

Keysight Spectrum Analyzer - Occupied BW RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	10:49:54 AM Ja	n 20 2010	
14 5032 DC	Cente	r Freq: 5.775000000 GH	Z	Radio Std: No		race/Detector
NFE	· · · · · · · · · · · · · · · · · · ·	FreeRun Avg Ho n:20 dB	old:>100/100	Radio Device:	DTC	
	#IFGain:Low #Atter	1: 20 06		Radio Device:	BIS	
0 dB/div Ref 20.00 dBm			_			
og						
).00						Clear Writ
	MULL MALL MULL M	الملم سالل مسالية المسالية مسالية المسالية	M			
0.0						
20.0						
0.0	-the state of the		How Alice dillerand	and the stand of the second	4.6	Averag
10.0 and a stand of the second stand					workey (
io.o						
60.0						Max Hol
0.0						ινιάχ ποι
enter 5.7750 GHz				Span 200		
Res BW 100 kHz	#	VBW 300 kHz		Sweep 19	.13 ms	Min Hol
	-	Total Power	24.0) dBm		
Occupied Bandwidt		Total Fower	24.0	UBIII		
75	.816 MHz					Detecto
T					Aut	Peak o Ma
Transmit Freq Error	42.912 kHz	% of OBW Po	wer 99	.00 %	Aut	0 <u>IVIa</u>
x dB Bandwidth	75.72 MHz	x dB	-6.	00 dB		

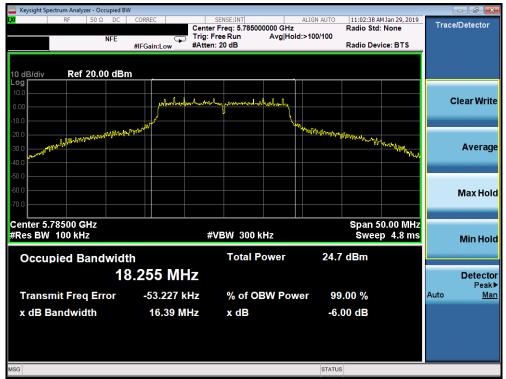
Plot 7-116. 6dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

Plot 7-117. 6dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 79 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 78 of 259
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

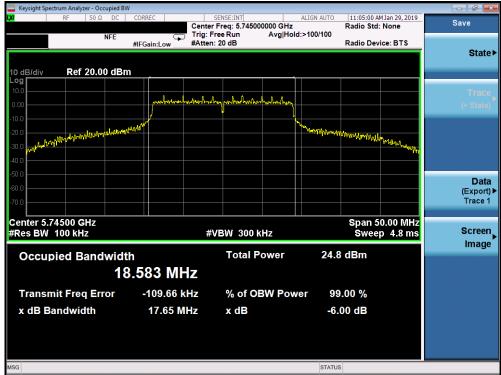
SISO Antenna-2 6dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.38
	5785	157	а	6	16.39
	5825	165	а	6	16.39
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.65
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.61
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.35
<u>.</u>	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	19.07
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	19.09
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	19.04
	5755	151	n (40MHz)	13.5/15 (MCS0)	36.11
	5795	159	n (40MHz)	13.5/15 (MCS0)	36.14
	5755	151	ax (40MHz)	13.5/15 (MCS0)	37.66
	5795	159	ax (40MHz)	13.5/15 (MCS0)	37.62
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.98
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	76.80


Table 7-5. Conducted Bandwidth Measurements SISO ANT2

Plot 7-118. 6dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 149)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dama 70 of 250		
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 79 of 259		
© 2019 PCTEST Engineering Lab	© 2019 PCTEST Engineering Laboratory, Inc.					



Plot 7-120. 6dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 165)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 90 of 250		
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 80 of 259		
© 2019 PCTEST Engineering Lat	© 2019 PCTEST Engineering Laboratory. Inc.					


Plot 7-121. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-122. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 81 of 259		
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 61 01 259		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory, Inc.					

Plot 7-123. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-124. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dege 92 of 250		
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 82 of 259		
© 2019 PCTEST Engineering Lab	© 2019 PCTEST Engineering Laboratory. Inc.					

🔤 Keysight Spectrum Analyzer - Oc										
LXI RF 50 Ω	2 DC COR	REC		NSE:INT reg: 5.78500	0000 GH-	ALIGN AUTO	11:18:11 A Radio Std	M Jan 29, 2019	Trac	e/Detector
	NFE		Trig: Free	e Run		d:>100/100	Radio Stu	. None		
	#IFC	Gain:Low	#Atten: 2	0 dB			Radio Dev	rice: BTS		
10 dB/div Ref 20.0)0 dBm									
Log										
10.0		R . A . I		ump hada						Clear Write
0.00		Brown have	Change a lange for the	Real Product	through the the start in the					
-10.0		(
-20.0	, an All Whe					h with a stree	Mr. Margaret			
-20.0 -30.0	Wdinina						MINAN MAN	and al public to man		Average
-40.0										
-50.0										
-60.0										
-70.0										Max Hold
-70.0										
Center 5.78500 GHz							Span 5	0.00 MHz		
#Res BW 100 kHz			#VE	3W 300 k	Hz		Swee	p 4.8 ms		Min Hold
						00.7				
Occupied Band	dwidth			Total P	ower	23.7	dBm			
	19.0	61 MI	z							Detector
										Peak▶
Transmit Freq Er	ror	-7.719	(Hz	% of O	BW Pow	ver 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth		19.09 N	IHz	x dB		-6.	00 dB			
MSG						STATUS				

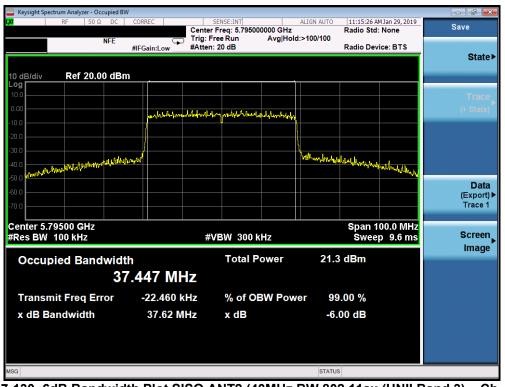
Plot 7-125. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)

Plot 7-126. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 83 of 259	
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018				

🔤 Keysight Spectrum Analyzer - Occu	upied BW				
LXI RF 50 Ω	DC CORREC	SENSE:INT Center Freg: 5.7550	ALIGN AUTO	11:11:24 AM Jan 29, 201 Radio Std: None	9 Trace/Detector
N	IFE G	Trig: Free Run	Avg Hold:>100/100		
	#IFGain:Low	#Atten: 20 dB		Radio Device: BTS	
10 dB/div Ref 20.00	dBm				
Log 10.0					
		addressed a distance			Clear Write
0.00	الداجالية أمارا	www.uketeredala.a.	diserbel alakatal		
-10.0		<u> </u>			
-20.0	and all and		Malanta	nor have been more the	
-30.0				- managed and the state of the	Average
-40.0					
-50.0					
-60.0					Max Hold
-70.0					Wax Holu
10.0					
Center 5.75500 GHz				Span 100.0 MH	
#Res BW 100 kHz		#VBW 300	kHz	Sweep 9.6 m	s Min Hold
Occupied Rendu	width	Total	Power 24	.6 dBm	
Occupied Bandy			24		
	36.483 M	HZ			Detector Peak►
Transmit Freq Erro	or -2.255	kHz % of C	BW Power	99.00 %	Auto <u>Man</u>
x dB Bandwidth	36.11	MHz xdB	-	6.00 dB	
MSG			STAT	rus	

Plot 7-127. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)


Plot 7-128. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 94 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 84 of 259
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018			

Keysight Spectrum Analyzer - Occupied B	W				- 5 💌
LX/ RF 50 Ω DC	CORREC	SENSE:INT er Freg: 5.755000000 GHz	ALIGN AUTO 11:14:42 A Radio Std	M Jan 29, 2019	Trace/Detector
NFE	Trig:	Free Run Avg Hol	d:>100/100	. None	
	#IFGain:Low #Atte	n: 20 dB	Radio Dev	rice: BTS	
10 dB/div Ref 20.00 dB	m				
Log					
					Clear Write
0.00	phylological hope has been and	when more bounded and the states and			
-10.0					
-20.0					_
-30.0	use all		moundanteresterest		Average
-40.0 -50.0	Morton .		10 million a march shirt of the	Workshow was	
-50.0				- Andrew Constrained	
-60.0					Max Hold
-70.0					
Center 5.75500 GHz		≇VBW 300 kHz		00.0 MHz	
#Res BW 100 kHz	#		Swee	p 9.6 ms	Min Hold
Occupied Bandwid	th	Total Power	21.9 dBm		
3	7.482 MHz				Detector Peak▶
Transmit Freq Error	-52.582 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Man</u>
x dB Bandwidth	37.66 MHz	x dB	-6.00 dB		
	57.00 WITZ	X UD	-0.00 ub		
MSG			STATUS		

Plot 7-129. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)

Plot 7-130. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 85 of 250
1M1901100003-09.A3L	0003-09.A3L 01/22/2019 - 03/25/2019 Portable Handset			Page 85 of 259
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

Keysight Spectrum Analyzer - Occupied BV RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	11:12:35 AM Jan 29, 2019		
NF 30.32 DC		r Freg: 5.775000000 GHz		Radio Std: None	Trace/Det	ector
NFE	Trig: I	Free Run Avg Ho	old:>100/100			
	#IFGain:Low #Atter	n: 20 dB		Radio Device: BTS		
0 dB/div Ref 20.00 dBn	n					
.og						
10.0					Clear	- 14/-i+
).00	Darser shalled inducted the	UNE ANI KAR MILLAR STATION TO			Clear	wwrit
0.0			NI,			
0.0						
	alway		MATHINGHER		Δ1	/erac
and a stand and				the theory we have the work of the	~	renug
50.0						
60.0					Ma	x Hol
70.0					ina	
						_
enter 5.7750 GHz				Span 200.0 MHz		
Res BW 100 kHz	#	VBW 300 kHz		Sweep 19.13 ms	Mi	n Hol
		Total Power	24	dBm		
Occupied Bandwidt		Total Power	24.4	aBm		
75	5.857 MHz				De	etecto
						Peak
Transmit Freq Error	-74.238 kHz	% of OBW Po	wer 99	.00 %	Auto	Ma
x dB Bandwidth	75.98 MHz	x dB	-6.	00 dB		
G			STATUS	3		

Plot 7-131. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

Plot 7-132. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 96 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 86 of 259	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

7.4 UNII Output Power Measurement – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW (23.01dBm) or $10 + 10 \log_{10}B = 10 + 10 \log_{10}(21) = 23.22 \text{ dBm}$.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.32) = 24.29dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W (30dBm) or 17 + 10 $\log_{10}B = 17 + 10 \log_{10}(21.32) = 30.29 dBm$.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.14) = 24.25dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W (30dBm) or 17 + 10 $\log_{10}B = 17 + 10 \log_{10}(21.14) = 30.25 dBm$.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 97 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 87 of 259	
© 2019 PCTEST Engineering Lat	boratory. Inc.	•		V 8.8 11/19/2018	

Per RSS-247 Section 6.2.3, transmission on channels which overlap the 5600-5650 MHz is prohibited. This device operates under these frequencies only under the control of a certified master device and does not support active scanning on these channels. This device does not transmit any beacons or initiate any transmissions in UNII Bands 2A or 2C.

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 89 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 88 of 259	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

SISO Antenna-1 Conducted Output Power Measurements

	Freq [MHz]	Channel	Detector		IEEE Transn		Conducted Power Limit	Conducted Power	
Ē				802.11a	802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
÷.	5180	36	AVG	16.44	16.32	16.31	15.86	23.98	-7.54
i,	5200	40	AVG	17.63	17.54	17.99	15.93	23.98	-5.99
Bandwidth)	5220	44	AVG	17.66	17.52	17.93	15.76	23.98	-6.05
Ĕ	5240	48	AVG	17.54	17.51	17.92	15.81	23.98	-6.06
ñ	5260	52	AVG	17.63	17.63	17.98	15.66	23.98	-6.00
N	5280	56	AVG	17.68	17.59	17.99	15.62	23.98	-5.99
Î	5300	60	AVG	17.68	17.56	17.62	15.67	23.98	-6.30
(20MH;	5320	64	AVG	16.86	16.76	16.94	15.59	23.98	-7.04
50	5500	100	AVG	17.60	17.83	17.89	15.62	23.98	-6.09
	5600	120	AVG	17.90	17.80	17.84	15.58	23.98	-6.08
Hz	5620	124	AVG	17.84	17.70	17.72	15.59	23.98	-6.14
5G	5720	144	AVG	17.54	17.50	17.98	15.56	23.98	-6.00
LO LO	5745	149	AVG	17.56	17.94	17.56	15.96	30.00	-12.06
	5785	157	AVG	17.53	17.99	17.99	15.85	30.00	-12.01
	5825	165	AVG	17.68	17.73	17.71	15.55	30.00	-12.27

Table 7-6. SISO ANT1 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]		Channel Detector		Transmission	Conducted Power Limit	Conducted Power	
				802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
P C	5190	38	AVG	13.96	13.98	13.64	23.98	-10.00
0MH idth	5230	46	AVG	16.94	16.93	13.59	23.98	-7.04
(40MH Iwidth)	5270	54	AVG	16.61	16.65	13.93	23.98	-7.33
<u>4</u> ¥	5310	62	AVG	14.31	14.39	13.78	23.98	-9.59
Hz	5510	102	AVG	15.16	15.27	13.83	23.98	-8.71
Ba Ba	5590	118	AVG	16.56	16.99	13.89	23.98	-6.99
50 E	5630	126	AVG	16.92	16.97	13.84	23.98	-7.01
	5710	142	AVG	16.76	16.73	13.58	23.98	-7.22
	5755	151	AVG	16.70	16.76	13.71	30.00	-13.24
	5795	159	AVG	16.58	16.52	13.58	30.00	-13.42

Table 7-7. SISO ANT1 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 89 of 259	
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018				

	Freq [MHz]	Freq [MHz] Channel		IEEE Transm	nission Mode	Conducted Power Limit	Conducted Power
PH (802.11ac	802.11ax	[dBm]	Margin [dB]
5GHz (80MHz Bandwidth)	5210	42	AVG	12.98	12.99	23.98	-11.00
<u>8</u> <u>8</u>	5290	58	AVG	12.73	12.79	23.98	-11.25
5GHz Band	5530	106	AVG	13.55	12.51	23.98	-10.43
B .5G	5610	122	AVG	15.64	12.77	23.98	-8.34
	5690	138	AVG	15.51	12.94	23.98	-8.47
	5775	155	AVG	15.75	12.95	30.00	-14.25

Table 7-8. SISO ANT1 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dago 00 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	9 Portable Handset		Page 90 of 259	
© 2019 PCTEST Engineering Lab	oratory Inc.			V 8 8 11/19/2018	

SISO Antenna-2 Conducted Output Power Measurements

	Freq [MHz]	Channel	Detector		IEEE Transm		Conducted Power Limit	Conducted Power	
2				802.11a	802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
÷	5180	36	AVG	16.15	16.11	16.06	15.81	23.98	-7.83
ž	5200	40	AVG	17.75	17.92	17.92	15.77	23.98	-6.06
Bandwidth)	5220	44	AVG	17.72	17.89	17.97	15.72	23.98	-6.01
Ĕ	5240	48	AVG	17.73	17.94	17.98	15.73	23.98	-6.00
a Ma	5260	52	AVG	17.54	17.72	17.75	15.55	23.98	-6.23
	5280	56	AVG	17.61	17.83	17.71	15.66	23.98	-6.15
Î	5300	60	AVG	17.61	17.81	17.90	15.68	23.98	-6.08
(20MHz	5320	64	AVG	16.64	16.71	16.53	15.65	23.98	-7.27
50	5500	100	AVG	17.73	17.88	17.87	15.79	23.98	-6.10
	5600	120	AVG	17.55	17.82	17.73	15.70	23.98	-6.16
Ηz	5620	124	AVG	17.50	17.82	17.67	15.62	23.98	-6.16
5G	5720	144	AVG	17.59	17.84	17.83	15.69	23.98	-6.14
L)	5745	149	AVG	17.86	17.62	17.65	15.98	30.00	-12.14
	5785	157	AVG	17.89	17.50	17.58	15.85	30.00	-12.11
	5825	165	AVG	17.59	17.73	17.68	15.60	30.00	-12.27

Table 7-9. SISO ANT2 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]		Detector	IEEE	Transmission	Conducted Power Limit	Conducted Power	
				802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
P (5190	38	AVG	13.99	13.87	13.80	23.98	-9.99
0MH; idth)	5230	46	AVG	16.92	16.96	13.90	23.98	-7.02
(40M Iwidtl	5270	54	AVG	16.64	16.77	13.57	23.98	-7.21
<u>4</u> ¥	5310	62	AVG	14.42	14.49	13.53	23.98	-9.49
Hz (and	5510	102	AVG	15.30	15.36	13.83	23.98	-8.62
Ba Ba	5590	118	AVG	16.67	16.79	13.57	23.98	-7.19
50	5630	126	AVG	16.73	16.82	13.55	23.98	-7.16
	5710	142	AVG	16.41	16.55	13.62	23.98	-7.43
	5755	151	AVG	16.94	16.89	13.73	30.00	-13.06
	5795	159	AVG	16.59	16.66	13.54	30.00	-13.34

Table 7-10. SISO ANT2 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 01 of 250
1M1901100003-09.A3L	A3L 01/22/2019 - 03/25/2019 Portable Handset			Page 91 of 259
© 2019 PCTEST Engineering Lat	poratory. Inc.	•		V 8.8 11/19/2018

	Freq [MHz]	Channel Detector		IEEE Transm	nission Mode	Conducted Power Limit	Conducted Power
(80MHz łwidth)				802.11ac	802.11ax	[dBm]	Margin [dB]
GHz (80MH Bandwidth)	5210	42	AVG	12.64	12.75	23.98	-11.34
<u>8</u> <u>8</u>	5290	58	AVG	12.66	12.88	23.98	-11.32
5GHz Band	5530	106	AVG	13.64	12.63	23.98	-10.34
B .5G	5610	122	AVG	15.54	12.74	23.98	-8.44
	5690	138	AVG	15.76	12.70	23.98	-8.22
	5775	155	AVG	15.98	12.91	30.00	-14.02

Table 7-11. SISO ANT2 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019 Portable Handset			Page 92 of 259
© 2019 PCTEST Engineering Lab	oratory Inc.			V 8 8 11/19/2018

MIMO Maximum Conducted Output Power Measurements

	Freq [MHz]	Channel	Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power
Ē	2			ANT1	ANT2	MIMO	[dBm]	Margin [dB]
÷.	5180	36	AVG	12.88	12.82	15.86	23.98	-8.12
i,	5200	40	AVG	17.63	17.75	20.70	23.98	-3.28
5	5220	44	AVG	17.66	17.72	20.70	23.98	-3.28
andwidth)	5240	48	AVG	17.54	17.73	20.65	23.98	-3.33
Ba	5260	52	AVG	17.63	17.54	20.60	23.98	-3.38
	5280	56	AVG	17.68	17.61	20.66	23.98	-3.32
Hz	5300	60	AVG	17.68	17.61	20.66	23.98	-3.32
(20M	5320	64	AVG	14.25	13.43	16.87	23.98	-7.11
50	5500	100	AVG	17.60	17.73	20.68	23.98	-3.30
	5600	120	AVG	17.90	17.55	20.74	23.98	-3.24
Hz	5620	124	AVG	17.84	17.50	20.68	23.98	-3.30
Ċ	5720	144	AVG	17.54	17.59	20.58	23.98	-3.40
ũ	5745	149	AVG	17.56	17.86	20.72	30.00	-9.28
	5785	157	AVG	17.53	17.89	20.72	30.00	-9.28
	5825	165	AVG	17.68	17.59	20.65	30.00	-9.35

Table 7-12. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
2				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
Et .	5180	36	AVG	12.85	12.82	15.85	23.98	-8.13
, ic	5200	40	AVG	17.54	17.92	20.74	23.98	-3.24
5	5220	44	AVG	17.52	17.89	20.72	23.98	-3.26
andwidth	5240	48	AVG	17.51	17.94	20.74	23.98	-3.24
Ba	5260	52	AVG	17.63	17.72	20.69	23.98	-3.29
	5280	56	AVG	17.59	17.83	20.72	23.98	-3.26
Î	5300	60	AVG	17.56	17.81	20.70	23.98	-3.28
(20MHz	5320	64	AVG	13.73	13.09	16.43	23.98	-7.55
20	5500	100	AVG	17.83	17.88	20.87	23.98	-3.11
	5600	120	AVG	17.80	17.82	20.82	23.98	-3.16
Hz	5620	124	AVG	17.70	17.82	20.77	23.98	-3.21
Ċ	5720	144	AVG	17.50	17.84	20.68	23.98	-3.30
2	5745	149	AVG	17.94	17.62	20.79	30.00	-9.21
	5785	157	AVG	17.99	17.50	20.76	30.00	-9.24
	5825	165	AVG	17.73	17.73	20.74	30.00	-9.26

Table 7-13. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Page 93 of 259	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019				
© 2019 PCTEST Engineering Lal	V 8.8 11/19/2018				

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
2				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
÷.	5180	36	AVG	12.92	12.65	15.80	23.98	-8.18
i,	5200	40	AVG	17.99	17.92	20.97	23.98	-3.01
andwidth)	5220	44	AVG	17.93	17.97	20.96	23.98	-3.02
ŭ	5240	48	AVG	17.92	17.98	20.96	23.98	-3.02
Ba	5260	52	AVG	17.98	17.75	20.88	23.98	-3.10
N	5280	56	AVG	17.99	17.71	20.86	23.98	-3.12
	5300	60	AVG	17.62	17.90	20.77	23.98	-3.21
MO	5320	64	AVG	14.22	13.48	16.88	23.98	-7.10
(20	5500	100	AVG	17.89	17.87	20.89	23.98	-3.09
) г	5600	120	AVG	17.84	17.73	20.80	23.98	-3.18
Ï	5620	124	AVG	17.72	17.67	20.71	23.98	-3.27
Ċ	5720	144	AVG	17.98	17.83	20.92	23.98	-3.06
ŝ	5745	149	AVG	17.56	17.65	20.62	30.00	-9.38
	5785	157	AVG	17.99	17.58	20.80	30.00	-9.20
	5825	165	AVG	17.71	17.68	20.71	30.00	-9.29

Table 7-14. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
Ē				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
۲ ۲	5180	36	AVG	12.71	12.69	15.71	23.98	-8.27
, i	5200	40	AVG	12.91	12.81	15.87	23.98	-8.11
5	5220	44	AVG	12.82	12.81	15.83	23.98	-8.15
Bandwidth)	5240	48	AVG	12.78	12.84	15.82	23.98	-8.16
a Ba	5260	52	AVG	13.09	12.49	15.81	23.98	-8.17
	5280	56	AVG	13.03	12.50	15.78	23.98	-8.20
Î	5300	60	AVG	13.16	12.55	15.88	23.98	-8.10
(20MHz	5320	64	AVG	13.19	12.54	15.89	23.98	-8.09
20	5500	100	AVG	12.82	12.27	15.56	23.98	-8.42
	5600	120	AVG	13.14	12.38	15.79	23.98	-8.19
Hz	5620	124	AVG	13.07	12.33	15.73	23.98	-8.25
5G	5720	144	AVG	12.91	12.14	15.55	23.98	-8.43
2 L	5745	149	AVG	12.97	12.70	15.85	30.00	-14.15
	5785	157	AVG	12.86	12.43	15.66	30.00	-14.34
	5825	165	AVG	12.59	12.27	15.44	30.00	-14.56

Table 7-15. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	Test Dates: EUT Type: 01/22/2019 - 03/25/2019 Portable Handset		Dage 04 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019			Page 94 of 259	
© 2019 PCTEST Engineering La	V 8 8 11/19/2018				

	Freq [MHz]	eq [MHz] Channel		Conducted Power [dBm]			Conducted Power Limit	Conducted Power
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
₽ ⊂	5190	38	AVG	10.19	10.13	13.17	23.98	-10.81
0MH; idth)	5230	46	AVG	16.94	16.92	19.94	23.98	-4.04
(401 wid	5270	54	AVG	16.61	16.64	19.64	23.98	-4.34
(4) dw	5310	62	AVG	10.81	10.99	13.91	23.98	-10.07
	5510	102	AVG	12.53	11.96	15.26	23.98	-8.72
Ba Ba	5590	118	AVG	16.56	16.67	19.63	23.98	-4.35
50	5630	126	AVG	16.92	16.73	19.84	23.98	-4.14
	5710	142	AVG	16.76	16.41	19.60	23.98	-4.38
	5755	151	AVG	16.70	16.94	19.83	30.00	-10.17
	5795	159	AVG	16.58	16.59	19.60	30.00	-10.40

Table 7-16. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

	Freq [MHz] Channel		Channel Detector		Conducted Power [dBm]			Conducted Power
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
₽ つ	5190	38	AVG	10.58	10.77	13.69	23.98	-10.29
(40MH; width)	5230	46	AVG	16.93	16.96	19.96	23.98	-4.02
<u>e</u>	5270	54	AVG	16.65	16.77	19.72	23.98	-4.26
<u>4</u> 2	5310	62	AVG	11.36	10.84	14.12	23.98	-9.86
hd	5510	102	AVG	12.43	11.74	15.11	23.98	-8.87
Ba Ba	5590	118	AVG	16.99	16.79	19.90	23.98	-4.08
50	5630	126	AVG	16.97	16.82	19.91	23.98	-4.07
	5710	142	AVG	16.73	16.55	19.65	23.98	-4.33
	5755	151	AVG	16.76	16.89	19.84	30.00	-10.16
	5795	159	AVG	16.52	16.66	19.60	30.00	-10.40

Table 7-17. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage OF of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 95 of 259	
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018				

	Freq [MHz] Channel		Iz] Channel Detector		Conducted Power [dBm]			Conducted Power
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
P C	5190	38	AVG	10.40	10.77	13.60	23.98	-10.38
0MH; idth)	5230	46	AVG	10.45	10.83	13.65	23.98	-10.33
(40I Iwid	5270	54	AVG	10.74	10.33	13.55	23.98	-10.43
4) V	5310	62	AVG	10.66	10.34	13.51	23.98	-10.47
	5510	102	AVG	11.24	10.50	13.90	23.98	-10.08
Ва Ва	5590	118	AVG	10.79	10.20	13.51	23.98	-10.47
50 E	5630	126	AVG	10.94	10.19	13.59	23.98	-10.39
	5710	142	AVG	11.16	10.40	13.81	23.98	-10.17
	5755	151	AVG	10.33	10.11	13.23	30.00	-16.77
	5795	159	AVG	10.54	10.53	13.55	30.00	-16.45

Table 7-18. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Conducted Power [dBm]		dBm]	Conducted Power Limit	Conducted Power	
Hz (c	(80 MHz 5210 5290			ANT1	ANT2	MIMO	[dBm]	Margin [dB]
OM	5210	42	AVG	9.69	9.49	12.60	23.98	-11.38
(8) 1 vi	5290	58	AVG	9.63	8.63	12.17	23.98	-11.81
GHz (80MH Bandwidth)	5530	106	AVG	10.59	10.47	13.54	23.98	-10.44
5G Ba	5610	122	AVG	15.64	15.54	18.60	23.98	-5.38
	5690	138	AVG	15.51	15.76	18.65	23.98	-5.33
	5775	155	AVG	15.75	15.98	18.88	30.00	-11.12

Table 7-19. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
Ξ Έ	HZ (c			ANT1	ANT2	MIMO	[dBm]	Margin [dB]
OM	5210	42	AVG	9.76	9.87	12.83	23.98	-11.15
(8) 1 vi	5290	58	AVG	10.04	9.16	12.63	23.98	-11.35
5GHz (80MHz Bandwidth)	5530	106	AVG	9.97	9.78	12.89	23.98	-11.09
B 2G	5610	122	AVG	9.74	9.52	12.64	23.98	-11.34
	5690	138	AVG	9.45	9.23	12.35	23.98	-11.63
	5775	155	AVG	9.52	9.91	12.73	30.00	-17.27

Table 7-20. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 06 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 96 of 259	
© 2019 PCTEST Engineering Lab	2019 PCTEST Engineering Laboratory. Inc.				

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

Assuming the average conducted power was measured to be 16.32 dBm for Antenna-1 and 16.11 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(16.32 dBm + 16.11 dBm) = (42.85 mW + 40.83 mW) = 83.68 mW = 19.23 dBm

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 07 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 97 of 259
© 2019 PCTEST Engineering Labo	2019 PCTEST Engineering Laboratory Inc			

7.5 Maximum Power Spectral Density – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

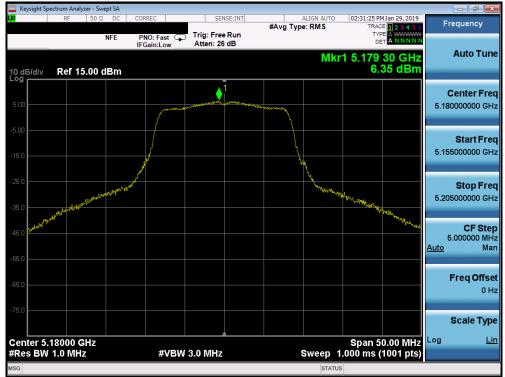
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

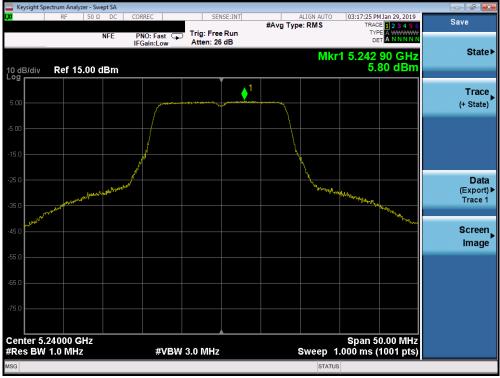
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 09 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 98 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


SISO Antenna-1 Power Spectral Density Measurements

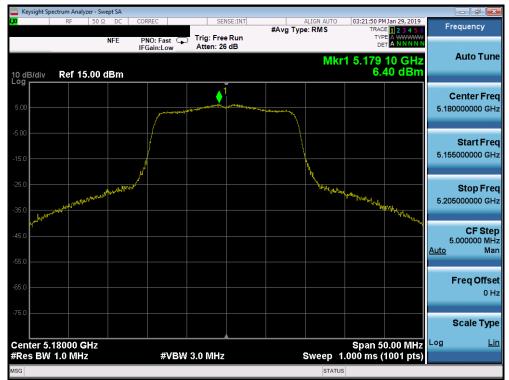
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	6.35	11.0	-4.65
	5200	40	а	6	5.30	11.0	-5.70
	5240	48	а	6	5.80	11.0	-5.20
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	6.40	11.0	-4.60
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	4.87	11.0	-6.13
	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.48	11.0	-5.52
-	5180	36	ax (20MHz)	6.5/7.2 (MCS0)	2.89	11.0	-8.11
Band 1	5200	40	ax (20MHz)	6.5/7.2 (MCS0)	3.11	11.0	-7.89
Ba	5240	48	ax (20MHz)	6.5/7.2 (MCS0)	3.37	11.0	-7.63
	5190	38	n (40MHz)	13.5/15 (MCS0)	3.29	11.0	-7.71
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.57	11.0	-8.43
	5190	38	ax (40MHz)	13.5/15 (MCS0)	-1.21	11.0	-12.21
	5230	46	ax (40MHz)	13.5/15 (MCS0)	-0.86	11.0	-11.86
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-0.56	11.0	-11.56
	5210	42	ax (80MHz)	29.3/32.5 (MCS0)	-4.63	11.0	-15.63
	5260	52	a	6	5.97	11.0	-5.03
	5280	56	а	6	5.91	11.0	-5.09
	5320	64	а	6	6.44	11.0	-4.56
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	5.56	11.0	-5.44
	5280	56	n (20MHz)	6.5/7.2 (MCS0)	5.50	11.0	-5.50
	5320	64	n (20MHz)	6.5/7.2 (MCS0)	7.01	11.0	-3.99
A	5260	52	ax (20MHz)	6.5/7.2 (MCS0)	3.48	11.0	-7.52
Band 2A	5280	56	ax (20MHz)	6.5/7.2 (MCS0)	3.35	11.0	-7.65
Bar	5320	64	ax (20MHz)	6.5/7.2 (MCS0)	3.57	11.0	-7.43
	5270	54	n (40MHz)	13.5/15 (MCS0)	2.13	11.0	-8.87
	5310	62	n (40MHz)	13.5/15 (MCS0)	3.85	11.0	-7.15
	5270	54	ax (40MHz)	13.5/15 (MCS0)	-0.40	11.0	-11.40
	5310	62	ax (40MHz)	13.5/15 (MCS0)	-1.10	11.0	-12.10
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-0.51	11.0	-11.51
	5290	58	ax (80MHz)	29.3/32.5 (MCS0)	-4.98	11.0	-15.98
	5500	100	a	6	6.90	11.0	-4.10
	5600	120	а	6	5.59	11.0	-5.41
	5720	144	а	6	5.49	11.0	-5.51
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	6.68	11.0	-4.32
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	5.29	11.0	-5.71
	5720	144	n (20MHz)	6.5/7.2 (MCS0)	5.27	11.0	-5.73
	5500	100	ax (20MHz)	6.5/7.2 (MCS0)	3.48	11.0	-7.52
	5600	120	ax (20MHz)	6.5/7.2 (MCS0)	2.89	11.0	-8.11
	5720	144	ax (20MHz)	6.5/7.2 (MCS0)	3.20	11.0	-7.80
N	5510	102	n (40MHz)	13.5/15 (MCS0)	3.51	11.0	-7.49
Band 2C	5590	118	n (40MHz)	13.5/15 (MCS0)	1.49	11.0	-9.51
Ba	5710	142	n (40MHz)	13.5/15 (MCS0)	2.19	11.0	-8.81
	5510	102	ax (40MHz)	13.5/15 (MCS0)	-0.64	11.0	-11.64
	5590	118	ax (40MHz)	13.5/15 (MCS0)	-1.04	11.0	-12.04
	5710	142	ax (40MHz)	13.5/15 (MCS0)	-1.17	11.0	-12.17
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-0.29	11.0	-11.29
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-2.18	11.0	-13.18
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-2.07	11.0	-13.07
	5530	106	ax (80MHz)	29.3/32.5 (MCS0)	-4.92	11.0	-15.92
	5610	122	ax (80MHz)	29.3/32.5 (MCS0)	-5.01	11.0	-16.01
	5690	138	ax (80MHz)	29.3/32.5 (MCS0)	-4.65	11.0	-15.65
7 24				d Power Spec			

Table 7-21. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT1

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 99 of 259	
© 2019 PCTEST Engineering Labora	2019 PCTEST Engineering Laboratory, Inc.				

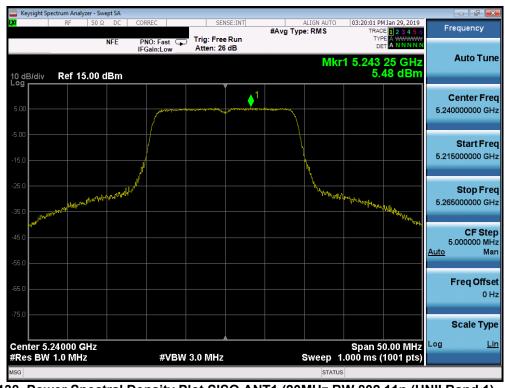


Plot 7-133. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 36)

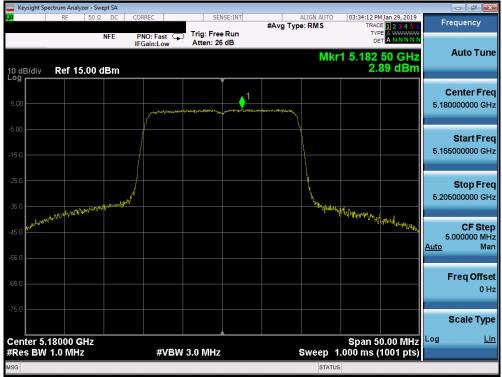


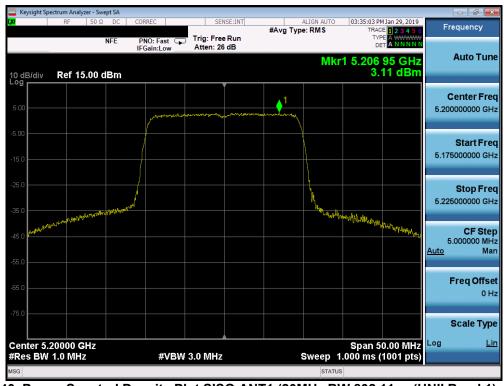
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 100 of 259
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Fage 100 01 259
© 2019 PCTEST Engineering Labor	2019 PCTEST Engineering Laboratory. Inc.			


Plot 7-135. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 48)

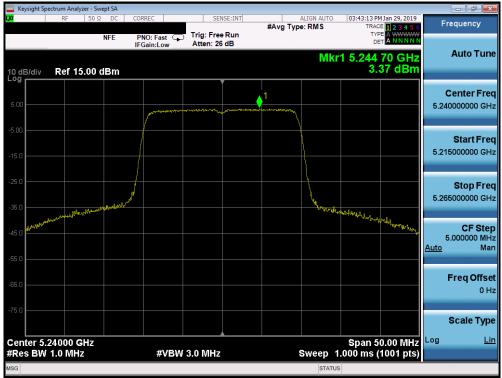

Plot 7-136. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

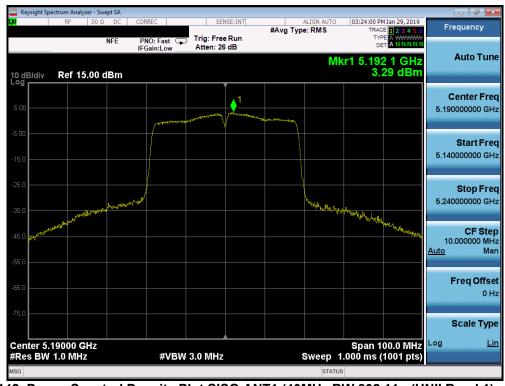
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 101 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 101 of 259	
© 2019 PCTEST Engineering Lab	2019 PCTEST Engineering Laboratory Inc.				


Plot 7-137. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

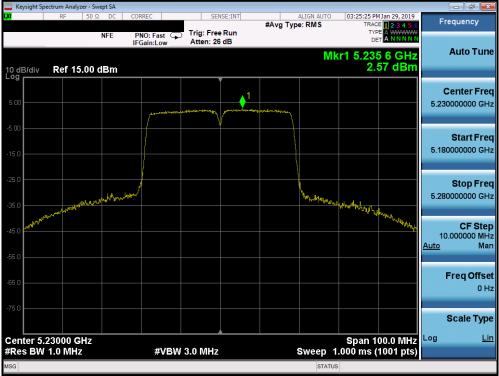

Plot 7-138. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

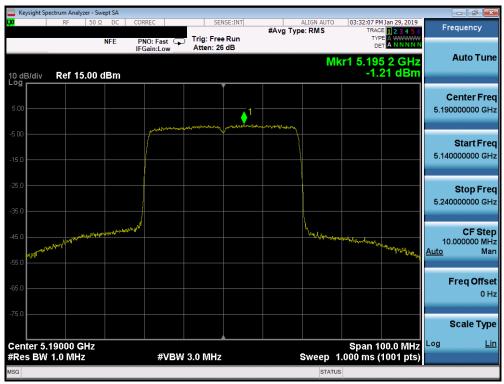
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 102 of 259	
© 2019 PCTEST Engineering Labor	2019 PCTEST Engineering Laboratory, Inc.				


Plot 7-139. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 36)

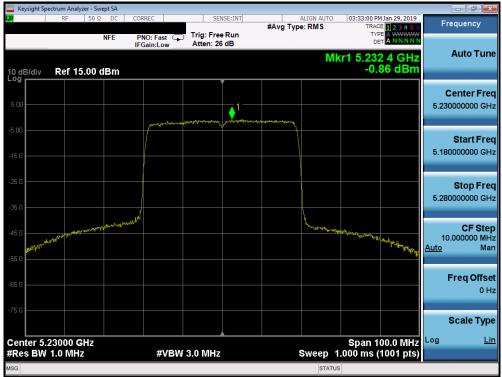

Plot 7-140. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 40)

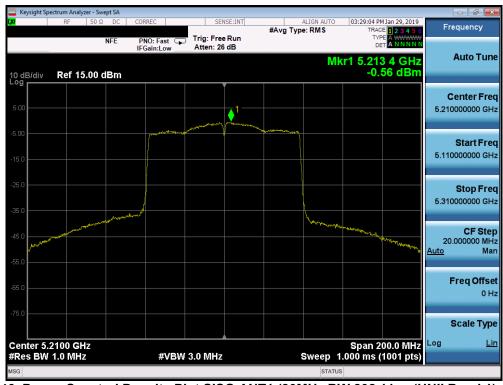
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 103 of 259	
© 2019 PCTEST Engineering Labor	2019 PCTEST Engineering Laboratory, Inc.				


Plot 7-141. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 48)

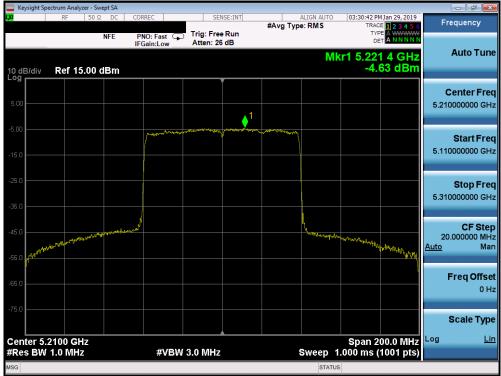

Plot 7-142. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

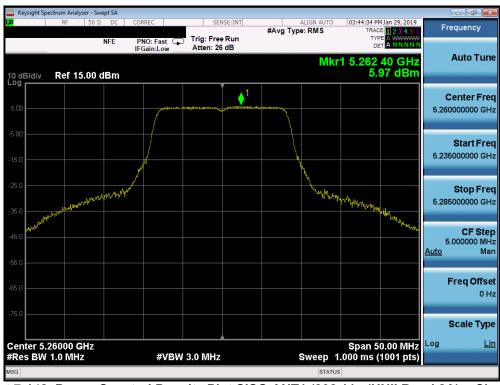
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 104 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 104 of 259
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			


Plot 7-143. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) – Ch. 46)

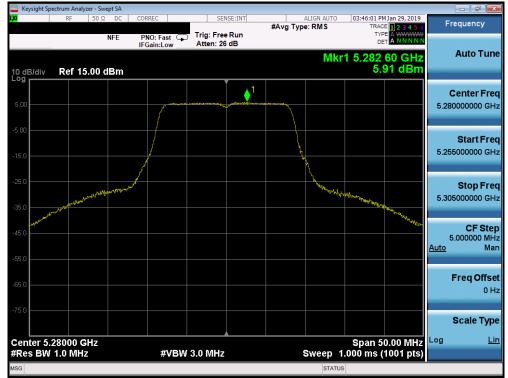

Plot 7-144. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 38)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 105 of 259
© 2019 PCTEST Engineering Laboratory Inc				V 8 8 11/19/2018


Plot 7-145. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 46)

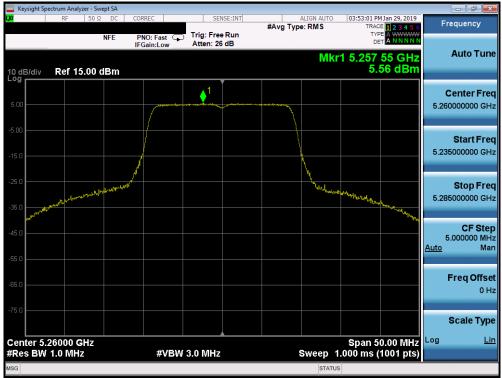

Plot 7-146. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

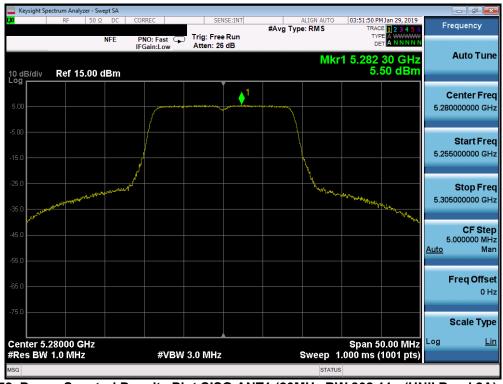
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 106 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 106 of 259
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			


Plot 7-147. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 1) - Ch. 42)

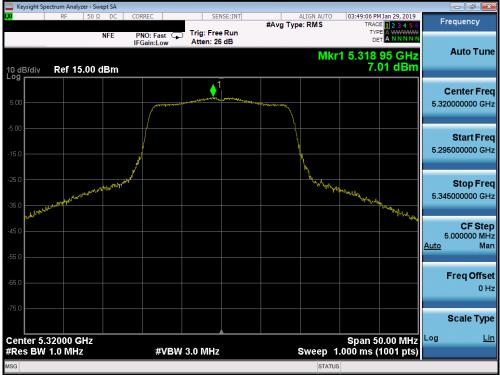
Plot 7-148. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 107 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 107 of 259
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			


Plot 7-149. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 56)

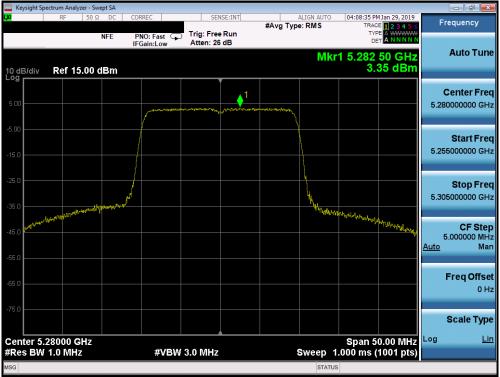

Plot 7-150. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 64)

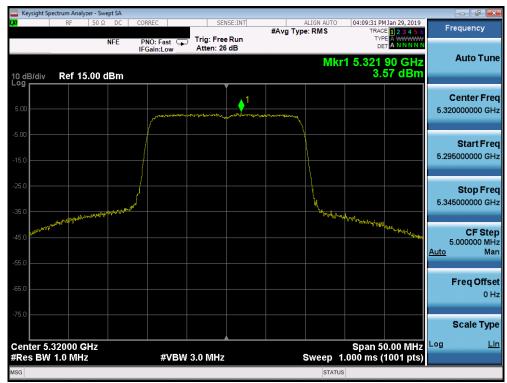
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 108 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-151. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

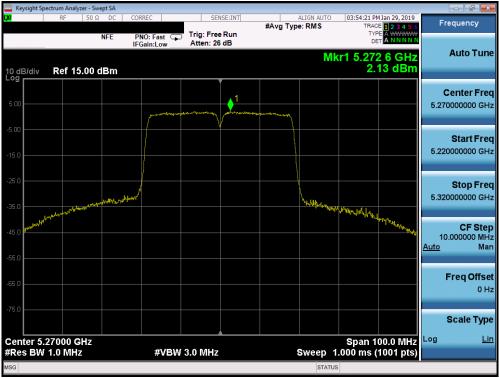

Plot 7-152. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

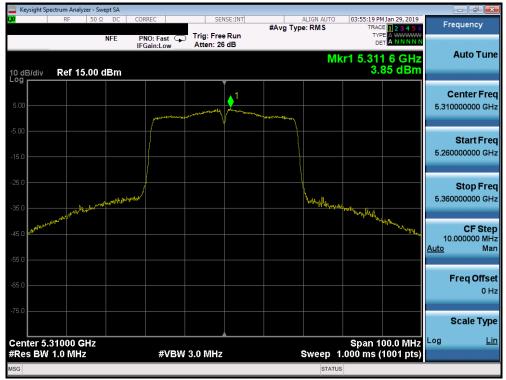
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 109 of 259
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			


Plot 7-153. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) – Ch. 64)

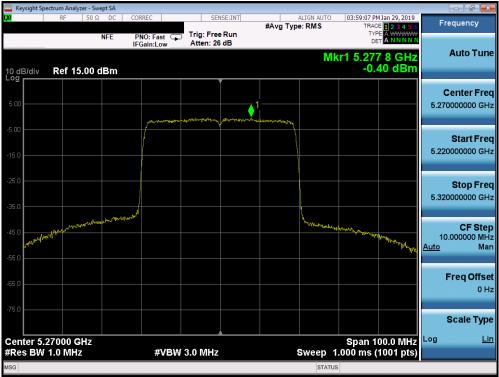

Plot 7-154. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 52)

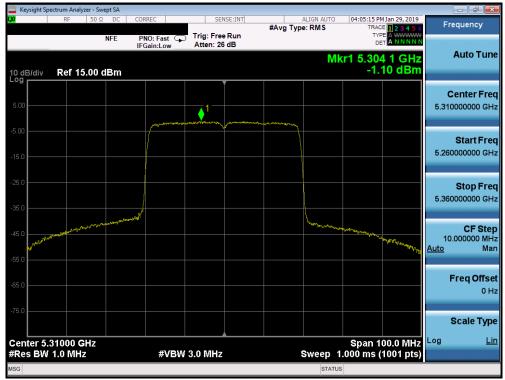
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 110 of 259
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018


Plot 7-155. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 56)


Plot 7-156. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 64)

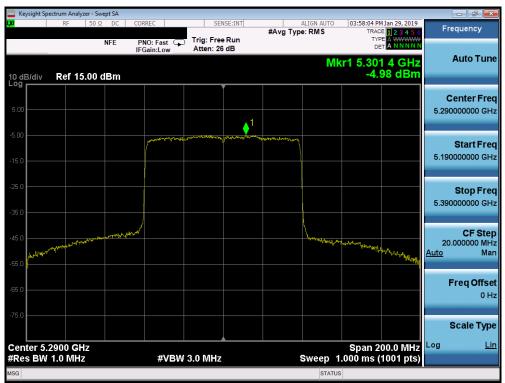
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 111 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 111 of 259
© 2019 PCTEST Engineering La	V 8 8 11/19/2018			


Plot 7-157. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)


Plot 7-158. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

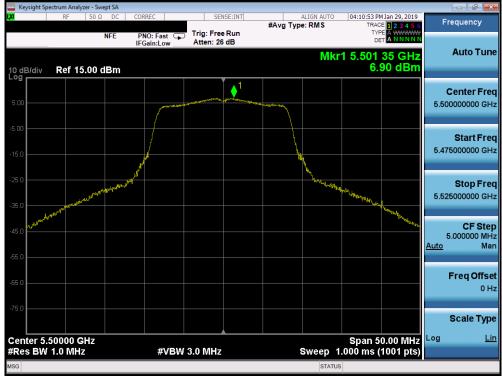
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 112 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 112 of 259
© 2019 PCTEST Engineering Labo	V 8 8 11/19/2018			

Plot 7-159. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 54)

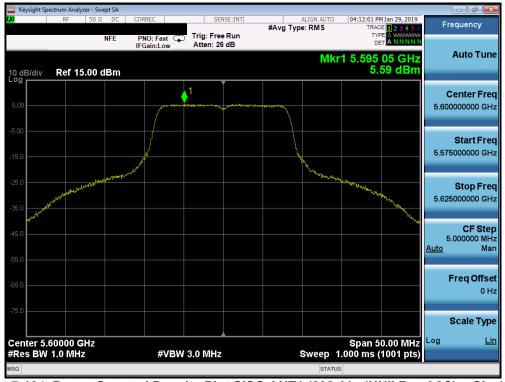

Plot 7-160. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 62)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 112 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 113 of 259
© 2019 PCTEST Engineering Lab	V 8 8 11/19/2018			

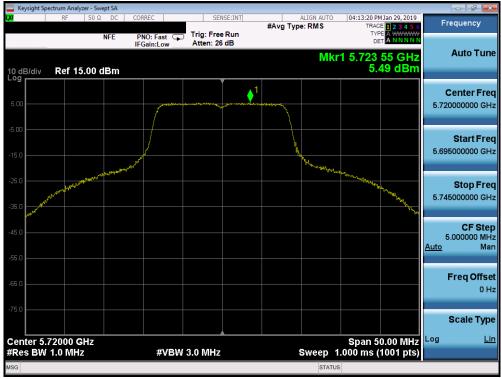
Plot 7-161. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

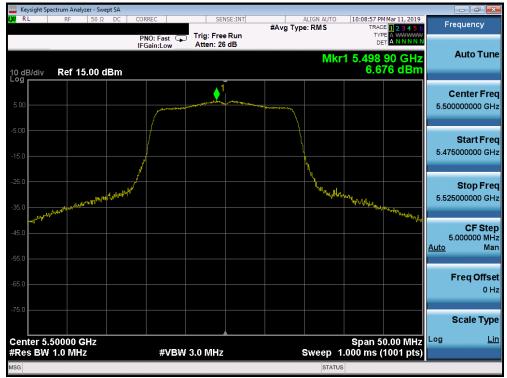

Plot 7-162. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2A) - Ch. 58)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degs 114 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 114 of 259
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V 8.8 11/19/2018

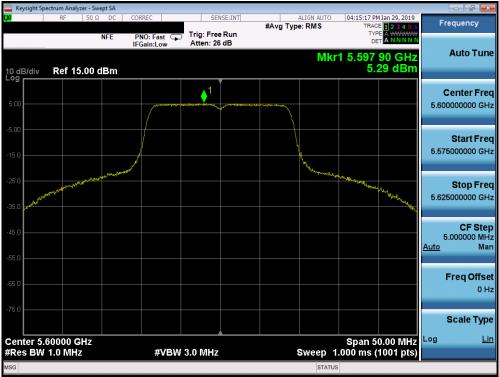

© 2019 PCTEST Engineering Laboratory, Inc.

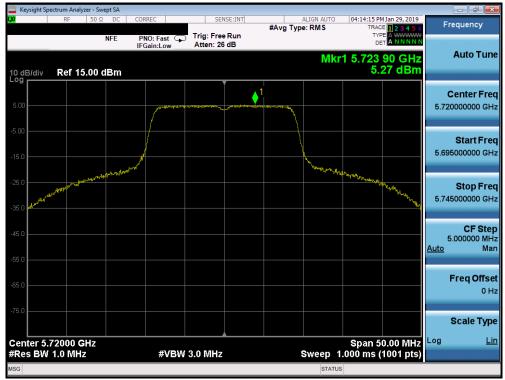
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-163. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) – Ch. 100)

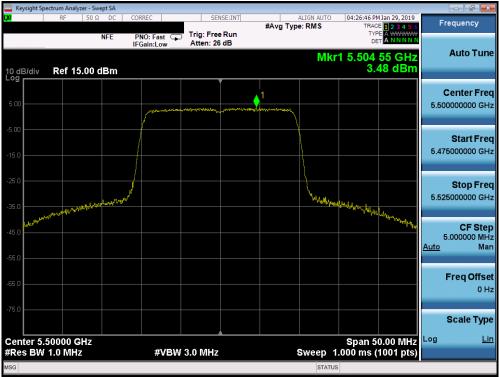

Plot 7-164. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 120)

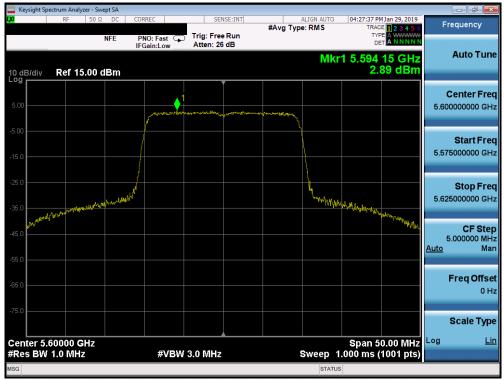
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 115 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 115 of 259
© 2019 PCTEST Engineering Lab	V 8 8 11/19/2018			


Plot 7-165. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 144)

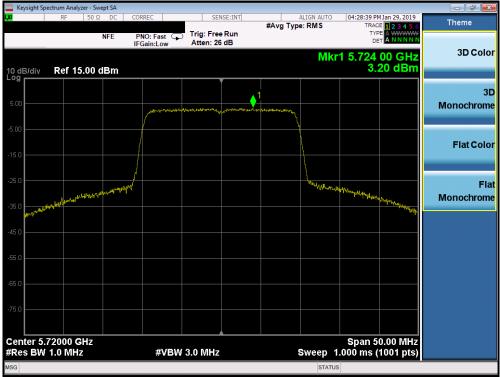

Plot 7-166. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 116 of 250		
1M1901100003-09.A3L 01/22/2019 - 03/25/20		Portable Handset		Page 116 of 259		
© 2019 PCTEST Engineering La	© 2019 PCTEST Engineering Laboratory Inc					


Plot 7-167. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

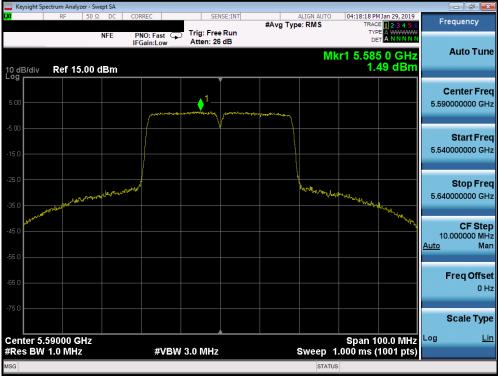

Plot 7-168. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

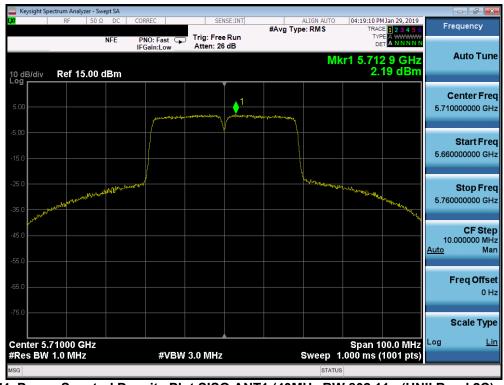
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 250
1M1901100003-09.A3L 01/22/2019 - 03/25/2019		Portable Handset		Page 117 of 259
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018


Plot 7-169. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 100)

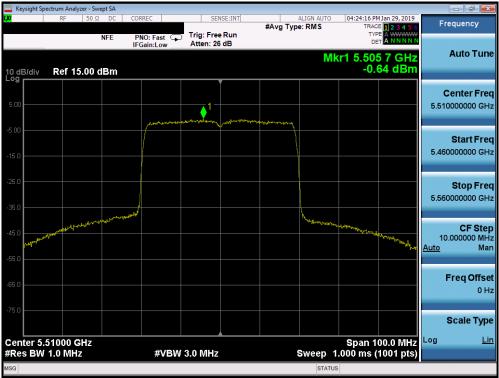
Plot 7-170. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 120)

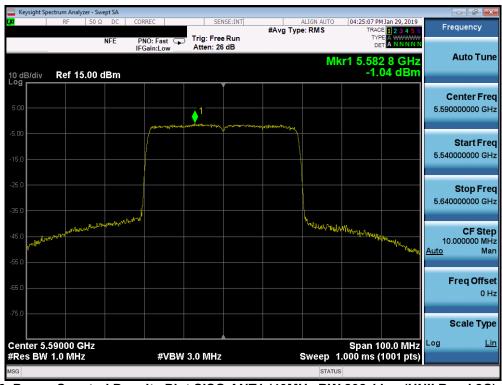
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 119 of 250			
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 118 of 259			
© 2019 PCTEST Engineering Lab	© 2019 PCTEST Engineering Laboratory, Inc.						


Plot 7-171. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2C) – Ch. 144)

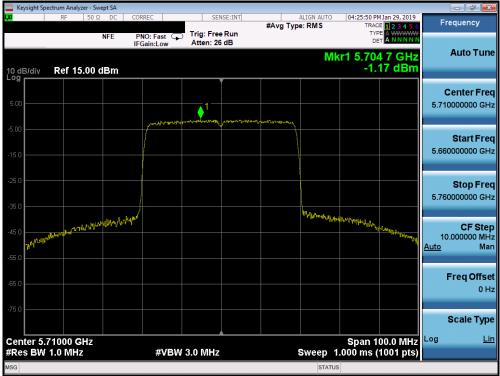

Plot 7-172. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 119 of 259
© 2019 PCTEST Engineering Lab	V 8 8 11/19/2018			


Plot 7-173. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

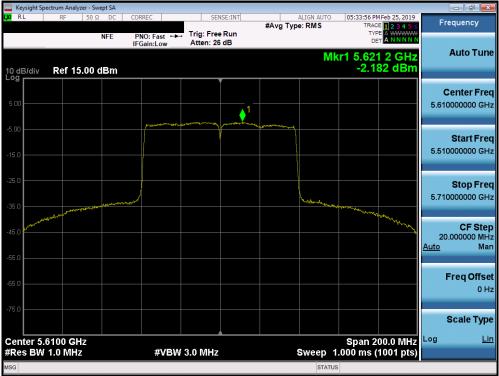

Plot 7-174. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 250		
1M1901100003-09.A3L	03-09.A3L 01/22/2019 - 03/25/2019 Portable Handset			Page 120 of 259		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory. Inc.					


Plot 7-175. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 102)

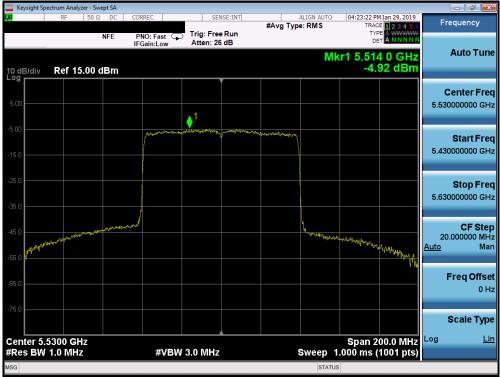
Plot 7-176. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 118)

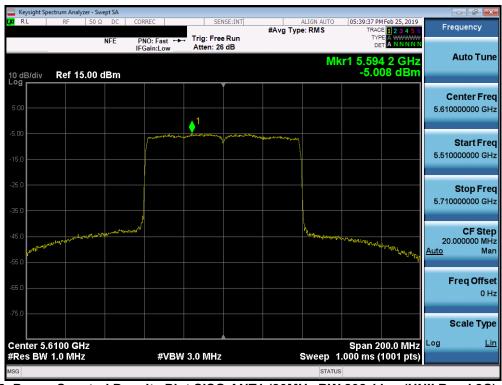
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 121 of 250		
1M1901100003-09.A3L 01/22/2019 - 03/25/2019 Portable Har		Portable Handset		Page 121 of 259		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory. Inc.					


Plot 7-177. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 142)

Plot 7-178. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 050
M1901100003-09.A3L 01/22/2019 - 03/25/2019 Portable Handse		Portable Handset		Page 122 of 259
© 2019 PCTEST Engineering La	horatory Inc			V 8 8 11/19/2018


Plot 7-179. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)


Plot 7-180. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

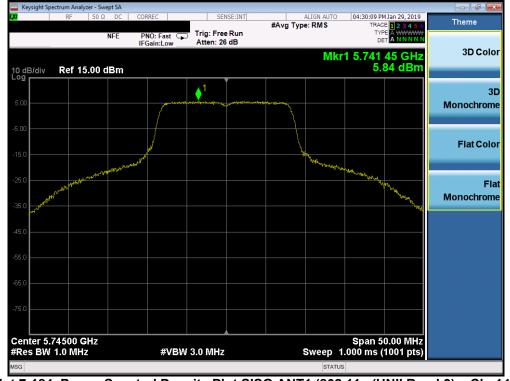
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 102 of 250
1M1901100003-09.A3L 01/22/2019 - 03/25/2019 Portab		Portable Handset		Page 123 of 259
© 2019 PCTEST Engineering Labo	ratory, Inc.	•		V 8.8 11/19/2018

Plot 7-181. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 106)

Plot 7-182. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 122)

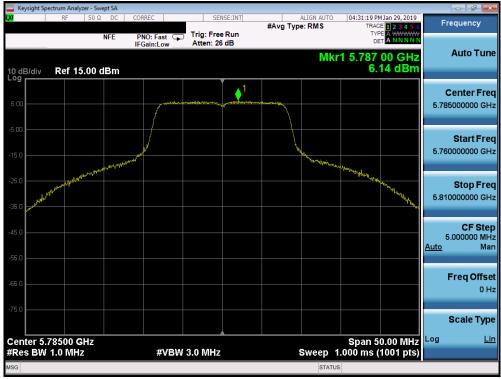
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 124 of 250		
1M1901100003-09.A3L	100003-09.A3L 01/22/2019 - 03/25/2019 Portable Handset			Page 124 of 259		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory. Inc.					

Keysight Sp	pectrum Analyz											
	RF	50 Ω DO	CORRE	C	SEN	ISE:INT		ALIGN AUTO		M Jan 29, 2019	Frequ	iency
		NFE		:Fast 🖵 in:Low	Trig: Free Atten: 26		#Avg Typ	e:RMS	TY D	CE 1 2 3 4 5 6 PE A WATAWAY ET A N N N N N	, rode	lonoy
0 dB/div	Ref 15	.00 dBn	n					Μ	kr1 5.67 -4	8 4 GHz 65 dBm	Au	ito Tun
5.00					▲ ¹						Cer 5.69000	i ter Fre 0000 GH
5.0				Law Provident Victor	and the second	Carlor and the second	they warm throwing				S i 5.59000	art Fre 0000 G⊦
5.0											S 5.79000	t op Fre 0000 G⊦
5.0	age at the law and the second	NATION OF STREET	and a start of the					hime reading	And powerson	Nan vilve villedadina		CF Ste 0000 M⊦ Ma
5.0											Fre	e q Offs 0 H
5.0												ale Typ
	.6900 GH			#VBW	3.0 MHz			Sweep	Span 2 1.000 ms	200.0 MHz (1001 pts)	Log	<u>L</u>
								STAT				_


Plot 7-183. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) – Ch. 138)

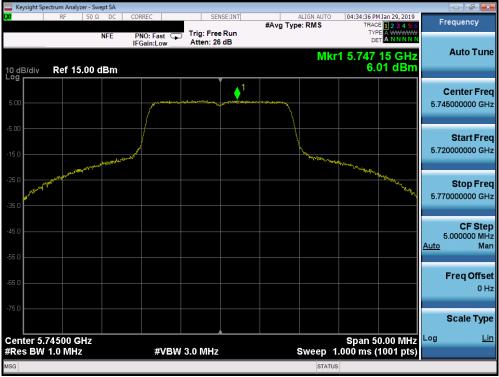
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 125 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019			Page 125 of 259	
© 2019 PCTEST Engineering Lab	oratory Inc			V 8 8 11/19/2018	

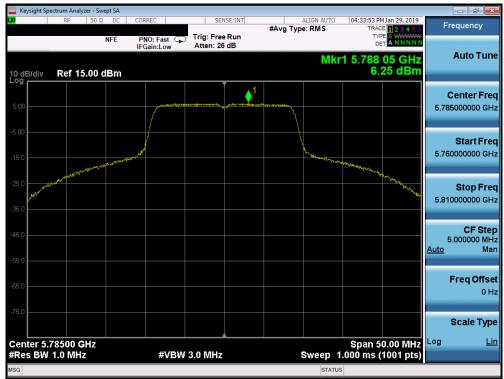
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	5.84	30.0	-24.16
	5785	157	а	6	6.14	30.0	-23.86
	5825	165	а	6	6.15	30.0	-23.85
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	6.01	30.0	-23.99
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	6.25	30.0	-23.75
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	5.73	30.0	-24.27
e	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	3.70	30.0	-26.30
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	4.08	30.0	-25.92
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	3.34	30.0	-26.66
	5755	151	n (40MHz)	13.5/15 (MCS0)	2.15	30.0	-27.85
	5795	159	n (40MHz)	13.5/15 (MCS0)	2.20	30.0	-27.80
	5755	151	ax (40MHz)	13.5/15 (MCS0)	-0.80	30.0	-30.80
	5795	159	ax (40MHz)	13.5/15 (MCS0)	-0.71	30.0	-30.71
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-1.62	30.0	-31.62
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	-4.60	30.0	-34.60


 Table 7-22. Band 3 Conducted Power Spectral Density Measurements SISO ANT1

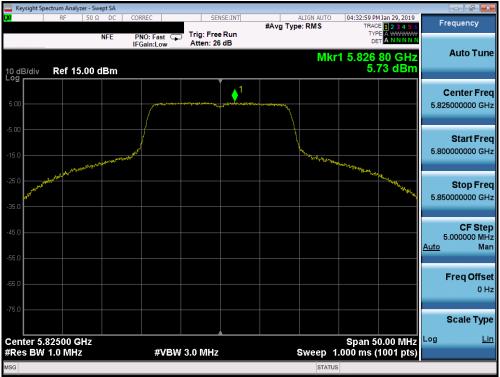
Plot 7-184. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 149)

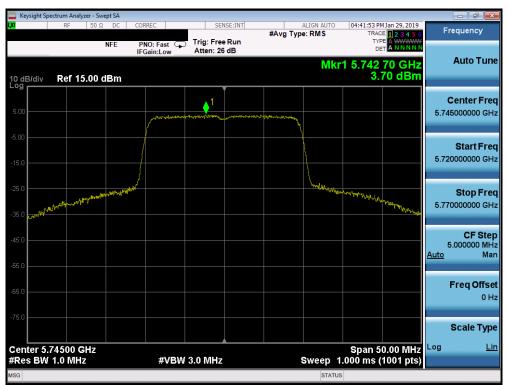
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 126 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	1/22/2019 - 03/25/2019 Portable Handset		Page 126 of 259
© 2019 PCTEST Engineering Labo	pratory, Inc.	•		V 8.8 11/19/2018


Plot 7-185. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) – Ch. 157)


Plot 7-186. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 165)

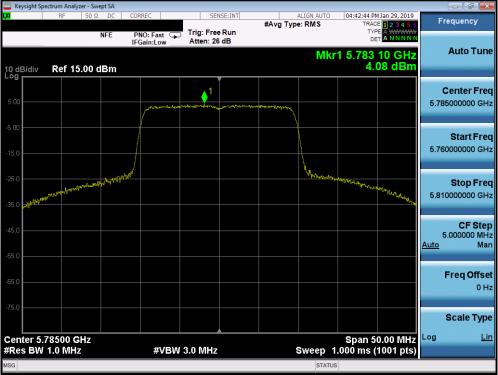
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 050
1M1901100003-09.A3L	01/22/2019 - 03/25/2019 Portable Handset			Page 127 of 259
© 2019 PCTEST Engineering Labor	atory, Inc.	·		V 8.8 11/19/2018


Plot 7-187. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-188. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 129 of 250		
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	51		Page 128 of 259		
© 2019 PCTEST Engineering Lab	2019 PCTEST Engineering Laboratory Inc					

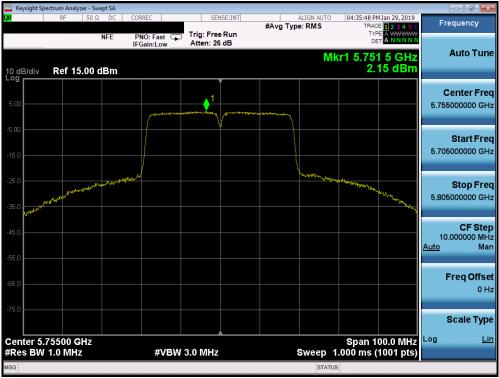
Plot 7-189. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

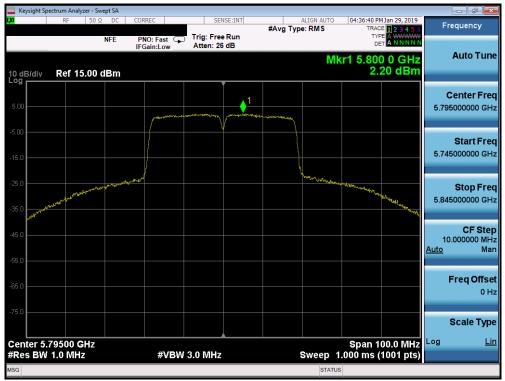


Plot 7-190. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

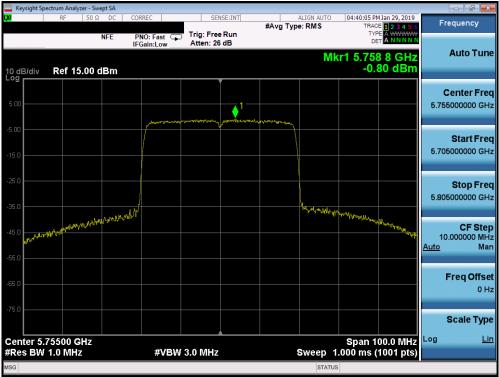
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 129 of 259
1M1901100003-09.A3L	01/22/2019 - 03/25/2019 Portable Handset			Page 129 01 259
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V 8.8 11/19/2018

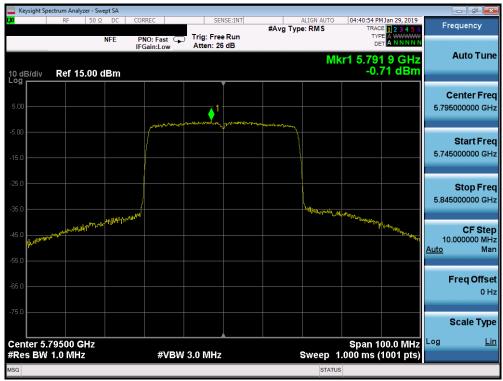
© 2019 PCTEST Engineering Laboratory, Inc.


Plot 7-191. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)


Plot 7-192. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Degra 120 of 250		
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	019 - 03/25/2019 Portable Handset		Page 130 of 259		
© 2019 PCTEST Engineering La	2019 PCTEST Engineering Laboratory Inc.					


Plot 7-193. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)


Plot 7-194. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 121 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	3/25/2019 Portable Handset		Page 131 of 259	
© 2019 PCTEST Engineering Lab	© 2019 PCTEST Engineering Laboratory Inc				

Plot 7-195. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)

Plot 7-196. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

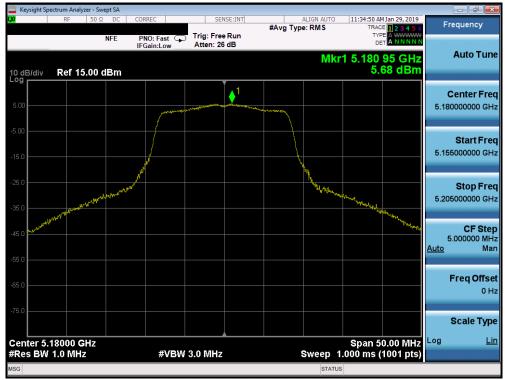
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	22/2019 - 03/25/2019 Portable Handset		Page 132 of 259
© 2019 PCTEST Engineering Lab	poratory Inc			V 8 8 11/19/2018

🔤 Keysight Sp	pectrum Analyzer									
L <mark>XI</mark>	RF	50 Ω DC	CORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		4 Jan 29, 2019 E 1 2 3 4 5 6	Frequency
	_	NFE	PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 26				TYF DE		Auto Tuno
10 dB/div Log	Ref 15.0	00 dBm					Mk	(r1 5.78 -1.	7 6 GHz 62 dBm	Auto Tune
5.00										Center Freq
			and address and	and a state of the	1					5.775000000 GHz
-5.00					f					Start Freq
-15.0										5.675000000 GHz
-25.0		مهمي	****				maria	and the second		Stop Freq 5.875000000 GHz
-35.0	Manual Marcalate								and adverting a	
-45.0										CF Step 20.000000 MHz
-55.0										<u>Auto</u> Man
-65.0										Freq Offset 0 Hz
-75.0										
										Scale Type
Center 5. #Res BW	.7750 GHz 1.0 MHz		#VBW	3.0 MHz			Sweep 1	Span 2 .000 ms (00.0 MHz 1001 pts)	Log <u>Lin</u>
MSG							STATUS	3		

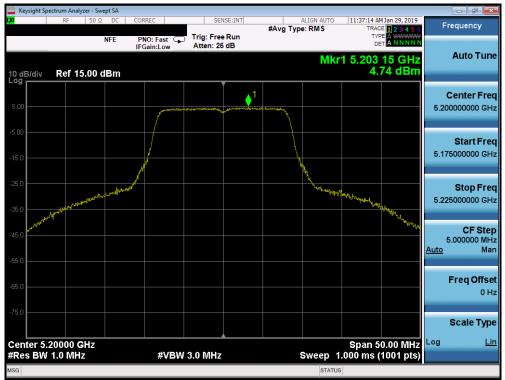
Plot 7-197. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

Plot 7-198. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

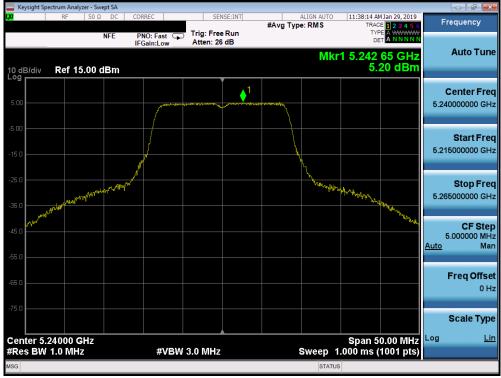
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	2019 Portable Handset		Page 133 of 259	
© 2019 PCTEST Engineering Labora	atory, Inc.			V 8.8 11/19/2018	

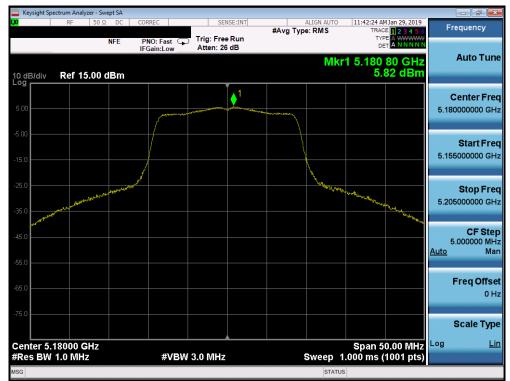

SISO Antenna-2 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	5.68	11.0	-5.32
	5200	40	а	6	4.74	11.0	-6.26
	5240	48	а	6	5.20	11.0	-5.80
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.82	11.0	-5.18
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	4.87	11.0	-6.13
	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.77	11.0	-5.23
	5180	36	ax (20MHz)	6.5/7.2 (MCS0)	2.37	11.0	-8.63
Band 1	5200	40	ax (20MHz)	6.5/7.2 (MCS0)	2.52	11.0	-8.48
ä	5240	48	ax (20MHz)	6.5/7.2 (MCS0)	3.41	11.0	-7.59
	5190	38	n (40MHz)	13.5/15 (MCS0)	2.81	11.0	-8.19
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.46	11.0	-8.54
	5190	38	ax (40MHz)	13.5/15 (MCS0)	-1.57	11.0	-12.57
	5230	46	ax (40MHz)	13.5/15 (MCS0)	-0.76	11.0	-11.76
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.15	11.0	-12.15
	5210	42	ax (80MHz)	29.3/32.5 (MCS0)	-4.79	11.0	-15.79
	5260	52	а	6	5.44	11.0	-5.56
	5280	56	а	6	5.61	11.0	-5.39
	5320	64	а	6	6.28	11.0	-4.72
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	5.65	11.0	-5.35
	5280	56	n (20MHz)	6.5/7.2 (MCS0)	5.81	11.0	-5.19
	5320	64	n (20MHz)	6.5/7.2 (MCS0)	6.88	11.0	-4.12
2A	5260	52	ax (20MHz)	6.5/7.2 (MCS0)	3.49	11.0	-7.51
Band 2A	5280	56	ax (20MHz)	6.5/7.2 (MCS0)	3.16	11.0	-7.84
Ba	5320	64	ax (20MHz)	6.5/7.2 (MCS0)	3.29	11.0	-7.71
	5270	54	n (40MHz)	13.5/15 (MCS0)	2.08	11.0	-8.92
	5310	62	n (40MHz)	13.5/15 (MCS0)	2.93	11.0	-8.07
	5270	54	ax (40MHz)	13.5/15 (MCS0)	-1.07	11.0	-12.07
	5310	62	ax (40MHz)	13.5/15 (MCS0)	-1.33	11.0	-12.33
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-0.57	11.0	-11.57
	5290	58	ax (80MHz)	29.3/32.5 (MCS0)	-4.64	11.0	-15.64
	5500	100	а	6	6.86	11.0	-4.14
	5600	120	а	6	5.04	11.0	-5.96
	5720	144	а	6	5.44	11.0	-5.56
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	7.25	11.0	-3.75
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	5.38	11.0	-5.62
	5720	144	n (20MHz)	6.5/7.2 (MCS0)	5.13	11.0	-5.87
	5500	100	ax (20MHz)	6.5/7.2 (MCS0)	4.02	11.0	-6.98
	5600	120	ax (20MHz)	6.5/7.2 (MCS0)	3.06	11.0	-7.94
	5720	144	ax (20MHz)	6.5/7.2 (MCS0)	3.76	11.0	-7.24
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	4.07	11.0	-6.93
pu	5590	118	n (40MHz)	13.5/15 (MCS0)	2.11	11.0	-8.89
ñ	5710	142	n (40MHz)	13.5/15 (MCS0)	1.91	11.0	-9.09
	5510	102	ax (40MHz)	13.5/15 (MCS0)	-0.54	11.0	-11.54
	5590	118	ax (40MHz)	13.5/15 (MCS0)	-1.03	11.0	-12.03
	5710	142	ax (40MHz)	13.5/15 (MCS0)	-1.04	11.0	-12.04
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-0.26	11.0	-11.26
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-2.26	11.0	-13.26
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-1.58	11.0	-12.58
	5530	106	ax (80MHz)	29.3/32.5 (MCS0)	-4.68	11.0	-15.68
	5610	122	ax (80MHz)	29.3/32.5 (MCS0)	-5.07	11.0	-16.07
	5690	138	ax (80MHz)	29.3/32.5 (MCS0)	-4.89	11.0	-15.89

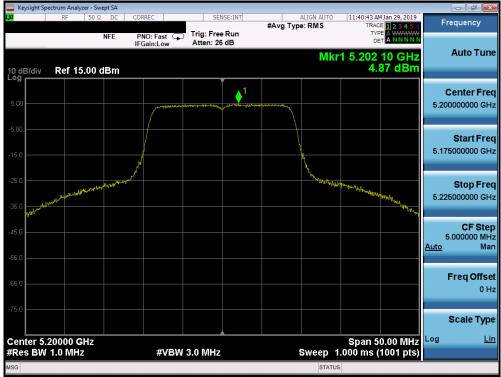

Table 7-23. Conducted Power Spectral Density Measurements SISO ANT2

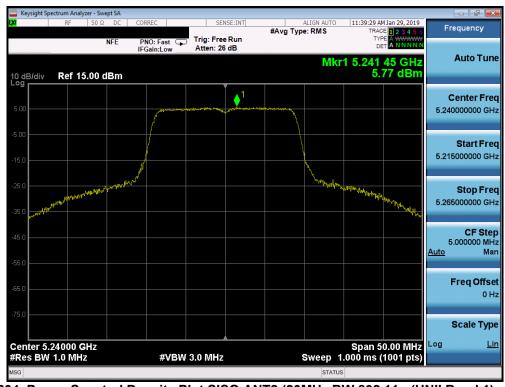
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 124 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 134 of 259
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018



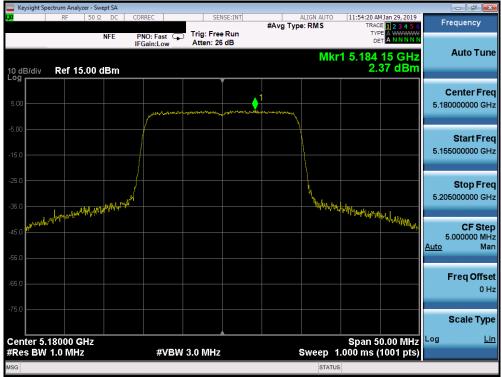

Plot 7-200. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 40)

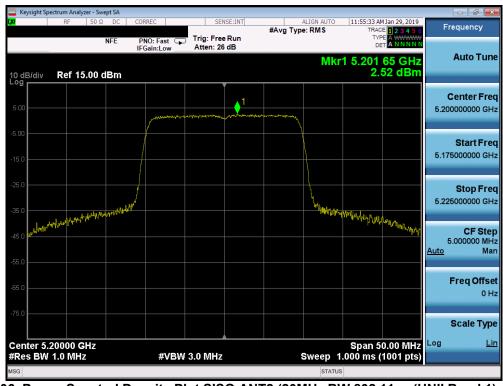
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 125 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 135 of 259
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018


Plot 7-201. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 48)

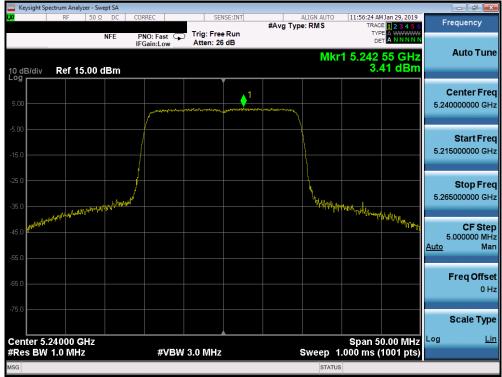

Plot 7-202. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

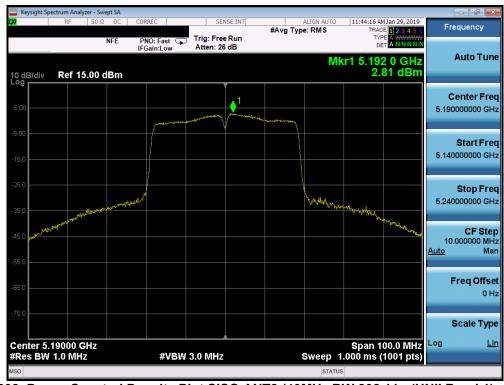
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 126 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 136 of 259
© 2019 PCTEST Engineering Laboratory Inc.			V 8 8 11/19/2018	


Plot 7-203. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

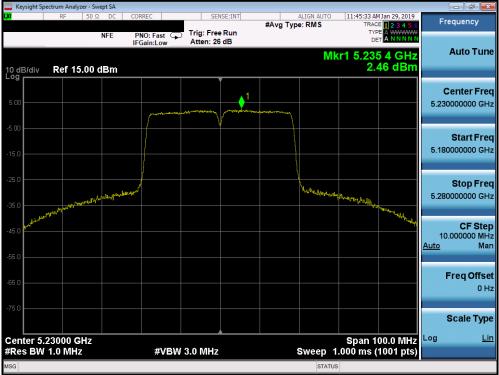

Plot 7-204. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

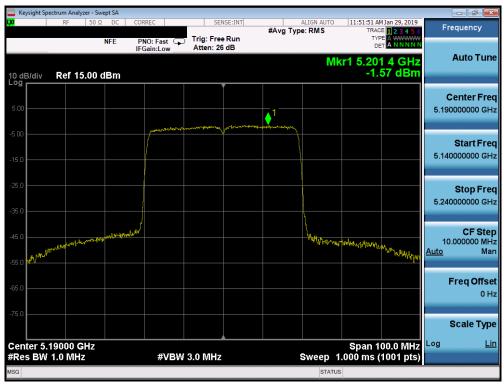
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 127 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 137 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-205. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 1) - Ch. 36)

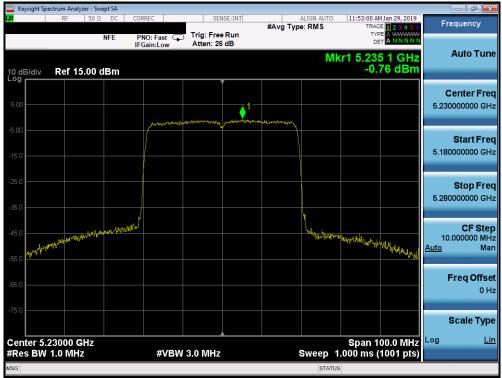

Plot 7-206. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 1) - Ch. 40)

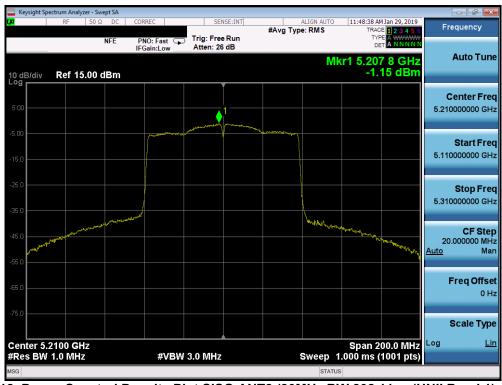
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 129 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 138 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-207. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 1) - Ch. 48)

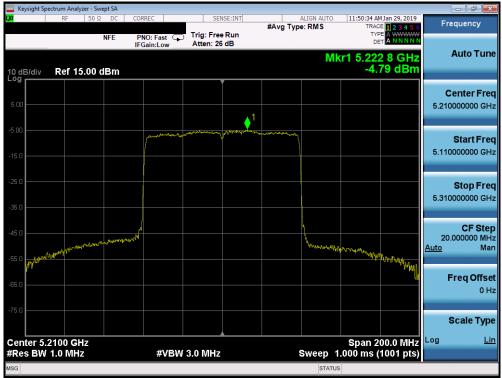

Plot 7-208. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

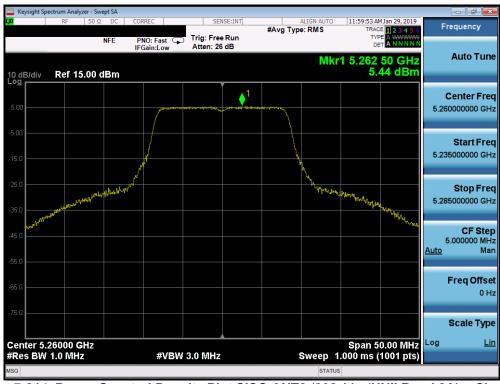
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 139 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-209. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 1) – Ch. 46)

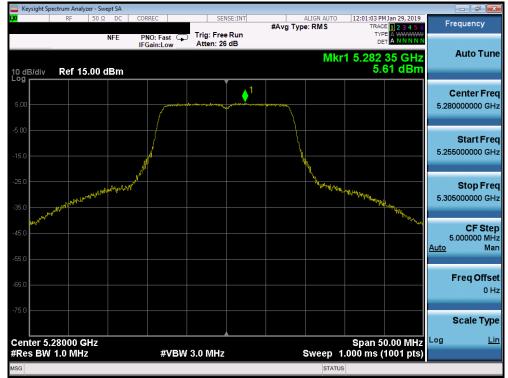

Plot 7-210. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 1) - Ch. 38)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 140 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 140 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-211. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 1) - Ch. 46)

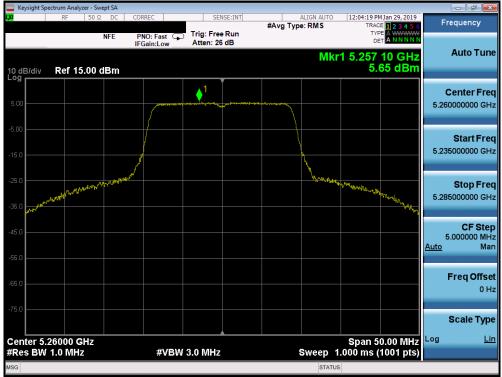

Plot 7-212. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

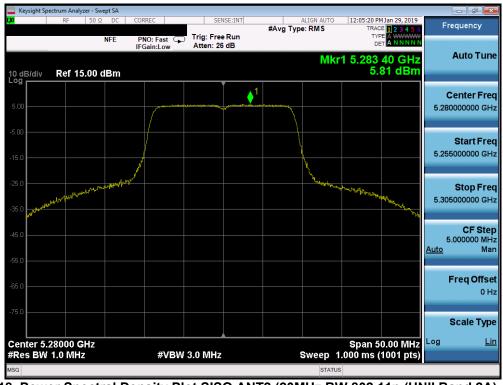
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 141 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 141 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-213. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 1) - Ch. 42)

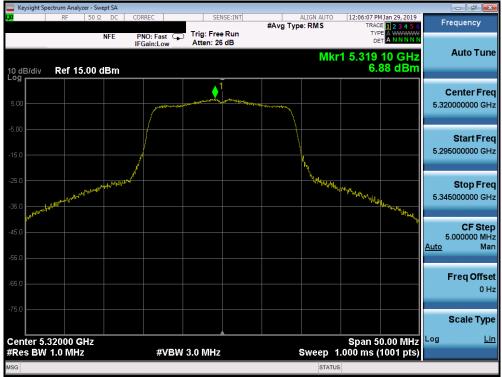
Plot 7-214. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 52)

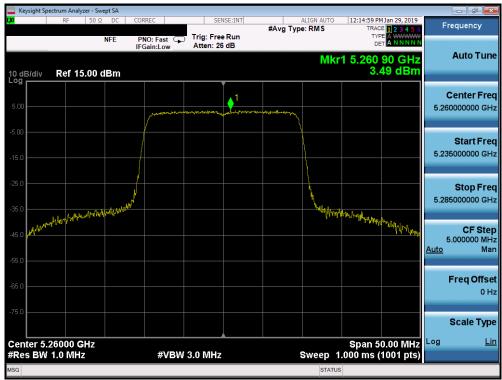
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 142 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 142 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-215. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 56)

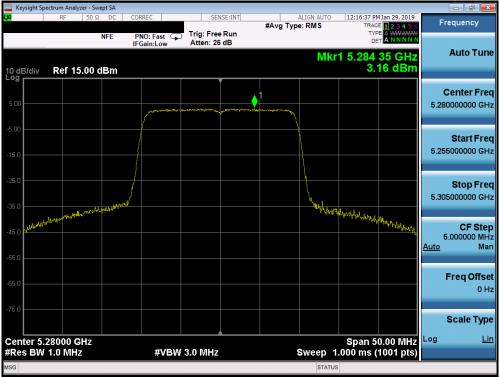

Plot 7-216. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 64)

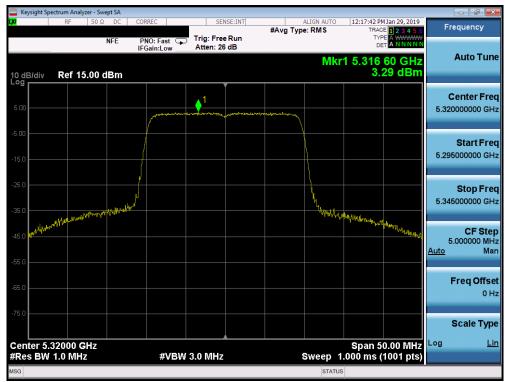
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 142 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 143 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-217. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

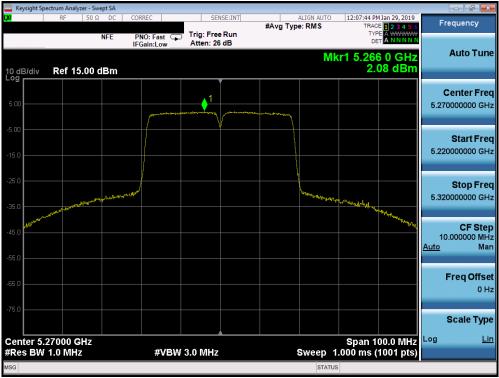

Plot 7-218. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 111 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 144 of 259
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


Plot 7-219. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

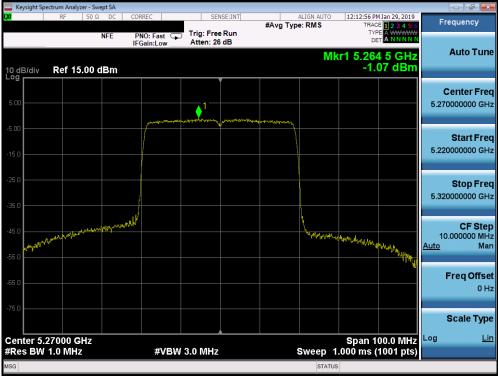

Plot 7-220. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 52)

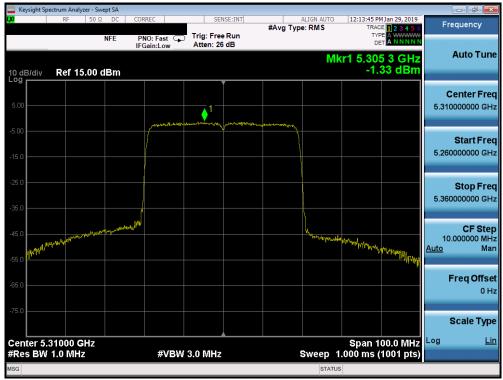
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 145 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 145 of 259
© 2019 PCTEST Engineering Laboratory Inc.				V 8 8 11/19/2018


Plot 7-221. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 56)

Plot 7-222. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 64)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 146 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 146 of 259
© 2019 PCTEST Engineering Laboratory Inc			V 8 8 11/19/2018	


Plot 7-223. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)


Plot 7-224. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

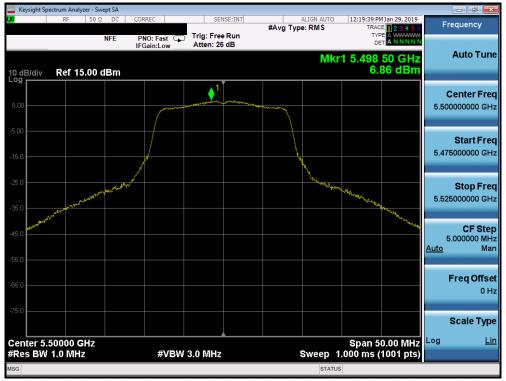
FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 147 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 147 of 259
© 2019 PCTEST Engineering Laboratory Inc.				V 8 8 11/19/2018

Plot 7-225. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 54)

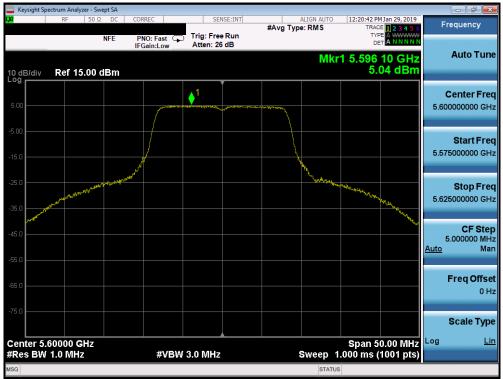
Plot 7-226. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 62)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 149 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 148 of 259
© 2019 PCTEST Engineering Laboratory Inc				V 8 8 11/19/2018

Plot 7-227. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

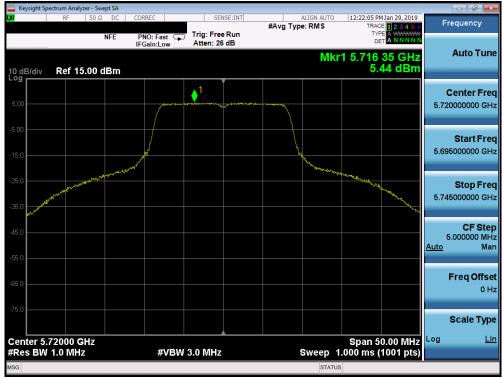

Plot 7-228. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2A) - Ch. 58)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 140 of 250	
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 149 of 259	
© 2019 PCTEST Engineering Laboratory, Inc.			V 8.8 11/19/2018		

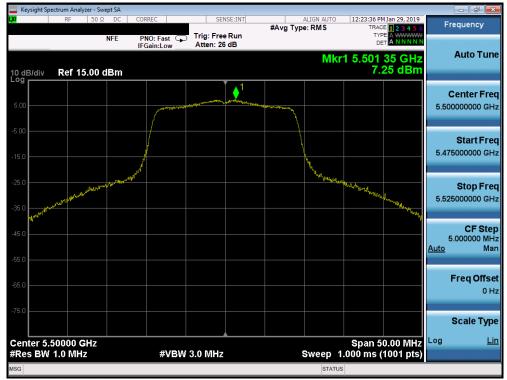

© 2019 PCTEST Engineering Laboratory, Inc.

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Plot 7-229. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 100)



Plot 7-230. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 120)


FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 150 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 150 of 259
© 2019 PCTEST Engineering Laboratory, Inc.			V 8.8 11/19/2018	

© 2019 PCTEST Engineering Laboratory, Inc.

Plot 7-231. Power Spectral Density Plot SISO ANT2 (802.11a (UNII Band 2C) – Ch. 144)

Plot 7-232. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: A3LSMG977U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 151 of 250
1M1901100003-09.A3L	01/22/2019 - 03/25/2019	Portable Handset		Page 151 of 259
© 2019 PCTEST Engineering Laboratory Inc.			V 8 8 11/19/2018	