161	7410	1.770	8.430	8.850	4.98%
I	835	BODY	11/04/2019	23.1	19.9	0.200	4d132	7357	2.020	9.670	10.100	4.45%
I	835	BODY	11/06/2019	23.7	20.1	0.200	4d133	7357	2.080	9.750	10.400	6.67%
I	835	BODY	11/13/2019	22.0	20.3	0.200	4d132	7357	1.950	9.670	9.750	0.83%
I	835	BODY	11/18/2019	20.6	20.0	0.200	4d133	7357	2.060	9.750	10.300	5.64%
J	1750	BODY	10/28/2019	19.5	19.1	0.100	1148	7488	3.940	37.700	39.400	4.51%
G	1750	BODY	11/11/2019	21.8	21.0	0.100	1148	7409	3.790	37.700	37.900	0.53%
I	1750	BODY	11/25/2019	20.6	20.3	0.100	1148	7357	4.050	37.700	40.500	7.43%
I	1750	BODY	12/03/2019	21.2	20.2	0.100	1148	7357	4.030	37.700	40.300	6.90%
I	1750	BODY	12/16/2019	20.6	20.3	0.100	1148	7357	3.960	37.700	39.600	5.04%
Н	1900	BODY	10/30/2019	21.5	22.4	0.100	5d080	7406	4.210	39.200	42.100	7.40%
J	1900	BODY	11/11/2019	21.5	22.3	0.100	5d080	7488	4.150	39.200	41.500	5.87%
J	1900	BODY	11/26/2019	20.9	22.8	0.100	5d148	7488	4.000	39.100	40.000	2.30%
J	1900	BODY	12/02/2019	20.7	21.7	0.100	5d149	7488	4.150	39.400	41.500	5.33%
J	1900	BODY	12/09/2019	20.2	22.0	0.100	5d149	7488	4.190	39.400	41.900	6.35%
J	1900	BODY	12/16/2019	21.7	23.1	0.100	5d149	7488	4.250	39.400	42.500	7.87%
K	2300	BODY	10/31/2019	22.7	22.5	0.100	1064	7547	4.890	46.500	48.900	5.16%
K	2300	BODY	12/09/2019	23.5	22.0	0.100	1073	7547	5.040	47.700	50.400	5.66%
L	2450	BODY	10/30/2019	22.6	22.0	0.100	981	7410	5.320	50.900	53.200	4.52%
K	2450	BODY	11/11/2019	22.9	22.3	0.100	797	7547	5.120	51.100	51.200	0.20%
K	2450	BODY	11/14/2019	22.3	22.0	0.100	797	7547	5.160	51.100	51.600	0.98%
K	2450	BODY	12/03/2019	23.5	22.4	0.100	797	7547	5.040	51.100	50.400	-1.37%
K	2450	BODY	12/16/2019	22.9	22.2	0.100	797	7547	5.040	51.100	50.400	-1.37%
K	2600	BODY	11/07/2019	22.9	21.9	0.100	1004	7547	5.340	54.800	53.400	-2.55%
K	2600	BODY	12/03/2019	23.5	22.4	0.100	1004	7547	5.340	54.800	53.400	-2.55%
K	2600	BODY	12/12/2019	23.5	22.4	0.100	1004	7547	5.470	54.800	54.700	-0.18%
K	2600	BODY	12/16/2019	22.9	22.2	0.100	1004	7547	5.210	54.800	52.100	-4.93%
D	3500	BODY	12/02/2019	21.3	20.1	0.100	1059	3914	6.480	65.100	64.800	-0.46%
D	3700	BODY	12/02/2019	21.3	20.1	0.100	1018	3914	6.630	64.300	66.300	3.11%
D	3700	BODY	12/18/2019	22.1	21.1	0.100	1018	3914	6.440	64.300	64.400	0.16%
G	5250	BODY	12/09/2019	22.6	21.8	0.050	1191	7409	3.780	77.000	75.600	-1.82%
G	5600	BODY	12/09/2019	22.6	21.8	0.050	1191	7409	4.030	78.600	80.600	2.54%
G	5750	BODY	12/09/2019	22.6	21.8	0.050	1191	7409	3.860	76.900	77.200	0.39%

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Down 202 of 208
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 202 of 298

Table 10-8 System Verification Results - 10a

				<u> </u>	/stem v	erinca	tion R	esuits	5 – 10g			
						•	Verificat					
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN		Measured SAR _{10g} (W/kg)	1 W Target SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g}
I	1750	BODY	11/28/2019	20.4	19.8	0.100	1008	7357	2.080	19.900	20.800	4.52%
I	1750	BODY	12/01/2019	21.6	20.3	0.100	1148	7357	2.000	19.800	20.000	1.01%
1	1750	BODY	12/16/2019	20.6	20.3	0.100	1148	7357	2.070	19.800	20.700	4.55%
J	1900	BODY	11/26/2019	20.9	22.8	0.100	5d148	7488	2.040	20.500	20.400	-0.49%
J	1900	BODY	12/02/2019	20.7	21.7	0.100	5d149	7488	2.090	20.700	20.900	0.97%
J	1900	BODY	12/05/2019	22.7	23.0	0.100	5d149	7488	2.170	20.700	21.700	4.83%
J	1900	BODY	12/14/2019	22.5	24.5	0.100	5d149	7488	2.040	20.700	20.400	-1.45%
J	1900	BODY	12/16/2019	21.7	23.1	0.100	5d149	7488	2.180	20.700	21.800	5.31%
K	2300	BODY	12/06/2019	23.9	22.2	0.100	1073	7547	2.330	23.200	23.300	0.43%
К	2450	BODY	12/06/2019	23.9	22.2	0.100	797	7547	2.240	24.200	22.400	-7.44%
K	2450	BODY	12/16/2019	22.9	22.2	0.100	797	7547	2.310	24.200	23.100	-4.55%
K	2600	BODY	12/16/2019	22.9	22.2	0.100	1004	7547	2.300	24.700	23.000	-6.88%
G	5250	BODY	12/16/2019	22.6	22.0	0.050	1191	7409	1.060	21.400	21.200	-0.93%
G	5600	BODY	12/16/2019	22.6	22.0	0.050	1191	7409	1.120	21.900	22.400	2.28%
G	5750	BODY	12/16/2019	22.6	22.0	0.050	1191	7409	1.070	21.300	21.400	0.47%

Figure 10-1 System Verification Setup Diagram

Figure 10-2 **System Verification Setup Photo**

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 202 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 203 of 298

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 CDMA BC10 (§90S) Head SAR

							IREMEN									
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Ant State	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position		Number	Cycle	(W/kg)	Factor	(W/kg)		
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.8	24.67	0.06	Right	Cheek	1	1078M	1:1	0.201	1.297	0.261		
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.8	24.67	0.06	Right	Tilt	1	1078M	1:1	0.107	1.297	0.139		
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.8	24.67	-0.02	Left	Cheek	1	1078M	1:1	0.202	1.297	0.262		
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.8	24.67	0.11	Left	Tilt	1	1078M	1:1	0.143	1.297	0.185		
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.8	24.63	-0.07	Right	Cheek	1	1078M	1:1	0.197	1.309	0.258		
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.8	24.63	-0.02	Right	Tilt	1	1078M	1:1	0.107	1.309	0.140		
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.8	24.63	-0.09	Left	Cheek	1	1078M	1:1	0.203	1.309	0.266	A1	
820.10	564	CDMA BC10 (§90S)	-0.13	Left	Tilt	1	1078M	1:1	0.125	1.309	0.164					
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head									
	Spatial Peak										1.6 W/kg					
	Uncontrolled Exposure/General Population									а	veraged o	ver 1 gram				

Table 11-2 CDMA BC0 (§22H) Head SAR

						MEASU	JREMEN	T RESUL	_TS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Ant State	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position		Number	Cycle	(W/kg)	Factor	(W/kg)	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.8	25.36	0.02	Right	Cheek	1	1078M	1:1	0.267	1.107	0.296	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.8	25.36	0.16	Right	Tilt	1	0.133	1.107	0.147			
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.8	25.36	0.05	Left	Left Cheek 1 1078M 1:1 0.210 1.107						0.232	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.8	25.36	0.16	Left	Tilt	1	1078M	1:1	0.147	1.107	0.163	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.8	25.28	0.02	Right	Cheek	1	1078M	1:1	0.272	1.127	0.307	A2
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.8	25.28	-0.08	Right	Tilt	1	1078M	1:1	0.130	1.127	0.147	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.8	25.28	-0.10	Left	Cheek	1	1078M	1:1	0.191	1.127	0.215	
836.52	CDMA BCO							Tilt	1	1078M	1:1	0.116	1.127	0.131	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak										1.6 W/kg				
		Uncontrolled	Exposure/G					a	veraged o	ver 1 gram					

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 204 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 204 of 298

Table 11-3

	GSM 850 Head SAR														
	MEASUREMENT RESULTS														
FREQUI	ENCY	Mode	Mode Service Maximum Allowed Power [dBm] Conducted Power [dBm] Drift [dB] Side	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #				
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)		
836.60	190	GSM 850	GSM	33.7	32.85	0.05	Right	Cheek	1078M	1:8.3	0.178	1.216	0.216	А3	
836.60	190	GSM 850	GSM	33.7	32.85	-0.05	Right	Tilt	1078M	1:8.3	0.088	1.216	0.107		
836.60	190	GSM 850	GSM	33.7	32.85	0.14	Left	Cheek	1078M	1:8.3	0.135	1.216	0.164		
836.60	190	GSM 850	GSM	33.7	32.85	0.07	Left	Tilt	1078M	1:8.3	0.086	1.216	0.105		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak						1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population									averag	ed over 1 gra	am			

Table 11-4 UMTS 850 Head SAR

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Ant State	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.		5511.55	Power [dBm]	Power [dBm]	Drift [dB]	0.40	Position	run Giato	Number	Cycle	(W/kg)	Factor	(W/kg)	. 101 "
836.60	4183	UMTS 850	RMC	25.5	24.74	-0.02	Right	Cheek	52	1078M	1:1	0.242	1.191	0.288	A4
836.60	4183	UMTS 850	RMC	25.5	24.74	0.12	Right Tilt 52 1078M 1:1 0.131 1.191 0.156								
836.60	4183	UMTS 850	RMC	25.5	24.74	0.09	Left	Cheek	52	1078M	1:1	0.220	1.191	0.262	
836.60	4183	UMTS 850	RMC	25.5	24.74	0.05	Left	Tilt	52	1078M	1:1	0.139	1.191	0.166	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak						1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population									a	veraged o	ver 1 gram			

Table 11-5 UMTS 1750 Head SAR

	MEASUREMENT RESULTS														
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test Position	Ant State	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position		Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	0.16	Right	Cheek	53	1078M	1:1	0.147	1.019	0.150	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	0.01	Right Tilt 53 1078M 1:1 0.093 1.019 0.095						0.095		
1732.40	1412	UMTS 1750	RMC	24.5	24.42	-0.19	Left	Cheek	53	1078M	1:1	0.206	1.019	0.210	A5
1732.40	1412	UMTS 1750	RMC	24.5	24.42	0.17	Left Tilt 53 1078M 1:1 0.038 1.019						0.039		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak Uncontrolled Exposure/General Population						1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 205 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 205 of 298

Table 11-6 PCS CDMA Head SAR

	FCS CDIMA Redu SAR														
						MEASU	JREMEN	T RESUL	_TS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Ant State	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position		Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	600	PCS CDMA	RC3 / SO55	24.5	23.62	0.04	Right	Cheek	55	1075M	1:1	0.124	1.225	0.152	
1880.00	600	PCS CDMA	RC3 / SO55	24.5	23.62	0.13	Right	Tilt	55	1.225	0.114				
1880.00	600	PCS CDMA	RC3 / SO55	24.5	23.62	0.18	Left	Cheek	55	1075M	1:1	0.208	1.225	0.255	
1880.00	600	PCS CDMA	RC3 / SO55	24.5	23.62	0.19	Left	Tilt	55	1075M	1:1	0.052	1.225	0.064	
1880.00	600	PCS CDMA	EVDO Rev. A	24.5	23.60	0.17	Right	Cheek	55	1075M	1:1	0.125	1.230	0.154	
1880.00	600	PCS CDMA	EVDO Rev. A	24.5	23.60	0.01	Right	Tilt	55	1075M	1:1	0.097	1.230	0.119	
1880.00	600	PCS CDMA	EVDO Rev. A	24.5	23.60	0.09	Left	Cheek	55	1075M	1:1	0.225	1.230	0.277	A6
1880.00	00.00 600 PCS CDMA EVDO Rev. A 24.5 23.60 (Tilt	55	1075M	1:1	0.077	1.230	0.095	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram								

Table 11-7 GSM 1900 Head SAR

	MEASUREMENT RESULTS													
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1850.20	512	GSM 1900	GSM	30.7	29.45	-0.19	Right	Cheek	1075M	1:8.3	0.033	1.334	0.044	
1850.20	512	GSM 1900	GSM	30.7	29.45	0.19	Right	Tilt	1075M	1:8.3	0.036	1.334	0.048	
1850.20	512	GSM 1900	GSM	30.7	29.45	0.14	Left	Cheek	1075M	1:8.3	0.068	1.334	0.091	A7
1850.20	512	GSM 1900	GSM	30.7	29.45	0.20	Left	Tilt	1075M	1:8.3	0.015	1.334	0.020	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram							

Table 11-8 UMTS 1900 Head SAR

	OWITS 1900 Head SAK														
	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Ant State	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.	Wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Ant State	Number	Cycle	(W/kg)	Factor	(W/kg)	F10t#
1880.00	9400	UMTS 1900	RMC	24.5	23.38	0.12	2 Right Cheek 55 1078M 1:1 0.130 1.294 0.16							0.168	
1880.00	9400	UMTS 1900	RMC	24.5	23.38	0.13	Right Tilt 55 1078M 1:1 0.125 1.294 0.162							0.162	
1880.00	9400	UMTS 1900	RMC	24.5	23.38	0.09	Left	Cheek	55	1078M	1:1	0.224	1.294	0.290	A8
1880.00	30.00 9400 UMTS 1900 RMC 24.5 23.38 0.14 Left Tilt 55 1078M 1:1 0.053 1.294 0.069														
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak						1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population						averaged over 1 gram								

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 206 of 298

Table 11-9 LTE Band 71 Head SAR

									Dana			<u> </u>								
								M	EASURE	MENT	RESULT	s								
FF	REQUENCY	,	Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	0.07	0	Right	Cheek	QPSK	1	0	0449M	1:1	0.104	1.435	0.149	
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	0.04	1	Right	Cheek	QPSK	50	0	0449M	1:1	0.095	1.432	0.136	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	0.04	0	Right	Tilt	QPSK	1	0	0449M	1:1	0.051	1.435	0.073	
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	0.13	1	Right	Tilt	QPSK	50	0	0449M	1:1	0.043	1.432	0.062	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	-0.08	0	Left	Cheek	QPSK	1	0	0449M	1:1	0.120	1.435	0.172	A9
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	0.02	1	Left	Cheek	QPSK	50	0	0449M	1:1	0.105	1.432	0.150	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	0.08	0	Left	Tilt	QPSK	1	0	0449M	1:1	0.056	1.435	0.080	
680.50	133297	Mid	LTE Band 71	20	14	24.8	1	Left	Tilt	QPSK	50	0	0449M	1:1	0.048	1.432	0.069			
				Spati	ial Peak	FETY LIMIT							Head .6 W/kg (r eraged over	nW/g)						

Table 11-10 LTE Band 12 Head SAR

												O,								
								М	EASURE	EMENT	RESULT	rs								
FR	EQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	n.		[MHz]		Power [dBm]	Power [dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	0.20	0	Right	Cheek	QPSK	1	49	0449M	1:1	0.153	1.503	0.230	
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	0.06	1	Right	Cheek	QPSK	25	12	0449M	1:1	0.114	1.479	0.169	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	0.15	0	Right	Tilt	QPSK	1	49	0449M	1:1	0.088	1.503	0.132	
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	0.10	1	Right	Tilt	QPSK	25	12	0449M	1:1	0.063	1.479	0.093	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.04	0	Left	Cheek	QPSK	1	49	0449M	1:1	0.156	1.503	0.234	A10
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	0.05	1	Left	Cheek	QPSK	25	12	0449M	1:1	0.121	1.479	0.179	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.05	0	Left	Tilt	QPSK	1	49	0449M	1:1	0.102	1.503	0.153	
707.50	23095	23095 Mid LTE Band 12 10 52 24.8 23.10 0.11									Tilt	QPSK	25	12	0449M	1:1	0.083	1.479	0.123	
				•	al Peak	ETY LIMIT							Head .6 W/kg (r eraged over	nW/g)						

Table 11-11 LTE Band 13 Head SAR

												0,								
								М	EASURE	MENT	RESULT	гѕ								
FR	EQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	n.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	58	25.8	24.08	0.07	0	Right	Cheek	QPSK	1	0	0449M	1:1	0.203	1.486	0.302	A11
782.00	23230	Mid	LTE Band 13	10	58	24.8	23.04	0.05	1	Right	Cheek	QPSK	25	0	0449M	1:1	0.162	1.500	0.243	
782.00	23230	Mid	LTE Band 13	10	58	25.8	24.08	0.04	0	Right	Tilt	QPSK	1	0	0449M	1:1	0.081	1.486	0.120	
782.00													1:1	0.063	1.500	0.095				
782.00	23230	Mid	LTE Band 13	10	58	25.8	24.08	-0.02	0	Left	Cheek	QPSK	1	0	0449M	1:1	0.154	1.486	0.229	
782.00	23230	Mid	LTE Band 13	10	58	24.8	23.04	0.06	1	Left	Cheek	QPSK	25	0	0449M	1:1	0.126	1.500	0.189	
782.00	23230	Mid	LTE Band 13	10	58	25.8	24.08	0.14	0	Left	Tilt	QPSK	1	0	0449M	1:1	0.079	1.486	0.117	
782.00	23230	Mid	LTE Band 13	10	58	24.8	1	Left	Tilt	QPSK	25	0	0449M	1:1	0.069	1.500	0.104			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population														Head .6 W/kg (neraged over	nW/g)				

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 207 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 207 of 298

Table 11-12 LTE Band 14 Head SAR

								М	EASURE	MENT	RESULT	rs								
FR	EQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Cł	١.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
793.00	23330	Mid	LTE Band 14	10	1	25.8	24.06	0.00	0	Right	Cheek	QPSK	1	0	0449M	1:1	0.206	1.493	0.308	A12
793.00	23330	Mid	LTE Band 14	10	1	24.8	22.99	0.03	1	Right	Cheek	QPSK	25	0	0449M	1:1	0.157	1.517	0.238	
793.00	23330	Mid	LTE Band 14	10	1	25.8	24.06	0.02	0	Right	Tilt	QPSK	1	0	0449M	1:1	0.100	1.493	0.149	
793.00	23330	Mid	LTE Band 14	10	1	24.8	22.99	0.07	1	Right	Tilt	QPSK	25	0	0449M	1:1	0.078	1.517	0.118	
793.00	23330	Mid	LTE Band 14	10	1	25.8	24.06	-0.02	0	Left	Cheek	QPSK	1	0	0449M	1:1	0.142	1.493	0.212	
793.00	23330	Mid	LTE Band 14	10	1	24.8	22.99	0.08	1	Left	Cheek	QPSK	25	0	0449M	1:1	0.114	1.517	0.173	
793.00	23330	Mid	LTE Band 14	10	1	25.8	24.06	-0.04	0	Left	Tilt	QPSK	1	0	0449M	1:1	0.082	1.493	0.122	
793.00	23330	Mid	LTE Band 14	10	1	24.8	22.99	-0.17	1	Left	Tilt	QPSK	25	0	0449M	1:1	0.062	1.517	0.094	
				•	al Peak	ETY LIMIT							Head .6 W/kg (neraged over	nW/g)						

Table 11-13 LTF Band 26 (Cell) Head SAR

								. Dai	iu zu	, (06	11/ 110	zau s	AI.							
								М	EASURE	MENT	RESULT	rs								
FR	EQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	25.8	24.34	-0.02	0	Right	Cheek	QPSK	1	0	0449M	1:1	0.175	1.400	0.245	A13
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	24.8	23.34	0.01	1	Right	Cheek	QPSK	36	18	0449M	1:1	0.156	1.400	0.218	
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	25.8	24.34	0.07	0	Right	Tilt	QPSK	1	0	0449M	1:1	0.089	1.400	0.125	
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	24.8	23.34	0.05	1	Right	Tilt	QPSK	36	18	0449M	1:1	0.077	1.400	0.108	
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	25.8	24.34	-0.18	0	Left	Cheek	QPSK	1	0	0449M	1:1	0.160	1.400	0.224	
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	24.8	23.34	0.05	1	Left	Cheek	QPSK	36	18	0449M	1:1	0.129	1.400	0.181	
831.50	26865	Mid	LTE Band 26 (Cell)	15	1	25.8	24.34	0.06	0	Left	Tilt	QPSK	1	0	0449M	1:1	0.096	1.400	0.134	
831.50	26865	Mid	LTE Band 26 (Cell)	1	Left	Tilt	QPSK	36	18	0449M	1:1	0.077	1.400	0.108						
			ANSI / IE	EE C95.1	1992 - SAF							Head								
									1	.6 W/kg (r	nW/g)									
			Uncontrol	led Exposu	re/Genera	l Population								ave	eraged over	r 1 gram				

Table 11-14 LTE Band 5 (Cell) Head SAR

									iiu 5		-,											
									MEASURE	MENT I	RESULT	S										
1 CC Uplink 2 CC Uplink	Component Carrier	FR	EQUENCY	r	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
	Carrier	MHz	С	h.		[MHZ]		Power [dBm]	Power (abm)	Drift (db)			Position				Number	Cycle	(W/kg)	ractor	(W/kg)	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	25.8	24.12	-0.01	0	Right	Cheek	QPSK	1	0	1010M	1:1	0.173	1.472	0.255	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	24.8	23.12	-0.04	1	Right	Cheek	QPSK	25	0	1010M	1:1	0.123	1.472	0.181	
	PCC	836.50	20525	Mid	LTE Band 5 (Cell)	10				0	Right			1	0							
2 CC Uplink	SCC 829.30 20453 Mid LTE Band 5 (Cell) 5 52 25.8 24.33												Cheek	QPSK	1	24	1010M	1:1	0.185	1.403	0.260	A14
1 CC Uplink						10	52	25.8	24.12	-0.02	0	Right	Tilt	QPSK	1	0	1010M	1:1	0.111	1.472	0.163	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	24.8	23.12	0.13	1	Right	Tilt	QPSK	25	0	1010M	1:1	0.084	1.472	0.124	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	25.8	24.12	-0.01	0	Left	Cheek	QPSK	1	0	1010M	1:1	0.161	1.472	0.237	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	24.8	23.12	0.00	1	Left	Cheek	QPSK	25	0	1010M	1:1	0.136	1.472	0.200	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	25.8	24.12	-0.04	0	Left	Tilt	QPSK	1	0	1010M	1:1	0.105	1.472	0.155	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	24.8	23.12	0.04	1	Left	Tilt	QPSK	25	0	1010M	1:1	0.088	1.472	0.130	
·			AN	SI / IEE	E C95.1 1992 - S/	AFETY LIM	т										Head		•		•	
	Spatial Peak Uncontrolled Exposure/General Population																.6 W/kg (r eraged over					

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 208 of 298

Table 11-15 LTE Band 66 (AWS) Head SAR

							LIL	- Daii	u oo i		<u>၂၂၂</u>	icac	יטר	11.								
									MEASURE	MENT I	RESULT	S										
1 CC Uplink 2 CC Uplink	Component	FR	EQUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
	Carner	MHz	С	h.		[MHZ]		Power [dBm]	Power [dBm]	Drift (dB)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	-0.13	0	Right	Cheek	QPSK	1	0	1010M	1:1	0.091	1.202	0.109	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	0.10	1	Right	Cheek	QPSK	50	25	1010M	1:1	0.075	1.183	0.089	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	0.12	0	Right	Tilt	QPSK	1	0	1010M	1:1	0.050	1.202	0.060	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	0.17	1	Right	Tilt	QPSK	50	25	1010M	1:1	0.043	1.183	0.051	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	0.14	0	Left	Cheek	QPSK	1	0	1010M	1:1	0.178	1.202	0.214	
1 CC Uplink	N/A	1775.00	132622	High	LTE Band 66 (AWS)	10	26	24.5	23.21	0.12	0	Left	Cheek	QPSK	1	0	1010M	1:1	0.155	1.346	0.209	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	0.08	1	Left	Cheek	QPSK	50	25	1010M	1:1	0.144	1.183	0.170	
CA 66C 2 CC Uplink	PCC	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	24.10	0.08	0	Left	Cheek	QPSK	1	0	1010M	1:1	0.198	1.096	0.217	A15
CA_66C 2 CC Oplink	SCC	1750.20	132374	High	LTE Band 66 (AWS)	20	20	24.5	24.10	0.08	0	Lert	Cheek	UPSK	1	99	1010M	1:1	0.198	1.096	0.217	A15
CA 66B 2 CC Uplink	PCC	1775.00	132622	High	LTE Band 66 (AWS)	10	26	24.5	23.60	0.00	0	1 - 6	Cheek	QPSK	1	0	1010M		0.177	1.230	0.218	
CA_66B 2 CC Uplink	SCC	1765.10	132523	High	LTE Band 66 (AWS)	10	26	24.5	23.60	0.00	0	Left	Cheek	UPSK	1	49	1010M	1:1	0.177	1.230	0.218	
1 CC Uplink	LTE Bond SC										0	Left	Tilt	QPSK	1	0	1010M	1:1	0.036	1.202	0.043	
1 CC Uplink	nk NA 1770.00 132572 High LTE Band 66 (AWS) 20 26 23.5 22.77 -0.13										1	Left	Tilt	QPSK	50	25	1010M	1:1	0.027	1.183	0.032	
·	ANSI / IEEE C95.1 1992 - SAFETY LIMIT																Head					
	Spatial Peak Uncontrolled Exposure/General Population															.6 W/kg (n	-				Į.	
			Unco	ntrolled	Exposure/Gene	rai Populat	ion									ave	raged over	1 gram				

Table 11-16 LTE Band 25 (PCS) Head SAR

									4114	(.		Ticau	O/ 1.1 1							
									MEAS	UREME	NT RES	ULTS								
FR	EQUENC	Y	Mode	Bandwidth	Ant State	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	c	h.		[MHz]		Power [dBm]	Power (abm)	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	24.0	23.27	0.14	0	Right	Cheek	QPSK	1	99	1077M	1:1	0.125	1.183	0.148	
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	23.0	22.40	0.06	1	Right	Cheek	QPSK	50	25	1077M	1:1	0.108	1.148	0.124	
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	24.0	23.27	0.02	0	Right	Tilt	QPSK	1	99	1077M	1:1	0.079	1.183	0.093	
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	23.0	22.40	0.08	1	Right	Tilt	QPSK	50	25	1077M	1:1	0.078	1.148	0.090	
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	24.0	23.27	-0.10	0	Left	Cheek	QPSK	1	99	1077M	1:1	0.248	1.183	0.293	A16
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	23.0	22.40	0.10	1	Left	Cheek	QPSK	50	25	1077M	1:1	0.176	1.148	0.202	
1860.00	26140	Low	LTE Band 25 (PCS)	20	55	24.0	23.27	-0.06	0	Left	Tilt	QPSK	1	99	1077M	1:1	0.088	1.183	0.104	
1860.00	(PCS)									Left	Tilt	QPSK	50	25	1077M	1:1	0.085	1.148	0.098	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT												•	Head					
		Spatial Peak												1.6	W/kg (mW/g)					Î
			Uncontro	olled Exposur	re/General	Population								avera	ged over 1 gra	ım				ĺ

Table 11-17 LTE Band 2 (PCS) Head SAR

									anu	2 (F	(CO)	пеаа .	SAK							
									MEAS	UREME	ENT RES	ULTS								
FR	EQUENC	′	Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	c	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	0.18	0	Right	Cheek	QPSK	1	99	1077M	1:1	0.137	1.199	0.164	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	-0.01	1	Right	Cheek	QPSK	50	50	1077M	1:1	0.106	1.156	0.123	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	0.07	0	Right	Tilt	QPSK	1	99	1077M	1:1	0.107	1.199	0.128	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	0.03	1	Right	Tilt	QPSK	50	50	1077M	1:1	0.094	1.156	0.109	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	0.04	0	Left	Cheek	QPSK	1	99	1077M	1:1	0.258	1.199	0.309	A17
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	0.04	1	Left	Cheek	QPSK	50	50	1077M	1:1	0.183	1.156	0.212	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	-0.05	0	Left	Tilt	QPSK	1	99	1077M	1:1	0.100	1.199	0.120	
1860.00	18700	18700 Low LTE Band 2 (PCS) 20 55 23.0 22.37 0.13									Tilt	QPSK	50	50	1077M	1:1	0.069	1.156	0.080	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Head					
			Uncontro	Spatia Uled Exposu	l Peak	Population									W/kg (mW/g) ned over 1 gra					

FCC ID: A3LSMG981U	PCTEST NOTIFIED LADIATION, INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 209 of 298

Table 11-18 LTE Band 30 Head SAR

									Jann	<u> </u>	ileau C	<i>י</i> רוי							
								M	EASUR	EMENT	RESULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	0.12	0	Right	Cheek	QPSK	1	0	0449M	1:1	0.094	1.233	0.116	A18
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	0.12	1	Right	Cheek	QPSK	25	12	0449M	1:1	0.071	1.197	0.085	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	0.15	0	Right	Tilt	QPSK	1	0	0449M	1:1	0.077	1.233	0.095	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	0.13	1	Right	Tilt	QPSK	25	12	0449M	1:1	0.059	1.197	0.071	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	0.19	0	Left	Cheek	QPSK	1	0	0449M	1:1	0.093	1.233	0.115	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	0.19	1	Left	Cheek	QPSK	25	12	0449M	1:1	0.065	1.197	0.078	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	0.10	0	Left	Tilt	QPSK	1	0	0449M	1:1	0.078	1.233	0.096	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	0.12	1	Left	Tilt	QPSK	25	12	0449M	1:1	0.059	1.197	0.071	
			ANSI / IEEE	C95.1 1992 - Spatial Peal		IT							1.6	Head W/kg (mW/g)					
			Uncontrolled I	Exposure/Ge	neral Popula	tion							avera	ged over 1 gra	m				

Table 11-19 LTE Band 7 Head SAR

										<u> </u>	icaa o								
								M	EASUR	EMENT	RESULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	0.19	0	Right	Cheek	QPSK	1	99	1014M	1:1	0.090	1.102	0.099	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.11	1	Right	Cheek	QPSK	50	25	1014M	1:1	0.070	1.062	0.074	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	0.13	0	Right	Tilt	QPSK	1	99	1014M	1:1	0.055	1.102	0.061	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.14	1	Right	Tilt	QPSK	50	25	1014M	1:1	0.037	1.062	0.039	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	-0.08	0	Left	Cheek	QPSK	1	99	1014M	1:1	0.122	1.102	0.134	A19
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.12	1	Left	Cheek	QPSK	50	25	1014M	1:1	0.099	1.062	0.105	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	0.21	0	Left	Tilt	QPSK	1	99	1014M	1:1	0.018	1.102	0.020	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.18	1	Left	Tilt	QPSK	50	25	1014M	1:1	0.012	1.062	0.013	
				C95.1 1992 - Spatial Peal	k								1.6	Head W/kg (mW/g)					
			Uncontrolled I	Exposure/Ge	neral Popula	tion							avera	ged over 1 gra	m				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 240 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 210 of 298

Table 11-20 LTE Band 48 Head SAR

										EASURE		RESULT									
	Component	FR	EQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
CC Uplink	Carrier	MHz	C	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	iiii ii (uu)	Olde	Position	modulation	ND GIZE	ND OILE	Number	Cycle	(W/kg)	Factor	(W/kg)	1 101 11
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.70	-0.03	0	Right	Cheek	QPSK	1	50	4935M	1:1.58	0.497	1.202	0.597	
1 CC Uplink	N/A	3560.00	55340	Low	LTE Band 48	20	18.5	17.45	0.06	0	Right	Cheek	QPSK	50	25	4935M	1:1.58	0.286	1.274	0.364	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	18.5	17.64	0.04	0	Right	Cheek	QPSK	50	25	4935M	1:1.58	0.330	1.219	0.402	
1 CC Uplink	N/A	3646.70	56207	Mid- High	LTE Band 48	20	18.5	17.15	-0.05	0	Right	Cheek	QPSK	50	25	4935M	1:1.58	0.498	1.365	0.680	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.69	0.03	0	Right	Cheek	QPSK	50	25	4935M	1:1.58	0.553	1.205	0.666	
1 CC Uplink	N/A	3560.00	55340	Low	LTE Band 48	20	18.5	17.55	-0.05	0	Right	Cheek	QPSK	100	0	4935M	1:1.58	0.274	1.245	0.341	
1 CC Uplink	N/A	3560.00	55340	Low	LTE Band 48	20	18.5	17.51	0.00	0	Right	Tilt	QPSK	1	50	4935M	1:1.58	0.419	1.256	0.526	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	18.5	17.57	0.04	0	Right	Tilt	QPSK	1	50	4935M	1:1.58	0.352	1.239	0.436	
1 CC Uplink	N/A	3646.70	56207	Mid- High	LTE Band 48	20	18.5	17.16	-0.02	0	Right	Tilt	QPSK	1	50	4935M	1:1.58	0.538	1.361	0.732	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.70	-0.07	0	Right	Tilt	QPSK	1	50	4935M	1:1.58	0.603	1.202	0.725	
1 CC Uplink	N/A	3560.00	55340	Low	LTE Band 48	20	18.5	17.45	-0.03	0	Right	Tilt	QPSK	50	25	4935M	1:1.58	0.415	1.274	0.529	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	18.5	17.64	0.02	0	Right	Tilt	QPSK	50	25	4935M	1:1.58	0.383	1.219	0.467	
1 CC Uplink	N/A	3646.70	56207	Mid- High	LTE Band 48	20	18.5	17.15	-0.05	0	Right	Tilt	QPSK	50	25	4935M	1:1.58	0.559	1.365	0.763	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.62	0.03	0	Right	Tilt	QPSK	50	0	4935M	1:1.58	0.599	1.225	0.734	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.69	0.06	0	Right	Tilt	QPSK	50	25	4935M	1:1.58	0.673	1.205	0.811	
1 CC Uplink	N/A	3560.00	55340	Low	LTE Band 48	20	18.5	17.55	0.02	0	Right	Tilt	QPSK	100	0	4935M	1:1.58	0.399	1.245	0.497	
2 CC Uplink	PCC	3690.00	56640	High	LTE Band 48	20	18.5	18.21	0.06	0	Right	Tilt	QPSK	50	0	4935M	1:1.58	0.674	1.069	0.721	A20
2 CC Oplink	SCC	3670.20	56442	High	LTE Band 48	20	18.5	18.21	0.06	U	Right	Tilt	QPSK	50	50	4935M	1:1.58	0.674	1.069	0.721	A20
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.70	0.18	0	Left	Cheek	QPSK	1	50	4935M	1:1.58	0.154	1.202	0.185	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.69	0.05	0	Left	Cheek	QPSK	50	25	4935M	1:1.58	0.155	1.205	0.187	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.70	-0.17	0	Left	Tilt	QPSK	1	50	4935M	1:1.58	0.213	1.202	0.256	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	18.5	17.69	0.09	0	Left	Tilt	QPSK	50	25	4935M	1:1.58	0.206	1.205	0.248	
					IEEE C95.1 1992 Spatial Per olled Exposure/G	ak										Head V/kg (mW/g) ed over 1 gram					

FCC ID: A3LSMG981U	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 211 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 211 01 298

Table 11-21 LTE Band 41 Head SAR

								- Dan	<u>u </u>	1100	<u> </u>	,,,,,,,									
								MEASU	REMEN	IT RESU	LTS										
1 CC Uplink 2 CC Uplink, Power Class	Component Carrier	FR	EQUENC	Y	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
olda	Garrier	MHz	С	h.		[##. 12]	Power [dBm]	r ower (abin)	Dini [GD]			1 Gatton				Number	Oyuic	(W/kg)	- uotoi	(W/kg)	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	0.17	0	Right	Cheek	QPSK	1	0	1018M	1:1.58	0.075	1.169	0.088	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	0.14	1	Right	Cheek	QPSK	50	25	1018M	1:1.58	0.054	1.122	0.061	
1 CC Uplink - Power Class 3														1	0	1018M	1:1.58	0.031	1.169	0.036	
1 CC Uplink - Power Class 3														50	25	1018M	1:1.58	0.024	1.122	0.027	
1 CC Uplink - Power Class 3												Cheek	QPSK	1	0	1018M	1:1.58	0.096	1.169	0.112	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	0.18	1	Left	Cheek	QPSK	50	25	1018M	1:1.58	0.086	1.122	0.096	
1 CC Uplink - Power Class 2	N/A	2593.00	40620	Mid	LTE Band 41	20	28.0	26.88	0.00	0	Left	Cheek	QPSK	1	0	1018M	1:2.31	0.121	1.294	0.157	
2 CC Uplink - Power Class 3	PCC	2593.00	40620	Mid	LTE Band 41	20	25.0	24.73	0.18	0	1 - 6	Cheek	QPSK	1	0	1018M	1:1.58	0.110	1.064	0.117	
2 CC Uplink - Power Class 3	scc	2573.20	40422	Mid	LTE Band 41	20	25.0	24.73	0.18	0	Left	Cneek	UPSK	1	99	1018W	1:1.58	0.110	1.064	0.117	
2 CC Uplink - Power Class 2	PCC	2593.00	40620	Mid	LTE Band 41	20	28.0	27.66	0.17	0	Left	Cheek	QPSK	1	0	1018M	1:2.31	0.145	1.081	0.157	A21
2 CC Uplink - Power Class 2	scc	2573.20	40422	Mid	LTE Band 41	20	28.0	27.00	0.17	U	Len	Cneek	UPSK	1	99	1018W	1:2.31	0.145	1.081	0.157	AZ1
1 CC Uplink - Power Class 3	plink - Power Class 3 N/A 2593.00 40620 Mid LTE Band 41 20 25.0 24.32 0.07											Tilt	QPSK	1	0	1018M	1:1.58	0.020	1.169	0.023	
1 CC Uplink - Power Class 3	- Power Class 3 N/A 2593.00 40620 Mid LTE Band 41 20 24.0 23.50 0.19 1													50	25	1018M	1:1.58	0.014	1.122	0.016	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT															Head					
	ANGI/ IEEE USS. 1 1952 - SAFET T LIMIT Spatial Peak Uncontrolled Exposure/General Population															.6 W/kg (r eraged ove					

Table 11-22 NR Band n71 Head SAR

									MEASU	JREME	NT RES	ULTS								
FR	EQUENC	′	Mode	Bandwidth	Ant State	Maximum	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]	[]		Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	0.12	0	Right	Cheek	DFT-S-OFDM QPSK	1	53	1021M	1:1	0.124	1.422	0.176	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	0.03	0	Right	Cheek	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.129	1.406	0.181	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	-0.11	0	Right	Tilt	DFT-S-OFDM QPSK	1	53	1021M	1:1	0.052	1.422	0.074	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	0.01	0	Right	Tilt	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.052	1.406	0.073	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	0.19	0	Left	Cheek	DFT-S-OFDM QPSK	1	53	1021M	1:1	0.129	1.422	0.183	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	-0.03	0	Left	Cheek	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.132	1.406	0.186	A22
680.50	136100	Mid	NR Band n71	20	14	24.3	22.15	0.11	1.5	Left	Cheek	CP-OFDMQPSK	1	1	1021M	1:1	0.089	1.641	0.146	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	0.17	0	Left	Tilt	DFT-S-OFDM QPSK	1	53	1021M	1:1	0.054	1.422	0.077	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	0.14	0	Left	Tilt	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.056	1.406	0.079	
			ANSI / II			ETY LIMIT									Head					
				•	ial Peak										//kg (mW/g					
			Uncontro	lled Exposi	ure/Genera	al Population	1							average	ed over 1 g	ram				

Table 11-23 NR Band n5 (Cell) Head SAR

								11 \ D	and	ין טוו	<u>ocii,</u>	HEAU SAN	١.							
									MEA	SUREM	ENT RE	SULTS								
FF	EQUENCY	r	Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.53	0.12	0	Right	Cheek	DFT-S-OFDM QPSK	1	1	1021M	1:1	0.173	1.340	0.232	
836.50											Cheek	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.179	1.396	0.250	A23
836.50	167300	Mid	NR Band n5 (Cell)	20	52	24.3	23.01	0.13	1.5	Right	Cheek	CP-OFDM QPSK	1	1	1021M	1:1	0.115	1.346	0.155	
836.50										Right	Tilt	DFT-S-OFDM QPSK	1	1	1021M	1:1	0.083	1.340	0.111	
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.35	0.00	0	Right	Tilt	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.085	1.396	0.119	
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.53	-0.02	0	Left	Cheek	DFT-S-OFDM QPSK	1	1	1021M	1:1	0.141	1.340	0.189	
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.35	0.05	0	Left	Cheek	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.144	1.396	0.201	
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.53	-0.05	0	Left	Tilt	DFT-S-OFDM QPSK	1	1	1021M	1:1	0.084	1.340	0.113	
836.50	0 167300 Mid NR Band n5 (Cell) 20 52 25.8 24.35 0.10										Tilt	DFT-S-OFDM QPSK	50	28	1021M	1:1	0.081	1.396	0.113	
			ANSI / IE	EE C95.1	1992 - SAF	ETY LIMIT									lead					
				Spati	al Peak									1.6 W/	kg (mW/g)					j
			Uncontrol	led Exposu	ıre/Genera	l Population								averaged	l over 1 gra	m				

FCC ID: A3LSMG981U	PCTEST NOME AND ADDRESS AND AD	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 242 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 212 of 298

Table 11-24 NR Band n66 (AWS) Head SAR

									MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY	r	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MFIZ]		Power [dBm]	Fower [dBill]	Driit [db]			Position				Number	Cycle	(W/kg)	ractor	(W/kg)	1
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	0.03	0	Right	Cheek	DFT-S-OFDM QPSK	1	53	1005M	1:1	0.098	1.035	0.101	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	0.11	0	Right	Cheek	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.099	1.038	0.103	
1745.00	1745.00 349000 Mid NR Band n66 20 26 24.5 24.35 -0.07										Tilt	DFT-S-OFDM QPSK	1	53	1005M	1:1	0.076	1.035	0.079	
1745.00	1745.00 349000 Mid NR Band n66 20 26 24.5 24.34 -0.08 (AWS)										Tilt	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.075	1.038	0.078	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	-0.06	0	Left	Cheek	DFT-S-OFDM QPSK	1	53	1005M	1:1	0.234	1.035	0.242	A24
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	0.11	0	Left	Cheek	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.208	1.038	0.216	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	23.0	22.40	0.12	1.5	Left	Cheek	CP-OFDM QPSK	1	1	1005M	1:1	0.119	1.148	0.137	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	0.12	0	Left	Tilt	DFT-S-OFDM QPSK	1	53	1005M	1:1	0.029	1.035	0.030	
1745.00	.00 349000 Mid NR Band n66 (AWS) 20 26 24.5 24.34 0.19										Tilt	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.033	1.038	0.034	
			ANSI / II	EEE C95.1	1992 - SAF	ETY LIMIT								H	lead					
				Spati	al Peak									1.6 W/	kg (mW/g)					ļ
			Uncontrol	led Exposu	ire/Genera	al Population								averaged	over 1 gra	m				

Table 11-25 NR Band n2 (PCS) Head SAR

									arra	/.	<u> </u>	TICAG OAI	<u> </u>							
									MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	0.18	0	Right	Cheek	DFT-S-OFDM QPSK	1	104	1005M	1:1	0.116	1.012	0.117	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	0.12	0	Right	Cheek	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.109	1.012	0.110	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	0.08	0	Right	Tilt	DFT-S-OFDM QPSK	1	104	1005M	1:1	0.076	1.012	0.077	
1880.00	380.00 376000 Mid NR Band n2 (PCS) 20 55 24.0 23.95 0.18										Tilt	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.077	1.012	0.078	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.09	0	Left	Cheek	DFT-S-OFDM QPSK	1	104	1005M	1:1	0.204	1.012	0.206	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	0.04	0	Left	Cheek	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.208	1.012	0.210	A25
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	22.5	22.47	0.05	1.5	Left	Cheek	CP-OFDM QPSK	1	1	1005M	1:1	0.147	1.007	0.148	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.06	0	Left	Tilt	DFT-S-OFDM QPSK	1	104	1005M	1:1	0.040	1.012	0.040	
1880.00	.00 376000 Mid NR Band n2 (PCS) 20 55 24.0 23.95 0.19										Tilt	DFT-S-OFDM QPSK	50	28	1005M	1:1	0.054	1.012	0.055	
			ANSI / IE		1992 - SAF al Peak	ETY LIMIT									lead kg (mW/g)		•			
			Uncontrol			l Population									over 1 gra					

Table 11-26 NR Band n41 Head SAR

							r	NK B	and	n4 1	Head SAI	τ							
									MEASU	REMENT	RESULTS								
FR	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power (asm)	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	ĺ
2592.99	518598	Mid	NR Band n41	100	25.0	24.28	-0.13	0	Right	Cheek	DFT-S-OFDMQPSK	1	137	1017M	1:4	0.772	1.180	0.911	
2592.99	518598	Mid	NR Band n41	100	25.0	24.16	0.08	0	Right	Cheek	DFT-S-OFDMQPSK	135	69	1017M	1:4	0.756	1.213	0.917	
2592.99	518598	Mid	NR Band n41	100	24.0	22.60	-0.01	1	Right	Cheek	DFT-S-OFDMQPSK	270	0	1017M	1:4	0.587	1.380	0.810	
2592.99	2592.99 518598 Mid NR Band n41 100 25.0 24.28 0.13									Tilt	DFT-S-OFDMQPSK	1	137	1017M	1:4	0.896	1.180	1.057	A26
2592.99	592.99 518598 Mid NR Band n41 100 25.0 24.16 0.08								Right	Tilt	DFT-S-OFDMQPSK	135	69	1017M	1:4	0.878	1.213	1.065	
2592.99						1.5	Right	Tilt	CP-OFDM QPSK	1	1	1017M	1:4	0.454	1.122	0.509			
2592.99	518598	Mid	NR Band n41	100	24.0	22.60	-0.01	1	Right	Tilt	DFT-S-OFDMQPSK	270	0	1017M	1:4	0.639	1.380	0.882	
2592.99	518598	Mid	NR Band n41	100	25.0	24.28	-0.12	0	Left	Cheek	DFT-S-OFDMQPSK	1	137	1017M	1:4	0.546	1.180	0.644	
2592.99	518598	Mid	NR Band n41	100	25.0	24.16	-0.17	0	Left	Cheek	DFT-S-OFDMQPSK	135	69	1017M	1:4	0.531	1.213	0.644	
2592.99	518598	Mid	NR Band n41	100	24.0	22.60	-0.03	1	Left	Cheek	DFT-S-OFDMQPSK	270	0	1017M	1:4	0.412	1.380	0.569	
2592.99	518598	Mid	NR Band n41	100	25.0	24.28	0.00	0	Left	Tilt	DFT-S-OFDMQPSK	1	137	1017M	1:4	0.674	1.180	0.795	
2592.99	2592.99 518598 Mid NR Band n41 100 25.0 24.16 -0.10							0	Left	Tilt	DFT-S-OFDMQPSK	135	69	1017M	1:4	0.657	1.213	0.797	
2592.99	518598	Mid	NR Band n41	100	24.0	22.60	0.02	1	Left	Tilt	DFT-S-OFDMQPSK	270	0	1017M	1:4	0.573	1.380	0.791	
			ANSI / IEEE C	295.1 1992	- SAFETY LII	MIT							ŀ	lead					
				Spatial Per										kg (mW/g)					
			Uncontrolled E	xposure/G	eneral Popul	ation							averaged	over 1 gra	m				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 242 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 213 of 298

Table 11-27 DTS Head SAR

	MEASUREMENT RESULTS																		
FREQUE	FREQUENCY Mode		Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Antenna Config.	Device Serial	Data Rate (Mbps)	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHZ]	Power [dBm]	Power (abm)	υτιπ (αΒ)		Position	Config.	Number	(Nipps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.0	16.88	-0.12	Right	Cheek	1	1652M	1	100.0	0.696	0.371	1.028	1.000	0.381	
2412	1	802.11b	DSSS	22	17.0	16.88	-0.02	Right	Tilt	1	1652M	1	100.0	0.798	0.458	1.028	1.000	0.471	
2412	1	802.11b	DSSS	22	17.0	16.88	-0.12	Left	Cheek	1	1652M	1	100.0	0.727	-	1.028	1.000	-	
2412	1	802.11b	DSSS	22	17.0	16.88	0.10	Left	Tilt	1	1652M	1	100.0	0.959	0.618	1.028	1.000	0.635	
2437	6	802.11b	DSSS	22	17.0	16.17	0.14	Left	Tilt	1	1652M	1	100.0	0.738	0.627	1.211	1.000	0.759	
2462	11	802.11b	DSSS	22	17.0	16.69	0.15	Left	Tilt	1	1652M	1	100.0	0.830	0.709	1.074	1.000	0.761	A27
2437	6	802.11b	DSSS	22	17.0	16.51	0.18	Right	Cheek	2	1652M	1	100.0	0.046	0.029	1.119	1.000	0.032	
2437	6	802.11b	DSSS	22	17.0	16.51	0.15	Right	Tilt	2	1652M	1	100.0	0.019	-	1.119	1.000	-	
2437	6	802.11b	DSSS	22	17.0	16.51	0.12	Left Cheek 2 1652M 1 100.0 0.011 - 1.119								1.000	-		
2437 6 802.11b DSSS 22 17.0 16.51 0.17								Left	Tilt	2	1652M	1	100.0	0.017	-	1.119	1.000	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head											
		Uncontro	•	ial Peak ure/Genera	al Population			1.6 W/kg (mW/g) averaged over 1 gram											

Table 11-28 DTS Head SAR for Conditions with 2.4 GHz and 5 GHz WLAN SAR

	DISTIERA SAIL TO CONDITIONS WITH 2.4 ONE AND SOIL WEAR SAIL																				
	MEASUREMENT RESULTS																				
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1) [dBm]	Maximum Allowed Power	Conducted Power (Ant 2) [dBm]	Power Drift [dB]	Side	Test Position	Antenna Config.	Device Serial	Data Rate	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHZ]	(Ant 1) [dBm]	(Ant 1) [dbm]	(Ant 2) [dBm]	(Ant 2) [dbm]	отт (ав)		Position	Coning.	Number	(Mbps)	Cycle (%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11n	OFDM	20	14.0	13.35	14.0	13.98	0.06	Right	Cheek	MIMO	1652M	13	99.3	0.374	0.228	1.161	1.007	0.267	
2462	11	802.11n	OFDM	20	14.0	13.35	14.0	13.98	0.19	Right	Tilt	MIMO	1652M	13	99.3	0.524	0.300	1.161	1.007	0.351	
2462	11	802.11n	OFDM	20	14.0	13.35	14.0	13.98	0.18	Left	Cheek	MIMO	1652M	13	99.3	0.570	0.340	1.161	1.007	0.398	
2462	11	802.11n	OFDM	20	14.0	13.35	14.0	13.98	0.10	Left	Tilt	MIMO	1652M	13	99.3	0.767	0.426	1.161	1.007	0.498	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Head												
					Spatial Peal	•				1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population								averaged over 1 gram												

Note: DTS MIMO was additionally evaluated at the maximum allowed output power during operations with Simultaneous 2.4 GHz and 5 GHz WLAN. 5 GHz WIFI was not transmitting during the above evaluations.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 044 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 214 of 298

Table 11-29 NII Head SAR

								MHA	SURFM	ENT RES	SULTS								
FREQUI	ENCY			Bandwidth	Maximum	Conducted	Power		Test	Antenna	Device	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling	Scaling	Reported SAR (1g)	
MHz	Ch.	Mode	Service	[MHz]	Allowed Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Config.	Serial Number	(Mbps)	(%)	W/kg	(W/kg)	Factor (Power)	Factor (Duty Cycle)	(W/kg)	Plot#
5310	62	802.11n	OFDM	40	14.0	13.95	0.05	Right	Cheek	1	1652M	13.5	98.5	0.185	0.076	1.012	1.015	0.078	
5310	62	802.11n	OFDM	40	14.0	13.95	0.16	Right	Tilt	1	1652M	13.5	98.5	0.174	-	1.012	1.015	-	
5310	62	802.11n	OFDM	40	14.0	13.95	0.12	Left	Cheek	1	1652M	13.5	98.5	0.057	-	1.012	1.015	-	
5310	62	802.11n	OFDM	40	14.0	13.95	0.16	Left	Tilt	1	1652M	13.5	98.5	0.074	-	1.012	1.015	-	
5270	54	802.11n	OFDM	40	14.0	13.35	0.13	Right	Cheek	2	1652M	13.5	98.2	0.083	0.028	1.161	1.018	0.033	
5270	54	802.11n	OFDM	40	14.0	13.35	0.14	Right	Tilt	2	1652M	13.5	98.2	0.059	-	1.161	1.018	-	
5270	54	802.11n	OFDM	40	14.0	13.35	0.10	Left	Cheek	2	1652M	13.5	98.2	0.016	-	1.161	1.018	-	
5270	54	802.11n	OFDM	40	14.0	13.35	0.03	Left	Tilt	2	1652M	13.5	98.2	0.029	-	1.161	1.018	-	
5690	138	802.11ac	OFDM	80	14.0	13.48	0.18	Right	Cheek	1	1652M	29.3	96.0	0.161	0.065	1.127	1.042	0.076	
5690	138	802.11ac	OFDM	80	14.0	13.48	0.13	Right	Tilt	1	1652M	29.3	96.0	0.112	-	1.127	1.042	-	
5690	138	802.11ac	OFDM	80	14.0	13.48	0.15	Left	Cheek	1	1652M	29.3	96.0	0.044	-	1.127	1.042	-	
5690	138	802.11ac	OFDM	80	14.0	13.48	0.14	Left	Tilt	1	1652M	29.3	96.0	0.072	-	1.127	1.042	-	
5530	106	802.11ac	OFDM	80	14.0	13.88	-0.12	Right	Cheek	2	1652M	29.3	95.5	0.144	0.065	1.028	1.047	0.070	
5530	106	802.11ac	OFDM	80	14.0	13.88	0.05	Right	Tilt	2	1652M	29.3	95.5	0.116	-	1.028	1.047	-	
5530	106	802.11ac	OFDM	80	14.0	13.88	0.21	Left	Cheek	2	1652M	29.3	95.5	0.054	-	1.028	1.047	-	
5530	106	802.11ac	OFDM	80	14.0	13.88	0.17	Left	Tilt	2	1652M	29.3	95.5	0.072	-	1.028	1.047	-	
5775	155	802.11ac	OFDM	80	14.0	13.82	0.15	Right	Cheek	1	1652M	29.3	96.0	0.111	-	1.042	1.042	-	
5775	155	802.11ac	OFDM	80	14.0	13.82	0.11	Right	Tilt	1	1652M	29.3	96.0	0.114	0.044	1.042	1.042	0.048	
5775	155	802.11ac	OFDM	80	14.0	13.82	0.21	Left	Cheek	1	1652M	29.3	96.0	0.055	-	1.042	1.042	-	
5775	155	802.11ac	OFDM	80	14.0	13.82	0.07	Left	Tilt	1	1652M	29.3	96.0	0.062	-	1.042	1.042	-	
5775	155	802.11ac	OFDM	80	14.0	13.80	0.12	Right	Cheek	2	1652M	29.3	95.5	0.221	0.090	1.047	1.047	0.099	A28
5775	155	802.11ac	OFDM	80	14.0	13.80	0.10	Right	Tilt	2	1652M	29.3	95.5	0.163	-	1.047	1.047	-	
5775	155	802.11ac	OFDM	80	14.0	13.80	0.18	Left	Cheek	2	1652M	29.3	95.5	0.149	-	1.047	1.047	-	
5775	155	802.11ac	OFDM	80	14.0	13.80	0.03	Left	Tilt	2	1652M	29.3	95.5	0.159	-	1.047	1.047	-	
			•	ial Peak	ETY LIMIT									Head 6 W/kg (mW raged over 1					

averaged over 1 gram

Table 11-30

	DSS Head SAR																
						М	EASURE	MENT F	RESULT	s							
FREQU	REQUENCY		Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #	
MHz	Ch.	mouo	00.1.00	Power [dBm]	Power [dBm]	Drift [dB]	0.40	Position	Number	(Mbps)	Cycle (%)	(W/kg)	Power)	Cycle)	(W/kg)		
2402.00	0	Bluetooth	FHSS	13.5	12.77	-0.17	Right	Cheek	1652M	1	77.6	0.124	1.183	1.289	0.189		
2402.00	0	Bluetooth	FHSS	13.5	12.77	-0.10	Right	Tilt	1652M	1	77.6	0.165	1.183	1.289	0.252		
2402.00	0	Bluetooth	FHSS	13.5	12.77	0.14	Left	Cheek	1652M	1	77.6	0.186	1.183	1.289	0.284		
2402.00	0	Bluetooth	FHSS	13.5	12.77	0.06	3 Left Tilt 1652M 1 77.6 0.261 1.183 1.289 0.398							0.398	A29		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head										
	Spatial Peak						1.6 W/kg (mW/g)										
	Uncontrolled Exposure/General Population						averaged over 1 gram										

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 245 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 215 of 298

11.2 Standalone Body-Worn SAR Data

Table 11-31 GSM/UMTS/CDMA Body-Worn SAR Data

					., <u>G.III. 1 G,</u> M			RESULT	s						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift (dB)	Spacing	Ant State	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [abm]	υτιπ (αΒ)			Number	Cycle		(W/kg)	Factor	(W/kg)	
820.10	564	CDMA BC10 (§90S)	TDSO / SO32	25.8	24.66	0.01	15 mm	1	1075M	1:1	back	0.315	1.300	0.410	A30
836.52	384	CDMA BC0 (§22H)	TDSO / SO32	25.8	25.32	0.03	15 mm	1	1075M	1:1	back	0.291	1.117	0.325	A32
836.60	190	GSM 850	GSM	33.7	32.85	0.00	15 mm	N/A	1075M	1:8.3	back	0.207	1.216	0.252	A34
836.60	4183	UMTS 850	RMC	25.5	24.74	-0.03	15 mm	52	1075M	1:1	back	0.303	1.191	0.361	A36
1712.40	1312	UMTS 1750	RMC	24.5	24.40	0.06	15 mm	4	1078M	1:1	back	0.691	1.023	0.707	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	0.06	15 mm	4	1078M	1:1	back	0.790	1.019	0.805	
1752.60	1513	UMTS 1750	RMC	24.5	24.30	-0.01	15 mm	4	1078M	1:1	back	0.899	1.047	0.941	A38
1851.25	25	PCS CDMA	TDSO / SO32	24.5	23.85	-0.11	15 mm	55	1078M	1:1	back	0.802	1.161	0.931	
1880.00	600	PCS CDMA	TDSO / SO32	24.5	23.64	-0.03	15 mm	55	1078M	1:1	back	0.781	1.219	0.952	
1908.75	1175	PCS CDMA	TDSO / SO32	24.5	23.51	0.03	15 mm	55	1078M	1:1	back	0.821	1.256	1.031	A40
1850.20	512	GSM 1900	GSM	30.7	29.45	-0.01	15 mm	N/A	1078M	1:8.3	back	0.231	1.334	0.308	A42
1852.40	9262	UMTS 1900	RMC	24.5	23.42	0.01	15 mm	26	1078M	1:1	back	0.766	1.282	0.982	A44
1880.00	9400	UMTS 1900	RMC	24.5	23.38	-0.03	15 mm	26	1078M	1:1	back	0.678	1.294	0.877	
1907.60	9538	UMTS 1900	RMC	24.5	23.21	0.01	15 mm	26	1078M	1:1	back	0.673	1.346	0.906	
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT			Body								
			Spatial Peak				1.6 W/kg (mW/g)								
		Uncontrolled	Exposure/Gene	ral Population	on					ave	eraged o	ver 1 gram			

FCC ID: A3LSMG981U	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 216 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 216 01 298

Table 11-32 LTE Band 71/12/13/14/26 Body-Worn SAR

							Danu	,	., . o, .	7/20	Doay	110	111 0	- NI X						
								MEA	SUREM	ENT RES	ULTS									
FR	REQUENCY	1	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[WHZ]		Power [dBm]	Power [abm]	Drift (aB)		Number						Cycle	(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	-0.03	0	0433M	QPSK	1	0	15 mm	back	1:1	0.197	1.435	0.283	A46
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	-0.06	1	0433M	QPSK	50	0	15 mm	back	1:1	0.169	1.432	0.242	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.02	0	0433M	QPSK	1	49	15 mm	back	1:1	0.245	1.503	0.368	A48
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	0.04	1	0433M	QPSK	25	12	15 mm	back	1:1	0.209	1.479	0.309	
782.00	23230	Mid	LTE Band 13	10	52	25.8	24.08	-0.12	0	0433M	QPSK	1	0	15 mm	back	1:1	0.212	1.486	0.315	A50
782.00	23230	Mid	LTE Band 13	10	52	24.8	23.04	0.05	1	0433M	QPSK	25	0	15 mm	back	1:1	0.179	1.500	0.269	
793.00	23330	Mid	LTE Band 14	10	58	25.8	24.06	-0.03	0	0433M	QPSK	1	0	15 mm	back	1:1	0.280	1.493	0.418	A52
793.00	23330	Mid	LTE Band 14	10	58	24.8	22.99	-0.01	1	0433M	QPSK	25	0	15 mm	back	1:1	0.226	1.517	0.343	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	25.8	24.34	0.05	0	0433M	QPSK	1	0	15 mm	back	1:1	0.214	1.400	0.300	A54
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	24.8	23.34	0.04	1	0433M	QPSK	36	18	15 mm	back	1:1	0.188	1.400	0.263	
			ANSI / I								dy		-		_					
										1.6 W/kg	(mW/g)								
			Uncontro	lled Exposu	ure/Genera	l Population								av	eraged o	ver 1 gra	am			

Table 11-33 LTE Band 5/66 Body-Worn SAR

									MEASUR	REMENT	RESUL	TS										
1 CC Uplink 2 CC Uplink	Component Carrier	FR MHz	EQUENC	Y Ch.	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	0	25.8	24.12	-0.01	0	1010M	QPSK	1	0	15 mm	back	1:1	0.195	1.472	0.287	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	0	24.8	23.12	0.18	1	1010M	QPSK	25	0	15 mm	back	1:1	0.162	1.472	0.238	
2 CC Uplink	PCC	836.50	20525	Mid	LTE Band 5 (Cell)	10	0	25.8	24.33	0.05	0	1010M	QPSK	1	0	15 mm	back	1:1	0.207	1.403	0.290	A56
2 CC Uplink	SCC	829.30	20453	Mid	LTE Band 5 (Cell)	5	U	25.8	24.33	0.05	0	101000	UPSK	'	24	15 mm	Dack	1:1	0.207	1.403	0.290	ADB
1 CC Uplink	N/A	-0.06	0	1010M	QPSK	1	50	15 mm	back	1:1	0.497	1.288	0.640									
1 CC Uplink	(AWS)											1010M	QPSK	1	50	15 mm	back	1:1	0.605	1.262	0.764	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	-0.01	0	1010M	QPSK	1	0	15 mm	back	1:1	0.698	1.202	0.839	
1 CC Uplink	N/A	1775.00	132622	High	LTE Band 66 (AWS)	10	26	24.5	23.21	0.00	0	1010M	QPSK	1	0	15 mm	back	1:1	0.612	1.346	0.824	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	-0.02	1	1010M	QPSK	50	25	15 mm	back	1:1	0.528	1.183	0.625	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.69	0.01	1	1010M	QPSK	100	0	15 mm	back	1:1	0.555	1.205	0.669	
CA_66C 2 CC	PCC	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	24.10	-0.01	0	1010M	QPSK		0	15 mm	back	1:1	0.796	1.096	0.872	A58
Uplink	SCC	1750.20	132374	High	LTE Band 66 (AWS)	20	20	24.5	24.10	-0.01	0	TOTOW	QF3K	,	99	15 mm	Dack	1.1	0.796	1.096	0.872	ASO
CA_66B 2 CC	PCC	1775.00	132622	High	LTE Band 66 (AWS)	10	26	24.5	23.60	0.00	0	1010M	QPSK	1	0	15 mm	back	1:1	0.696	1.230	0.856	
Uplink	SCC 1765.10 132523 High LTE Band 66 (AWS) 10											1010101	QI-SK	,	49	15 mm			0.096	1.230	0.830	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak																Bo 1 6 W/ko	ody g (mW/g)				
	Spatial Peak Uncontrolled Exposure/General Population																	ver 1 gra				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 247 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 217 of 298

Table 11-34 LTE Band 2/25/30 Body-Worn SAR

								MEA	SUREM	ENT RES	ULTS									
FR	EQUENC	Υ	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	Ch.		[IMITE]		Power [dBm]	r ower [ubin]	Dinit [db]		Number						Cycle	(W/kg)	1 actor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	24.0	23.27	-0.05	0	1077M	QPSK	1	99	15 mm	back	1:1	0.753	1.183	0.891	A60
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	24.0	23.22	0.18	0	1077M	QPSK	1	0	15 mm	back	1:1	0.718	1.197	0.859	
1905.00	26590	High	LTE Band 25 (PCS)	20	26	24.0	23.00	0.07	0	1077M	QPSK	1	0	15 mm	back	1:1	0.684	1.259	0.861	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	23.0	22.40	0.09	1	1077M	QPSK	50	25	15 mm	back	1:1	0.599	1.148	0.688	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	23.0	22.19	0.02	1	1077M	QPSK	100	0	15 mm	back	1:1	0.591	1.205	0.712	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	-0.08	0	1077M	QPSK	1	99	15 mm	back	1:1	0.716	1.199	0.858	A62
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	24.0	23.18	0.15	0	1077M	QPSK	1	0	15 mm	back	1:1	0.712	1.208	0.860	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	24.0	23.14	0.07	0	1077M	QPSK	1	0	15 mm	back	1:1	0.679	1.219	0.828	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	0.03	1	1077M	QPSK	50	50	15 mm	back	1:1	0.576	1.156	0.666	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	23.0	22.20	0.19	1	1077M	QPSK	100	0	15 mm	back	1:1	0.516	1.202	0.620	
2310.00	27710	Mid	LTE Band 30	10	N/A	24.5	23.59	0.05	0	1014M	QPSK	1	0	15 mm	back	1:1	0.682	1.233	0.841	A64
2310.00	27710	Mid	LTE Band 30	10	N/A	23.5	22.72	0.06	1	1014M	QPSK	25	12	15 mm	back	1:1	0.551	1.197	0.660	
2310.00	27710	Mid	LTE Band 30	10	N/A	23.5	22.64	0.01	1	1014M	QPSK	50	0	15 mm	back	1:1	0.470	1.219	0.573	
				•	al Peak	ETY LIMIT									1.6 W/kg	ody g (mW/g) over 1 gra				

Table 11-35 LTF Band 7 Body-Worn SAR

						L	. 🗀 🗅	anu	<i>i</i> bou	y-vvoi	111 37	4 F							
								MEASU	REMENT	RESULT	s								
FR	EQUENC	Y	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	C	h.		[IMITIZ]	Power [dBm]	r ower [dbiii]	Dilit [ub]		Number						Cycle	(W/kg)	1 actor	(W/kg)	l
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	0.01	0	1014M	QPSK	1	99	15 mm	back	1:1	0.604	1.102	0.666	A66
2535.00	21100	Mid	LTE Band 7	20	24.0	23.53	-0.01	0	1014M	QPSK	1	0	15 mm	back	1:1	0.557	1.114	0.620	
2560.00	21350	High	LTE Band 7	20	24.0	23.50	0.03	0	1014M	QPSK	1	99	15 mm	back	1:1	0.556	1.122	0.624	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	-0.02	1	1014M	QPSK	50	25	15 mm	back	1:1	0.493	1.062	0.524	
			ANSI / IEEE (C95.1 1992	- SAFETY LI	MIT								Во	dy				
				Spatial Per	ak								1	1.6 W/kg	(mW/g)				
			Uncontrolled E	xposure/G	eneral Popul	ation							av	eraged o	ver 1 gra	ım			

Table 11-36 LTE Band 48 Body-Worn SAR

								MEA	SUREN	IENT RE	SULTS										
1 CC Uplink 2 CC Uplink	Component Carrier	FR	EQUENC	Y	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
CC Oplink	Carrier	MHz	·	Ch.		[MHZ]	Power [dBm]	Power [abin]	Driit [db]		Number						Cycle	(W/kg)	ractor	(W/kg)	
1 CC Uplink	N/A	Low-Mid	0	0384S	QPSK	1	0	15 mm	back	1:1.58	0.314	1.271	0.399								
1 CC Uplink	N/A	3603.30	55773	Low-Mid	LTE Band 48	20	23.5	22.62	0.05	0	0384S	QPSK	1	50	15 mm	back	1:1.58	0.319	1.225	0.391	
1 CC Uplink												QPSK	50	0	15 mm	back	1:1.58	0.264	1.208	0.319	
2 CC Uplink	PCC	3603.30	55773	Low-Mid	LTE Band 48	20	23.5	23.32	0.03	0	0384S	QPSK	1	0	15 mm	back	1:1.58	0.365	1.042	0.380	A68
2 CC Opilitik	SCC	3583.50	55575	Low-Mid	LTE Band 48	20	23.3	23.32	0.03	0	03043	QF3K	1	99	15 11111	Dack	1.1.30	0.303	1.042	0.380	A00
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT															Во	dy				
					Spatial Peak							1.6 W/kg	(mW/g)								
			Unc	ontrolled	Exposure/Gene						av	eraged o	ver 1 gra	m							
			Onc	Onti Oncu	Exposur G Octio	iai i opulat	1011									cragea c	vci i gio				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 040 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 218 of 298

Table 11-37 LTE Band 41 Body-Worn SAR

								MEASUF	REMENT	r RESUL	.TS										
1 CC Uplink 2 CC Uplink,	Component	FR	EQUENC	1	Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
Power Class	Carrier	MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift (aB)		Number						Cycle	(W/kg)	Factor	(W/kg)	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	0.01	0	1018M	QPSK	1	0	15 mm	back	1:1.58	0.321	1.169	0.375	
1 CC Uplink - Power Class 3												QPSK	50	25	15 mm	back	1:1.58	0.266	1.122	0.298	
1 CC Uplink - Power Class 2	link - Power Class 2 N/A 2593.00 40620 M/d LTE Band 41 20 28.0 26.88										1018M	QPSK	1	0	15 mm	back	1:2.31	0.423	1.294	0.547	
2 CC Uplink - Power Class 3	PCC	2593.00	40620	Mid	LTE Band 41	20	25.0	24.73	-0.06	0	1018M	QPSK	1	0	15 mm	back	1:1.58	0.366	1.064	0.389	
2 CC Oplink - Power Class 3	SCC	2573.20	40422	Mid	LTE Band 41	20	25.0	24.73	-0.06	U	1018W	UPSK	1	99	15 mm	Dack	1:1.58	0.366	1.064	0.369	
a co Heliale Barres Olean a	PCC	2593.00	40620	Mid	LTE Band 41	20	28.0	27.66	0.00	_	1018M	QPSK	1	0	15 mm	back	1:2.31	0.482	1.081	0.521	A70
2 CC Uplink - Power Class 2	scc	2573.20	40422	Mid	LTE Band 41	20	28.0	27.00	0.00	0	1018W	UPSK	1	99	15 mm	Dack	1:2.31	0.482	1.081	0.521	A/U
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population															Body //kg (mV	-				_
		Uncont	rolled I	xposur	e/General Popula	ation									average	ed over 1	gram				

Table 11-38 NR Body-Worn SAR

										ay	UIII SAN									
									MEASU	REMENT	RESULTS									
	EQUENC		Mode	Bandwidth [MHz]	Ant State	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz		h.															(W/kg)		(W/kg)	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	0.09	0	1021M	DFT-S-OFDMQPSK	1	53	15 mm	back	1:1	0.201	1.422	0.286	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	-0.07	0	1021M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.204	1.406	0.287	A72
680.50	136100	Mid	NR Band n71	20	14	24.3	22.15	0.07	1.5	1021M	CP-OFDM QPSK	1	1	15 mm	back	1:1	0.139	1.641	0.228	
836.50	167300	Mid	NR Band n5 (Cell)	20	0	25.8	24.53	-0.07	0	1021M	DFT-S-OFDM QPSK	1	1	15 mm	back	1:1	0.200	1.340	0.268	
836.50	167300	Mid	NR Band n5 (Cell)	20	0	25.8	24.35	0.03	0	1021M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.200	1.396	0.279	A74
836.50	167300	Mid	NR Band n5 (Cell)	20	0	24.3	23.01	0.08	1.5	1021M	CP-OFDM QPSK	1	1	15 mm	back	1:1	0.142	1.346	0.191	
1745.00 349000 Mid NR Band n66 (AWS) 20 26 24.5 24.35 -0.12										1005M	DFT-S-OFDM QPSK	1	53	15 mm	back	1:1	0.654	1.035	0.677	
1720.00	344000	Low	NR Band n66 (AWS)	20	26	24.5	23.70	-0.02	0	1005M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.554	1.202	0.666	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	-0.19	0	1005M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.685	1.038	0.711	A76
1770.00	354000	High	NR Band n66 (AWS)	20	26	24.5	23.40	0.00	0	1005M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.569	1.288	0.733	
1770.00	354000	High	NR Band n66 (AWS)	20	26	23.0	21.80	0.08	1.5	1005M	CP-OFDM QPSK	1	1	15 mm	back	1:1	0.396	1.318	0.522	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	0.00	0	1005M	DFT-S-OFDM QPSK	1	104	15 mm	back	1:1	0.648	1.012	0.656	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	24.0	22.86	0.02	0	1005M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.594	1.300	0.772	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	22.5	21.71	-0.05	1.5	1005M	CP-OFDM QPSK	1	1	15 mm	back	1:1	0.493	1.199	0.591	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	0.03	0	1005M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.730	1.012	0.739	A78
1900.00	380000	High	NR Band n2 (PCS)	20	55	24.0	23.68	-0.03	0	1005M	DFT-S-OFDM QPSK	50	28	15 mm	back	1:1	0.684	1.076	0.736	
2592.99	518598	Mid	NR Band n41	100	N/A	25.0	24.28	0.07	0	1017M	DFT-S-OFDMQPSK	1	137	15 mm	back	1:4	0.082	1.180	0.097	
2592.99	518598	Mid	NR Band n41	100	N/A	25.0	24.16	0.15	0	1017M	DFT-S-OFDMQPSK	135	69	15 mm	back	1:4	0.099	1.213	0.120	A80
2592.99	518598	Mid	NR Band n41	100	N/A	23.5	23.00	0.20	1.5	1017M	CP-OFDM QPSK	1	1	15 mm	back	1:4	0.058	1.122	0.065	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												•	1.6 W	Body /kg (mW d over 1					

Table 11-39 DTS Body-Worn SAR

									<u> </u>	•	<u> </u>								
							N	IEASUR	EMENT	RESUL	TS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[WITIZ]	[dBm]	[ubiii]	[ub]		Coming.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	21.0	20.86	0.07	15 mm	1	1652M	1	back	100.0	0.203	0.139	1.033	1.000	0.144	A82
2462	11	802.11b	DSSS	22	21.0	20.97	0.20	15 mm	2	1652M	1	back	100.0	0.131	0.086	1.007	1.000	0.087	
		ANS	SI / IEEE	C95.1 1992								Body							
				Spatial Pe	eak									1.6 W/kg (m	W/g)				
		Unco	ntrolled E	Exposure/0	Seneral Populati	on							а	veraged over	1 gram				

FCC ID: A3LSMG981U	PCTEST 180 NATIONAL TAXABLE TA	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 240 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 219 of 298

Table 11-40 NII Body-Worn SAR

								ı	MEASURE	MENT RES	JLTS								
FREQU	IENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MFIZ]	[dBm]	[dBm]	[db]		Connig.	Number	(wipps)			W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5300	60	802.11a	OFDM	20	16.5	16.47	0.06	15 mm	1	0385S	6	back	99.7	0.361	0.165	1.007	1.003	0.167	
5280	56	802.11a	OFDM	20	16.5	15.97	0.18	15 mm	2	0385S	6	back	99.3	0.183	0.081	1.130	1.007	0.092	
5600	0 120 802.11a OFDM 20 16.5 15.94							15 mm	1	0385S	6	back	99.7	0.309	0.156	1.138	1.003	0.178	
5720								15 mm	2	0385S	6	back	99.3	0.490	0.210	1.069	1.007	0.226	
5785	157	802.11a	OFDM	20	16.5	16.07	0.18	15 mm	1	0385S	6	back	99.7	0.447	0.215	1.104	1.003	0.238	
5785	157	802.11a	OFDM	20	16.5	16.42	0.12	15 mm	2	0385S	6	back	99.3	0.511	0.225	1.019	1.007	0.231	
		Al	NSI / IEEE	C95.1 199	2 - SAFETY LIMI	т							Во	dy					
		Unc	ontrolled	Spatial P Exposure/	eak General Populat	ion							1.6 W/kg averaged or						

Table 11-41 NII MIMO Body-Worn SAR

									ME	ASUREME	NT RESUL	TS			-			-	·	-	
FREC	UENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Maximum Allowed Power	Conducted Power		Spacing		Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	(Ant 1) [dBm]	(Ant 1) [dBm]	(Ant 2) [dBm]	(Ant 2) [dBm]	[dB]	.,	Config.	Number	(Mbps)		.,.,,	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5280	56	802.11n	OFDM	20	16.5	16.47	16.5	16.00	0.17	15 mm	MIMO	0385S	13	back	99.3	0.433	0.198	1.122	1.007	0.224	
5500	100	802.11n	OFDM	20	15.5	14.97	15.5	15.20	0.11	15 mm	MIMO	0385S	13	back	99.3	0.504	0.213	1.130	1.007	0.242	
5785	157	802.11n	OFDM	20	14.5	14.38	14.5	13.92	0.07	15 mm	MIMO	0385S	13	back	99.3	0.600	0.280	1.143	1.007	0.322	A84
				ANSI /	IEEE C95.1 199	2 - SAFETY LIMI	Т								Во	dy					
				Uncontre	Spatial P olled Exposure/	eak General Populat	ion								1.6 W/kg averaged o						

Note: For channel 56 to achieve the 19.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 16.5 dBm. For channel 100 to achieve the 18.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 15.5 dBm. For channel 157 to achieve the 17.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 14.5 dBm.

Table 11-42 DSS Body-Worn SAR

						ME	ASUREI	MENT F	RESUL	гѕ						
FREQU	ENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2402	0	Bluetooth	FHSS	13.5	12.77	-0.08	15 mm	1050M	1	back	77.6	0.017	1.183	1.289	0.026	A86
		ANSI / IEEE	C95.1 199	2 - SAFETY	LIMIT							Body				
			Spatial I								1	1.6 W/kg (m\	V/g)			
		Uncontrolled E	Exposure	General Pop	oulation						ave	eraged over 1	gram			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 220 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 220 of 298

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

11.3 Standalone Hotspot SAR Data

Table 11-43 GPRS/UMTS/CDMA Hotspot SAR Data

				PRS	OIVI I					. JA	IN L	ala				
						MEAS	UREME	NT RES	_						Bonorlod CAD	
FREQUE	NCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Ant State	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot#
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.8	24.66	0.03	10 mm	1	1075M	N/A	1:1	back	0.334	1.300	0.434	A31
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.8	24.66	0.01	10 mm	1	1075M	N/A	1:1	front	0.263	1.300	0.342	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.8	24.66	0.07	10 mm	1	1075M	N/A	1:1	bottom	0.176	1.300	0.229	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.8	24.66	0.03	10 mm	1	1075M	N/A	1:1	right	0.295	1.300	0.384	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.8	24.66	-0.06	10 mm	1	1075M	N/A	1:1	left	0.166	1.300	0.216	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.8	25.29	0.01	10 mm	1	1075M	N/A	1:1	back	0.452	1.125	0.509	A33
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.8	25.29	0.01	10 mm	1	1075M	N/A	1:1	front	0.293	1.125	0.330	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.8	25.29	0.03	10 mm	1	1075M	N/A	1:1	bottom	0.239	1.125	0.269	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.8	25.29	0.01	10 mm	1	1075M	N/A	1:1	right	0.350	1.125	0.394	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.8	25.29	0.05	10 mm	1	1075M	N/A	1:1	left	0.175	1.125	0.197	
836.60	190	GSM 850	GPRS	32.7	31.86	-0.04	10 mm	N/A	1075M	2	1:4.15	back	0.332	1.213	0.403	
836.60	190	GSM 850	GPRS	32.7	31.86	-0.12	10 mm	N/A	1075M	2	1:4.15	front	0.240	1.213	0.291	
836.60	190	GSM 850	GPRS	32.7	31.86	-0.07	10 mm	N/A	1075M	2	1:4.15	bottom	0.206	1.213	0.250	
836.60	190	GSM 850	GPRS	32.7	31.86	0.01	10 mm	N/A	1075M	2	1:4.15	right	0.358	1.213	0.434	A35
836.60	190	GSM 850	GPRS	32.7	31.86	-0.11	10 mm	N/A	1075M	2	1:4.15	left	0.176	1.213	0.213	
836.60	4183	UMTS 850	RMC	25.5	24.74	-0.01	10 mm	52	1075M	N/A	1:1	back	0.394	1.191	0.469	A37
836.60	4183	UMTS 850	RMC	25.5	24.74	0.13	10 mm	52	1075M	N/A	1:1	front	0.322	1.191	0.384	
836.60	4183	UMTS 850	RMC	25.5	24.74	-0.02	10 mm	52	1075M	N/A	1:1	bottom	0.235	1.191	0.280	
836.60	4183	UMTS 850	RMC	25.5	24.74	0.04	10 mm	52	1075M	N/A	1:1	right	0.392	1.191	0.467	
836.60	4183	UMTS 850	RMC	25.5	24.74	0.03	10 mm	52	1075M	N/A	1:1	left	0.202	1.191	0.241	
1732.40	1412	UMTS 1750	RMC	19.5	19.48	0.03	10 mm	4	1078M	N/A	1:1	back	0.497	1.005	0.499	
1732.40	1412	UMTS 1750	RMC	19.5	19.48	0.09	10 mm	4	1078M	N/A	1:1	front	0.476	1.005	0.478	
1712.40	1312	UMTS 1750	RMC	19.5	19.50	0.02	10 mm	4	1078M	N/A	1:1	bottom	0.945	1.000	0.945	A39
1732.40	1412	UMTS 1750	RMC	19.5	19.48	0.00	10 mm	4	1078M	N/A	1:1	bottom	0.824	1.005	0.828	
1752.60	1513	UMTS 1750	RMC	19.5	19.38	0.00	10 mm	4	1078M	N/A	1:1	bottom	0.898	1.028	0.923	
1732.40	1412	UMTS 1750	RMC	19.5	19.48	0.12	10 mm	4	1078M	N/A	1:1	right	0.068	1.005	0.068	
1732.40	1412	UMTS 1750	RMC	19.5	19.48	0.12	10 mm	4	1078M	N/A	1:1	left	0.082	1.005	0.082	
1712.40	1312	UMTS 1750	RMC	19.5	19.50	0.08	10 mm	4	1078M	N/A	1:1	bottom	0.934	1.000	0.934	
1880.00	600	PCS CDMA	EVDO Rev. 0	19.5	18.61	-0.01	10 mm	55	1075M	N/A	1:1	back	0.478	1.227	0.587	
1880.00	600	PCS CDMA	EVDO Rev. 0	19.5	18.61	-0.01	10 mm	55	1075M	N/A	1:1	front	0.407	1.227	0.499	
1851.25	25	PCS CDMA	EVDO Rev. 0	19.5	18.67	-0.01	10 mm	55	1075M	N/A	1:1	bottom	0.837	1.211	1.014	
1880.00	600	PCS CDMA	EVDO Rev. 0	19.5	18.61	-0.08	10 mm	55	1075M	N/A	1:1	bottom	0.841	1.227	1.032	
1908.75	1175	PCS CDMA	EVDO Rev. 0	19.5	18.63	0.01	10 mm	55	1075M	N/A	1:1	bottom	0.923	1.222	1.128	A41
1880.00	600	PCS CDMA	EVDO Rev. 0	19.5	18.61	0.00	10 mm	55	1075M	N/A	1:1	right	0.069	1.227	0.085	
1880.00	600	PCS CDMA	EVDO Rev. 0	19.5	18.61	-0.01	10 mm	55	1075M	N/A	1:1	left	0.056	1.227	0.069	
1880.00	661	GSM 1900	GPRS	23.5	23.50	-0.20	10 mm	N/A	1078M	4	1:2.076	back	0.417	1.000	0.417	
1880.00	661	GSM 1900	GPRS	23.5	23.50	-0.07	10 mm	N/A	1078M	4	1:2.076	front	0.441	1.000	0.441	
1850.20	512	GSM 1900	GPRS	23.5	23.31	-0.06	10 mm	N/A	1078M	4	1:2.076	bottom	0.797	1.045	0.833	
1880.00	661	GSM 1900	GPRS	23.5	23.50	-0.02	10 mm	N/A	1078M	4	1:2.076	bottom	0.885	1.000	0.885	
1909.80	810	GSM 1900	GPRS	23.5	23.18	-0.08	10 mm	N/A	1078M	4	1:2.076	bottom	0.907	1.076	0.976	A43
1880.00	661	GSM 1900	GPRS	23.5	23.50	0.06	10 mm	N/A	1078M	4	1:2.076	right	0.067	1.000	0.067	
1880.00	661	GSM 1900	GPRS	23.5	23.50	-0.09	10 mm	N/A	1078M	4	1:2.076	left	0.054	1.000	0.054	
1880.00	9400	UMTS 1900	RMC	19.5	19.28	-0.02	10 mm	26	1075M	N/A	1:1	back	0.533	1.052	0.561	
1880.00	9400	UMTS 1900	RMC	19.5	19.28	-0.02	10 mm	26	1075M	N/A	1:1	front	0.492	1.052	0.518	
1852.40	9262	UMTS 1900	RMC	19.5	19.40	0.01	10 mm	26	1075M	N/A	1:1	bottom	0.492	1.032	0.861	
1880.00	9400	UMTS 1900	RMC	19.5	19.40	-0.02	10 mm	26	1075M	N/A	1:1	bottom	0.935	1.052	0.984	
1907.60	9538	UMTS 1900	RMC	19.5	19.28	0.19	10 mm	26	1075M	N/A	1:1	bottom	1.190	1.052	1.232	A45
1880.00	9538	UMTS 1900	RMC	19.5	19.35	-0.13	10 mm	26	1075M	N/A N/A	1:1	right	0.074	1.035	0.078	A45
1880.00	9400	UMTS 1900	RMC	19.5	19.28	0.02	10 mm	26	1075M	N/A N/A	1:1	left	0.074	1.052	0.078	
1907.60	9538	UMTS 1900	RMC	19.5	19.28	-0.05	10 mm	26	1075M	N/A	1:1	bottom	1.080	1.052	1.118	
1807.00	9036		C95.1 1992 - S			-0.05	10 /11111	20	1075W	IVA	1.1	Body	1.000	1.033	1.110	
			Spatial Peak									V/kg (mV				
		Uncontrolled	Exposure/Gen	eral Populati	on						averag	ed over 1	gram			

Note: Blue entry represents variability measurement.

FCC ID: A3LSMG981U	PCTEST'	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 224 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 221 of 298

Table 11-44 LTE Band 71 Hotspot SAR

											Sport	57 (1)								
								ME	EASURE	MENT RE	SULTS									
FRE	EQUENCY	,	Mode	Bandwidth	Ant State	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	-0.16	0	0433M	QPSK	1	0	10 mm	back	1:1	0.262	1.435	0.376	A47
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	-0.11	1	0433M	QPSK	50	0	10 mm	back	1:1	0.230	1.432	0.329	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	0.04	0	0433M	QPSK	1	0	10 mm	front	1:1	0.217	1.435	0.311	
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	-0.01	1	0433M	QPSK	50	0	10 mm	front	1:1	0.169	1.432	0.242	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	0.01	0	0433M	QPSK	1	0	10 mm	bottom	1:1	0.105	1.435	0.151	
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	0.00	1	0433M	QPSK	50	0	10 mm	bottom	1:1	0.099	1.432	0.142	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	-0.08	0	0433M	QPSK	1	0	10 mm	right	1:1	0.117	1.435	0.168	
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	-0.02	1	0433M	QPSK	50	0	10 mm	right	1:1	0.103	1.432	0.147	
680.50	133297	Mid	LTE Band 71	20	14	25.8	24.23	0.09	0	0433M	QPSK	1	0	10 mm	left	1:1	0.116	1.435	0.166	
680.50	133297	Mid	LTE Band 71	20	14	24.8	23.24	0.00	1	0433M	QPSK	50	0	10 mm	left	1:1	0.100	1.432	0.143	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT									Body	_				
				Spatial P	eak				1					1.6 W	/kg (mW	//g)				
			Uncontrolled	Exposure/0	General Po	pulation								average	d over 1	gram				

Table 11-45 LTE Band 12 Hotspot SAR

								ME	ASUREN	IENT RE	SULTS									
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	С	h.		[2]		Power [dBm]	r ower tability	Dinit [dD]		Number							(W/kg)	1 40101	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.06	0	0433M	QPSK	1	49	10 mm	back	1:1	0.333	1.503	0.500	A49
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	-0.05	1	0433M	QPSK	25	12	10 mm	back	1:1	0.280	1.479	0.414	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.03	0	0433M	QPSK	1	49	10 mm	front	1:1	0.272	1.503	0.409	
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	-0.02	1	0433M	QPSK	25	12	10 mm	front	1:1	0.225	1.479	0.333	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.12	0	0433M	QPSK	1	49	10 mm	bottom	1:1	0.161	1.503	0.242	
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	-0.04	1	0433M	QPSK	25	12	10 mm	bottom	1:1	0.125	1.479	0.185	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	-0.10	0	0433M	QPSK	1	49	10 mm	right	1:1	0.253	1.503	0.380	
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	-0.12	1	0433M	QPSK	25	12	10 mm	right	1:1	0.208	1.479	0.308	
707.50	23095	Mid	LTE Band 12	10	52	25.8	24.03	0.05	0	0433M	QPSK	1	49	10 mm	left	1:1	0.186	1.503	0.280	
707.50	23095	Mid	LTE Band 12	10	52	24.8	23.10	0.03	1	0433M	QPSK	25	12	10 mm	left	1:1	0.154	1.479	0.228	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT									Body					
				Spatial Po	eak									1.6 W	//kg (mV	V/g)				
			Uncontrolled	Exposure/0	General Po	pulation								average	ed over 1	gram				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 222 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 222 of 298

Table 11-46 LTF Band 13 Hotspot SAR

									iiiu i	J 110t	spor s	יוחי								
								ME	ASUREN	IENT RE	SULTS									
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[WHZ]		Power [dBm]	Power [abm]	Drift (aB)		Number							(W/kg)	Factor	(W/kg)	į
782.00	23230	Mid	LTE Band 13	10	52	25.8	24.08	-0.13	0	0433M	QPSK	1	0	10 mm	back	1:1	0.349	1.486	0.519	A51
782.00	23230	Mid	LTE Band 13	10	52	24.8	23.04	-0.11	1	0433M	QPSK	25	0	10 mm	back	1:1	0.284	1.500	0.426	
782.00	23230	Mid	LTE Band 13	10	52	25.8	24.08	0.06	0	0433M	QPSK	1	0	10 mm	front	1:1	0.278	1.486	0.413	
782.00	23230	Mid	LTE Band 13	10	52	24.8	23.04	0.05	1	0433M	QPSK	25	0	10 mm	front	1:1	0.225	1.500	0.338	
782.00	23230	Mid	LTE Band 13	10	52	25.8	24.08	0.02	0	0433M	QPSK	1	0	10 mm	bottom	1:1	0.161	1.486	0.239	
782.00	23230	Mid	LTE Band 13	10	52	24.8	23.04	0.04	1	0433M	QPSK	25	0	10 mm	bottom	1:1	0.128	1.500	0.192	
782.00	23230	Mid	LTE Band 13	10	52	25.8	24.08	-0.03	0	0433M	QPSK	1	0	10 mm	right	1:1	0.214	1.486	0.318	
782.00	23230	Mid	LTE Band 13	10	52	24.8	23.04	-0.01	1	0433M	QPSK	25	0	10 mm	right	1:1	0.178	1.500	0.267	
782.00	23230	Mid	LTE Band 13	10	52	25.8	24.08	0.02	0	0433M	QPSK	1	0	10 mm	left	1:1	0.189	1.486	0.281	
782.00	23230	Mid	LTE Band 13	10	52	24.8	23.04	0.04	1	0433M	QPSK	25	0	10 mm	left	1:1	0.146	1.500	0.219	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT				•					Body					
				Spatial Po	eak									1.6 W	//kg (m\	V/g)				
			Uncontrolled	Exposure/0	General Po	pulation			<u> </u>					average	ed over 1	gram				

Table 11-47 LTE Band 14 Hotspot SAR

								ME	ASUREN	IENT RE	SULTS									
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[WHZ]		Power [dBm]	Power (abm)	Drift [aB]		Number							(W/kg)	Factor	(W/kg)	
793.00	23330	Mid	LTE Band 14	10	58	25.8	24.06	-0.12	0	0433M	QPSK	1	0	10 mm	back	1:1	0.392	1.493	0.585	A53
793.00	23330	Mid	LTE Band 14	10	58	24.8	22.99	-0.11	1	0433M	QPSK	25	0	10 mm	back	1:1	0.310	1.517	0.470	
793.00	23330	Mid	LTE Band 14	10	58	25.8	24.06	0.01	0	0433M	QPSK	1	0	10 mm	front	1:1	0.319	1.493	0.476	
793.00	23330	Mid	LTE Band 14	10	58	24.8	22.99	0.01	1	0433M	QPSK	25	0	10 mm	front	1:1	0.252	1.517	0.382	
793.00	23330	Mid	LTE Band 14	10	58	25.8	24.06	0.02	0	0433M	QPSK	1	0	10 mm	bottom	1:1	0.175	1.493	0.261	
793.00	23330	Mid	LTE Band 14	10	58	24.8	22.99	-0.01	1	0433M	QPSK	25	0	10 mm	bottom	1:1	0.134	1.517	0.203	
793.00	23330	Mid	LTE Band 14	10	58	25.8	24.06	-0.02	0	0433M	QPSK	1	0	10 mm	right	1:1	0.280	1.493	0.418	
793.00	23330	Mid	LTE Band 14	10	58	24.8	22.99	0.03	1	0433M	QPSK	25	0	10 mm	right	1:1	0.247	1.517	0.375	
793.00	23330	Mid	LTE Band 14	10	58	25.8	24.06	0.05	0	0433M	QPSK	1	0	10 mm	left	1:1	0.223	1.493	0.333	
793.00	23330	Mid	LTE Band 14	10	58	24.8	22.99	0.05	1	0433M	QPSK	25	0	10 mm	left	1:1	0.188	1.517	0.285	
			ANSI / IEEE			LIMIT									Body					
				Spatial Po	eak				1					1.6 W	//kg (mV	V/g)				
			Uncontrolled	Exposure/0	General Po	pulation								average	ed over 1	gram				

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 222 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 223 of 298

Table 11-48 LTE Band 26 (Cell) Hotspot SAR

								Jana	2010	, , , , , , , , , , , , , , , , , , , 	iotspi	J. U	711							
								ME	ASUREN	IENT RE	SULTS									
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[WITZ]		Power [dBm]	rower [dbill]	Driit [ub]		Number							(W/kg)	racioi	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	25.8	24.34	0.03	0	0433M	QPSK	1	0	10 mm	back	1:1	0.342	1.400	0.479	A55
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	24.8	23.34	-0.01	1	0433M	QPSK	36	18	10 mm	back	1:1	0.307	1.400	0.430	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	25.8	24.34	0.02	0	0433M	QPSK	1	0	10 mm	front	1:1	0.221	1.400	0.309	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	24.8	23.34	0.01	1	0433M	QPSK	36	18	10 mm	front	1:1	0.197	1.400	0.276	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	25.8	24.34	0.05	0	0433M	QPSK	1	0	10 mm	bottom	1:1	0.194	1.400	0.272	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	24.8	23.34	0.07	1	0433M	QPSK	36	18	10 mm	bottom	1:1	0.167	1.400	0.234	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	25.8	24.34	0.00	0	0433M	QPSK	1	0	10 mm	right	1:1	0.279	1.400	0.391	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	24.8	23.34	0.02	1	0433M	QPSK	36	18	10 mm	right	1:1	0.230	1.400	0.322	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	25.8	24.34	0.02	0	0433M	QPSK	1	0	10 mm	left	1:1	0.171	1.400	0.239	
831.50	26865	Mid	LTE Band 26 (Cell)	15	0	24.8	23.34	0.05	1	0433M	QPSK	36	18	10 mm	left	1:1	0.134	1.400	0.188	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT									Body					
				Spatial P	eak									1.6 W	//kg (m\	V/g)				
			Uncontrolled	Exposure/0	General Po	pulation								average	ed over 1	gram				

Table 11-49 LTE Band 5 (Cell) Hotspot SAR

										(,		0								-	
									MEAS	JREMEN	IT RESU	LTS										
1 CC Uplink 2 CC Uplink	Component Carrier	FRE	EQUENCY	ì.	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot#
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	0	25.8	24.12	0.12	0	1010M	QPSK	1	0	10 mm	back	1:1	0.353	1.472	0.520	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	0	24.8	23.12	0.13	1	1010M	QPSK	25	0	10 mm	back	1:1	0.286	1.472	0.421	
	PCC	836.50	20525	Mid	LTE Band 5 (Cell)	10								1	0							
2 CC Uplink	scc	829.30	20453	Mid	LTE Band 5 (Cell)	5	0	25.8	24.33	0.03	0	1010M	QPSK	1	24	10 mm	back	1:1	0.373	1.403	0.523	A57
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	0	25.8	24.12	0.03	0	1010M	QPSK	1	0	10 mm	front	1:1	0.220	1.472	0.324	
1 CC Uplink											1	1010M	QPSK	25	0	10 mm	front	1:1	0.181	1.472	0.266	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	25.8	24.12	0.02	0	1010M	QPSK	1	0	10 mm	bottom	1:1	0.233	1.472	0.343	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	24.8	23.12	0.03	1	1010M	QPSK	25	0	10 mm	bottom	1:1	0.190	1.472	0.280	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	25.8	24.12	0.03	0	1010M	QPSK	1	0	10 mm	right	1:1	0.308	1.472	0.453	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	52	24.8	23.12	0.05	1	1010M	QPSK	25	0	10 mm	right	1:1	0.254	1.472	0.374	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	1	25.8	24.12	0.04	0	1010M	QPSK	1	0	10 mm	left	1:1	0.166	1.472	0.244	
1 CC Uplink	N/A	836.50	20525	Mid	LTE Band 5 (Cell)	10	1	24.8	23.12	0.05	1	1010M	QPSK	25	0	10 mm	left	1:1	0.138	1.472	0.203	
					EE C95.1 1992 - Spatial Peal ed Exposure/Ge	k											Body //kg (mV ed over 1	•				

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 224 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 224 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	PEV 24.4

Table 11-50 LTE Band 66 (AWS) Hotspot SAR

								_ Dai		_	IT RESU		01 07	•••								
1 CC Uplink 2	Component	EDI	EQUENCY	,		Bandwidth		Maximum	Conducted	Power	II KESO	Device							SAR (1g)	Scaling	Reported SAR	
CC Uplink	Carrier	MHz	С		Mode	[MHz]	Ant State	Allowed Power [dBm]	Power [dBm]	Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	(W/kg)	Factor	(1g) (W/kg)	Plot #
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	18.91	0.04	0	1010M	QPSK	1	0	10 mm	back	1:1	0.372	1.146	0.426	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	19.00	-0.01	0	1010M	QPSK	50	25	10 mm	back	1:1	0.368	1.122	0.413	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	18.91	0.05	0	1010M	QPSK	1	0	10 mm	front	1:1	0.355	1.146	0.407	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	19.00	0.02	0	1010M	QPSK	50	25	10 mm	front	1:1	0.349	1.122	0.392	
1 CC Uplink	N/A	1720.00	132072	Low	LTE Band 66 (AWS)	20	26	19.5	18.50	0.06	0	1010M	QPSK	1	50	10 mm	bottom	1:1	0.514	1.259	0.647	
1 CC Uplink	N/A	1745.00	132322	Mid	LTE Band 66 (AWS)	20	26	19.5	18.90	0.00	0	1010M	QPSK	1	50	10 mm	bottom	1:1	0.651	1.148	0.747	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	18.91	0.02	0	1010M	QPSK	1	0	10 mm	bottom	1:1	0.715	1.146	0.819	
1 CC Uplink	N/A	1775.00	132622	High	LTE Band 66 (AWS)	10	26	19.5	18.41	-0.04	0	1010M	QPSK	1	0	10 mm	bottom	1:1	0.624	1.285	0.802	
1 CC Uplink	N/A	1720.00	132072	Low	LTE Band 66 (AWS)	20	26	19.5	18.87	0.07	0	1010M	QPSK	50	25	10 mm	bottom	1:1	0.547	1.156	0.632	
1 CC Uplink	N/A	1745.00	132322	Mid	LTE Band 66 (AWS)	20	26	19.5	18.96	-0.03	0	1010M	QPSK	50	25	10 mm	bottom	1:1	0.673	1.132	0.762	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	19.00	0.01	0	1010M	QPSK	50	25	10 mm	bottom	1:1	0.726	1.122	0.815	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	18.90	0.00	0	1010M	QPSK	100	0	10 mm	bottom	1:1	0.712	1.148	0.817	
CA_66C 2 CC	PCC	1770.00	132572	High	LTE Band 66 (AWS)	20							0.001/	1	0							
Uplink	scc	1750.20	132374	High	LTE Band 66 (AWS)	20	26	19.5	19.39	0.00	0	1010M	QPSK	1	99	10 mm	bottom	1:1	0.811	1.026	0.832	A59
CA_66B 2 CC	PCC	1775.00	132622	High	LTE Band 66 (AWS)	10	26	19.5	18.82	0.00	0	1010M	QPSK	1	0	40	h - m	1:1	0.697	1.169	0.815	
Uplink	scc	1765.10	132523	High	LTE Band 66 (AWS)	10	20	19.5	18.82	0.03	0	101000	UPSK	1	49	10 mm	bottom	1:1	0.697	1.169	0.815	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	18.91	0.14	0	1010M	QPSK	1	0	10 mm	right	1:1	0.056	1.146	0.064	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	19.5	19.00	0.01	0	1010M	QPSK	50	25	10 mm	right	1:1	0.058	1.122	0.065	
1 CC Uplink	(AWS)									0.18	0	1010M	QPSK	1	0	10 mm	left	1:1	0.063	1.146	0.072	
1 CC Uplink	N/A 1770.00 132572 High LTE Band 66 20 26 19.5 19.00											1010M	QPSK	50	25	10 mm	left	1:1	0.069	1.122	0.077	
			Al	NSI / IE	EE C95.1 1992 - Spatial Peal		VIIT									16 W	Body //kg (mV	V/a)				
			Unc	ontroll	ed Exposure/Ge		ation										ed over 1	-				

Table 11-51 LTE Band 25 (PCS) Hotspot SAR

								anu	23 (F	CO) I	iotsp	UL S	AN							
								ME	ASUREN	IENT RE	SULTS									
FRI	EQUENCY	1	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	С	h.		[MHZ]		Power [dBm]	Power [abm]	рин (ав)		Number							(W/kg)	Factor	(W/kg)	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	18.21	0.01	0	1077M	QPSK	1	0	10 mm	back	1:1	0.484	1.199	0.580		
1882.50	26365	Mid	LTE Band 25 (PCS)	20	18.29	0.00	0	1077M	QPSK	50	0	10 mm	back	1:1	0.529	1.178	0.623			
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.21	0.01	0	1077M	QPSK	1	0	10 mm	front	1:1	0.438	1.199	0.525	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.29	-0.03	0	1077M	QPSK	50	0	10 mm	front	1:1	0.473	1.178	0.557	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	19.0	18.20	-0.08	0	1077M	QPSK	1	0	10 mm	bottom	1:1	0.795	1.202	0.956	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.21	0.00	0	1077M	QPSK	1	0	10 mm	bottom	1:1	0.876	1.199	1.050	
1905.00	26590	High	LTE Band 25 (PCS)	20	26	19.0	17.94	-0.15	0	1077M	QPSK	1	99	10 mm	bottom	1:1	0.978	1.276	1.248	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	19.0	18.27	-0.05	0	1077M	QPSK	50	25	10 mm	bottom	1:1	0.862	1.183	1.020	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.29	-0.03	0	1077M	QPSK	50	0	10 mm	bottom	1:1	0.962	1.178	1.133	
1905.00	26590	High	LTE Band 25 (PCS)	20	26	19.0	17.97	-0.07	0	1077M	QPSK	50	50	10 mm	bottom	1:1	0.987	1.268	1.252	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.12	-0.10	0	1077M	QPSK	100	0	10 mm	bottom	1:1	0.991	1.225	1.214	A61
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.21	-0.02	0	1077M	QPSK	1	0	10 mm	right	1:1	0.085	1.199	0.102	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.29	-0.13	0	1077M	QPSK	50	0	10 mm	right	1:1	0.095	1.178	0.112	
1882.50	26365 Mid LTE Band 25 20 26 19.0 18.21								0	1077M	QPSK	1	0	10 mm	left	1:1	0.058	1.199	0.070	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	19.0	18.29	-0.09	0	1077M	QPSK	50	0	10 mm	left	1:1	0.062	1.178	0.073	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT									Body					
				Spatial P	eak									1.6 V	//kg (m\	V/g)				
			Uncontrolled	Exposure/	General Po	pulation								average	ed over 1	gram				

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 225 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 225 of 298

Table 11-52 LTE Band 2 (PCS) Hotspot SAR

								ME		IENT RE	SULTS									
FRE	QUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[111112]		Power [dBm]	rower [dbiii]	Driit [ub]		Number							(W/kg)	1 actor	(W/kg)	ldot
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.18	0.01	0	1077M	QPSK	1	99	10 mm	back	1:1	0.467	1.208	0.564	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.32	0.00	0	1077M	QPSK	50	50	10 mm	back	1:1	0.469	1.169	0.548	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.18	0.09	0	1077M	QPSK	1	99	10 mm	front	1:1	0.404	1.208	0.488	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.32	-0.02	0	1077M	QPSK	50	50	10 mm	front	1:1	0.420	1.169	0.491	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.18	-0.01	0	1077M	QPSK	1	99	10 mm	bottom	1:1	0.858	1.208	1.036	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	19.0	18.05	-0.04	0	1077M	QPSK	1	0	10 mm	bottom	1:1	0.877	1.245	1.092	
1900.00							-0.12	0	1077M	QPSK	1	0	10 mm	bottom	1:1	0.926	1.327	1.229		
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.32	-0.09	0	1077M	QPSK	50	50	10 mm	bottom	1:1	0.839	1.169	0.981	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	19.0	18.17	-0.05	0	1077M	QPSK	50	25	10 mm	bottom	1:1	0.982	1.211	1.189	A63
1900.00	19100	High	LTE Band 2 (PCS)	20	55	19.0	17.83	-0.06	0	1077M	QPSK	50	50	10 mm	bottom	1:1	0.937	1.309	1.227	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.15	-0.03	0	1077M	QPSK	100	0	10 mm	bottom	1:1	0.828	1.216	1.007	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.18	-0.15	0	1077M	QPSK	1	99	10 mm	right	1:1	0.079	1.208	0.095	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.32	0.15	0	1077M	QPSK	50	50	10 mm	right	1:1	0.075	1.169	0.088	
1860.00	00 18700 Low LTE Band 2 (PCS) 20 55 19.0 18.18								0	1077M	QPSK	1	99	10 mm	left	1:1	0.049	1.208	0.059	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	19.0	18.32	0.03	0	1077M	QPSK	50	50	10 mm	left	1:1	0.053	1.169	0.062	
			ANSI / IEEE	C95.1 1992	- SAFETY	LIMIT									Body					
				Spatial P	eak									1.6 W	//kg (mV	V/g)				
			Uncontrolled	Exposure/0	General Po	pulation								average	ed over 1	gram				

Table 11-53 LTE Band 30 Hotspot SAR

								Dank	<u> </u>	otspo	יניטה								
								MEASU	IREMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number				.,			(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.47	-0.03	0	0932M	QPSK	1	25	10 mm	back	1:1	0.329	1.268	0.417	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.46	0.00	0	0932M	QPSK	25	12	10 mm	back	1:1	0.334	1.271	0.425	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.47	0.02	0	0932M	QPSK	1	25	10 mm	front	1:1	0.319	1.268	0.404	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.46	-0.04	0	0932M	QPSK	25	12	10 mm	front	1:1	0.325	1.271	0.413	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.47	-0.13	0	0932M	QPSK	1	25	10 mm	bottom	1:1	0.964	1.268	1.222	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.46	-0.09	0	0932M	QPSK	25	12	10 mm	bottom	1:1	0.977	1.271	1.242	A65
2310.00	27710	Mid	LTE Band 30	10	19.5	18.40	-0.08	0	0932M	QPSK	50	0	10 mm	bottom	1:1	0.941	1.288	1.212	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.47	0.17	0	0932M	QPSK	1	25	10 mm	right	1:1	0.036	1.268	0.046	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.46	0.16	0	0932M	QPSK	25	12	10 mm	right	1:1	0.037	1.271	0.047	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.47	0.08	0	0932M	QPSK	1	25	10 mm	left	1:1	0.048	1.268	0.061	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.46	-0.16	0	0932M	QPSK	25	12	10 mm	left	1:1	0.049	1.271	0.062	
2310.00	27710	Mid	LTE Band 30	10	19.5	18.46	-0.10	0	0932M	QPSK	25	12	10 mm	bottom	1:1	0.958	1.271	1.218	
		,	ANSI / IEEE C95.	1 1992 - SA atial Peak	FETY LIMIT								16 W	Body //kg (mV	V/a)				
		Un	controlled Expo		al Populatio	n								ed over 1	•				
		UI	controlled Expo	July Oction	ui i opulatio								uvorage	U 0101 1	grani				

Note: Blue entry represents variability measurement.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 000 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 226 of 298

Table 11-54 LTE Band 7 Hotspot SAR

										RESULT		_							
FRE	QUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[2]	Power [dBm]	r ower [abin]	Dinit [uD]		Number							(W/kg)	1 4 6 6 1	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.10	-0.19	0	1014M	QPSK	1	50	10 mm	back	1:1	0.377	1.096	0.413	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.13	0.06	0	1014M	QPSK	50	50	10 mm	back	1:1	0.389	1.089	0.424	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.10	-0.04	0	1014M	QPSK	1	50	10 mm	front	1:1	0.251	1.096	0.275	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.13	-0.06	0	1014M	QPSK	50	50	10 mm	front	1:1	0.256	1.089	0.279	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.10	-0.02	0	1014M	QPSK	1	50	10 mm	bottom	1:1	0.675	1.096	0.740	
2510.00	20850	Low	LTE Band 7	20	19.5	19.03	-0.08	0	1014M	QPSK	50	25	10 mm	bottom	1:1	0.791	1.114	0.881	A67
2535.00	21100	Mid	LTE Band 7	20	19.5	19.13	-0.01	0	1014M	QPSK	50	50	10 mm	bottom	1:1	0.687	1.089	0.748	
2560.00	21350	High	LTE Band 7	20	19.5	19.11	-0.05	0	1014M	QPSK	50	0	10 mm	bottom	1:1	0.702	1.094	0.768	
2560.00	21350	High	LTE Band 7	20	19.5	19.07	-0.06	0	1014M	QPSK	100	0	10 mm	bottom	1:1	0.705	1.104	0.778	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.10	0.15	0	1014M	QPSK	1	50	10 mm	right	1:1	0.034	1.096	0.037	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.13	0.12	0	1014M	QPSK	50	50	10 mm	right	1:1	0.037	1.089	0.040	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.10	0.02	0	1014M	QPSK	1	50	10 mm	left	1:1	0.063	1.096	0.069	
2535.00	21100	Mid	LTE Band 7	20	19.5	19.13	-0.02	0	1014M	QPSK	50	50	10 mm	left	1:1	0.067	1.089	0.073	
			ANSI / IEEE C95.		FETY LIMIT				<u> </u>			·		Body		·			
			•	atial Peak										//kg (mV	•				
		Ur	ncontrolled Expo	sure/Gener	al Population	n							average	ed over 1	gram				

Table 11-55 LTE Band 48 Hotspot SAR

								IL De					<u> </u>								
								M	EASURE	MENTR	ESULTS										
1 CC Uplink 2 CC Uplink	Component	FRI	EQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
CC Uplink	Carrier	MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	\Box
1 CC Uplink	N/A	3560.00	55340	Low	LTE Band 48	20	23.5	22.59	-0.02	0	0384S	QPSK	1	50	10 mm	back	1:1.58	0.558	1.233	0.688	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	23.5	22.62	0.10	0	0384S	QPSK	1	50	10 mm	back	1:1.58	0.574	1.225	0.703	
1 CC Uplink	N/A	3646.70	56207	Mid- High	LTE Band 48	20	23.5	22.61	-0.07	0	0384S	QPSK	1	50	10 mm	back	1:1.58	0.566	1.227	0.694	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	23.5	22.61	0.01	0	0384S	QPSK	1	50	10 mm	back	1:1.58	0.545	1.227	0.669	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	22.5	21.68	0.02	1	0384S	QPSK	50	0	10 mm	back	1:1.58	0.463	1.208	0.559	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	22.5	21.62	-0.01	1	0384S	QPSK	100	0	10 mm	back	1:1.58	0.438	1.225	0.537	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	23.5	22.62	-0.03	0	0384S	QPSK	1	50	10 mm	front	1:1.58	0.283	1.225	0.347	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	22.5	21.68	-0.06	1	0384S	QPSK	50	0	10 mm	front	1:1.58	0.230	1.208	0.278	
1 CC Uplink									-0.07	0	0384S	QPSK	1	50	10 mm	top	1:1.58	0.693	1.233	0.854	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	23.5	22.46	-0.05	0	0384S	QPSK	1	0	10 mm	top	1:1.58	0.685	1.271	0.871	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	23.5	22.62	0.11	0	0384S	QPSK	1	50	10 mm	top	1:1.58	0.698	1.225	0.855	
1 CC Uplink	N/A	3646.70	56207	Mid- High	LTE Band 48	20	23.5	22.61	0.04	0	0384\$	QPSK	1	50	10 mm	top	1:1.58	0.566	1.227	0.694	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	23.5	22.61	0.03	0	0384S	QPSK	1	50	10 mm	top	1:1.58	0.535	1.227	0.656	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	22.5	21.68	0.03	1	0384S	QPSK	50	0	10 mm	top	1:1.58	0.426	1.208	0.515	
1 CC Uplink	N/A	3690.00	56640	High	LTE Band 48	20	22.5	21.62	0.03	1	0384S	QPSK	100	0	10 mm	top	1:1.58	0.320	1.225	0.392	
2 CC Uplink	PCC	3603.30	55773	Low- Mid	LTE Band 48	20	23.5	23.32	0.13	0	0384S	QPSK	1	0	10 mm	top	1:1.58	0.811	1.042	0.845	A69
2 CC Opilitik	scc	3583.50	55575	Low- Mid	LTE Band 48	20	25.5	20.02	0.13	Ů	00040	QI SIC	1	99	10111111	юр	1.1.50	0.011	1.042	0.043	Aus
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	23.5	22.62	-0.08	0	0384S	QPSK	1	50	10 mm	left	1:1.58	0.249	1.225	0.305	
1 CC Uplink	N/A	3603.30	55773	Low- Mid	LTE Band 48	20	22.5	21.68	0.04	1	0384S	QPSK	50	0	10 mm	left	1:1.58	0.203	1.208	0.245	
2 CC Uplink										0	0384S	QPSK	1	0	10 mm	top	1:1.58	0.810	1.042	0.844	
2 GG Opilitik	SCC 3583.50 55575 LOW- Mid LTE Band 48 20										00040	QI'SK	1	99	10 111111	ЮР	1.1.36	0.010	1.042	0.044	
		ANSI	/ IEEE		1992 - SAFETY L	IMIT										Body	W(-)			·	
		Uncom	trollod		al Peak ire/General Popi	ulation										I/kg (mV ed over 1					
		Uncon	uonea	Exposu	re/General Popi	liation									average	u over 1	gram				

Note: Blue entry represents variability measurement.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 227 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 227 of 298

Table 11-56 LTE Band 41 Hotspot SAR

								MEAS		NT RESU	_										
1 CC Uplink 2 CC Uplink, Power Class	Component Carrier	FR MHz	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.73	-0.02	0	0932M	QPSK	1	50	10 mm	back	1:1.58	0.408	1.064	0.434	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.82	0.00	0	0932M	QPSK	50	25	10 mm	back	1:1.58	0.414	1.042	0.431	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.73	0.02	0	0932M	QPSK	1	50	10 mm	front	1:1.58	0.340	1.064	0.362	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.82	0.03	0	0932M	QPSK	50	25	10 mm	front	1:1.58	0.358	1.042	0.373	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	22.0	21.37	-0.12	0	0932M	QPSK	1	0	10 mm	bottom	1:1.58	0.917	1.156	1.060	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low- Mid	LTE Band 41	20	22.0	21.41	0.02	0	0932M	QPSK	1	99	10 mm	bottom	1:1.58	0.822	1.146	0.942	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.73	-0.06	0	0932M	QPSK	1	50	10 mm	bottom	1:1.58	0.844	1.064	0.898	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid- High	LTE Band 41	20	22.0	21.13	-0.11	0	0932M	QPSK	1	50	10 mm	bottom	1:1.58	0.793	1.222	0.969	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	22.0	21.24	-0.10	0	0932M	QPSK	1	50	10 mm	bottom	1:1.58	0.815	1.191	0.971	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	22.0	21.51	-0.09	0	0932M	QPSK	50	0	10 mm	bottom	1:1.58	0.960	1.119	1.074	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low- Mid	LTE Band 41	20	22.0	21.53	-0.09	0	0932M	QPSK	50	25	10 mm	bottom	1:1.58	0.852	1.114	0.949	
1 CC Uplink - Power Class 3											0932M	QPSK	50	25	10 mm	bottom	1:1.58	0.864	1.042	0.900	
1 CC Uplink - Power Class 3 N/A 2636.50 41055 Mid- High LTE Band 41 20 22.0 21.3:										0	0932M	QPSK	50	0	10 mm	bottom	1:1.58	1.010	1.167	1.179	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid- High	LTE Band 41	20	22.0	21.35	-0.18	0	0932M	QPSK	50	25	10 mm	bottom	1:1.58	0.947	1.161	1.099	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	22.0	21.40	-0.17	0	0932M	QPSK	50	50	10 mm	bottom	1:1.58	0.851	1.148	0.977	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.72	-0.15	0	0932M	QPSK	100	0	10 mm	bottom	1:1.58	0.792	1.067	0.845	
1 CC Uplink - Power Class 2	N/A	2636.50	41055	Mid- High	LTE Band 41	20	23.6	23.18	-0.14	0	0932M	QPSK	50	0	10 mm	bottom	1:2.31	0.972	1.102	1.071	
2 CC Uplink - Power Class 3	PCC	2636.50	41055	Mid- High	LTE Band 41	20	22.0	21.72	-0.10	0	0932M	QPSK	50	0	10 mm	bottom	1:1.58	1.070	1.067	1.142	
2 GG Opilik - I Gwel Class 3	scc	2616.70	40857	Mid- High	LTE Band 41	20	22.0	21.72	-0.10	Ů	0332W	QI SIX	50	50	10111111	DOMOIT	1.1.50	1.070	1.007	1.142	
2 CC Uplink - Power Class 2	PCC	2636.50	41055	Mid- High	LTE Band 41	20	23.6	23.60	-0.11	0	0932M	QPSK	50	0	10 mm	bottom	1:2.31	1.080	1.000	1.080	A71
2 GG Opinik 1 GWGI GIGGG 2	scc	2616.70	40857	Mid- High	LTE Band 41	20	20.0	20.00	0.11	Ů	OUOLIN	ar or	50	50	10 111111	DOMONI	1.2.01	1.000	1.000	1.000	7.0.1
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.73	0.16	0	0932M	QPSK	1	50	10 mm	right	1:1.58	0.032	1.064	0.034	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.82	0.11	0	0932M	QPSK	50	25	10 mm	right	1:1.58	0.036	1.042	0.038	
1 CC Uplink - Power Class 3	Uplink - Power Class 3 N/A 2593.00 40620 Mid LTE Band 41 20 22.0 21.73									0	0932M	QPSK	1	50	10 mm	left	1:1.58	0.084	1.064	0.089	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	22.0	21.82	0.07	0	0932M	QPSK	50	25	10 mm	left	1:1.58	0.084	1.042	0.088	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	22.0	21.51	-0.05	0	0932M	QPSK	50	0	10 mm	bottom	1:1.58	0.893	1.119	0.999	
2 CC Uplink - Power Class 2	PCC	2636.50	41055	Mid- High	LTE Band 41	20	23.6	23.60	-0.16	0	0932M	QPSK	50	0	10 mm	bottom	1:2.31	0.950	1.000	0.950	
5,000	SCC 2616.70 40857 Mid- High LTE Band 41 20												50	50							
		ANSI	/ IEEE (992 - SAFETY L al Peak	IMIT									164	Body V/kg (mV	Wa)				
		Uncont	rolled E		н Реак re/General Рорц	ılation										v/kg (mv ed over 1	-				

Note: Blue entry represents variability measurement.

Table 11-57 NR Band n71 Hotspot SAR

											iotopot o									
									MEAS	JREMEN [*]	T RESULTS									
FRE	EQUENCY		Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ci	h.		[MHZ]		Power [dBm]	Power [aBm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	<u> </u>
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	-0.03	0	1021M	DFT-S-OFDM QPSK	1	53	10 mm	back	1:1	0.294	1.422	0.418	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	-0.05	0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	back	1:1	0.298	1.406	0.419	A73
680.50	136100	Mid	NR Band n71	20	14	24.3	22.15	-0.08	1.5	1021M	CP-OFDM QPSK	1	1	10 mm	back	1:1	0.204	1.641	0.335	
680.50									0	1021M	DFT-S-OFDM QPSK	1	53	10 mm	front	1:1	0.229	1.422	0.326	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	0.01	0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	front	1:1	0.232	1.406	0.326	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	0.06	0	1021M	DFT-S-OFDM QPSK	1	53	10 mm	bottom	1:1	0.122	1.422	0.173	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	0.01	0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	bottom	1:1	0.126	1.406	0.177	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	0.15	0	1021M	DFT-S-OFDM QPSK	1	53	10 mm	right	1:1	0.117	1.422	0.166	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.32	0.02	0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	right	1:1	0.121	1.406	0.170	
680.50	136100	Mid	NR Band n71	20	14	25.8	24.27	-0.03	0	1021M	DFT-S-OFDM QPSK	1	53	10 mm	left	1:1	0.128	1.422	0.182	
680.50									0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	left	1:1	0.131	1.406	0.184	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT								Body						
				Spatial P	eak								1	.6 W/kg (ı	nW/g)					
		Uncontrolled Exposure/General Population											ave	raged ove	r 1 gram					

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 228 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 226 01 296

© 2020 PCTEST Engineering Laboratory, Inc.

Table 11-58 NR Band n5 (Cell) Hotspot SAR

							1417	Duii	<u> </u>	(00:	, Hotspot	<u> </u>	<u> </u>							
									MEASU	REMENT	RESULTS									
FRI	EQUENCY		Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cl	h.		[2]		Power [dBm]	r ower (abiii)	Dinit [dD]		Number							(W/kg)		(W/kg)	
836.50	167300	Mid	NR Band n5 (Cell)	20	0	25.8	24.53	0.01	0	1021M	DFT-S-OFDM QPSK	1	1	10 mm	back	1:1	0.335	1.340	0.449	
836.50	167300	Mid	NR Band n5 (Cell)	20	0	25.8	24.35	-0.01	0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	back	1:1	0.345	1.396	0.482	A75
836.50	167300	Mid	NR Band n5 (Cell)	20	0	24.3	23.01	0.06	1.5	1021M	CP-OFDM QPSK	1	1	10 mm	back	1:1	0.242	1.346	0.326	
836.50	167300	Mid	NR Band n5 (Cell)	20	0	25.8	24.53	0.01 0 1021M DFT-S-OFDMQPSK 1 1 1 10 mm front 1:1 0.226 1.340 0.303												
836.50	167300	Mid	NR Band n5 (Cell)	20	0	25.8	24.35	-0.02 0 1021M DFT-S-OFDMQPSK 50 28 10 mm front 1:1 0.225 1.396 0.314												
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.53	0.05	0	1021M	DFT-S-OFDM QPSK	1	1	10 mm	bottom	1:1	0.185	1.340	0.248	i
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.35	0.09	0	1021M	DFT-S-OFDM QPSK	50	28	10 mm	bottom	1:1	0.189	1.396	0.264	
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.53	0.01	0	1021M	DFT-S-OFDM QPSK	1	1	10 mm	right	1:1	0.264	1.340	0.354	i
836.50	167300	Mid	NR Band n5 (Cell)	20	52	25.8	24.35	0.02	0	1021M	DFT-S-OFDMQPSK	50	28	10 mm	right	1:1	0.260	1.396	0.363	
836.50	167300	Mid	NR Band n5 (Cell)	20	1	25.8	24.53	0.04	0	1021M	DFT-S-OFDM QPSK	1	1	10 mm	left	1:1	0.161	1.340	0.216	
836.50 167300 Mid NR Band n5 (Cell) 20 1 25.8 24.35									0	1021M	DFT-S-OFDMQPSK	50	28	10 mm	left	1:1	0.139	1.396	0.194	
			ANSI / IEEE	C95.1 1992	2 - SAFETY	LIMIT								Bod	у					
				Spatial P										6 W/kg (٠,					
			Uncontrolled	Exposure/0	General Po	pulation							aver	aged over	er 1 gram	1				

Table 11-59 NR Band n66 (AWS) Hotspot SAR

							1417 1	Juina	11100	(/////	o) Hotspot	. 07								
									MEASU	REMENT	RESULTS									
FRE	QUENCY	,	Mode	Bandwidth (MHz1	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	С	h.		[MHZ]		Power [dBm]	rower (abili)	Driit [db]		Number							(W/kg)	ractor	(W/kg)	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.09	0	1005M	DFT-S-OFDM QPSK	1	1	10 mm	back	1:1	0.543	1.005	0.546	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.11	0	1005M	DFT-S-OFDM QPSK	50	28	10 mm	back	1:1	0.520	1.005	0.523	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.08	0	1005M	DFT-S-OFDM QPSK	1	1	10 mm	front	1:1	0.483	1.005	0.485	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.06	0	1005M	DFT-S-OFDM QPSK	50	28	10 mm	front	1:1	0.460	1.005	0.462	
1720.00	344000	Low	NR Band n66 (AWS)	20	26	19.5	19.47	-0.13	0	1005M	DFT-S-OFDM QPSK	1	1	10 mm	bottom	1:1	0.700	1.007	0.705	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	19.5	19.42	-0.02	0	1005M	DFT-S-OFDM QPSK	1	104	10 mm	bottom	1:1	0.836	1.019	0.852	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	-0.06	0	1005M	DFT-S-OFDM QPSK	1:1	0.919	1.005	0.924					
1720.00	344000	Low	NR Band n66 (AWS)	20	26	19.5	19.39	-0.01	0	1005M	DFT-S-OFDM QPSK	50	0	10 mm	bottom	1:1	0.708	1.026	0.726	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	19.5	19.37	-0.04	0	1005M	DFT-S-OFDM QPSK	50	56	10 mm	bottom	1:1	0.815	1.030	0.839	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.00	0	1005M	DFT-S-OFDM QPSK	50	28	10 mm	bottom	1:1	0.908	1.005	0.913	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.45	-0.04	0	1005M	CP-OFDM QPSK	1	1	10 mm	bottom	1:1	0.924	1.012	0.935	A77
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.47	-0.01	0	1005M	DFT-S-OFDM QPSK	100	0	10 mm	bottom	1:1	0.905	1.007	0.911	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.16	0	1005M	DFT-S-OFDM QPSK	1	1	10 mm	right	1:1	0.078	1.005	0.078	
1770.00	NR Road age								0	1005M	DFT-S-OFDMQPSK	50	28	10 mm	right	1:1	0.074	1.005	0.074	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.06	0	1005M	DFT-S-OFDM QPSK	1	1	10 mm	left	1:1	0.088	1.005	0.088	
1770.00	354000	High	NR Band n66 (AWS)	20	26	19.5	19.48	0.14	0	1005M	DFT-S-OFDMQPSK	50	28	10 mm	left	1:1	0.080	1.005	0.080	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										·			Bod	,					
				Spatial P										6 W/kg (-					
			Uncontrolled	Exposure/0	General Po	pulation			ļ				ave	aged over	r 1 gran	1				

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 220 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 229 of 298

Table 11-60 NR Band n2 (PCS) Hotspot SAR

										•	RESULTS	<u> </u>								
FRE	EQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	DB Sizo	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.	mode	[MHz]	Ant State	Power [dBm]	Power [dBm]	Drift [dB]	MIFK [GD]	Number	Modulation	ND SIZE	ND Ollset	Spacing	Side	Daty Cycle	(W/kg)	Factor	(W/kg)	1101#
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	0.00	0	1020M	DFT-S-OFDM QPSK	1	1	10 mm	back	1:1	0.305	1.000	0.305	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	-0.05	0	1020M	DFT-S-OFDM QPSK	50	0	10 mm	back	1:1	0.315	1.000	0.315	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	-0.04	0	1020M	DFT-S-OFDM QPSK	1	1	10 mm	front	1:1	0.315	1.000	0.315	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	0.03	0	1020M	DFT-S-OFDM QPSK	50	0	10 mm	front	1:1	0.325	1.000	0.325	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	19.0	18.99	-0.12	0	1020M	DFT-S-OFDM QPSK	1	1	10 mm	bottom	1:1	0.803	1.002	0.805	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	-0.06	0	1020M	DFT-S-OFDM QPSK	1	1	10 mm	bottom	1:1	0.621	1.000	0.621	
1900.00	380000	High	NR Band n2 (PCS)	20	55	19.0	18.83	-0.10	0	1020M	DFT-S-OFDM QPSK	1	1	10 mm	bottom	1:1	0.839	1.040	0.873	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	19.0	18.97	-0.16	0	DFT-S-OFDM QPSK	50	0	10 mm	bottom	1:1	0.816	1.007	0.822		
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	-0.04	0	1020M	DFT-S-OFDM QPSK	50	0	10 mm	bottom	1:1	0.625	1.000	0.625	
1900.00	380000	High	NR Band n2 (PCS)	20	55	19.0	18.73	-0.01	0	1020M	DFT-S-OFDM QPSK	50	0	10 mm	bottom	1:1	0.845	1.064	0.899	A79
1900.00	380000	High	NR Band n2 (PCS)	20	55	19.0	18.70	-0.10	0	1020M	CP-OFDM QPSK	1	1	10 mm	bottom	1:1	0.821	1.072	0.880	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	18.94	-0.01	0	1020M	DFT-S-OFDM QPSK	100	0	10 mm	bottom	1:1	0.825	1.014	0.837	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	0.14	0	1020M	DFT-S-OFDM QPSK	1	1	10 mm	right	1:1	0.046	1.000	0.046	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	0.17 0 1020M DFT-S-OFDMQPSK					0	10 mm	right	1:1	0.072	1.000	0.072	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	-0.14	0	1020M	1	1	10 mm	left	1:1	0.052	1.000	0.052		
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	19.0	19.00	-0.10	0	1020M	DFT-S-OFDM QPSK	50	0	10 mm	left	1:1	0.056	1.000	0.056	
			ANSI / IEEE			LIMIT								Bod						
				Spatial P										6 W/kg (•					
		Uncontrolled Exposure/General Population											aver	aged over	er 1 gran	1				

Table 11-61 NR Band n41 Hotspot SAR

								· Dui		i ilotapot t	<i>57</i> (1) (
								ME	EASUREN	IENT RESULTS									
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	n.		[MHZ]	Power [dBm]	Power [abm]	Drift (dB)		Number							(W/kg)	Factor	(W/kg)	
2592.99	518598	Mid	NR Band n41	100	25.0	24.28	-0.05	0	1017M	DFT-S-OFDM QPSK	1	137	10 mm	back	1:4	0.149	1.180	0.176	
2592.99	518598	Mid	NR Band n41	100	25.0	24.16	0.03	0	1017M	DFT-S-OFDM QPSK	135	69	10 mm	back	1:4	0.170	1.213	0.206	
2592.99						24.28	0.05	0	1017M	DFT-S-OFDM QPSK	1	137	10 mm	front	1:4	0.130	1.180	0.153	
2592.99	2592.99 518598 Mid		NR Band n41	100	25.0	24.16	0.19	0	1017M	DFT-S-OFDM QPSK	135	69	10 mm	front	1:4	0.101	1.213	0.123	
2592.99	518598	Mid	NR Band n41	100	25.0	24.28	-0.09	0	1017M	DFT-S-OFDM QPSK	1	137	10 mm	top	1:4	0.369	1.180	0.435	A81
2592.99	518598	Mid	NR Band n41	100	25.0	24.16	0.17	0	1017M	DFT-S-OFDM QPSK	135	69	10 mm	top	1:4	0.269	1.213	0.326	
2592.99	518598	Mid	NR Band n41	100	23.5	23.00	0.13	1.5	1017M	CP-OFDM QPSK	1	1	10 mm	top	1:4	0.215	1.122	0.241	
2592.99	518598	Mid	NR Band n41	100	25.0	24.28	-0.10	0	1017M	DFT-S-OFDM QPSK	1	137	10 mm	left	1:4	0.059	1.180	0.070	
2592.99							-0.03	0	1017M	DFT-S-OFDM QPSK	135	69	10 mm	left	1:4	0.098	1.213	0.119	
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT								Body	<i>-</i>			-		
			Spa	atial Peak				1				1.0	6 W/kg (mW/g)					
		Ur	ncontrolled Expo	sure/Gener	ral Populatio	n						aver	aged ove	r 1 gran	n				
			-						•	•									

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Γest Dates:	DUT Type:	Dama 220 of 200
1M1910220165-01-R1.A3L 1	0/23/19 - 12/18/19	Portable Handset	Page 230 of 298

Table 11-62 WLAN Hotspot SAR

							***	<i></i>	ισισμ	0.0	/\\\								
							MI	EASURE	MENT R	ESULT	s								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]	.,	Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	21.0	20.86	-0.18	10 mm	1	1652M	1	back	100.0	0.448	0.278	1.033	1.000	0.287	
2412	1	802.11b	DSSS	22	21.0	20.86	-0.01	10 mm	1	1652M	1	front	100.0	0.322	-	1.033	1.000	-	
2412	1	802.11b	DSSS	22	21.0	20.86	0.00	10 mm	1	1652M	1	top	100.0	0.787	0.526	1.033	1.000	0.543	A83
2412	1	802.11b	DSSS	22	21.0	20.86	0.10	10 mm	1	1652M	1	left	100.0	0.083	-	1.033	1.000	-	
2462	11	802.11b	DSSS	22	21.0	20.97	0.15	10 mm	2	1652M	1	back	100.0	0.349	0.260	1.007	1.000	0.262	
2462	11	802.11b	DSSS	22	21.0	20.97	0.12	10 mm	2	1652M	1	front	100.0	0.015	-	1.007	1.000	-	
2462	11	802.11b	DSSS	22	0.17	10 mm	2	1652M	1	top	100.0	0.043	0.031	1.007	1.000	0.031			
2462	11	802.11b	DSSS	22	21.0	20.97	-0.14	10 mm	2	1652M	1	left	100.0	0.110	-	1.007	1.000	-	
5785	157	802.11a	OFDM	20	16.5	16.07	0.17	10 mm	1	0385S	6	back	99.7	1.023	0.400	1.104	1.003	0.443	
5785	157	802.11a	OFDM	20	16.5	16.07	0.00	10 mm	1	0385S	6	front	99.7	0.013	-	1.104	1.003	-	
5785	157	802.11a	OFDM	20	16.5	16.07	0.18	10 mm	1	0385S	6	top	99.7	0.096	-	1.104	1.003	-	
5785	157	802.11a	OFDM	20	16.5	16.07	0.12	10 mm	1	0385S	6	left	99.7	0.277	0.113	1.104	1.003	0.125	
5785	157	802.11a	OFDM	20	16.5	16.42	-0.02	10 mm	2	0385S	6	back	99.3	0.752	0.315	1.019	1.007	0.323	
5785	157	802.11a	OFDM	20	16.5	16.42	-0.12	10 mm	2	0385S	6	front	99.3	0.033	-	1.019	1.007	-	
5785	157	802.11a	OFDM	20	16.5	0.13	10 mm	2	0385S	6	top	99.3	0.208	-	1.019	1.007	-		
5785	157	802.11a	OFDM	20	-0.19	10 mm	2	0385S	6	left	99.3	0.190	-	1.019	1.007	-			
		AA	ISI / IEEE	C95.1 1992								Body		•	•				
				Spatial Pea										1.6 W/kg (m	•				
		Unc	ontrolled	Exposure/G	eneral Population	n							a	eraged over	ı gram				

Table 11-63 NII MIMO Hotspot SAR

																					-
								MEASU	JREMEN	T RESU	LTS										
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Maximum Allowed Power	Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	(Ant 1) [dBm]	(Ant 1) [dBm]	(Ant 2) [dBm]	(Ant 2) [dBm]	[dB]	-	Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	1
5745	149	802.11n	OFDM	20	14.5	14.42	14.5	13.73	0.02	10 mm	MIMO	0385S	13	back	99.3	1.212	0.465	1.194	1.007	0.559	
5785	157	802.11n	13.92	0.02	10 mm	MIMO	0385S	13	back	99.3	1.155	0.526	1.143	1.007	0.605	A85					
5825	165	802.11n	13.78	0.21	10 mm	MIMO	0385S	13	back	99.3	1.015	0.393	1.180	1.007	0.467						
5785	157	802.11n	OFDM	20	14.5	14.38	14.5	13.92	0.07	10 mm	MIMO	0385S	13	front	99.3	0.016		1.143	1.007	-	
5785	157	802.11n	OFDM	20	14.5	14.38	14.5	13.92	0.12	10 mm	MIMO	0385S	13	top	99.3	0.164	0.077	1.143	1.007	0.089	
5785	157	802.11n	OFDM	20	14.5	14.38	14.5	13.92	0.15	10 mm	MIMO	0385S	13	left	99.3	0.255	0.110	1.143	1.007	0.127	
				ANSI / II	EEE C95.1 1992	- SAFETY LIMIT									Body	•	•				
					Spatial Per	ak										1.6 W/kg (m\	N/g)				į
				Uncontrol	lled Exposure/G	eneral Populatio		I					av	veraged over	1 gram						

Note: To achieve the 17.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 14.5 dBm

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 224 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 231 of 298

Table 11-64 DTS Hotspot SAR for Conditions with 2.4 GHz and 5 GHz WLAN SAR and/or with NR Active

								MEASU	JREMEN	T RESU	LTS										
FREQU	IENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	(Ant 1) [dBm]	(Ant 1) [dBm]	(Ant 2) [dBm]	(Ant 2) [dBm]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462										10 mm	MIMO	1652M	13	back	99.3	0.252	0.162	1.256	1.007	0.205	
2462	2462 11 802.11n OFDM 20 17.0 16.66 17.0 16.01									10 mm	MIMO	1652M	13	front	99.3	0.145		1.256	1.007		
2462										10 mm	MIMO	1652M	13	top	99.3	0.440	0.281	1.256	1.007	0.355	
2462	11	802.11n	OFDM	20	17.0	16.66	17.0	16.01	0.02	10 mm	MIMO	1652M	13	left	99.3	0.088		1.256	1.007	-	
				ANSI / IE	EEE C95.1 1992	- SAFETY LIMIT									Body						
					Spatial Per	ak				l						1.6 W/kg (m)	N/g)				j
				Uncontrol	led Exposure/G	eneral Populatio	n								a	veraged over	1 gram				Ì

Note: DTS MIMO was additionally evaluated at the maximum allowed output power during operations with Simultaneous 2.4 GHz and 5 GHz WLAN. 5 GHz WIFI was not transmitting during the above evaluations.

Table 11-65 DSS Hotspot SAR

							<u> 33 п</u>		• • • • •	•						
						ME	ASUREI	MENT F	RESUL	гѕ						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Dower [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	rower [dbiii]	[GD]		Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2402	0	Bluetooth	FHSS	13.5	12.77	-0.04	10 mm	1050M	1	back	77.6	0.032	1.183	1.289	0.049	
2402	0	Bluetooth	FHSS	13.5	12.77	-0.10	10 mm	1050M	1	front	77.6	0.029	1.183	1.289	0.044	
2402	0	Bluetooth	FHSS	13.5	12.77	-0.07	10 mm	1050M	1	top	77.6	0.058	1.183	1.289	0.088	A87
2402	0	Bluetooth	FHSS	13.5	12.77	-0.12	10 mm	1050M	1	left	77.6	0.007	1.183	1.289	0.011	
		ANSI / IEEE	C95.1 199	2 - SAFETY	LIMIT							Body				
			Spatial I	Peak							1	1.6 W/kg (m\	V/g)			
		Uncontrolled E	Exposure	General Pop	oulation						ave	eraged over 1	gram			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 222 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 232 of 298

11.4 Standalone Phablet SAR Data

Table 11-66 GPRS/UMTS/CDMA Phablet SAR Data

	THOY.					MEAS	UREME	NT RESU	JLTS							
	-NOV															
FREQU	Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Ant State	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (10g) (W/kg)	Scaling Factor	Reported SAR (10g) (W/kg)	Plot#
1732.40	1412	UMTS 1750	RMC	24.5	24.42	-0.06	8 mm	4	1078M	N/A	1:1	back	1.190	1.019	1.213	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	-0.08	6 mm	4	1078M	N/A	1:1	front	1.560	1.019	1.590	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	-0.03	11 mm	4	1078M	N/A	1:1	bottom	1.290	1.019	1.315	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	-0.11	0 mm	4	1078M	N/A	1:1	right	0.451	1.019	0.460	
1732.40	1412	UMTS 1750	RMC	24.5	24.42	-0.15	0 mm	4	1078M	N/A	1:1	left	0.459	1.019	0.468	
1732.40	1412	UMTS 1750	RMC	20.0	19.99	0.11	0 mm	4	1078M	N/A	1:1	back	1.610	1.002	1.613	
1732.40	1412	UMTS 1750	RMC	20.0	19.99	0.03	0 mm	4	1078M	N/A	1:1	front	1.750	1.002	1.754	
1712.40	1312	UMTS 1750	RMC	20.0	20.00	0.10	0 mm	4	1078M	N/A	1:1	bottom	2.690	1.000	2.690	A88
1732.40	1412	UMTS 1750	RMC	20.0	19.99	0.14	0 mm	4	1078M	N/A	1:1	bottom	2.040	1.002	2.044	
1752.60	1513	UMTS 1750	RMC	20.0	19.89	0.11	0 mm	4	1078M	N/A	1:1	bottom	1.990	1.026	2.042	
1712.40	1312	UMTS 1750	RMC	20.0	20.00	0.05	0 mm	4	1078M	N/A	1:1	bottom	2.680	1.000	2.680	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.5	23.68	-0.02	8 mm	55	1078M	N/A	1:1	back	1.070	1.208	1.293	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.5	23.68	-0.04	6 mm	55	1078M	N/A	1:1	front	1.340	1.208	1.619	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.5	23.68	-0.03	11 mm	55	1078M	N/A	1:1	bottom	1.270	1.208	1.534	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.5	23.68	0.03	0 mm	55	1078M	N/A	1:1	right	0.467	1.208	0.564	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.5	23.68	-0.04	0 mm	55	1078M	N/A	1:1	left	0.424	1.208	0.512	
1880.00	600	PCS CDMA	EVDO Rev. 0	21.0	20.28	0.03	0 mm	55	1075M	N/A	1:1	back	1.610	1.180	1.900	
1851.25	25	PCS CDMA	EVDO Rev. 0	21.0	20.30	-0.11	0 mm	55	1075M	N/A	1:1	front	2.010	1.175	2.362	
1880.00	600	PCS CDMA	EVDO Rev. 0	21.0	20.28	-0.11	0 mm	55	1075M	N/A	1:1	front	1.900	1.180	2.242	
1908.75	1175	PCS CDMA	EVDO Rev. 0	21.0	20.17	-0.13	0 mm	55	1075M	N/A	1:1	front	1.940	1.211	2.349	
1851.25	25	PCS CDMA	EVDO Rev. 0	21.0	20.30	-0.12	0 mm	55	1075M	N/A	1:1	bottom	2.630	1.175	3.090	A89
1880.00	600	PCS CDMA	EVDO Rev. 0	21.0	20.28	-0.14	0 mm	55	1075M	N/A	1:1	bottom	2.530	1.180	2.985	
1908.75	1175	PCS CDMA	EVDO Rev. 0	21.0	20.17	-0.21	0 mm	55	1075M	N/A	1:1	bottom	2.510	1.211	3.040	
1851.25	25	PCS CDMA	EVDO Rev. 0	21.0	20.30	-0.11	0 mm	55	1075M	N/A	1:1	bottom	2.630	1.175	3.090	
1880.00	661	GSM 1900	GPRS	29.7	27.93	0.01	8 mm	N/A	1078M	2	1:4.15	back	0.455	1.503	0.684	
1880.00	661	GSM 1900	GPRS	29.7	27.93	-0.03	6 mm	N/A	1078M	2	1:4.15	front	0.563	1.503	0.846	
1880.00	661	GSM 1900	GPRS	29.7	27.93	0.01	11 mm	N/A	1078M	2	1:4.15	bottom	0.557	1.503	0.837	
1880.00	661	GSM 1900	GPRS	29.7	27.93	0.02	0 mm	N/A	1078M	2	1:4.15	right	0.182	1.503	0.274	
1880.00	661	GSM 1900	GPRS	29.7	27.93	-0.10	0 mm	N/A	1078M	2	1:4.15	left	0.165	1.503	0.248	
1880.00	661	GSM 1900	GPRS	24.3	23.46	-0.03	0 mm	N/A	1078M	4	1:2.076	back	1.490	1.213	1.807	
1880.00	661	GSM 1900	GPRS	24.3	23.46	-0.16	0 mm	N/A	1078M	4	1:2.076	front	1.450	1.213	1.759	
1850.20	512	GSM 1900	GPRS	24.3	23.15	-0.03	0 mm	N/A	1078M	4	1:2.076	bottom	2.160	1.303	2.814	
1880.00	661	GSM 1900	GPRS	24.3	23.46	-0.14	0 mm	N/A	1078M	4	1:2.076	bottom	2.170	1.213	2.632	
1909.80	810	GSM 1900	GPRS	24.3	23.30	0.03	0 mm	N/A	1078M	4	1:2.076	bottom	2.470	1.259	3.110	A90
1880.00	9400	UMTS 1900	RMC	24.5	23.38	0.08	8 mm	26	1078M	N/A	1:1	back	0.939	1.294	1.215	
1880.00	9400	UMTS 1900	RMC	24.5	23.38	-0.02	6 mm	26	1078M	N/A	1:1	front	1.230	1.294	1.592	
1880.00	9400	UMTS 1900	RMC	24.5	23.38	-0.07	11 mm	26	1078M	N/A	1:1	bottom	1.160	1.294	1.501	
1880.00	9400	UMTS 1900	RMC	24.5	23.38	-0.09	0 mm	26	1078M	N/A	1:1	right	0.462	1.294	0.598	
1880.00	9400	UMTS 1900	RMC	24.5	23.38	-0.18	0 mm	26	1078M	N/A	1:1	left	0.373	1.294	0.483	
1880.00	9400	UMTS 1900	RMC	20.0	19.82	0.00	0 mm	26	1075M	N/A	1:1	back	1.700	1.042	1.771	
1880.00	9400	UMTS 1900	RMC	20.0	19.82	-0.20	0 mm	26	1075M	N/A	1:1	front	1.690	1.042	1.761	
1852.40	9262	UMTS 1900	RMC	20.0	19.93	0.17	0 mm	26	1075M	N/A	1:1	bottom	2.100	1.016	2.134	
1880.00	9400	UMTS 1900	RMC	20.0	19.82	0.02	0 mm	26	1075M	N/A	1:1	bottom	2.230	1.042	2.324	
1907.60	9538	UMTS 1900	RMC	20.0	19.70	0.19	0 mm	26	1075M	N/A	1:1	bottom	2.320	1.072	2.487	A91
		ANSI / IEEE	C95.1 1992 - S Spatial Peak	AFETY LIMIT								Phablet V/kg (mV	V/a)			
		Uncontrolled	Exposure/Gene	eral Populati	on							d over 10				

Note: Blue entry represents variability measurement.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 000 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 233 of 298

Table 11-67 LTE Band 66 (AWS) Phablet SAR

								Danc	1 00 (/				LOAI	`								
									MEASURE	MENT	RESULT	S										
1 CC Uplink 2 CC Uplink	Component Carrier	F	REQUENCY	,	Mode	Bandwidth [MHz]	Ant State	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
	Garner	MHz	С		LTE Band 66			Power [dBm]		Dink (GD)									(W/kg)		(W/kg)	
1 CC Uplink	N/A	1770.00	132572	High	(AWS)	20	26	24.5	23.70	0.04	0	1071M	QPSK	1	0	8 mm	back	1:1	1.310	1.202	1.575	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	0.06	1	1071M	QPSK	50	25	8 mm	back	1:1	1.100	1.183	1.301	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	0.01	0	1071M	QPSK	1	0	6 mm	front	1:1	1.660	1.202	1.995	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	0.07	1	1071M	QPSK	50	25	6 mm	front	1:1	1.410	1.183	1.668	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	-0.07	0	1071M	QPSK	1	0	11 mm	bottom	1:1	1.420	1.202	1.707	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	-0.02	1	1071M	QPSK	50	25	11 mm	bottom	1:1	1.210	1.183	1.431	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	-0.15	0	1071M	QPSK	1	0	0 mm	right	1:1	0.549	1.202	0.660	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	-0.11	1	1071M	QPSK	50	25	0 mm	right	1:1	0.458	1.183	0.542	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	24.5	23.70	-0.03	0	1071M	QPSK	1	0	0 mm	left	1:1	0.547	1.202	0.657	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	23.5	22.77	-0.06	1	1071M	QPSK	50	25	0 mm	left	1:1	0.436	1.183	0.516	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.25	-0.02	0	1010M	QPSK	1	0	0 mm	back	1:1	1.460	1.189	1.736	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.25	-0.02	0	1010M	QPSK	50	25	0 mm	back	1:1	1.460	1.189	1.736	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.25	0.08	0	1010M	QPSK	1	0	0 mm	front	1:1	1.500	1.189	1.784	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.25	0.03	0	1010M	QPSK	50	25	0 mm	front	1:1	1.520	1.189	1.807	
1 CC Uplink	N/A	1720.00	132072	Low	LTE Band 66 (AWS)	20	26	20.0	19.13	-0.06	0	1010M	QPSK	1	50	0 mm	bottom	1:1	1.620	1.222	1.980	
1 CC Uplink	N/A	1745.00	132322	Mid	LTE Band 66 (AWS)	20	26	20.0	19.13	-0.14	0	1010M	QPSK	1	50	0 mm	bottom	1:1	1.830	1.222	2.236	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.25	-0.07	0	1010M	QPSK	1	0	0 mm	bottom	1:1	1.720	1.189	2.045	
1 CC Uplink	N/A	1720.00	132072	Low	LTE Band 66 (AWS)	20	26	20.0	19.18	-0.04	0	1010M	QPSK	50	50	0 mm	bottom	1:1	1.680	1.208	2.029	
1 CC Uplink	N/A	1745.00	132322	Mid	LTE Band 66 (AWS)	20	26	20.0	19.20	-0.13	0	1010M	QPSK	50	0	0 mm	bottom	1:1	1.910	1.202	2.296	
1 CC Uplink	N/A	1745.00	132322	Mid	LTE Band 66 (AWS)	10	26	20.0	19.03	-0.10	0	1010M	QPSK	25	0	0 mm	bottom	1:1	1.830	1.250	2.288	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.25	-0.10	0	1010M	QPSK	50	25	0 mm	bottom	1:1	1.740	1.189	2.069	
1 CC Uplink	N/A	1770.00	132572	High	LTE Band 66 (AWS)	20	26	20.0	19.16	-0.18	0	1010M	QPSK	100	0	0 mm	bottom	1:1	1.700	1.213	2.062	
	PCC	1745.00	132322	Mid	LTE Band 66 (AWS)	20								50	0							
CA_66C 2 CC Uplink	SCC	1725.20	132124	Mid	LTE Band 66 (AWS)	20	26	20.0	19.90	-0.05	0	1010M	QPSK	50	50	0 mm	bottom	1:1	2.250	1.023	2.302	A92
	PCC 1745.00 132322 Mid LTE Band 66 10 (MMS)													25	0							
CA_66B 2 CC Uplink	SCC	1735.10	132223	Mid	LTE Band 66 (AWS)	10	26	20.0	19.30	-0.03	0	1010M	QPSK	25	25	0 mm	bottom	1:1	1.970	1.175	2.315	
			ANS	SI / IEEE	C95.1 1992 - SAF	ETY LIMIT		-					1			'	I Phablet				I	
					Spatial Peak												V/kg (mV	-				
			Unco	ntrolled E	xposure/Genera	Il Populatio	n				L					average	d over 10	grams				

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 224 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 234 of 298

Table 11-68 LTE Band 25 (PCS) Phablet SAR

							LIEB			*		t 5A	ıĸ							
								MEA	SUREME	NT RES	ULTS									
MHz	REQUENCY		Mode	Bandwidth [MHz]	Ant State	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g) (W/kg)	Scaling Factor	Reported SAR (10g) (W/kg)	Plot #
1860.00	26140	Low	LTE Band 25	20	26	24.0	23.27	0.18	0	1071M	QPSK	1	99	8 mm	back	1:1	1.100	1.183	1.301	
1860.00	26140	Low	(PCS) LTE Band 25 (PCS)	20	26	23.0	22.40	0.09	1	1071M	QPSK	50	25	8 mm	back	1:1	0.889	1.148	1.021	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	24.0	23.27	-0.06	0	1071M	QPSK	1	99	6 mm	front	1:1	1.300	1.183	1.538	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	23.0	22.40	-0.07	1	1071M	QPSK	50	25	6 mm	front	1:1	1.180	1.148	1.355	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	24.0	23.27	-0.12	0	1071M	QPSK	1	99	11 mm	bottom	1:1	1.270	1.183	1.502	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	23.0	22.40	-0.09	1	1071M	QPSK	50	25	11 mm	bottom	1:1	1.050	1.148	1.205	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	24.0	23.27	-0.06	0	1071M	QPSK	1	99	0 mm	right	1:1	0.444	1.183	0.525	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	23.0	22.40	-0.06	1	1071M	QPSK	50	25	0 mm	right	1:1	0.349	1.148	0.401	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	24.0	23.27	-0.14	0	1071M	QPSK	1	99	0 mm	left	1:1	0.414	1.183	0.490	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	23.0	22.40	-0.13	1	1071M	QPSK	50	25	0 mm	left	1:1	0.328	1.148	0.377	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	20.0	19.21	-0.14	0	1077M	QPSK	1	99	0 mm	back	1:1	1.740	1.199	2.086	
1882.50	26365	Mid	LTE Band 25 (PCS) LTE Band 25	20	26	20.0	19.12	-0.08	0	1077M	QPSK	1	0	0 mm	back	1:1	1.820	1.225	2.230	
1905.00	26590	High	(PCS) LTE Band 25	20	26	20.0	19.00	0.10	0	1077M	QPSK	1	99	0 mm	back	1:1	1.680	1.259	2.115	
1860.00	26140	Low	(PCS) LTE Band 25	20	26	20.0	19.25	-0.03	0	1077M	QPSK	50	25	0 mm	back	1:1	1.780	1.189	2.116	
1882.50	26365	Mid	(PCS) LTE Band 25	20	26	20.0	19.22	-0.01	0	1077M	QPSK	50	0	0 mm	back	1:1	1.920	1.197	2.298	
1905.00	26590	High	(PCS) LTE Band 25	20	26	20.0	19.01	0.02	0	1077M	QPSK	50	50	0 mm	back	1:1	1.770	1.256	2.223	
1882.50	26365	Mid	(PCS) LTE Band 25	20	26	20.0	19.18	0.03	0	1077M	QPSK	100	0	0 mm	back	1:1	1.870	1.208	2.259	
1860.00	26140	Low	(PCS) LTE Band 25	20	26	20.0	19.21	-0.19	0	1077M	QPSK	1	99	0 mm	front	1:1	1.830	1.199	2.194	
1882.50	26365	Mid	(PCS) LTE Band 25	20	26	20.0	19.12	-0.14	0	1077M	QPSK	1	0	0 mm	front	1:1	1.910	1.225	2.340	
1905.00	26590 26140	High Low	(PCS) LTE Band 25	20	26 26	20.0	19.00 19.25	-0.16 -0.21	0	1077M 1077M	QPSK QPSK	50	99 25	0 mm	front	1:1	1.730	1.259	2.178	
1882.50	26365	Mid	(PCS) LTE Band 25	20	26	20.0	19.25	-0.21	0	1077M	QPSK	50	0	0 mm	front	1:1	2.010	1.197	2.406	
1905.00	26590	High	(PCS) LTE Band 25	20	26	20.0	19.01	-0.18	0	1077M	QPSK	50	50	0 mm	front	1:1	1.870	1.256	2.349	
1882.50	26365	Mid	(PCS) LTE Band 25	20	26	20.0	19.18	-0.21	0	1077M	QPSK	100	0	0 mm	front	1:1	1.950	1.208	2.356	
1860.00	26140	Low	(PCS) LTE Band 25	20	26	20.0	19.21	-0.12	0	1077M	QPSK	1	99	0 mm	bottom	1:1	2.310	1.199	2.770	
1882.50	26365	Mid	(PCS) LTE Band 25 (PCS)	20	26	20.0	19.12	-0.15	0	1077M	QPSK	1	0	0 mm	bottom	1:1	2.370	1.225	2.903	
1905.00	26590	High	LTE Band 25 (PCS)	20	26	20.0	19.00	-0.16	0	1077M	QPSK	1	99	0 mm	bottom	1:1	2.200	1.259	2.770	
1860.00	26140	Low	LTE Band 25 (PCS)	20	26	20.0	19.25	-0.18	0	1077M	QPSK	50	25	0 mm	bottom	1:1	2.350	1.189	2.794	
1882.50	82.50 26365 Mid LTE Band 25 (PCS) 20 26 20.0 19.22								0	1077M	QPSK	50	0	0 mm	bottom	1:1	2.580	1.197	3.088	A93
1905.00	26590	High	LTE Band 25 (PCS)	20	26	-0.12	0	1077M	QPSK	50	50	0 mm	bottom	1:1	2.230	1.256	2.801			
1882.50	26365	Mid	LTE Band 25 (PCS)	20	26	20.0	19.18	-0.21	0	1077M	QPSK	100	0	0 mm	bottom	1:1	2.450	1.208	2.960	
			ANSI / IEEE C	95.1 1992 - Spatial Pea		IMIT									hablet //kg (mV	V/a)				
			Uncontrolled E	•		ulation								averaged						
																3				

FCC ID: A3LSMG981U	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 225 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 235 of 298

Table 11-69 LTE Band 2 (PCS) Phablet SAR

							LIEB		<u> </u>	NT RES		. 07	<u> </u>							
FF	REQUENCY			Bandwidth		Maximum	Conducted	Power		Serial		Π					SAR (10g)	Scaling	Reported SAR	
MHz	CI		Mode	[MHz]	Ant State	Allowed Power [dBm]	Power [dBm]	Drift [dB]	MPR [dB]	Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	(W/kg)	Factor	(10g) (W/kg)	Plot #
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	0.04	0	0449M	QPSK	1	99	8 mm	back	1:1	1.040	1.199	1.247	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	0.03	1	0449M	QPSK	50	50	8 mm	back	1:1	0.840	1.156	0.971	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	-0.01	0	0449M	QPSK	1	99	6 mm	front	1:1	1.180	1.199	1.415	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	0.11	1	0449M	QPSK	50	50	6 mm	front	1:1	1.080	1.156	1.248	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	-0.08	0	0449M	QPSK	1	99	11 mm	bottom	1:1	1.170	1.199	1.403	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	-0.09	1	0449M	QPSK	50	50	11 mm	bottom	1:1	0.958	1.156	1.107	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	-0.14	0	0449M	QPSK	1	99	0 mm	right	1:1	0.565	1.199	0.677	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	-0.10	1	0449M	QPSK	50	50	0 mm	right	1:1	0.442	1.156	0.511	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	24.0	23.21	-0.02	0	0449M	QPSK	1	99	0 mm	left	1:1	0.332	1.199	0.398	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	23.0	22.37	-0.05	1	0449M	QPSK	50	50	0 mm	left	1:1	0.260	1.156	0.301	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.06	0.11	0	1077M	QPSK	1	50	0 mm	back	1:1	1.630	1.242	2.024	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	20.0	18.96	0.15	0	1077M	QPSK	1	0	0 mm	back	1:1	1.740	1.271	2.212	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	20.0	18.91	0.04	0	1077M	QPSK	1	50	0 mm	back	1:1	1.640	1.285	2.107	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.15	0.07	0	1077M	QPSK	50	25	0 mm	back	1:1	1.730	1.216	2.104	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	20.0	19.06	0.09	0	1077M	QPSK	50	25	0 mm	back	1:1	1.860	1.242	2.310	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	20.0	18.86	0.13	0	1077M	QPSK	50	25	0 mm	back	1:1	1.740	1.300	2.262	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.05	0.06	0	1077M	QPSK	100	0	0 mm	back	1:1	1.710	1.245	2.129	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.06	-0.15	0	1077M	QPSK	1	50	0 mm	front	1:1	1.720	1.242	2.136	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	20.0	18.96	-0.01	0	1077M	QPSK	1	0	0 mm	front	1:1	1.840	1.271	2.339	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	20.0	18.91	-0.19	0	1077M	QPSK	1	50	0 mm	front	1:1	1.750	1.285	2.249	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.15	-0.19	0	1077M	QPSK	50	25	0 mm	front	1:1	1.820	1.216	2.213	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	20.0	19.06	-0.18	0	1077M	QPSK	50	25	0 mm	front	1:1	1.960	1.242	2.434	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	20.0	18.86	-0.14	0	1077M	QPSK	50	25	0 mm	front	1:1	1.790	1.300	2.327	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.05	-0.12	0	1077M	QPSK	100	0	0 mm	front	1:1	1.790	1.245	2.229	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.06	-0.09	0	1077M	QPSK	1	50	0 mm	bottom	1:1	2.190	1.242	2.720	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	20.0	18.96	-0.07	0	1077M	QPSK	1	0	0 mm	bottom	1:1	2.320	1.271	2.949	
1900.00	19100	High	LTE Band 2 (PCS)	20	55	20.0	18.91	-0.10	0	1077M	QPSK	1	50	0 mm	bottom	1:1	2.070	1.285	2.660	
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	19.15	-0.17	0	1077M	QPSK	50	25	0 mm	bottom	1:1	2.320	1.216	2.821	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	55	20.0	19.06	-0.12	0	1077M	QPSK	50	25	0 mm	bottom	1:1	2.520	1.242	3.130	A94
1900.00	19100	High	LTE Band 2 (PCS)	-0.14	0	1077M	QPSK	50	25	0 mm	bottom	1:1	2.210	1.300	2.873					
1860.00	18700	Low	LTE Band 2 (PCS)	20	55	20.0	-0.20	0	1077M	QPSK	100	0	0 mm	bottom	1:1	2.290	1.245	2.851		
			ANSI / IEEE C			IMIT									hablet	V/a)				
			Uncontrolled Ex	Spatial Pea		ulation								4.0 W	1/kg (mV d over 10					

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 226 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 236 of 298

Table 11-70 LTE Band 30 Phablet SAR

								MEASUR	REMENT	RESULTS	,								
F	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g) (W/kg)	Scaling Factor	Reported SAR (10g) (W/kg)	Plot#
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	-0.05	0	0932M	QPSK	1	0	8 mm	back	1:1	0.856	1.233	1.055	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	-0.04	1	0932M	QPSK	25	12	8 mm	back	1:1	0.689	1.197	0.825	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	-0.01	0	0932M	QPSK	1	0	6 mm	front	1:1	1.130	1.233	1.393	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	-0.01	1	0932M	QPSK	25	12	6 mm	front	1:1	0.918	1.197	1.099	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	-0.05	0	0932M	QPSK	1	0	11 mm	bottom	1:1	1.310	1.233	1.615	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	-0.02	1	0932M	QPSK	25	12	11 mm	bottom	1:1	1.060	1.197	1.269	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	-0.04	0	0932M	QPSK	1	0	0 mm	right	1:1	0.294	1.233	0.363	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	-0.13	1	0932M	QPSK	25	12	0 mm	right	1:1	0.233	1.197	0.279	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.59	-0.17	0	0932M	QPSK	1	0	0 mm	left	1:1	0.515	1.233	0.635	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.72	-0.16	1	0932M	QPSK	25	12	0 mm	left	1:1	0.414	1.197	0.496	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.38	0.10	0	1014M	QPSK	1	25	0 mm	back	1:1	2.010	1.294	2.601	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.50	-0.15	0	1014M	QPSK	25	12	0 mm	back	1:1	2.070	1.259	2.606	A95
2310.00	27710	Mid	LTE Band 30	10	22.5	21.37	0.10	0	1014M	QPSK	50	0	0 mm	back	1:1	2.030	1.297	2.633	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.38	-0.11	0	1014M	QPSK	1	25	0 mm	front	1:1	1.890	1.294	2.446	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.50	-0.07	0	1014M	QPSK	25	12	0 mm	front	1:1	1.920	1.259	2.417	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.37	-0.07	0	1014M	QPSK	50	0	0 mm	front	1:1	1.890	1.297	2.451	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.38	-0.21	0	1014M	QPSK	1	25	0 mm	bottom	1:1	1.240	1.294	1.605	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.50	-0.13	0	1014M	QPSK	25	12	0 mm	bottom	1:1	1.260	1.259	1.586	
2310.00	27710	Mid	LTE Band 30	10	22.5	21.50	0.14	0	1014M	QPSK	25	12	0 mm	back	1:1	2.050	1.259	2.581	
		AN	ISI / IEEE C95.1		ETY LIMIT									Phablet					
		Una	Spati ontrolled Exposu	al Peak	Damulatian									//kg (mV					
		Unce	Untrolled Expost	ire/General	ropulation								averaged	1 JANO E	grams				

Note: Blue entry represents variability measurement.

Table 11-71 LTE Band 7 Phablet SAR

								MEASUR	REMENT	RESULTS									
F	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot#
MHz	С	h.		[MITZ]	Power [dBm]	Power [dbm]	Drift [db]		Number							(W/kg)	ractor	(W/kg)	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	-0.12	0	0433M	QPSK	1	99	8 mm	back	1:1	0.726	1.102	0.800	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	-0.03	1	0433M	QPSK	50	25	8 mm	back	1:1	0.572	1.062	0.607	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	0.04	0	0433M	QPSK	1	99	6 mm	front	1:1	0.839	1.102	0.925	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.04	1	0433M	QPSK	50	25	6 mm	front	1:1	0.683	1.062	0.725	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	-0.02	0	0433M	QPSK	1	99	11 mm	bottom	1:1	0.927	1.102	1.022	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.03	1	0433M	QPSK	50	25	11 mm	bottom	1:1	0.763	1.062	0.810	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	0.10	0	0433M	QPSK	1	99	0 mm	right	1:1	0.184	1.102	0.203	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	0.07	1	0433M	QPSK	50	25	0 mm	right	1:1	0.164	1.062	0.174	
2510.00	20850	Low	LTE Band 7	20	24.0	23.58	-0.15	0	0433M	QPSK	1	99	0 mm	left	1:1	0.749	1.102	0.825	
2510.00	20850	Low	LTE Band 7	20	23.0	22.74	-0.13	1	0433M	QPSK	50	25	0 mm	left	1:1	0.628	1.062	0.667	
2510.00	20850	Low	LTE Band 7	20	20.0	19.55	0.19	0	1014M	QPSK	1	50	0 mm	back	1:1	1.860	1.109	2.063	
2535.00	21100	Mid	LTE Band 7	20	20.0	19.50	0.17	0	1014M	QPSK	1	0	0 mm	back	1:1	1.750	1.122	1.964	
2560.00	21350	High	LTE Band 7	20	20.0	19.44	0.12	0	1014M	QPSK	1	0	0 mm	back	1:1	1.660	1.138	1.889	
2510.00	20850	Low	LTE Band 7	20	20.0	19.65	-0.16	0	1014M	QPSK	50	50	0 mm	back	1:1	2.060	1.084	2.233	A96
2535.00	21100	Mid	LTE Band 7	20	20.0	19.53	0.13	0	1014M	QPSK	50	0	0 mm	back	1:1	1.850	1.114	2.061	
2560.00	21350	High	LTE Band 7	20	20.0	19.57	-0.15	0	1014M	QPSK	50	50	0 mm	back	1:1	1.720	1.104	1.899	
2510.00	20850	Low	LTE Band 7	20	20.0	19.50	0.11	0	1014M	QPSK	100	0	0 mm	back	1:1	1.960	1.122	2.199	
2510.00	20850	Low	LTE Band 7	20	20.0	19.55	0.01	0	1014M	QPSK	1	50	0 mm	front	1:1	1.430	1.109	1.586	
2510.00	20850	Low	LTE Band 7	20	20.0	19.65	0.02	0	1014M	QPSK	50	50	0 mm	front	1:1	1.470	1.084	1.593	
2510.00	20850	Low	LTE Band 7	20	-0.15	0	1014M	QPSK	1	50	0 mm	bottom	1:1	1.340	1.109	1.486			
2510.00	20850	Low	LTE Band 7	20	20.0	-0.14	0	1014M	QPSK	50	50	0 mm	bottom	1:1	1.410	1.084	1.528		
		AN	ISI / IEEE C95.1	1992 - SAF	ETY LIMIT									Phablet					
			Spati	ial Peak				l					4.0 V	//kg (m\	V/g)				
		Unco	ontrolled Exposu	ure/General	Population			ĺ					average	d over 10	grams				

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 227 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 237 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

Table 11-72 LTE Band 41 Phablet SAR

LTE Band 41 Phablet SAR MEASUREMENT RESULTS																					
		-	REQUENC	·v			Maximum			II KESO			Г	Г	Г		П	SAR (10g)	l	Reported SAR	
1 CC Uplink 2 CC Uplink, Power Class	Component Carrier	MHz		Ch.	Mode	Bandwidth [MHz]	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	(W/kg)	Scaling Factor	(10g) (W/kg)	Plot#
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	0.00	0	1018M	QPSK	1	0	8 mm	back	1:1.58	0.388	1.169	0.454	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	-0.03	1	1018M	QPSK	50	25	8 mm	back	1:1.58	0.307	1.122	0.344	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	-0.07	0	1018M	QPSK	1	0	6 mm	front	1:1.58	0.453	1.169	0.530	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	-0.03	1	1018M	QPSK	50	25	6 mm	front	1:1.58	0.360	1.122	0.404	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	-0.03	0	1018M	QPSK	1	0	11 mm	bottom	1:1.58	0.441	1.169	0.516	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	-0.07	1	1018M	QPSK	50	25	11 mm	bottom	1:1.58	0.350	1.122	0.393	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	0.09	0	1018M	QPSK	1	0	0 mm	right	1:1.58	0.124	1.169	0.145	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	-0.02	1	1018M	QPSK	50	25	0 mm	right	1:1.58	0.082	1.122	0.092	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	25.0	24.32	-0.18	0	1018M	QPSK	1	0	0 mm	left	1:1.58	0.395	1.169	0.462	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.0	23.50	-0.10	1	1018M	QPSK	50	25	0 mm	left	1:1.58	0.368	1.122	0.413	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	23.0	22.33	-0.07	0	0932M	QPSK	1	0	0 mm	back	1:1.58	2.250	1.167	2.626	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	23.0	22.19	0.13	0	0932M	QPSK	1	99	0 mm	back	1:1.58	2.130	1.205	2.567	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low-Mid	LTE Band 41	20	23.0	22.35	-0.10	0	0932M	QPSK	1	99	0 mm	back	1:1.58	2.020	1.161	2.345	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	-0.13	0	0932M	QPSK	1	50	0 mm	back	1:1.58	1.960	1.122	2.199	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid-High	LTE Band 41	20	23.0	21.75	-0.20	0	0932M	QPSK	1	50	0 mm	back	1:1.58	1.900	1.334	2.535	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.0	22.02	-0.13	0	0932M	QPSK	1	50	0 mm	back	1:1.58	1.810	1.253	2.268	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	23.0	22.49	-0.10	0	0932M	QPSK	50	25	0 mm	back	1:1.58	2.220	1.125	2.498	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low-Mid	LTE Band 41	20	23.0	22.34	-0.12	0	0932M	QPSK	50	25	0 mm	back	1:1.58	2.020	1.164	2.351	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	-0.17	0	0932M	QPSK	50	25	0 mm	back	1:1.58	2.050	1.122	2.300	
1 CC Uplink - Power Class	N/A	2636.50	41055	Mid-High	LTE Band 41	20	23.0	21.93	-0.19	0	0932M	QPSK	50	25	0 mm	back	1:1.58	1.970	1.279	2.520	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.0	22.15	-0.15	0	0932M	QPSK	50	50	0 mm	back	1:1.58	1.880	1.216	2.286	
1 CC Uplink - Power Class	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.46	-0.12	0	0932M	QPSK	100	0	0 mm	back	1:1.58	2.020	1.132	2.287	
1 CC Uplink - Power Class 2	N/A	2506.00	39750	Low	LTE Band 41	20	24.6	24.00	-0.13	0	0932M	QPSK	1	0	0 mm	back	1:2.31	2.060	1.148	2.365	
1 CC Uplink - Power Class	N/A	2506.00	39750	Low	LTE Band 41	20	24.6	23.72	-0.15	0	0932M	QPSK	1	99	0 mm	back	1:2.31	1.880	1.225	2.303	
2 CC Uplink - Power Class	PCC	2506.00	39750	Low	LTE Band 41	20							1	99							
3	scc	2525.80	39948	Low	LTE Band 41	20	23.0	22.79	0.17	0	0932M	QPSK	1	0	0 mm	back	1:1.58	2.540	1.050	2.667	A97
2 CC Uplink - Power Class	PCC	2506.00	39750	Low	LTE Band 41	20							1	99							
2	SCC	2525.80	39948	Low	LTE Band 41	20	24.6	24.30	-0.19	0	0932M	QPSK	1	0	0 mm	back	1:2.31	2.220	1.072	2.380	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	0.15	0	0932M	QPSK	1	50	0 mm	front	1:1.58	1.320	1.122	1.481	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	23.0	22.49	0.17	0	0932M	QPSK	50	25	0 mm	front	1:1.58	1.520	1.125	1.710	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low-Mid	LTE Band 41	20	23.0	22.34	0.14	0	0932M	QPSK	50	25	0 mm	front	1:1.58	1.360	1.164	1.583	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	0.12	0	0932M	QPSK	50	25	0 mm	front	1:1.58	1.380	1.122	1.548	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid-High	LTE Band 41	20	23.0	21.93	0.02	0	0932M	QPSK	50	25	0 mm	front	1:1.58	1.320	1.279	1.688	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.0	22.15	-0.04	0	0932M	QPSK	50	50	0 mm	front	1:1.58	1.100	1.216	1.338	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.46	0.11	0	0932M	QPSK	100	0	0 mm	front	1:1.58	1.360	1.132	1.540	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	23.0	22.33	0.16	0	0932M	QPSK	1	0	0 mm	bottom	1:1.58	1.430	1.167	1.669	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low-Mid	LTE Band 41	20	23.0	22.35	-0.16	0	0932M	QPSK	1	99	0 mm	bottom	1:1.58	1.320	1.161	1.533	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	-0.18	0	0932M	QPSK	1	50	0 mm	bottom	1:1.58	1.740	1.122	1.952	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid-High	LTE Band 41	20	23.0	21.75	-0.13	0	0932M	QPSK	1	50	0 mm	bottom	1:1.58	1.520	1.334	2.028	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.0	22.02	-0.14	0	0932M	QPSK	1	50	0 mm	bottom	1:1.58	1.410	1.253	1.767	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	23.0	22.49	-0.16	0	0932M	QPSK	50	25	0 mm	bottom	1:1.58	1.500	1.125	1.688	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low-Mid	LTE Band 41	20	23.0	22.34	-0.18	0	0932M	QPSK	50	25	0 mm	bottom	1:1.58	1.360	1.164	1.583	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	-0.16	0	0932M	QPSK	50	25	0 mm	bottom	1:1.58	1.820	1.122	2.042	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid-High	LTE Band 41	20	23.0	21.93	-0.16	0	0932M	QPSK	50	25	0 mm	bottom	1:1.58	1.590	1.279	2.034	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.0	22.15	-0.19	0	0932M	QPSK	50	50	0 mm	bottom	1:1.58	1.410	1.216	1.715	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.46	-0.18	0	0932M	QPSK	100	0	0 mm	bottom	1:1.58	1.780	1.132	2.015	
2 CC Uplink - Power Class	PCC	2506.00	39750	Low	LTE Band 41	20	ar :	00				0.5	1	99				0.577		0.531	
3	scc	2525.80	39948	Low	LTE Band 41	20	23.0	22.79	-0.09	0	0932M	QPSK	1	0	0 mm	back	1:1.58	2.270	1.050	2.384	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	23.0	22.50	-0.04	0	0932M	QPSK	50	25	0 mm	back	1:1.58	2.020	1.122	2.266	
		AN	SI / IEE		992 - SAFETY L	IMIT										Phablet	Aller)				
		Unco	ntrolle		ıl Peak re/General Popu	lation									4.0 W averaged	1/kg (mV d over 10					
							ontry														

Note: Blue entry represents variability measurement.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 000 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 238 of 298

Table 11-73 NR Band n66 (AWS) Phablet SAR

MEASUREMENT RESULTS																				
								1	MEASUR	EMENT	RESULTS									
FF	REQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot#
MHz	CI	h.		[MHz]		Power [dBm]	Power [dBm]	Drift [dB]	[==]	Number						, _,	(W/kg)	Factor	(W/kg)	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	-0.01	0	1005M	DFT-S-OFDM QPSK	1	53	8 mm	back	1:1	0.907	1.035	0.939	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	0.03	0	1005M	DFT-S-OFDM QPSK	50	28	8 mm	back	1:1	0.887	1.038	0.921	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	0.06	0	1005M	DFT-S-OFDM QPSK	1	53	6 mm	front	1:1	1.090	1.035	1.128	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	0.08	0	1005M	DFT-S-OFDM QPSK	50	28	6 mm	front	1:1	1.070	1.038	1.111	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	0.01	0	1005M	DFT-S-OFDM QPSK	1	53	11 mm	bottom	1:1	0.984	1.035	1.018	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	0.03	0	1005M	DFT-S-OFDM QPSK	50	28	11 mm	bottom	1:1	0.949	1.038	0.985	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	0.06	0	1005M	DFT-S-OFDM QPSK	1	53	0 mm	right	1:1	0.385	1.035	0.398	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	0.04	0	1005M	DFT-S-OFDM QPSK	50	28	0 mm	right	1:1	0.381	1.038	0.395	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.35	-0.06	0	1005M	DFT-S-OFDM QPSK	1	53	0 mm	left	1:1	0.477	1.035	0.494	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	24.5	24.34	-0.11	0	1005M	DFT-S-OFDM QPSK	50	28	0 mm	left	1:1	0.456	1.038	0.473	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	20.0	19.98	-0.01	0	1005M	DFT-S-OFDM QPSK	1	53	0 mm	back	1:1	1.770	1.005	1.779	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	20.0	19.96	-0.01	0	1005M	DFT-S-OFDM QPSK	50	56	0 mm	back	1:1	1.790	1.009	1.806	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	20.0	19.98	0.10	0	1005M	DFT-S-OFDM QPSK	1	53	0 mm	front	1:1	1.780	1.005	1.789	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	20.0	19.96	0.06	0	1005M	DFT-S-OFDM QPSK	50	56	0 mm	front	1:1	1.810	1.009	1.826	
1720.00	344000	Low	NR Band n66 (AWS)	20	26	20.0	19.89	0.10	0	1005M	DFT-S-OFDM QPSK	1	1	0 mm	bottom	1:1	2.130	1.026	2.185	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	20.0	19.98	-0.05	0	1005M	DFT-S-OFDM QPSK	1	53	0 mm	bottom	1:1	2.000	1.005	2.010	
1770.00	354000	High	NR Band n66 (AWS)	20	26	20.0	19.91	-0.13	0	1005M	DFT-S-OFDM QPSK	1	1	0 mm	bottom	1:1	2.180	1.021	2.226	
1720.00	344000	Low	NR Band n66 (AWS)	20	26	20.0	19.84	-0.11	0	1005M	DFT-S-OFDM QPSK	50	0	0 mm	bottom	1:1	2.250	1.038	2.336	A98
1720.00	344000	Low	NR Band n66 (AWS)	20	26	20.0	19.83	0.02	0	1005M	CP-OFDM QPSK	1	1	0 mm	bottom	1:1	2.110	1.040	2.194	
1745.00	349000	Mid	NR Band n66 (AWS)	20	26	20.0	19.96	-0.06	0	1005M	DFT-S-OFDM QPSK	50	56	0 mm	bottom	1:1	2.130	1.009	2.149	
1770.00	354000	High	NR Band n66 (AWS)	20	26	20.0	19.95	-0.03	0	1005M	DFT-S-OFDM QPSK	50	0	0 mm	bottom	1:1	2.160	1.012	2.186	
1745.00	5.00 349000 Mid NR Band n66 (AWS) 20 26 20.0 19.95 -0.0								0	1005M	DFT-S-OFDM QPSK	100	0	0 mm	bottom	1:1	2.110	1.012	2.135	
			ANSI / IEEE C	95.1 1992	SAFETY L	IMIT								Phabl	et					
	Spatial Peak													0 W/kg (
			Uncontrolled Ex	xposure/Ge	neral Popu	ulation						avera	iged over	10 gran	ns					

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 220 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 239 of 298

Table 11-74 NR Band n2 (PCS) Phablet SAR

	MEASUREMENT RESULTS																			
F	REQUENCY		Mode	Bandwidth	Ant State	Maximum Allowed	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot #
MHz	С	h.		[MHz]	Aut Olute	Power [dBm]	Power [dBm]	Drift [dB]	iiii ii (ub)	Number	modulation	IND OILE	TID OHISCE	opuomg	Oide	Daty Gyote	(W/kg)	Factor	(W/kg)	1
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.07	0	1005M	DFT-S-OFDM QPSK	1	104	8 mm	back	1:1	0.844	1.012	0.854	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.01	0	1005M	DFT-S-OFDM QPSK	50	28	8 mm	back	1:1	1.050	1.012	1.063	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.07	0	1005M	DFT-S-OFDM QPSK	1	104	6 mm	front	1:1	1.120	1.012	1.133	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.02	0	1005M	DFT-S-OFDM QPSK	50	28	6 mm	front	1:1	1.260	1.012	1.275	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.03	0	1005M	DFT-S-OFDM QPSK	1	104	11 mm	bottom	1:1	1.170	1.012	1.184	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.04	0	1005M	DFT-S-OFDM QPSK	50	28	11 mm	bottom	1:1	1.190	1.012	1.204	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.11	0	1005M	DFT-S-OFDM QPSK	1	104	0 mm	right	1:1	0.426	1.012	0.431	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.09	0	1005M	DFT-S-OFDM QPSK	50	28	0 mm	right	1:1	0.438	1.012	0.443	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.16	0	1005M	DFT-S-OFDM QPSK	1	104	0 mm	left	1:1	0.378	1.012	0.383	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	24.0	23.95	-0.16	0	1005M	DFT-S-OFDM QPSK	50	28	0 mm	left	1:1	0.410	1.012	0.415	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.86	-0.06	0	1020M	DFT-S-OFDM QPSK	1	1	0 mm	back	1:1	1.730	1.033	1.787	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.84	0.02	0	1020M	DFT-S-OFDM QPSK	50	0	0 mm	back	1:1	1.780	1.038	1.848	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.86	-0.21	0	1020M	DFT-S-OFDM QPSK	1	1	0 mm	front	1:1	1.660	1.033	1.715	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.84	0.12	0	1020M	DFT-S-OFDM QPSK	50	0	0 mm	front	1:1	1.700	1.038	1.765	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.86	-0.16	0	1020M	DFT-S-OFDM QPSK	1	1	0 mm	bottom	1:1	2.230	1.033	2.304	A99
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	20.0	19.66	-0.01	0	1020M	DFT-S-OFDM QPSK	1	1	0 mm	bottom	1:1	2.210	1.081	2.389	
1900.00	380000	High	NR Band n2 (PCS)	20	55	20.0	19.37	0.02	0	1020M	DFT-S-OFDM QPSK	1	1	0 mm	bottom	1:1	2.130	1.156	2.462	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.84	-0.03	0	1020M	DFT-S-OFDM QPSK	50	0	0 mm	bottom	1:1	2.220	1.038	2.304	
1880.00	376000	Mid	NR Band n2 (PCS)	20	55	20.0	19.70	-0.04	0	1020M	DFT-S-OFDM QPSK	50	0	0 mm	bottom	1:1	2.190	1.072	2.348	
1900.00	380000	High	NR Band n2 (PCS)	20	55	20.0	19.32	0.11	0	1020M	DFT-S-OFDM QPSK	50	56	0 mm	bottom	1:1	2.110	1.169	2.467	
1900.00	380000	High	NR Band n2 (PCS)	20	55	20.0	19.35	0.05	0	1020M	CP-OFDM QPSK	1	1	0 mm	bottom	1:1	2.120	1.161	2.461	
1860.00	372000	Low	NR Band n2 (PCS)	20	55	20.0	19.83	0.04	0	1020M	DFT-S-OFDM QPSK	100	0	0 mm	bottom	1:1	2.230	1.040	2.319	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Phablet 4.0 W/kg (mW/g) averaged over 10 grams											

FCC ID: A3LSMG981U	PCTEST INDICATE LADICATION INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Domo 240 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 240 of 298

Table 11-75 WLAN Phablet SAR

WEAN Fliablet SAN																			
							M	EASURE	MENT R	ESULT	s								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor	Scaling Factor (Duty	Reported SAF (10g)	Plot#
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5300	60	802.11a	OFDM	20	16.5	16.47	0.04	0 mm	1	0385S	6	back	99.7	25.525	1.130	1.007	1.003	1.141	
5300	60	802.11a	OFDM	20	16.5	16.47	0.17	0 mm	1	0385S	6	front	99.7	0.262	-	1.007	1.003	-	
5300	60	802.11a	OFDM	20	16.5	16.47	0.01	0 mm	1	0385S	6	top	99.7	0.708	-	1.007	1.003	-	
5300	60	802.11a	OFDM	20	16.5	16.47	-0.16	0 mm	1	0385S	6	left	99.7	2.908	0.199	1.007	1.003	0.201	
5280	56	802.11a	OFDM	20	16.5	15.97	0.12	0 mm	2	0385S	6	back	99.3	10.012	1.010	1.130	1.007	1.149	
5280	56	802.11a	OFDM	20	16.5	15.97	0.11	0 mm	2	0385S	6	front	99.3	0.444	-	1.130	1.007	-	
5280	56	802.11a	OFDM	20	16.5	15.97	0.19	0 mm	2	0385S	6	top	99.3	0.762	-	1.130	1.007	-	
5280	56	802.11a	OFDM	20	16.5	15.97	-0.20	0 mm	2	0385S	6	left	99.3	2.399	0.208	1.130	1.007	0.237	
5600	120	802.11a	OFDM	20	16.5	15.94	0.14	0 mm	1	0385S	6	back	99.7	25.510	1.060	1.138	1.003	1.210	
5600	120	802.11a	OFDM	20	16.5	15.94	-0.12	0 mm	1	0385S	6	front	99.7	0.191	-	1.138	1.003	-	
5600	120	802.11a	OFDM	20	16.5	15.94	0.12	0 mm	1	0385S	6	top	99.7	0.710	-	1.138	1.003	-	
5600	120	802.11a	OFDM	20	16.5	15.94	-0.10	0 mm	1	0385S	6	left	99.7	2.082	0.147	1.138	1.003	0.168	
5720	144	802.11a	OFDM	20	16.5	16.21	0.17	0 mm	2	0385S	6	back	99.3	13.619	1.100	1.069	1.007	1.184	
5720	144	802.11a	OFDM	20	16.5	16.21	0.19	0 mm	2	0385S	6	front	99.3	0.367	-	1.069	1.007	-	
5720	144	802.11a	OFDM	20	16.5	16.21	-0.16	0 mm	2	0385S	6	top	99.3	0.802	-	1.069	1.007	-	
5720	5720 144 802.11a OFDM 20 16.5 16.21 0.08								2	0385S	6	left	99.3	3.117	0.284	1.069	1.007	0.306	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Phablet					
	Spatial Peak													4.0 W/kg (m)	-				
	Uncontrolled Exposure/General Population							averaged over 10 grams											

Table 11-76 NII MIMO Phablet SAR

	MEASUREMENT RESULTS																				
FREQU	ENCY	Mode	Service	Bandwidth [MHz]				Conducted Power (Ant 2) [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (10g)	Plot#
MHz	Ch.			[]	(Ant 1) [dBm]	(Aut 1) [doin]	(Ant 2) [dBm]	(File 2) [GBIII]	[GD]		oomig.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5260	52	802.11n	OFDM	20	16.5	16.43	16.5	15.90	0.04	0 mm	MIMO	0385S	13	back	99.3	24.753	1.750	1.148	1.007	2.023	
5280	56	802.11n	OFDM	20	16.5	16.47	16.5	16.00	0.14	0 mm	MIMO	0385S	13	back	99.3	25.709	1.750	1.122	1.007	1.977	
5320	64	802.11n	OFDM	20	16.5	16.12	16.5	15.86	0.14	0 mm	MIMO	0385S	13	back	99.3	26.870	1.870	1.159	1.007	2.183	A100
5280	56	802.11n	OFDM	20	16.5	16.47	16.5	16.00	0.02	0 mm	MIMO	0385S	13	front	99.3	0.563	0.078	1.122	1.007	0.088	
5280	56	802.11n	OFDM	20	16.5	16.47	16.5	16.00	0.18	0 mm	MIMO	0385S	13	top	99.3	1.017		1.122	1.007	-	
5280	56	802.11n	OFDM	20	16.5	16.47	16.5	16.00	0.02	0 mm	MIMO	0385S	13	left	99.3	4.780	0.435	1.122	1.007	0.491	
5500	100	802.11n	OFDM	20	15.5	14.97	15.5	15.20	0.11	0 mm	MIMO	0385S	13	back	99.3	41.841	1.590	1.130	1.007	1.809	
5500	100	802.11n	OFDM	20	15.5	14.97	15.5	15.20	0.20	0 mm	MIMO	0385S	13	front	99.3	0.558	0.085	1.130	1.007	0.097	
5500	100	802.11n	OFDM	20	15.5	14.97	15.5	15.20	0.11	0 mm	MIMO	0385S	13	top	99.3	1.118		1.130	1.007	-	
5500	5500 100 802.11n OFDM 20 15.5 14.97 15.5 15.20									0.05 0 mm MIMO 0385S 13 left 99.3 4.853 0.427 1.130 1.007 0.486											
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Phablet											
	Spatial Peak									1						4.0 W/kg (m	W/g)				
									ave	raged over 1	0 grams										

Note: For channel 52, 56, and 64 to achieve the 19.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 16.5 dBm. For channel 100 to achieve the 18.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 15.5 dBm.

FCC ID: A3LSMG981U	PCTEST INGINIERS LAPRATERY, INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Danie 044 at 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 241 of 298

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. This device supports dynamic antenna tuning for some bands. Per FCC Guidance, SAR was measured according to the normally required SAR measurement configurations with tuner active. The auto-tune state determined by the device was verified before and after each SAR measurement and is listed in tables above. Please see Section 14 for supplemental data.
- 12. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.4. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 13. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 14. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).
- 15. This device uses Qualcomm Smart Transmit for 2G/3G/4G/5G operations to control and manage transmitting power in real time to ensure RF Exposure compliance. Per FCC Guidance, compliance for was assessed at the minimum of the time averaged power and the maximum output power for each band/mode/exposure condition (DSI).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 242 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 242 01 296

3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

CDMA Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 6. CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1X Advanced was not more than 0.25 dB higher than the maximum powers for 1X.

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 or LTE Band 48 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power

FCC ID: A3LSMG981U	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 242 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19		Page 243 of 298	
20 PCTEST Engineering Laboratory Inc.				REV/21.4 M

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 7. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with power class 2 at the available duty factor was additionally performed for the power class 3 configuration with the highest SAR configuration for each exposure conditions. Please see Section 14 for linearity results.
- 8. For LTE Band 5, LTE Band 66, LTE Band 41, and LTE Band 48, per FCC guidance, SAR was first measured with only a single carrier active in the uplink (carrier aggregation not active). For each exposure condition, the uplink CA scenario with two component carriers was additionally tested for the configuration with the highest SAR when carrier aggregation was not active. The SCC was configured with the closest available contiguous channel. The two component carriers were configured so the resource blocks are physically allocated side by side to achieve the maximum output power.
- This device supports LTE Band 41 ULCA active with Power Class 2. Highest SAR test configuration for each exposure condition in Power Class 3 with ULCA active was repeated with Power Class 2 with ULCA active.

NR Notes:

- 1. NR implementation is limited to EN-DC operations only. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.
- 2. Due to test setup limitations, SAR testing for NR was performed using test mode software to establish the connection.
- 3. Simultaneous transmission analysis for EN-DC operations is addressed in the Part 2 Test Report (Serial Number can be found in the bibliography).
- 4. This device additionally supports some EN-DC conditions where additional LTE carriers are added on the downlink only.
- 5. Per FCC Guidance, the device was configured with the tuner state selected by the device in LTE mode with auto-tune active at the same frequency as the NR test results. Additional tuner states were evaluated per April 2019 TCBC Workshop Guidance. Please see Section 14 for supplemental data.
- 6. Per FCC Guidance, NR modulations and RB Sizes/Offsets were selected for testing such that configurations with the highest output power were evaluated for SAR tests.
- 7. For final implementation, NR slot configuration is synchronized using maximum duty cycle of 25%. SAR testing was performed using FTM mode with a 25% duty cycle applied to match final duty cycle.

WLAN Notes:

- 1. For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not

FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 244 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 244 of 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

- investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.7.6 for more information.
- 4. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 12 for complete analysis.
- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 7. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above. Bluetooth Notes
 - Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5
 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was
 scaled to the 100% transmission duty factor to determine compliance. See Section 9.7 for the time
 domain plot and calculation for the duty factor of the device.
 - 2. Head and Hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 245 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 245 01 298

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Qualcomm Smart Transmit algorithm in WWAN adds directly the time-averaged RF exposure from 4G and time-averaged RF exposure from 5G NR. Smart Transmit algorithm controls the total RF exposure from both 4G and 5G NR to not exceed FCC limit. Therefore, simultaneous transmission compliance between 4G+5G operations is demonstrated in the Qualcomm Part 2 Report during algorithm validation.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 246 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 246 of 298

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/ko	3)
		1	2	3	1+2	1+3	1+2+3
	CDMA/EVDO BC10 (§90S)	0.266	0.761	0.032	1.027	0.298	1.059
	CDMA/EVDO BC0 (§22H)	0.307	0.761	0.032	1.068	0.339	1.100
	GSM 850	0.216	0.761	0.032	0.977	0.248	1.009
	UMTS 850	0.288	0.761	0.032	1.049	0.320	1.081
	UMTS 1750	0.210	0.761	0.032	0.971	0.242	1.003
	PCS CDMA/EVDO	0.277	0.761	0.032	1.038	0.309	1.070
	GSM 1900	0.091	0.761	0.032	0.852	0.123	0.884
	UMTS 1900	0.290	0.761	0.032	1.051	0.322	1.083
	LTE Band 71	0.172	0.761	0.032	0.933	0.204	0.965
	LTE Band 12	0.234	0.761	0.032	0.995	0.266	1.027
	LTE Band 13	0.302	0.761	0.032	1.063	0.334	1.095
	LTE Band 14	0.308	0.761	0.032	1.069	0.340	1.101
Head SAR	LTE Band 26 (Cell)	0.245	0.761	0.032	1.006	0.277	1.038
neau SAR	LTE Band 5 (Cell)	0.260	0.761	0.032	1.021	0.292	1.053
	LTE Band 66 (AWS)	0.218	0.761	0.032	0.979	0.250	1.011
	LTE Band 25 (PCS)	0.293	0.761	0.032	1.054	0.325	1.086
	LTE Band 2 (PCS)	0.309	0.761	0.032	1.070	0.341	1.102
	LTE Band 30	0.116	0.761	0.032	0.877	0.148	0.909
	LTE Band 7	0.134	0.761	0.032	0.895	0.166	0.927
	LTE Band 48	0.811	0.761	0.032	1.572	0.843	See Table Below
	LTE Band 41	0.157	0.761	0.032	0.918	0.189	0.950
	NR Band n71	0.186	0.761	0.032	0.947	0.218	0.979
	NR Band n5 (Cell)	0.250	0.761	0.032	1.011	0.282	1.043
	NR Band n66 (AWS)	0.242	0.761	0.032	1.003	0.274	1.035
	NR Band n2 (PCS)	0.210	0.761	0.032	0.971	0.242	1.003
	NR Band n41	1.065	0.761	0.032	See Table Below	1.097	See Table Below
			2.4 GH	z 2.4 GHz			

Simult Tx	Configuration	LTE Band 48 SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	Right Cheek	0.680	0.381	0.032	1.093
Head SAR	Right Tilt	0.811	0.471	0.032*	1.314
	Left Cheek	0.187	0.761*	0.032*	0.980
	Left Tilt	0.256	0.761	0.032*	1.049

Simult Tx	Configuration	NR Band n41 SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	
		1	2	3	1+2	1+2+3
	Right Cheek	0.917	0.381	0.032	1.298	1.330
Head SAR	Right Tilt	1.065	0.471	0.032*	1.536	1.568
I lead SAR	Left Cheek	0.644	0.761*	0.032*	1.405	1.437
	Left Tilt	0.797	0.761	0.032*	1.558	1.590

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 247 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 247 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	2	ΣSAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	CDMA/EVDO BC10 (§90S)	0.266	0.078	0.099	0.344	0.365	0.443
	CDMA/EVDO BC0 (§22H)	0.307	0.078	0.099	0.385	0.406	0.484
	GSM 850	0.216	0.078	0.099	0.294	0.315	0.393
	UMTS 850	0.288	0.078	0.099	0.366	0.387	0.465
	UMTS 1750	0.210	0.078	0.099	0.288	0.309	0.387
	PCS CDMA/EVDO	0.277	0.078	0.099	0.355	0.376	0.454
	GSM 1900	0.091	0.078	0.099	0.169	0.190	0.268
	UMTS 1900	0.290	0.078	0.099	0.368	0.389	0.467
	LTE Band 71	0.172	0.078	0.099	0.250	0.271	0.349
	LTE Band 12	0.234	0.078	0.099	0.312	0.333	0.411
	LTE Band 13	0.302	0.078	0.099	0.380	0.401	0.479
	LTE Band 14	0.308	0.078	0.099	0.386	0.407	0.485
Head SAR	LTE Band 26 (Cell)	0.245	0.078	0.099	0.323	0.344	0.422
Head SAR	LTE Band 5 (Cell)	0.260	0.078	0.099	0.338	0.359	0.437
	LTE Band 66 (AWS)	0.218	0.078	0.099	0.296	0.317	0.395
	LTE Band 25 (PCS)	0.293	0.078	0.099	0.371	0.392	0.470
	LTE Band 2 (PCS)	0.309	0.078	0.099	0.387	0.408	0.486
	LTE Band 30	0.116	0.078	0.099	0.194	0.215	0.293
	LTE Band 7	0.134	0.078	0.099	0.212	0.233	0.311
	LTE Band 48	0.811	0.078	0.099	0.889	0.910	0.988
	LTE Band 41	0.157	0.078	0.099	0.235	0.256	0.334
	NR Band n71	0.186	0.078	0.099	0.264	0.285	0.363
	NR Band n5 (Cell)	0.250	0.078	0.099	0.328	0.349	0.427
	NR Band n66 (AWS)	0.242	0.078	0.099	0.320	0.341	0.419
	NR Band n2 (PCS)	0.210	0.078	0.099	0.288	0.309	0.387
	NR Band n41	1.065	0.078	0.099	1.143	1.164	1.242

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 240 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 248 of 298

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN MIMO at 13 dBm SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
	CDMA/EVDO BC10 (§90S)	0.266	0.498	0.078	0.099	0.941
	CDMA/EVDO BC0 (§22H)	0.307	0.498	0.078	0.099	0.982
	GSM 850	0.216	0.498	0.078	0.099	0.891
	UMTS 850	0.288	0.498	0.078	0.099	0.963
	UMTS 1750	0.210	0.498	0.078	0.099	0.885
	PCS CDMA/EVDO	0.277	0.498	0.078	0.099	0.952
	GSM 1900	0.091	0.498	0.078	0.099	0.766
	UMTS 1900	0.290	0.498	0.078	0.099	0.965
	LTE Band 71	0.172	0.498	0.078	0.099	0.847
	LTE Band 12	0.234	0.498	0.078	0.099	0.909
	LTE Band 13	0.302	0.498	0.078	0.099	0.977
	LTE Band 14	0.308	0.498	0.078	0.099	0.983
Head SAR	LTE Band 26 (Cell)	0.245	0.498	0.078	0.099	0.920
I lead SAIN	LTE Band 5 (Cell)	0.260	0.498	0.078	0.099	0.935
	LTE Band 66 (AWS)	0.218	0.498	0.078	0.099	0.893
	LTE Band 25 (PCS)	0.293	0.498	0.078	0.099	0.968
	LTE Band 2 (PCS)	0.309	0.498	0.078	0.099	0.984
	LTE Band 30	0.116	0.498	0.078	0.099	0.791
	LTE Band 7	0.134	0.498	0.078	0.099	0.809
	LTE Band 48	0.811	0.498	0.078	0.099	1.486
	LTE Band 41	0.157	0.498	0.078	0.099	0.832
	NR Band n71	0.186	0.498	0.078	0.099	0.861
	NR Band n5 (Cell)	0.250	0.498	0.078	0.099	0.925
	NR Band n66 (AWS)	0.242	0.498	0.078	0.099	0.917
	NR Band n2 (PCS)	0.210	0.498	0.078	0.099	0.885
	NR Band n41	1.065	0.498	0.078	0.099	See Table Below

Simult Tx	Configuration	NR Band n41 SAR (W/kg)	2.4 GHz WLAN MIMO at 13 dBm SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
	Right Cheek	0.917	0.267	0.078	0.099	1.361
Head SAR	Right Tilt	1.065	0.351	0.048	0.099*	1.563
I lead SAN	Left Cheek	0.644	0.398	0.078*	0.099*	1.219
	Left Tilt	0.797	0.498	0.078*	0.099*	1.472

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 240 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 249 of 298

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	CDMA/EVDO BC10 (§90S)	0.266	0.398	0.664
	CDMA/EVDO BC0 (§22H)	0.307	0.398	0.705
	GSM 850	0.216	0.398	0.614
	UMTS 850	0.288	0.398	0.686
	UMTS 1750	0.210	0.398	0.608
	PCS CDMA/EVDO	0.277	0.398	0.675
	GSM 1900	0.091	0.398	0.489
	UMTS 1900	0.290	0.398	0.688
	LTE Band 71	0.172	0.398	0.570
	LTE Band 12	0.234	0.398	0.632
	LTE Band 13	0.302	0.398	0.700
	LTE Band 14	0.308	0.398	0.706
Head SAR	LTE Band 26 (Cell)	0.245	0.398	0.643
l lead SAIX	LTE Band 5 (Cell)	0.260	0.398	0.658
	LTE Band 66 (AWS)	0.218	0.398	0.616
	LTE Band 25 (PCS)	0.293	0.398	0.691
	LTE Band 2 (PCS)	0.309	0.398	0.707
	LTE Band 30	0.116	0.398	0.514
	LTE Band 7	0.134	0.398	0.532
	LTE Band 48	0.811	0.398	1.209
	LTE Band 41	0.157	0.398	0.555
	NR Band n71	0.186	0.398	0.584
	NR Band n5 (Cell)	0.250	0.398	0.648
	NR Band n66 (AWS)	0.242	0.398	0.640
	NR Band n2 (PCS)	0.210	0.398	0.608
	NR Band n41	1.065	0.398	1.463

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 250 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 250 of 298

Table 12-5 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	CDMA/EVDO BC10 (§90S)	0.266	0.398	0.078	0.742
	CDMA/EVDO BC0 (§22H)	0.307	0.398	0.078	0.783
	GSM 850	0.216	0.398	0.078	0.692
	UMTS 850	0.288	0.398	0.078	0.764
	UMTS 1750	0.210	0.398	0.078	0.686
	PCS CDMA/EVDO	0.277	0.398	0.078	0.753
	GSM 1900	0.091	0.398	0.078	0.567
	UMTS 1900	0.290	0.398	0.078	0.766
	LTE Band 71	0.172	0.398	0.078	0.648
	LTE Band 12	0.234	0.398	0.078	0.710
	LTE Band 13	0.302	0.398	0.078	0.778
	LTE Band 14	0.308	0.398	0.078	0.784
Head SAR	LTE Band 26 (Cell)	0.245	0.398	0.078	0.721
Tieau SAN	LTE Band 5 (Cell)	0.260	0.398	0.078	0.736
	LTE Band 66 (AWS)	0.218	0.398	0.078	0.694
	LTE Band 25 (PCS)	0.293	0.398	0.078	0.769
	LTE Band 2 (PCS)	0.309	0.398	0.078	0.785
	LTE Band 30	0.116	0.398	0.078	0.592
	LTE Band 7	0.134	0.398	0.078	0.610
	LTE Band 48	0.811	0.398	0.078	1.287
	LTE Band 41	0.157	0.398	0.078	0.633
	NR Band n71	0.186	0.398	0.078	0.662
	NR Band n5 (Cell)	0.250	0.398	0.078	0.726
	NR Band n66 (AWS)	0.242	0.398	0.078	0.718
	NR Band n2 (PCS)	0.210	0.398	0.078	0.686
	NR Band n41	1.065	0.398	0.078	1.541

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 254 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 251 of 298

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	CDMA/EVDO BC10 (§90S)	0.266	0.398	0.099	0.763
	CDMA/EVDO BC0 (§22H)	0.307	0.398	0.099	0.804
	GSM 850	0.216	0.398	0.099	0.713
	UMTS 850	0.288	0.398	0.099	0.785
	UMTS 1750	0.210	0.398	0.099	0.707
	PCS CDMA/EVDO	0.277	0.398	0.099	0.774
	GSM 1900	0.091	0.398	0.099	0.588
	UMTS 1900	0.290	0.398	0.099	0.787
	LTE Band 71	0.172	0.398	0.099	0.669
	LTE Band 12	0.234	0.398	0.099	0.731
	LTE Band 13	0.302	0.398	0.099	0.799
	LTE Band 14	0.308	0.398	0.099	0.805
Head SAR	LTE Band 26 (Cell)	0.245	0.398	0.099	0.742
Head SAR	LTE Band 5 (Cell)	0.260	0.398	0.099	0.757
	LTE Band 66 (AWS)	0.218	0.398	0.099	0.715
	LTE Band 25 (PCS)	0.293	0.398	0.099	0.790
	LTE Band 2 (PCS)	0.309	0.398	0.099	0.806
	LTE Band 30	0.116	0.398	0.099	0.613
	LTE Band 7	0.134	0.398	0.099	0.631
	LTE Band 48	0.811	0.398	0.099	1.308
	LTE Band 41	0.157	0.398	0.099	0.654
	NR Band n71	0.186	0.398	0.099	0.683
	NR Band n5 (Cell)	0.250	0.398	0.099	0.747
	NR Band n66 (AWS)	0.242	0.398	0.099	0.739
	NR Band n2 (PCS)	0.210	0.398	0.099	0.707
	NR Band n41	1.065	0.398	0.099	1.562

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 252 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 252 of 298

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
	CDMA/EVDO BC10 (§90S)	0.266	0.398	0.078	0.099	0.841
	CDMA/EVDO BC0 (§22H)	0.307	0.398	0.078	0.099	0.882
	GSM 850	0.216	0.398	0.078	0.099	0.791
	UMTS 850	0.288	0.398	0.078	0.099	0.863
	UMTS 1750	0.210	0.398	0.078	0.099	0.785
	PCS CDMA/EVDO	0.277	0.398	0.078	0.099	0.852
	GSM 1900	0.091	0.398	0.078	0.099	0.666
	UMTS 1900	0.290	0.398	0.078	0.099	0.865
	LTE Band 71	0.172	0.398	0.078	0.099	0.747
	LTE Band 12	0.234	0.398	0.078	0.099	0.809
	LTE Band 13	0.302	0.398	0.078	0.099	0.877
	LTE Band 14	0.308	0.398	0.078	0.099	0.883
Head SAR	LTE Band 26 (Cell)	0.245	0.398	0.078	0.099	0.820
TICAG OAT	LTE Band 5 (Cell)	0.260	0.398	0.078	0.099	0.835
	LTE Band 66 (AWS)	0.218	0.398	0.078	0.099	0.793
	LTE Band 25 (PCS)	0.293	0.398	0.078	0.099	0.868
	LTE Band 2 (PCS)	0.309	0.398	0.078	0.099	0.884
	LTE Band 30	0.116	0.398	0.078	0.099	0.691
	LTE Band 7	0.134	0.398	0.078	0.099	0.709
	LTE Band 48	0.811	0.398	0.078	0.099	1.386
	LTE Band 41	0.157	0.398	0.078	0.099	0.732
	NR Band n71	0.186	0.398	0.078	0.099	0.761
	NR Band n5 (Cell)	0.250	0.398	0.078	0.099	0.825
	NR Band n66 (AWS)	0.242	0.398	0.078	0.099	0.817
	NR Band n2 (PCS)	0.210	0.398	0.078	0.099	0.785
	NR Band n41	1.065	0.398	0.078	0.099	See Table Below

Simult Tx	Configuration	NR Band n41 SAR (W/kg)	Bluetooth S (W/kg)		5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	
		1	2	3	4	1+2+3+4	
	Right Cheek	0.917	0.189	0.078	0.099	1.283	
Head SAR	Right Tilt	1.065	0.252	0.048	0.099*	1.464	
I lead SAIN	Left Cheek	0.644	0.284	0.078*	0.099*	1.105	
	Left Tilt	n 797	0 308	0.078*	U UOO*	1 372	ı

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N: Test Dates:		DUT Type:		Dage 252 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19 Portable Handset			Page 253 of 298

Body-Worn Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.5 cm)

Exposure Condition Mode 20/36/40/56 SAR (W/kg) (W/kgp (W/kg) (W/kg) (W/kg) (W/kg) (W/kg) (W/kg) (W/kg) (W/kg) (W/kgp (W/kg) (W/kg) (W/kgp (W/kg) (W/kg) (W/kgp (W/kg) (W/kgp (W/kg) (W/kg) (W/kgp (W/kg) (W/kgp (W/kapalana, policial (W/kapa		Simultaneous Transii	neeren eerma	10 11111111111	<u> </u>	(Body Hon	. at 110 0111,	
CDMA BC10 (§90S)		Mode		WLAN Ant 1 SAR	WLAN Ant 2 SAR	Σ	∑SAR (W/kg)
CDMA BCO (§22H)			1	2	3	1+2	1+3	1+2+3
GSM 850		CDMA BC10 (§90S)	0.410	0.144	0.087	0.554	0.497	0.641
UMTS 850		CDMA BC0 (§22H)	0.325	0.144	0.087	0.469	0.412	0.556
Body-Worn Body-Worn UMTS 1750 0.941 0.144 0.087 1.085 1.028 1.172		GSM 850	0.252	0.144	0.087	0.396	0.339	0.483
PCS CDMA 1.031 0.144 0.087 1.175 1.118 1.262 GSM 1900 0.308 0.144 0.087 0.452 0.395 0.539 UMTS 1900 0.982 0.144 0.087 1.126 1.069 1.213 LTE Band 71 0.283 0.144 0.087 0.427 0.370 0.514 LTE Band 12 0.368 0.144 0.087 0.512 0.455 0.599 LTE Band 13 0.315 0.144 0.087 0.459 0.402 0.546 LTE Band 14 0.418 0.144 0.087 0.562 0.505 0.649 LTE Band 26 (Cell) 0.300 0.144 0.087 0.444 0.387 0.531 LTE Band 66 (AWS) 0.872 0.144 0.087 0.434 0.377 0.521 LTE Band 25 (PCS) 0.891 0.144 0.087 1.016 0.959 1.103 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.431 0.374 0.518 NR Band n71 0.287 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.985 0.920 0.964 NR Band n66 (AWS) 0.772 0.144 0.087 0.916 0.859 1.003		UMTS 850	0.361	0.144	0.087	0.505	0.448	0.592
GSM 1900		UMTS 1750	0.941	0.144	0.087	1.085	1.028	1.172
UMTS 1900		PCS CDMA	1.031	0.144	0.087	1.175	1.118	1.262
Body-Worn Body-Worn LTE Band 71 LTE Band 72 LTE Band 12 0.368 0.144 0.087 0.512 0.455 0.599 LTE Band 13 0.315 0.144 0.087 0.459 0.402 0.546 LTE Band 14 0.418 0.144 0.087 0.562 0.505 0.649 LTE Band 26 (Cell) 0.300 0.144 0.087 0.444 0.087 0.444 0.387 0.531 LTE Band 5 (Cell) 0.290 0.144 0.087 0.434 0.377 0.521 LTE Band 66 (AWS) 0.872 0.144 0.087 1.016 0.959 1.103 LTE Band 2 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 0.434 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.491 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n6 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		GSM 1900	0.308	0.144	0.087	0.452	0.395	0.539
Body-Worn		UMTS 1900	0.982	0.144	0.087	1.126	1.069	1.213
Body-Worn Body-Worn Body-Worn LTE Band 13 0.315 0.144 0.087 0.459 0.402 0.546 LTE Band 14 0.418 0.144 0.087 0.562 0.505 0.649 LTE Band 26 (Cell) 0.300 0.144 0.087 0.444 0.387 0.531 LTE Band 5 (Cell) 0.290 0.144 0.087 0.434 0.377 0.521 LTE Band 66 (AWS) 0.872 0.144 0.087 1.016 0.959 1.103 LTE Band 25 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 71	0.283	0.144	0.087	0.427	0.370	0.514
Body-Worn Body-Worn LTE Band 14 LTE Band 26 (Cell) 0.300 0.144 0.087 0.444 0.387 0.531 LTE Band 5 (Cell) 0.290 0.144 0.087 0.434 0.377 0.521 LTE Band 66 (AWS) 0.872 0.144 0.087 1.016 0.959 1.103 LTE Band 25 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 12	0.368	0.144	0.087	0.512	0.455	0.599
LTE Band 26 (Cell) 0.300 0.144 0.087 0.444 0.387 0.531 LTE Band 5 (Cell) 0.290 0.144 0.087 0.434 0.377 0.521 LTE Band 66 (AWS) 0.872 0.144 0.087 1.016 0.959 1.103 LTE Band 25 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n66 (AWS) 0.733 0.144 0.087 0.423 0.366 0.510 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 13	0.315	0.144	0.087	0.459	0.402	0.546
Body-Worn LTE Band 5 (Cell) 0.290 0.144 0.087 0.434 0.377 0.521 LTE Band 66 (AWS) 0.872 0.144 0.087 1.016 0.959 1.103 LTE Band 25 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.772 0.144 0.087 0.91		LTE Band 14	0.418	0.144	0.087	0.562	0.505	0.649
LTE Band 5 (Cell) 0.290 0.144 0.087 0.434 0.377 0.521 LTE Band 66 (AWS) 0.872 0.144 0.087 1.016 0.959 1.103 LTE Band 25 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003	Rody Worn	LTE Band 26 (Cell)	0.300	0.144	0.087	0.444	0.387	0.531
LTE Band 25 (PCS) 0.891 0.144 0.087 1.035 0.978 1.122 LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003	Body-World	LTE Band 5 (Cell)	0.290	0.144	0.087	0.434	0.377	0.521
LTE Band 2 (PCS) 0.860 0.144 0.087 1.004 0.947 1.091 LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 66 (AWS)	0.872	0.144	0.087	1.016	0.959	1.103
LTE Band 30 0.841 0.144 0.087 0.985 0.928 1.072 LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 25 (PCS)	0.891	0.144	0.087	1.035	0.978	1.122
LTE Band 7 0.666 0.144 0.087 0.810 0.753 0.897 LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 2 (PCS)	0.860	0.144	0.087	1.004	0.947	1.091
LTE Band 48 0.399 0.144 0.087 0.543 0.486 0.630 LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 30	0.841	0.144	0.087	0.985	0.928	1.072
LTE Band 41 0.547 0.144 0.087 0.691 0.634 0.778 NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 7	0.666	0.144	0.087	0.810	0.753	0.897
NR Band n71 0.287 0.144 0.087 0.431 0.374 0.518 NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 48	0.399	0.144	0.087	0.543	0.486	0.630
NR Band n5 (Cell) 0.279 0.144 0.087 0.423 0.366 0.510 NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		LTE Band 41	0.547	0.144	0.087	0.691	0.634	0.778
NR Band n66 (AWS) 0.733 0.144 0.087 0.877 0.820 0.964 NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		NR Band n71	0.287	0.144	0.087	0.431	0.374	0.518
NR Band n2 (PCS) 0.772 0.144 0.087 0.916 0.859 1.003		NR Band n5 (Cell)	0.279	0.144	0.087	0.423	0.366	0.510
· · ·		NR Band n66 (AWS)	0.733	0.144	0.087	0.877	0.820	0.964
NR Band n41 0.120 0.144 0.087 0.264 0.207 0.351		NR Band n2 (PCS)	0.772	0.144	0.087	0.916	0.859	1.003
		NR Band n41	0.120	0.144	0.087	0.264	0.207	0.351

FCC ID: A3LSMG981U	PCTEST NOME AND ADDRESS AND AD	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	nent S/N: Test Dates: DUT Type:			Dags 254 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 254 of 298

Table 12-7 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.5 cm)

Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.5 cm)							
Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	CDMA BC10 (§90S)	0.410	0.238	0.231	0.648	0.641	0.879
	CDMA BC0 (§22H)	0.325	0.238	0.231	0.563	0.556	0.794
	GSM 850	0.252	0.238	0.231	0.490	0.483	0.721
	UMTS 850	0.361	0.238	0.231	0.599	0.592	0.830
	UMTS 1750	0.941	0.238	0.231	1.179	1.172	1.410
	PCS CDMA	1.031	0.238	0.231	1.269	1.262	1.500
	GSM 1900	0.308	0.238	0.231	0.546	0.539	0.777
	UMTS 1900	0.982	0.238	0.231	1.220	1.213	1.451
	LTE Band 71	0.283	0.238	0.231	0.521	0.514	0.752
	LTE Band 12	0.368	0.238	0.231	0.606	0.599	0.837
	LTE Band 13	0.315	0.238	0.231	0.553	0.546	0.784
	LTE Band 14	0.418	0.238	0.231	0.656	0.649	0.887
Body-Worn	LTE Band 26 (Cell)	0.300	0.238	0.231	0.538	0.531	0.769
Body-World	LTE Band 5 (Cell)	0.290	0.238	0.231	0.528	0.521	0.759
	LTE Band 66 (AWS)	0.872	0.238	0.231	1.110	1.103	1.341
	LTE Band 25 (PCS)	0.891	0.238	0.231	1.129	1.122	1.360
	LTE Band 2 (PCS)	0.860	0.238	0.231	1.098	1.091	1.329
	LTE Band 30	0.841	0.238	0.231	1.079	1.072	1.310
	LTE Band 7	0.666	0.238	0.231	0.904	0.897	1.135
	LTE Band 48	0.399	0.238	0.231	0.637	0.630	0.868
	LTE Band 41	0.547	0.238	0.231	0.785	0.778	1.016
	NR Band n71	0.287	0.238	0.231	0.525	0.518	0.756
	NR Band n5 (Cell)	0.279	0.238	0.231	0.517	0.510	0.748
	NR Band n66 (AWS)	0.733	0.238	0.231	0.971	0.964	1.202
	NR Band n2 (PCS)	0.772	0.238	0.231	1.010	1.003	1.241
	NR Band n41	0.120	0.238	0.231	0.358	0.351	0.589

FCC ID: A3LSMG981U	SHGINISHES LABORATERY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N: Test Dates:		DUT Type:	Dogo 255 of 200
1M1910220165-01-R1.A3L 10/23	0/23/19 - 12/18/19 Portable Handset		Page 255 of 298

Table 12-8 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Body-Worn at 1.5 cm)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
CDMA E	BC10 (§90S)	0.410	0.144	0.087	0.322	0.963
CDMA	BC0 (§22H)	0.325	0.144	0.087	0.322	0.878
GS	SM 850	0.252	0.144	0.087	0.322	0.805
UN	ITS 850	0.361	0.144	0.087	0.322	0.914
UM	TS 1750	0.941	0.144	0.087	0.322	1.494
PCS	S CDMA	1.031	0.144	0.087	0.322	1.584
GS	M 1900	0.308	0.144	0.087	0.322	0.861
UM	TS 1900	0.982	0.144	0.087	0.322	1.535
LTE	Band 71	0.283	0.144	0.087	0.322	0.836
LTE	Band 12	0.368	0.144	0.087	0.322	0.921
LTE	Band 13	0.315	0.144	0.087	0.322	0.868
LTE	Band 14	0.418	0.144	0.087	0.322	0.971
Body-Worn LTE Ba	ind 26 (Cell)	0.300	0.144	0.087	0.322	0.853
LTE Ba	and 5 (Cell)	0.290	0.144	0.087	0.322	0.843
LTE Bar	nd 66 (AWS)	0.872	0.144	0.087	0.322	1.425
LTE Bai	nd 25 (PCS)	0.891	0.144	0.087	0.322	1.444
LTE Ba	and 2 (PCS)	0.860	0.144	0.087	0.322	1.413
LTE	Band 30	0.841	0.144	0.087	0.322	1.394
LTE	Band 7	0.666	0.144	0.087	0.322	1.219
LTE	Band 48	0.399	0.144	0.087	0.322	0.952
LTE	Band 41	0.547	0.144	0.087	0.322	1.100
NR E	Band n71	0.287	0.144	0.087	0.322	0.840
NR Bai	nd n5 (Cell)	0.279	0.144	0.087	0.322	0.832
NR Band	d n66 (AWS)	0.733	0.144	0.087	0.322	1.286
NR Bar	nd n2 (PCS)	0.772	0.144	0.087	0.322	1.325
NR E	Band n41	0.120	0.144	0.087	0.322	0.673

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type: 18/19 Portable Handset		Daga 256 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19			Page 256 of 298

Table 12-9 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.5 cm)

	s mansinission scenari	o with blactor	tii (Body We	7111 at 1.0 om
Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	CDMA BC10 (§90S)	0.410	0.026	0.436
	CDMA BC0 (§22H)	0.325	0.026	0.351
	GSM 850	0.252	0.026	0.278
	UMTS 850	0.361	0.026	0.387
	UMTS 1750	0.941	0.026	0.967
	PCS CDMA	1.031	0.026	1.057
	GSM 1900	0.308	0.026	0.334
	UMTS 1900	0.982	0.026	1.008
	LTE Band 71	0.283	0.026	0.309
	LTE Band 12	0.368	0.026	0.394
	LTE Band 13	0.315	0.026	0.341
	LTE Band 14	0.418	0.026	0.444
Body-Worn	LTE Band 26 (Cell)	0.300	0.026	0.326
Body-World	LTE Band 5 (Cell)	0.290	0.026	0.316
	LTE Band 66 (AWS)	0.872	0.026	0.898
	LTE Band 25 (PCS)	0.891	0.026	0.917
	LTE Band 2 (PCS)	0.860	0.026	0.886
	LTE Band 30	0.841	0.026	0.867
	LTE Band 7	0.666	0.026	0.692
	LTE Band 48	0.399	0.026	0.425
	LTE Band 41	0.547	0.026	0.573
	NR Band n71	0.287	0.026	0.313
	NR Band n5 (Cell)	0.279	0.026	0.305
	NR Band n66 (AWS)	0.733	0.026	0.759
	NR Band n2 (PCS)	0.772	0.026	0.798
	NR Band n41	0.120	0.026	0.146

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 257 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 257 of 298

Table 12-10 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Body-Worn at 1.5 cm)

nuitaneous i	ransmission Scenario v	vitn bluetooth	and 5 GHZ W	LAN (BOUY-	worn at 1.5 (
Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	CDMA BC10 (§90S)	0.410	0.026	0.238	0.674
	CDMA BC0 (§22H)	0.325	0.026	0.238	0.589
	GSM 850	0.252	0.026	0.238	0.516
	UMTS 850	0.361	0.026	0.238	0.625
	UMTS 1750	0.941	0.026	0.238	1.205
	PCS CDMA	1.031	0.026	0.238	1.295
	GSM 1900	0.308	0.026	0.238	0.572
	UMTS 1900	0.982	0.026	0.238	1.246
	LTE Band 71	0.283	0.026	0.238	0.547
	LTE Band 12	0.368	0.026	0.238	0.632
	LTE Band 13	0.315	0.026	0.238	0.579
	LTE Band 14	0.418	0.026	0.238	0.682
Body-Worn	LTE Band 26 (Cell)	0.300	0.026	0.238	0.564
Body-World	LTE Band 5 (Cell)	0.290	0.026	0.238	0.554
	LTE Band 66 (AWS)	0.872	0.026	0.238	1.136
	LTE Band 25 (PCS)	0.891	0.026	0.238	1.155
	LTE Band 2 (PCS)	0.860	0.026	0.238	1.124
	LTE Band 30	0.841	0.026	0.238	1.105
	LTE Band 7	0.666	0.026	0.238	0.930
	LTE Band 48	0.399	0.026	0.238	0.663
	LTE Band 41	0.547	0.026	0.238	0.811
	NR Band n71	0.287	0.026	0.238	0.551
	NR Band n5 (Cell)	0.279	0.026	0.238	0.543
	NR Band n66 (AWS)	0.733	0.026	0.238	0.997
	NR Band n2 (PCS)	0.772	0.026	0.238	1.036
	NR Band n41	0.120	0.026	0.238	0.384

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 250 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 258 of 298	

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	CDMA BC10 (§90S)	0.410	0.026	0.231	0.667
	CDMA BC0 (§22H)	0.325	0.026	0.231	0.582
	GSM 850	0.252	0.026	0.231	0.509
	UMTS 850	0.361	0.026	0.231	0.618
	UMTS 1750	0.941	0.026	0.231	1.198
	PCS CDMA	1.031	0.026	0.231	1.288
	GSM 1900	0.308	0.026	0.231	0.565
	UMTS 1900	0.982	0.026	0.231	1.239
	LTE Band 71	0.283 0.026		0.231	0.540
	LTE Band 12	0.368	0.026	0.231	0.625
	LTE Band 13	0.315	0.026	0.231	0.572
	LTE Band 14	0.418	0.026	0.231	0.675
Body-Worn	LTE Band 26 (Cell)	0.300	0.026	0.231	0.557
Body-World	LTE Band 5 (Cell)	0.290 0.026		0.231	0.547
	LTE Band 66 (AWS)	0.872	0.026	0.231	1.129
	LTE Band 25 (PCS)	0.891	0.026	0.231	1.148
	LTE Band 2 (PCS)	0.860	0.026	0.231	1.117
	LTE Band 30	0.841	0.026	0.231	1.098
	LTE Band 7	0.666	0.026	0.231	0.923
	LTE Band 48	0.399	0.026	0.231	0.656
	LTE Band 41	0.547	0.026	0.231	0.804
	NR Band n71	0.287	0.026	0.231	0.544
	NR Band n5 (Cell)	0.279	0.026	0.231	0.536
	NR Band n66 (AWS)	0.733	0.026	0.231	0.990
-	NR Band n2 (PCS)	0.772	0.026	0.231	1.029
	NR Band n41	0.120	0.026	0.231	0.377

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 250 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 259 of 298

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	CDMA BC10 (§90S)	0.410	0.026	0.322	0.758
	CDMA BC0 (§22H)	0.325	0.026	0.322	0.673
	GSM 850	0.252	0.026	0.322	0.600
	UMTS 850	0.361	0.026	0.322	0.709
	UMTS 1750	0.941	0.026	0.322	1.289
	PCS CDMA	1.031	0.026	0.322	1.379
	GSM 1900	0.308	0.026	0.322	0.656
	UMTS 1900	0.982	0.026	0.322	1.330
	LTE Band 71	0.283	0.026	0.322	0.631
	LTE Band 12	0.368	0.026	0.322	0.716
	LTE Band 13	0.315	0.026	0.322	0.663
	LTE Band 14	0.418	0.026	0.322	0.766
Body-Worn	LTE Band 26 (Cell)	0.300	0.026	0.322	0.648
Body-World	LTE Band 5 (Cell)	0.290	0.026	0.322	0.638
	LTE Band 66 (AWS)	0.872	0.026	0.322	1.220
	LTE Band 25 (PCS)	0.891	0.026	0.322	1.239
	LTE Band 2 (PCS)	0.860	0.026	0.322	1.208
	LTE Band 30	0.841	0.026	0.322	1.189
	LTE Band 7	0.666	0.026	0.322	1.014
	LTE Band 48	0.399	0.026	0.322	0.747
	LTE Band 41	0.547	0.026	0.322	0.895
	NR Band n71	0.287	0.026	0.322	0.635
	NR Band n5 (Cell)	0.279	0.026	0.322	0.627
	NR Band n66 (AWS)	0.733	0.026	0.322	1.081
	NR Band n2 (PCS)	0.772	0.026	0.322	1.120
	NR Band n41	0.120	0.026	0.322	0.468

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 260 of 298

Hotspot SAR Simultaneous Transmission Analysis

Table 12-11 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	1	Mode			G/4G/5G R (W/kg)	2.4 G WLAN / SAR (W	Ant 1	2.4 GHz WLAN Ant 2 SAR (W/kg)			ΣS	AR (W/k	(g)			
					1	2		3	1+2	2		1+3			1+2+3	
	EVDO E	3C10 (§90	S)	().434	0.54	3	0.262	0.97	7		0.696			1.239	
	EVDO	BC0 (§22	H)	().509	0.54	3	0.262	1.05	52		0.771			1.314	
	GF	PRS 850		().434	0.54	3	0.262	0.97	7		0.696			1.239	
	UN	MTS 850		().469	0.54	3	0.262	1.01	2		0.731			1.274	
	UM	TS 1750		().945	0.54	3	0.262	1.48	88		1.207	;	See ⁻	Table Belo	w
	PC	S EVDO		1	1.128	0.54	3	0.262	See Table	Below		1.390	;	See ⁻	Table Belo	w
	GP	RS 1900		().976	0.54	3	0.262	1.51	9		1.238	;	See ⁻	Table Belo	w
	UM	TS 1900		1	1.232	0.54	3	0.262	See Table	Below		1.494	;	See ⁻	Table Belo	w
	LTE	Band 71		().376	0.54	3	0.262	0.91	9		0.638			1.181	
	LTE	Band 12		(0.500	0.54	3	0.262	1.04	13		0.762			1.305	
	LTE	Band 13		().519	0.54	3	0.262	1.06	62		0.781			1.324	
	LTE	Band 14		().585	0.54	3	0.262	1.12	28		0.847			1.390	
Hotspot	LTE Ba	and 26 (Ce	ell)	().479	0.54	3	0.262	1.02	22		0.741			1.284	
SAR	LTE B	and 5 (Ce	II)	().523	0.54	3	0.262	1.06	6		0.785			1.328	
	LTE Bar	nd 66 (AW	/S)	().832	0.54	3	0.262	1.37	' 5		1.094	;	See ⁻	Table Belo	w
	LTE Ba	nd 25 (PC	(S)	1	1.252	0.54	3	0.262	See Table	Below		1.514	;	See ⁻	Table Belo	w
	LTE Ba	and 2 (PC	S)	1	1.229 0.54		3	0.262	See Table	See Table Below		1.491		See Table Below		w
	LTE	Band 30		1	1.242	0.543		0.262	See Table	Below		1.504		See Table Below		w
	LTE	Band 7		().881	0.54	3	0.262	1.42	24		1.143	;	See ⁻	Table Belo	w
	LTE	Band 48		().871	0.54	3	0.262	1.41	4		1.133	;	See ⁻	Table Belo	w
	LTE	Band 41		1	1.179	0.54	3	0.262	See Table	Below		1.441	;;	See ⁻	Table Belo	w
	NR I	Band n71		().419	0.54	3	0.262	0.96	32		0.681			1.224	
	NR Ba	nd n5 (Ce	II)	().482	0.54	3	0.262	1.02	25		0.744			1.287	
	NR Ban	d n66 (AV	/S)	().935	0.54	3	0.262	1.47	'8		1.197	;	See ⁻	Table Belo	w
	NR Bar	nd n2 (PC	S)	().899	0.54	3	0.262	1.44	12		1.161	;	See ⁻	Table Belo	w
	NR I	Band n41		().435	0.54	3	0.262	0.97	'8		0.697			1.240	
Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	WLAN	GHz N Ant 1 (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	Simult	Tx Configurat	PCS EVDC SAR (W/kg	Ι Μ/Ι ΔΝΙ Δ	Ant 1	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR	(W/kg)	
		1		2	3	1+2+3			1	2		3	1+		1+2+3	
	Back Front	0.499 0.478		287 543*	0.262 0.262*	1.048 1.283		Back Front	0.587 0.499	0.28		0.262 0.262*	0.8 1.0		1.136 1.304	
Hotspot	Top	-	0.9	543	0.031	0.574	Hotsp	ot Top	-	0.54		0.031	0.5	43	0.574	
SAR	Bottom Right	0.945 0.068		<u>- </u>	-	0.945 0.068	SAR	Bottom Right	1.128 0.085	-		-	1.1 0.0		1.128 0.085	
	Left	0.082	0.5	43*	0.262*	0.887		Left	0.069	0.543	3*	0.262*	0.6		0.874	

FCC ID: A3LSMG981U	PCTEST INDIVIDUAL INDIVIDUAL INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 201 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 261 of 298
20 DCTECT Engineering Leberatory Inc.				DEV/ 24 4 M

1				2.4 GHz	2.4 GHz					2.4 GI		4 GHz		
Simul	ılt Tx	Configuration	GPRS 1900 SAR (W/kg)	WLAN Ant SAR (W/kg	2 SAR	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	WIANIA	Ant 1 WL	AN Ant SAR N/kg)	Σ SAR	(W/kg)
			1	2	3	1+2+3	İ		1	2		3	1+2	1+2+3
 		Back	0.417	0.287	0.262	0.966		Back	0.561	0.28	7 ().262	0.848	1.110
l		Front	0.441	0.543*	0.262*	1.246	t	Front	0.518	0.543		.262*	1.061	1.323
Hots	pot	Top	-	0.543	0.031	0.574	Hotspot	Top	-	0.54		0.031	0.543	0.574
SA		Bottom	0.976	-	-	0.976	SAR	Bottom	1.232	-		-	1.232	1.232
ĺ		Right	0.067	-	-	0.067	1	Right	0.078	-		-	0.078	0.078
L		Left	0.054	0.543*	0.262*	0.859		Left	0.064	0.543	3* 0	.262*	0.607	0.869
Simul	ılt Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	2.4 GHz WLAN Ant SAR (W/kg		Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	2.4 GI WLAN A SAR (W	Ant 1 WL	4 GHz AN Ant SAR V/kg)	Σ SAR	(W/kg)
			1	2	3	1+2+3			1	2	ì	3	1+2	1+2+3
		Back	0.426	0.287	0.262	0.975		Back	0.623	0.28	7 (0.262	0.910	1.172
İ	ľ	Front	0.407	0.543*	0.262*	1.212]	Front	0.557	0.543		.262*	1.100	1.362
Hots		Тор	-	0.543	0.031	0.574	Hotspot	Тор	-	0.54	3 (0.031	0.543	0.574
SA	ιR	Bottom	0.832	-	-	0.832	SAR	Bottom	1.252	-		-	1.252	1.252
ļ		Right	0.065	-	-	0.065		Right	0.112	-		-	0.112	0.112
		Left	0.077	0.543*	0.262*	0.882		Left	0.073	0.543	3* 0	.262*	0.616	0.878
				Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)		1 2 5 2 2	ΣSAF	R (W/kg)				
						1	2	3	1+2	1+2+3				
					Back	0.564	0.287	0.262	0.851	1.113				
				Llotopot	Front	0.491	0.543*	0.262*	1.034	1.296				
				Hotspot	Top	-	0.543	0.031	0.543	0.574				
				SAR	Bottom	1.229	-	-	1.229	1.229				
				-	Right	0.095	0.540*	- 0.000*	0.095	0.095				
					Left	0.062	0.543*	0.262*	0.605	0.867				
Simul	ılt Tx	Configuration	LTE Band 30 SAR (W/kg)	2.4 GHz WLAN Ant SAR (W/kg	2 5 4 5	t Σ SAR	(W/kg)	Simult Tx	Configuration	LTE Ba SAR (W	nd 7 WL/ //kg) 1	GHz AN Ant SAR //kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
			1	2	3	1+2	1+2+3			1		2	3	1+2+3
l	Į.	Back	0.425	0.287	0.262	0.712	0.974	<u> </u>	Back	0.42		287	0.262	0.973
	L	Front	0.413	0.543*	0.262*	0.956	1.218		Front	0.27		543*	0.262*	1.084
Hots		Тор						4 F						
SA	ιR		-	0.543	0.031	0.543	0.574	Hotspot	Top	-		543	0.031	0.574
		Bottom	1.242	0.543	0.031	1.242	1.242	Hotspot SAR	Bottom	0.88	1	-	-	0.881
		Right	0.047	-	-	1.242 0.047	1.242 0.047		Bottom Right	0.04	0	-	-	0.881 0.040
	•				0.031	1.242	1.242		Bottom		0	- - 543*	- - 0.262*	0.881
imult T>	x C	Right	0.047	-	0.262* 2.4 GH WLAN A 2 SAF	1.242 0.047 0.605 Z Ant Σ SAF (W/kg	1.242 0.047 0.867	SAR	Bottom Right Left LTE B: 41 SA (W/k	0.04 0.07 and 2. AR WL/ g) SAF	1 0 0.4 3 0.4 4 GHz AN Ant 1 R (W/kg)	2.4 GH: WLAN A 2 SAR (W/kg)	- 0.262* z Ant 2 Σ S	0.881 0.040 0.878 6AR (W/kg)
imult T>	x C	Right Left	0.047 0.062 LTE Band 48 SAR	- 0.543* 2.4 GHz WLAN Ant	0.262* 2.4 GH WLAN A	1.242 0.047 0.605 Z Ant Σ SAF (W/kg	1.242 0.047 0.867 R Simult	SAR	Bottom Right Left LTE B: 41 SA	0.04 0.07 and 2. AR WL/ g) SAF	1 0 3 0.9 4 GHz AN Ant 1	- 543* 2.4 GH; WLAN A 2 SAR	- 0.262* Σ Σ S	0.881 0.040 0.878 GAR (W/kg)
imult Tx	x C	Right Left	0.047 0.062 LTE Band 48 SAR (W/kg)	0.543* 2.4 GHz WLAN Ant SAR (W/k	0.262* 2.4 GH WLAN A 2 SAF (W/kg) 3	1.242 0.047 0.605 IZ Ant Σ SAF (W/kg) 1+2+3	1.242 0.047 0.867 R Simult	SAR Tx Configura	Bottom Right Left LTE B: 41 SA (W/k)	0.04 0.07 and 2. WLJ g) SAF	1 0 0.3 0.4 4 GHz AN Ant 1 R (W/kg)	2.4 GHz WLAN A 2 SAR (W/kg)	- 0.262* Iz 2 Int Σ S	0.881 0.040 0.878 6AR (W/kg) 1+24
		Right Left configuration Back	0.047 0.062 LTE Band 48 SAR (W/kg) 1	0.543* 2.4 GHz WLAN Ant SAR (W/k	2.4 GH WLAN A 2 SAF (W/kg 3 0.262	1.242 0.047 0.605 IZ X SAF R (W/kg) 1+2+3	1.242 0.047 0.867 R Simult	Tx Configura Back Front Top	Bottom Right Left LTE Ba 41 S/ (W/k 1 0.43 0.37	0.04 0.07 and 2. AR WL/ g) SAF	1 0 0.3 0.4 GHz AN Ant 1 R (W/kg) 2 0.287	2.4 GH; WLAN A 2 SAR (W/kg) 3	0.262* z λnnt 1+2 0.721 0.916 0.543	0.881 0.040 0.878 SAR (W/kg) 1+24 1 0.98 6 1.17 8 0.57
lotspot		Right Left configuration Back Front	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347	2.4 GHz WLAN Ant SAR (W/k	2.4 GH WLAN A 2 SAF (W/kg 3 0.262 0.262	1.242 0.047 0.605 Iz Ant Σ SAF (W/kg) 1+2+; 1.252 1.152	1.242 0.047 0.867 R Simult	Tx Configura Back Front Top Botton	Bottom Right Left	0.04 0.07 and 2. AR WL/ SAF	1 0 0 3 0.4 GHz AN Ant 1 1	2.4 GH; WLAN A 2 SAR (W/kg) 3 0.262 0.262*	- 0.262* Σ Σ S 1+2 0.721	0.881 0.040 0.878 6AR (W/kg) 1+2+ 1 0.98 6 1.17 3 0.57 9 1.17
lotspot		Right Left configuration Back Front Top	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871	- 0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543*	2.4 GH WLAN A 2 SAF (W/kg 3 0.262 0.262 0.031	1.242 0.047 0.605 Iz Ant Σ SAF (W/kg) 1+2+: 1.252 1.145	1.242 0.047 0.867 Simult	Tx Configura Back Front Top Botton Right	Bottom Right Left LTE B 41 S/ (W/k	0.04 0.07 and 2. WL/SAF	1 0 0 3 0.4 GHz AN Ant 1 R (W/kg) 2 0.287 0.543* 0.543	- 543* 2.4 GH; WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031	- 0.262* Z vint Σ S S S S S S S S S S S S S S S S S S	0.881 0.040 0.878 SAR (W/kg) 1+2-1 0.98 6 1.17 3 0.57 9 1.17 3 0.03
lotspot		Right Left configuration Back Front	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347	2.4 GHz WLAN Ant SAR (W/k	2.4 GH WLAN A 2 SAF (W/kg 3 0.262 0.262	1.242 0.047 0.605 Iz Ant Σ SAF (W/kg) 1+2+: 1.252 1.145	1.242 0.047 0.867 Simult	Tx Configura Back Front Top Botton	Bottom Right Left	0.04 0.07 and 2. WL/SAF	1 0 0 3 0.4 GHz AN Ant 1 1	2.4 GH: WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031	- 0.262* Z vint Σ S S S S S S S S S S S S S S S S S S	0.881 0.040 0.878 SAR (W/kg) 1+2-1 0.98 6 1.17 3 0.57 9 1.17 3 0.03
lotspot		Right Left configuration Back Front Top Left	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871 0.305	0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543* 0.543* 0.543 Band (AWS) (W/ka) 1	2.4 GH WLAN A 2 SAF (W/kg 3 0.262 0.262 0.031 0.262 1 GHz 2.4 NA Ant WLA SAR 2.5	1.242 0.047 0.605 Iz Ant Σ SAF (W/kg) 1+2+: 1.252 1.145	1.242 0.047 0.867 Simult	Tx Configura Back Front Top Botton Right Left	Bottom Right Left LTE B: 41 S/ (W/k	0.04 0.07 and 2.2 AR WLJ 9) SAF	1 0 0 3 0.4 GHz AN Ant 1 R (W/kg) 2 0.287 0.543* 0.543	- 543* 2.4 GH: WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031 - 0.262* 2.4 G	- 0.262* Z x nnt	0.881 0.040 0.878 6AR (W/kg) 1+2-1 0.98 5.1.17 3. 0.57 9. 1.17 3. 0.03 2. 0.89 6AR
imult Tx	i	Right Left configuration Back Front Top Left Left Configuration	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871 0.305 NR n66 SAR	0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543* 0.543* 0.543* ULAN Ant 2 0.44* 0.543* 0.543* 0.543* 0.543* 0.543* 0.543* 0.543*	2.4 GHWLAN A 2 SAF (W/kg) 3 0.262 0.262 0.262 0.262 0.031 0.262 GHz 2.4 AN Ant WLA SAR 2.5 (//kg) (W	1.242 0.047 0.605 IZ Ant Σ SAF (W/kg) 1+2+3 1.152 1.410 GHz N Ant Σ S SAR (W/kg) 1+2+3 1.110	1.242 0.047 0.867 R Simult 3 Hotspi SAR AR kg) Sin	Tx Configura Back Front Top Botton Right Left nult Tx Config	Bottom Right Left Left LTE Bi	0.04 0.07 and 2. WL/99 SAF 44 (0. 33 0. (0. (0. (0. (0. (0. (0. (0. (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 GH: WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031 - 0.262* WLAN 2 SA (W/kg) 3	- 0.262* Z Ant Σ S S S S S S S S S S S S S S S S S S	0.881 0.040 0.878 6AR (W/kg) 1+2-1 0.98 6. 1.17 3 0.57 9 1.17 3 0.03 2 0.89 6AR (/kg)
lotspot	i	Right Left configuration Back Front Top Left Left Configuration	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871 0.305 NR n66 SAR	0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543* 0.543* 0.543 (W/k) 1 (W/kg) (W 1 546 0.0	2.4 GHWLAN A 2 SAR (W/kg 3 0.262* 0.262* 0.262* 0.262* 0.262* 0.31* 0.262* 0.262* 0.31* 0.262* 0.44N Ant WLA SAR 2 \$ (W/kg) (W) 2 287 0.262*	1.242 0.047 0.605	1.242 0.047 0.867 Simult Simult SAR SAR SAR Simult SAR SAR Simult SAR Tx Configura Back Front Top Botton Right Left nult Tx Configura B B B B B B B B B B B B B B B B B B B	Bottom Right Left Left LTE Bi	0.04 0.07	1 0 0 3 0.4 GHz AN Ant 1 R (W/kg) 2 0.287 0.543* 0.543* 0.543* 0.543* 0.4 GHz AN Ant 1 SAR (W/kg) 2 0.287	2.4 GHz WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031 - 0.262* WLAN 2 SAR (W/ky) 3 0.262* 0.031 - 0.262*	- 0.262* Z z nnt	0.881 0.040 0.878 6AR (W/kg) 1+2-1 1 0.98 1.17 3 0.57 9 1.17 3 0.03 2 0.89 6AR (/kg) 2+3 364	
lotspot	Simu	Right Left configuration Back Front Top Left Left Configuration	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871 0.305 NR n66 SAR	0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543* 0.543* 0.543* (W/kg) 1 (W/kg) 1 546 0.485 0.485	0.262* 2.4 GH WLAN // 2 SAF (W/kg) 3 0.262 0.262 0.031 0.262 CHz 2.44 SAR 2.5 SH/kg) (W	1.242 0.047 0.605 2	1.242 0.047 0.867 R Simult 3 Hotsper SAR AR kg) Sin	Tx Configura Back Front Top Botton Right Left nult Tx Config	Bottom Right Left LTE Bi 41 S/ (W/k	0.04 0.07 and 2. WL/99 SAF 44 (0. 33 0. (0. (0. (0. (0. (0. (0. (0. (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 GH: WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031 - 0.262* WLAN 2 SAR (W/kg) 3 0.262* 0.31 - 0.262* 0.24 GH: WLAN 2 SAR (W/kg) 3 0.262* 0.262*	- 0.262* Z	0.881 0.040 0.878 6AR (W/kg) 1+2-1 1 0.98 6 1.17 8 0.57 9 1.17 8 0.68 6AR 6AR 1.17 8 0.89 6AR 1.17 8 0.89 6AR 1.17 8 0.89 8 0.89 8 0.89
lotspot	Simu	Right Left configuration Back Front Top Left with Tx Configuration Back Front Top Left Back Front Top Left Top Left Top Left Top Left Top Top Top Top Top Top Top Top Top To	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871 0.305 NR n66 SAR	0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543* 0.543* 0.543* 1 (W/kg) 1 (W/kg) 1 546 0.485 0.543*	2.4 GH WLAN // 2 SAF (W/kg 3 0.262 0.262 0.031 0.262 0.031 0.262 0.462 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	1.242 0.047 0.605 IZ Ant Σ SAF R (W/kg) 1+2+: 1.252 1.152 1.1445 SAR (W/kg) N Ant Σ S SAR (W/kg) 3 1+2 262 1.0 662* 1.2 331 0.5	1.242 0.047 0.867 R Simult 3 Hotspi SAR AR kg) Sin 2+3 90 90 74	Tx Configura Back Front Top Botton Right Left hult Tx Configura	Bottom Right Left Left LTE Bi	0.04 0.07 and 2. WL g) SAF 44 (0.07 88 99 0.07 Band n2 CS) SAR W/kg) 1 0.315 0.325	1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	2.4 GH: WLAN A 2 SAR (W/kg) 3 0.262* 0.262* 0.262* 0.262* 0.262* 0.262* 0.031 0.262* 0.0031 0.0030 0.0000 0.00000 0.00000000000	2	0.881 0.040 0.878 6AR (W/kg) 1+2-1 0.98 6 1.17 3 0.57 9 1.17 9 2 0.89 6AR (kg) 2+3 364 130 574
lotspot	Simu	Right Left configuration Back Front Top Left with Tx Configuration Back Front Top Left Back Front Top Left Top Left Top Left Top Left Top Top Top Top Top Top Top Top Top To	0.047 0.062 LTE Band 48 SAR (W/kg) 1 0.703 0.347 0.871 0.305 NR n666 SAR	0.543* 2.4 GHz WLAN Ant SAR (W/k 2 0.287 0.543* 0.543* 0.543* (W/kg) 1 (W/kg) 1 546 0.485 0.485	2.4 GH WLAN A 2 SAF (W/kg 3 0.262 0.262 0.262 0.031 0.262 GHz 2.4 AN Ant WLA SAR 2.5 (W/kg) (W 2 287 0.2 543* 0.2 543* 0.2	1.242 0.047 0.605 2	1.242 0.047 0.867	Tx Configura Back Front Top Botton Right Left hult Tx Configura B B F F F F F F F F F F F F F F F F F	Bottom Right LTE Bi	0.04 0.07	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 GH: WLAN A 2 SAR (W/kg) 3 0.262 0.262* 0.031 - 0.262* WLAN 2 SAR (W/kg) 3 0.262* 0.31 - 0.262* 0.24 GH: WLAN 2 SAR (W/kg) 3 0.262* 0.262*	2	0.881 0.040 0.878 6AR (W/kg) 1+2-1 1 0.98 6 1.17 8 0.57 9 1.17 8 0.68 6AR 6AR 1.17 8 0.89 6AR 1.17 8 0.89 6AR 1.17 8 0.89 8 0.89 8 0.89

PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	Dogo 262 of 200
10/23/19 - 12/18/19	Portable Handset	Page 262 of 298
	Test Dates:	Test Dates: DUT Type:

Table 12-12 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition		Mode			2G/3G/4 SAR (W		Ar	Hz WI nt 1 S/ W/kg	٩R	5 GH WLAN 2 SAI (W/kg	Ant R		Σ SAF	R (W/kg)	
					1			2		3		1+2	2	1	+3
	EVDO	BC10 (§90S)	0.43	4		0.443		0.323	3	0.87	7	0.	757
	EVDO	•		_	0.50	9		0.443		0.323	3	0.95	2	0.	832
		PRS 85			0.43		0.443			0.323	3	0.877		_	757
		/ITS 85			0.46			0.443		0.323		0.91		_	792
		TS 175			0.94			0.443		0.323	_	1.38		_	268
		SEVD			1.12			0.443		0.323	_	1.57	-	-	451
		RS 190			0.97			0.443		0.323	_	1.41		_	299
		TS 190			1.23			0.443		0.323		See Table	-	+	555
		Band			0.37			0.443		0.323	_	0.81		_	699
		Band			0.50			0.443		0.323		0.94			823
		Band			0.51			0.443		0.323	_	0.96		_	842
		Band			0.58			0.443		0.323		1.02		_	908
Hotspot					0.47			0.443		0.323		0.92		+	802
SAR	LTE B		, ,		0.52			0.443		0.323		0.96		+	846
O/ ii t	LTE Ba		. ,	2)	0.83			0.443		0.323		1.27			155
	LTE Ba		`	_	1.25			0.443		0.323		See Table		_	575
	LTE Ba		`	_	1.23			0.443		0.323		See Table		+	552
		Band			1.24			0.443		0.323		See Table		+	565
		Band			0.88		_			0.32		1.32		_	204
		Band						0.443				1.32		_	194
		Band	_		0.87			0.443		0.323		See Table		_	
								0.443						_	502
		Band n			0.41			0.443		0.323			0.862		742
	NR Ba		. ,	.,	0.48			0.443		0.323				+	805
	NR Ban		•	_	0.93			0.443		0.323			1.378		258
	NR Bai	Band n		'	0.89			0.443		0.323			1.342		222
	INIX	Danu n	14 1		0.43	3		0.443		0.323	ა	0.87	•	J 0.	758
Simult Tx	Configuration	UMTS SAR (V		Ant	z WLAN 1 SAR V/kg)	ΣS.		Sim	ult Tx	Configu	ration	LTE Band 25 (PCS SAR (W/k	An	Hz WLAN at 1 SAR W/kg)	Σ SAR (W/kg)
Cimal 1x	Comigaration			(*	v/kg/				ant 170	oogu		Or are (vv) is	9/	, vv/itg/	
		1			2	1+	2					1		2	1+2
	Back	0.56			.443	1.0				Bac		0.623		0.443	1.066
Hotspot	Front Top	0.5	18		443* 443*	0.9		Hot	spot	From		0.557).443*).443*	1.000 0.443
SAR	Bottom	1.23		- 0.	-	1.2			٩R	Botto	om	1.252		-	1.252
	Right Left	0.0			.125	0.0				Right Lef		0.112		0.125	0.112 0.198
	Leit					0.1	09			Lei					0.196
		LTE Ba			z WLAN 1 SAR	ΣS	AR					LTE Band		Hz WLAN	Σ SAR
Simult Tx	Configuration	(PCS) (W/I			V/kg)	(W/	kg)	Sim	ult Tx	Configu	ration	30 SAR (W/kg)		t 1 SAR W/kg)	(W/kg)
	Ü		0,									. 0,			
		1			2	1+						1		2	1+2
	Back Front	0.56			.443 443*	1.0 0.9		-		Bac Froi		0.425 0.413		0.443 0.443*	0.868 0.856
Hotspot	Top	0.48	<i>3</i> I		443* 443*	0.9		Hot	spot	Top		- 0.413).443*).443*	0.856
SAR	Bottom	1.22			-	1.2		S	٩R	Botto		1.242		-	1.242
ŀ	Right Left	0.09		0	.125	0.0		ŀ		Righ Lef		0.047 0.062		0.125	0.047 0.187
'			Simu		Configu		LTE 41 S	Band SAR /kg)	Ant	łz WLAN : 1 SAR W/kg)	Σ	SAR //kg)	,		

Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	0.434	0.443	0.877
	Front	0.373	0.443*	0.816
Hotspot	Top	-	0.443*	0.443
SAR	Bottom	1.179	-	1.179
1	Right	0.038	-	0.038
1	Left	0.089	0.125	0.214

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 000 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 263 of 298

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	
		1	2	1+2	
	EVDO BC10 (§90S)	0.434	0.605	1.039	
	EVDO BC0 (§22H)	0.509	0.605	1.114	
	GPRS 850	0.434	0.605	1.039	
	UMTS 850	0.469	0.605	1.074	
	UMTS 1750	0.945	0.605	1.550	
	PCS EVDO	1.128	0.605	See Table Below	
	GPRS 1900	0.976	0.605	1.581	
	UMTS 1900	1.232	0.605	See Table Below	
	LTE Band 71	0.376	0.605	0.981	
	LTE Band 12	0.500	0.605	1.105	
	LTE Band 13	0.519	0.605	1.124	
	LTE Band 14	0.585	0.605	1.190	
Hotspot	LTE Band 26 (Cell)	0.479	0.605	1.084	
SAR	LTE Band 5 (Cell)	0.523	0.605	1.128	
	LTE Band 66 (AWS)	0.832	0.605	1.437	
	LTE Band 25 (PCS)	1.252	0.605	See Table Below	
	LTE Band 2 (PCS)	1.229	0.605	See Table Below	
	LTE Band 30	1.242	0.605	See Table Below	
	LTE Band 7	0.881	0.605	1.486	
	LTE Band 48	0.871	0.605	1.476	
	LTE Band 41	1.179	0.605	See Table Below	
	NR Band n71	0.419	0.605	1.024	
	NR Band n5 (Cell)	0.482	0.605	1.087	
	NR Band n66 (AWS)	0.935	0.605	1.540	
	NR Band n2 (PCS)	0.899	0.605	1.504	
	NR Band n41	0.435	0.605	1.040	

Simult Tx	Tx Configuration PCS EVDO SAR (W/kg) 5 GHz WLAN MIMO SAR (W/kg) Σ SAR (W/kg) Simult Tx		Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)		
		1	2	1+2			1	2	1+2
	Back	0.587	0.605	1.192		Back	0.561	0.605	1.166
İ	Front	0.499	0.605*	1.104		Front	0.518	0.605*	1.123
Hotspot	Тор	-	0.089	0.089	Hotspot	Тор	-	0.089	0.089
SAR	Bottom	1.128	-	1.128	SAR	Bottom	1.232	-	1.232
	Right	0.085	-	0.085		Right	0.078	-	0.078
	Left	0.069	0.127	0.196		Left	0.064	0.127	0.191
Simult Tx	LTE Band 25 (PCS) MIMO SAR (W/kg) Σ SAR (W/kg) Simult To		Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)		
		1	2	1+2			1	2	1+2
	Back	0.623	0.605	1.228		Back	0.564	0.605	1.169
	Front	0.557	0.605*	1.162		Front	0.491	0.605*	1.096
Hotspot	Top	-	0.089	0.089	Hotspot	Top	-	0.089	0.089
SAR	Bottom	1.252	-	1.252	SAR	Bottom	1.229	-	1.229
	Right	0.112	-	0.112		Right	0.095	-	0.095
	Left	0.073	0.127	0.200		Left	0.062	0.127	0.189
Simult Tx	Configuration	LTE Band 30 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.425	0.605	1.030		Back	0.434	0.605	1.039
	Front	0.413	0.605*	1.018	I	Front	0.373	0.605*	0.978
Hotspot	Тор	-	0.089	0.089	Hotspot	Тор	-	0.089	0.089
SAR	Bottom	1.242	-	1.242	SAR	Bottom	1.179	-	1.179
1	Right	0.047	-	0.047	I	Right	0.038	-	0.038
	Left	0.062	0.127	0.189		Left	0.089	0.127	0.216

FCC ID: A3LSMG981U	@ PCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by:
	SNOINLEBBE LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 264 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 204 01 298

Table 12-13 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Hotspot at 1.0 cm)

	1				<u> </u>	m)							
Exposure Condition		Mode			3G/4G/ R (W/k			2.4 GH /LAN M at 16 dE SAR (W	IIMO 3m	5 GH WLA MIMO S (W/kg	N SAR	ΣSAR	(W/kg)
					1			2		3		1+	2+3
	EVDO BC10 (§90S)		§90S)	(0.434			0.355	5	0.60	5	1.	394
	EVDO	BC0 (§	§22H)	(0.509			0.355	5	0.60	5	1.	469
	GPRS 850			(0.434			0.355	5	0.60	5	1.	394
	UN	/ITS 85	0	(0.469			0.355	5	0.60	5	1.	429
	UM	ITS 175	50	(0.945			0.355	5	0.60	5	See Tal	ole Below
	PC	S EVD	0		1.128			0.355	5	0.60	5	See Tal	ole Below
	GP	RS 190	00	(0.976			0.355	5	0.60	5	See Tal	ole Below
	UM	ITS 190	00		1.232			0.355	5	0.60	5	See Tal	ole Below
	LTE	Band	71	(0.376			0.355	5	0.60	5	1.	336
	LTE Band 12 LTE Band 13 LTE Band 14		(0.500			0.355	5	0.605		1.460		
			(0.519			0.355	5	0.605		1.	479	
			(0.585			0.355	5	0.605		1.	545	
Hotspot	LTE Ba	and 26	(Cell)	(0.479			0.355	5	0.60	5	1.	439
SAR	LTE B	and 5 ((Cell)	(0.523			0.355	5	0.60	5	1.	483
	LTE Bai	nd 66 ((AWS)	(0.832			0.355	5	0.60	5	See Tal	ole Below
	LTE Ba	nd 25	(PCS)		1.252			0.355	5	0.605		See Tal	ole Below
	LTE Ba	and 2 (PCS)	1.229			0.355		0.605		See Table Below		
	LTE	Band	30		1.242			0.355		0.60	5	See Table Below	
	LTE	Band	7	(0.881			0.355		0.60	5	See Table Below	
	LTE	Band	48	(0.871			0.355	5	0.60	5	See Tal	ole Below
	LTE	Band	41		1.179			0.355	5	0.60	5	See Tal	ole Below
	NR	Band n	71	(0.419			0.355	5	0.60	5	1.	379
	NR Ba	nd n5	(Cell)	(0.482			0.355	5	0.60	5	1.	442
	NR Ban	d n66 ((AWS)	(0.935			0.355	5	0.60	5	See Tal	ole Below
	NR Band n2 (PCS)		(0.899			0.355	5	0.60	5	See Tal	ole Below	
	NR	Band n	41	(0.435			0.355	5	0.60	5	1.	395
Simu	Simult Tx Configuration SAR (W/kg) 2.4 GHz WLAN MIMO at 16 dBm M		5 GHz WLAN MIMO SAR (W/kg)	,	Simul	lt Tx	Configuration	PCS EVDO SAR (W/kg	at 16 dBm SAR (W/kg)	5 GHz WLAN MIMO SA (W/kg)	Σ SAR (W/kg)		
	Back	0.499	2 0.205	3 0.605	1+2+3 1.309			Back	0.587	0.205	3 0.605	1+2+3 1.397	
Hots SA		0.478 - 0.945	0.355* 0.355	0.605*	1.438 0.444 0.945	Hotsp SAI		Front Top Bottom	0.499 - 1.128	0.355* 0.355	0.605*	1.459 0.444 1.128	
54	Right Left	0.945 0.068 0.082	0.355*	0.127	0.945 0.068 0.564	JAI	11	Right Left	0.085 0.069	0.355*	0.127	0.085 0.551	

	ı		1
FOO ID: ACLOMODOMI	@\ PCTEST	SAR EVALUATION REPORT	Approved by:
FCC ID: A3LSMG981U	SNG (NELEXED LABORATERY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 265 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 265 of 298

Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN MIMO at 16 dBm SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN MIMO at 16 dBm SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.417	0.205	0.605	1.227		Back	0.561	0.205	0.605	1.371
ŀ	Front	0.441	0.355*	0.605*	1.401		Front	0.518	0.355*	0.605*	1.478
Hotspot	Тор	-	0.355	0.089	0.444	Hotspot	Тор	-	0.355	0.089	0.444
SAR	Bottom	0.976	-	- 0.005	0.976	SAR	Bottom	1.232	-	- 0.000	1.232
Ortic	Right	0.067			0.067	O/IIX	Right	0.078	_		0.078
ŀ	Left	0.054	0.355*	0.127	0.536		Left	0.078	0.355*	0.127	0.546
-	Leit	0.034			0.550		Len	0.004			0.340
		LTE Band	2.4 GHz	5 GHz				LTE Band	2.4 GHz	5 GHz	
			WLAN MIMO	WLAN	Σ SAR				WLAN MIMO	WLAN	Σ SAR
O:	0	66 (AWS)	at 16 dBm	MIMO SAR	(W/kg)	O: II T	0	25 (PCS)	at 16 dBm	MIMO SAR	(W/kg)
Simult Tx	Configuration	SAR (W/kg)	SAR (W/kg)	(W/kg)	(. 3)	Simult Tx	Configuration	SAR (W/kg)	SAR (W/kg)	(W/kg)	(. 3/
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.426	0.205	0.605	1.236		Back	0.623	0.205	0.605	1.433
ŀ	Front	0.420		0.605*	1.367		Front		0.355*	0.605*	1.517
Hotspot		0.407	0.355* 0.355	0.003	0.444	Hotspot		0.557	0.355	0.003	
	Top	0.832	0.333	0.009	0.832	SAR	Top	1.252	0.333	0.009	0.444 1.252
SAR	Bottom		-	-		SAR	Bottom		-	-	
ŀ	Right	0.065	0.0554	0.407	0.065	•	Right	0.112	0.0554	- 0.407	0.112
	Left	0.077	0.355*	0.127	0.559		Left	0.073	0.355*	0.127	0.555
		LTE Band 2	2.4 GHz	5 GHz				LTE Band	2.4 GHz	5 GHz	
		(PCS) SAR	WLAN MIMO	WLAN	Σ SAR			30 SAR	WLAN MIMO	WLAN	Σ SAR
Simult Tx	C6:6:		at 16 dBm	MIMO SAR	(W/kg)	Simult Tx	C		at 16 dBm	MIMO SAR	(W/kg)
Simult IX	Configuration	(W/kg)	SAR (W/kg)	(W/kg)	(. 3)	Simult IX	Configuration	(W/kg)	SAR (W/kg)	(W/kg)	(. 3/
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.564	0.205	0.605	1.374		Back	0.425	0.205	0.605	1.235
ŀ	Front	0.491	0.355*	0.605*	1.451		Front	0.423	0.205	0.605*	1.373
Hotspot	Top	0.401	0.355	0.089	0.444	Hotspot	Top	0.410	0.355	0.089	0.444
SAR	Bottom	1.229	0.555	0.003	1.229	SAR	Bottom	1.242	0.555	0.003	1.242
Ortic	Right	0.095	_		0.095	O/IIX	Right	0.047	_		0.047
ŀ	Left	0.062	0.355*	0.127	0.544	1	Left	0.062	0.355*	0.127	0.544
			Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	WLAN MIMO at 16 dBm SAR (W/kg	MIMO SAR	Σ SAR (W/kg)			
			-								
			! ⊢	Back	0.424	0.205	0.605	1.234			
			Hotspot	Front	0.279	0.355*	0.605*	1.239			
				Тор	-	0.355	0.089	0.444			
			SAR	Bottom	0.881	-	-	0.881			
			}	Right	0.040	0.355*	0.127	0.040			
				Left	0.073			0.555			
					LTE Band	2.4 GHz	5 GHz				
					48 SAR	WLAN MIMO		Σ SAR			
			Simult Tx	Configuration		at 16 dBm	MIMO SAR	(W/kg)			
			Simult 1x	Comiguration	(W/kg)	SAR (W/kg) (W/kg)				
					1	2	3	1+2+3	*		
			-	Back	0.703	0.205	0.605	1.513			
			Hotspot	Front	0.703	0.205*	0.605*	1.307			
			SAR	Top	0.871	0.355	0.089	1.315			
			~""`	Left	0.305	0.355*	0.127	0.787			
1			2.4 GHz	5 GHz	2.300	2.000		207	2.4 GHz	5 GHz	1
I		LTE Band		WLAN	ΣSAR			NR Band	WLAN MIMO	WLAN	ΣSAR
I		41 SAR	WLAN MIMO					n66 (AWS)			
Simult Tx	Configuration	(W/kg)	at 16 dBm	MIMO SAR	(W/kg)	Simult Tx	Configuration	SAR (W/kg)	at 16 dBm	MIMO SAR	(W/kg)
		(******5)	SAR (W/kg)	(W/kg)			•	S (g/	SAR (W/kg)	(W/kg)	
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.434	0.205	0.605	1.244		Back	0.546	0.205	0.605	1.356
ŀ			0.200	0.605*	1.333		Front	0.485	0.255*	0.605*	1.445
Hotspot						Hotspot		-	0.355* 0.355	0.000	
	Front	0.373	0.355	0.089						0.089	0 444
SAR	Front Top	0.373	0.355* 0.355	0.089	0.444		Top Bottom	0.935	0.355	0.089	0.444
SAR	Front Top Bottom	0.373 - 1.179	-	0.089	1.179	SAR	Bottom Right	0.935 0.078	-	0.089	0.935
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355 0.355 - - 0.355*	-	1.179 0.038		Bottom	0.078	-	-	0.935 0.078
SAR	Front Top Bottom	0.373 - 1.179	-	0.089 - - 0.127	1.179 0.038 0.571	SAR	Bottom Right Left		- - 0.355*	0.089 - - 0.127	0.935
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	-	-	1.179 0.038 0.571 NR Band n2	SAR 2.4 GHz	Bottom Right Left 5 GHz	0.078 0.088	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	-	-	1.179 0.038 0.571	SAR 2.4 GHz WLAN MIMO	Bottom Right Left 5 GHz WLAN	0.078 0.088 Σ SAR	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355*	0.127	1.179 0.038 0.571 NR Band n2 (PCS) SAR	2.4 GHz WLAN MIMO at 16 dBm	Bottom Right Left 5 GHz WLAN MIMO SAR	0.078 0.088	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355*	-	1.179 0.038 0.571 NR Band n2	SAR 2.4 GHz WLAN MIMO	Bottom Right Left 5 GHz WLAN MIMO SAR	0.078 0.088 Σ SAR	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355*	0.127	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg)	2.4 GHz WLAN MIMO at 16 dBm SAR (W/kg	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg)	0.078 0.088 Σ SAR (W/kg)	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355*	- 0.127 Configuration	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg)	2.4 GHz WLAN MIMO at 16 dBm SAR (W/kg	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg) 3	0.078 0.088 Σ SAR (W/kg) 1+2+3	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355*	- 0.127 Configuration	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg) 1	2.4 GHz WLAN MIMM at 16 dBm SAR (W/kg 2	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg) 3 0.605	0.078 0.088 Σ SAR (W/kg) 1+2+3	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355* Simult Tx	- 0.127 Configuration Back Front	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg)	2.4 GHz WLAN MIMM at 16 dBm SAR (W/kg 2 0.205 0.355*	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg) 3 0.605	0.078 0.088 Σ SAR (W/kg) 1+2+3 1.125 1.285	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355* Simult Tx	0.127 Configuration Back Front Top	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg) 1 0.315 0.325	2.4 GHz WLAN MIMM at 16 dBm SAR (W/kg 2	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg) 3 0.605	0.078 0.088 Σ SAR (W/kg) 1+2+3 1.125 1.285 0.444	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355* Simult Tx	0.127 Configuration Back Front Top Bottom	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg) 1 0.315 0.325	2.4 GHz WLAN MIMM at 16 dBm SAR (W/kg 2 0.205 0.355*	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg) 3 0.605	0.078 0.088 Σ SAR (W/kg) 1+2+3 1.125 1.285 0.899	-	-	0.935 0.078
SAR	Front Top Bottom Right	0.373 - 1.179 0.038	0.355* Simult Tx	0.127 Configuration Back Front Top	1.179 0.038 0.571 NR Band n2 (PCS) SAR (W/kg) 1 0.315 0.325	2.4 GHz WLAN MIMM at 16 dBm SAR (W/kg 2 0.205 0.355*	Bottom Right Left 5 GHz WLAN MIMO SAR (W/kg) 3 0.605	0.078 0.088 Σ SAR (W/kg) 1+2+3 1.125 1.285 0.444	-	-	0.935 0.078

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 266 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 266 of 298

Table 12-14 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Jiiiuita	neous Transmission So	enano with bit	deloctii (Hotsp	ot at 1.0 cm)
Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	EVDO BC10 (§90S)	0.434	0.088	0.522
	EVDO BC0 (§22H)	0.509	0.088	0.597
	GPRS 850	0.434	0.088	0.522
	UMTS 850	0.469	0.088	0.557
	UMTS 1750	0.945	0.088	1.033
	PCS EVDO	1.128	0.088	1.216
	GPRS 1900	0.976	0.088	1.064
	UMTS 1900	1.232	0.088	1.320
	LTE Band 71	0.376	0.088	0.464
	LTE Band 12	0.500	0.088	0.588
	LTE Band 13	0.519	0.088	0.607
	LTE Band 14	0.585	0.088	0.673
Hotspot	LTE Band 26 (Cell)	0.479	0.088	0.567
SAR	LTE Band 5 (Cell)	0.523	0.088	0.611
	LTE Band 66 (AWS)	0.832	0.088	0.920
	LTE Band 25 (PCS)	1.252	0.088	1.340
	LTE Band 2 (PCS)	1.229	0.088	1.317
	LTE Band 30	1.242	0.088	1.330
	LTE Band 7	0.881	0.088	0.969
	LTE Band 48	0.871	0.088	0.959
	LTE Band 41	1.179	0.088	1.267
	NR Band n71	0.419	0.088	0.507
	NR Band n5 (Cell)	0.482	0.088	0.570
	NR Band n66 (AWS)	0.935	0.088	1.023
	NR Band n2 (PCS)	0.899	0.088	0.987
	NR Band n41	0.435	0.088	0.523

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 267 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 267 of 298

Table 12-15 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Hotspot at 1.0 cm)

	Exposure Condition		Mode			9/3G/4G/5 AR (W/k			tooth SAR W/kg)	5 GH WLAN 1 SA (W/kg	Ant R	ΣSA	AR (W/ko	g)
						1			2	3			1+2+3	
		EVDO	BC10 (§90	OS)		0.434			0.088	0.443	3		0.965	
1		EVDC	BC0 (§22	H)		0.509			0.088	0.443	3		1.040	
1		G	PRS 850			0.434			0.088	0.443	3		0.965	
Ì		U	MTS 850			0.469			0.088	0.443	3		1.000	
Ì		UN	MTS 1750			0.945			0.088	0.443	3		1.476	
		PC	CS EVDO			1.128			0.088	0.443	3	See 7	Table Belo	ow
		GF	PRS 1900			0.976			0.088	0.443	3		1.507	
		UMTS 1900		1.232			0.088	0.443	3	See 7	Table Belo	ow		
		LTE Band 71			0.376			0.088	0.443	3		0.907		
		LTE Band 12				0.500			0.088	0.443	3		1.031	
		LTE Band 13			0.519			0.088	0.443	3		1.050		
		LTI	LTE Band 14			0.585			0.088	0.443	3		1.116	
	Hotspot	LTE B	and 26 (Co	ell)		0.479			0.088	0.443	3		1.010	
	SAR	LTE E	Band 5 (Ce	II)		0.523			0.088	0.443	3		1.054	
		LTE Ba	and 66 (AV	/S)		0.832			0.088	0.443	3		1.363	
		LTE B	and 25 (PC	S)		1.252			0.088	0.443	3	See 7	Table Belo	ow
		LTE B	and 2 (PC	S)		1.229			0.088	0.443	3	See 7	Table Bel	ow
		LTI	E Band 30			1.242			0.088	0.443	3	See 7	Table Bel	ow
		LT	E Band 7			0.881			0.088	0.443	3		1.412	
		LTI	E Band 48			0.871			0.088	0.443	3		1.402	
		LTI	E Band 41			1.179			0.088	0.443	3	See 7	Table Bel	wc
		NR	Band n71			0.419			0.088	0.443	3		0.950	
		NR B	and n5 (Ce	ell)	0.482			0.088	0.443	3		1.013		
		NR Bar	nd n66 (AV	VS)		0.935			0.088	0.443			1.466	
		NR Ba	and n2 (PC	S)	0.899			0.088	0.443	3		1.430		
		NR	Band n41			0.435		0.088		0.443	3		0.966	
Simult T	x Configuration	PCS EVDO SAR (W/kg)	Bluetooth SAR (W/kg)	5 GH WLAN 1 SA (W/kg	Ant R	Σ SAR (W/kg)	Sin	nult Tx	Configuration	UMTS 1900 SAR (W/kg)		oth SAR //kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3		1+2+3				1		2	3	1+2+3
	Back Front	0.587 0.499	0.049 0.044	0.443		1.079 0.986			Back Front	0.561 0.518		.049	0.443 0.443*	1.053 1.005
Hotspo SAR	t Top Bottom	1.128	0.088	0.443	*	0.531 1.128		tspot SAR	Top Bottom	1.232	0.	.088	0.443*	0.531 1.232
	Right Left	0.085 0.069	0.011	0.12	5	0.085 0.205			Right Left	0.078	0	.011	0.125	0.078
Simult T		LTE Band 25 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	5 GH WLAN 1 SA (W/kg	z Ant R	Σ SAR (W/kg)	Sin	nult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	Blueto	ooth SAR V/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	,	1+2+3				1		2	3	1+2+3
	Back	0.623	0.049	0.44		1.115			Back	0.564		.049	0.443	1.056
Hotspo		0.557	0.044 0.088	0.443		1.044 0.531		tspot	Front Top	0.491		.044 .088	0.443* 0.443*	0.978 0.531
SAR	Bottom Right	1.252 0.112	-	-		1.252 0.112	S	SAR	Bottom Right	1.229 0.095		-	-	1.229 0.095
	Left	0.073	0.011	0.12 5 GH		0.209			Left	0.062	0.	.011	0.125 5 GHz	0.198
		LTE Band 30 SAR	Bluetooth SAR	WLAN	Ant	Σ SAR				LTE Band 41 SAR		oth SAR	WLAN Ant	ΣSAR
Simult T	x Configuration	(W/kg)	(W/kg)	1 SA (W/kg		(W/kg)	Sin	nult Tx	Configuration	(W/kg)	(V	//kg)	1 SAR (W/kg)	(W/kg)
		1	2	3		1+2+3				1		2	3	1+2+3
	Back Front	0.425 0.413	0.049 0.044	0.443		0.917 0.900			Back Front	0.434 0.373		.049	0.443 0.443*	0.926 0.860
Hotspo SAR	t Top	1.242	0.088	0.443		0.531		tspot	Top	1.179		.088	0.443*	0.531
SAK	Bottom Right	0.047	-			0.047		SAR	Bottom Right	0.038		-		0.038
<u> </u>	Left	0.062	0.011	0.12)	0.198			Left	0.089	0.	.011	0.125	0.225

FCC ID: A3LSMG981U	PCTEST 180 NATIONAL TAXABLE TA	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 260 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 268 of 298

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	EVDO BC10 (§90S)	0.434	0.088	0.323	0.845
	EVDO BC0 (§22H)	0.509	0.088	0.323	0.920
	GPRS 850	0.434	0.088	0.323	0.845
	UMTS 850	0.469	0.088	0.323	0.880
	UMTS 1750	0.945	0.088	0.323	1.356
	PCS EVDO	1.128	0.088	0.323	1.539
	GPRS 1900	0.976	0.088	0.323	1.387
	UMTS 1900	1.232	0.088	0.323	See Table Below
	LTE Band 71	0.376	0.088	0.323	0.787
	LTE Band 12	0.500	0.088	0.323	0.911
	LTE Band 13	0.519	0.088	0.323	0.930
	LTE Band 14	0.585	0.088	0.323	0.996
Hotspot	LTE Band 26 (Cell)	0.479	0.088	0.323	0.890
SAR	LTE Band 5 (Cell)	0.523	0.088	0.323	0.934
	LTE Band 66 (AWS)	0.832	0.088	0.323	1.243
	LTE Band 25 (PCS)	1.252	0.088	0.323	See Table Below
	LTE Band 2 (PCS)	1.229	0.088	0.323	See Table Below
	LTE Band 30	1.242	0.088	0.323	See Table Below
	LTE Band 7	0.881	0.088	0.323	1.292
	LTE Band 48	0.871	0.088	0.323	1.282
	LTE Band 41	1.179	0.088	0.323	1.590
	NR Band n71	0.419	0.088	0.323	0.830
	NR Band n5 (Cell)	0.482	0.088	0.323	0.893
	NR Band n66 (AWS)	0.935	0.088	0.323	1.346
	NR Band n2 (PCS)	0.899	0.088	0.323	1.310
	NR Band n41	0.435	0.088	0.323	0.846

Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.561	0.049	0.323	0.933		Back	0.623	0.049	0.323	0.995
	Front	0.518	0.044	0.323*	0.885		Front	0.557	0.044	0.323*	0.924
Hotspot	Top	-	0.088	0.323*	0.411	Hotspot	Top	-	0.088	0.323*	0.411
SAR	Bottom	1.232	-	-	1.232	SAR	Bottom	1.252	-	-	1.252
	Right	0.078			0.078		Right	0.112	-	-	0.112
	Left	0.064	0.011	0.323*	0.398		Left	0.073	0.011	0.323*	0.407
										- 011	
Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 30 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
Simult Tx	Configuration	(PCS) SAR		WLAN Ant 2 SAR		Simult Tx	Configuration	30 SAR		WLAN Ant 2 SAR	
Simult Tx	Configuration Back	(PCS) SAR	(W/kg)	WLAN Ant 2 SAR (W/kg)	(W/kg)	Simult Tx	Configuration Back	30 SAR	(W/kg)	WLAN Ant 2 SAR (W/kg)	(W/kg)
	Back Front	(PCS) SAR (W/kg)	(W/kg)	WLAN Ant 2 SAR (W/kg)	(W/kg) 1+2+3		Back Front	30 SAR (W/kg)	(W/kg)	WLAN Ant 2 SAR (W/kg) 3 0.323 0.323*	(W/kg) 1+2+3 0.797 0.780
Simult Tx Hotspot	Back	(PCS) SAR (W/kg) 1 0.564	(W/kg) 2 0.049	WLAN Ant 2 SAR (W/kg) 3 0.323	(W/kg) 1+2+3 0.936	Simult Tx Hotspot	Back	30 SAR (W/kg) 1 0.425	(W/kg) 2 0.049	WLAN Ant 2 SAR (W/kg) 3 0.323	(W/kg) 1+2+3 0.797
	Back Front	(PCS) SAR (W/kg) 1 0.564	(W/kg) 2 0.049 0.044	WLAN Ant 2 SAR (W/kg) 3 0.323 0.323*	(W/kg) 1+2+3 0.936 0.858		Back Front	30 SAR (W/kg) 1 0.425	(W/kg) 2 0.049 0.044	WLAN Ant 2 SAR (W/kg) 3 0.323 0.323*	(W/kg) 1+2+3 0.797 0.780
Hotspot	Back Front Top	(PCS) SAR (W/kg) 1 0.564 0.491	(W/kg) 2 0.049 0.044 0.088	WLAN Ant 2 SAR (W/kg) 3 0.323 0.323* 0.323*	(W/kg) 1+2+3 0.936 0.858 0.411	Hotspot	Back Front Top	30 SAR (W/kg) 1 0.425 0.413	(W/kg) 2 0.049 0.044	WLAN Ant 2 SAR (W/kg) 3 0.323 0.323*	(W/kg) 1+2+3 0.797 0.780 0.411

FCC ID: A3LSMG981U	PCTEST NOME AND ADDRESS AND AD	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 269 of 298

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	
		1	2	3	1+2+3	
	EVDO BC10 (§90S)	0.434	0.088	0.605	1.127	
	EVDO BC0 (§22H)	0.509	0.088	0.605	1.202	
	GPRS 850	0.434	0.088	0.605	1.127	
	UMTS 850	0.469	0.088	0.605	1.162	
	UMTS 1750	0.945	0.088	0.605	See Table Below	
	PCS EVDO	1.128	0.088	0.605	See Table Below	
	GPRS 1900	0.976	0.088	0.605	See Table Below	
	UMTS 1900	1.232	0.088	0.605	See Table Below	
	LTE Band 71	0.376	0.088	0.605	1.069	
	LTE Band 12	0.500	0.088	0.605	1.193	
	LTE Band 13	0.519	0.088	0.605	1.212	
	LTE Band 14	0.585	0.088	0.605	1.278	
Hotspot	LTE Band 26 (Cell)	0.479	0.088	0.605	1.172	
SAR	LTE Band 5 (Cell)	0.523	0.088	0.605	1.216	
	LTE Band 66 (AWS)	0.832	0.088	0.605	1.525	
	LTE Band 25 (PCS)	1.252	0.088	0.605	See Table Below	
	LTE Band 2 (PCS)	1.229	0.088	0.605	See Table Below	
	LTE Band 30	1.242	0.088	0.605	See Table Below	
	LTE Band 7	0.881	0.088	0.605	1.574	
	LTE Band 48	0.871	0.088	0.605	1.564	
	LTE Band 41	1.179	0.088	0.605	See Table Below	
	NR Band n71	0.419	0.088	0.605	1.112	
	NR Band n5 (Cell)	0.482	0.088	0.605	1.175	
	NR Band n66 (AWS)	0.935	0.088	0.605	See Table Below	
	NR Band n2 (PCS)	0.899	0.088	0.605	1.592	
	NR Band n41	0.435	0.088	0.605	1.128	
	1 2 Back 0.499 0.049 Front 0.478 0.044	3 1+2+3 0.605 1.153 0.605* 1.127	SAR (W/k 1	2 3 0.049 0.605 0.044 0.605	Σ SAR (W/kg) 1+2+3 5 1.241 1.148	
Hots S/	spot Top - 0.088 AR Bottom 0.945 - Right 0.068 - Left 0.082 0.011	0.089 0.177 Hots - 0.945 SA - 0.068 0.127 0.220		0.088 0.089 0.011 0.127	1.128 0.085	

FCC ID: A3LSMG981U	INGINITATE LADRATER, INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 270 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 270 of 298

Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.417	0.049	0.605	1.071		Back	0.561	0.049	0.605	1.215
	Front	0.441	0.044	0.605*	1.090	I [Front	0.518	0.044	0.605*	1.167
Hotspot	Top	-	0.088	0.089	0.177	Hotspot	Top	-	0.088	0.089	0.177
SAR	Bottom	0.976	-	-	0.976	SAR	Bottom	1.232	-	-	1.232
l	Right	0.067	-	-	0.067		Right	0.078	-	-	0.078
	Left	0.054	0.011	0.127	0.192		Left	0.064	0.011	0.127	0.202
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	MIMO SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
Į.	Back	0.623	0.049	0.605	1.277		Back	0.564	0.049	0.605	1.218
	Front	0.557	0.044	0.605*	1.206		Front	0.491	0.044	0.605*	1.140
Hotspot	Тор	-	0.088	0.089	0.177	Hotspot	Тор	-	0.088	0.089	0.177
SAR	Bottom	1.252	-	-	1.252	SAR	Bottom	1.229	-	-	1.229
ł	Right Left	0.112	0.011	0.127	0.112 0.211	1 1	Right Left	0.095 0.062	0.011	0.127	0.095 0.200
	Leit	0.073	0.011		0.211		Leit	0.002	0.011		0.200
Simult Tx	Configuration	LTE Band 30 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3			1	2	3	1+2+3
	Back	0.425	0.049	0.605	1.079		Back	0.434	0.049	0.605	1.088
İ	Front	0.413	0.044	0.605*	1.062	i i	Front	0.373	0.044	0.605*	1.022
Hotspot	Top	-	0.088	0.089	0.177	Hotspot	Top	-	0.088	0.089	0.177
SAR	Bottom	1.242	-	-	1.242	SAR	Bottom	1.179	-	-	1.179
l	Right	0.047	-	-	0.047		Right	0.038	-	-	0.038
	Left	0.062	0.011	0.127	0.200		Left	0.089	0.011	0.127	0.227
			Simult Tx 0	Configuration	NR Band n66 (AWS) SAR (W/kg)	Bluetooth SA (W/kg)	5 GHz R WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)			
					1	2	3	1+2+3			
				Back	0.546	0.049	0.605	1.200			
				Front	0.485	0.044	0.605*	1.134			
			Hotspot	Top	-	0.088	0.089	0.177			
			SAR	Bottom	0.935	-	-	0.935			
			! ∟	Right	0.078	-	-	0.078			
				Left	0.088	0.011	0.127	0.226			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 274 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 271 of 298

12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

Table 12-16
Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

Expos Condi			Мо	de		2G/3G/4G/5G SAR (W/kg)			W	5 GHz LAN Ant 1 SAR (W/kg)	5 GH WLAN 2 SA (W/ko	Ant R	Σ SAR (W/kg)			.g)		
	LIMTS 1750					1			2	3		1+2			1+3			
	UMTS 1750					2.690			1.210	1.18	4		3.900)		3.87	' 4	
	PCS EVDO					3.090			1.210	1.18	4	Se	e Table l	Below	See	Table	Below	
	GPRS 1900					3.110			1.210	1.18	4	Se	e Table l	Below	See	Table	Below	
			UMTS	1900			2.487			1.210	1.18	4		3.697			3.67	' 1
	LTE Band 66 (AWS)		S)		2.315			1.210	1.18	4		3.525			3.49	99		
Phab	Phablet LTE Band 25 (PCS)		S)		3.088			1.210	1.18	4	Se	e Table l	Below	See	Table	Below		
SAF	R [Ľ	TE Band	12 (PCS	3)		3.130			1.210	1.18	4	Se	e Table l	Below	See	Table	e Below
			LTE Ba	and 30			2.633			1.210	1.18	4		3.843			3.81	7
			LTE B	and 7		2.233			1.210	1.184		3.443				3.41	7	
			LTE Ba	and 41			2.667			1.210	1.18	4		3.877	•		3.85	51
		NF	R Band n	66 (AW	S)	2.336			1.210	1.18	4		3.546	i		3.52	20	
		Ν	R Band	n2 (PCS	3)	2.467			1.210	1.184			3.677	•		3.65	51	
Simult Tx	Configur	ation	PCS EVDO SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GH WLAN 2 SA (W/k	Σ SAR (W/kg))	Simult Tx	Configuration	GPRS SAR (V		5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN A 2 SAR (W/kg)		Σ SAR	(W/kg)	
			1	2	3		1+2	1+				1		2	3		1+2	1+3
	Back Fron		1.900 2.362	1.210 1.210*	1.18		3.110 3.572	3.0			Back Front	1.80		1.210 1.210*	1.184 1.184*		.017 .969	2.991 2.943
Phablet SAR	Top Botto		3.090	1.210*	1.18	4*	1.210 3.090	1.1 3.0		Phablet SAR	Top Bottom	3.1		1.210*	1.184*		.210 . 110	1.184 3.110
OAK	Righ	ıt	0.564	-	-		0.564	0.5	64	J JAK	Right	0.2	74	-	-	0	.274	0.274
Simult Tx	Left 0.512 0.201 0. LTE Band 25 (PCS) WLAN Ant VLA 1 SAR 2 Signalt Ty Configuration SAR (Wile) 1 SAR (Wile) 1 SAR (Wi		0.30 5 GH WLAN 2 SA (W/k	Hz I Ant AR	0.713 Σ SAR	0.8 (W/kg)		Simult Tx	Left Configuration	UTE Ba (PCS) (W/F	and 2 SAR	0.201 5 GHz WLAN Ant 1 SAR (W/kg)	0.306 5 GHz WLAN A 2 SAR (W/kg)	nt	.449 Σ SAR	0.554 (W/kg)		
			1	2	3		1+2	1+	-			1		2	3		+2	1+3
-	Back Fron		2.298 2.406	1.210 1.210*	1.18		3.508 3.616	3.4 3.5			Back Front	2.3		1.210 1.210*	1.184 1.184*		.520 . 644	3.494 3.618
Phablet	Тор		-	1.210*	1.18		1.210	1.1	84	Phablet	Top	-		1.210*	1.184*	1	.210	1.184
SAR	Botto Righ		3.088 0.525	-	-		3.088 0.525	3.0 0.5		SAR	Bottom Right	3.13		-	-		.130 .677	3.130 0.677
<u></u>	Left		0.490	0.201	0.30)6	0.691	0.7			Left	0.39		0.201	0.306		.599	0.704

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 070 -t 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 272 of 298

Exposu Conditi			Mode	2G/3G/4G/9 SAR (W/k	5 GHz WLAN MIMO S. (W/kg	N AR	ΣSAR	(W/kg)
				1	2		1+	2
		U	MTS 1750	2.690	2.183	,	See Tabl	e Below
		Р	CS EVDO	3.090	2.183	,	See Tabl	e Below
		G	PRS 1900	3.110	2.183	,	See Tabl	e Below
		U	MTS 1900	2.487	2.183	,	See Tabl	e Below
		LTE B	and 66 (AWS)	2.315	2.183		See Tabl	e Below
Phable	et	LTE E	Band 25 (PCS)	3.088	2.183		See Tabl	e Below
SAR	! [LTE	Band 2 (PCS)	3.130	2.183	,	See Tabl	e Below
		LT	E Band 30	2.633	2.183	,	See Tabl	e Below
		Ľ	TE Band 7	2.233	2.183		See Tabl	e Below
		LT	E Band 41	2.667	2.183		See Tabl	e Below
		NR Ba	and n66 (AWS)	2.336	2.183		See Tabl	e Below
		NR B	and n2 (PCS)	2.467	2.183		See Tabl	e Below
					5 GHz			

Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.613	2.183	3.796
	Front	1.754	0.097	1.851
Phablet	Тор	-	2.183*	2.183
SAR	Bottom	2.690	-	2.690
	Right	0.460	-	0.460
	Left	0.468	0.491	0.959

						_			
Simult Tx	Configuration	PCS I SAR (EVDO W/kg)	5 G WL MIMO (W/I	AN SAR	ΣSA (W/k		SPLS	SR
		1		2	2		2	1+2	2
	Back	1.9	900	2.18	33	See No	ote 1	0.0	6
	Front	2.3	362	0.0	97	2.45	59	N/A	١
Phablet	Тор	-	-	2.18	3*	2.18	33	N/A	١
SAR	Bottom	3.090		-		3.09	90	N/A	١
	Right	0.5	64	-	·	0.56	64	N/A	١
	Left	0.5	512	0.49	91	1.00)3	N/A	١

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 272 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 273 of 298

Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.807	2.183	3.990
	Front	1.759	0.097	1.856
Phablet	Тор	-	2.183*	2.183
SAR	Bottom	3.110	•	3.110
	Right	0.274	ı	0.274
	Left	0.248	0.491	0.739
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.771	2.183	3.954
	Front	1.761	0.097	1.858
Phablet	Тор	-	2.183*	2.183
SAR	Bottom	2.487	-	2.487
	Right	0.598	-	0.598
	Left	0.483	0.491	0.974
Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.736	2.183	3.919
	Front	1.995	0.097	2.092
Phablet	Тор	-	2.183*	2.183
SAR	Bottom	2.315	-	2.315
	Right	0.660	-	0.660
	Left	0.657	0.491	1.148

Simult Tx Configuration		LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	2.298	2.183	See Note 1	0.07
	Front	2.406	0.097	2.503	N/A
Phablet	Тор	-	2.183*	2.183	N/A
SAR	Bottom	3.088	-	3.088	N/A
	Right	0.525	-	0.525	N/A
	Left	0.490	0.491	0.981	N/A

FCC ID: A3LSMG981U	PCTEST NOME AND ADDRESS AND AD	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 274 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 274 of 298

Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	2.310	2.183	See Note 1	0.07
	Front	2.434	0.097	2.531	N/A
Phablet	Тор	-	2.183*	2.183	N/A
SAR	Bottom	3.130	-	3.130	N/A
	Right	0.677	-	0.677	N/A
	Left	0.398	0.491	0.889	N/A
Simult Tx	Configuration	LTE Band 30 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	2.633	2.183	See Note 1	0.08
	Front	2.451	0.097	2.548	N/A
Phablet	Тор	-	2.183*	2.183	N/A
SAR	Bottom	1.615	-	1.615	N/A
	Right	0.363	-	0.363	N/A
	Left	0.635	0.491	1.126	N/A
Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	2.233	2.183	See Note 1	0.07
	Front	1.593	0.097	1.690	N/A
Phablet	Тор	-	2.183*	2.183	N/A
SAR	Bottom	1.528	-	1.528	N/A
	Right	0.203	-	0.203	N/A
	Left	0.825	0.491	1.316	N/A
Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	2.667	2.183	See Note 1	0.08
	Front	1.710	0.097	1.807	N/A
Phablet	Тор	-	2.183*	2.183	N/A
SAR	Bottom	2.042	-	2.042	N/A
	Right	0.145	-	0.145	N/A
I	Left	0.462	0.491	0.953	N/A

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 275 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 275 of 298

Simult Tx Configuration		NR Band n66 (AWS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.806	2.183	3.989
	Front	1.826	0.097	1.923
Phablet	Тор	-	2.183*	2.183
SAR	Bottom	2.336	-	2.336
	Right	0.398	-	0.398
	Left	0.494	0.491	0.985

Simult Tx Configuration		NR Band n2 (PCS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.848	2.183	See Note 1	0.06
	Front	1.765	0.097	1.862	N/A
Phablet	Тор	-	2.183*	2.183	N/A
SAR	Bottom	2.467	-	2.467	N/A
	Right	0.443	-	0.443	N/A
	Left	0.415	0.491	0.906	N/A

Notes:

1. No evaluation was performed to determine the aggregate 10g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.10 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

12.7 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g and 4 W/kg for 10g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is \leq 0.04 for 1g and \leq 0.10 for 10g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (Phablet)
SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 276 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 276 01 298

12.7.1 Back Side SPLSR Evaluation and Analysis

Table 12-17
Peak SAR Locations for Phablet Back Side

Teak OAR Eccations for I habiet back olde					
Mode/Band	x (mm)	y (mm)			
5 GHz WLAN MIMO	-5.00	59.00			
PCS EVDO	-17.00	-75.00			
LTE Band 25 (PCS)	-17.00	-75.00			
LTE Band 2 (PCS)	-17.00	-75.00			
LTE Band 30	-11.80	-68.60			
LTE Band 7	-17.00	-72.80			
LTE Band 41	-16.80	-69.40			
NR Band n2 (PCS)	-17.00	-75.00			

Table 12-18
Phablet Back Side SAR to Peak Location Separation Ratio Calculations

Anten	na Pair		one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
PCS EVDO	5 GHz WLAN MIMO	1.900	2.183	4.083	134.54	0.06	1
LTE Band 25 (PCS)	5 GHz WLAN MIMO	2.298	2.183	4.481	134.54	0.07	2
LTE Band 2 (PCS)	5 GHz WLAN MIMO	2.310	2.183	4.493	134.54	0.07	3
LTE Band 30	5 GHz WLAN MIMO	2.633	2.183	4.816	127.78	0.08	4
LTE Band 7	5 GHz WLAN MIMO	2.233	2.183	4.416	132.35	0.07	5
LTE Band 41	5 GHz WLAN MIMO	2.667	2.183	4.85	128.94	0.08	6
NR Band n2 (PCS)	5 GHz WLAN MIMO	1.848	2.183	4.031	134.54	0.06	7

Table 12-19

Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: A3LSMG981U	PCTEST INCIDENTALISM INC.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 077 -1 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 277 of 298

12.8 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.2.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 278 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 276 01 296

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 13-1
Body SAR Measurement Variability Results

			•	BODY VARIA									
Band	FREQUENC	Υ	Mode	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio	
	MHz	Ch.				(W/kg)	(W/kg)		(W/kg)		(W/kg)		
1750	1712.40	1312	UMTS 1750	RMC	bottom	10 mm	0.945	0.934	1.01	N/A	N/A	N/A	N/A
1900	1907.60	9538	UMTS 1900	RMC	bottom	10 mm	1.190	1.080	1.10	N/A	N/A	N/A	N/A
2300	2310.00	27710	LTE Band 30, 10 MHz Bandwidth	QPSK, 25 RB, 12 RB Offset	bottom	10 mm	0.977	0.958	1.02	N/A	N/A	N/A	N/A
2450	2506.00	39750	LTE Band 41 PC3, 20 MHz Bandwidth	QPSK, 50 RB, 0 RB Offset	bottom	10 mm	0.960	0.893	1.08	N/A	N/A	N/A	N/A
2600	PCC: 2636.50	41055	LTE Band 41 PC2 with ULCA, 20	QPSK, 50 RB, 0 RB Offset	bottom	10 mm	1.080	0.950	1.14	N/A	N/A	N/A	N/A
2600	SCC: 2616.70	40857	MHz Bandwidth	QPSK, 50 RB, 50 RB Offset	DOLLOTTI	10 mm	1.080	0.950	1.14	IVA	IWA	IVA	IVA
3700	PCC: 3603.30	55773	LTE Band 48 ULCA, 20 MHz	QPSK, 1 RB, 0 RB Offset	400	10	0.811	0.810	1.00	N/A	N/A	N/A	N/A
3700	SCC: 3583.50	55575	Bandwidth	top	10 mm	0.811	0.810	1.00	IVA	IWA	IVA	IVA	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Во	dy			
	Spatial Peak							1	1.6 W/kg	ı (mW/g)			
	Un	control	led Exposure/General Population	on				av	eraged o	ver 1 gram			

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 279 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 279 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 13-2 Phablet SAR Measurement Variability Results

			P	HABLET VAR				Journal					
Band	FREQUENC	Υ	Mode	Service	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz			(W/kg)	(W/kg)		(W/kg)		(W/kg)				
1750	1712.40	1312	UMTS 1750	RMC	bottom	0 mm	2.690	2.680	1.00	N/A	N/A	N/A	N/A
1900	1851.25	25	PCS CDMA	EVDO Rev. 0	bottom	0 mm	2.630	2.630	1.00	N/A	N/A	N/A	N/A
2300	2310.00	27710	LTE Band 30, 10 MHz Bandwidth	QPSK, 25 RB, 12 RB Offset	back	0 mm	2.070	2.050	1.01	N/A	N/A	N/A	N/A
0.450	PCC: 2506.00	39750	LTE Band 41 PC3 with ULCA, 20	QPSK, 1 RB, 99 RB Offset			0.540	0.070					
2450	SCC: 2525.80	39948	MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	back	0 mm	2.540	2.270	1.12	N/A	N/A	N/A	N/A
2600	LTE Bood 41 DC3 20 MHz OBSV 50 DB 25							2.020	1.01	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Pha	blet			
			Spatial Peak					4	1.0 W/kg	g (mW/g)			
	Un	Uncontrolled Exposure/General Population							raged ov	er 10 gram	s		

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 000 -f 000
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 280 of 298

14 ADDITIONAL TESTING PER FCC GUIDANCE

14.1 Tuner Testing

Per April 2019 TCB Workshop Notes, the following test procedures were followed to demonstrate that the SAR results in Section 11 represented the appropriate SAR test conditions. For bands with dynamic tuning implemented, SAR was measured according to the required FCC SAR test procedures with the dynamic tuner active to allow the device to automatically tune to the antenna state for the respective RF exposure test configurations. Per FCC Guidance, during NR testing the device was configured with the tuner state selected by the device in LTE mode with auto-tune active at the same frequency. Additional single point SAR time-sweep measurements were evaluated for other tuner states to determine that the other tuner configurations would result in equivalent or lower SAR values. The additional tuner hardware has no influence on the antenna characteristics, other than impedance matching.

To evaluate all the tuner states, the 60 tuner states were divided among the aggregate band, mode and exposure combinations. Single point time-sweep measurements were performed at the peak SAR location determined by the zoom scan of the configuration with the highest reported SAR for each combination. The tuner state was able to be established remotely so that the device was not moved for the entire series of single point SAR for the tuner states in each combination. The SAR probe remained stationary at the same position throughout the entire series of single point measurements for each combination. When the single point SAR or 1g SAR was > 1.2 W/kg for a particular band/mode/exposure condition, point SAR measurements were made for all 60 states.

The operational description contains more information about the design and implementation of the dynamic antenna tuning.

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 281 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 281 01 298

Table 14-1 UMTS/CDMA Supplemental Head SAR Data

			0.00	. O, O D III I	Саррісіі	iciitai i ic	<u>uu 0, 11 1 1</u>	Julu			
					Supplemental I	Head SAR Data					
UMTS	S B5	UMT	S B4	UMT	'S B2	CDMA	BC10	CDMA	BC0	CDMA	BC1
RM	1C	RN	IC .	RN	ИС	EVDO,	Rev. A	EVDO,	Rev. A	EVDO,	Rev. A
Test Position	Right Cheek	Test Position	Left Cheek	Test Position	Left Cheek	Test Position	Left Cheek	Test Position	Right Cheek	Test Position	Left Cheek
Frequency (MHz)	836.60	Frequency (MHz)	1732.40	Frequency (MHz)	1880.00	Frequency (MHz)	820.10	Frequency (MHz)	836.52	Frequency (MHz)	1880.00
Channel	4183	Channel	1412	Channel	9400	Channel	564	Channel	384	Channel	600
Measured 1g SAR (W/kg)	0.242	Measured 1g SAR (W/kg)	0.206	Measured 1g SAR (W/kg)	0.224	Measured 1g SAR (W/kg)	0.203	Measured 1g SAR (W/kg)	0.272	Measured 1g SAR (W/kg)	0.225
Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	Time Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)
Auto-tune (State 52)	0.322	Auto-tune (State 53)	0.320	Auto-tune (State 55)	0.280	Auto-tune (State 1)	0.266	Auto-tune (State 1)	0.330	Auto-tune (State 55)	0.337
Default (State 0)	0.316	Default (State 0)	0.211	Default (State 0)	0.233	Default (State 0)	0.228	Default (State 0)	0.331	Default (State 0)	0.259
State 0	0.316	State 0	0.211	State 0	0.233	State 0	0.228	State 0	0.331	State 0	0.259
State 1	0.318	State 9	0.129	State 6	0.162	State 1	0.255	State 1	0.347	State 10	0.084
State 16	0.291	State 27	0.296	State 13	0.162	State 2	0.247	State 8	0.202	State 20	0.087
State 25	0.041	State 29	0.286	State 21	0.068	State 10	0.074	State 17	0.301	State 38	0.070
State 36	0.041	State 46	0.178	State 35	0.154	State 30	0.170	State 27	0.174	State 44	0.191
State 52	0.319	State 53	0.321	State 48	0.095	State 42	0.173	State 38	0.012	State 54	0.258
State 56	0.312	State 58	0.109	State 55	0.293	State 54	0.235	State 45	0.178	State 55	0.332

Table 14-2 LTE Supplemental Head SAR Data

								Supplemental I	Head SAR Data								
LTE	B71	LTE	B12	LTE	B13	LTE	B14	LTE	B5	LTE	B26	LTE	B66/4	LTE	B2	LTE B	325
QPSK, 20 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 10 MHz Ban	dwidth, 1 RB, 49 RB	QPSK, 10 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 10 MHz Bar	dwidth, 1 RB, 0 RB	QPSK, 10 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 15 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 20 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 20 MHz Band	twidth, 1 RB, 99 RB	QPSK, 20 MHz Band	width, 1 RB, 99 RB
Off	fset	Off	set	Of	fset	Off	set	Off	fset	Off	fset	Off	fset	Offs	set	Offs	et
Test Position	Left Cheek	Test Position	Left Cheek	Test Position	Right Cheek	Test Position	Right Cheek	Test Position	Right Cheek	Test Position	Right Cheek	Test Position	Left Cheek	Test Position	Left Cheek	Test Position	Left Cheek
Frequency (MHz)	680.50	Frequency (MHz)	707.50	Frequency (MHz)	782.00	Frequency (MHz)	793.00	Frequency (MHz)	836.50	Frequency (MHz)	831.50	Frequency (MHz)	1770.00	Frequency (MHz)	1860.00	Frequency (MHz)	1860.00
Channel	133297	Channel	23095	Channel	23230	Channel	23330	Channel	20525	Channel	26865	Channel	132572	Channel	18700	Channel	26140
Measured 1g SAR	0.120	Measured 1g SAR	0.156	Measured 1g SAR	0.203	Measured 1g SAR	0.206	Measured 1g SAR	0.173	Measured 1g SAR	0.175	Measured 1g SAR	0.178	Measured 1g SAR	0.258	Measured 1g SAR	0.248
(W/kg)	0.120	(W/kg)	0.156	(W/kg)	0.203	(W/kg)	0.200	(W/kg)		(W/kg)	0.175	(W/kg)	0.176	(W/kg)	0.200	(W/kg)	0.2.0
Average Value of 1	Time Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of	Time Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	Time Sweep (W/kg)	Average Value of 1	Time Sweep (W/kg)	Average Value of 1	Time Sweep (W/kg)	Average Value of Ti	me Sweep (W/kg)	Average Value of Tir	me Sweep (W/kg)
Auto-tune (State 14)	0.173	Auto-tune (State 52)	0.199	Auto-tune (State 58)	0.261	Auto-tune (State 1)	0.268	Auto-tune (State 52)	0.290	Auto-tune (State 1)	0.243	Auto-tune (State 26)	0.245	Auto-tune (State 55)	0.378	Auto-tune (State 55)	0.363
Default (State 0)	0.147	Default (State 0)	0.197	Default (State 0)	0.242	Default (State 0)	0.247	Default (State 0)	0.279	Default (State 0)	0.233	Default (State 0)	0.161	Default (State 0)	0.283	Default (State 0)	0.287
State 0	0.147	State 0	0.197	State 0	0.242	State 0	0.247	State 0	0.279	State 0	0.233	State 0	0.161	State 0	0.283	State 0	0.287
State 8	0.071	State 6	0.145	State 3	0.272	State 1	0.255	State 11	0.005	State 1	0.249	State 4	0.125	State 26	0.375	State 7	0.185
State 14	0.176	State 28	0.047	State 12	0.029	State 2	0.253	State 25	0.002	State 15	0.247	State 10	0.067	State 30	0.321	State 19	0.121
State 24	0.016	State 44	0.045	State 33	0.102	State 18	0.229	State 49	0.003	State 19	0.184	State 21	0.044	State 40	0.259	State 23	0.052
State 33	0.029	State 52	0.202	State 38	0.004	State 42	0.129	State 52	0.287	State 27	0.138	State 26	0.243	State 49	0.100	State 37	0.131
State 50	0.001	State 57	0.061	State 58	0.260	State 46	0.100	State 55	0.009	State 36	0.024	State 33	0.171	State 55	0.366	State 55	0.372

Table 14-3 NR Supplemental Head SAR Data

			Ouppiooc				
			Supplemental I	lead SAR Data			
NR Ba	nd n71	NR Ba	and n5	NR Ba	nd n66	NR Ba	and n2
DFT-s-OFDM QPSK	, 20 MHz Bandwidth,	DFT-s-OFDM QPSK	, 20 MHz Bandwidth,	DFT-s-OFDM QPSK	, 20 MHz Bandwidth,	DFT-s-OFDM QPSK	, 20 MHz Bandwidth,
50 RB, 28	RB Offset	50 RB, 28	RB Offset	1 RB, 53	RB Offset	50 RB, 28	RB Offset
Test Position	Left Cheek	Test Position	Right Cheek	Test Position	Left Cheek	Test Position	Left Cheek
Frequency (MHz)	680.50	Frequency (MHz)	836.50	Frequency (MHz)	1745.00	Frequency (MHz)	1880.00
Channel	136100	Channel	167300	Channel	349000	Channel	376000
Measured 1g SAR	0.132	Measured 1g SAR	0.179	Measured 1g SAR	0.234	Measured 1g SAR	0.208
(W/kg)	0.102	(W/kg)	0.175	(W/kg)	0.204	(W/kg)	0.200
Average Value of T	Time Sweep (W/kg)	Average Value of T	īme Sweep (W/kg)	Average Value of T	īme Sweep (W/kg)	Average Value of T	īme Sweep (W/kg)
Auto-tune (State 14)	0.163	Auto-tune (State 52)	0.227	Auto-tune (State 26)	0.319	Auto-tune (State 55)	0.305
Default (State 0)	0.145	Default (State 0)	0.224	Default (State 0)	0.231	Default (State 0)	0.243
State 0	0.145	State 0	0.224	State 0	0.231	State 0	0.243
State 2	0.164	State 5	0.202	State 7	0.153	State 12	0.037
State 14	0.163	State 15	0.204	State 18	0.094	State 22	0.048
State 27	0.071	State 43	0.149	State 26	0.319	State 30	0.272
State 46	0.052	State 52	0.227	State 32	0.236	State 39	0.238
State 54	0.144	State 56	0.217	State 38	0.075	State 55	0.305

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 202 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 282 of 298

Table 14-4 UMTS/CDMA Supplemental Body SAR Data

• • • • • • • • • • • • • • • • • • • •	0, 0 =	Cuppion		., <u>-</u>	
			Body SAR Data		
UMT	S B5	CDMA	BC10	CDMA	BC0
RM	1C	EVDO,	Rev. 0	EVDO,	Rev. 0
Test Position	Back Side	Test Position	Back Side	Test Position	Back Side
Spacing	10 mm	Spacing	10 mm	Spacing	10 mm
Frequency (MHz)	836.60	Frequency (MHz)	820.10	Frequency (MHz)	836.52
Channel	4183	Channel	564	Channel	384
Measured 1g SAR (W/kg)	0.394	Measured 1g SAR (W/kg)	0.334	Measured 1g SAR (W/kg)	0.452
Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)
Auto-tune (State 52)	0.691	Auto-tune (State 1)	0.601	Auto-tune (State 1)	0.710
Default (State 0)	0.676	Default (State 0)	0.569	Default (State 0)	0.714
State 0	0.676	State 0	0.569	State 0	0.714
State 2	0.670	State 1	0.605	State 1	0.718
State 34	0.187	State 28	0.371	State 2	0.712
State 46	0.291	State 42	0.413	State 5	0.668
State 52	0.675	State 49	0.071	State 16	0.647
State 59	0.353	State 56	0.609	State 47	0.217

Table 14-5 UMTS/CDMA Supplemental Body SAR Data - Cont'd

			Body SAR Data		
UMT	S B4	UMT	S B2	CDMA	BC1
RM	MC	RI	MC	EVDO, I	Rev. 0
Test Position Spacing	Bottom Edge 10 mm	Test Position Spacing	Bottom Edge 10 mm	Test Position Spacing	Bottom Edge 10 mm
Frequency (MHz)	1712.40	Frequency (MHz)	1907.60	Frequency (MHz)	1908.75
Channel	1312	Channel	9538	Channel	1175
Measured 1g SAR	0.945	Measured 1g SAR	1.190	Measured 1g SAR	0.923
(W/kg)	0.945	(W/kg)		(W/kg)	0.923
	Time Sweep (W/kg)		Time Sweep (W/kg)	Average Value of Til	me Sweep (W/kg)
Auto-tune (State 4)	1.439	Auto-tune (State 26)	1.434	Auto-tune (State 55)	1.320
Default (State 0)	1.461	Default (State 0)	1.172	Default (State 0)	1.009
State 0 State 1	1.461 1.407	State 0 State 1	1.172 1.073	State 0 State 1	1.009 0.920
State 2	1.396	State 2	1.075	State 1	0.899
State 3	1.386	State 3	1.028	State 3	0.889
State 4	1.378	State 4	0.980	State 4	0.843
State 5	1.355	State 5	0.970	State 5	0.826
State 6	1.306	State 6	0.853	State 6	0.735
State 7	1.271	State 7	0.777	State 7	0.674
State 8	1.208	State 8	0.675	State 8	0.583
State 9	1.111	State 9	0.542	State 9	0.479
State 10	1.033	State 10	0.457	State 10	0.408
State 11	0.925	State 11	0.356	State 11	0.325
State 12 State 13	0.764 0.777	State 12 State 13	0.249 0.768	State 12 State 13	0.231 0.625
State 13 State 14	0.777	State 13 State 14	0.768	State 13 State 14	0.625
State 15	0.745	State 15	0.661	State 15	0.540
State 16	0.734	State 16	0.639	State 16	0.529
State 17	0.721	State 17	0.605	State 17	0.503
State 18	0.716	State 18	0.600	State 18	0.499
State 19	0.676	State 19	0.512	State 19	0.436
State 20	0.645	State 20	0.455	State 20	0.390
State 21	0.603	State 21	0.387	State 21	0.326
State 22	0.541	State 22	0.300	State 22	0.260
State 23	0.492	State 23	0.246	State 23	0.215
State 24 State 25	0.428 0.340	State 24 State 25	0.188 0.126	State 24 State 25	0.167 0.115
State 26	1.445	State 26	1.463	State 26	1.351
State 27	1.414	State 27	1.370	State 27	1.272
State 28	1.412	State 28	1.345	State 28	1.250
State 29	1.406	State 29	1.319	State 29	1.236
State 30	1.396	State 30	1.271	State 30	1.195
State 31	1.381	State 31	1.258	State 31	1.163
State 32	1.354	State 32	1.150	State 32	1.066
State 33	1.326	State 33	1.064	State 33	0.997
State 34	1.282	State 34	0.941	State 34	0.893
State 35	1.203	State 35	0.775	State 35	0.737
State 36 State 37	1.135 1.028	State 36 State 37	0.661 0.518	State 36 State 37	0.641 0.515
State 38	0.858	State 38	0.361	State 38	0.368
State 39	1.438	State 39	1.173	State 39	0.982
State 40	1.394	State 40	1.016	State 40	0.887
State 41	1.386	State 41	0.991	State 41	0.868
State 42	1.378	State 42	0.962	State 42	0.848
State 43	1.365	State 43	0.918	State 43	0.816
State 44	1.348	State 44	0.906	State 44	0.806
State 45	1.308	State 45	0.797	State 45	0.711
State 46	1.270	State 46	0.721	State 46	0.642
State 47 State 48	1.215 1.128	State 47 State 48	0.623 0.500	State 47 State 48	0.567 0.467
State 48 State 49	1.058	State 48 State 49	0.500	State 48 State 49	0.393
State 50	0.955	State 50	0.328	State 50	0.312
State 51	0.801	State 51	0.225	State 51	0.223
State 52	1.430	State 52	1.157	State 52	1.008
State 53	1.426	State 53	1.445	State 53	1.352
State 54	1.426	State 54	1.156	State 54	0.997
State 55	1.421	State 55	1.439	State 55	1.350
	0.763	State 56	0.763	State 56	0.622
State 56					
State 56 State 57 State 58	1.425 0.763	State 57 State 58	1.105 0.760	State 57 State 58	0.992 0.622

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 202 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 283 of 298

Table 14-6 LTE Supplemental Body SAR Data

						Supplemental E	Body SAR Data						
LTE	B71	LTE	B12	LTE	B13	LTE	B14	LTE	B5	LTE	B26	LTE	B66/4
QPSK, 20 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 10 MHz Ban	dwidth, 1 RB, 49 RB	QPSK, 10 MHz Ban	dwidth, 1 RB, 0 RB	QPSK, 10 MHz Bar	dwidth, 1 RB, 0 RB	QPSK, 10 MHz Bar	dwidth, 1 RB, 0 RB	QPSK, 15 MHz Bar	ndwidth, 1 RB, 0 RB	QPSK, 20 MHz Bar	ndwidth, 1 RB, 0 RB
Off	fset	Off	set	Off	set	Off	set	Off	set	Off	set	Off	fset
Test Position	Back Side	Test Position	Back Side	Test Position	Back Side	Test Position	Back Side	Test Position	Back Side	Test Position	Back Side	Test Position	Back Side
Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	15 mm
Frequency (MHz)	680.50 MHz	Frequency (MHz)	707.50 MHz	Frequency (MHz)	782.00	Frequency (MHz)	793.00	Frequency (MHz)	836.50	Frequency (MHz)	831.50	Frequency (MHz)	1770.00
Channel	133297	Channel	23095	Channel	23230	Channel	23330	Channel	20525	Channel	26865	Channel	132572
Measured 1g SAR (W/kg)	0.262	Measured 1g SAR (W/kg)	0.333	Measured 1g SAR (W/kg)	0.349	Measured 1g SAR (W/kg)	0.392	Measured 1g SAR (W/kg)	0.353	Measured 1g SAR (W/kg)	0.342	Measured 1g SAR (W/kg)	0.698
Average Value of 7	Time Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)	Average Value of T	Time Sweep (W/kg)	Average Value of 7	Time Sweep (W/kg)
Auto-tune (State 14)	0.418	Auto-tune (State 52)	0.532	Auto-tune (State 52)	0.614	Auto-tune (State 58)	0.645	Auto-tune (State 0)	0.517	Auto-tune (State 0)	0.555	Auto-tune (State 26)	1.009
Default (State 0)	0.387	Default (State 0)	0.537	Default (State 0)	0.612	Default (State 0)	0.664	Default (State 0)	0.524	Default (State 0)	0.561	Default (State 0)	0.748
State 0	0.387	State 0	0.537	State 0	0.612	State 0	0.664	State 0	0.524	State 0	0.561	State 8	0.473
State 9	0.128	State 11	0.108	State 13	0.591	State 9	0.312	State 1	0.533	State 14	0.580	State 26	1.037
State 14	0.419	State 14	0.422	State 28	0.189	State 20	0.427	State 2	0.532	State 31	0.366	State 45	0.603
State 16	0.409	State 27	0.139	State 52	0.615	State 39	0.302	State 17	0.475	State 37	0.036	State 51	0.230
State 55	0.126	State 52	0.537	State 59	0.248	State 58	0.662	State 52	0.517	State 41	0.372	State 59	0.766

Table 14-7 LTE Supplemental Body SAR Data - Cont'd

	B2	LTE	
	ndwidth, 1 RB, 0 RB	QPSK, 20 MHz Band	lwidth, 50 RB, 50 RE set
Test Position	Bottom Edge	Test Position	Bottom Edge
Spacing	10 mm	Spacing	10 mm
Frequency (MHz)	1900.00	Frequency (MHz)	1905.00
Channel	19100	Channel	26590
Measured 1g SAR	19100	Measured 1g SAR	20090
(W/kg)	0.926	(W/kg)	0.987
	ime Sweep (W/kg)	Average Value of T	C (\A//I)
	1.528		1.470
uto-tune (State 55)	1.179	Auto-tune (State 26)	1.216
Default (State 0)		Default (State 0)	
State 0	1.179	State 0	1.216
State 1 State 2	1.078 1.054	State 1 State 2	1.128 1.102
State 3	1.034	State 3	1.076
State 4	0.989	State 4	1.026
State 5	0.983	State 5	1.023
State 6	0.870	State 6	0.902
State 7	0.795	State 7	0.824
State 8	0.703	State 8	0.718
State 9	0.573	State 9	0.578
State 10	0.486	State 10	0.488
State 11	0.385	State 11	0.380
State 12	0.272	State 12	0.262
State 13	0.766	State 13	0.849
State 14	0.689	State 14	0.760
State 15	0.669	State 15	0.735
State 16	0.652	State 16	0.715
State 17	0.614	State 17	0.672
State 18	0.608	State 18	0.670
State 19	0.526	State 19	0.572
State 20	0.475	State 20	0.512
State 21	0.403	State 21	0.432
State 22	0.322	State 22	0.338
State 23	0.267	State 23	0.278
State 24	0.207	State 24	0.211
State 25	0.143	State 25	0.142
State 26	1.536	State 26	1.486
State 27	1.443	State 27	1.406 1.384
State 28	1.420	State 28	
State 29	1.399	State 29	1.359
State 30	1.357	State 30	1.313
State 31	1.345	State 31	1.301
State 32	1.224	State 32	1.182
State 33	1.136	State 33	1.093
State 34	1.019	State 34	0.970
State 35	0.852	State 35	0.796
State 36	0.729	State 36	0.674
State 37	0.584	State 37	0.527
State 38 State 39	0.414 1.160	State 38 State 39	0.362 1.173
State 40	1.064	State 40	1.083
State 40	1.064	State 40 State 41	1.083
State 41	1.038	State 41	1.037
State 42 State 43	0.979	State 42 State 43	0.990
State 43 State 44	0.979	State 44	0.990
State 44 State 45	0.857	State 45	0.863
State 45	0.857	State 45 State 46	0.787
State 46 State 47	0.683	State 46 State 47	0.787
State 47 State 48	0.558	State 48	0.549
State 48 State 49	0.474	State 48 State 49	0.460
State 49 State 50			0.358
State 50 State 51	0.378 0.266	State 50 State 51	0.358
	1.162	State 51	1.204
State 52			1.468
State 53	1.520	State 53	
State 54	1.158	State 54	1.199
State 55	1.524	State 55	1.465
State 56	0.758	State 56	0.831
State 57	1.160	State 57	1.174
State 58	0.758	State 58 State 59	0.828 1.174

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N: Test Dates: DUT Typ		DUT Type:		Page 284 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset			

Table 14-8 NR Supplemental Body SAR Data

		1411		Body SAR Data	Data		
NR Bar	nd n71	NR Ba	and n5	NR Ba	nd n66	NR Ba	and n2
DFT-s-OFDM QPSK, 50 RB, 28	20 MHz Bandwidth,	DFT-s-OFDM QPSK 50 RB, 28	, 20 MHz Bandwidth,	CP-OFDM QPSK, 2		DFT-s-OFDM QPSK	
Test Position	Back Side	Test Position	Back Side	Test Position	Bottom Edge	Test Position	Bottom Edge
Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	10 mm
Frequency (MHz)	680.50	Frequency (MHz)	836.50	Frequency (MHz)	1770.00	Frequency (MHz)	1900.00
Channel	136100	Channel	167300	Channel	354000	Channel	380000
Measured 1g SAR (W/kg)	0.298	Measured 1g SAR (W/kg)	0.345	Measured 1g SAR (W/kg)	0.924	Measured 1g SAR (W/kg)	0.845
Average Value of T	ime Sweep (W/kg)		Time Sweep (W/kg)	Average Value of T	ime Sweep (W/kg)		Time Sweep (W/kg)
Auto-tune (State 14)	0.455	Auto-tune (State 0)	0.536	Auto-tune (State 26)	1.492	Auto-tune (State 55)	1.275
Default (State 0)	0.420	Default (State 0)	0.536	Default (State 0)	1.196	Default (State 0)	1.023
State 0	0.420	State 0	0.536	State 0	1.196	State 0	1.023
State 1	0.463	State 1	0.522	State 1	1.116	State 1	0.945
State 14	0.455	State 6	0.415	State 2	1.100	State 2	0.918
State 28	0.198	State 14	0.496	State 3	1.085	State 3	0.897
State 34	0.086	State 26	0.282	State 4	1.055	State 4	0.864
State 45	0.189	State 42	0.350	State 5	1.048	State 5	0.855
State 52	0.430	State 52	0.528	State 6	0.972	State 6	0.758
				State 7	0.903	State 7	0.684
				State 8	0.829	State 8	0.598
				State 9 State 10	0.723 0.636	State 9 State 10	0.482 0.409
				State 10 State 11	0.636	State 10 State 11	0.409
				State 12	0.408	State 12	0.319
				State 13	0.639	State 13	0.678
				State 14	0.596	State 14	0.602
				State 15	0.581	State 15	0.582
				State 16	0.568	State 16	0.564
				State 17	0.549	State 17	0.536
				State 18	0.542	State 18	0.531
				State 19	0.488	State 19	0.451
				State 20	0.450	State 20	0.401
				State 21	0.399	State 21	0.342
				State 22	0.332	State 22	0.265
				State 23	0.286	State 23	0.217
				State 24	0.232	State 24	0.166
				State 25	0.169	State 25	0.111
				State 26 State 27	1.492 1.477	State 26 State 27	1.313 1.226
				State 28	1.460	State 28	1.205
				State 29	1.458	State 29	1.192
				State 30	1.442	State 30	1.159
				State 31	1.428	State 31	1.145
				State 32	1.360	State 32	1.045
				State 33	1.320	State 33	0.957
				State 34	1.239	State 34	0.856
				State 35	1.114	State 35	0.696
				State 36	1.009	State 36	0.598
				State 37	0.861	State 37	0.469
				State 38	0.660	State 38	0.326
				State 39	1.171	State 39	0.994
				State 40	1.108	State 40 State 41	0.915
				State 41 State 42	1.091 1.078	State 41 State 42	0.889 0.868
				State 42 State 43	1.078	State 42 State 43	0.868
				State 44	1.045	State 44	0.811
				State 45	0.977	State 45	0.720
				State 46	0.925	State 46	0.651
				State 47	0.840	State 47	0.566
				State 48	0.738	State 48	0.457
				State 49	0.660	State 49	0.381
				State 50	0.557	State 50	0.299
				State 51	0.427	State 51	0.205
				State 52	1.164	State 52	1.022
				State 53	1.503	State 53	1.307
				State 54	1.160	State 54	1.025
				State 55	1.498	State 55	1.275
				State 56 State 57	0.635	State 56 State 57	0.681 0.985
				State 57 State 58	1.169 0.635	State 57 State 58	0.985
				State 58 State 59		State 58 State 59	0.990
				State 39	1.166	State 39	0.990

FCC ID: A3LSMG981U		SAR EVALUATION REPORT		Approved by: Quality Manager	
Document S/N: Test Dates: DUT Type:			Daga 205 of 200		
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 285 of 298	

14.2 LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. When ULCA is active, the linearity between the Power Class 2 with ULCA active and Power Class 3 with ULCA active SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g and < 3.5 W/kg for 10g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

> **Table 14-9** LTE Band 41 Head Linearity Data

ETE Bana 41 ficad Emcanty Bata							
_	LTE Band 41 PC3	LTE Band 41 PC2					
Maximum Allowed Output Power (dBm)	25.0	28.0					
Measured Output Power (dBm)	24.32	26.88					
Measured SAR (W/kg)	0.096	0.121					
Measured Power (mW)	270.40	487.53					
Duty Cycle	63.3%	43.3%					
Frame Averaged Output Power (mW)	171.16	211.10					
% deviation from expected linearity		2.30%					

Figure 14-1 LTE Band 41 Head Linearity

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	MSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 286 of 298

Table 14-10 LTE Band 41 ULCA Head Linearity Data

ETE Band 41 OEOA Ticad Emcanty Bata							
	LTE Band 41	LTE Band 41					
	PC3 ULCA	PC2 ULCA					
Maximum Allowed Output Power (dBm)	25.0	28.0					
Measured Output Power (dBm)	24.73	27.66					
Measured SAR (W/kg)	0.110	0.145					
Measured Power (mW)	297.17	583.45					
Duty Cycle	63.3%	43.3%					
Frame Averaged Output Power (mW)	188.11	252.63					
% deviation from expected linearity		-1.85%					

Figure 14-2 LTE Band 41 ULCA Head Linearity

FCC ID: A3LSMG981U		SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 207 of 200
1M1910220165-01-R1.A3L 10/23/19 - 12/18/19		Portable Handset	Page 287 of 298	

Table 14-11 LTE Band 41 Body-Worn Linearity Data

ETE Bana 41 Body Worn Embanty Bata							
	LTE Band 41 PC3	LTE Band 41 PC2					
Maximum Allowed Output Power (dBm)	25.0	28.0					
Measured Output Power (dBm)	24.32	26.88					
Measured SAR (W/kg)	0.321	0.423					
Measured Power (mW)	270.40	487.53					
Duty Cycle	63.3%	43.3%					
Frame Averaged Output Power (mW)	171.16	211.10					
% deviation from expected linearity		6.84%					

Figure 14-3 LTE Band 41 Body-Worn Linearity

FCC ID: A3LSMG981U		SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 200 of 200
1M1910220165-01-R1.A3L 10/23/19 - 12/18/19		Portable Handset	Page 288 of 298	

Table 14-12 LTE Band 41 ULCA Body-Worn Linearity Data

	212 Bana 41 020/1 Body Worn Emodrity Bata				
	LTE Band 41	LTE Band 41			
	PC3 ULCA	PC2 ULCA			
Maximum Allowed Output Power (dBm)	25.0	28.0			
Measured Output Power (dBm)	24.73	27.66			
Measured SAR (W/kg)	0.366	0.482			
Measured Power (mW)	297.17	583.45			
Duty Cycle	63.3%	43.3%			
Frame Averaged Output Power (mW)	188.11	252.63			
% deviation from expected linearity		-1.94%			

Figure 14-4 LTE Band 41 ULCA Body-Worn Linearity

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 289 of 298

Table 14-13 LTE Band 41 Hotspot Linearity Data

LTE Ballu 41 Hotspot Elliearity Data						
	LTE Band 41 PC3	LTE Band 41 PC2				
Maximum Allowed Output Power (dBm)	22.0	23.6				
Measured Output Power (dBm)	21.33	23.18				
Measured SAR (W/kg)	1.01	0.972				
Measured Power (mW)	135.83	207.97				
Duty Cycle	63.3%	43.3%				
Frame Averaged Output Power (mW)	85.98	90.05				
% deviation from expected linearity		-8.11%				

Figure 14-5 LTE Band 41 Hotspot Linearity

FCC ID: A3LSMG981U	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 200 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 290 of 298

Table 14-14 LTE Band 41 ULCA Hotspot Linearity Data

LTE Band 41 OLCA hotspot Emeanty Data					
	LTE Band 41				
	PC3 ULCA	PC2 ULCA			
Maximum Allowed Output Power (dBm)	22.0	23.6			
Measured Output Power (dBm)	21.72	23.60			
Measured SAR (W/kg)	1.07	1.08			
Measured Power (mW)	148.59	229.09			
Duty Cycle	63.3%	43.3%			
Frame Averaged Output Power (mW)	94.06	99.19			
% deviation from expected linearity		-4.29%			

Figure 14-6 LTE Band 41 ULCA Hotspot Linearity

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 204 of 209
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 291 of 298

Table 14-15 LTE Band 41 Phablet Linearity Data

ETE Band 411 habiet Ellicanty Bata						
LTE Band 41 PC3	LTE Band 41 PC2					
23.0	24.6					
22.19	23.72					
2.13	1.88					
165.58	235.50					
63.3%	43.3%					
104.81	101.97					
	-9.28%					
	23.0 22.19 2.13 165.58 63.3%					

Figure 14-7 LTE Band 41 Phablet Linearity

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Down 202 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19			Page 292 of 298

Table 14-16 LTE Band 41 ULCA Phablet Linearity Data

LIL Band 41 OLOA I habict Linearity Bata					
	LTE Band 41	LTE Band 41			
	PC3 ULCA	PC2 ULCA			
Maximum Allowed Output Power (dBm)	23.0	24.6			
Measured Output Power (dBm)	22.79	24.30			
Measured SAR (W/kg)	2.54	2.22			
Measured Power (mW)	190.11	269.15			
Duty Cycle	63.3%	43.3%			
Frame Averaged Output Power (mW)	120.34	116.54			
% deviation from expected linearity		-9.75%			

Figure 14-8 LTE Band 41 ULCA Phablet Linearity

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Dama 202 of 200
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19			Page 293 of 298

Manufacturer Agilent	Model 8594A	Description (9kHz-2.9GHz) Spectrum Analyzer	Cal Date N/A	Cal Interval N/A	Cal Due N/A	Serial Number 3051A00187
Agilent Agilent	8594A E4432B	(9KHz-2.9GHz) Spectrum Analyzer ESG-D Series Signal Generator	N/A 7/14/2019	N/A Annual	N/A 7/14/2020	US40053896
Agilent	N9020A	MXA Signal Analyzer	4/20/2019	Annual	4/20/2020	US46470561
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Agilent Agilent	N4010A E5515C	Wireless Connectivity Test Set Wireless Communications Test Set	N/A 2/7/2018	N/A Triennial	N/A 2/7/2021	GB44450273 GB43304447
Agilent	E5515C	Wireless Communications Test Set	6/26/2019	Annual	6/26/2020	MY50267125
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	7/10/2019	Annual	7/10/2020	MY47420800
Agilent Agilent	E4438C E4438C	ESG Vector Signal Generator ESG Vector Signal Generator	3/8/2019 5/23/2019	Biennial Annual	3/8/2021 5/23/2020	MY42082385 MY47270002
Agilent	E4438C	ESG Vector Signal Generator	5/22/2019	Annual	5/22/2020	MY45091346
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	ESS1SC	Wireless Communications Test Set	9/25/2019	Annual	9/25/2020	GB43304278
Agilent Amplifier Research	8753ES 15S1G6	S-Parameter Vector Network Analyzer Amplifier	9/19/2019 N/A	Annual N/A	9/19/2020 N/A	MY40003841 433972
Amplifier Research	1551G6	Amplifier	N/A	N/A	N/A	433974
Amplifier Research	15S1G6	Amplifier	N/A	N/A	N/A	433976
Amplifier Research	15S1G6	Amplifier	N/A	N/A	N/A	433978
Anritsu Anritsu	MA24106A MA24106A	USB Power Sensor USB Power Sensor	5/6/2019 5/22/2019	Annual Annual	5/6/2020 5/22/2020	1231538 1231535
Anritsu	MA24106A	USB Power Sensor	1/31/2019	Annual	1/31/2020	1244524
Anritsu	MA2411B	Pulse Power Sensor	6/11/2019	Annual	6/11/2020	1207364
Anritsu	MT8820C	Radio Communication Analyzer	7/25/2019	Annual	7/25/2020	6201240328
Anritsu Anritsu	MT8820C MT8821C	Radio Communication Analyzer Radio Communication Analyzer	3/29/2019 8/16/2019	Annual Annual	3/29/2020 8/16/2020	6201300731
Anritsu	ML2496A	Power Meter	11/6/2019	Annual	11/6/2020	1405003
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	MA2411B	Pulse Power Sensor	3/6/2019	Annual	3/6/2020	1339018
Anritsu	MT8821C	Radio Communication Analyzer	10/2/2019	Annual	10/2/2020	6201664756
Anritsu Anritsu	MT8821C MT8862A	Radio Communication Analyzer Wireless Connectivity Test Set	3/6/2019 8/8/2019	Annual Annual	3/6/2020 8/8/2020	6201381794 6261782395
Anritsu	MT8821C	Radio Communication Analyzer	1/25/2019	Annual	1/25/2020	6261895213
Anritsu	MA80002A	39GHz RF Converter	4/22/2019	Annual	4/22/2020	6261951702
Anritsu	MN8110B	I/O Adaptor	CBT	N/A	CBT	626174788
Anritsu Anrtisu	MT8821C MA180001A	Radio Communication Analyzer 28GGHz RF Converter	5/13/2019 4/5/2019	Annual Annual	5/13/2020 4/5/2020	6201524637
COMTECH	AR85729-5/57598	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-10
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-00
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811 181647802
Control Company Control Company	4040 4040	Therm./ Clock/ Humidity Monitor Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial Biennial	10/9/2020	181647802 181647812
Control Company Control Company	4040	Ultra Long Stem Thermometer	10/9/2018	Biennial	11/29/2020	181647812
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766817
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766801
Control Company Keysight	4352 772D	Ultra Long Stem Thermometer Dual Directional Coupler	11/29/2018 CBT	Biennial N/A	11/29/2020 CBT	181766777 MY5218021
Keysight Technologies	N6705B	DC Power Analyzer	4/27/2019	Biennial	4/27/2021	MY53004059
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R897950090
MiniCircuits Mini-Circuits	VLF-6000+ BW-N20W5+	Low Pass Filter DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A N/A	CBT	N/A N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A N/A	CBT	N/A N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mitutoyo Narda	CD-6"CSX	Digital Caliper	4/18/2018 CBT	Biennial	4/18/2020 CBT	13264165 9406
Narda Narda	4772-3 BW-S3W2	Attenuator (3dB) Attenuator (3dB)	CBT	N/A N/A	CBT	120
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10 CMU200	Bidirectional Coupler	CBT 6/3/2019	N/A	CBT 6/3/2020	N/A 109892
Rohde & Schwarz Rohde & Schwarz	CMW500	Base Station Simulator Radio Communication Tester	8/26/2019	Annual Annual	8/26/2020	109892
Rohde & Schwarz	CMW500	Radio Communication Tester	6/26/2019	Annual	6/26/2020	112347
Rohde & Schwarz	CMW500	Radio Communication Tester	10/15/2019	Annual	10/15/2020	109366
Rohde & Schwarz	CMW500	Radio Communication Tester	8/27/2019	Annual	8/27/2020	116743
Rohde & Schwarz Seekonk	ZNLE6 NC-100	Vector Network Analyzer Torque Wrench (8" lb)	10/11/2019 5/10/2018	Annual Biennial	10/11/2020 5/10/2020	101307 21053
Seekonk	NC-100	Torque Wrench (8" lb)	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	D750V3	750 MHz Dipole	3/18/2019	Annual	3/18/2020	1054
SPEAG	D835V2	835 MHz SAR Dipole	3/13/2019	Annual	3/13/2020	4d047
SPEAG SPEAG	D835V2 D1750V2	835 MHz SAR Dipole 1750 MHz SAR Dipole	1/22/2019	Annual Biennial	1/22/2020	4d132 1150
SPEAG	D1900V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole	10/23/2018	Biennial	10/22/2020	5d080
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Biennial	10/23/2020	5d149
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2019	Annual	2/21/2020	5d148
SPEAG SPEAG	D2300V2 D2450V2	2300 MHz SAR Dipole 2450 MHz SAR Dipole	11/8/2017 9/11/2017	Biennial Triennial	11/8/2019 9/11/2020	1064 797
SPEAG	D2450V2 D2450V2	2450 MHz SAR Dipole 2450 MHz SAR Dipole	8/16/2018	Biennial	8/16/2020	981
SPEAG	D2600V2	2600 MHz SAR Dipole	4/11/2018	Biennial	4/11/2020	1004
SPEAG	D2600V2	2600 MHz SAR Dipole	6/14/2019	Annual	6/14/2020	1064
SPEAG SPEAG	D3500V2 D3700V2	3500 MHz SAR Dipole 3700 MHz SAR Dipole	1/11/2018	Biennial Biennial	1/11/2020	1059 1018
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/10/2018	Biennial	8/10/2020	1237
SPEAG	D750V3	750 MHz SAR Dipole	1/15/2018	Biennial	1/15/2020	1003
SPEAG	D750V3	750 MHz SAR Dipole	10/19/2018	Biennial	10/19/2020	1161
SPEAG SPEAG	D835V2 D1750V2	835 MHz SAR Dipole 1750 MHz SAR Dipole	10/19/2018 5/15/2019	Biennial Annual	10/19/2020 5/15/2020	4d133 1148
	D1750V2 D1765V2	1750 MHz SAR Dipole 1765 MHz SAR Dipole	5/15/2019	Annual Biennial	5/15/2020 5/23/2020	1148
SPEAG	D2300V2	2300 MHz SAR Dipole	8/13/2018	Biennial	8/13/2020	1073
					9/17/2020	1191
SPEAG SPEAG SPEAG	D5GHzV2	5 GHz SAR Dipole	9/17/2019	Annual		
SPEAG SPEAG SPEAG SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG SPEAG SPEAG						7551 7417 7409
SPEAG SPEAG SPEAG SPEAG SPEAG	EX3DV4 EX3DV4	SAR Probe SAR Probe	9/19/2019 2/19/2019	Annual Annual	9/19/2020 2/19/2020 6/19/2020	7417
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 2/19/2019 1/25/2019	Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020	7417 7409 3914 3589
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 2/19/2019 1/25/2019 5/16/2019	Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020	7417 7409 3914 3589 7406
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 2/19/2019 1/25/2019 5/16/2019 7/16/2019	Annual Annual Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020	7417 7409 3914 3589 7406 7410
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 2/19/2019 1/25/2019 5/16/2019	Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020	7417 7409 3914 3589 7406
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 2/19/2019 1/25/2019 5/16/2019 7/16/2019 4/24/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020 4/24/2020	7417 7409 3914 3589 7406 7410 7357
SPEAG SPEAG	E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4 E3DV4	5.54 Probe 5.54 Probe 5.54 Probe 5.54 Probe 5.54 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe 5.55 Probe	9/19/2019 2/19/2019 6/19/2019 2/19/2019 2/19/2019 1/25/2019 5/16/2019 7/16/2019 4/24/2019 1/24/2019 9/17/2019 9/17/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020 4/24/2020 1/24/2020 7/15/2020 9/17/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547
SPEAG SPEAG	EXBDV4 EX	SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 6/19/2019 1/25/2019 5/16/2019 5/16/2019 4/24/2019 1/24/2019 7/15/2019 9/17/2019 2/13/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020 4/24/2020 1/24/2020 1/24/2020 9/17/2020 9/17/2020 2/13/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665
SPEAG SPEAG	EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 EXEDV4 DAE4 DAE4 DAE4	SAR Probe SAR PR	9/19/2019 2/19/2019 2/19/2019 6/19/2019 6/19/2019 1/25/2019 5/16/2019 7/16/2019 1/24/2019 1/24/2019 7/15/2019 9/17/2019 2/13/2019 6/20/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 6/19/2020 1/25/2020 5/16/2020 7/16/2020 1/24/2020 1/24/2020 7/15/2020 9/17/2020 6/20/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665
SPEAG SPEAG	EXBDV4 EX	SAR Probe SAR Probe	9/19/2019 2/19/2019 6/19/2019 6/19/2019 1/25/2019 5/16/2019 5/16/2019 4/24/2019 1/24/2019 7/15/2019 9/17/2019 2/13/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual	9/19/2020 2/19/2020 6/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020 4/24/2020 1/24/2020 1/24/2020 9/17/2020 9/17/2020 2/13/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665
SPEAG SPEAG	EXDV4 EXDV4	SAR Probe SAR PR	9/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 1/25/2019 5/16/2019 4/24/2019 1/24/2019 1/24/2019 1/24/2019 2/13/2019 2/13/2019 2/13/2019 2/14/2019	Annual Annual	9/19/2020 2/19/2020 2/19/2020 2/19/2020 1/25/2020 1/25/2020 7/16/2020 4/24/2020 1/24/2020 9/17/2020 2/13/2020 6/20/2020 2/14/2020 5/8/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665 1334
SPEAG SPEAG	EXDV4 EXBV4	ASA Probe SAR PR	9/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 1/25/2019 7/16/2019 1/24/2019 7/15/2019 2/13/2019 6/20/2019 2/14/2019 5/8/2019 5/8/2019 7/11/2019	Annual Annual	9/19/2020 2/19/2020 2/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020 4/24/2020 1/24/2020 9/17/2020 2/13/2020 2/13/2020 2/14/2020 5/8/2020 7/15/2020 2/14/2020 2/14/2020 5/8/2020 7/11/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665 1334 1272 728 859
SPEAG SPEAG	EXDV4 EXDV4	SAR Probe SAR Pr	9/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 5/16/2019 5/16/2019 5/16/2019 1/24/2019 1/24/2019 1/24/2019 2/14/2019 2/14/2019 2/14/2019 2/14/2019 2/14/2019 5/8/2019 5/8/2019 7/11/2019 4/18/2019	Annual Annual	9/19/2020 2/19/2020 2/19/2020 2/19/2020 1/25/2020 1/25/2020 7/16/2020 4/24/2020 1/24/2020 9/17/2020 9/17/2020 2/13/2020 5/8/2020 5/8/2020 7/11/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665 1334 1272 728 859 1322 1407
SPEAG SPEAG	EXDV4 EXBV4	ASA Probe SAR PR	9/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 2/19/2019 1/25/2019 7/16/2019 1/24/2019 7/15/2019 2/13/2019 6/20/2019 2/14/2019 5/8/2019 5/8/2019 7/11/2019	Annual Annual	9/19/2020 2/19/2020 2/19/2020 2/19/2020 1/25/2020 5/16/2020 7/16/2020 4/24/2020 1/24/2020 9/17/2020 2/13/2020 2/13/2020 2/14/2020 5/8/2020 7/15/2020 2/14/2020 2/14/2020 5/8/2020 7/11/2020	7417 7409 3914 3589 7406 7410 7357 7488 7547 1333 665 1334 1272 728 859

Note: 1) CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

2) Each equipment item was used solely within its respective calibration period.					
FCC ID: A3LSMG981U	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 294 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Fage 294 01 298	

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	1.3	Z	1	0.7	0.7	0.9	0.9	œ
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	×
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	oc
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	œ
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	× ×
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	œ
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	œ
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	×
Liquid Permittivity - Temperature Unceritainty		R	1.73	0.23	0.26	0.1	0.1	×
Liquid Conductivity - deviation from target values		R	1.73	0.64	0.43	1.8	1.2	× ×
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Combined Standard Uncertainty (k=1)		RSS	I			11.5	11.3	60
Expanded Uncertainty k=2					23.0	22.6		
(95% CONFIDENCE LEVEL)								1

FCC ID: A3LSMG981U	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 005 -4 000	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset		Page 295 of 298	

17 CONCLUSION

17.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMG981U	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Daga 200 of 200	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Page 296 of 298	

18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMG981U	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 297 of 298
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Faye 297 01 298

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMG981U	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 298 of 298	
1M1910220165-01-R1.A3L	10/23/19 - 12/18/19	Portable Handset	Fage 298 01 298	

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

APPENDIX A: SAR TEST DATA

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, Cellular CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 820.1 \text{ MHz}; \ \sigma = 0.925 \text{ S/m}; \ \epsilon_r = 40.53; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-31-2019; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 820.1 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. EVDO Rev. A, BC 10, Rule Part 90S, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.52 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.203 W/kg

0 dB = 0.236 W/kg = -6.27 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.93 \text{ S/m}; \ \epsilon_r = 40.486; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 10-31-2019; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 836.52 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. EVDO Rev. A, BC 0, Rule Part 22H, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.51 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.272 W/kg

0 dB = 0.322 W/kg = -4.92 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.93 \text{ S/m}; \ \epsilon_r = 40.486; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 10-31-2019; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GSM 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.12 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.178 W/kg

0 dB = 0.210 W/kg = -6.78 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.93 \text{ S/m}; \ \epsilon_r = 40.486; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 10-31-2019; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.51 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.242 W/kg

0 dB = 0.284 W/kg = -5.47 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.35 \text{ S/m}; \ \epsilon_r = 39.155; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-28-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7409; ConvF(8.32, 8.32, 8.32) @ 1732.4 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.06 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.328 W/kg

SAR(1 g) = 0.206 W/kg

0 dB = 0.286 W/kg = -5.44 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.428 \text{ S/m}; \ \epsilon_r = 40.281; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-30-2019; Ambient Temp: 21.6°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3914; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: Twin-SAM V5.0 Front 30; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS EVDO Rev A, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.87 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.354 W/kg

SAR(1 g) = 0.225 W/kg

0 dB = 0.302 W/kg = -5.20 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, GSM; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: 1900 Head; Medium parameters used (interpolated): $f = 1850.2 \text{ MHz}; \ \sigma = 1.397 \text{ S/m}; \ \epsilon_r = 40.391; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-28-2019; Ambient Temp: 21.7°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN3914; ConvF(7.8, 7.8, 7.8) @ 1850.2 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: Twin-SAM V5.0 Front 30; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GSM 1900, Left Head, Cheek, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.261 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.068 W/kg

0 dB = 0.0946 W/kg = -10.24 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.428 \text{ S/m}; \ \epsilon_r = 40.323; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1880 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.16 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.358 W/kg

SAR(1 g) = 0.224 W/kg

0 dB = 0.311 W/kg = -5.07 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0449M

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 680.5 \text{ MHz}; \ \sigma = 0.872 \text{ S/m}; \ \epsilon_r = 40.894; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-28-2019; Ambient Temp: 23.4°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7551; ConvF(10.11, 10.11, 10.11) @ 680.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Mode: LTE Band 71, Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.34 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.148 W/kg

SAR(1 g) = 0.120 W/kg

0 dB = 0.139 W/kg = -8.57 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0449M

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.881 \text{ S/m}; \ \epsilon_r = 40.82; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-28-2019; Ambient Temp: 23.4°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7551; ConvF(10.11, 10.11, 10.11) @ 707.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.98 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.156 W/kg

0 dB = 0.179 W/kg = -7.47 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0449M

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.897 \text{ S/m}; \ \epsilon_r = 41.45; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-07-2019; Ambient Temp: 24.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7551; ConvF(10.11, 10.11, 10.11) @ 782 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.84 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.203 W/kg

0 dB = 0.240 W/kg = -6.20 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0449M

Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 793 \text{ MHz}; \ \sigma = 0.91 \text{ S/m}; \ \epsilon_r = 40.591; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 10-28-2019; Ambient Temp: 23.4°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7551; ConvF(10.11, 10.11, 10.11) @ 793 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 14, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.85 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.206 W/kg

0 dB = 0.242 W/kg = -6.16 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0449M

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.885 \text{ S/m}; \ \epsilon_r = 40.042; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 10-23-2019; Ambient Temp: 21.5°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 831.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.91 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.175 W/kg

0 dB = 0.206 W/kg = -6.86 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1010M

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.919 \text{ S/m}; \ \epsilon_r = 41.379; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-14-2019; Ambient Temp: 22.1°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7417; ConvF(10.07, 10.07, 10.07) @ 836.5 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 5 (Cell.) ULCA, Right Head, Cheek, PCC: 10 MHz Bandwidth, QPSK, Ch. 20525, 1 RB, 0 RB Offset SCC: 5 MHz Bandwidth, QPSK, Ch. 20453, 1 RB, 24 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.86 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.185 W/kg

0 dB = 0.218 W/kg = -6.62 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1010M

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.364 \text{ S/m}; \ \epsilon_r = 40.498; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7551; ConvF(8.34, 8.34, 8.34) @ 1770 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS) ULCA, Left Head, Cheek, PCC: 20 MHz Bandwidth, QPSK, Ch. 132572, 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 132374, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.83 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.198 W/kg

0 dB = 0.263 W/kg = -5.80 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1077M

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.416 \text{ S/m}; \ \epsilon_r = 40.353; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1860 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.28 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.248 W/kg

0 dB = 0.339 W/kg = -4.70 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1077M

Communication System: UID 0, _LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.416 \text{ S/m}; \ \epsilon_r = 40.353; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1860 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.34 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.406 W/kg

SAR(1 g) = 0.258 W/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0449M

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.75 \text{ S/m}; \ \epsilon_r = 38.717; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 10-29-2019; Ambient Temp: 23.8°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7417; ConvF(7.73, 7.73, 7.73) @ 2310 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.117 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.094 W/kg

0 dB = 0.136 W/kg = -8.66 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1014M

Communication System: UID 0, LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2510 \text{ MHz}; \ \sigma = 1.896 \text{ S/m}; \ \epsilon_r = 38.724; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 12-09-2019; Ambient Temp: 20.8°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2510 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 7, Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.889 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.122 W/kg

0 dB = 0.182 W/kg = -7.40 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 4935M

Communication System: UID 0, LTE Band 48; Frequency: 3690 MHz; Duty Cycle: 1:1.58 Medium: 3500 Head; Medium parameters used: $f = 3690 \text{ MHz}; \ \sigma = 3.099 \text{ S/m}; \ \epsilon_r = 36.636; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 12-16-2019; Ambient Temp: 20.4°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN3589; ConvF(6.02, 6.02, 6.02) @ 3690 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn728; Calibrated: 5/8/2019
Phantom: Twin-SAM V5.0 Left 20; Type: QD 000 P40 CD; Serial: 1715
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 48 ULCA, Right Head, Tilt, PCC: 20 MHz Bandwidth, QPSK, Ch. 56640, 50 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 56442, 50 RB, 50 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 15.90 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.59 W/kg

SAR(1 g) = 0.674 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1018M

Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2593 MHz; Duty Cycle: 1:2.31 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2593 \text{ MHz}; \ \sigma = 1.964 \text{ S/m}; \ \epsilon_r = 37.479; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-08-2019; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7417; ConvF(7.17, 7.17, 7.17) @ 2593 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 41 PC2 with ULCA, Left Head, Cheek, PCC: 20 MHz Bandwidth, QPSK, Ch. 40620, 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 40422, 1 RB, 99 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.590 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.268 W/kg

SAR(1 g) = 0.145 W/kg

0 dB = 0.220 W/kg = -6.58 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1021M

Communication System: UID 0, NR Band n71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 680.5 \text{ MHz}; \ \sigma = 0.861 \text{ S/m}; \ \epsilon_r = 41.734; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-07-2019; Ambient Temp: 24.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7551; ConvF(10.11, 10.11, 10.11) @ 680.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n71, Left Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 136100, 50 RB, 28 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.91 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.165 W/kg

SAR(1 g) = 0.132 W/kg

0 dB = 0.153 W/kg = -8.15 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1021M

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.9 \text{ S/m}; \ \epsilon_r = 40.426; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-11-2019; Ambient Temp: 20.5°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 836.5 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n5, Right Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.79 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.179 W/kg

0 dB = 0.210 W/kg = -6.78 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1005M

Communication System: UID 0, NR Band n66; Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1745 \text{ MHz}; \ \sigma = 1.355 \text{ S/m}; \ \epsilon_r = 38.893; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-25-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7551; ConvF(8.34, 8.34, 8.34) @ 1745 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n66, Left Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 349000, 1 RB, 53 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.91 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.364 W/kg

SAR(1 g) = 0.234 W/kg

0 dB = 0.310 W/kg = -5.09 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1005M

Communication System: UID 0, NR Band n2; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.435 \text{ S/m}; \ \epsilon_r = 38.679; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-25-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1880 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n2, Left Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 376000, 50 RB, 28 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.08 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.208 W/kg

0 dB = 0.281 W/kg = -5.51 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1017M

Communication System: UID 0, NR Band n41; Frequency: 2592.99 MHz; Duty Cycle: 1:4 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2592.99 \text{ MHz}; \ \sigma = 1.967 \text{ S/m}; \ \epsilon_r = 38.434; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 12-16-2019; Ambient Temp: 20.1°C; Tissue Temp: 19.2°C

Probe: EX3DV4 - SN7417; ConvF(7.17, 7.17, 7.17) @ 2592.99 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n41, Right Head, Tilt, 100 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 518598, 1 RB, 137 RB Offset

Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.90 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.28 W/kg

SAR(1 g) = 0.896 W/kg

0 dB = 1.68 W/kg = 2.25 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1652M

Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.824 \text{ S/m}; \ \epsilon_r = 37.469; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-04-2019; Ambient Temp: 22.3°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2462 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11b Ant 1, 22 MHz Bandwidth, Left Head, Tilt, Ch 11, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.51 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.709 W/kg

0 dB = 1.32 W/kg = 1.21 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1652M

Communication System: UID 0, 802.11ac 5.2-5.8 GHz Band; Frequency: 5775 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: $f = 5775 \text{ MHz}; \ \sigma = 5.332 \text{ S/m}; \ \epsilon_r = 34.92; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-10-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7406; ConvF(5.23, 5.23, 5.23) @ 5775 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11ac Ant 2, U-NII-3, 80 MHz Bandwidth, Right Head, Cheek, Ch 155, 29.3 Mbps

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.549 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.396 W/kg

SAR(1 g) = 0.090 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1652M

Communication System: UID 0, Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1.289 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2402 \text{ MHz}; \ \sigma = 1.826 \text{ S/m}; \ \epsilon_r = 39.069; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-11-2019; Ambient Temp: 21.3°C; Tissue Temp: 19.2°C

Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2402 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Bluetooth, Left Head, Tilt, Ch 0, 1 Mbps

Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.79 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.621 W/kg

SAR(1 g) = 0.261 W/kg

0 dB = 0.476 W/kg = -3.22 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 820.1 \text{ MHz}; \ \sigma = 0.943 \text{ S/m}; \ \epsilon_r = 55.732; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 820.1 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. CDMA BC10, Rule Part 90S, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.54 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.418 W/kg

SAR(1 g) = 0.315 W/kg

0 dB = 0.381 W/kg = -4.19 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 820.1 \text{ MHz}; \ \sigma = 0.943 \text{ S/m}; \ \epsilon_r = 55.732; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 820.1 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. EVDO BC10, Rule Part 90S, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.47 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.606 W/kg

SAR(1 g) = 0.334 W/kg

0 dB = 0.500 W/kg = -3.01 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 55.549; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.52 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. CDMA, BC 0, Rule Part 22H, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.66 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.390 W/kg

SAR(1 g) = 0.291 W/kg

0 dB = 0.354 W/kg = -4.51 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 55.549; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.52 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: Cell. EVDO, BC 0, Rule Part 22H, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.828 W/kg

SAR(1 g) = 0.452 W/kg

0 dB = 0.675 W/kg = -1.71 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.96 \text{ S/m}; \ \epsilon_r = 54.515; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-06-2019; Ambient Temp: 23.7°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: GSM 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.89 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.207 W/kg

0 dB = 0.248 W/kg = -6.06 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, _GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.96 \text{ S/m}; \ \epsilon_r = 54.515; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-06-2019; Ambient Temp: 23.7°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 850, Body SAR, Right Edge, Mid.ch, 2 Tx Slots

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.80 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.538 W/kg

SAR(1 g) = 0.358 W/kg

0 dB = 0.472 W/kg = -3.26 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 55.549; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.99 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.405 W/kg

SAR(1 g) = 0.303 W/kg

0 dB = 0.367 W/kg = -4.35 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 55.549; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.93 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.719 W/kg

SAR(1 g) = 0.394 W/kg

0 dB = 0.586 W/kg = -2.32 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1752.6 \text{ MHz}; \ \sigma = 1.533 \text{ S/m}; \ \epsilon_r = 50.993; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-28-2019; Ambient Temp: 19.5°C; Tissue Temp: 19.1°C

Probe: EX3DV4 - SN7488; ConvF(8.68, 8.68, 8.68) @ 1752.6 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan 1 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.41 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.899 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1712.4 \text{ MHz}; \ \sigma = 1.489 \text{ S/m}; \ \epsilon_r = 53.251; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-25-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1712.4 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Body SAR, Bottom Edge, Low.ch

Area Scan (10x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.65 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.945 W/kg

0 dB = 1.42 W/kg = 1.52 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1908.75 \text{ MHz}; \ \sigma = 1.581 \text{ S/m}; \ \epsilon_r = 51.981; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-30-2019; Ambient Temp: 21.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7406; ConvF(7.95, 7.95, 7.95) @ 1908.75 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS CDMA, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.83 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.821 W/kg

0 dB = 1.19 W/kg = 0.76 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1908.75 \text{ MHz}; \ \sigma = 1.577 \text{ S/m}; \ \epsilon_r = 51.37; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2019; Ambient Temp: 20.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1908.75 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS EVDO, Body SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.78 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.923 W/kg

0 dB = 1.43 W/kg = 1.55 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, GSM; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1850.2 \text{ MHz}; \ \sigma = 1.514 \text{ S/m}; \ \epsilon_r = 52.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-30-2019; Ambient Temp: 21.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7406; ConvF(7.95, 7.95, 7.95) @ 1850.2 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GSM 1900, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.78 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.231 W/kg

0 dB = 0.332 W/kg = -4.79 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:2.076 Medium: 1900 Body; Medium parameters used: $f = 1910 \text{ MHz}; \ \sigma = 1.593 \text{ S/m}; \ \epsilon_r = 51.763; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-09-2019; Ambient Temp: 20.2°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1909.8 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 1900, Body SAR, Bottom Edge, High.ch, 4 Tx Slots

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.97 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.907 W/kg

0 dB = 1.80 W/kg = 2.55 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1078M

Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.514 \text{ S/m}; \ \epsilon_r = 51.919; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-11-2019; Ambient Temp: 21.5°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1852.4 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.66 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.766 W/kg

0 dB = 1.11 W/kg = 0.45 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1075M

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \ \sigma = 1.583 \text{ S/m}; \ \epsilon_r = 50.838; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-02-2019; Ambient Temp: 20.7°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1907.6 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Body SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.90 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.19 W/kg

0 dB = 1.73 W/kg = 2.38 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 680.5 \text{ MHz}; \ \sigma = 0.912 \text{ S/m}; \ \epsilon_r = 57.543; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-28-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 680.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 71, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.12 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.197 W/kg

0 dB = 0.245 W/kg = -6.11 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 680.5 \text{ MHz}; \ \sigma = 0.912 \text{ S/m}; \ \epsilon_r = 57.543; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-28-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 680.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 71, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.26 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.438 W/kg

SAR(1 g) = 0.262 W/kg

0 dB = 0.362 W/kg = -4.41 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.935 \text{ S/m}; \ \epsilon_r = 57.316; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-28-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 707.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.58 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.331 W/kg

SAR(1 g) = 0.245 W/kg

0 dB = 0.298 W/kg = -5.26 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.935 \text{ S/m}; \ \epsilon_r = 57.316; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-28-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 707.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.63 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.579 W/kg

SAR(1 g) = 0.333 W/kg

0 dB = 0.492 W/kg = -3.08 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 1.004 \text{ S/m}; \ \epsilon_r = 56.649; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-28-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 782 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.58 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.212 W/kg

0 dB = 0.252 W/kg = -5.99 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 1.004 \text{ S/m}; \ \epsilon_r = 56.649; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-28-2019; Ambient Temp: 21.3°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 782 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.25 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.349 W/kg

0 dB = 0.505 W/kg = -2.97 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 793 \text{ MHz}; \ \sigma = 1.007 \text{ S/m}; \ \epsilon_r = 55.966; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-29-2019; Ambient Temp: 23.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 793 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 14, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.97 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.280 W/kg

0 dB = 0.332 W/kg = -4.79 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 793 \text{ MHz}; \ \sigma = 1.007 \text{ S/m}; \ \epsilon_r = 55.966; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-29-2019; Ambient Temp: 23.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 793 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Mode: LTE Band 14, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.48 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.673 W/kg

SAR(1 g) = 0.392 W/kg

0 dB = 0.568 W/kg = -2.46 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.953 \text{ S/m}; \ \epsilon_r = 55.604; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 831.5 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.08 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.214 W/kg

0 dB = 0.260 W/kg = -5.85 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0433M

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.953 \text{ S/m}; \ \epsilon_r = 55.604; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-04-2019; Ambient Temp: 23.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 831.5 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.27 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.622 W/kg

SAR(1 g) = 0.342 W/kg

0 dB = 0.498 W/kg = -3.03 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1010M

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 54.678; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.5 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 5 (Cell.) ULCA, Body SAR, Back side, PCC: 10 MHz Bandwidth, QPSK, Ch. 20525, 1 RB, 0 RB Offset SCC: 5 MHz Bandwidth, QPSK, Ch. 20453, 1 RB, 24 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.88 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.207 W/kg

0 dB = 0.251 W/kg = -6.00 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1010M

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 54.678; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.5 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 5 (Cell.) ULCA, Body SAR, Back side, PCC: 10 MHz Bandwidth, QPSK, Ch. 20525, 1 RB, 0 RB Offset SCC: 5 MHz Bandwidth, QPSK, Ch. 20453, 1 RB, 24 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.42 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.678 W/kg

SAR(1 g) = 0.373 W/kg

0 dB = 0.537 W/kg = -2.70 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1010M

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.526 \text{ S/m}; \ \epsilon_r = 51.329; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-11-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7409; ConvF(7.85, 7.85, 7.85) @ 1770 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS) ULCA, Body SAR, Back side, PCC: 20 MHz Bandwidth, QPSK, Ch. 132572, 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 132374, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.33 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.796 W/kg

0 dB = 1.13 W/kg = 0.53 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1010M

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.555 \text{ S/m}; \ \epsilon_r = 52.646; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-03-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1770 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/18/2019
Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS) ULCA, Body SAR, Bottom Edge, PCC: 20 MHz Bandwidth, QPSK, Ch. 132572, 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 132374, 1 RB, 99 RB Offset

Area Scan (11x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.17 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.811 W/kg

0 dB = 1.24 W/kg = 0.93 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1077M

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.522 \text{ S/m}; \ \epsilon_r = 51.895; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-11-2019; Ambient Temp: 21.5°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1860 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/15/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.46 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.753 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1077M

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1882.5 \text{ MHz}; \sigma = 1.557 \text{ S/m}; \epsilon_r = 50.932; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-02-2019; Ambient Temp: 20.7°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1882.5 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 25 (PCS), Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 100 RB, 0 RB Offset

Area Scan (9x9x1): Measurement grid: dx=5mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.84 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.85 W/kgSAR(1 g) = 0.991 W/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1077M

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.522 \text{ S/m}; \ \epsilon_r = 51.895; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-11-2019; Ambient Temp: 21.5°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1860 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/15/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.48 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.716 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1077M

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.555 \text{ S/m}; \ \epsilon_r = 50.942; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-02-2019; Ambient Temp: 20.7°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1880 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/15/2019
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.68 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 0.982 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1014M

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.876 \text{ S/m}; \ \epsilon_r = 53.244; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-31-2019; Ambient Temp: 22.7°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 30, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.94 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.682 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0932M

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.871 \text{ S/m}; \ \epsilon_r = 52.265; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-09-2019; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 30, Body SAR, Bottom Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 25 RB, 12 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm **Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.54 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.89 W/kgSAR(1 g) = 0.977 W/kg

0 dB = 1.57 W/kg = 1.96 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1014M

Communication System: UID 0, LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2510 \text{ MHz}; \ \sigma = 2.115 \text{ S/m}; \ \epsilon_r = 51.264; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-11-2019; Ambient Temp: 22.9°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2510 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 7, Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.66 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.604 W/kg

0 dB = 0.920 W/kg = -0.36 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1014M

Communication System: UID 0, LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2510 \text{ MHz}; \ \sigma = 2.11 \text{ S/m}; \ \epsilon_r = 51.97; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-03-2019; Ambient Temp: 23.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2510 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 7, Body SAR, Bottom Edge, Low.ch, 20 MHz Bandwidth, OPSK, 50 RB, 25 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.73 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.791 W/kg

0 dB = 1.28 W/kg = 1.07 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0384S

Communication System: UID 0, LTE Band 48; Frequency: 3603.3 MHz; Duty Cycle: 1:1.58 Medium: 3500 Body; Medium parameters used (interpolated): $f = 3603.3 \text{ MHz}; \ \sigma = 3.566 \text{ S/m}; \ \epsilon_r = 49.847; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 12-02-2019; Ambient Temp: 21.3°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN3914; ConvF(6.58, 6.58, 6.58) @ 3603.3 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 48 ULCA, Body SAR, Back side, PCC: 20 MHz Bandwidth, QPSK, Ch. 55773, 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 55575, 1 RB, 99 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 10.62 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.923 W/kg

SAR(1 g) = 0.365 W/kg

0 dB = 0.662 W/kg = -1.79 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0384S

Communication System: UID 0, LTE Band 48; Frequency: 3603.3 MHz; Duty Cycle: 1:1.58 Medium: 3500 Body; Medium parameters used (interpolated): $f = 3603.3 \text{ MHz}; \ \sigma = 3.566 \text{ S/m}; \ \epsilon_r = 49.847; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-02-2019; Ambient Temp: 21.3°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN3914; ConvF(6.58, 6.58, 6.58) @ 3603.3 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 48 ULCA, Body SAR, Top Edge, PCC: 20 MHz Bandwidth, QPSK, Ch. 55773 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 55575 1 RB, 99 RB Offset

Area Scan (11x11x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 15.68 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.39 W/kg

SAR(1 g) = 0.811 W/kg

0 dB = 1.62 W/kg = 2.10 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1018M

Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2593 MHz; Duty Cycle: 1:2.31 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2593 \text{ MHz}; \ \sigma = 2.193 \text{ S/m}; \ \epsilon_r = 51.259; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-07-2019; Ambient Temp: 22.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2593 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 41 PC2 with ULCA, Body SAR, Back side, PCC: 20 MHz Bandwidth, QPSK, Ch. 40620, 1 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 40422, 1 RB, 99 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.51 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.929 W/kg

SAR(1 g) = 0.482 W/kg

0 dB = 0.318 W/kg = -4.98 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 0932M

Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2636.5 MHz; Duty Cycle: 1:2.31 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2636.5 \text{ MHz}; \ \sigma = 2.262 \text{ S/m}; \ \epsilon_r = 51.604; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-03-2019; Ambient Temp: 23.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2636.5 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 41 PC2 with ULCA, Body SAR, Bottom Edge, PCC: 20 MHz Bandwidth, QPSK, Ch. 41055, 50 RB, 0 RB Offset SCC: 20 MHz Bandwidth, QPSK, Ch. 40857, 50 RB, 50 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.94 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.22 W/kg

SAR(1 g) = 1.08 W/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1021M

Communication System: UID 0, NR Band n71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 680.5 \text{ MHz}; \ \sigma = 0.915 \text{ S/m}; \ \epsilon_r = 57.719; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-06-2019; Ambient Temp: 22.2°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 680.5 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n71, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 136100, 50 RB, 28 RB Offset

Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.52 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.204 W/kg

0 dB = 0.258 W/kg = -5.88 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1021M

Communication System: UID 0, NR Band n71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 680.5 \text{ MHz}; \ \sigma = 0.915 \text{ S/m}; \ \epsilon_r = 57.719; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-06-2019; Ambient Temp: 22.2°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 680.5 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n71, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 136100, 50 RB, 28 RB Offset

Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.72 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.499 W/kg

SAR(1 g) = 0.298 W/kg

0 dB = 0.425 W/kg = -3.72 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1021M

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.968 \text{ S/m}; \ \epsilon_r = 56.089; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-18-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.5 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n5, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.48 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.269 W/kg

SAR(1 g) = 0.200 W/kg

0 dB = 0.243 W/kg = -6.14 dBW/kg

DUT: A3LSMG981U; Type: Portable Handset; Serial: 1021M

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.968 \text{ S/m}; \ \epsilon_r = 56.089; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 836.5 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n5, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.48 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.623 W/kg

SAR(1 g) = 0.345 W/kg

0 dB = 0.506 W/kg = -2.96 dBW/kg