# PCTEST ENGINEERING LABORATORY, INC.

#### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

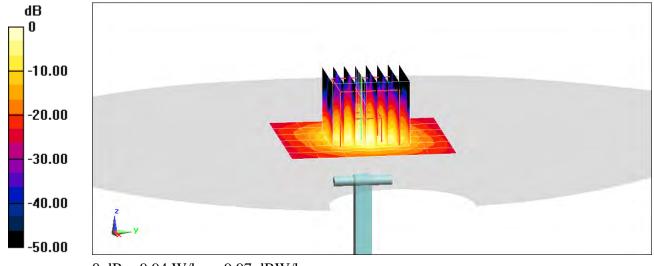
Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used:  $f = 5600 \text{ MHz}; \ \sigma = 5.951 \text{ S/m}; \ \epsilon_r = 48.289; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 03-18-2019; Ambient Temp: 21.3°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7308; ConvF(4, 4, 4) @ 5600 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1558; Calibrated: 10/3/2018
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### 5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 4.07 W/kg; SAR(10 g) = 1.12 W/kg

Deviation(1 g) = 2.78%; Deviation(10 g) = 0.90%



0 dB = 9.94 W/kg = 9.97 dBW/kg

# PCTEST ENGINEERING LABORATORY, INC.

#### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used (interpolated):  $f = 5750 \text{ MHz}; \ \sigma = 6.187 \text{ S/m}; \ \epsilon_r = 47.968; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

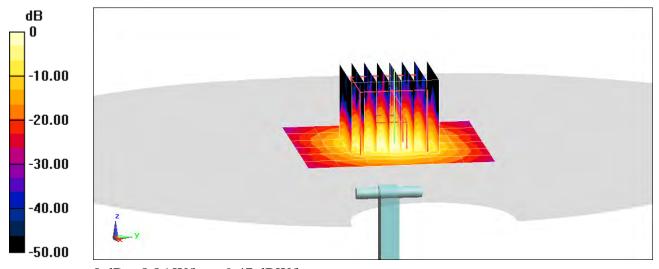
Test Date: 03-18-2019; Ambient Temp: 21.3°C; Tissue Temp: 19.8°C

Probe: EX3DV4 - SN7308; ConvF(4.18, 4.18, 4.18) @ 5750 MHz; Calibrated: 8/23/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


#### 5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 3.54 W/kg; SAR(10 g) = 0.987 W/kgDeviation(1 g) = -6.96%; Deviation(10 g) = -6.89%



0 dB = 8.86 W/kg = 9.47 dBW/kg

# APPENDIX C: PROBE CALIBRATION

#### Calibration Laboratory of Schmid & Partner Engineering AG ...Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura

S - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D750V3-1003\_Jan18

# **CALIBRATION CERTIFICATE**

Object

D750V3 - SN:1003

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 15, 2018

めい - 01-25-201 k

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

12/06/201

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)         | Apr-18                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529)         | Арг-18<br>Арг-18       |
| Reference Probe EX3DV4      | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Dec-18                 |
| DAE4                        | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)    | Oct-18                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | in house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Nelwork Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Lelf Klysner       | Laboratory Technician             | Sed Wen                |
| Approved by:                | Kalja Pokovic      | Technical Manager                 | leace.                 |

Issued: January 15, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossarv:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V52.10.0    |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom      |             |
| Distance Dipole Center - TSL | 15 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5.0  mm$ |             |
| Frequency                    | 750 MHz ± 1 MHz           |             |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.9 ± 6 %   | 0.90 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.10 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.28 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 1.37 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 5.42 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.0 ± 6 %   | 0.96 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.15 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.58 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.43 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 5.71 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 53.8 Ω - 2.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.6 dB       |

# **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.2 Ω - 6.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.0 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) 1.043 ns |
|-------------------------------------------|
|-------------------------------------------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | January 21, 2009 |

# Appendix (Additional assessments outside the scope of SCS 0108)

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1 and 3.

| Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L |
|---------|------------------|-----------------------------|
|---------|------------------|-----------------------------|

# SAR result with SAM Head (Top)

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 1.98 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 7.94 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.32 W/kg ± 16.9 % (k=2) |

# SAR result with SAM Head (Mouth)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.05 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.22 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.52 W/kg ± 16.9 % (k=2) |

# SAR result with SAM Head (Neck)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          | -                        |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.01 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.06 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.52 W/kg ± 16.9 % (k=2) |

# SAR result with SAM Head (Ear)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 1.67 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 6.70 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.15 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 4.60 W/kg ± 16.9 % (k=2) |

#### **DASY5 Validation Report for Head TSL**

Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.9$  S/m;  $\varepsilon_r = 40.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;

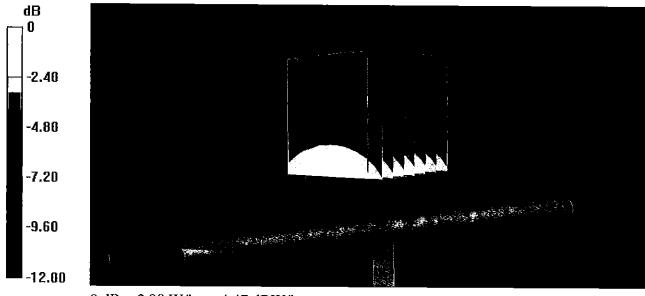
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

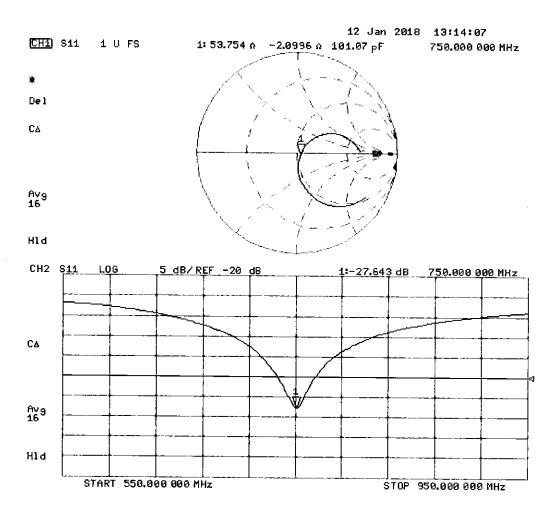
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.11 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.15 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.80 W/kg



0 dB = 2.80 W/kg = 4.47 dBW/kg

# Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.96$  S/m;  $\varepsilon_r = 55$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;

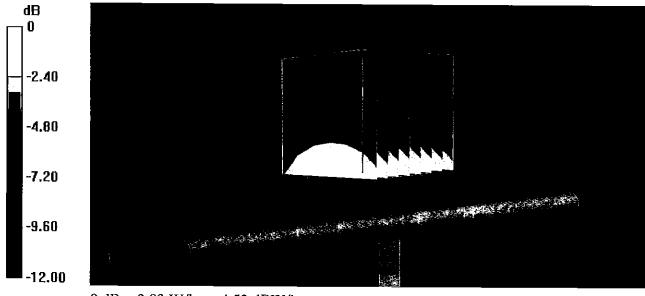
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

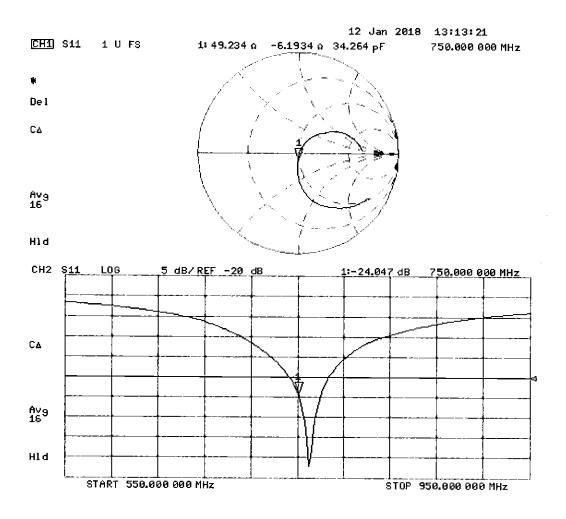
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.31 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.17 W/kg


SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg

Maximum value of SAR (measured) = 2.83 W/kg



0 dB = 2.83 W/kg = 4.52 dBW/kg

# Impedance Measurement Plot for Body TSL



## **DASY5 Validation Report for SAM Head**

Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.9$  S/m;  $\epsilon_r = 44.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- · Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.79 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

# SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.85 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.62 W/kg

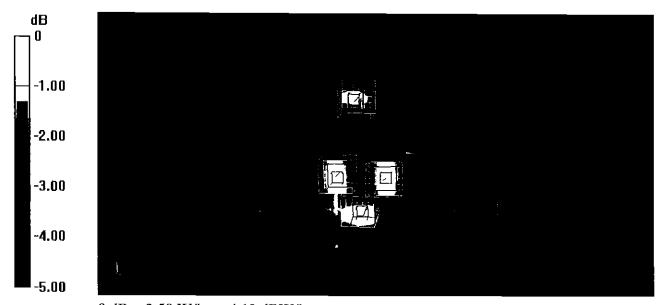
# SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.29 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.78 W/kg

SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.56 W/kg


# SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.01 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.31 W/kg

SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg

Maximum value of SAR (measured) = 2.11 W/kg



0 dB = 2.58 W/kg = 4.12 dBW/kg

### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D750V3 – SN: 1003

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/15/2019

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 2/8/2018   | Annual       | 2/8/2019   | US39170122    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 4/18/2018  | Annual       | 4/18/2019  | MY47420800    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/21/2018 | Annual       | 10/21/2019 | 941001        |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annual       | 6/4/2019   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/11/2018  | Annual       | 7/11/2019  | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/3/2018  | Annual       | 10/3/2019  | 1558          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 6/18/2018  | Annual       | 6/18/2019  | 1334          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 9/11/2018  | Annual       | 9/11/2019  | 1091          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/23/2018  | Annual       | 8/23/2019  | 7308          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 6/25/2018  | Annual       | 6/25/2019  | 7409          |

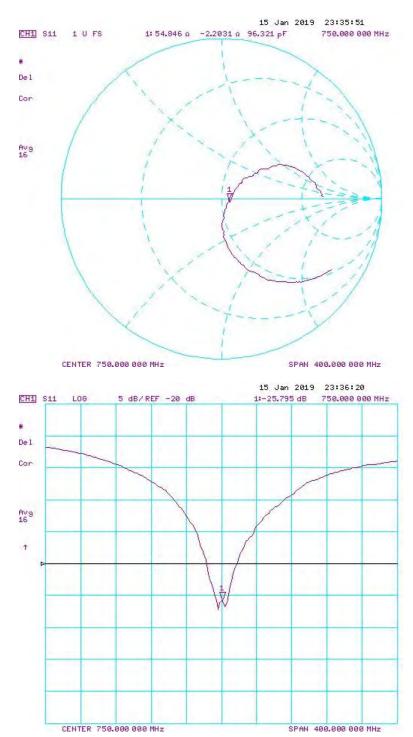
#### Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 304               |

| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1003 | 01/15/2019   | rage ror4   |

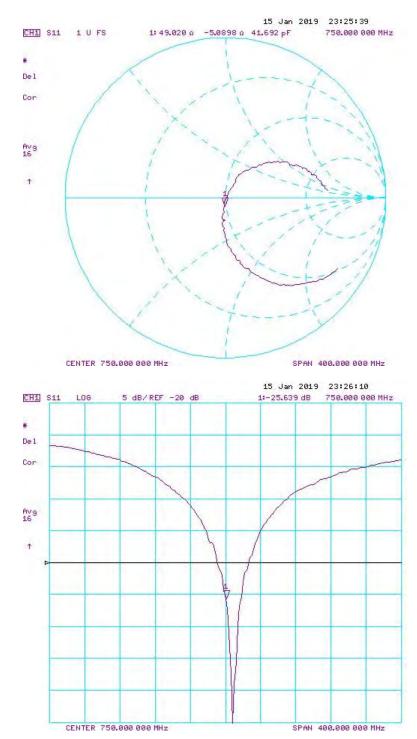
#### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | M/0 @ 22.0  | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 23.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>23.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|----------------|-----------------------------------------|-------|-------------|---------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 1/15/2018           | 1/15/2019      | 1.043                                   | 1.656 | 1.75        | 5.68%               | 1.08                                                          | 1.15                                             | 6.09%                | 53.8                                           | 54.8                                        | 1                        | -2.1                                                | -2.2                                             | 0.1                              | -27.6                                   | -25.8                                | 6.50%         | PASS      |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | M/0- @ 22.0 | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 23.0<br>dBm | Measured<br>Body SAR<br>(10g) W/kg @<br>23.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 1/15/2018           | 1/15/2019      | 1.043                                   | 1.716 | 1.84        | 7.23%               | 1.14                                                          | 1.23                                             | 7.71%                | 49.2                                           | 49                                          | 0.2                      | -6.2                                                | -5.1                                             | 1.1                              | -24                                     | -25.6                                | -6.80%        | PASS      |


| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1003 | 01/15/2019   | Fage 2 01 4 |

### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1003 | 01/15/2019   | Page 3 of 4 |

### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:           | Date Issued: | Page 4 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1003 | 01/15/2019   | Page 4 of 4 |

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D835V2-4d133\_Oct18

# **CALIBRATION CERTIFICATE**

Object

D835V2 - SN:4d133

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN V

Calibration date:

October 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                 |
| Reference Probe EX3DV4          | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Dec-18                 |
| DAE4                            | SN: 601            | 04-Oct-18 (No. DAE4-601_Oct18)    | Oct-19                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Manu Seitz         | Laboratory Technician             | 11.1                   |
|                                 |                    |                                   |                        |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | OUL-                   |
|                                 |                    |                                   | ~~~~                   |

Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133\_Oct18

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133\_Oct18 Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 835 MHz ± 1 MHz        |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.6 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.39 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.43 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.54 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.10 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.9 ± 6 %   | 0.98 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              | aif on the tax   |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.46 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.75 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.61 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.40 W/kg ± 16.5 % (k=2) |

Certificate No: D835V2-4d133\_Oct18

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.6 Ω - 2.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32,2 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 45.0 Ω - 6.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.1 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.397 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 22, 2011 |

Certificate No: D835V2-4d133\_Oct18 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 19.10.2018

Test Laboratory: The name of your organization

#### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  S/m;  $\varepsilon_r = 40.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017

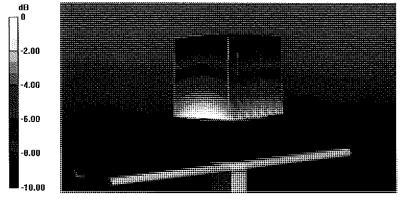
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

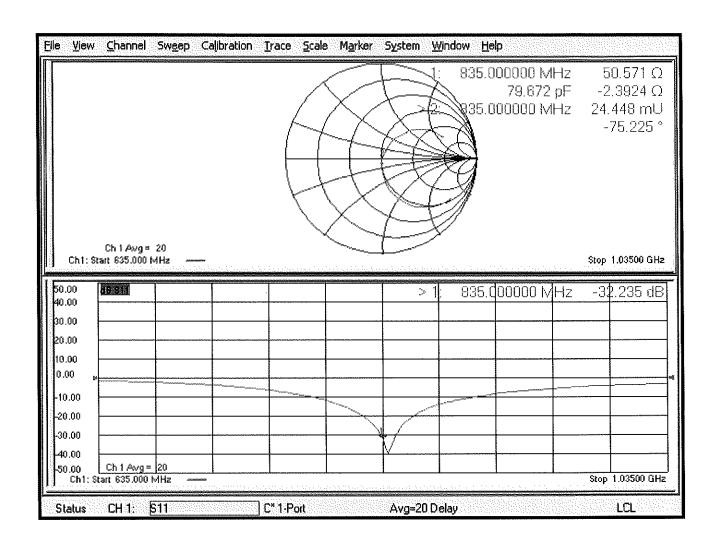
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.02 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.68 W/kg


SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.24 W/kg



0 dB = 3.24 W/kg = 5.11 dBW/kg

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

#### **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133**

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.98$  S/m;  $\varepsilon_r = 54.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017

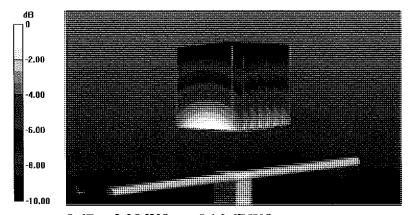
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

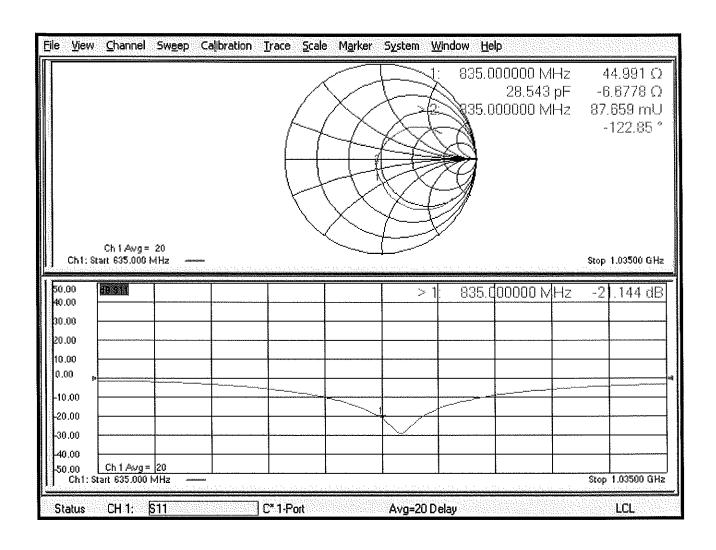
#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.61 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg


Maximum value of SAR (measured) = 3.28 W/kg



0 dB = 3.28 W/kg = 5.16 dBW/kg

Certificate No: D835V2-4d133\_Oct18

## **Impedance Measurement Plot for Body TSL**



# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D1750V2-1150\_Oct18

# **CALIBRATION CERTIFICATE**

Object

D1750V2 - SN:1150

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN/ 10/30/2018

Calibration date:

October 22, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                 |
| Reference Probe EX3DV4          | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Dec-18                 |
| DAE4                            | SN: 601            | 04-Oct-18 (No. DAE4-601_Oct18)    | Oct-19                 |
|                                 |                    |                                   |                        |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Michael Weber      | Laboratory Technician             | Mull -                 |
|                                 |                    |                                   | n.rez_                 |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | M100                   |
|                                 |                    |                                   | 16605                  |

Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.8 ± 6 %   | 1.33 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.02 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.76 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.2 W/kg ± 16.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.5 ± 6 %   | 1.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.04 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 36.6 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.82 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.4 W/kg ± 16.5 % (k=2) |

Certificate No: D1750V2-1150\_Oct18 Page 3 of 8

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.9 Ω - 0.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 40.1 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 46.6 Ω - 0.1 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.2 dB       |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.217 ns |  |
|----------------------------------|----------|--|
|                                  |          |  |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG          |  |
|-----------------|----------------|--|
| Manufactured on | April 10, 2015 |  |

#### **DASY5 Validation Report for Head TSL**

Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.33 \text{ S/m}$ ;  $\varepsilon_r = 38.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electromics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

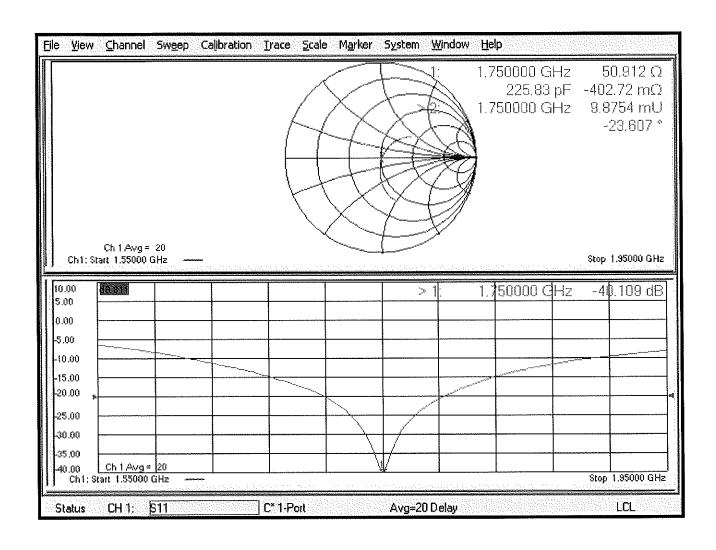
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.7 W/kg


SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg

Maximum value of SAR (measured) = 14.0 W/kg



0 dB = 14.0 W/kg = 11.46 dBW/kg

#### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.46 \text{ S/m}$ ;  $\varepsilon_r = 53.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017

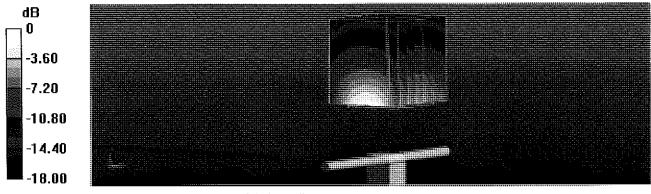
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

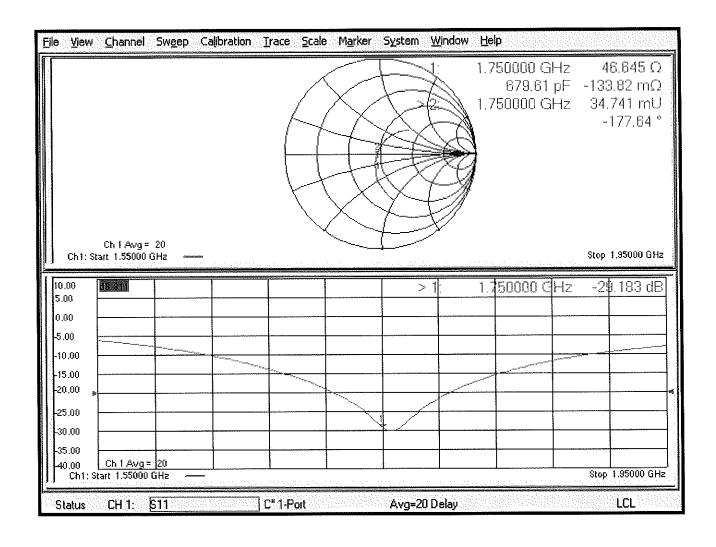
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg

Maximum value of SAR (measured) = 13.6 W/kg



0 dB = 13.6 W/kg = 11.34 dBW/kg

## Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D1900V2-5d080\_Oct18

# **CALIBRATION CERTIFICATE**

Object D

D1900V2 - SN:5d080

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

October 23, 2018

BN 201

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cal Date (Certificate No.)              | Scheduled Calibration                                                                                            |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Power meter NRP                 | SN: 104778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-Apr-18 (No. 217-02672/02673)         | Apr-19                                                                                                           |
| Power sensor NRP-Z91            | SN: 103244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-Apr-18 (No. 217-02672)               | Apr-19                                                                                                           |
| Power sensor NRP-Z91            | SN: 103245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-Apr-18 (No. 217-02673)               | Apr-19                                                                                                           |
| Reference 20 dB Attenuator      | SN: 5058 (20k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04-Apr-18 (No. 217-02682)               | Apr-19                                                                                                           |
| Type-N mismatch combination     | SN: 5047.2 / 06327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04-Apr-18 (No. 217-02683)               | Apr-19                                                                                                           |
| Reference Probe EX3DV4          | SN: 7349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30-Dec-17 (No. EX3-7349_Dec17)          | Dec-18                                                                                                           |
| DAE4                            | SN: 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04-Oct-18 (No. DAE4-601_Oct18)          | Oct-19                                                                                                           |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                                                                                                  |
| Secondary Standards             | 1D #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check Date (in house)                   | Scheduled Check                                                                                                  |
| Power meter EPM-442A            | SN: GB37480704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-Oct-15 (in house check Oct-18)       | In house check: Oct-20                                                                                           |
| Power sensor HP 8481A           | SN: US37292783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-Oct-15 (in house check Oct-18)       | In house check: Oct-20                                                                                           |
| Power sensor HP 8481A           | SN: MY41092317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-Oct-15 (in house check Oct-18)       | In house check: Oct-20                                                                                           |
| RF generator R&S SMT-06         | SN: 100972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15-Jun-15 (in house check Oct-18)       | In house check: Oct-20                                                                                           |
| Network Analyzer Agilent E8358A | SN: US41080477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31-Mar-14 (in house check Oct-18)       | In house check: Oct-19                                                                                           |
|                                 | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Function                                | Signature                                                                                                        |
| Calibrated by:                  | Jeton Kastrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Laboratory Technician                   | 101/0                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$                                  | te Wi                                                                                                            |
| Approved by:                    | Katja Pokovic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Technical Manager                       | v                                                                                                                |
|                                 | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700000000000000000000000000000000000000 | LL 245                                                                                                           |
|                                 | CONTRACTOR CHARLES SERVICE STATE OF SERVICE STATE STATE OF SERVICE STATE ST |                                         | a proposition and the second |

Issued: October 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d080\_Oct18

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d080\_Oct18 Page 2 of 8

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1900 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.3 ± 6 %   | 1.40 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | do to to     |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.93 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 39.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.18 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.7 W/kg ± 16.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.9 ± 6 %   | 1.47 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR result with Body TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          | , , , , , ,              |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.62 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 39.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.6 W/kg ± 16.5 % (k=2) |

Certificate No: D1900V2-5d080\_Oct18

### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.5 Ω + 7.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.8 dB       |

## **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 48.1 Ω + 8.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.5 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.193 ns |  |
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | June 28, 2006 |

Certificate No: D1900V2-5d080\_Oct18

### **DASY5 Validation Report for Head TSL**

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.4 \text{ S/m}$ ;  $\varepsilon_r = 40.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017

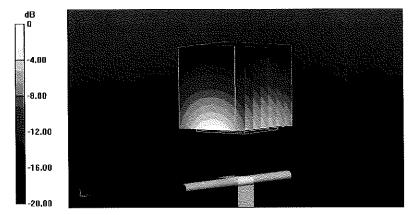
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

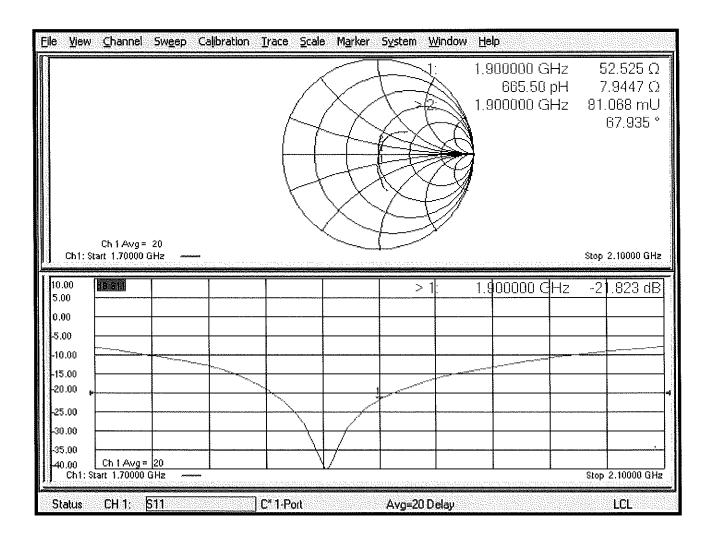
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.0 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg

## Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.47 \text{ S/m}$ ;  $\varepsilon_r = 52.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017

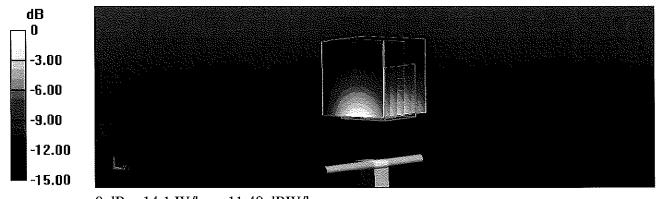
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

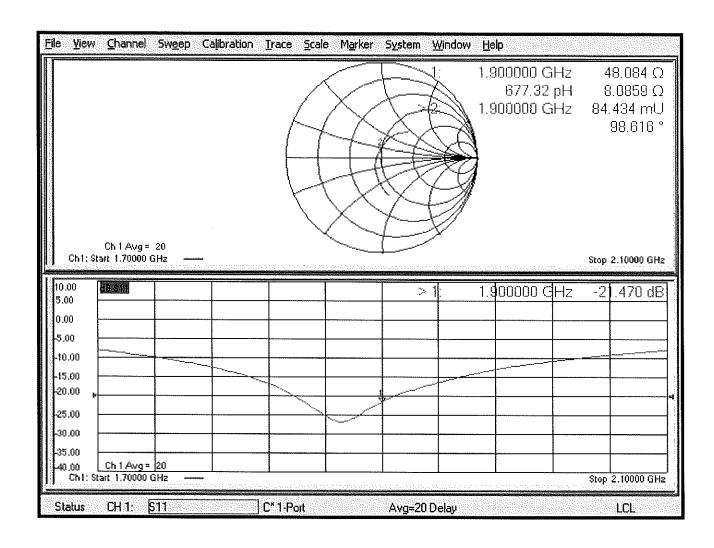
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.86 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.3 W/kg


SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 14.1 W/kg



0 dB = 14.1 W/kg = 11.49 dBW/kg

# Impedance Measurement Plot for Body TSL



### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

**PC Test** 

Certificate No: D2450V2-797\_Sep17

# **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN:797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 11, 2017

700 MHz 360 17 10/03/2019 Extended PMV J/20/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature  $(22 \pm 3)$ °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)            | Scheduled Calibration  |
|-----------------------------|--------------------|---------------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522)       | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)             | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)             | Apr-18                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)             | Apr-18                 |
| Type-N mismatch combination | SN: 5047,2 / 08327 | 07-Apr-17 (No. 217-02529)             | Apr-18                 |
| Reference Probe EX3DV4      | SN: 7349           | 31-May-17 (No. EX3-7349_May17)        | May-18                 |
| DAE4                        | SN: 601            | 28-Mar-17 (No. DAE4-601_Mar17)        | Mar-18                 |
| Secondary Standards         | ID#                | Check Date (in house)                 | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16)     | In house check: Oct-18 |
| Power sensor HP 8481A       | SN; US37292783     | 07-Oct-15 (in house check Oct-16)     | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16)     | In house check: Oct-18 |
| RF generator R&S SMT-08     | SN: 100972         | 15-Jun-15 (in house check Oct-16)     | in house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16)     | In house check: Oct-17 |
|                             | Name               | Function                              | Signature              |
| Calibrated by:              | Michael Weber      | Laboratory Technician                 | MULCO                  |
|                             |                    |                                       | 11110X                 |
| Approved by:                | Katja Pokovic      | Technical Manager                     | DOM.                   |
|                             |                    | · · · · · · · · · · · · · · · · · · · | 10-00                  |

Issued: September 11, 2017

Certificate No: D2450V2-797\_Sep17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerlscher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,v,z

N/A

not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result,

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                   | V52.10,0    |
|------------------------------|-------------------------|-------------|
| Extrapolation                | Advanced Extrapolation  |             |
| Phantom                      | Modular Flat Phantom    | -           |
| Distance Dipole Center - TSL | 10 mm                   | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5  mm$ |             |
| Frequency                    | 2450 MHz ± 1 MHz        |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |  |
|-----------------------------------------|-----------------|--------------|------------------|--|
| Nominal Head TSL parameters             | 22.0 °C         | 22.0 °C 39.2 |                  |  |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.8 ± 6 %   | 1.86 mho/m ± 6 % |  |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.5 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 52.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.8 W/kg ± 16.5 % (k=2) |

à

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity 1.95 mho/m |  |
|-----------------------------------------|-----------------|--------------|-------------------------|--|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         |                         |  |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.9 ± 6 %   | 2.04 mho/m ± 6 %        |  |
| Body TSL temperature change during test | < 0.5 °C        | Military and |                         |  |

## SAR result with Body TSL

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 13.1 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 51.1 W/kg ± 17.0 % (k≃2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.14 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.2 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53,8 Ω + 7.4 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 21.9 dB       |  |  |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.7 Ω + 9.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 20,9 dB       |

### General Antenna Parameters and Design

|                                    | <u>,</u>     |
|------------------------------------|--------------|
|                                    |              |
| I Floatrical Delay (one direction) | l 1.152 ns l |
| Electrical Delay (one direction)   | I 1.152 ns I |
|                                    | *******      |
|                                    |              |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | January 24, 2006 |

. در در در

### **DASY5 Validation Report for Head TSL**

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.86$  S/m;  $\varepsilon_r = 37.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

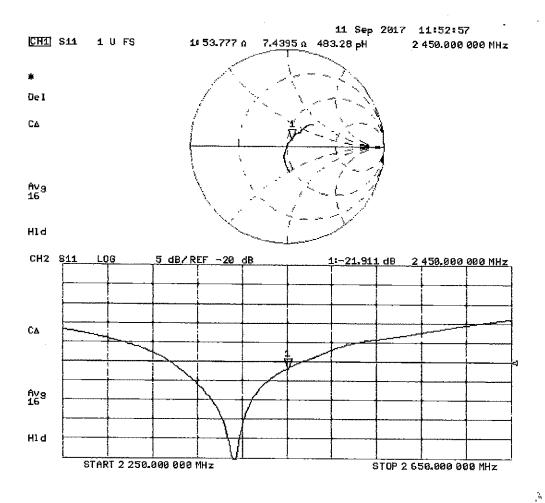
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.5 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 21.6 W/kg



0 dB = 21.6 W/kg = 13.34 dBW/kg

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.04$  S/m;  $\epsilon_r = 51.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;

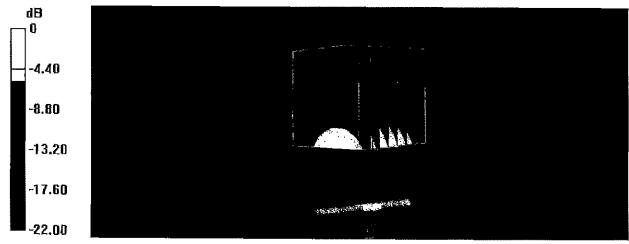
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

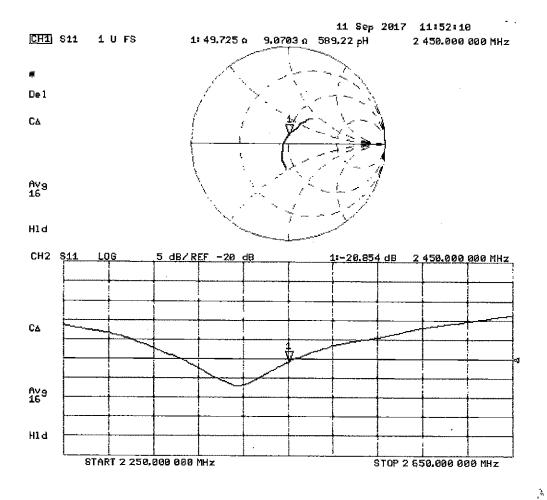
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.6 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg



0 dB = 20.3 W/kg = 13.07 dBW/kg

# Impedance Measurement Plot for Body TSL



## PCTEST ENGINEERING LABORATORY, INC.



18855 Adams Ct, Morgan Hill, CA 95037 USA Tel, +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object

D2450V2 - SN: 797

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

**Extended Calibration date:** 

September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

|                       |           |                                                         |            | Fig. Oncome Calmin Company (Co. |            |               |
|-----------------------|-----------|---------------------------------------------------------|------------|---------------------------------|------------|---------------|
| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval                    | Cal Due    | Serial Number |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial                        | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial                        | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A                             | CBT        | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A                             | CBT        | 9406          |
| Keysight              | 7720      | Dual Directional Coupler                                | CBT        | N/A                             | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annuai                          | 6/4/2019   | MY53401181    |
| Agilent               | 8753ES    | S-Parameter Vector Network Analyzer                     | 8/30/2018  | Annuai                          | 8/30/2019  | MY40003841    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT .      | N/A                             | CBT        | N/A           |
| SPEAG                 | DAK-3,5   | Dielectric Assessment Kit                               | 5/15/2018  | Annual                          | 5/15/2019  | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 7/20/2018  | Annual                          | 7/20/2019  | 7410          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 7/11/2018  | Annual                          | 7/11/2019  | 1322          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/13/2018  | Annual                          | 3/13/2019  | 3319          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/7/2018   | Annual                          | 3/7/2019   | 1368          |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual                          | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B   | Puise Power Sensor                                      | 3/2/2018   | Annual                          | 3/2/2019   | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/22/2017 | Annual                          | 10/22/2018 | 1328004       |
| Aglient               | N5182A    | MXG Vector Signal Generator                             | 4/18/2018  | Annual                          | 4/18/2019  | MY47420800    |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/11/2018  | Annual                          | 7/11/2019  | N/A           |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A                             | СВТ        | N/A           |
| Narda                 | 4014C-6   | 4 - 8 GHz SMA 6 dB Directional Coupler                  | СВТ        | N/A                             | CBT        | N/A           |

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

### Measurement Uncertainty = $\pm 23\%$ (k=2)

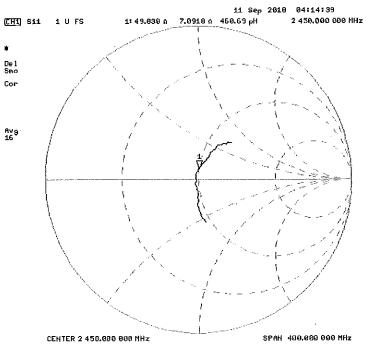
|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Team Lead Engineer          | BAOPTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 20K               |

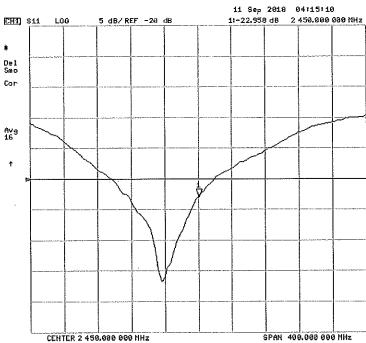
| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D2450V2 - SN; 797 | 09/11/2018   |             |

### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

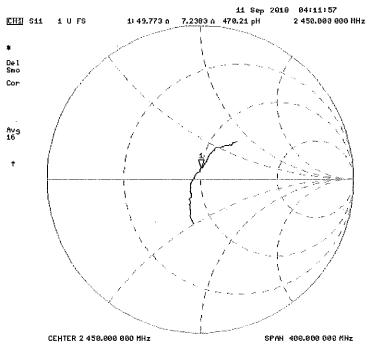
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

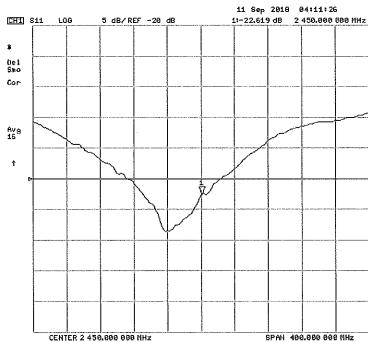

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension Date |       | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g) | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | (Ohm) | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) |        | PASS/FAIL |
|---------------------|----------------|-------|--------------------------------------------------------------|---------------------------|---------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|-------|-----------------------------------------|--------------------------------------|--------|-----------|
| 9/11/2017           | 9/11/2018      | 1.152 | 5.27                                                         | 5.52                      | 4.74%               | 2.48                                                          | 2.54                                             | 2.42%                | 53.8                                           | 49.8                                        | 4                        | 7.4                                                 | 7.1                                              | 0.3   | -21.9                                   | -23                                  | -4.80% | PASS      |

|   | Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Body SAR (1g) | (%)   | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) |      | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
|---|---------------------|----------------|-----------------------------------------|--------------------------------------------------------------|---------------|-------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| ſ | 9/11/2017           | 9/11/2018      | 1.152                                   | 5.11                                                         | 5.17          | 1.17% | 2.42                                                          | 2.37                                             | -2.07%               | 49.7 | 49.8                                        | 0.1                      | 9.1                                                 | 7.2                                              | 1.9                              | -20.9                                   | -22.6                                | -8.20%        | PASS      |
|   |                     |                |                                         | •                                                            |               |       |                                                               |                                                  |                      |      |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |

| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 797 | 09/11/2018   | Fage 2 01 4 |


### Impedance & Return-Loss Measurement Plot for Head TSL






| Object:         | Date Issued: | Page 3 of 4  |
|-----------------|--------------|--------------|
| D2450V2 SN: 797 | 09/11/2018   | r ago o or r |

### Impedance & Return-Loss Measurement Plot for Body TSL





| Object:           | Date Issued: | Page 4 of 4  | ĺ |
|-------------------|--------------|--------------|---|
| D2450V2 - SN: 797 | 09/11/2018   | l age 4 of 4 |   |

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D2450V2-981\_Aug18

# CALIBRATION CERTIFICATE

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN V 09-06/2012

Calibration date:

August 16, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)$ °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | •                      |
| Reference Probe EX3DV4          | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Apr-19                 |
| DAE4                            | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)    | Dec-18<br>Oct-18       |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Leif Klysner       | Laboratory Technician             | C'14/1                 |
|                                 | н                  |                                   | self freeze            |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | MM                     |
|                                 |                    |                                   | All as                 |

Issued: August 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-981\_Aug18

Page 1 of 11

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Servizio svizzero di taratur
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the size.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

**TSL** 

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.1    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5.0 mm    |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.7 ± 6 %   | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR result with Head TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.4 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 52.3 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.20 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.4 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.8 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.0 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 50.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.11 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.2 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.0 Ω + 2.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.6 dB       |

### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 50.2 Ω + 4.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.6 dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) 1.162 ns | Electrical Delay (one direction) | 1.162 ns |
|-------------------------------------------|----------------------------------|----------|
|-------------------------------------------|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | December 30, 2014 |

Certificate No: D2450V2-981\_Aug18

# Appendix (Additional assessments outside the scope of SCS 0108)

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1 and 3.

| Phantom     | 0.4144           |                                |
|-------------|------------------|--------------------------------|
| T Halltolli | SAM Head Phantom | For usage with cSAR3DV2-R/L    |
|             | <del></del>      | 1 0 404g0 Will OOA 10D VZ-11/L |

# SAR result with SAM Head (Top)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.6 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 54.0 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.2 W/kg ± 16.9 % (k=2) |

# SAR result with SAM Head (Mouth)

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 13.6 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 54.0 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.35 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.3 W/kg ± 16.9 % (k=2) |

# SAR result with SAM Head (Neck)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.9 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 51.2 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.11 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.4 W/kg ± 16.9 % (k=2) |

# SAR result with SAM Head (Ear)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 8.74 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 34.7 W/kg ± 17.5 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.40 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 17.5 W/kg ± 16.9 % (k=2) |

Certificate No: D2450V2-981\_Aug18

# **DASY5 Validation Report for Head TSL**

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.86$  S/m;  $\epsilon_r = 37.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

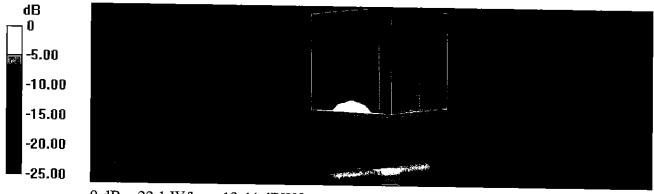
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

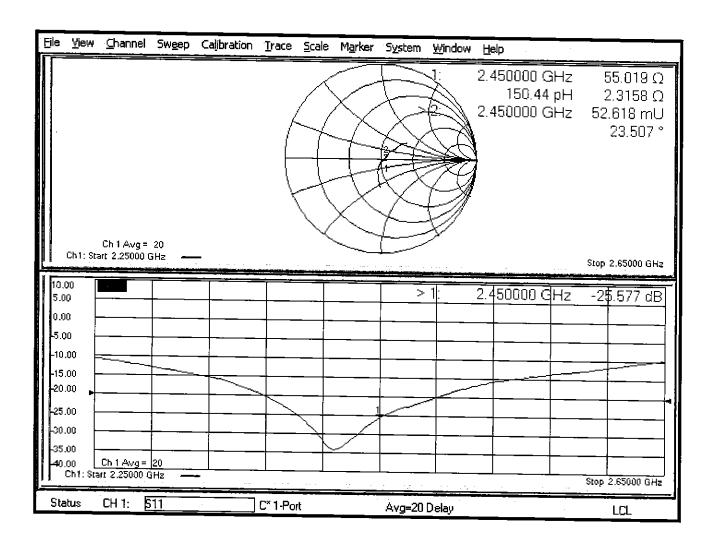
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.6 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 22.1 W/kg



0 dB = 22.1 W/kg = 13.44 dBW/kg

# Impedance Measurement Plot for Head TSL



# **DASY5 Validation Report for Body TSL**

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.02$  S/m;  $\epsilon_r = 51.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

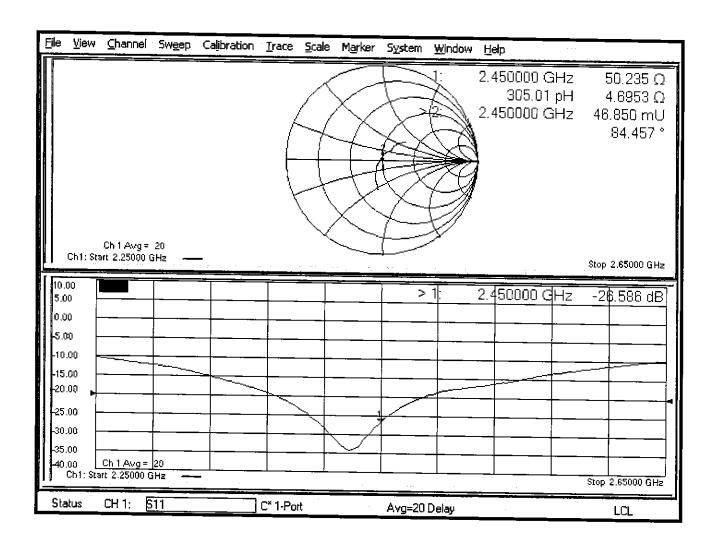
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.0 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.3 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 20.7 W/kg



0 dB = 20.7 W/kg = 13.16 dBW/kg

# Impedance Measurement Plot for Body TSL



### **DASY5 Validation Report for SAM Head**

Date: 16.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.85$  S/m;  $\epsilon_r = 40.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.2 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

# SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.9 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 21.7 W/kg

# SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

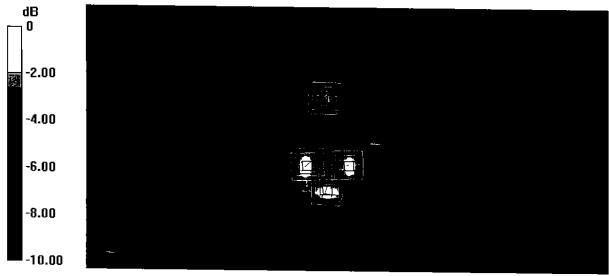
Reference Value = 112.0 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

# SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 91.03 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg

Maximum value of SAR (measured) = 13.5 W/kg

Certificate No: D2450V2-981\_Aug18



0 dB = 22.0 W/kg = 13.42 dBW/kg

# Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

! Certificate No: D2600V2-1071\_Sep16

### CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1071

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 13, 2016

Extended PM \
9/20/2018

This callbration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility; environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 15-Jun-16 (No. EX3-7349_Jun16)    | Jun-17                 |
| DAE4                        | SN: 601            | 30-Dec-15 (No. DAE4-601_Dec15)    | Dec-16                 |
| Secondary Standards         | וו מו              | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (No. 217-02223)         | In house check: Oct-16 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 |
|                             | Name               | Function                          | Signature 2            |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | 121/1                  |
|                             | •                  |                                   | 9                      |
| Approved by:                | , Kalja Pokovic    | Technical Manager                 | 1811C                  |
|                             |                    | · · · · · · /                     | - Colored              |

issued: September 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1071\_Sep16

Page 1 of 8

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland





C

Sohweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.3 ± 6 %   | 2.05 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | bà nà âr ann     |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.5 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 56.3 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.45 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.3 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2,16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.1 ± 6 %   | 2.22 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | . 14 16-44   |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW Input power | 13.8 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 54.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.20 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24,5 W/kg ± 16.5 % (k=2) |

### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.9 Ω - 6.7 ]Ω |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.5 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 46.1 Ω - 2.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -26.7 dB        |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.153 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 17, 2013 |

### **DASY5 Validation Report for Head TSL**

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.05 \text{ S/m}$ ;  $\varepsilon_r = 37.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;

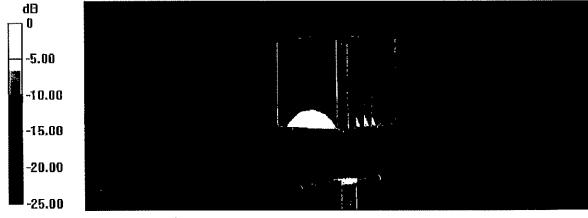
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

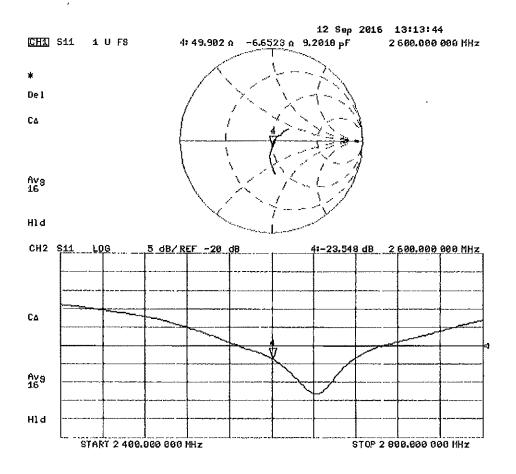
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 30.4 W/kg


SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (measured) = 24.6 W/kg



0 dB = 24.6 W/kg = 13.91 dBW/kg

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.22 \text{ S/m}$ ;  $\varepsilon_r = 51.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;

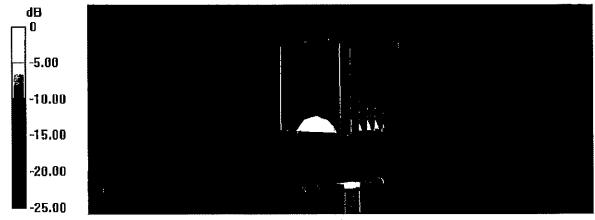
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

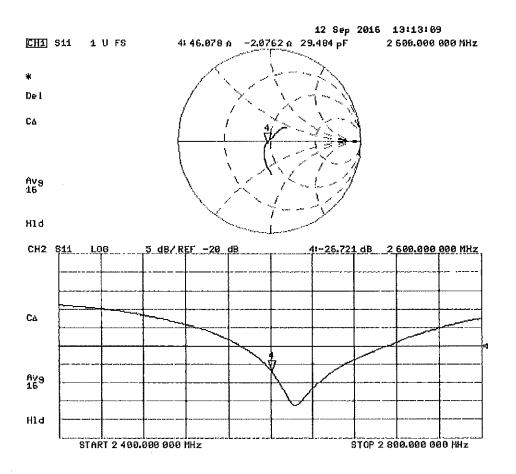
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.7 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 28.3 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 23.3 W/kg



0 dB = 23.3 W/kg = 13.67 dBW/kg

#### Impedance Measurement Plot for Body TSL



#### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



## **Certification of Calibration**

Object

D2600V2 - SN: 1071

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

09/07/2017

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight              | 7720      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017   | Annual       | 6/1/2018   | MY53401181    |
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 10/26/2016 | Annual       | 10/26/2017 | US39170118    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 7/13/2017  | Annual       | 7/13/2018  | 1322          |
| SPEAG                 | DAK-3,5   | Dielectric Assessment Kit                               | 5/10/2017  | Annual       | 5/10/2018  | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 7/17/2017  | Annual       | 7/17/2018  | 7410          |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1207364       |
| Anritsu               | MA24118   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 2/28/2017  | Annual       | 2/28/2018  | MY47420800    |
| Seekonk               | NC-100    | Torque Wrench                                           | 11/6/2015  | Biennial     | 11/6/2017  | N/A           |
| Mini-Circuits         | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

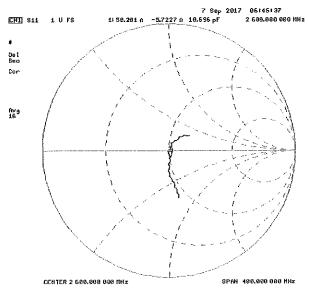
#### Measurement Uncertainty = ±23% (k=2)

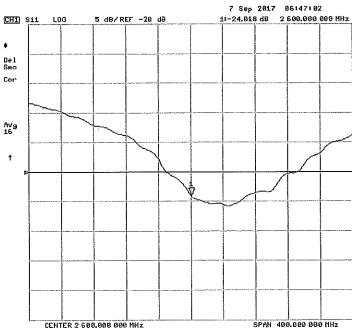
|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BAOPTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 70K-              |

| Object:          | Date Issued: | Page 1 of 4 |
|------------------|--------------|-------------|
| D2600V2 SN: 1071 | 09/07/2017   | ·g- · ·     |

#### **DIPOLE CALIBRATION EXTENSION**

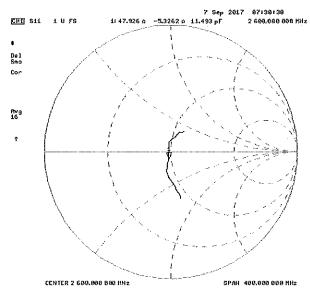
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

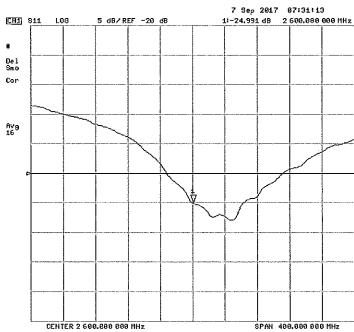

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | 70/ )               | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 9/13/2016           | 9/7/2017          | 1.153                                   | 5.63                                                         | 5.73                                            | 1.78%               | 2.53                                                          | 2.52                                             | -0.40%               | 49.9                                           | 50.3                                        | 0.4                      | -6.7                                                | -5.7                                             | 1.0                              | -23.5                                   | -24.0                                | -2.10%        | PASS      |
|                     |                   |                                         |                                                              |                                                 |                     |                                                               |                                                  |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm |                                                  | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 9/13/2016           | 9/7/2017          | 1.153                                   | 5.42                                                         | 5.34                                            | -1.48%              | 2.45                                                          | 2.33                                             | -4.90%               | 46.1                                           | 47.9                                        | 1.8                      | -2.1                                                | -5.3                                             | 3.2                              | -26.7                                   | -25.0                                | 6.40%         | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1071 | 09/07/2017   | Page 2 of 4 |


#### Impedance & Return-Loss Measurement Plot for Head TSL






| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1071 | 09/07/2017   | rage 5 or 4 |

#### Impedance & Return-Loss Measurement Plot for Body TSL





| Object:            | Date Issued: | Page 4 of 4  |  |
|--------------------|--------------|--------------|--|
| D2600V2 - SN: 1071 | 09/07/2017   | 1 age 4 01 4 |  |

## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



## **Certification of Calibration**

Object

D2600V2 - SN: 1071

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

09/11/2018

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

|                       |           |                                                         | 8 1485533555555 |              | ECONOMIC TO THE PARTY OF THE PA |               |
|-----------------------|-----------|---------------------------------------------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Manufacturer          | Model     | Description                                             | Cal Date        | Cal Interval | Cal Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Serial Number |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017       | Biennial     | 3/31/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017        | Biennlal     | 5/2/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT             | N/A          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT             | N/A          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9405          |
| Keysight              | 7720      | Dยal Directional Coupler                                | CBT             | N/A          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MY52180215    |
| Keysight Technologies | B5033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018        | Annual       | 6/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MY53401181    |
| Agilent               | 8753ES    | 8/30/2018                                               | Annual          | 8/30/2019    | MY40003841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Mini-Circuits         | 8W-N20W5+ | CBT                                                     | N/A             | CBT          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/15/2018       | Annual       | 5/15/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 7/20/2018       | Annual       | 7/20/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7410          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 7/11/2018       | Annual       | 7/11/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1322          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/13/2018       | Annual       | 3/13/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3319          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/7/2018        | Annual       | 3/7/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1368          |
| Anritsu               | MA24118   | Pulse Power Sensor                                      | 3/2/2018        | Annual       | 3/2/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018        | Annual       | 3/2/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/22/2017      | Annual       | 10/22/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1328004       |
| Agilent               | N5182A    | 4/18/2018                                               | Annual          | 4/18/2019    | MY47420800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/11/2018       | Annual       | 7/11/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A           |
| MiniCircuits          | V£F-6000+ | Low Pass Filter                                         | CBT             | N/A          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A           |
| Narda                 | 4014C-6   | 4 - 8 GHz SMA 6 dB Directional Coupler                  | CBT             | N/A          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A           |

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

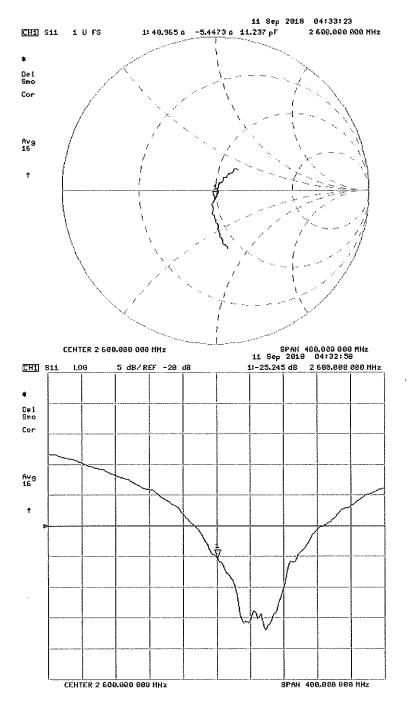
#### Measurement Uncertainty = ±23% (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BAODIE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 30K               |

| Object:          | Date Issued: | D 4 -5.4    |
|------------------|--------------|-------------|
| D2600V2 SN: 1071 | 09/11/2018   | Page 1 of 4 |

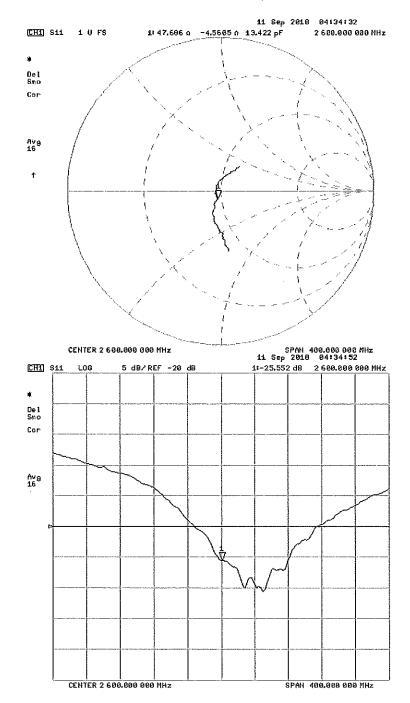
#### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

| 9/13/2016 9/11/2018 1.153 5.63 5.52 -1.95% 2.53 2.47 -2.37% 49.9 49 0.9 -6.7 -5.4 1.3 -23.5 -25.2 -7.40% PASS    Calibration Date   Extension Date   Extension Date   Delay (ns)   Delay (n | Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                        | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm |        |                                         | (10a) W/ka @             | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|-----------------------------------------|----------------------------------------|-------------------------------------------------|--------|-----------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| Calibration Date Date Delay (ns)  | 9/13/2016           | 9/11/2018      | 1.153                                   | 5.63                                   | 5.52                                            | -1.95% | 2.53                                    | 2.47                     | -2.37%               | 49.9                                           | 49                                          | 0.9                      | -6.7                                                | -5.4                                             | 1.3                              | -23.5                                   | -25.2                                | -7.40%        | PASS      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Extension Date | Electrical                              | SAR Target<br>Body (1g)<br>W/kg @ 20.0 | Body SAR (1g)<br>W/kg @ 20.0                    |        | SAR Target<br>Body (10g)<br>W/kg @ 20.0 | Body SAR<br>(10g) W/kg @ |                      | Impedance<br>Body (Ohm)                        | Impedance<br>Body (Ohm)                     |                          | Impedance<br>Body (Ohm)                             | Impedance<br>Body (Ohm)                          | (Ohm)                            | Return Loss                             | Return Loss                          | Deviation (%) | PASS/FAIL |
| 9/13/2016 9/11/2018 1.153 5.42 5.57 2.77% 2.45 2.46 0.41% 46.1 47.7 1.6 -2.1 -4.6 2.5 -26.7 -25.6 4.30% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/13/2016           | 9/11/2018      | 1.153                                   | 5.42                                   | 5.57                                            | 2.77%  | 2.45                                    | 2.46                     | 0.41%                | 46.1                                           | 47.7                                        | 1.6                      | -2.1                                                | -4.6                                             | 2.5                              | -26.7                                   | -25.6                                | 4.30%         | PASS      |


| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1071 | 09/11/2018   | rage 2 01 4 |

#### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1071 | 09/11/2018   | 9           |

#### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1071 | 09/11/2018   | Page 4 of 4 |

#### **Calibration Laboratory of** Schmid & Partner

**Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D2600V2-1126\_Aug18

## CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1126

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19<br>Apr-19       |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19<br>Apr-19       |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19<br>Apr-19       |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | <b>'</b>               |
| Reference Probe EX3DV4          | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Apr-19                 |
| DAE4                            | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)    | Dec-18<br>Oct-18       |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Michael Weber      | Laboratory Technician             | 1/1/1                  |
|                                 |                    |                                   | MEZ                    |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | Mu                     |

Issued: August 13, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1126\_Aug18

Page 1 of 8

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Accreditation No.: SCS 0108

Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1126\_Aug18 Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.1    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.1 ± 6 %   | 2.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 14.0 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 54.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.25 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.6 W/kg ± 16.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.3 ± 6 %   | 2.20 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.7 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 54.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.15 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.4 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 48.3 Ω - 8.0 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 21.6 dB       |  |

## **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 44.7 Ω - 5.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.7 dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) |           |
|----------------------------------|-----------|
| Licotrical Belay (one direction) | 1.154 ns  |
|                                  | 1.134 115 |
|                                  |           |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |  |
|-----------------|------------------|--|
| Manufactured on | October 22, 2015 |  |

Certificate No: D2600V2-1126\_Aug18

### **DASY5 Validation Report for Head TSL**

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.03$  S/m;  $\epsilon_r = 37.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017

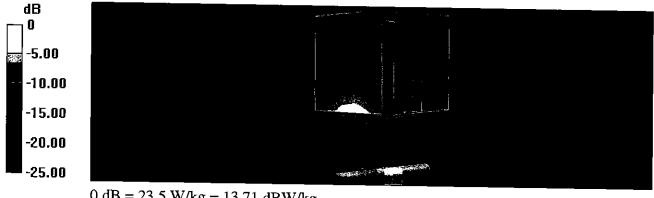
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

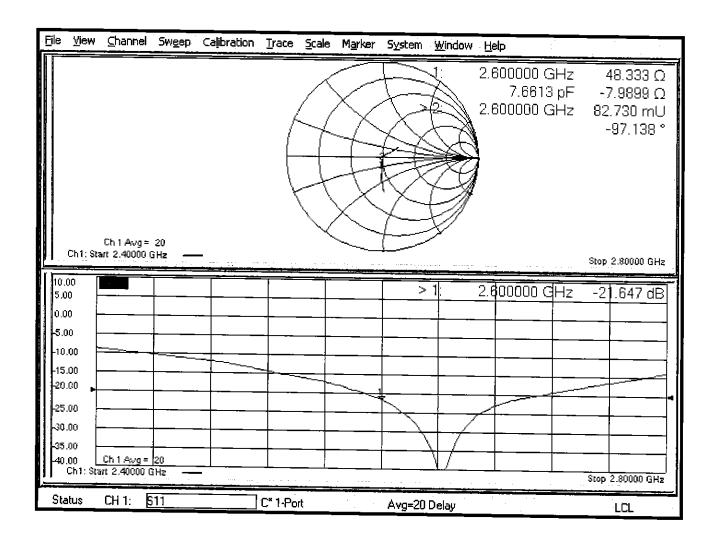
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.1 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 28.0 W/kg


SAR(1 g) = 14 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of  $\overline{SAR}$  (measured) = 23.5 W/kg



0 dB = 23.5 W/kg = 13.71 dBW/kg

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.2$  S/m;  $\epsilon_r = 51.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017

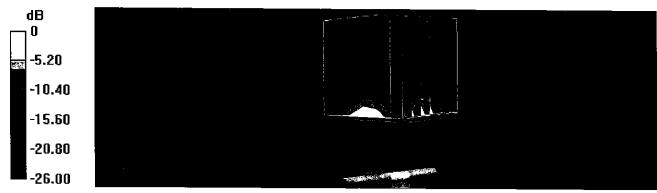
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

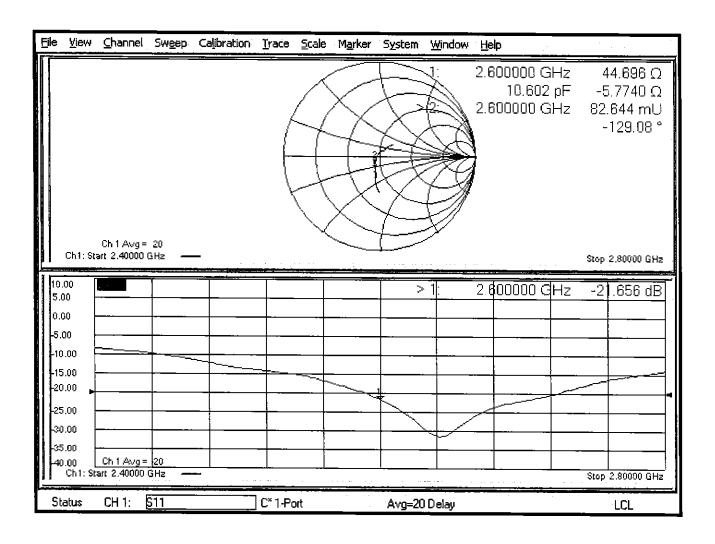
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.2 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 28.0 W/kg


SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 22.4 W/kg



0 dB = 22.4 W/kg = 13.50 dBW/kg

#### Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Cerlificate No: D3500V2-1059\_Jan18

### CALIBRATION CERTIFICATE

Object

D3500V2 - SN:1059

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 11, 2018

ni - 26-2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

02/06/20

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)            | Cohodulad Oalthurit    |
|-----------------------------|--------------------|---------------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522)       | Scheduled Calibration  |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)             | Apr-18                 |
| Power sensor NAP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)             | Apr-18                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)             | Apr-18                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529)             | Apr-18                 |
| Reference Probe EX3DV4      | SN: 3503           |                                       | Apr-18                 |
| DAE4                        | SN: 601            | 30-Dec-17 (No. EX3-3503_Dec17)        | Dec-18                 |
|                             | 1 314. 001         | 26-Oct-17 (No. DAE4-501_Oct17)        | Oct-18                 |
| Secondary Standards         | ID#                | Check Date (in house)                 | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16)     |                        |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16)     | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (In house check Oct-16)     | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16)     | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     |                                       | In house check: Oct-18 |
| ,                           | 5/11 550/ 550500   | 18-Oct-01 (in house check Oct-17)     | In house check: Oct-18 |
|                             | Name               | Function                              | Signature              |
| Calibrated by:              | Michael Weber      | Laboratory Technician                 | Mull                   |
|                             | 7<br>4             | · · · · · · · · · · · · · · · · · · · | MILES                  |
| Approved by:                | Kalja Pokovic      | Technical Manager                     | 10111                  |
|                             |                    |                                       | 16615                  |

Issued: January 16, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1059\_Jan18

Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY5                        | V52.10.0                         |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       |                                  |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 10 mm                        | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3500 MHz ± 1 MHz             |                                  |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.9         | 2.91 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.5 ± 6 %   | 2.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.44 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 64.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.43 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.4 W/kg ± 19.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.3         | 3.31 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.0 ± 6 %   | 3.32 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.55 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 65.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.43 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.2 W/kg ± 19.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.2 Ω - 7.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.4 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 53.4 Ω - 4.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.3 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.136 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | January 20, 2017 |

#### **DASY5 Validation Report for Head TSL**

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz;  $\sigma = 2.91 \text{ S/m}$ ;  $\varepsilon_r = 38.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN3503; ConvF(7.8, 7.8, 7.8); Calibrated: 30.12.2017;

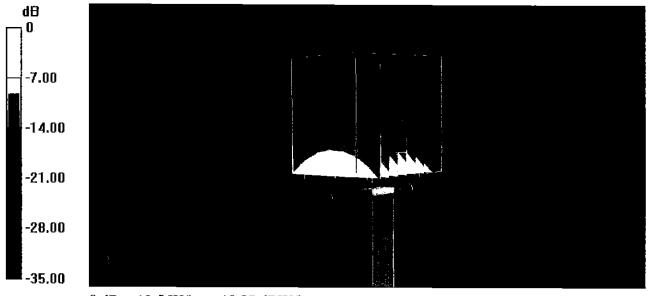
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10,2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

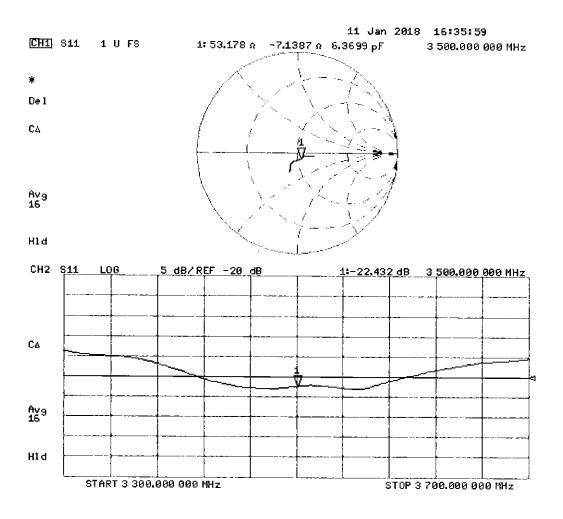
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.59 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.6 W/kg


SAR(1 g) = 6.44 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 12.5 W/kg



0 dB = 12.5 W/kg = 10.97 dBW/kg

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz;  $\sigma = 3.32 \text{ S/m}$ ;  $\varepsilon_r = 50$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.43, 7.43, 7.43); Calibrated: 30.12.2017;

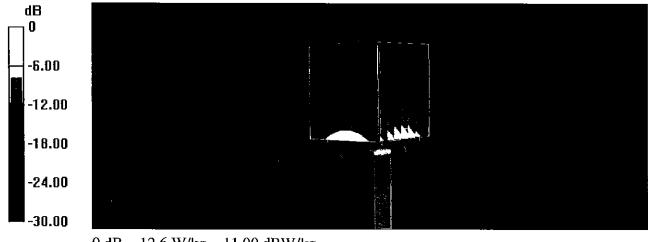
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10,2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

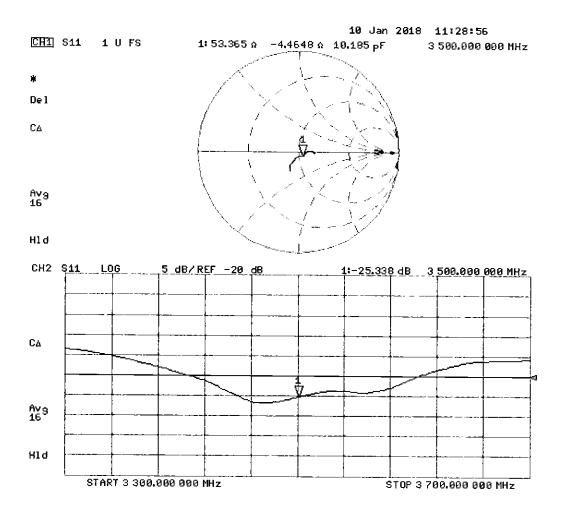
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

#### Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.18 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 17.9 W/kg


SAR(1 g) = 6.55 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 12.6 W/kg



0 dB = 12.6 W/kg = 11.00 dBW/kg

## Impedance Measurement Plot for Body TSL



#### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



## **Certification of Calibration**

Object D3500V2 – SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/11/2019

Description: SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 2/8/2018   | Annual       | 2/8/2019   | US39170122    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 4/18/2018  | Annual       | 4/18/2019  | MY47420800    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/21/2018 | Annual       | 10/21/2019 | 941001        |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annual       | 6/4/2019   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2209-10 | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/11/2018  | Annual       | 7/11/2019  | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/3/2018  | Annual       | 10/3/2019  | 1558          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 6/18/2018  | Annual       | 6/18/2019  | 1334          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 9/11/2018  | Annual       | 9/11/2019  | 1091          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 2/14/2018  | Annual       | 2/14/2019  | 3914          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/24/2018  | Annual       | 8/24/2019  | 3949          |

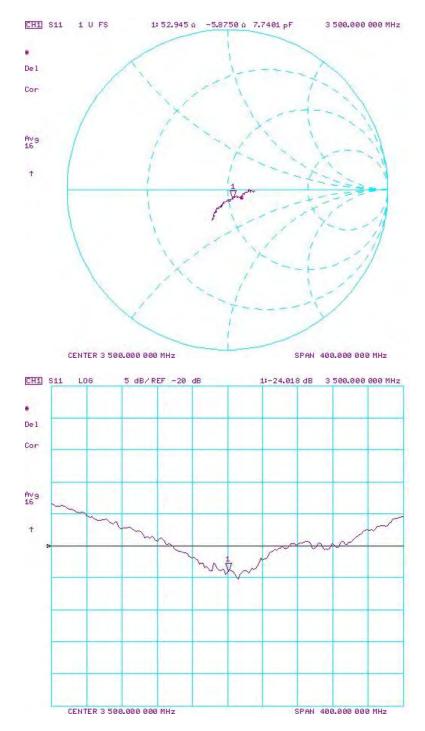
#### Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODIE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 20K               |

| Object:            | Date Issued: | Page 1 of 5 |
|--------------------|--------------|-------------|
| D3500V2 – SN: 1059 | 01/11/2019   | rage 1015   |

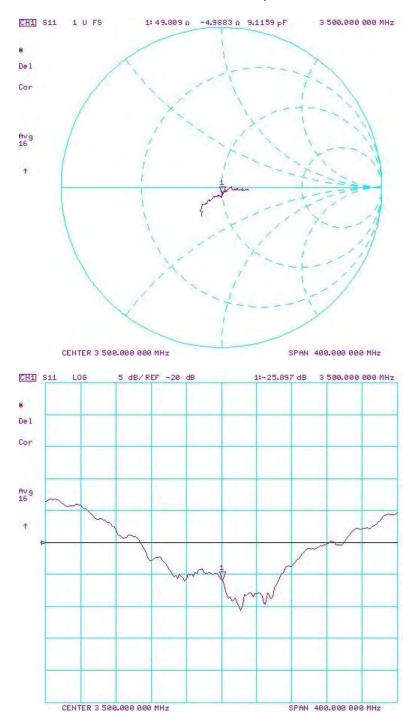
#### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (1g)<br>W/kg @ 20.0<br>dBm | asm                                             | (%)    | dBm  | (10a) W/ka @ |                      | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|--------|------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 1/11/2018           | 1/16/2019      | 1.136                                   | 6.46                            | 6.23                                            | -3.56% | 2.44 | 2.34         | -4.10%               | 53.2                                           | 52.9                                        | 0.3                      | -7.1                                                | -5.9                                             | 1.2                              | -22.4                                   | -24                                  | -7.20%        | PASS      |
|                     |                |                                         |                                 |                                                 |        |      |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm |        |      | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 1/11/2018           | 1/16/2019      | 1.136                                   | 6.51                            | 6                                               | -7.83% | 2.42 | 2.26         | -6.61%               | 53.4                                           | 49.8                                        | 3.6                      | -4.5                                                | -5                                               | 0.5                              | -25.3                                   | -25.9                                | -2.40%        | PASS      |


| Object:            | Date Issued: | Page 2 of 5 |
|--------------------|--------------|-------------|
| D3500V2 - SN: 1059 | 01/11/2019   | raye 2 01 3 |

Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 3 of 5 |
|--------------------|--------------|-------------|
| D3500V2 - SN: 1059 | 01/11/2019   | rage 3 01 3 |

#### Impedance & Return-Loss Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D5GHzV2-1057\_Jan18

#### **CALIBRATION CERTIFICATE**

Object

D5GHzV2 - SN:1057

Calibration procedure(s)

QA CAL-22,v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 16, 2018

1-25-2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

BU 06 (2019

All calibrations have been conducted in the closed laboratory facility: environment temperature ( $22 \pm 3$ )°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)      | Scheduled Calibration |
|-----------------------------|--------------------|---------------------------------|-----------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522) | Apr-1B                |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)       | Apr-18                |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)       | Apr-18                |
| Reference 20 dB Atlenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)       | Apr-18                |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529)       | Apr-18                |
| Reference Probe EX3DV4      | SN: 3503           | 30-Dec-17 (No. EX3-3503_Dec17)  | Dec-18                |
| DAE4                        | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)  | Oct-18                |

| Secondary Standards       | ID#            | Check Date (in house)             | Scheduled Check        |
|---------------------------|----------------|-----------------------------------|------------------------|
| Power meter EPM-442A      | SN: GB37480704 | 07-Oct-15 (In house check Oct-16) | in house check: Oct-18 |
| Power sensor HP 8481A     | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A     | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06   | SN: 100972     | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |
|                           |                | •                                 |                        |

Calibrated by:

Name Leif Klysner Function Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 18, 2018

Sionature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1057\_Jan18

Page 1 of 20

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                            | V52.10.0                         |
|------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                           |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0  mm, dz = 1.4  mm                                                                   | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

## Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.2 ± 6 %   | 4.55 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.91 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.8 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1057\_Jan18

## Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.8 ± 6 %   | 4.90 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.41 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 84.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.40 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.0 W/kg ± 19.5 % (k=2) |

## Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.5 ± 6 %   | 5.06 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.06 <b>W</b> /kg        |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.30 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.0 W/kg ± 19.5 % (k=2) |

### Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.3 ± 6 %   | 5.41 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.36 <b>W</b> /kg        |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.06 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.4 W/kg ± 19.5 % (k=2) |

#### Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.2 ± 6 %   | 5.48 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.64 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.13 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 21.1 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.6 ± 6 %   | 5.94 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.05 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 79.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.25 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.3 W/kg ± 19.5 % (k=2) |

### **Body TSL parameters at 5750 MHz**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.3 ± 6 %   | 6.15 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.72 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.14 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.2 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.2 ± 6 %   | 6.22 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.68 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.13 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 21.1 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1057\_Jan18

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 50.0 Ω - 5.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.2 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 54.7 Ω - 2.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.2 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 52.7 Ω + 0.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 31.5 dB       |

## Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 49.3 Ω - 6.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.4 dB       |

## Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 48.4 Ω - 3.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.4 dB       |

## Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 55.3 Ω - 1.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.6 dB       |

## Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 52.6 Ω + 1.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 31.2 dB       |

## Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 51.8 Ω - 0.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 34.9 dB       |

## **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.203 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 27, 2006 |

## Appendix (Additional assessments outside the scope of SCS 0108)

## **Measurement Conditions (f=5200 MHz)**

DASY system configuration, as far as not given on page 1 and 3.

| Phantom SAM Head Phantom For usage with cSAR3DV | 2-R/L |
|-------------------------------------------------|-------|
|-------------------------------------------------|-------|

## SAR result with SAM Head (Top)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.24 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.6 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.35 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.6 W/kg ± 19.9 % (k=2) |

## SAR result with SAM Head (Mouth)

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.54 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 85.6 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.37 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.7 W/kg ± 19.9 % (k=2) |

## SAR result with SAM Head (Neck)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.14 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.6 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.37 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.7 W/kg ± 19.9 % (k=2) |

## SAR result with SAM Head (Ear)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 5.16 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 51.7 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 1.76 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 17.7 W/kg ± 19.9 % (k=2) |

## Measurement Conditions (f=5800 MHz)

DASY system configuration, as far as not given on page 1 and 3.

| Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L |
|---------|------------------|-----------------------------|
|---------|------------------|-----------------------------|

## SAR result with SAM Head (Top)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.62 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 86.3 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.41 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 24.1 W/kg ± 19.9 % (k=2) |

## SAR result with SAM Head (Mouth)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.88 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 88.9 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.44 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.4 W/kg ± 19.9 % (k=2) |

## SAR result with SAM Head (Neck)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.33 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.4 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.35 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.5 W/kg ± 19.9 % (k=2) |

## SAR result with SAM Head (Ear)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 5.68 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 56.8 W/kg ± 20.3 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |  |
|---------------------------------------------------------|--------------------|--------------------------|--|
| SAR measured                                            | 100 mW input power | 1.89 W/kg                |  |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 18.9 W/kg ± 19.9 % (k=2) |  |

#### **DASY5 Validation Report for Head TSL**

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz;  $\sigma = 4.55$  S/m;  $\varepsilon_r = 36.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 4.9$  S/m;  $\varepsilon_r = 35.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 5.06$  S/m;  $\varepsilon_r = 35.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 modified; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.54 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

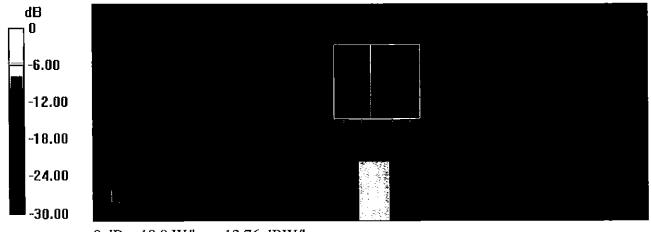
Reference Value = 72.77 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg

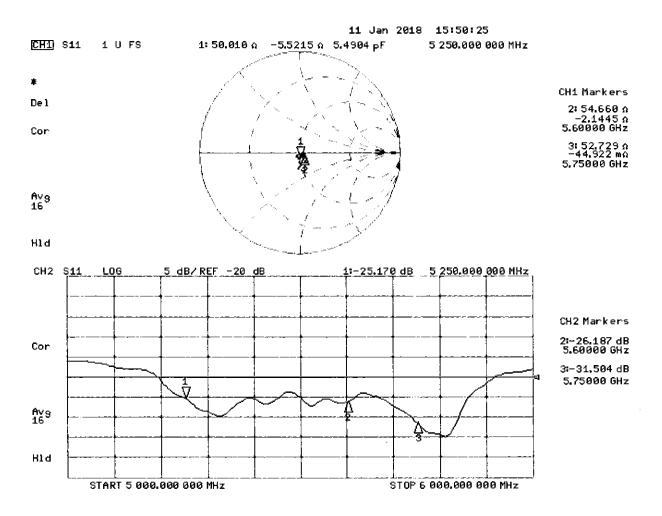
Maximum value of SAR (measured) = 19.7 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.93 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 31.4 W/kg


SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 18.9 W/kg



0 dB = 18.9 W/kg = 12.76 dBW/kg

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600

MHz, Frequency: 5750 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.41 \text{ S/m}$ ;  $\varepsilon_r = 47.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5250 MHz;  $\sigma = 5.48 \text{ S/m}$ ;  $\varepsilon_r = 47.2$ ;  $\rho = 1000 \text{ kg/m}^3$ ,

Medium parameters used: f = 5600 MHz;  $\sigma = 5.94 \text{ S/m}$ ;  $\varepsilon_r = 46.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5750 MHz;  $\sigma = 6.15 \text{ S/m}$ ;  $\varepsilon_r = 46.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5800 MHz;  $\sigma = 6.22 \text{ S/m}$ ;  $\varepsilon_r = 46.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.05 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.09 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

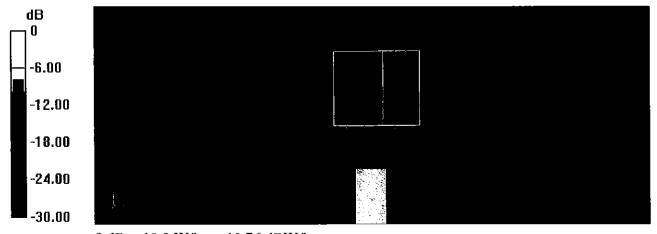
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.45 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 32.9 W/kg

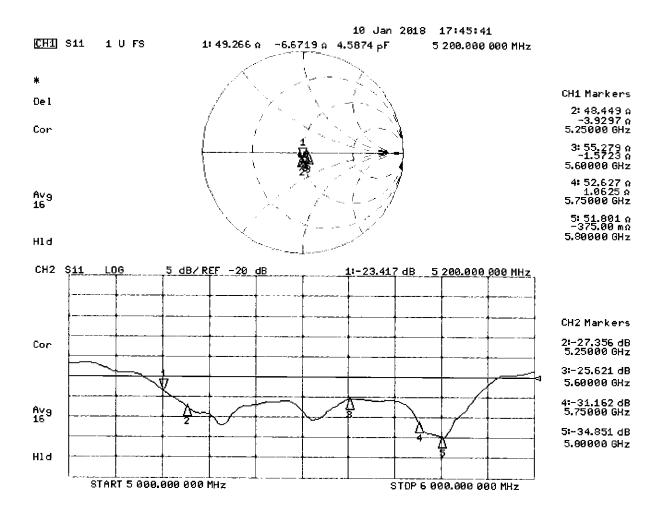
SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.9 W/kg


## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.14 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.13 W/kg



0 dB = 18.9 W/kg = 12.76 dBW/kg

## Impedance Measurement Plot for Body TSL



### **DASY5 Validation Report for SAM Head**

Date: 16.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz;  $\sigma$  = 4.59 S/m;  $\epsilon r$  = 36.5;  $\rho$  = 1000 kg/m³, Medium parameters used: f = 5800 MHz;  $\sigma$  = 5.28 S/m;  $\epsilon r$  = 35.4;  $\rho$  = 1000 kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### **DASY52 Configuration:**

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.99 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

# SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.00 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

# SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.79 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 20.7 W/kg

## SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 71.69 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 2.44 W/kg

Maximum value of SAR (measured) = 23.0 W/kg

## SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 72.48 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

# SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.90 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 21.8 W/kg

# SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

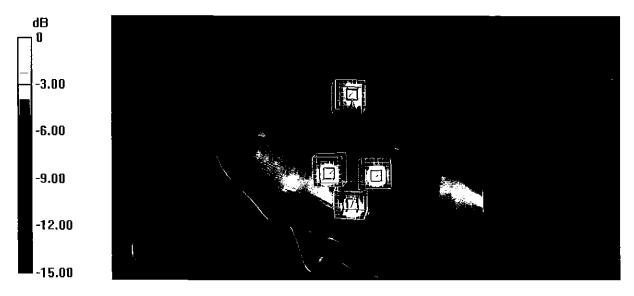
Reference Value = 54.68 V/m; Power Drift = 0.03 dB

D 1 CAD ( 1 1 1) 16 2 W/I

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 5.16 W/kg; SAR(10 g) = 1.76 W/kg

Maximum value of SAR (measured) = 11.1 W/kg


# SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.96 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 21.2 W/kg

SAR(1 g) = 5.68 W/kg; SAR(10 g) = 1.89 W/kg

Maximum value of SAR (measured) = 13.8 W/kg



0 dB = 13.8 W/kg = 11.40 dBW/kg

## PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



## **Certification of Calibration**

Object D5GHzV2 – SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/16/2019

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 2/8/2018   | Annual       | 2/8/2019   | US39170122    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 4/18/2018  | Annual       | 4/18/2019  | MY47420800    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/21/2018 | Annual       | 10/21/2019 | 941001        |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annual       | 6/4/2019   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2209-10 | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/11/2018  | Annual       | 7/11/2019  | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/3/2018  | Annual       | 10/3/2019  | 1558          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 6/18/2018  | Annual       | 6/18/2019  | 1334          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 9/11/2018  | Annual       | 9/11/2019  | 1091          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/23/2018  | Annual       | 8/23/2019  | 7308          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 6/25/2018  | Annual       | 6/25/2019  | 7409          |

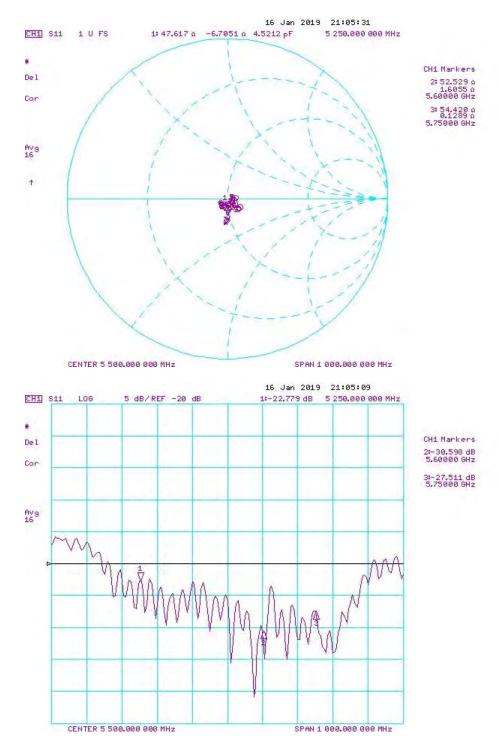
#### Measurement Uncertainty = ±23% (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODIE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 20K               |

| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1057 | 01/16/2019   | Page 1 of 4 |

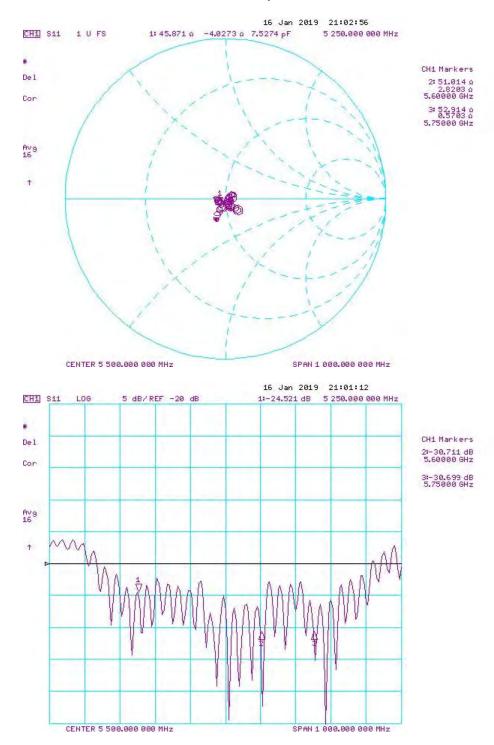
## **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Frequency<br>(MHz) | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 17.0<br>dBm | (1a) W/ka @ | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 17.0<br>dBm | (40a) W//ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|--------------------|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------|---------------------|---------------------------------------------------------------|---------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 5250               | 1/16/2018           | 1/16/2019         | 1.203                                   | 3.96                                                         | 3.63        | -8.33%              | 1.14                                                          | 1.04          | -8.77%               | 50                                             | 47.6                                        | 2.4                      | -5.5                                                | -6.7                                             | 1.2                              | -25.2                                   | -22.8                                | 9.60%         | PASS      |
| 5600               | 1/16/2018           | 1/16/2019         | 1.203                                   | 4.205                                                        | 3.84        | -8.68%              | 1.2                                                           | 1.09          | -9.17%               | 54.7                                           | 52.5                                        | 2.2                      | -2.1                                                | 1.6                                              | 3.7                              | -26.2                                   | -30.6                                | -16.80%       | PASS      |
| 5750               | 1/16/2018           | 1/16/2019         | 1.203                                   | 4.025                                                        | 3.76        | -6.58%              | 1.15                                                          | 1.07          | -6.96%               | 52.7                                           | 54.4                                        | 1.7                      | 0                                                   | 0.1                                              | 0.1                              | -31.5                                   | -27.5                                | 12.70%        | PASS      |
| Frequency<br>(MHz) | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 17.0<br>dBm | (1a) M/ka @ | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 17.0<br>dBm | (40a) W//ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 5250               | 1/16/2018           | 1/16/2019         | 1.203                                   | 3.795                                                        | 3.73        | -1.71%              | 1.06                                                          | 1.03          | -2.37%               | 48.4                                           | 45.9                                        | 2.5                      | -3.9                                                | -4                                               | 0.1                              | -27.4                                   | -24.5                                | 10.50%        | PASS      |
| 5600               | 1/16/2018           | 1/16/2019         | 1.203                                   | 3.995                                                        | 4.06        | 1.63%               | 1.12                                                          | 1.12          | 0.45%                | 55.3                                           | 51                                          | 4.3                      | -1.6                                                | 2.8                                              | 4.4                              | -25.6                                   | -30.7                                | -20.00%       | PASS      |
| 5750               | 1/16/2018           | 1/16/2019         | 1.203                                   | 3.835                                                        | 3.65        | -4.82%              | 1.06                                                          | 1.02          | -3.77%               | 52.6                                           | 52.9                                        | 0.3                      | 1.1                                                 | 0.6                                              | 0.5                              | -31.2                                   | -30.7                                | 1.60%         | PASS      |


| Object:            | Date Issued: | Page 2 of 4 |  |
|--------------------|--------------|-------------|--|
| D5GHzV2 – SN: 1057 | 01/16/2019   | Fage 2 01 4 |  |

#### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1057 | 01/16/2019   | rage 3 or 4 |

## Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1057 | 01/16/2019   | Page 4 of 4 |

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D750V3-1161 Oct18

## **CALIBRATION CERTIFICATE**

Object D750V3 - SN:1161

Calibration procedure(s) QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: October 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | 1D #               | Cal Date (Certificate No.)        | Sche <b>d</b> uled Calibration |
|---------------------------------|--------------------|-----------------------------------|--------------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                         |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                         |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                         |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                         |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                         |
| Reference Probe EX3DV4          | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Dec-18                         |
| DAE4                            | SN: 601            | 04-Oct-18 (No. DAE4-601_Oct18)    | Oct-19                         |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check                |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20         |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20         |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20         |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20         |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19         |
|                                 | Name               | Function                          | Signature                      |
| Calibrated by:                  | Manu Seitz         | Laboratory Technician             | Æ                              |
|                                 |                    | Z                                 |                                |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | ALBS-                          |
|                                 |                    |                                   |                                |

Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1161\_Oct18

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1161\_Oct18 Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.8 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 2.02 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 8.03 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.32 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.26 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.1 ± 6 %   | 0.96 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.11 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.43 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.39 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 5.55 W/kg ± 16.5 % (k=2) |

Certificate No: D750V3-1161\_Oct18 Page 3 of 8

## Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 55.6 Ω - 1.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.0 dB       |

## Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.6 Ω - 4.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.6 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.032 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 19, 2015 |

Certificate No: D750V3-1161\_Oct18 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.89 \text{ S/m}$ ;  $\varepsilon_r = 40.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

## DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017

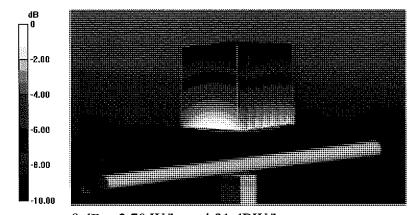
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

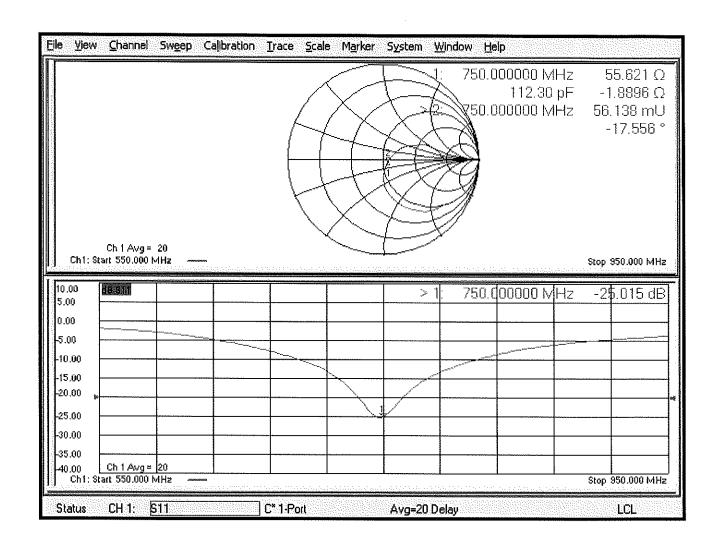
## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.51 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg


Maximum value of SAR (measured) = 2.70 W/kg



0 dB = 2.70 W/kg = 4.31 dBW/kg

Certificate No: D750V3-1161\_Oct18

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.96 \text{ S/m}$ ;  $\varepsilon_r = 55.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017

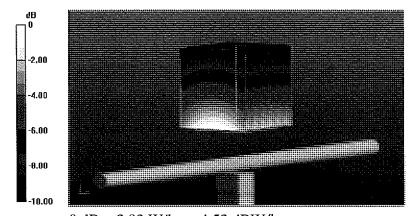
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

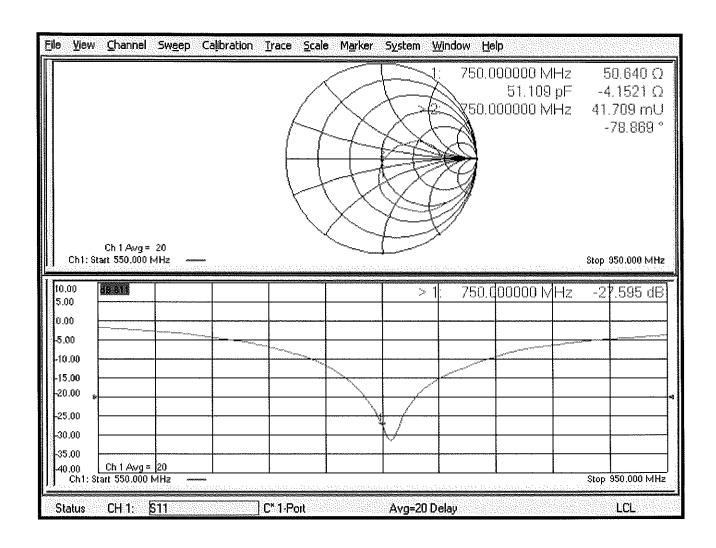
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.57 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.18 W/kg


SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg

Maximum value of SAR (measured) = 2.83 W/kg



0 dB = 2.83 W/kg = 4.52 dBW/kg

## Impedance Measurement Plot for Body TSL



### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étatonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

8

Client

PC Test

Certificate No: D1750V2-1148\_May17

|                                                                                                                                                                                                                                                           | ERTIFICATE                                                                                                                              | <ul> <li>same a no facilità de la facilità de la facilità de la completa de la facilità del la facilità de la facilità della facilità del</li></ul> | energy for a creatily a department of the                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Object                                                                                                                                                                                                                                                    | D1750V2 8N:1                                                                                                                            | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |
| Calibration procedure(s)                                                                                                                                                                                                                                  | QA CAL-05.v9<br>Calibration proce                                                                                                       | dure for dipole validation kits abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ve 700 MHz<br>BN                                                                                                                                             |
| Calibration date:                                                                                                                                                                                                                                         | May 09, 2017                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BN<br>85-23-231<br>BN<br>05-09-2                                                                                                                             |
|                                                                                                                                                                                                                                                           | cted in the closed laborato                                                                                                             | robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |
| Primary Standards                                                                                                                                                                                                                                         | ID#                                                                                                                                     | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scheduled Calibration                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |
| ower meter NRP                                                                                                                                                                                                                                            | SN: 104778                                                                                                                              | 04-Apr-17 (No. 217-02521/02522)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr-18                                                                                                                                                       |
| Power meter NRP                                                                                                                                                                                                                                           | SN: 104778<br>SN: 103244                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |
| Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91                                                                                                                                                                                           |                                                                                                                                         | 04-Apr-17 (No. 217-02521/02522)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Арт-18                                                                                                                                                       |
| ower meter NRP<br>lower sensor NRP-Z91<br>lower sensor NRP-Z91<br>teference 20 dB Attenuator                                                                                                                                                              | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)                                                                                              | 04-Apr-17 (No. 217-02521/02522)<br>04-Apr-17 (No. 217-02521)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Арг-18<br>Арг-18                                                                                                                                             |
| ower meter NRP Ower sensor NRP-Z91 Ower sensor NRP-Z91 deference 20 dB Attenuator Ope-N mismatch combination                                                                                                                                              | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                        | 04-Apr-17 (No. 217-02521/02522)<br>04-Apr-17 (No. 217-02521)<br>04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Арт-18<br>Арт-18<br>Арг-18                                                                                                                                   |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4                                                                                                                   | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349                                                            | 04-Apr-17 (No. 217-02521/02522)<br>04-Apr-17 (No. 217-02521)<br>04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)<br>31-Dec-16 (No. EX3-7349_Dec16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr-18<br>Apr-18<br>Apr-18<br>Apr-18<br>Apr-18<br>Dec-17                                                                                                     |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4                                                                                                                   | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                        | 04-Apr-17 (No. 217-02521/02522)<br>04-Apr-17 (No. 217-02521)<br>04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Арт-18<br>Арт-18<br>Арт-18<br>Арт-18<br>Арт-18                                                                                                               |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4                                                                                                              | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349                                                            | 04-Apr-17 (No. 217-02521/02522)<br>04-Apr-17 (No. 217-02521)<br>04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)<br>31-Dec-16 (No. EX3-7349_Dec16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr-18<br>Apr-18<br>Apr-18<br>Apr-18<br>Apr-18<br>Dec-17<br>Mar-18                                                                                           |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards                                                                                          | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601                                                 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr-18<br>Apr-18<br>Apr-18<br>Apr-18<br>Apr-18<br>Dec-17                                                                                                     |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A                                                                     | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601                                                 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check                                                                                             |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A                         | SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601<br>ID #                                         | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18                                                                      |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)  Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18                                                                      |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601  ID #  SN: GB37480704 SN: US37292763 SN: MY41092317            | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)  Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18                                               |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A                                               | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)  Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 |

Issued: May 11, 2017

Certificate No: D1750V2-1148\_May17

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not measure

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |  |
|-----------------------------------------|-----------------|--------------|------------------|--|
| Nominal Head TSL parameters             | 22.0 °C 40.1    |              | 1.37 mho/m       |  |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.0 ± 6 %   | 1.36 mho/m ± 6 % |  |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.11 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.83 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.3 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |  |
|-----------------------------------------|-----------------|--------------|------------------|--|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |  |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.7 ± 6 %   | 1.47 mho/m ± 6 % |  |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.1 <b>7</b> W/kg        |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 37.0 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.93 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.8 W/kg ± 16.5 % (k=2) |

Page 3 of 8 Certificate No: D1750V2-1148\_May17

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.8 Ω - 0.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 42.9 dB       |

## **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 45.7 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.9 dB       |

#### **General Antenna Parameters and Design**

|                                  | Y        |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.223 ns |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 30, 2014 |

Certificate No: D1750V2-1148\_May17 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.36 \text{ S/m}$ ;  $\varepsilon_r = 39$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;

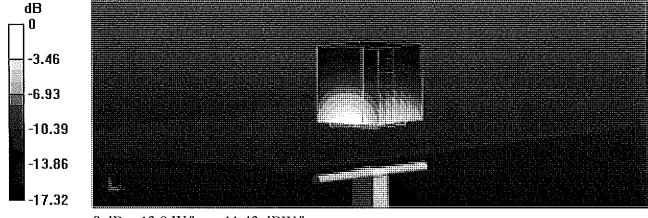
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

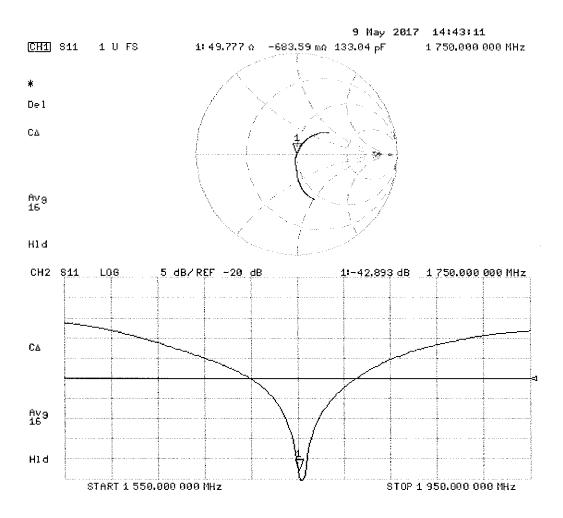
DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 13.9 W/kg



0 dB = 13.9 W/kg = 11.43 dBW/kg

## Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.47 \text{ S/m}$ ;  $\varepsilon_r = 53.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;

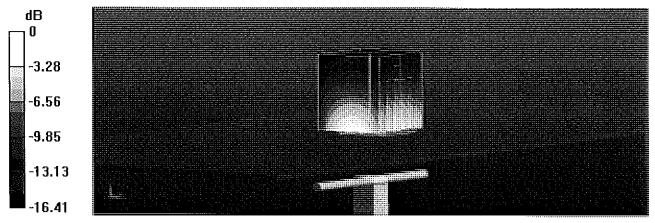
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

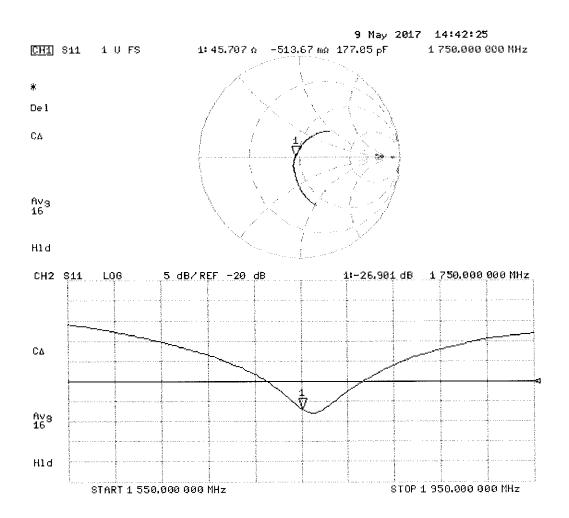
• DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.49 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 15.9 W/kg


SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg

Maximum value of SAR (measured) = 13.1 W/kg



0 dB = 13.1 W/kg = 11.17 dBW/kg

## Impedance Measurement Plot for Body TSL



## PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



## **Certification of Calibration**

Object D1750V2 – SN: 1148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 09, 2018

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017   | Annual       | 6/1/2018   | MY53401181    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 2/9/2018   | Annual       | 2/9/2019   | 1272          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 6/21/2017  | Annual       | 6/21/2018  | 1333          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 9/12/2017  | Annual       | 9/12/2018  | 1091          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 9/18/2017  | Annual       | 9/18/2018  | 3287          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 2/13/2018  | Annual       | 2/13/2019  | 3213          |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1339018       |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 4/18/2018  | Annual       | 4/18/2019  | MY47420800    |
| Mini-Circuits         | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | PE2209-10 | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 9/14/2017  | Annual       | 9/14/2018  | US39170118    |
| Pasternack            | NC-100    | Torque Wrench                                           | 4/18/2018  | Annual       | 4/18/2019  | 1445          |
| Anritsu               | ML2495A   | Power Meter                                             | 10/22/2017 | Annual       | 10/22/2018 | 941001        |

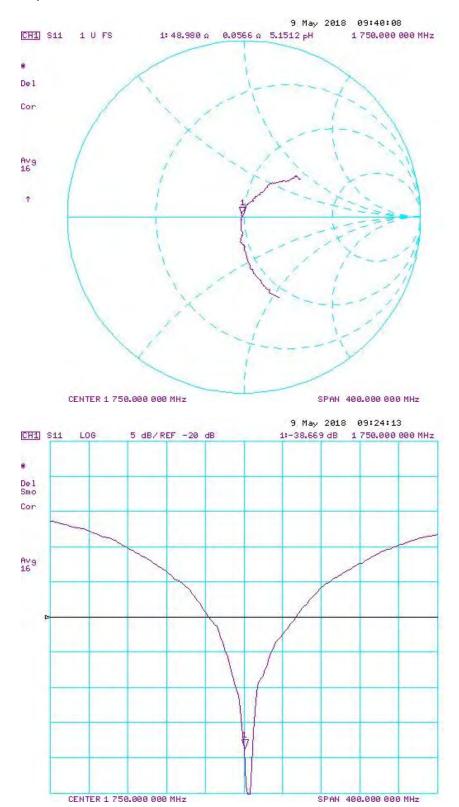
## Measurement Uncertainty = ±23% (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 20K               |

| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1148 | 05/09/2018   | Page 1 of 4 |

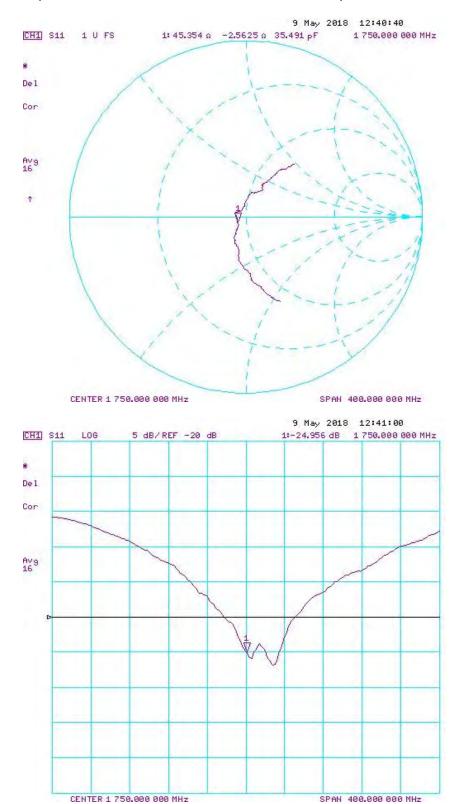
#### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Date                | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (1g)<br>W/kg @ 20.0<br>dBm | Head SAR (1g) | (%)    | VV/kg @ 20.0<br>dBm                                           | (10g) W/kg @<br>20.0 dBm |                      | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Head (dB)                               | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|---------------------------------|---------------|--------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 5/9/2017            | 5/9/2018       | 1.223                                   | 3.64                            | 3.59          | -1.37% | 1.93                                                          | 1.91                     | -1.04%               | 49.8                                           | 49.0                                        | 0.8                      | -0.7                                                | 0.1                                              | 0.8                              | -42.9                                   | -38.7                                | 9.90%         | PASS      |
|                     |                |                                         |                                 |               |        |                                                               |                          |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Mar @ 20 0    | (9/.)  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @             | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 5/9/2017            | 5/9/2018       | 1.223                                   | 3.7                             | 3.88          | 4.86%  | 1.98                                                          | 2.06                     | 4.04%                | 45.7                                           | 45.4                                        | 0.3                      | -0.5                                                | -2.6                                             | 2.1                              | -26.9                                   | -25.0                                | 7.20%         | PASS      |


| Object:            | Date Issued: | Page 2 of 4 |  |
|--------------------|--------------|-------------|--|
| D1750V2 – SN: 1148 | 05/09/2018   | raye 2 01 4 |  |

## Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 3 of 4 |  |
|--------------------|--------------|-------------|--|
| D1750V2 – SN: 1148 | 05/09/2018   | rage 3 01 4 |  |

# Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1148 | 05/09/2018   | Page 4 of 4 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-719\_Aug17

# **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN:719

Calibration procedure(s)

QA CAL-05.v9 (3) A. 42-1 (444-4) (44-4)

Calibration procedure for dipole validation kits above 700 MHz

8/27/17

Extended

Calibration date:

August 17, 2017 (1995) 17 (1995) 18 (1995) 1995

7/19/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)         | Apr-18                 |
| Reference 20 d8 Attenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529)         | Apr-18                 |
| Reference Probe EX3DV4      | SN: 7349           | 31-May-17 (No. EX3-7349_May17)    | May-18                 |
| DAE4                        | SN: 601            | 28-Mar-17 (No. DAE4-601_Mar17)    | Mar-18                 |
| Secondary Standards         | 1D #               | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | în house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16) | in house check: Oct-17 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Michael Weber      | Laboratory Technician             | H.Hebes                |
| Approved by:                | Katja Pokovic      | Technical Manager                 | All H                  |

Issued: August 17, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-719\_Aug17

Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | <b>V</b> 52.10.0 |
|------------------------------|------------------------|------------------|
| Extrapolation                | Advanced Extrapolation |                  |
| Phantom                      | Modular Flat Phantom   |                  |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer      |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |                  |
| Frequency                    | 2450 MHz ± 1 MHz       |                  |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.8 ± 6 %   | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.3 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 51.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.15 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.3 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.9 ± 6 %   | 2.03 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR result with Body TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.8 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 50.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.00 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.7 W/kg ± 16.5 % (k=2) |

Certificate No: D2450V2-719\_Aug17

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | $55.7 \Omega + 7.0 j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 21.4 dB                   |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 51.4 Ω + 8.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.8 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.150 ns |
|----------------------------------|----------|
|                                  | <u> </u> |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 10, 2002 |

#### **DASY5 Validation Report for Head TSL**

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.86$  S/m;  $\epsilon_r = 37.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

• Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;

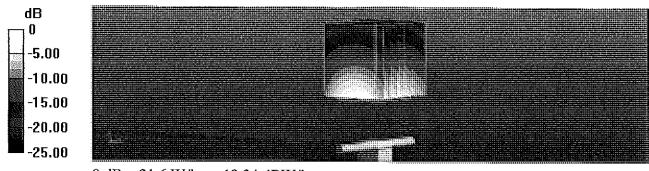
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

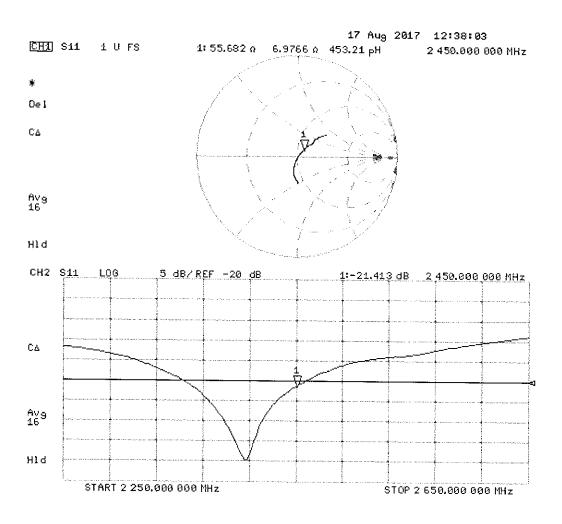
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 21.6 W/kg



0 dB = 21.6 W/kg = 13.34 dBW/kg

# Impedance Measurement Plot for Head TSL



# **DASY5 Validation Report for Body TSL**

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.03$  S/m;  $\varepsilon_r = 51.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

• Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;

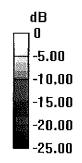
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

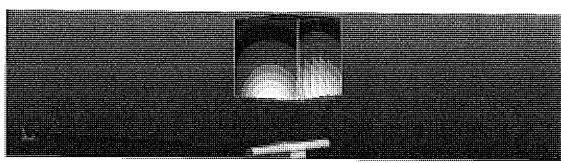
Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

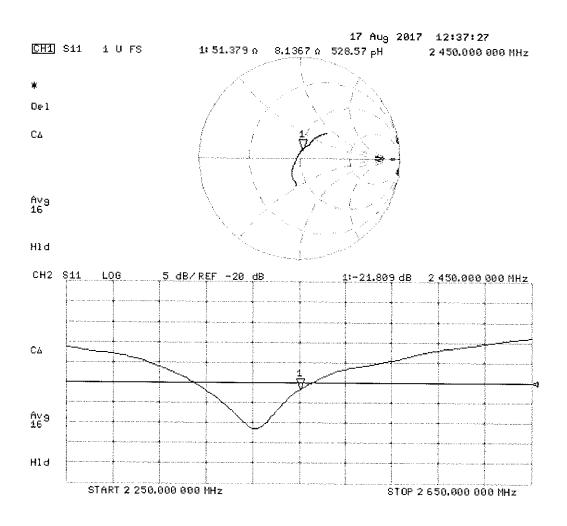
# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 103.0 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 25.2 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg


Maximum value of SAR (measured) = 19.8 W/kg





0 dB = 19.8 W/kg = 12.97 dBW/kg

# Impedance Measurement Plot for Body TSL



### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D2450V2 – SN: 719

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: 07/18/2018

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | E4438C    | ESG Vector Signal Generator                             | 3/24/2017  | Biennial     | 3/24/2019  | MY42082385    |
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 9/14/2017  | Annual       | 9/14/2018  | US39170118    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Anritsu               | ML2495A   | Power Meter                                             | 11/28/2017 | Annual       | 11/28/2018 | 1039008       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 11/15/2017 | Annual       | 11/15/2018 | 1339007       |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annual       | 6/4/2019   | MY53401181    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2209-10 | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | PE5011-1  | Torque Wrench                                           | 7/19/2017  | Biennial     | 7/19/2019  | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/7/2018   | Annual       | 3/7/2019   | 1368          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 8/9/2017   | Annual       | 8/9/2018   | 1323          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 9/12/2017  | Annual       | 9/12/2018  | 1091          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/13/2018  | Annual       | 3/13/2019  | 3319          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 8/14/2017  | Annual       | 8/14/2018  | 3332          |

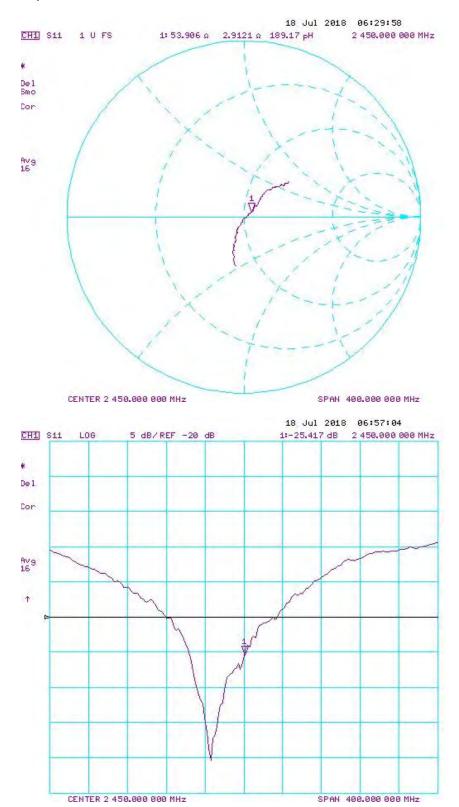
#### Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 30K               |

| Object:           | Date Issued: | Dogo 1 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 719 | 07/18/2018   | Page 1 of 4 |

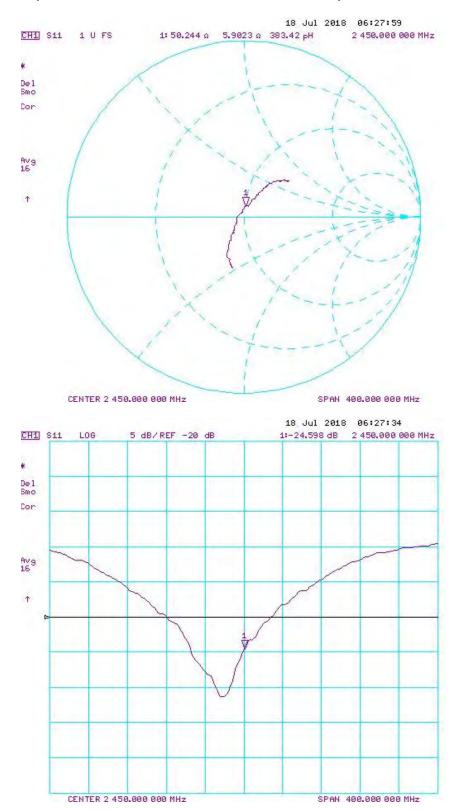
#### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Date                | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (1g)<br>W/kg @ 20.0<br>dBm | dBm           | (%)   | VV/kg @ 20.0<br>dBm                                           | (10g) W/kg @<br>20.0 dBm |                      | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|---------------------------------|---------------|-------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 8/17/2017           | 7/18/2018      | 1.150                                   | 5.19                            | 5.46          | 5.20% | 2.43                                                          | 2.51                     | 3.29%                | 55.7                                           | 53.9                                        | 1.8                      | 7.0                                                 | 2.9                                              | 4.1                              | -21.4                                   | -25.4                                | -18.70%       | PASS      |
|                     |                |                                         |                                 |               |       |                                                               |                          |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Body SAR (1g) | (9/)  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @             | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 8/17/2017           | 7/18/2018      | 1.150                                   | 5.01                            | 5.19          | 3.59% | 2.37                                                          | 2.38                     | 0.42%                | 51.4                                           | 50.2                                        | 1.2                      | 8.1                                                 | 5.9                                              | 2.2                              | -21.8                                   | -24.6                                | -12.80%       | PASS      |


| Object:           | Date Issued: | Dogo 2 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 719 | 07/18/2018   | Page 2 of 4 |

### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:           | Date Issued: | Dogo 2 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 719 | 07/18/2018   | Page 3 of 4 |

# Impedance & Return-Loss Measurement Plot for Body TSL



| Object:           | Date Issued: | Dogo 4 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 719 | 07/18/2018   | Page 4 of 4 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

**PC** Test

Certificate No: D2600V2-1004\_Apr18

# CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1004

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN 15-01-20

Calibration date:

April 11, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                 |
| Reference Probe EX3DV4      | SN: 7349           | 30-Dec-17 (No. EX3-7349_Dec17)    | Dec-18                 |
| DAE4                        | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)    | Oct-18                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Michael Weber      | Laboratory Technician             | MIGHT                  |
|                             |                    |                                   |                        |
| Approved by:                | Katja Pokovic      | Technical Manager                 | 1016                   |
|                             |                    |                                   |                        |

Issued: April 12, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1004\_Apr18

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1004\_Apr18

Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation | ·           |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |

**Head TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.8 ± 6 %   | 2.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.3 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 55.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.35 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.1 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.1 ± 6 %   | 2.19 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR result with Body TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.8 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 54.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.20 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.7 W/kg ± 16.5 % (k=2) |

Certificate No: D2600V2-1004\_Apr18 Page 3 of 8

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 47.7 Ω - 5.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.1 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 46.0 Ω - 3.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.9 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | ļ | 1.149 ns |
|----------------------------------|---|----------|
|                                  |   |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | December 23, 2006 |

#### **DASY5 Validation Report for Head TSL**

Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.03 \text{ S/m}$ ;  $\varepsilon_r = 37.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;

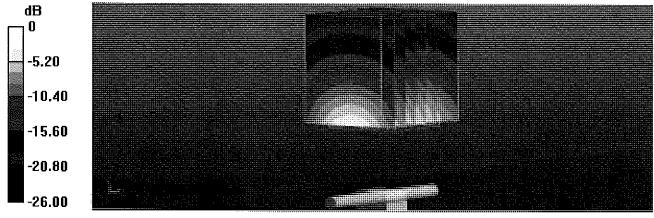
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

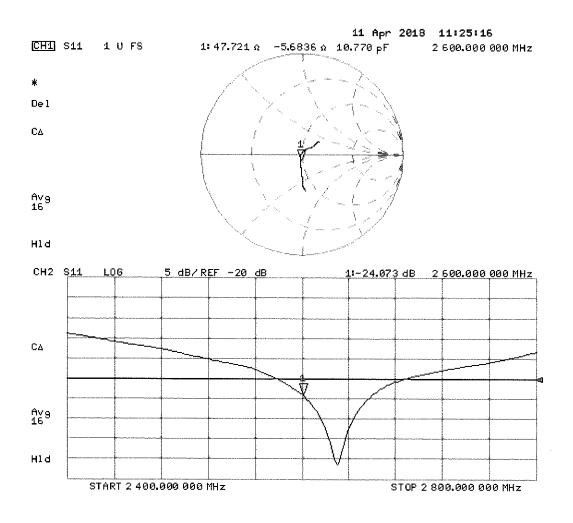
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.5 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.6 W/kg


SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 23.9 W/kg



0 dB = 23.9 W/kg = 13.78 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.19 \text{ S/m}$ ;  $\varepsilon_r = 52.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;

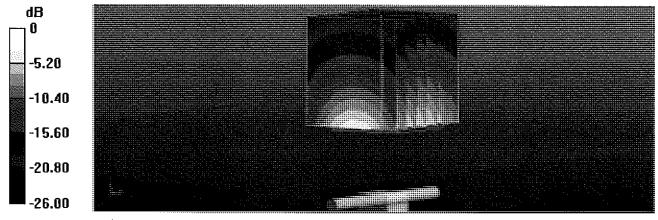
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

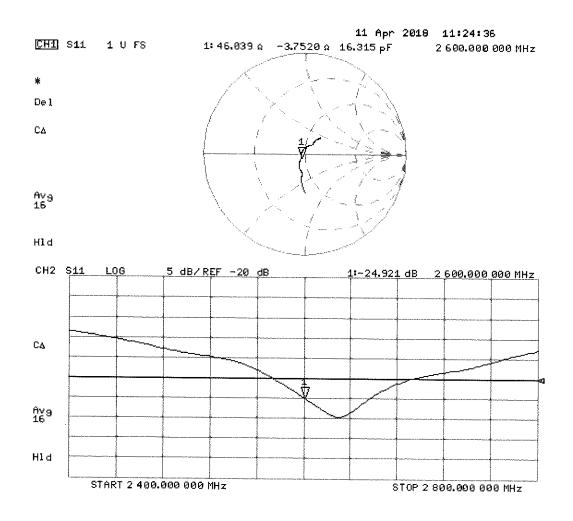
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.5 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 28.3 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 22.9 W/kg



0 dB = 22.9 W/kg = 13.60 dBW/kg

# Impedance Measurement Plot for Body TSL



# Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Cilent

**PC Test** 

Certificate No: D2600V2-1064\_Jun17

### **CALIBRATION CERTIFICATE**

Object

D2600V2 - SN:1064

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

June 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)         | Apr-18                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529)         | Apr-18                 |
| Reference Probe EX3DV4      | SN: 7349           | 31-Dec-16 (No. EX3-7349_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601            | 28-Mar-17 (No. DAE4-601_Mar17)    | Mar-18                 |
|                             | ,                  |                                   | •                      |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check; Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Johannes Kurikka   | Laboratory Technician             | mua un                 |
|                             |                    |                                   |                        |
| Approved by:                | Katja Pokovic      | Technical Manager                 | C. U.S.                |
|                             |                    |                                   |                        |

issued: June 8, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

**TSL** 

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation | -           |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.3 ± 6 %   | 2.02 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 14.6 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 57.0 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.46 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.5 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |  |  |
|-----------------------------------------|-----------------|--------------|------------------|--|--|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |  |  |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.7 ± 6 %   | 2.22 mho/m ± 6 % |  |  |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |  |  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.9 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 54.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 6.15 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 24.4 W/kg ± 16.5 % (k=2) |

Certificate No: D2600V2-1064\_Jun17 Page 3 of 8

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.4 Ω - 6.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.9 dB       |

### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 46.4 Ω - 4.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.0 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.151 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 14, 2012 |

#### **DASY5 Validation Report for Head TSL**

Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.02 \text{ S/m}$ ;  $\varepsilon_r = 37.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;

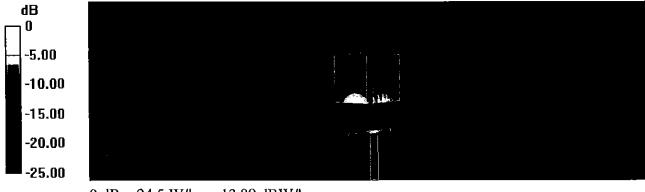
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

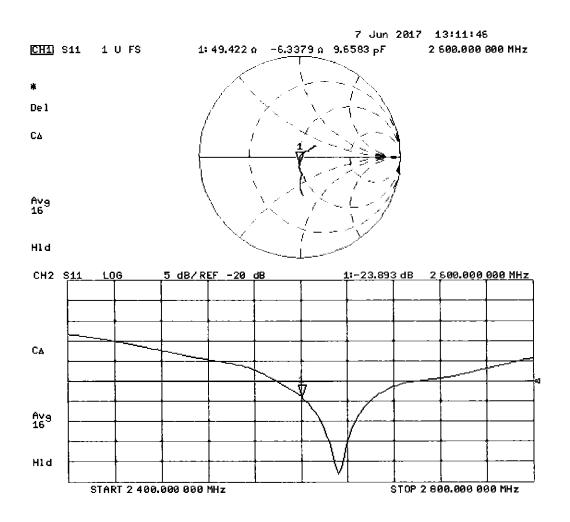
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.9 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.46 W/kg

Maximum value of SAR (measured) = 24.5 W/kg



# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.22 \text{ S/m}$ ;  $\varepsilon_r = 51.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;

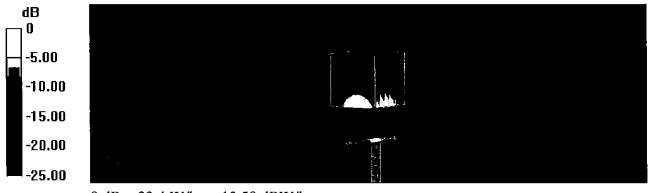
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

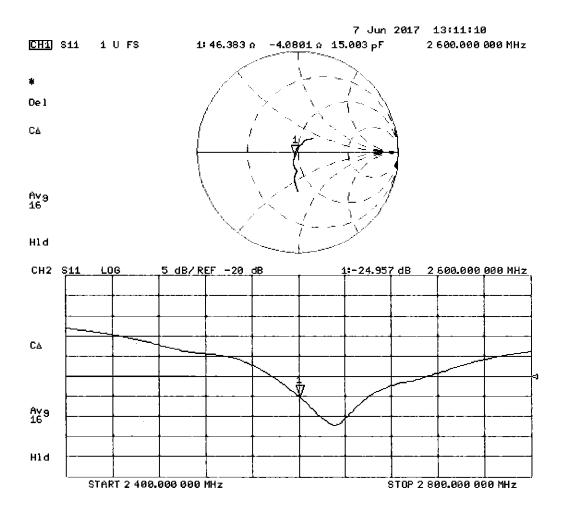
• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.9 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 22.4 W/kg



# Impedance Measurement Plot for Body TSL



### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D2600V2 – SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: 06/04/2018

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

| Manufacturer          | Model                                          | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|------------------------------------------------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | E4438C                                         | ESG Vector Signal Generator                             | 3/24/2017  | Biennial     | 3/24/2019  | MY42082385    |
| Agilent               | 8753ES                                         | S-Parameter Network Analyzer                            | 9/14/2017  | Annual       | 9/14/2018  | US39170118    |
| Amplifier Research    | 15S1G6                                         | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Anritsu               | ML2495A                                        | Power Meter                                             | 11/28/2017 | Annual       | 11/28/2018 | 1039008       |
| Anritsu               | MA2411B                                        | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1207364       |
| Anritsu               | MA2411B                                        | Pulse Power Sensor                                      | 11/15/2017 | Annual       | 11/15/2018 | 1339007       |
| Control Company       | rol Company 4040 Therm./Clock/Humidity Monitor |                                                         | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | ontrol Company 4352 Ultra Long Ster            |                                                         | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Keysight              | Keysight 772D Dual Directional C               |                                                         | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E                                         | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annual       | 6/4/2019   | MY53401181    |
| Mini-Circuits         | BW-N20W5+                                      | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | NLP-2950+                                      | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3                                         | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2209-10                                      | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | PE5011-1                                       | Torque Wrench                                           | 7/19/2017  | Biennial     | 7/19/2019  | N/A           |
| SPEAG                 | DAE4                                           | Dasy Data Acquisition Electronics                       | 6/21/2017  | Annual       | 6/21/2018  | 1333          |
| SPEAG                 | DAE4                                           | Dasy Data Acquisition Electronics                       | 3/7/2018   | Annual       | 3/7/2019   | 1368          |
| SPEAG                 | DAKS-3.5                                       | Portable Dielectric Assessment Kit                      | 7/11/2017  | Annual       | 7/11/2018  | 1039          |
| SPEAG                 | ES3DV3                                         | SAR Probe                                               | 8/14/2017  | Annual       | 8/14/2018  | 3332          |
| SPEAG                 | ES3DV3                                         | SAR Probe                                               | 3/13/2018  | Annual       | 3/13/2019  | 3319          |

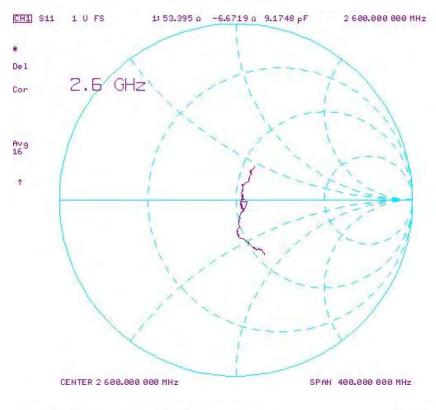
#### Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 304               |

| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1064 | 06/04/2018   | Page 1 of 4 |

#### **DIPOLE CALIBRATION EXTENSION**

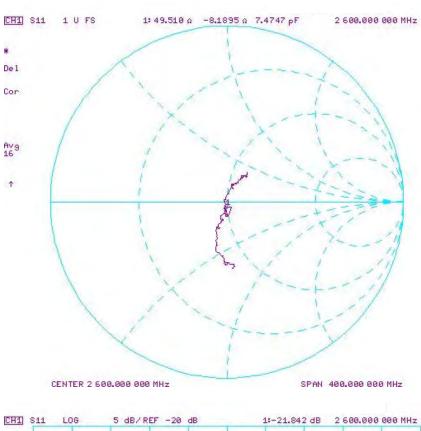
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Date                | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | W/kg @ 20.0<br>dBm | (10g) W/kg @<br>20.0 dBm |                      | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|-------|--------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/7/2017            | 6/4/2018       | 1.151                                   | 5.70                            | 5.71                                            | 0.18% | 2.55               | 2.51                     | -1.57%               | 49.4                                           | 53.4                                        | 4.0                      | -6.3                                                | -6.7                                             | 0.4                              | -23.9                                   | -22.5                                | 5.90%         | PASS      |
|                     |                |                                         |                                 |                                                 |       |                    |                          |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Muli- @ 20.0                                    |       |                    | (40-) M/II (0)           | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/7/2017            | 6/4/2018       | 1.151                                   | 5.47                            | 5.65                                            | 3.29% | 2.44               | 2.48                     | 1.64%                | 46.4                                           | 49.5                                        | 3.1                      | -4.1                                                | -8.2                                             | 4.1                              | -25.0                                   | -21.8                                | 12.80%        | PASS      |

| Object:            | Date Issued: | Dogo 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1064 | 06/04/2018   | Page 2 of 4 |


### Impedance & Return-Loss Measurement Plot for Head TSL





| Object:            | Date Issued: | Dago 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1064 | 06/04/2018   | Page 3 of 4 |

# Impedance & Return-Loss Measurement Plot for Body TSL





| Object:            | Date Issued: | Dogo 4 of 4 |
|--------------------|--------------|-------------|
| D2600V2 - SN: 1064 | 06/04/2018   | Page 4 of 4 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D3500V2-1055\_Aug18

# **CALIBRATION CERTIFICATE**

Object

D3500V2 - SN:1055

Calibration procedure(s)

QA CAL-22.v3

Calibration procedure for dipole validation kits between 3-6 GHz

3/31/2018

Calibration date:

August 15, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                 |
| Reference Probe EX3DV4          | SN: 3503           | 30-Dec-17 (No. EX3-3503_Dec17)    | Dec-18                 |
| DAE4                            | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)    | Oct-18                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Michael Weber      | Laboratory Technician             | // <b>//</b> //        |
| Approved by:                    | Katja Pokovic      | Technical Manager                 |                        |

Issued: August 15, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3500V2-1055\_Aug18

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                        | V52.10.1                         |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       |                                  |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 10 mm                        | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3500 MHz ± 1 MHz             |                                  |

### **Head TSL parameters**

The following parameters and calculations were applied.

| g parameter and a second secon | Temperature     | Permittivity | Conductivity     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.0 °C         | 37.9         | 2.91 mho/m       |
| Measured Head TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (22.0 ± 0.2) °C | 38.1 ± 6 %   | 2.93 mho/m ± 6 % |
| Head TSL temperature change during test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.68 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 66.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.53 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 25.3 W/kg ± 19.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.3         | 3.31 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 49.8 ± 6 %   | 3.34 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.52 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 64.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.43 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.1 W/kg ± 19.5 % (k=2) |

Certificate No: D3500V2-1055\_Aug18 Page 3 of 8

# Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.0 Ω - 3.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.4 dB       |

### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 53.8 Ω - 3.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.3 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.131 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | January 20, 2017 |

Certificate No: D3500V2-1055\_Aug18 Page 4 of 8

# **DASY5 Validation Report for Head TSL**

Date: 15.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1055

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz;  $\sigma = 2.93 \text{ S/m}$ ;  $\varepsilon_r = 38.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.8, 7.8, 7.8) @ 3500 MHz; Calibrated: 30.12.2017

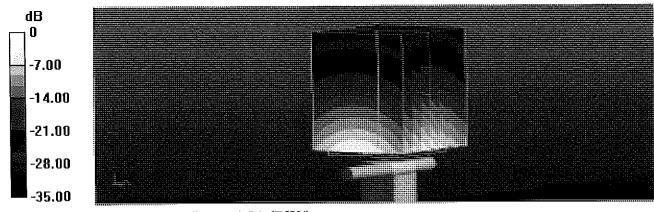
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

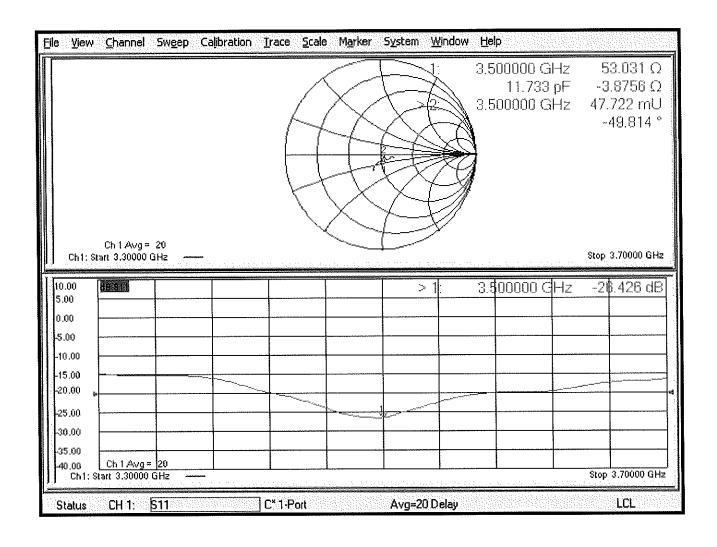
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.79 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.2 W/kg


SAR(1 g) = 6.68 W/kg; SAR(10 g) = 2.53 W/kg

Maximum value of SAR (measured) = 12.7 W/kg



0 dB = 12.7 W/kg = 11.04 dBW/kg

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 15.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1055

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz;  $\sigma = 3.34 \text{ S/m}$ ;  $\varepsilon_r = 49.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.43, 7.43, 7.43) @ 3500 MHz; Calibrated: 30.12.2017

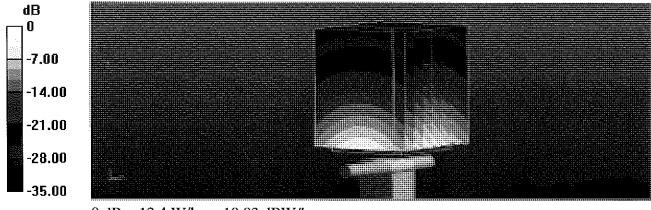
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

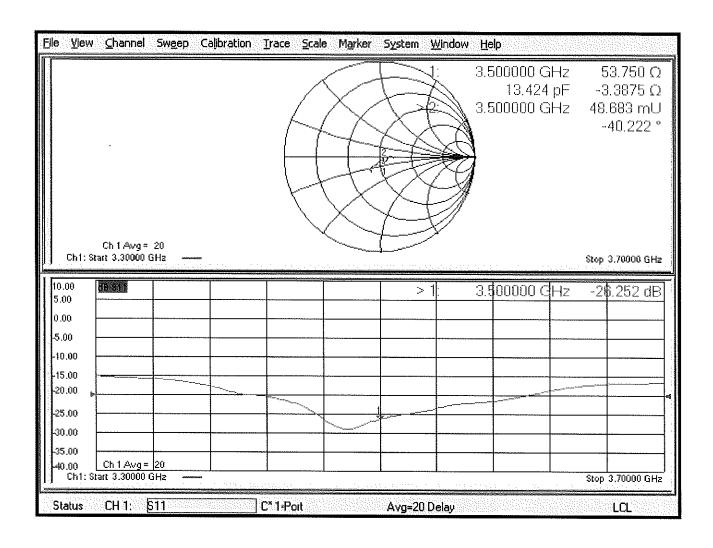
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.22 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.8 W/kg


SAR(1 g) = 6.52 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 12.4 W/kg



0 dB = 12.4 W/kg = 10.93 dBW/kg

# **Impedance Measurement Plot for Body TSL**



# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D3700V2-1002\_Sep18

# **CALIBRATION CERTIFICATE**

Object

D3700V2 - SN:1002

Calibration procedure(s)

**QA CAL-22.v3** 

Calibration procedure for dipole validation kits between 3-6 GHz

SC 9/21/2018

Calibration date:

September 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards                        | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|------------------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                          | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91                     | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91                     | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator               | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Type-N mismatch combination              | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                 |
| Reference Probe EX3DV4                   | SN: 3503           | 30-Dec-17 (No. EX3-3503_Dec17)    | Dec-18                 |
| DAE4                                     | SN: 601            | 26-Oct-17 (No. DAE4-601_Oct17)    | Oct-18                 |
| Secondary Standards                      | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A                     | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A                    | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A                    | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06                  | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer Agilent E8358A          | SN; US41080477     | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 |
|                                          | Name               | Function                          | Signature              |
| Calibrated by:                           | Manu Seitz         | Laboratory Technician             |                        |
|                                          |                    |                                   |                        |
| Approved by:                             | Katja Pokovic      | Technical Manager                 | DOUL                   |
| 18-00-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |                    |                                   |                        |

Issued: September 14, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3700V2-1002\_Sep18

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1002\_Sep18 Page 2 of 8

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                        | V52.10.1                         |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       |                                  |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 10 mm                        | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3700 MHz ± 1 MHz             |                                  |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.7         | 3.12 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.4 ± 6 %   | 3.06 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 7777         |                  |

### **SAR** result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 6.77 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 67.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.46 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 24.6 W/kg ± 19.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.0         | 3.55 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 49.5 ± 6 %   | 3.50 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR result with Body TSL**

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 6.52 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 65.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.32 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.1 W/kg ± 19.5 % (k=2) |

Certificate No: D3700V2-1002\_Sep18 Page 3 of 8

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 48.9 Ω - 8.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.7 dB       |

# **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 48.3 Ω - 5.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.1 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.134 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 26, 2002 |

Certificate No: D3700V2-1002\_Sep18 Page 4 of 8

### **DASY5 Validation Report for Head TSL**

Date: 13.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1002

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz;  $\sigma = 3.06 \text{ S/m}$ ;  $\varepsilon_r = 37.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.5, 7.5, 7.5) @ 3700 MHz; Calibrated: 30.12.2017

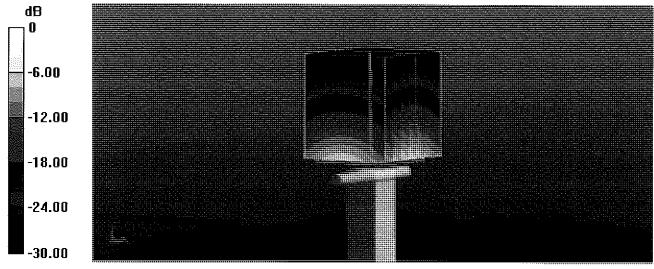
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

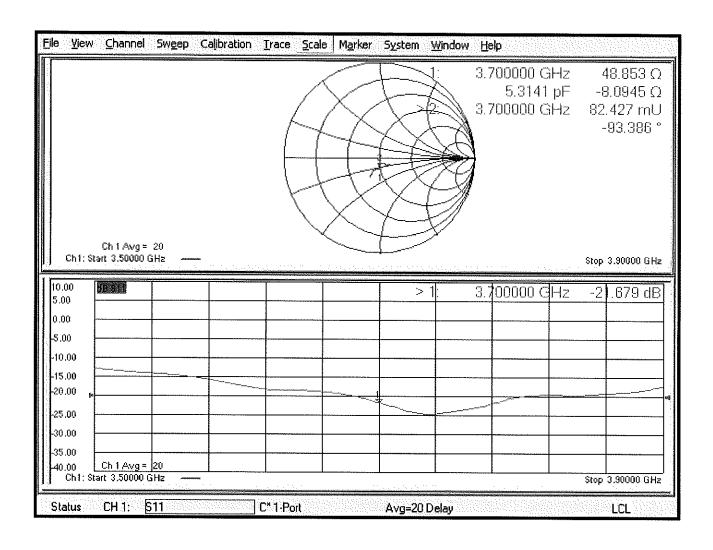
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.67 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 19.7 W/kg


SAR(1 g) = 6.77 W/kg; SAR(10 g) = 2.46 W/kg

Maximum value of SAR (measured) = 13.6 W/kg



0 dB = 13.6 W/kg = 11.34 dBW/kg

# Impedance Measurement Plot for Head TSL



# **DASY5 Validation Report for Body TSL**

Date: 12.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1002

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz;  $\sigma = 3.5 \text{ S/m}$ ;  $\varepsilon_r = 49.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### **DASY52 Configuration:**

Probe: EX3DV4 - SN3503; ConvF(7.28, 7.28, 7.28) @ 3700 MHz; Calibrated: 30.12.2017

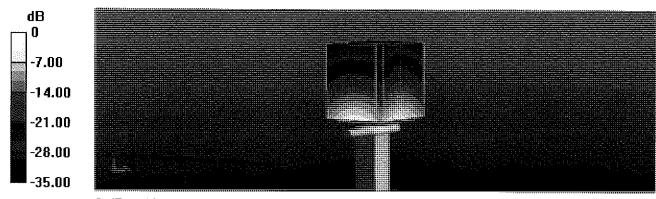
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10,2017

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

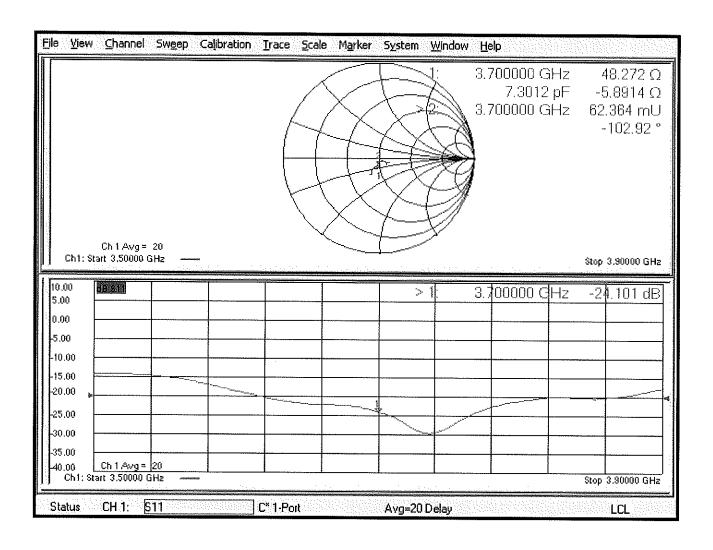
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

# Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.34 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 18.9 W/kg


SAR(1 g) = 6.52 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 12.9 W/kg



0 dB = 12.9 W/kg = 11.11 dBW/kg

# Impedance Measurement Plot for Body TSL



### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the eignatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D5GHzV2-1191\_Sep16

# **CALIBRATION CERTIFICATE**

Object

D5GHzV2 - SN:1191

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

September 21, 2016

BNV WOON 3-6 GHz 09-28-2016 Extended PMV 9/20/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Арт-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 08-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Altenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 3503           | 30-Jun-16 (No. EX3-3503_Jun16)    | Jun-17                 |
| DAE4                        | SN: 601            | 30-Dec-15 (No. DAE4-601_Dec15)    | Dec-16                 |
|                             | l                  |                                   |                        |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (No. 217-02223)         | In house check: Oct-16 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-15) | in house check: Oct-16 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Leif Klysner       | Laboratory Technician             | Sid 4/4                |
|                             |                    |                                   | and large              |
| Approved by:                | Katja Pokovic      | Technical Manager                 | Elle-                  |
|                             |                    |                                   |                        |

Issued: September 22, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1191\_Sep16

Page 1 of 13

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swisa Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

### Glossary:

T\$L

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

**Measurement Conditions** 

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.8.8                          |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0  mm, dz = 1.4  mm                           | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

Head TSL parameters at 5250 MHz
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22,0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.5 ± 6 %   | 4.59 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | lan del 30 est   |

### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.96 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 78.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.29 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.6 W/kg ± 19.5 % (k≕2) |

Head TSL parameters at 5600 MHz
The following parameters and calculations were applied.

| -                                       | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5,07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 4.93 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8,45 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.6 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.41 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.8 W/kg ± 19.5 % (k=2) |

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity       | Conductivity     |
|-----------------------------------------|-----------------|--------------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4               | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.8 ± 6 %         | 5,08 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | \$4.500 mile mile. |                  |

# SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.99 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.27 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.4 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5,36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.4 ± 6 %   | 5.52 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ****         | Ja Ne de Ar      |

# SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.74 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 77.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.17 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.6 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

| The following persons and the first state of the fi | Temperature     | Permittivity | Conductivity     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 6.00 mho/m ± 6 % |
| Body TSL temperature change during test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.5 °C        | 10.10.00.10  | dat ya yak wal   |

# SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.96 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 79.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.24 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.2 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

| The fellening parents are a fellening parents and a fellening parents are a fellening parents are a fellening parents and a fellening parents are a fe | Temperature     | Permittivity | Conductivity     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.0 °C         | 49.3         | 5.94 mho/m       |
| Measured Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (22.0 ± 0.2) °C | 46.5 ± 6 %   | 6,21 mho/m ± 6 % |
| Body TSL temperature change during test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.5 °C        | мьтя         |                  |

# SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.65 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.14 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.2 W/kg ± 19.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 55.7 Ω - 4.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.4 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 58.3 Ω - 3.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.8 dB       |

### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 58.1 Ω + 4.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.2 dB       |

# Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 56.1 Ω - 3.7 ]Ω |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.4 dB       |

### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 58.9 Ω - 1.7 ]Ω |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.7 dB       |

# Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 59.5 Ω + 6.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 19.4 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.204 ns |
|----------------------------------|----------|
| Electrical Delay (one direction) |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 28, 2003 |

Certificate No: D5GHzV2-1191\_Sep16

### **DASY5 Validation Report for Head TSL**

Date: 21,09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 4.59$  S/m;  $\varepsilon_r = 34.5$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 4.93$  S/m;  $\varepsilon_r = 34$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5750 MHz;  $\sigma = 5.08$  S/m;  $\varepsilon_r = 33.8$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 ~ SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.49 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

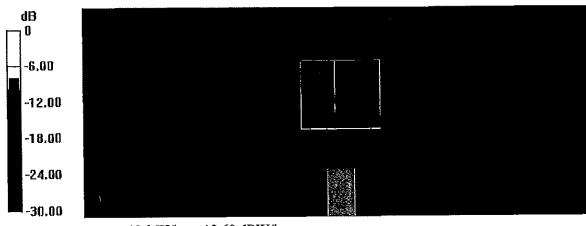
Reference Value = 69.34 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.9 W/kg

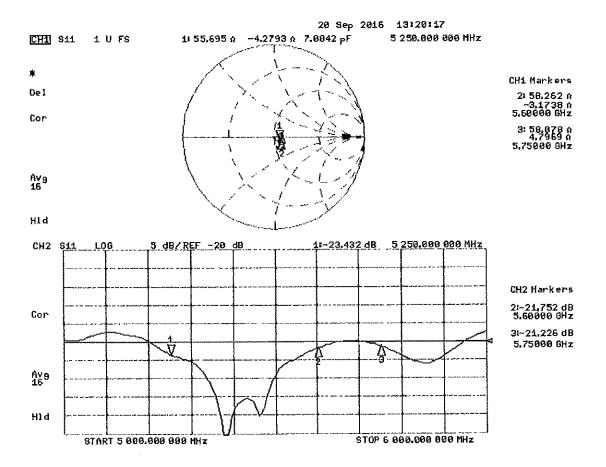
SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid; dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.15 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.3 W/kg



# Impedance Measurement Plot for Head TSL



# **DASY5 Validation Report for Body TSL**

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 5.52$  S/m;  $\epsilon_r = 47.4$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 6$  S/m;  $\epsilon_r = 46.8$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5750 MHz;  $\sigma = 6.21$  S/m;  $\epsilon_r = 46.5$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.49 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

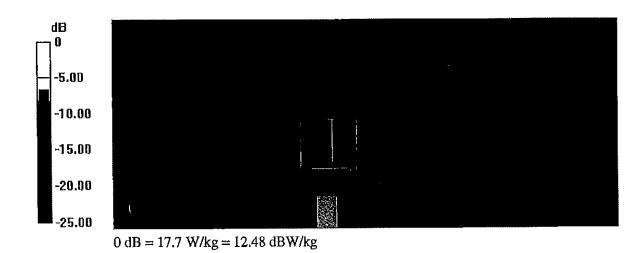
Reference Value = 65.85 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.5 W/kg

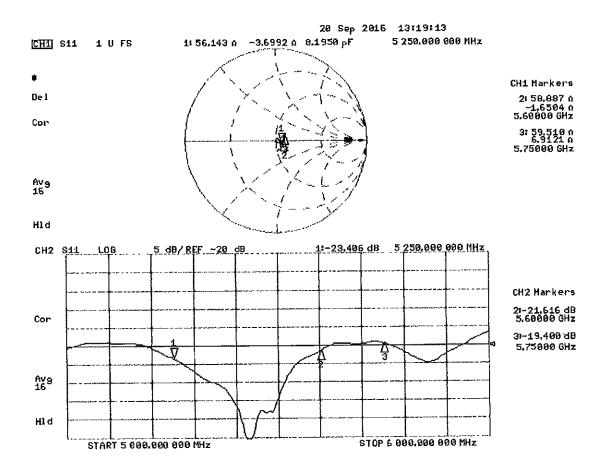
SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.21 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.5 W/kg



# Impedance Measurement Plot for Body TSL



# PCTEST

# PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object

D5GHzV2 - SN: 1191

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date:

9/19/2017

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Bienniai     | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | СВТ        | 433971        |
| Narda                 | 4772-3    | Attenuator (3d8)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight              | 7720      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017   | Annual       | 6/1/2018   | MY53401181    |
| Aglient 8753ES        |           | S-Parameter Network Analyzer                            | 10/26/2016 | Annual       | 10/26/2017 | US39170118    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | C8T        | N/A          | CBT        | N/A           |
| SPEAG                 | DAK-3,S   | Dielectric Assessment KIt                               | 5/10/2017  | Annual       | 5/10/2018  | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/13/2017  | Annual       | 1/13/2018  | 3589          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 2/13/2017  | Annual       | 2/13/2018  | 3914          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/16/2017  | Annual       | 1/16/2018  | 1466          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 2/9/2017   | Annual       | 2/9/2018   | 665           |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 2/28/2017  | Annual       | 2/28/2018  | MY47420800    |
| Seekonk               | NC-100    | Torque Wrench                                           | 11/6/2015  | Bienniai     | 11/6/2017  | N/A           |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4014C-6   | 4 - 8 GHz SMA 6 dB Directional Coupler                  | CBT        | N/A          | CBT        | N/A           |

### Measurement Uncertainty = $\pm 23\%$ (k=2)

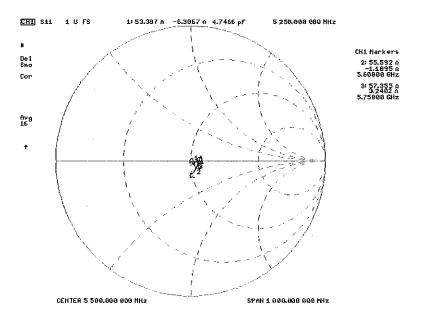
|                | Name              | Function                    | Signature         |  |  |  |
|----------------|-------------------|-----------------------------|-------------------|--|--|--|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BAODIE HALBFOSTER |  |  |  |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 90K               |  |  |  |

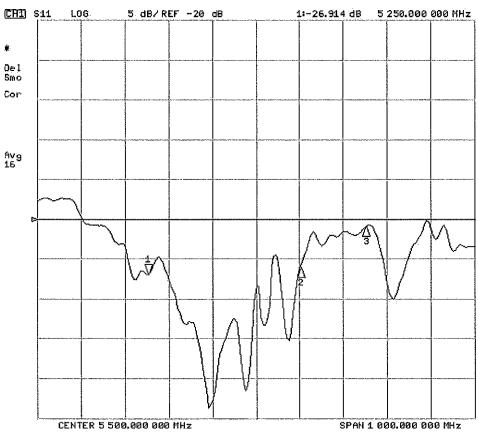
|                  |              |             | ı |
|------------------|--------------|-------------|---|
| Object:          | Date Issued: | Page 1 of 4 |   |
| D5GHzV2 SN: 1191 | 09/19/2017   | Page 1 of 4 | ĺ |

### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

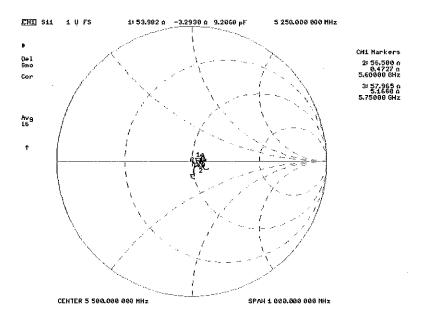

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

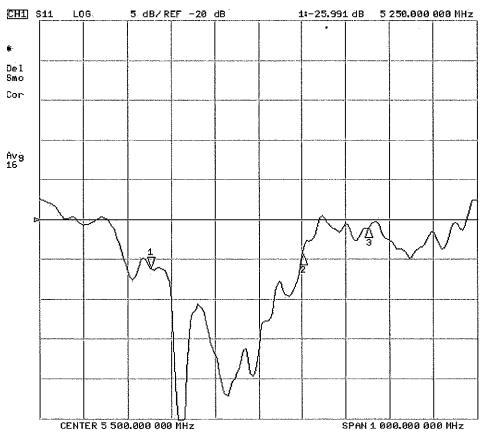

| Frequency<br>(MHz) | Calibration Date | Extension Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Head (1g)<br>W/kg @ 17.0<br>dBm | Measured Head<br>SAR (1a) W/kg | Deviation 1g (%) | Certificate SAR<br>Target Head<br>(10g) W/kg @<br>17.0 dBm | Measured Head<br>SAR (10g) W/kg<br>@ 17.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm) Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|--------------------|------------------|----------------|-----------------------------------------|-----------------------------------------------------------|--------------------------------|------------------|------------------------------------------------------------|-----------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 5250               | 9/21/2016        | 9/19/2017      | 1.204                                   | 3.95                                                      | 3.70                           | -6.21%           | 1.13                                                       | 1.05                                          | -7.08%               | 55.7                                           | 53.4                                        | 2.3                      | 4.3                                                 | -6.4                                             | 2.1                           | -23.4                                   | -26.9                                | -15.00%       | PASS      |
| 5600               | 9/21/2016        | 9/19/2017      | 1.204                                   | 4.18                                                      | 4.03                           | -3.59%           | 1.19                                                       | 1.13                                          | -5.04%               | 58.3                                           | 55.6                                        | 2.7                      | -3.2                                                | -1.2                                             | 2.0                           | -21.8                                   | -26.1                                | -19.80%       | PASS      |
| 5750               | 9/21/2016        | 9/19/2017      | 1.204                                   | 3.96                                                      | 3.94                           | -0.38%           | 1.12                                                       | 1.10                                          | -1.79%               | 58.1                                           | 57.4                                        | 0.7                      | 4.8                                                 | 3.2                                              | 1.6                           | -21.2                                   | -21.0                                | 0.90%         | PASS      |

| Frequency<br>(MHz) | Calibration Date | Extension Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Body (1g)<br>W/kg @ 17.0<br>dBm | Measured Body<br>SAR (1g) W/kg<br>@ 17.0 dBm | Desistion to (%) | Certificate SAR<br>Target Body<br>(10g) W/kg @<br>17.0 dBm | Measured Body<br>SAR (10g) W/kg<br>@ 17.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm) Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) |      |
|--------------------|------------------|----------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------|------------------|------------------------------------------------------------|-----------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------|---------------|------|
| 5250               | 9/21/2016        | 9/19/2017      | 1.204                                   | 3.85                                                      | 3.80                                         | -1.30%           | 1.08                                                       | 1.06                                          | -1.85%               | 56.1                                           | 54.0                                        | 2.1                      | -3.7                                                | -3.3                                             | 0.4                           | -23.4                                   | -26.0                                | -11.10%       | PASS |
| 5600               | 9/21/2016        | 9/19/2017      | 1.204                                   | 3.96                                                      | 4.06                                         | 2.53%            | 1.11                                                       | 1.13                                          | 1.80%                | 58.9                                           | 56.5                                        | 2.4                      | -1.7                                                | 0.5                                              | 2.2                           | -21.7                                   | -24.5                                | -12.80%       | PASS |
| 5750               | 9/21/2016        | 9/19/2017      | 1.204                                   | 3.81                                                      | 3.66                                         | -3.81%           | 1.06                                                       | 1.02                                          | -3.77%               | 59.5                                           | 58.0                                        | 1.5                      | 6.9                                                 | 5.2                                              | 1.7                           | -19.4                                   | -21.1                                | -8.70%        | PASS |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1191 | 09/19/2017   | rage 2 01 4 |

### Impedance & Return-Loss Measurement Plot for Head TSL




CH1 Markers 2:-26.108 dB 5.60000 GHz 3:-21.016 dB 5.75000 GHz

| Object:          | Date Issued: | Page 3 of 4 |
|------------------|--------------|-------------|
| D5GHzV2 SN: 1191 | 09/19/2017   | l ago o o   |

# Impedance & Return-Loss Measurement Plot for Body TSL





CH1 Markers 2:-24.481 dB 5.60000 GHz 3:-21.092 dB 5.75000 GHz

| Object:            | Date Issued: | <b>D</b>    |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1191 | 09/19/2017   | Page 4 of 4 |

# .. PCIL

# PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel, +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object

D5GHzV2 - SN: 1191

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

**Extension Calibration date:** 

9/11/2018

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

| Manufacturer              | Model     | Description                                             | Cal Date   | Cal interval | Cal Due    | Serial Number |
|---------------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company           | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Blennial     | 3/31/2019  | 170232394     |
| Control Company           | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Amplifier Research 155166 |           | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Narda 4772-3              |           | Attenuator (3d8)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight                  | 772D      | Dual Directional Coupler                                | CBT        | N/A          | СВТ        | MY52180215    |
| Keysight Technologies     | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018   | Annual       | 6/4/2019   | MY53401181    |
| Agilent                   | 8753ES    | S-Parameter Vector Network Analyzer                     | 8/30/2018  | Annual       | 8/30/2019  | MY40003841    |
| Mini-Circuits             | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| SPEAG DAK-3.5             |           | Dielectric Assessment Kit                               | 5/15/2018  | Annual       | 5/15/2019  | 1070          |
| SPEAG                     | EX3DV4    | SAR Probe                                               | 6/25/2018  | Annual       | 6/25/2019  | 7409          |
| SPEAG                     | DAE4      | Dasy Data Acquisition Electronics                       | 6/18/2018  | Annual       | 6/18/2019  | 1334          |
| SPEAG                     | EX3DV4    | SAR Probe                                               | 4/18/2018  | Annual       | 4/18/2019  | 7357          |
| SPEAG                     | DAE4      | Dasy Data Acquisition Electronics                       | 4/11/2018  | Annual       | 4/11/2019  | 1407          |
| Anritsu                   | MA2411B   | Pulse Power Sensor                                      | 3/2/2018   | Annua!       | 3/2/2019   | 1207364       |
| Anritsu                   | MA24118   | Pulse Power Sensor                                      | 3/2/2018   | Annual       | 3/2/2019   | 1339018       |
| Anritsu                   | ML2495A   | Power Meter                                             | 10/22/2017 | Annuai       | 10/22/2018 | 1328004       |
| Agilent                   | N5182A    | MXG Vector Signal Generator                             | 4/18/2018  | Annua!       | 4/18/2019  | MY47420800    |
| Seekonk                   | NC-100    | Torque Wrench                                           | 7/11/2018  | Annual       | 7/11/2019  | N/A           |
| MiniCircuits              | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | СВТ        | N/A           |
| Narda                     | 4014C-6   | 4 - 8 GHz SMA 6 dB Directional Coupler                  | CBT        | N/A          | СВТ        | N/A           |

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

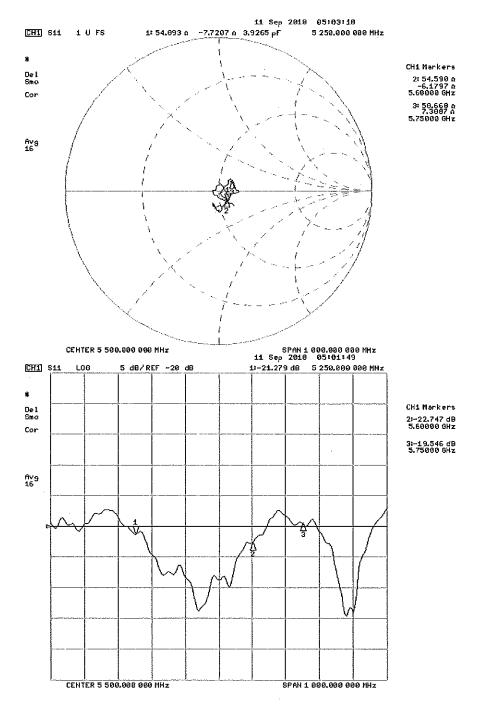
### Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BAOPTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 20K-              |

| Object: | Date Issued: | Page 1 of 4 |
|---------|--------------|-------------|
|         | 09/11/2018   | Page 1 of 4 |

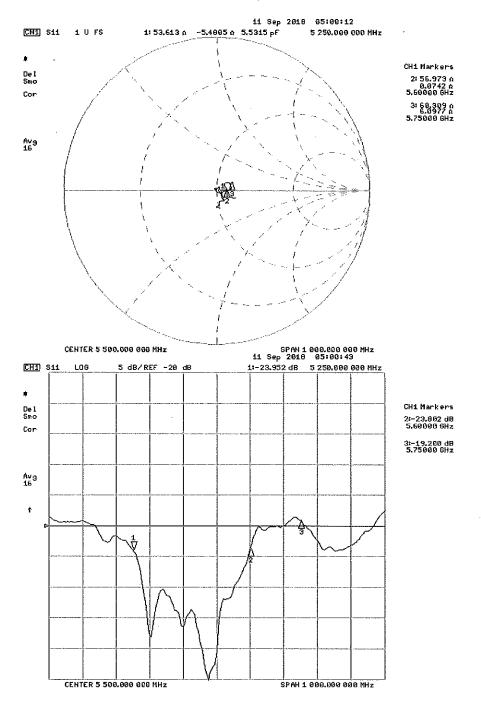
# **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

|                |                            | Delay (ns)              | W/kg @ 17.0<br>dBm              | W/kg @ 17.0<br>dBm        | Deviation 1g<br>(%) | Head (10g)<br>W/kg @ 17.0<br>dBm | (10a) W/ka @                         | Deviation 10g<br>(%) | Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%)        | PASS/FAIL      |
|----------------|----------------------------|-------------------------|---------------------------------|---------------------------|---------------------|----------------------------------|--------------------------------------|----------------------|---------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|----------------------|----------------|
| <b>5250</b> 9/ | 9/21/2016 9/11/2018        | 1/2018 1.204            | 3.945                           | 3.9                       | -1.14%              | 1.13                             | 1.11                                 | -1.77%               | 55.7                            | 54.9                                        | 0.8                      | -4.3                                                | -7.7                                             | 3.4                              | -23.4                                   | -21.3                                | 9.10%                | PASS           |
| 5600 9/        | 9/21/2016 9/11/2018        | 1/2018 1.204            | 4.18                            | 4.19                      | 0.24%               | 1.19                             | 1.18                                 | -0.84%               | 58.3                            | 54.6                                        | 3.7                      | -3.2                                                | -6.2                                             | 3                                | -21.8                                   | -22.7                                | -4.30%               | PASS           |
| <b>5750</b> 9/ | 9/21/2016 9/11/2018        | 1/2018 1.204            | 3.955                           | 3.82                      | -3.41%              | 1.12                             | 1.08                                 | -3.57%               | 58.1                            | 58.7                                        | 0.6                      | 4.8                                                 | 7.4                                              | 2.6                              | -21.2                                   | -19.5                                | 7.80%                | PASS           |
|                | Calibration Extension Date | Certificate             |                                 | Measured<br>Body SAR (1g) | Deviation 1-        | Certificate<br>SAR Target        | Measured                             | D /                  | Certificate                     | Measured                                    | Difference               | Certificate                                         | Measured                                         | Difference                       | Certificate                             | Measured                             |                      |                |
| (MHz)          | Date Extension Date        |                         |                                 | W/kg @ 17.0<br>dBm        | (%)                 | Body (10g)<br>W/kg @ 17.0<br>dBm | Body SAR<br>(10g) W/kg @<br>17.0 dBm | Deviation 10g<br>(%) | Impedance<br>Body (Ohm)<br>Real | Impedance<br>Body (Ohm)<br>Real             | (Ohm) Real               | Impedance<br>Body (Ohm)<br>Imaginary                | Impedance<br>Body (Ohm)<br>Imaginary             | (Ohm)<br>Imaginary               | Return Loss<br>Body (dB)                | Return Loss<br>Body (dB)             | Deviation (%)        | PASS/FAIL      |
| ` ′            | Date 9/21/2016 9/11/2018   | Delay (ns)              | Body (1g)<br>W/kg @ 17.0        | W/kg @ 17.0               | (%)                 | W/kg @ 17.0                      | (10g) W/kg @                         |                      | Body (Ohm)                      | Body (Ohm)                                  |                          | Body (Ohm)                                          | Body (Ohm)                                       |                                  |                                         |                                      | Deviation (%) -2.40% | PASS/FAIL PASS |
| <b>5250</b> 9/ | Date                       | Delay (ns) 1/2018 1.204 | Body (1g)<br>W/kg @ 17.0<br>dBm | W/kg @ 17.0<br>dBm        | (%)                 | W/kg @ 17.0<br>dBm               | (10g) W/kg @<br>17.0 dBm             | (%)                  | Body (Ohm)<br>Real              | Body (Ohm)<br>Real                          | (Ohm) Real               | Body (Ohm)<br>Imaginary                             | Body (Ohm)<br>Imaginary                          | Imaginary                        | Body (dB)                               | Body (dB)                            | , ,                  |                |
| ,              | Date                       | Delay (ns)              | Body (1g)<br>W/kg @ 17.0<br>dBm | W/kg @ 17.0<br>dBm        | (%)                 | W/kg @ 17.0<br>dBm               | (10g) W/kg @<br>17.0 dBm             | (%)                  | Body (Ohm)<br>Real              | Body (Ohm)<br>Real                          | (Ohm) Real               | Body (Ohm)<br>Imaginary                             | Body (Ohm)<br>Imaginary                          | Imaginary                        | Body (dB)                               | Body (dB)                            |                      | , ,            |


| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1191 | 09/11/2018   | Fage 2 01 4 |

#### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1191 | 09/11/2018   | Page 3 of 4 |

### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1191 | 09/11/2018   | Page 4 of 4 |

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: EX3-7409 Jun18

S

# **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:7409

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 25, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-17 (No. ES3-3013_Dec17)    | Dec-18                 |
| DAE4                       | SN: 660          | 21-Dec-17 (No. DAE4-660_Dec17)    | Dec-18                 |
| Secondary Standards        | ID.              | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check; Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer HP 8753E  | SN: US37390585   | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |

Name **Function** Signature Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager

Issued: June 26, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe EX3DV4

SN:7409

Manufactured:

November 24, 2015

Calibrated:

June 25, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7409

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.38     | 0.33     | 0.38     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 100.8    | 102.3    | 97.7     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>t</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | × | 0.0     | 0.0        | 1.0 | 0.00    | 157.1    | ±2.2 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 172.6    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 175.7    |                           |

Note: For details on UID parameters see Appendix.

#### **Sensor Model Parameters**

|          | C1<br>fE | C2<br>fF | α<br>V-1 | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V⁻¹ | T3    | T4<br>V-2 | T5<br>V~1 | Т6    |
|----------|----------|----------|----------|--------------------------|--------------|-------|-----------|-----------|-------|
| <u> </u> |          |          | ٧        | <del></del>              | <b></b>      | ms    | · ·       | ٧         |       |
| Χ        | 15.40    | 116.5    | 36.38    | 2.655                    | 0.140        | 4.978 | 0.000     | 0.017     | 1.008 |
| Y        | 27.94    | 206.6    | 35.20    | 4.338                    | 0.095        | 4.989 | 1.642     | 0.000     | 1.004 |
| Z        | 31.47    | 244.0    | 37.99    | 3.819                    | 0.313        | 5.030 | 0.103     | 0.363     | 1.006 |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7409

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 41.9                                  | 0.89                 | 9.91    | 9.91    | 9.91    | 0.44               | 0.90                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                 | 9.67    | 9.67    | 9.67    | 0.46               | 0.85                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                 | 8.43    | 8.43    | 8.43    | 0.38               | 0.80                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                 | 8.05    | 8.05    | 8.05    | 0.38               | 0.84                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                 | 7.57    | 7.57    | 7.57    | 0.32               | 0.80                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                 | 7.23    | 7.23    | 7,23    | 0.34               | 0.86                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                 | 6.98    | 6.98    | 6.98    | 0.39               | 0.86                       | ± 12.0 %     |
| 5250                 | 35.9                                  | 4.71                 | 5.20    | 5.20    | 5.20    | 0.40               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                                  | 5.07                 | 4.77    | 4.77    | 4.77    | 0.40               | 1.80                       | ± 13.1 %     |
| 5750                 | 35.4                                  | 5.22                 | 4.82    | 4.82    | 4.82    | 0.40               | 1.80                       | ± 13.1 %     |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

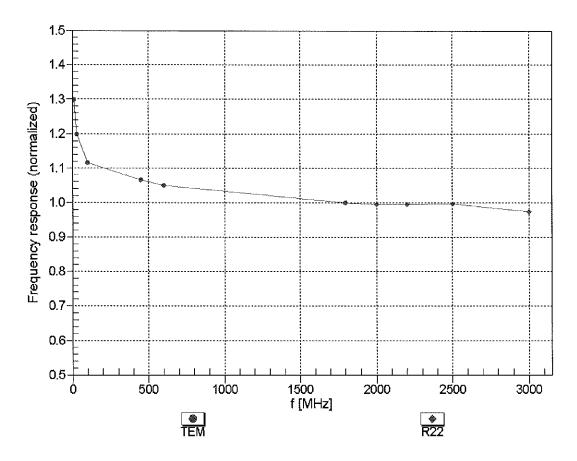
At frequencies below 3 CHz, the contribution of the contribution

At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7409

#### Calibration Parameter Determined in Body Tissue Simulating Media

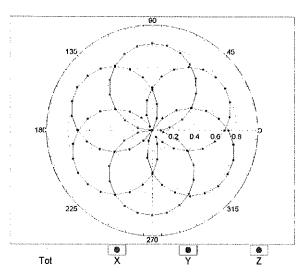

|                      |                                       |                                    |         |         | •       |                    |                            |              |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
| 750                  | 55.5                                  | 0.96                               | 9.82    | 9.82    | 9.82    | 0.52               | 0.84                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                               | 9.63    | 9.63    | 9.63    | 0.48               | 0.80                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                               | 7.91    | 7.91    | 7.91    | 0.36               | 0.93                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                               | 7.60    | 7.60    | 7.60    | 0.44               | 0.80                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81                               | 7.36    | 7.36    | 7.36    | 0.38               | 0.88                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                               | 7.24    | 7.24    | 7.24    | 0.33               | 0.89                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                               | 7.07    | 7.07    | 7.07    | 0.32               | 0.96                       | ± 12.0 %     |
| 5250                 | 48.9                                  | 5.36                               | 4.67    | 4.67    | 4.67    | 0.50               | 1.90                       | ± 13.1 %     |
| 5600                 | 48.5                                  | 5.77                               | 4.25    | 4.25    | 4.25    | 0.50               | 1.90                       | ± 13.1 %     |
| 5750                 | 48.3                                  | 5.94                               | 4.32    | 4.32    | 4.32    | 0.50               | 1.90                       | ± 13.1 %     |

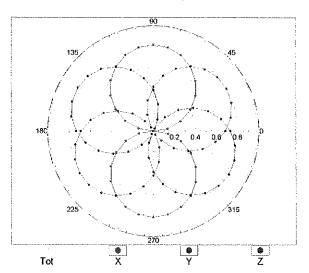
<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

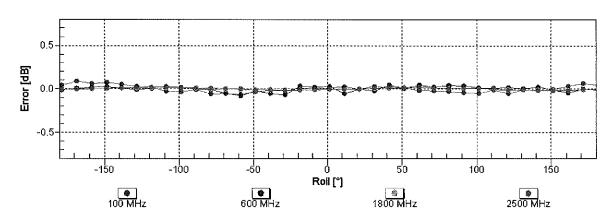
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

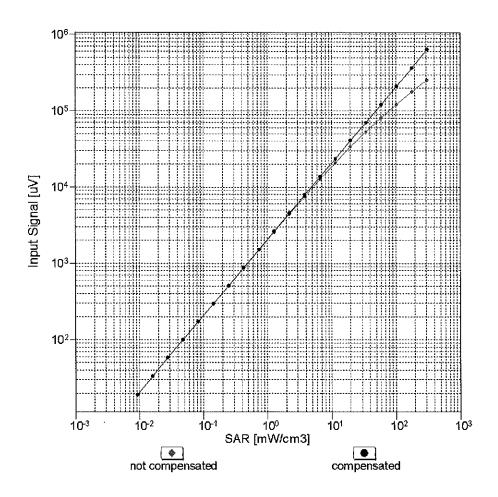


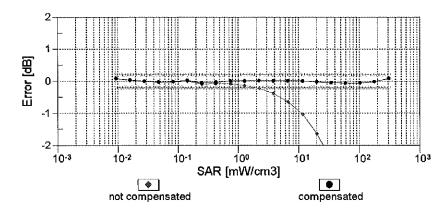


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

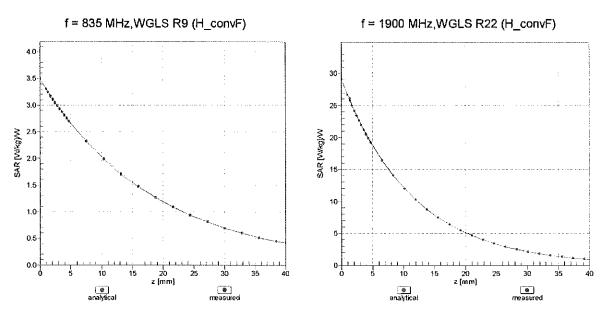
f=1800 MHz,R22



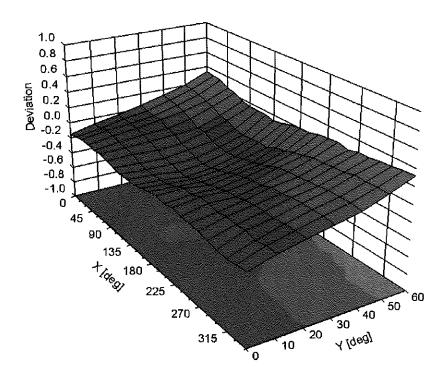



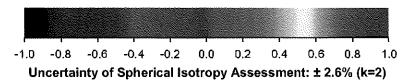



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)







Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



**Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz





## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7409

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 41.5       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Appendix: Modulation Calibration Parameters

| ÜID           | lix: Modulation Calibration Para Communication System Name |        | A<br>dB      | B<br>dBõV       | С             | D<br>dB | VR<br>mV      | Max<br>Unc <sup>E</sup><br>(k=2) |
|---------------|------------------------------------------------------------|--------|--------------|-----------------|---------------|---------|---------------|----------------------------------|
| 0             | CW                                                         | Х      | 0.00         | 0.00            | 1.00          | 0.00    | 157.1         | ± 2.2 %                          |
|               |                                                            | Υ      | 0.00         | 0.00            | 1.00          |         | 172.6         |                                  |
|               |                                                            | Z      | 0.00         | 0.00            | 1.00          |         | 175.7         |                                  |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)                       | X      | 1.25         | 60.42           | 5.97          | 10.00   | 20.0          | ± 9.6 %                          |
|               |                                                            | Υ      | 1.37         | 61.35           | 6.72          |         | 20.0          |                                  |
| 10044         |                                                            | Z      | 1.46         | 61.54           | 7.06          |         | 20.0          |                                  |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                           | X      | 0.71         | 66.47           | 12.38         | 0.00    | 150.0         | ± 9.6 %                          |
|               |                                                            | Y      | 1.49         | 76.31           | 19.52         |         | 150.0         |                                  |
| 40040         | LEEE 000 441 148E 0 4 OU 10 O                              | Z      | 0.80         | 65.38           | 13.27         |         | 150.0         |                                  |
| 10012-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)                   | Х      | 0.97         | 63.61           | 14.22         | 0.41    | 150.0         | ± 9.6 %                          |
|               |                                                            | Y      | 1.14         | 65.32           | 16.39         |         | 150.0         |                                  |
| 40040         | IEEE 000 44 MIEE                                           | Z      | 1.01         | 62.66           | 14.20         |         | 150.0         |                                  |
| 10013-<br>CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps)          | Х      | 3.98         | 66.92           | 16.39         | 1.46    | 150.0         | ±9.6%                            |
|               |                                                            | Υ      | 4.51         | 67.09           | 17.14         |         | 150.0         |                                  |
| 40004         | COM EDD (TDIM COMO)                                        | Z      | 4.51         | 66.48           | 16.81         |         | 150.0         |                                  |
| 10021-<br>DAC | GSM-FDD (TDMA, GMSK)                                       | X      | 2.93         | 68.02           | 10.47         | 9.39    | 50.0          | ± 9.6 %                          |
|               |                                                            | Y      | 5.30         | 74.12           | 13.20         |         | 50.0          |                                  |
| 40000         | CERC FOR (FRIANCE)                                         | Z      | 8.30         | 79.26           | 15.55         |         | 50.0          |                                  |
| 10023-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0)                                | X      | 2.04         | 64.26           | 8.75          | 9.57    | 50.0          | ± 9.6 %                          |
|               |                                                            | Υ      | 3.75         | 70.52           | 11.87         |         | 50.0          |                                  |
| 40004         |                                                            | Z      | 5.18         | 74.16           | 13.81         |         | 50.0          |                                  |
| 10024-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-1)                              | X      | 0.77         | 60.84           | 5.97          | 6.56    | 60.0          | ± 9.6 %                          |
|               | 44                                                         | Y      | 100.00       | 98.81           | 18.33         |         | 60.0          |                                  |
| 10005         |                                                            | Z      | 7.39         | 79.44           | 14.17         |         | 60.0          |                                  |
| 10025-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0)                                | Х      | 2.92         | 62.32           | 21.25         | 12.57   | 50.0          | ± 9.6 %                          |
|               |                                                            | Y      | 3.79         | 70.21           | 26.28         |         | 50.0          | ***                              |
| 40000         |                                                            | Z      | 3.08         | 62.64           | 21.59         |         | 50.0          |                                  |
| 10026-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1)                              | Х      | 4.19         | 76.79           | 26.73         | 9.56    | 60.0          | ± 9.6 %                          |
|               |                                                            | Υ      | 5.08         | 81.51           | 29.10         |         | 60.0          |                                  |
| 4000=         |                                                            | Z      | 4.89         | 79.35           | 27.91         |         | 60.0          |                                  |
| 10027-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                            | X      | 0.43         | 60.00           | 4.84          | 4.80    | 80.0          | ± 9.6 %                          |
|               |                                                            | Υ      | 100.00       | 98.82           | 17.61         |         | 80.0          |                                  |
| 10000         |                                                            | Z      | 99.96        | 97.90           | 17.31         |         | 0.08          |                                  |
| 10028-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                          | ×      | 0.29         | 60.00           | 4.20          | 3.55    | 100.0         | ± 9.6 %                          |
|               |                                                            | Υ      | 100.00       | 100.72          | 17.79         |         | 100.0         |                                  |
| 40000         | FDOE FOR (TDAM STORY                                       | Z      | 0.57         | 63.31           | 6.83          |         | 100.0         |                                  |
| 10029-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)                            | X      | 3.08         | 70.55           | 22.84         | 7.80    | 80.0          | ± 9.6 %                          |
|               |                                                            | Y      | 3.50         | 73.17           | 24.28         |         | 80.0          |                                  |
| 10030-        | IEEE 802.15.1 Bluetooth (GFSK, DH1)                        | Z<br>X | 3,45<br>0.52 | 72.07<br>60.00  | 23.57<br>4.79 | 5.30    | 80.0<br>70.0  | ± 9.6 %                          |
| CAA           |                                                            | Υ      | 1.54         | 67.33           | 0.00          |         | 70.0          |                                  |
| CAA           |                                                            | 1 1    |              |                 | 9.06          |         | 70.0          |                                  |
| CAA           |                                                            | 7      | 1 17         | 65.26           | ייות עבן ן    |         |               |                                  |
| 10031-        | IEEE 802.15.1 Bluetooth (GFSK, DH3)                        | Z<br>X | 1.17<br>0.04 | 65.26<br>196.26 | 8,49<br>30.81 | 1.88    | 70.0<br>100.0 | ± 9.6 %                          |
|               | IEEE 802.15.1 Bluetooth (GFSK, DH3)                        |        |              |                 |               | 1.88    |               | ± 9.6 %                          |

June 25, 2018

| 10032-        | IEEE 802.15.1 Bluetooth (GFSK, DH5)                     | Х        | 0.00         | 86.08          | 35.43  | 1,17  | 100.0          | ± 9.6 % |
|---------------|---------------------------------------------------------|----------|--------------|----------------|--------|-------|----------------|---------|
| CAA           | 1222 GOZITON Blastestin (Gr. Gr.) Brito)                |          |              |                |        | ,,,,  |                |         |
|               |                                                         | Υ        | 99.99        | 344.89         | 100.44 |       | 100.0          |         |
|               |                                                         | Ζ        | 1.14         | 132.41         | 13.71  |       | 100.0          |         |
| 10033~<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)               | Х        | 0.95         | 60.75          | 6.54   | 5.30  | 70.0           | ±9.6 %  |
| ······        |                                                         | Υ        | 4.98         | 80.79          | 18.23  |       | 70.0           |         |
|               |                                                         | Z        | 3.25         | 75.39          | 16.74  |       | 70.0           |         |
| 10034-<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)               | Х        | 3.04         | 65.72          | 5.34   | 1.88  | 100.0          | ± 9.6 % |
|               |                                                         | Υ        | 1.68         | 70.56          | 12.82  |       | 100.0          |         |
|               |                                                         | Z        | 0.99         | 64.34          | 10.07  |       | 100.0          |         |
| 10035-<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)               | Х        | 24.75        | 218.80         | 26.78  | 1.17  | 100.0          | ± 9.6 % |
|               |                                                         | Y        | 1.37         | 69.43          | 12.15  |       | 100.0          |         |
| 40000         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   | Z        | 0.77         | 62.85          | 8.95   |       | 100.0          |         |
| 10036-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)                   | X        | 0.94         | 60.83          | 6.63   | 5.30  | 70.0           | ± 9.6 % |
|               |                                                         | Y        | 7.23         | 85.73          | 19.90  |       | 70.0           |         |
| 4000=         |                                                         | Z        | 3.94         | 78.17          | 17.83  |       | 70.0           | 1000    |
| 10037-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)                   | X        | 1.41         | 63.61          | 4.82   | 1.88  | 100.0          | ± 9.6 % |
|               |                                                         | Y        | 1.40         | 68.85          | 12.14  |       | 100.0          |         |
| 40000         | Immer ooo as a mile and a month of the                  | Z        | 0.93         | 63.88          | 9.84   |       | 100.0          | 1000    |
| 10038-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)                   | Х        | 26.17        | 217.46         | 26.16  | 1.17  | 100.0          | ± 9.6 % |
|               |                                                         | Y        | 1.45         | 70.29          | 12.67  |       | 100.0          |         |
| 40000         | ODMA 2020 (4: DTT DO4)                                  | Z        | 0.78         | 63.02          | 9.17   | 0.00  | 100.0          |         |
| 10039-<br>CAB | CDMA2000 (1xRTT, RC1)                                   | X        | 21.96        | 306.20         | 30.49  | 0,00  | 150.0          | ± 9.6 % |
|               |                                                         | Υ        | 1.63         | 72.13          | 12.95  |       | 150.0          |         |
|               |                                                         | Z        | 0.63         | 61.62          | 7.75   |       | 150.0          |         |
| 10042-<br>CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-<br>DQPSK, Halfrate) | X        | 1.01         | 60.95          | 6.26   | 7.78  | 50.0           | ± 9.6 % |
|               |                                                         | Y        | 1.74         | 65.58          | 9.03   |       | 50.0           |         |
|               |                                                         | Z.       | 1.77         | 65.58          | 9.34   |       | 50.0           |         |
| 10044-<br>CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM)                        | Х        | 0.10         | 124.30         | 3.45   | 0.00  | 150.0          | ± 9.6 % |
|               |                                                         | Υ        | 0.01         | 119.74         | 2.99   |       | 150.0          |         |
|               |                                                         | Z        | 0.14         | 123.41         | 9.03   |       | 150.0          |         |
| 10048-<br>CAA | DECT (TDD, TDMA/FDM, GFSK, Full<br>Slot, 24)            | Х        | 2.82         | 62.25          | 9.34   | 13.80 | 25.0           | ± 9.6 % |
| ······        |                                                         | Υ        | 3.46         | 64.98          | 10.90  |       | 25.0           |         |
|               |                                                         | Z        | 4.35         | 67.54          | 12.61  |       | 25.0           |         |
| 10049-<br>CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)             | Х        | 2.47         | 64.28          | 8.96   | 10.79 | 40.0           | ± 9.6 % |
|               |                                                         | Y        | 3,27         | 67.55          | 10.82  |       | 40.0           |         |
| 40050         | 11170 700 (700 000)                                     | Z        | 4.02         | 69.88          | 12.36  |       | 40.0           |         |
| 10056-<br>CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps)                          | Х        | 2.81         | 66.64          | 10.78  | 9.03  | 50.0           | ± 9.6 % |
|               |                                                         | Y        | 11.82        | 86.24          | 20.09  |       | 50.0           |         |
| 40050         | FDOT FDD /FDLLL SDOK TV S 4 S 5                         | Z        | 9.59         | 84.12          | 20.02  |       | 50.0           |         |
| 10058-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)                       | X        | 2.65         | 68.11          | 20,96  | 6.55  | 100.0          | ± 9.6 % |
|               |                                                         | Y        | 2.94         | 70.05          | 22.07  |       | 100.0          |         |
| 10059-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2                      | Z<br>X   | 2.91<br>0.95 | 69.15<br>64.02 | 14.39  | 0.61  | 100,0<br>110.0 | ± 9.6 % |
| CAB           | Mbps)                                                   | Y        | 4 4 4        | 60 40          | 16.00  |       | 440.0          |         |
|               |                                                         |          | 1.14         | 66.10<br>63.23 | 16.82  |       | 110.0          |         |
| 10060-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5                    | Z        | 1.00<br>1.76 | 81.26          | 14.55  | 1 20  | 110.0          | TUC D/  |
| CAB           | Mbps)                                                   |          |              |                | 19.48  | 1.30  | 110.0          | ± 9.6 % |
|               |                                                         | Y        | 100.00       | 150.16         | 40.00  |       | 110.0          |         |
|               |                                                         | <u>Z</u> | 1.90         | 81.85          | 20.27  |       | 110.0          | 1       |

EX3DV4-SN:7409

| 10061-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11               | X | 1.18         | 69.71          | 16.58          | 2.04                                    | 110.0          | ± 9.6 % |
|---------------|---------------------------------------------------|---|--------------|----------------|----------------|-----------------------------------------|----------------|---------|
| CAB           | Mbps)                                             |   |              |                |                |                                         |                |         |
|               |                                                   | Y | 1.94         | 78.32          | 21.99          | *************************************** | 110.0          |         |
| 10062-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6                | X | 1.40<br>3.80 | 71.35<br>66.99 | 18.33<br>15.87 | 0.49                                    | 110.0<br>100.0 | +069/   |
| CAC           | Mbps)                                             |   |              |                |                | 0.49                                    |                | ± 9.6 % |
|               |                                                   | Y | 4.35         | 67.21          | 16.69          |                                         | 100.0          |         |
| 10063-        | JEEE 902 440/b WIFE E CUE (OFDM O                 | Z | 4.31         | 66.43          | 16.23          | 0.70                                    | 100.0          |         |
| CAC           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps)       | X | 3.81         | 67.06          | 15.96          | 0.72                                    | 100.0          | ± 9.6 % |
| ,             |                                                   | Y | 4.36         | 67.29          | 16.77          |                                         | 100.0          |         |
| 10064-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12               | Z | 4.32         | 66.52          | 16.32          |                                         | 100.0          |         |
| CAC           | Mbps)                                             | X | 3.97         | 67.23          | 16.12          | 0.86                                    | 100,0          | ± 9.6 % |
|               |                                                   | Y | 4.56         | 67.40          | 16.91          |                                         | 100.0          |         |
| 400CE         | IEEE OOG 44 - # JAPE" E OU JOED LA JO             | Z | 4.55         | 66.72          | 16.52          |                                         | 100.0          |         |
| 10065-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)         | X | 3.85         | 66.82          | 16.06          | 1.21                                    | 100.0          | ± 9.6 % |
|               |                                                   | Y | 4.42         | 67.15          | 16.92          |                                         | 100.0          |         |
| 40000         |                                                   | Z | 4.42         | 66.52          | 16.58          |                                         | 100.0          |         |
| 10066-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24<br>Mbps)      | X | 3.83         | 66.65          | 16.06          | 1.46                                    | 100.0          | ± 9.6 % |
|               |                                                   | Υ | 4.41         | 67.05          | 17.01          |                                         | 100.0          |         |
| 4000=         |                                                   | Z | 4.42         | 66.49          | 16.71          |                                         | 100.0          |         |
| 10067-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)         | Х | 4.01         | 66.66          | 16.35          | 2.04                                    | 100.0          | ± 9.6 % |
|               |                                                   | Υ | 4.65         | 67.23          | 17.40          |                                         | 100.0          |         |
|               |                                                   | Z | 4.70         | 66.78          | 17.19          |                                         | 100.0          |         |
| 10068-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48<br>Mbps)      | Х | 4.12         | 66.97          | 16.78          | 2.55                                    | 100.0          | ± 9.6 % |
|               |                                                   | Y | 4.69         | 67.14          | 17.56          |                                         | 100.0          |         |
|               |                                                   | Z | 4.73         | 66.69          | 17.36          |                                         | 100.0          |         |
| 10069-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54<br>Mbps)      | Х | 4.11         | 66.73          | 16.77          | 2.67                                    | 100.0          | ± 9.6 % |
|               |                                                   | Υ | 4.72         | 67.08          | 17.69          |                                         | 100.0          |         |
|               |                                                   | Z | 4.78         | 66.70          | 17.53          |                                         | 100.0          |         |
| 10071-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 9 Mbps)  | X | 4.07         | 66.96          | 16.68          | 1.99                                    | 100.0          | ± 9.6 % |
|               |                                                   | Y | 4.59         | 67.07          | 17.37          |                                         | 100.0          |         |
|               |                                                   | Z | 4.60         | 66.53          | 17.10          |                                         | 100.0          |         |
| 10072-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 12 Mbps) | × | 3.98         | 66.89          | 16.71          | 2,30                                    | 100.0          | ± 9.6 % |
|               |                                                   | Y | 4.51         | 67.19          | 17.50          |                                         | 100.0          |         |
|               |                                                   | Z | 4.54         | 66.70          | 17.26          |                                         | 100.0          |         |
| 10073-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 18 Mbps) | Х | 4.03         | 67.09          | 17.06          | 2.83                                    | 100.0          | ± 9.6 % |
|               |                                                   | Y | 4.56         | 67.35          | 17.81          |                                         | 100.0          |         |
|               |                                                   | Z | 4.59         | 66.87          | 17.58          |                                         | 100.0          |         |
| 10074-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 24 Mbps) | Х | 4.11         | 67.36          | 17.40          | 3.30                                    | 100.0          | ± 9.6 % |
|               |                                                   | Υ | 4,57         | 67.31          | 17.95          |                                         | 100.0          |         |
|               |                                                   | Z | 4.60         | 66.82          | 17.73          |                                         | 100.0          |         |
| 10075-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 36 Mbps) | Х | 4.18         | 67.58          | 17.73          | 3.82                                    | 90.0           | ± 9.6 % |
|               |                                                   | Y | 4.58         | 67.25          | 18.15          |                                         | 90.0           |         |
|               |                                                   | Z | 4.61         | 66.79          | 17.96          |                                         | 90.0           |         |
| 10076-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 48 Mbps) | Х | 4.24         | 67.48          | 17.91          | 4.15                                    | 90.0           | ± 9.6 % |
|               |                                                   | Υ | 4.61         | 67.08          | 18.28          |                                         | 90.0           |         |
|               |                                                   | Z | 4.65         | 66.67          | 18.13          |                                         | 90.0           |         |
| 10077-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 54 Mbps) | Х | 4.28         | 67.60          | 18.06          | 4.30                                    | 90.0           | ± 9.6 % |
|               |                                                   | Y | 4.64         | 67.18          | 18.41          | <b>†</b>                                | 90.0           | t       |
|               |                                                   | [ | 4.04         | 1 07.10        | 10.41          | į.                                      | 1 30.0         | l       |

| 10081-<br>CAB                           | CDMA2000 (1xRTT, RC3)                                   | X      | 7.85         | 258.95         | 40.09          | 0.00 | 150.0          | ± 9.6 %                                 |
|-----------------------------------------|---------------------------------------------------------|--------|--------------|----------------|----------------|------|----------------|-----------------------------------------|
|                                         |                                                         | Y      | 0.57         | 64.50          | 9.19           |      | 150.0          |                                         |
|                                         | ***************************************                 | Z      | 0.37         | 60.00          | 6.09           |      | 150.0          |                                         |
| 10082-<br>CAB                           | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-<br>DQPSK, Fullrate) | Х      | 72.13        | 59.07          | 0.77           | 4.77 | 80.0           | ± 9.6 %                                 |
|                                         |                                                         | Y      | 7.02         | 60.09          | 1.53           |      | 80.0           | *************************************** |
|                                         |                                                         | Z      | 7.63         | 60.12          | 1.53           |      | 80.0           |                                         |
| 10090-<br>DAC                           | GPRS-FDD (TDMA, GMSK, TN 0-4)                           | X      | 0.78         | 60.88          | 6.00           | 6.56 | 60.0           | ± 9.6 %                                 |
|                                         |                                                         | Y      | 100.00       | 98.83          | 18.35          |      | 60.0           |                                         |
| 10097-<br>CAB                           | UMTS-FDD (HSDPA)                                        | Z<br>X | 8.66<br>1.12 | 80.77<br>65.69 | 14.58<br>11.46 | 0.00 | 60.0<br>150.0  | ± 9.6 %                                 |
|                                         |                                                         | Υ      | 2.39         | 74.48          | 18.29          |      | 150.0          |                                         |
|                                         |                                                         | Z      | 1.58         | 66.95          | 14.31          |      | 150.0          |                                         |
| 10098-<br>CAB                           | UMTS-FDD (HSUPA, Subtest 2)                             | Х      | 1.11         | 65.81          | 11.55          | 0.00 | 150.0          | ± 9.6 %                                 |
|                                         |                                                         | Υ      | 2.34         | 74.47          | 18.31          |      | 150.0          |                                         |
|                                         |                                                         | Z      | 1.54         | 66.88          | 14.28          |      | 150.0          |                                         |
| 10099-<br>DAC                           | EDGE-FDD (TDMA, 8PSK, TN 0-4)                           | Х      | 4.22         | 76.90          | 26.77          | 9.56 | 60.0           | ±9.6%                                   |
|                                         |                                                         | Y      | 5.12         | 81.66          | 29.15          |      | 60.0           |                                         |
| 40400                                   | LTE EDD (OO EDMA 4000) ED 00                            | Z      | 4.92         | 79.46          | 27.95          | 0.00 | 60.0           |                                         |
| 10100-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)             | X      | 2.39         | 69.31          | 16.37          | 0.00 | 150.0          | ± 9.6 %                                 |
|                                         |                                                         | Z      | 3.20         | 72.58          | 18.18          |      | 150.0          |                                         |
| 10101-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM)           | X      | 2.69<br>2.61 | 68.81<br>67.07 | 15.94<br>15.44 | 0.00 | 150.0<br>150.0 | ± 9.6 %                                 |
| <del></del>                             | THILE, TO QUIII)                                        | Y      | 3.12         | 68.53          | 16.66          |      | 150.0          |                                         |
|                                         |                                                         | Z      | 2.91         | 66.65          | 15.40          |      | 150.0          |                                         |
| 10102-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM)           | X      | 2.71         | 67.23          | 15.58          | 0.00 | 150.0          | ± 9.6 %                                 |
|                                         |                                                         | Υ      | 3.22         | 68.53          | 16.74          |      | 150.0          |                                         |
|                                         |                                                         | Z      | 3.02         | 66.72          | 15.54          |      | 150.0          |                                         |
| 10103-<br>CAD                           | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)             | Х      | 3.72         | 71.26          | 18.49          | 3.98 | 65.0           | ± 9.6 %                                 |
|                                         |                                                         | Υ      | 4.70         | 73.63          | 19.84          |      | 65.0           |                                         |
| *************************************** |                                                         | Z      | 4.41         | 71.81          | 18.98          |      | 65.0           |                                         |
| 10104-<br>CAD                           | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM)           | X      | 3.95         | 69.27          | 17.90          | 3.98 | 65.0           | ± 9.6 %                                 |
|                                         |                                                         | Y      | 4.71         | 71.04          | 19.29          |      | 65.0           |                                         |
| 10105-<br>CAD                           | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM)           | X      | 4.63<br>3.78 | 70.10<br>68.25 | 18.86<br>17.72 | 3.98 | 65.0<br>65.0   | ± 9.6 %                                 |
|                                         |                                                         | Y      | 4.47         | 69.73          | 18.97          | 1    | 65.0           |                                         |
|                                         |                                                         | Z      | 4,37         | 68.68          | 18.48          |      | 65.0           |                                         |
| 10108-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)             | ×      | 1.98         | 69.15          | 15.95          | 0.00 | 150.0          | ± 9.6 %                                 |
|                                         |                                                         | Y      | 2.77         | 72.39          | 18.20          |      | 150.0          |                                         |
|                                         |                                                         | Z      | 2.29         | 68.22          | 15.72          |      | 150.0          |                                         |
| 10109-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM)           | X      | 2.19         | 67.24          | 14.70          | 0.00 | 150.0          | ± 9.6 %                                 |
|                                         |                                                         | Y      | 2.80         | 69.06          | 16.71          |      | 150.0          | <u> </u>                                |
| 10110-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)                 | Z<br>X | 2.54<br>1.35 | 66.58<br>66.94 | 15.14<br>13.41 | 0.00 | 150.0<br>150.0 | ± 9.6 %                                 |
|                                         |                                                         | Y      | 2.32         | 72.63          | 18.00          |      | 150.0          | <u> </u>                                |
|                                         |                                                         | Z      | 1.78         | 67.28          | 14.92          |      | 150.0          |                                         |
| 10111-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)               | X      | 1.58         | 65.90          | 12.12          | 0.00 | 150.0          | ± 9.6 %                                 |
|                                         |                                                         | Y      | 2.81         | 72.30          | 17.60          |      | 150.0          |                                         |
|                                         |                                                         | Z      | 2.22         | 67.49          | 14.99          |      | 150.0          |                                         |

| 10112-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM)    | Х      | 2.30 | 67.45  | 14.81        | 0.00 | 150.0          | ± 9.6 % |
|-----------------------------------------|--------------------------------------------------|--------|------|--------|--------------|------|----------------|---------|
|                                         |                                                  | Υ      | 2.93 | 69.12  | 16.76        |      | 150.0          |         |
|                                         |                                                  | Z      | 2.66 | 66.72  | 15.26        |      | 150.0          |         |
| 10113-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)        | Х      | 1.64 | 65.77  | 12.05        | 0.00 | 150.0          | ±9.6 %  |
|                                         |                                                  | Υ      | 2.95 | 72.32  | 17.65        |      | 150.0          |         |
|                                         |                                                  | Ζ      | 2.37 | 67.73  | 15.17        |      | 150.0          |         |
| 10114-<br>CAC                           | IEEE 802.11n (HT Greenfield, 13.5<br>Mbps, BPSK) | Х      | 4.34 | 66.99  | 16.28        | 0.00 | 150.0          | ± 9.6 % |
| ***                                     |                                                  | Υ      | 4.86 | 67.57  | 16.78        |      | 150.0          |         |
| 40445                                   | IEEE OOD 44 /UT O                                | Z      | 4.82 | 66.90  | 16.32        |      | 150.0          |         |
| 10115-<br>CAC                           | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)    | X      | 4.58 | 67.29  | 16.33        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 5.08 | 67.61  | 16.77        |      | 150.0          |         |
| 10116-                                  | JEEE 000 44- (UT OS-I-I 405 M)                   | Z      | 5.06 | 66.98  | 16.35        |      | 150.0          |         |
| CAC                                     | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)   | Х      | 4.40 | 67.26  | 16.31        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Y      | 4.93 | 67.75  | 16.79        |      | 150.0          |         |
| 40447                                   | IEEE 000 442 /UEAE 1 40 512                      | Z      | 4.89 | 67.04  | 16.31        |      | 150.0          |         |
| 10117-<br>CAC                           | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)         | X      | 4.33 | 66.90  | 16.26        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 4.84 | 67.46  | 16.74        |      | 150.0          |         |
| 40440                                   | IEEE 000 44 - /UTAK L 04 AM                      | Z      | 4.79 | 66.75  | 16.26        |      | 150.0          |         |
| 10118-<br>CAC                           | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)         | X      | 4.58 | 67.24  | 16.31        | 0.00 | 150.0          | ±9.6%   |
| *************************************** |                                                  | Y      | 5.15 | 67.78  | 16.86        |      | 150.0          |         |
| 40440                                   | FEET COO AA (UTAN) AARTAN OA                     | Z      | 5.14 | 67.21  | 16.48        |      | 150.0          |         |
| 10119-<br>CAC                           | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)        | Х      | 4.39 | 67.16  | 16.27        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 4.94 | 67.78  | 16.81        |      | 150.0          |         |
|                                         |                                                  | Z      | 4.90 | 67.08  | 16.34        |      | 150.0          |         |
| 10140-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM)    | Х      | 2.65 | 67.18  | 15.35        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 3.23 | 68.57  | 16.65        |      | 150.0          |         |
|                                         |                                                  | Z      | 3.03 | 66.74  | 15.44        |      | 150.0          |         |
| 10141-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM)    | X      | 2.80 | 67.68  | 15.68        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 3.37 | 68.79  | 16.86        |      | 150.0          |         |
|                                         |                                                  | Ζ      | 3.16 | 66.97  | 15.67        |      | 150.0          |         |
| 10142-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)          | X      | 0.71 | 61.44  | 8.06         | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 2.27 | 74.06  | 17.56        |      | 150.0          |         |
|                                         |                                                  | Z      | 1.48 | 66.51  | 13.59        |      | 150.0          |         |
| 10143-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)        | Х      | 0.73 | 60.00  | 6.15         | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 2.80 | 73.44  | 16.54        |      | 150.0          |         |
| 10111                                   |                                                  | Z      | 1.85 | 66.55  | 13.15        |      | 150.0          |         |
| 10144-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)        | Х      | 0.73 | 60.00  | 5.65         | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Y      | 1.85 | 66.75  | 12.85        |      | 150.0          | <b></b> |
| 40445                                   | LITE EDD (OO EDIA) AGGG TO (                     | Z      | 1.61 | 64.01  | 11.28        |      | 150.0          | <u></u> |
| 10145-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK)     | Х      | 5.16 | 385.51 | 36.59        | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Y      | 0.54 | 60.00  | 5.91         |      | 150.0          |         |
| 10146-                                  | LTE-FDD (SC-FDMA, 100% RB, 1.4                   | Z<br>X | 0.58 | 60.00  | 5.88<br>0.00 | 0.00 | 150.0<br>150.0 | ±9.6%   |
| CAE                                     | MHz, 16-QAM)                                     |        |      |        |              |      |                |         |
|                                         |                                                  | Υ      | 0.74 | 60.00  | 4.95         |      | 150.0          |         |
|                                         | Name                                             | Z      | 0.80 | 60.00  | 5.53         |      | 150.0          |         |
| 10147-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM)   | X      | 0.00 | 60.00  | 0.00         | 0.00 | 150.0          | ± 9.6 % |
|                                         |                                                  | Υ      | 0.60 | 58.26  | 3.86         |      | 150.0          |         |
|                                         |                                                  | Z      | 0.82 | 60.00  | 5.58         |      | 150.0          |         |

|               | T                                          |               |                  | т     |             |                                         |       |          |
|---------------|--------------------------------------------|---------------|------------------|-------|-------------|-----------------------------------------|-------|----------|
| 10149-        | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,          | X             | 2.21             | 67.36 | 14.78       | 0.00                                    | 150.0 | ± 9.6 %  |
| CAD           | 16-QAM)                                    | Y             | 2.81             | 69.16 | 16.77       |                                         | 150.0 |          |
|               |                                            | Z             | 2.55             | 66.65 | 15.19       |                                         | 150.0 |          |
| 10150-        | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,          | X             | 2.32             | 67.56 | 14.88       | 0.00                                    | 150.0 | ± 9.6 %  |
| CAD           | 64-QAM)                                    | ^`            | 2.02             | 01.00 | 1 1 1 1 1 1 | 0.00                                    | 100.0 | 20.0 %   |
|               |                                            | Υ             | 2.94             | 69.22 | 16.82       |                                         | 150.0 |          |
|               |                                            | Z             | 2.67             | 66.78 | 15.30       |                                         | 150.0 |          |
| 10151-        | LTE-TDD (SC-FDMA, 50% RB, 20 MHz,          | X             | 3.66             | 73.29 | 18.78       | 3.98                                    | 65.0  | ± 9.6 %  |
| CAD           | QPSK)                                      |               |                  |       |             |                                         |       |          |
| ****          |                                            | Y             | 4.98             | 76.80 | 21.12       |                                         | 65.0  |          |
| 10150         |                                            | Z             | 4.55             | 74.40 | 20.06       |                                         | 65.0  |          |
| 10152-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)  | X             | 3.31             | 68.29 | 16.15       | 3.98                                    | 65.0  | ± 9.6 %  |
| CAD           | 10-QAIVI)                                  | Y             | 4.23             | 70.96 | 18.67       |                                         | 65.0  |          |
|               |                                            | Z             | 4.23             | 69.89 | 18.22       |                                         | 65.0  |          |
| 10153-        | LTE-TDD (SC-FDMA, 50% RB, 20 MHz,          | $\frac{2}{X}$ | 3.64             | 69.78 | 17.29       | 3.98                                    | 65.0  | ± 9.6 %  |
| CAD           | 64-QAM)                                    | ^             | J.U <del>T</del> | 05.10 | 17.2.3      | 0.00                                    | 00.0  | 2 3.0 %  |
|               |                                            | Y             | 4.61             | 72.30 | 19.68       |                                         | 65.0  | <u> </u> |
|               |                                            | Ż             | 4.49             | 71.11 | 19.19       | ····                                    | 65.0  |          |
| 10154-        | LTE-FDD (SC-FDMA, 50% RB, 10 MHz,          | X             | 1.38             | 67.29 | 13.63       | 0.00                                    | 150.0 | ± 9.6 %  |
| CAE           | QPSK)                                      |               |                  |       |             |                                         |       |          |
|               |                                            | Υ             | 2.40             | 73.30 | 18.35       | }                                       | 150.0 |          |
|               |                                            | Z             | 1.82             | 67.63 | 15.14       |                                         | 150.0 |          |
| 10155-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)  | X             | 1.60             | 66.02 | 12.20       | 0.00                                    | 150.0 | ± 9.6 %  |
|               |                                            | Υ             | 2.83             | 72.40 | 17.66       |                                         | 150.0 |          |
|               |                                            | Ζ             | 2.23             | 67.54 | 15.03       |                                         | 150.0 |          |
| 10156-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)     | Х             | 0.51             | 60.00 | 5.91        | 0.00                                    | 150.0 | ± 9.6 %  |
|               |                                            | Υ             | 2.15             | 74.23 | 16.90       |                                         | 150.0 |          |
|               |                                            | Z             | 1.25             | 65.50 | 12.43       |                                         | 150.0 |          |
| 10157-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | Х             | 0.57             | 60.00 | 4.69        | 0.00                                    | 150.0 | ± 9.6 %  |
|               |                                            | Y             | 1.61             | 66.51 | 12.13       | *************************************** | 150.0 |          |
|               |                                            | Z             | 1.35             | 63.41 | 10.38       | ****                                    | 150.0 |          |
| 10158-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)  | Х             | 1.65             | 65.90 | 12.13       | 0.00                                    | 150.0 | ±9.6%    |
|               |                                            | Υ             | 2.98             | 72.51 | 17.74       |                                         | 150.0 |          |
|               |                                            | Ζ             | 2.38             | 67.83 | 15.24       |                                         | 150.0 |          |
| 10159-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)   | Х             | 0.59             | 60.00 | 4.69        | 0.00                                    | 150.0 | ± 9.6 %  |
| "             |                                            | Y             | 1.68             | 66.77 | 12.27       |                                         | 150.0 |          |
|               |                                            | Ζ             | 1.39             | 63.54 | 10.48       |                                         | 150.0 |          |
| 10160-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)    | Х             | 1.93             | 68.16 | 15.00       | 0.00                                    | 150.0 | ± 9.6 %  |
|               |                                            | Υ             | 2.76             | 71.39 | 17.74       |                                         | 150.0 |          |
|               |                                            | Z             | 2.38             | 67.93 | 15.64       |                                         | 150.0 |          |
| 10161-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)  | X             | 2.12             | 67.05 | 14.02       | 0.00                                    | 150.0 | ± 9.6 %  |
|               |                                            | Y             | 2.84             | 69.35 | 16.71       |                                         | 150.0 |          |
|               |                                            | Z             | 2.55             | 66.69 | 15.09       |                                         | 150.0 |          |
| 10162-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | Х             | 2.21             | 67.37 | 14.17       | 0.00                                    | 150.0 | ± 9.6 %  |
|               |                                            | Y             | 2.96             | 69.65 | 16.87       |                                         | 150.0 |          |
|               |                                            | Ζ             | 2.66             | 66.96 | 15.26       |                                         | 150.0 |          |
| 10166-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)   | X             | 2.13             | 65.17 | 17.70       | 3.01                                    | 150.0 | ± 9.6 %  |
|               |                                            | Y             | 3.00             | 69.75 | 19.60       |                                         | 150.0 |          |
|               |                                            | Z             | 2.90             | 67.96 | 18.43       |                                         | 150.0 |          |
| 10167-        | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х             | 1.98             | 65.92 | 17.43       | 3.01                                    | 150.0 | ± 9.6 %  |
| CAE           | 10 00 1111)                                |               |                  |       |             |                                         |       |          |
| CAE           | , , , , , , , , , , , , , , , , , , ,      | Y             | 3.74             | 74.17 | 20.63       |                                         | 150.0 |          |

| 10168-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 2.18 | 68.43 | 19.32 | 3.01                                    | 150.0 | ± 9.6 % |
|---------------|--------------------------------------------|---|------|-------|-------|-----------------------------------------|-------|---------|
|               |                                            | Y | 4.55 | 78.58 | 22.96 | *************************************** | 150.0 |         |
|               |                                            | Z | 3.73 | 73.08 | 20.34 | *******                                 | 150.0 |         |
| 10169-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)      | Х | 1.87 | 64.00 | 17.04 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.53 | 68.75 | 19.16 |                                         | 150.0 |         |
|               |                                            | Z | 2.36 | 66.10 | 17.52 | 1                                       | 150.0 |         |
| 10170-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)    | Х | 1.85 | 66.74 | 18.73 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Y | 3.84 | 78.32 | 23.19 |                                         | 150.0 |         |
| 40474         |                                            | Z | 2.87 | 70.66 | 19.54 |                                         | 150.0 |         |
| 10171-<br>AAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)    | X | 1.59 | 63.66 | 15.82 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.83 | 71.75 | 19.17 |                                         | 150.0 |         |
| 40470         | LTE TOD (CO EDIA)                          | Z | 2.39 | 66.90 | 16.66 |                                         | 150.0 |         |
| 10172-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)      | Х | 1.63 | 66.94 | 19.47 | 6.02                                    | 65.0  | ± 9.6 % |
|               |                                            | Y | 2.64 | 75.18 | 23.09 |                                         | 65.0  |         |
| 40472         | LTC TDD (OC EDMA 4 DD COAR)                | Z | 2.68 | 72.94 | 21.86 |                                         | 65.0  |         |
| 10173-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)    | X | 1.75 | 70.70 | 19.61 | 6.02                                    | 65.0  | ± 9.6 % |
|               |                                            | Υ | 6.55 | 90.87 | 26.66 |                                         | 65.0  |         |
| 40474         | LTC TDD (CO EDIM 4 DD CO HI                | Z | 4.15 | 79.90 | 22.82 |                                         | 65.0  |         |
| 10174-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)    | Х | 1.33 | 66.12 | 16.85 | 6.02                                    | 65.0  | ± 9.6 % |
|               |                                            | Υ | 3.87 | 81.08 | 22.62 |                                         | 65.0  |         |
| 40475         | LTC FDD (OO FDLIA ( DD ( O L)              | Z | 2.77 | 72,65 | 19.43 |                                         | 65.0  |         |
| 10175-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)      | Х | 1.85 | 63.78 | 16.81 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.49 | 68.40 | 18.88 |                                         | 150.0 |         |
|               |                                            | Z | 2.33 | 65.83 | 17.28 |                                         | 150.0 |         |
| 10176-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)    | Х | 1.86 | 66.75 | 18.74 | 3.01                                    | 150.0 | ± 9.6 % |
| ****          |                                            | Y | 3.85 | 78.36 | 23.20 |                                         | 150.0 |         |
|               |                                            | Z | 2.87 | 70.68 | 19.55 |                                         | 150.0 |         |
| 10177-<br>CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)       | Х | 1.86 | 63.82 | 16.84 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.51 | 68.53 | 18.95 |                                         | 150.0 |         |
|               |                                            | Z | 2.34 | 65.93 | 17.35 |                                         | 150.0 | ·       |
| 10178-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)     | Х | 1.85 | 66.70 | 18.70 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 3.81 | 78.15 | 23.10 |                                         | 150.0 |         |
|               |                                            | Ζ | 2.85 | 70.55 | 19.47 |                                         | 150.0 |         |
| 10179-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)    | Х | 1.70 | 65.12 | 17.16 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Y | 3.27 | 74.82 | 21.01 |                                         | 150.0 |         |
| 40400         | 1                                          | Z | 2.59 | 68.61 | 17.93 |                                         | 150.0 |         |
| 10180-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)     | × | 1.59 | 63.66 | 15.82 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.82 | 71.71 | 19.14 |                                         | 150.0 |         |
|               |                                            | Z | 2.39 | 66.88 | 16.63 |                                         | 150.0 |         |
| 10181-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)      | Х | 1.86 | 63.82 | 16.84 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.50 | 68.51 | 18.95 |                                         | 150.0 |         |
|               |                                            | Z | 2.34 | 65.92 | 17.34 |                                         | 150.0 |         |
| 10182-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)    | Х | 1.85 | 66.68 | 18.69 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Y | 3.80 | 78.11 | 23.08 |                                         | 150.0 |         |
|               |                                            | Z | 2.85 | 70.52 | 19.45 |                                         | 150.0 |         |
| 10183-<br>AAC | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)    | Х | 1.59 | 63.65 | 15.80 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                            | Υ | 2.82 | 71.68 | 19.12 |                                         | 150.0 |         |
|               |                                            | Z | 2.38 | 66.86 | 16.62 |                                         | 150.0 |         |

| 10184-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)          | Х | 1.86 | 63.84 | 16.85 | 3.01  | 150.0 | ± 9.6 % |
|---------------|-----------------------------------------------|---|------|-------|-------|-------|-------|---------|
|               |                                               | Υ | 2.51 | 68.55 | 18.97 | ·     | 150.0 |         |
|               |                                               | Z | 2.35 | 65.96 | 17.36 |       | 150.0 |         |
| 10185-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)        | Х | 1.86 | 66.74 | 18.73 | 3.01  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 3.83 | 78.22 | 23.13 |       | 150.0 |         |
|               |                                               | Z | 2.86 | 70.59 | 19.49 |       | 150.0 |         |
| 10186-<br>AAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)        | Х | 1.59 | 63.69 | 15.83 | 3.01  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 2.83 | 71.76 | 19.16 |       | 150.0 |         |
|               |                                               | Ζ | 2.39 | 66.91 | 16.65 |       | 150.0 |         |
| 10187-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)        | Х | 1.87 | 63.97 | 16.99 | 3.01  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 2.53 | 68.67 | 19.08 |       | 150.0 |         |
|               |                                               | Z | 2.36 | 66.04 | 17.45 |       | 150.0 |         |
| 10188-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)      | X | 1.89 | 67.14 | 19.05 | 3.01  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.00 | 79.20 | 23.64 |       | 150.0 |         |
|               |                                               | Z | 2.94 | 71.15 | 19.86 |       | 150.0 |         |
| 10189-<br>AAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)      | Х | 1.61 | 63.93 | 16.07 | 3.01  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 2.91 | 72.32 | 19.52 |       | 150.0 |         |
|               |                                               | Z | 2.43 | 67.24 | 16.90 |       | 150.0 |         |
| 10193-<br>CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)  | Х | 3.74 | 67.40 | 15.79 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.29 | 67.57 | 16.55 |       | 150.0 |         |
|               |                                               | Ζ | 4.20 | 66.51 | 15.90 |       | 150.0 |         |
| 10194-<br>CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | Х | 3.82 | 67.41 | 15.90 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Y | 4.40 | 67.71 | 16.67 |       | 150.0 |         |
|               |                                               | Z | 4.32 | 66.72 | 16.05 |       | 150.0 |         |
| 10195-<br>CAC | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | Х | 3.83 | 67.37 | 15.89 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.42 | 67.68 | 16.66 |       | 150.0 |         |
|               |                                               | Z | 4.35 | 66.72 | 16.06 | ····· | 150.0 |         |
| 10196-<br>CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)    | Х | 3.72 | 67.37 | 15.75 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.26 | 67.52 | 16.51 |       | 150.0 |         |
|               |                                               | Z | 4.17 | 66.48 | 15.88 |       | 150.0 |         |
| 10197-<br>CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)      | Х | 3.82 | 67.41 | 15.91 | 0.00  | 150.0 | ±9.6%   |
|               |                                               | Υ | 4.41 | 67.70 | 16.67 |       | 150.0 |         |
|               |                                               | Ζ | 4.33 | 66.72 | 16.05 |       | 150.0 |         |
| 10198-<br>CAC | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)      | Х | 3.82 | 67.36 | 15.88 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.41 | 67.66 | 16.65 |       | 150.0 |         |
|               |                                               | Ζ | 4.34 | 66.71 | 16.05 |       | 150.0 |         |
| 10219-<br>CAC | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)       | Х | 3.68 | 67.48 | 15.78 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.22 | 67.61 | 16.52 |       | 150.0 |         |
|               |                                               | Z | 4.13 | 66.53 | 15.85 |       | 150.0 |         |
| 10220-<br>CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)    | Х | 3.82 | 67.41 | 15.91 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.40 | 67.66 | 16.65 |       | 150.0 |         |
|               |                                               | Ζ | 4.32 | 66.68 | 16.04 |       | 150.0 |         |
| 10221-<br>CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)    | Х | 3.85 | 67.40 | 15.91 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.43 | 67.62 | 16.64 |       | 150.0 |         |
|               |                                               | Z | 4.36 | 66.67 | 16.05 |       | 150.0 |         |
| 10222-<br>CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)        | Х | 4.34 | 66.97 | 16.27 | 0.00  | 150.0 | ± 9.6 % |
|               |                                               | Y | 4.82 | 67.47 | 16.73 |       | 150.0 |         |
|               |                                               |   |      |       |       |       |       |         |

| 10223-<br>CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)   | Х      | 4.49         | 67.10          | 16.25          | 0.00     | 150.0        | ± 9.6 % |
|---------------|--------------------------------------------|--------|--------------|----------------|----------------|----------|--------------|---------|
|               |                                            | Y      | 5.02         | 67.50          | 16.74          | <u> </u> | 150.0        |         |
|               |                                            | Ż      | 5.01         | 66.90          | 16.33          | <u> </u> | 150.0        |         |
| 10224-<br>CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)  | X      | 4.35         | 67.14          | 16.26          | 0.00     | 150.0        | ± 9.6 % |
|               |                                            | Υ      | 4.86         | 67.63          | 16.73          |          | 150.0        |         |
|               |                                            | Z      | 4.81         | 66.90          | 16.25          |          | 150.0        |         |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                           | Х      | 1.60         | 62.87          | 10.00          | 0.00     | 150.0        | ± 9.6 % |
|               |                                            | Υ      | 2.64         | 67.73          | 15.37          |          | 150.0        |         |
|               |                                            | Z      | 2.42         | 65.46          | 14.06          |          | 150.0        |         |
| 10226-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)   | X      | 1.83         | 71.58          | 20.13          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Υ      | 7.36         | 93.10          | 27.50          |          | 65.0         |         |
| 40007         | LITE TOP (OA FOLK)                         | Z      | 4.39         | 80.98          | 23,33          |          | 65.0         |         |
| 10227-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)   | X      | 1.73         | 70.59          | 18.93          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Υ      | 7.00         | 90.72          | 25.86          |          | 65.0         |         |
| 40000         | LITE TOD (OO FOM)                          | Z      | 4.34         | 79.99          | 22.28          |          | 65.0         |         |
| 10228-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)     | Х      | 1.83         | 69.36          | 20.71          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Υ      | 3.28         | 79.62          | 24.97          |          | 65.0         |         |
| 40000         |                                            | Z      | 3.15         | 76.53          | 23.48          |          | 65.0         |         |
| 10229-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)     | Х      | 1.76         | 70.79          | 19.64          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Y      | 6.63         | 91.03          | 26.72          |          | 65.0         |         |
| 40000         | LTE TOD (OO FOLM) 4 DD O MILL OA           | Z      | 4.18         | 80.00          | 22.86          |          | 65.0         |         |
| 10230-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)     | Х      | 1.65         | 69.73          | 18,45          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Υ      | 6.22         | 88.63          | 25.09          |          | 65.0         |         |
| 40004         | 1 TE TOD (00 EDAM 4 ED 00 11)              | Z      | 4.10         | 78.96          | 21.82          |          | 65.0         |         |
| 10231-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz,<br>QPSK)    | X      | 1.79         | 68.81          | 20.33          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Υ      | 3.15         | 78.74          | 24.52          |          | 65.0         |         |
| 40000         |                                            | Z      | 3.06         | 75.85          | 23,10          |          | 65.0         |         |
| 10232-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)     | X      | 1.76         | 70.77          | 19.64          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Υ      | 6.61         | 91.00          | 26.71          |          | 65.0         |         |
| 10000         |                                            | Z      | 4.18         | 79.98          | 22.86          |          | 65.0         |         |
| 10233-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-<br>QAM) | X      | 1.65         | 69.70          | 18.44          | 6.02     | 65.0         | ±9.6 %  |
|               |                                            | Υ      | 6.19         | 88.57          | 25.08          |          | 65.0         |         |
| 40004         | LTE TOP (OO FOLIA L DO TAN)                | Z      | 4.09         | 78.93          | 21.81          |          | 65.0         |         |
| 10234-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz,<br>QPSK)    | X      | 1.76         | 68.43          | 20.02          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Y      | 3.07         | 78.12          | 24.14          |          | 65.0         |         |
| 10235-        | LTE TOD (OC COMA 4 DD 40 M)                | Z      | 2.98         | 75.33          | 22.76          | 0.00     | 65.0         |         |
| 10235-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)    | X      | 1.76         | 70.76          | 19.64          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Y      | 6.61         | 91.04          | 26.73          |          | 65.0         |         |
| 10236-        | THE TOD (SC EDMA 4 DD 40 MI)               | Z      | 4.18         | 80.00          | 22.87          | 0.00     | 65.0         |         |
| CAD           | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)    | X      | 1.66         | 69.79          | 18.48          | 6.02     | 65.0         | ± 9.6 % |
|               |                                            | Y      | 6.30         | 88.80          | 25.14          |          | 65.0         |         |
| 10237-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)      | Z<br>X | 4.13<br>1.78 | 79.05<br>68.76 | 21.85<br>20.32 | 6.02     | 65.0<br>65.0 | ± 9.6 % |
|               | 7. 7.7                                     | Y      | 3.15         | 78.74          | 24.53          |          | 65.0         |         |
|               |                                            | Z      | 3.05         | 75.85          | 23.11          |          | 65.0         |         |
| 10238-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)    | X      | 1.76         | 70.75          | 19.64          | 6.02     | 65.0         | ± 9.6 % |
|               | 10 50 1111                                 | Υ      | 6.59         | 90.97          | 26.70          |          | 65.0         |         |
|               |                                            | Z      | 4.17         | 79.95          | 22.85          |          | 65.0         |         |
|               |                                            | , _    | 7.11         | 1 70.00        | 22,00          | L        | 1 00.0       | L       |

| 10239-<br>CAD                           | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)    | Х         | 1.65         | 69.67          | 18.43          | 6.02 | 65.0         | ± 9.6 %  |
|-----------------------------------------|--------------------------------------------|-----------|--------------|----------------|----------------|------|--------------|----------|
|                                         |                                            | Y         | 6.16         | 88.50          | 25.06          |      | 65.0         |          |
|                                         |                                            | Z         | 4.07         | 78.89          | 21.79          |      | 65.0         |          |
| 10240-<br>CAD                           | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)      | Х         | 1.78         | 68.77          | 20.32          | 6.02 | 65.0         | ± 9.6 %  |
|                                         |                                            | Υ         | 3.14         | 78.73          | 24.52          |      | 65.0         |          |
|                                         |                                            | Z         | 3.05         | 75.83          | 23.10          |      | 65.0         |          |
| 10241-<br>CAA                           | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | X         | 3.09         | 71.04          | 21.81          | 6.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Υ         | 5.84         | 80.29          | 25.20          |      | 65.0         |          |
|                                         |                                            | Z         | 5.54         | 77.13          | 23.79          |      | 65.0         |          |
| 10242-<br>CAA                           | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | X         | 2.70         | 68,41          | 20.47          | 6.98 | 65.0         | ±9.6 %   |
|                                         |                                            | Y         | 4.94         | 76.94          | 23.76          |      | 65.0         |          |
|                                         |                                            | Z         | 4.89         | 74.64          | 22.64          |      | 65.0         |          |
| 10243-<br>CAA                           | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)   | ×         | 2.78         | 67.24          | 20.54          | 6.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Y         | 4.14         | 72.94          | 22.88          |      | 65.0         |          |
|                                         |                                            | Z         | 4.22         | 71.72          | 22.18          |      | 65.0         |          |
| 10244-<br>CAB                           | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)   | Х         | 0.80         | 57.73          | 3.36           | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Y         | 2.15         | 64.01          | 10.18          |      | 65.0         |          |
|                                         |                                            | Z         | 2.44         | 64.99          | 11.42          |      | 65.0         |          |
| 10245-<br>CAB                           | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)   | ×         | 0.82         | 57.61          | 3.20           | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Y         | 2.13         | 63,69          | 9.96           |      | 65.0         |          |
| 10010                                   | 1. TE TEE (0.0 ED) (0.1 E)                 | Z         | 2.42         | 64.65          | 11.19          |      | 65.0         |          |
| 10246-<br>CAB                           | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)     | X         | 0.87         | 60.00          | 5.50           | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Υ         | 2.12         | 67.09          | 12.65          |      | 65.0         |          |
|                                         | V.,                                        | Ζ         | 2.17         | 66.84          | 12.89          |      | 65.0         |          |
| 10247-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | X         | 1.26         | 60.00          | 6.38           | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Y         | 2.78         | 67.32          | 13.60          |      | 65.0         |          |
|                                         |                                            | Z         | 2.82         | 66.99          | 13.82          |      | 65.0         |          |
| 10248-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)   | X         | 1.30         | 60.00          | 6.40           | 3.98 | 65.0         | ± 9.6 %  |
| *************************************** |                                            | Υ         | 2.73         | 66.64          | 13.26          |      | 65.0         |          |
|                                         |                                            | Z         | 2.81         | 66.52          | 13.58          |      | 65.0         |          |
| 10249-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)     | X         | 1.24         | 61.72          | 8.36           | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Υ         | 3.85         | 75.74          | 18.20          |      | 65.0         |          |
|                                         |                                            | Z         | 3.35         | 73.06          | 17.32          |      | 65.0         |          |
| 10250-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)  | X         | 2.74         | 67.58          | 14.25          | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Υ         | 4.25         | 73.58          | 19.37          |      | 65.0         |          |
| 400F;                                   |                                            | Z         | 4.02         | 71.93          | 18.78          |      | 65.0         |          |
| 10251-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)  | ×         | 2.46         | 65.14          | 12.48          | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Y         | 3.86         | 70.68          | 17.56          |      | 65.0         |          |
| 40055                                   |                                            | Z         | 3.78         | 69.64          | 17.25          |      | 65.0         |          |
| 10252-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)    | Х         | 2.82         | 71.28          | 16.40          | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | Y         | 4.98         | 79,52          | 21.77          |      | 65.0         |          |
| 10253-                                  | LTE-TDD (SC-FDMA, 50% RB, 15 MHz,          | Z<br>X    | 4.29<br>3.12 | 76.11<br>67.32 | 20.42<br>15.07 | 3.98 | 65.0<br>65.0 | ± 9.6 %  |
| CAD                                     | 16-QAM)                                    | 1         | 4.40         | 70.00          | 40.00          |      | 05.0         | <u> </u> |
|                                         |                                            | Y         | 4.18         | 70.66          | 18.33          |      | 65.0         | -        |
| 10254-                                  | LITE TOD (SC EDMA 500/ DD 45 MILE          | Z         | 4.10         | 69.61          | 17.93          | 2.00 | 65.0         | 1000     |
| 10254-<br>CAD                           | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | X         | 3.39         | 68.52          | 15,96          | 3.98 | 65.0         | ± 9.6 %  |
|                                         |                                            | <u> Y</u> | 4.50         | 71.75          | 19.15          |      | 65.0         |          |
|                                         |                                            | Z         | 4.39         | 70.63          | 18.74          |      | 65.0         |          |

| 10255-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)        | Х | 3.40 | 72.07 | 17.90 | 3.98 | 65.0 | ± 9.6 %  |
|---------------|------------------------------------------------|---|------|-------|-------|------|------|----------|
|               |                                                | Y | 4.72 | 76.03 | 20.86 |      | 65.0 |          |
|               |                                                | Z | 4.36 | 73.79 | 19.90 |      | 65.0 |          |
| 10256-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM) | X | 0.74 | 56.57 | 1.48  | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 1.50 | 60.83 | 7.03  |      | 65.0 |          |
|               |                                                | Z | 1.77 | 61.73 | 8.31  |      | 65.0 |          |
| 10257-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM) | X | 0,63 | 56.72 | 1.58  | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Y | 1.50 | 60.62 | 6.80  |      | 65.0 |          |
|               |                                                | Z | 1.77 | 61.47 | 8.06  |      | 65.0 |          |
| 10258-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK)   | X | 0.75 | 60.00 | 4.13  | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 1.38 | 61.96 | 8.52  |      | 65.0 |          |
| 10050         |                                                | Z | 1.52 | 62.42 | 9.24  |      | 65.0 |          |
| 10259-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)      | X | 1.62 | 61.68 | 8.48  | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Y | 3.35 | 69.89 | 15.82 |      | 65.0 |          |
| 40000         | LTT TDD /00 FDM4 /000/ DD 0101                 | Z | 3.28 | 68.97 | 15.69 |      | 65.0 |          |
| 10260-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)      | X | 1.65 | 61.61 | 8.42  | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Y | 3.36 | 69.55 | 15.64 |      | 65.0 |          |
| 40004         | LTG Top (60 Form                               | Z | 3.31 | 68.75 | 15.57 |      | 65.0 |          |
| 10261-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)        | X | 1.63 | 64.06 | 10.69 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 4.19 | 76.83 | 19.42 |      | 65.0 |          |
| 40000         | 175 700 700 700 700 700 700 700 700 700 7      | Z | 3.63 | 73.87 | 18.36 |      | 65.0 |          |
| 10262-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)      | Х | 2.73 | 67.47 | 14.17 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 4.22 | 73.47 | 19.30 |      | 65.0 |          |
|               |                                                | Z | 4.00 | 71.83 | 18.72 |      | 65.0 |          |
| 10263-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)      | Х | 2.46 | 65.13 | 12.47 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 3.85 | 70.66 | 17.56 |      | 65.0 |          |
|               |                                                | Z | 3.77 | 69.62 | 17.25 |      | 65.0 |          |
| 10264-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)        | Х | 2.78 | 71.03 | 16.25 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 4.91 | 79.23 | 21.63 |      | 65.0 |          |
|               |                                                | Z | 4.25 | 75.88 | 20.29 |      | 65.0 |          |
| 10265-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM)  | X | 3,31 | 68.31 | 16.16 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 4.23 | 70.96 | 18.67 |      | 65.0 |          |
|               |                                                | Z | 4.14 | 69.89 | 18.23 |      | 65.0 |          |
| 10266-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM)  | Х | 3.64 | 69.75 | 17.27 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 4.61 | 72.28 | 19.66 |      | 65.0 |          |
| 4000          |                                                | Z | 4.48 | 71.09 | 19.18 |      | 65.0 |          |
| 10267-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)    | X | 3.65 | 73.23 | 18.74 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 4.96 | 76.74 | 21.09 |      | 65.0 | <u> </u> |
| 40000         | LIFE TOP (OO EDM: 1000) FOR 15                 | Z | 4.55 | 74.35 | 20.04 |      | 65.0 |          |
| 10268-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM)  | Х | 4.08 | 69.60 | 17.97 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Y | 4.89 | 71.20 | 19.41 |      | 65.0 | ļ        |
| 40000         | LTC TDD (00 EDM) (000 ED )                     | Z | 4.81 | 70.25 | 18.99 |      | 65.0 |          |
| 10269-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM)  | X | 4.15 | 69.51 | 17.90 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Y | 4.93 | 70.92 | 19.29 |      | 65.0 |          |
| 40070         | LTE TOD (DO EDIA) 1000 DO 15                   | Z | 4.85 | 69.98 | 18.89 |      | 65.0 |          |
| 10270-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)    | X | 4.11 | 72.44 | 19.03 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                                | Υ | 5.01 | 74.05 | 20.18 |      | 65.0 |          |
|               |                                                | Z | 4.76 | 72.38 | 19.41 |      | 65.0 |          |

| 10274-<br>CAB                           | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Х      | 1.45          | 63.39           | 10.22         | 0.00        | 150.0          | ± 9.6 %                                 |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|-----------------|---------------|-------------|----------------|-----------------------------------------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 2.58          | 68.99           | 15.79         |             | 150.0          |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 2.26          | 65.99           | 14.08         |             | 150.0          |                                         |
| 10275-<br>CAB                           | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Х      | 1.00          | 66.09           | 12.05         | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ      | 1.98          | 74.04           | 18.23         |             | 150.0          |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 1.30          | 66.38           | 13.95         |             | 150.0          |                                         |
| 10277-<br>CAA                           | PHS (QPSK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X      | 4.43          | 65.00           | 5.66          | 9.03        | 50.0           | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ      | 1.25          | 57.54           | 2.57          |             | 50.0           |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 1.34          | 58.35           | 3.69          |             | 50.0           |                                         |
| 10278-<br>CAA                           | PHS (QPSK, BW 884MHz, Rolloff 0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х      | 1.39          | 58.79           | 4.19          | 9.03        | 50.0           | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 2.00          | 62.01           | 7.70          |             | 50.0           |                                         |
| 10070                                   | BUG (ODOK BIN OO (AN) BU WOOO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z      | 2.27          | 62.99           | 8.81          | 0.00        | 50.0           |                                         |
| 10279-<br>CAA                           | PHS (QPSK, BW 884MHz, Rolloff 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X      | 1.42          | 58.87           | 4.28          | 9.03        | 50.0           | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 2.04          | 62.14           | 7.84          |             | 50.0           | *************************************** |
| 40000                                   | ODMAGOOO DOL COTT TIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z      | 2.32          | 63.16           | 8.96          | 0.00        | 50.0           | 1000                                    |
| 10290-<br>AAB                           | CDMA2000, RC1, SO55, Full Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X      | 24.89         | 264.54          | 21.43         | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 0.75          | 64.32           | 9.28          |             | 150.0          |                                         |
| 40004                                   | ODMA0000 PC0 COSS 5 " " " '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z      | 0.55          | 60.53           | 6.84          | 0.05        | 150.0          |                                         |
| 10291-<br>AAB                           | CDMA2000, RC3, SO55, Full Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х      | 8.17          | 257.05          | 37.61         | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 0.54          | 64.12           | 8.98          |             | 150.0          |                                         |
| 40000                                   | ODLIAGOGO BOO GOOD E N.D. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z      | 0.37          | 60.00           | 6.07          |             | 150.0          |                                         |
| 10292-<br>AAB                           | CDMA2000, RC3, SO32, Full Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х      | 2.31          | 326.58          | 8.83          | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 100.00        | 114.29          | 23.68         |             | 150.0          |                                         |
| 10000                                   | ODILIAGOS DOS COS E UES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z      | 0.37          | 60.29           | 6.50          |             | 150.0          |                                         |
| 10293-<br>AAB                           | CDMA2000, RC3, SO3, Full Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Х      | 2.41          | 304.08          | 37.98         | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 100.00        | 121.87          | 26.96         |             | 150.0          |                                         |
| 10005                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 0.47          | 62.33           | 8.10          |             | 150.0          |                                         |
| 10295-<br>AAB                           | CDMA2000, RC1, SO3, 1/8th Rate 25 fr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Х      | 11.16         | 76.14           | 13.68         | 9.03        | 50.0           | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ      | 24.30         | 94.04           | 23.00         |             | 50.0           |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 21.29         | 93.19           | 23.41         |             | 50.0           |                                         |
| 10297-<br>AAC                           | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X      | 2.00          | 69.33           | 16.06         | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ      | 2.80          | 72.57           | 18.31         |             | 150.0          |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z.     | 2.31          | 68.33           | 15.80         |             | 150.0          |                                         |
| 10298-<br>AAC                           | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Х      | 8.49          | 243.95          | 30.00         | 0.00        | 150.0          | ± 9.6 %                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 0.98          | 64.80           | 10.42         |             | 150.0          |                                         |
| 10299-<br>AAC                           | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z<br>X | 0.78<br>12.17 | 61.52<br>331.10 | 8.38<br>45.12 | 0.00        | 150.0<br>150.0 | ± 9.6 %                                 |
| , , , , ,                               | 10 30 1191)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y      | 0.99          | 61.11           | 7.01          |             | 150.0          |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 1.06          | 61.03           | 7.46          |             | 150.0          |                                         |
| 10300-<br>AAC                           | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X      | 10.15         | 348.38          | 28.30         | 0.00        | 150.0          | ± 9.6 %                                 |
| <del>-</del>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y      | 0.82          | 59.43           | 5.36          |             | 150.0          |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z      | 0.95          | 60.00           | 6.23          |             | 150.0          |                                         |
| 10301-<br>AAA                           | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X      | 3.30          | 64.31           | 15.03         | 4.17        | 50.0           | ± 9.6 %                                 |
| *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ      | 4.07          | 65.29           | 17.00         |             | 50.0           | ·                                       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ż      | 4.16          | 64.88           | 16.72         |             | 50.0           |                                         |
| 10302-<br>AAA                           | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X      | 3.81          | 65.12           | 15.99         | 4.96        | 50.0           | ± 9.6 %                                 |
|                                         | and the second s | Y      | 4.52          | 65.76           | 17.66         |             | 50.0           |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z      | 4.66          | 65.71           | 17.60         | <del></del> | 50.0           |                                         |

| 10303-<br>AAA | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)                 | Х      | 3.64         | 65.07          | 15.71          | 4.96     | 50.0           | ± 9.6 % |
|---------------|---------------------------------------------------------------------|--------|--------------|----------------|----------------|----------|----------------|---------|
|               | TOWITZ, OTQAWI, I USU)                                              | Y      | 4.29         | 65.44          | 17.44          |          | 50.0           |         |
|               |                                                                     | Z      | 4.42         | 65.39          | 17.44          |          | 50.0           |         |
| 10304-<br>AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)                 | X      | 3.46         | 64.98          | 15.29          | 4.17     | 50.0           | ± 9.6 % |
|               |                                                                     | Y      | 4.15         | 65.58          | 17.11          |          | 50.0           |         |
|               |                                                                     | Z      | 4.21         | 64.95          | 16.68          |          | 50.0           |         |
| 10305-<br>AAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)    | Х      | 2.52         | 62.00          | 12.12          | 6.02     | 35.0           | ± 9.6 % |
|               |                                                                     | Υ      | 3.52         | 65.78          | 17.45          |          | 35.0           |         |
|               |                                                                     | Z      | 3.76         | 66,23          | 17.67          |          | 35.0           |         |
| 10306-<br>AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)    | X      | 3.12         | 63.64          | 14.29          | 6.02     | 35.0           | ± 9.6 % |
|               |                                                                     | Y      | 3.94         | 65.53          | 17.75          |          | 35.0           |         |
| 40007         | 1555 000 40 10 10 10 10                                             | Z      | 4.14         | 65.73          | 17.85          |          | 35.0           |         |
| 10307-<br>AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)     | X      | 3.01         | 63.42          | 14.02          | 6.02     | 35.0           | ± 9.6 % |
|               |                                                                     | Y      | 3.81         | 65.44          | 17.59          |          | 35.0           |         |
| 40000         | IEEE 000 40 - MILLAN (00 40 40                                      | Z      | 4.01         | 65.68          | 17.70          |          | 35.0           |         |
| 10308-<br>AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)                | X      | 3.02         | 63.75          | 14.28          | 6.02     | 35.0           | ± 9.6 % |
|               |                                                                     | Y      | 3.78         | 65.60          | 17.74          |          | 35.0           |         |
| 10309-        | IEEE 000 46- MIMAY (00:40, 40                                       | Z      | 3.98         | 65.86          | 17.83          | 0.00     | 35.0           |         |
| AAA           | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) | X      | 3.17         | 63,94          | 14.58          | 6.02     | 35.0           | ± 9.6 % |
|               |                                                                     | Y      | 3.94         | 65.55          | 17.83          |          | 35.0           |         |
| 10310-<br>AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)  | Z<br>X | 4.14<br>3.11 | 65.77<br>63.82 | 17.93<br>14.42 | 6.02     | 35.0<br>35.0   | ± 9.6 % |
| 7777          | TOWINZ, QESK, AMC 2x3, 16 symbols)                                  | Y      | 3.89         | 65.58          | 17.76          |          | 35.0           |         |
|               |                                                                     | Z      | 4.09         | 65.78          | 17.76          |          | 35.0           |         |
| 10311-<br>AAC | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                         | X      | 2.31         | 68.15          | 15.92          | 0.00     | 150.0          | ± 9.6 % |
|               |                                                                     | Y      | 3.15         | 71.23          | 17.71          |          | 150.0          |         |
|               | ***************************************                             | Ż      | 2.66         | 67.57          | 15.55          |          | 150.0          |         |
| 10313-<br>AAA | iDEN 1:3                                                            | X      | 1.67         | 67.67          | 13.40          | 6.99     | 70.0           | ± 9.6 % |
|               |                                                                     | Y      | 2.25         | 71.10          | 15.22          |          | 70.0           |         |
|               |                                                                     | Z      | 1.73         | 67.06          | 13.24          |          | 70.0           |         |
| 10314-<br>AAA | iDEN 1:6                                                            | Х      | 6.12         | 86.17          | 23.14          | 10.00    | 30.0           | ±9.6 %  |
|               |                                                                     | Y      | 7.14         | 89.19          | 24.60          |          | 30.0           |         |
|               |                                                                     | Z      | 3.49         | 76.84          | 20.05          |          | 30.0           |         |
| 10315-<br>AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 96pc duty cycle)        | Х      | 0.91         | 63.92          | 14.34          | 0.17     | 150.0          | ± 9.6 % |
| ····          |                                                                     | Υ      | 1.09         | 65,84          | 16.70          |          | 150.0          |         |
|               |                                                                     | Z      | 0.93         | 62.70          | 14.16          |          | 150.0          |         |
| 10316-<br>AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 96pc duty cycle)   | X      | 3.71         | 66.95          | 15.64          | 0.17     | 150.0          | ± 9.6 % |
|               |                                                                     | Y      | 4.26         | 67.26          | 16.51          |          | 150.0          |         |
| 40047         | IEEE 000 44- WELE CIT (CEDIT )                                      | Z      | 4.21         | 66.40          | 15.98          |          | 150.0          |         |
| 10317-<br>AAC | IEEE 802.11a WiFi 5 GHz (OFDM, 6<br>Mbps, 96pc duty cycle)          | X      | 3.71         | 66.95          | 15.64          | 0.17     | 150.0          | ± 9.6 % |
|               |                                                                     | Y      | 4.26         | 67.26          | 16.51          |          | 150.0          |         |
| 10400-<br>AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM,                                  | Z<br>X | 4.21<br>3.67 | 66.40<br>66.95 | 15.98<br>15.61 | 0.00     | 150.0<br>150.0 | ± 9.6 % |
| WND           | 99pc duty cycle)                                                    | Y      | 4 20         | 67.50          | 10.50          |          | 450.0          |         |
|               |                                                                     | Z      | 4.32<br>4.27 | 67.59          | 16.58          |          | 150.0          |         |
| 10401-        | IEEE 802.11ac WiFi (40MHz, 64-QAM,                                  | X      |              | 66.67          | 15.99          | 0.00     | 150.0          | +060/   |
| AAD           | 99pc duty cycle)                                                    |        | 4.49         | 66.84          | 16.09          | 0.00     | 150.0          | ± 9.6 % |
|               |                                                                     | Y      | 5.01         | 67.23          | 16.55          |          | 150.0          |         |
|               |                                                                     | Z      | 4.95         | 66.47          | 16.07          | <u> </u> | 150.0          |         |

|                                        |                                                                                        |          |        | ,      |       |      |       | ,       |
|----------------------------------------|----------------------------------------------------------------------------------------|----------|--------|--------|-------|------|-------|---------|
| 10402-<br>AAD                          | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)                                    | ×        | 4.90   | 67.23  | 16.33 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Υ        | 5.37   | 67.75  | 16.72 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 5.33   | 67.10  | 16.30 | ,    | 150.0 |         |
| 10403-<br>AAB                          | CDMA2000 (1xEV-DO, Rev. 0)                                                             | Х        | 24.89  | 264.54 | 21.43 | 0.00 | 115.0 | ± 9.6 % |
|                                        |                                                                                        | Υ        | 0.75   | 64.32  | 9.28  |      | 115.0 |         |
| *******                                |                                                                                        | Z        | 0.55   | 60.53  | 6.84  |      | 115.0 |         |
| 10404-<br>AAB                          | CDMA2000 (1xEV-DO, Rev. A)                                                             | X        | 24.89  | 264.54 | 21.43 | 0.00 | 115.0 | ± 9.6 % |
|                                        | ****                                                                                   | Y        | 0.75   | 64.32  | 9.28  |      | 115.0 |         |
|                                        |                                                                                        | Z        | 0.55   | 60.53  | 6.84  |      | 115.0 |         |
| 10406-<br>AAB                          | CDMA2000, RC3, SO32, SCH0, Full<br>Rate                                                | X        | 0.25   | 60.00  | 3.04  | 0.00 | 100.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 100.00 | 107.14 | 22.27 |      | 100.0 |         |
| 10110                                  | LITE TOP (OC FOLIA ) DE JOUR                                                           | Z        | 35.03  | 104.04 | 23.84 |      | 100.0 |         |
| 10410-<br>AAD                          | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK, UL Subframe=2,3,4,7,8,9,<br>Subframe Conf=4)  | X        | 1.11   | 74.02  | 16.29 | 3.23 | 80.0  | ± 9.6 % |
|                                        |                                                                                        | Y        | 100.00 | 123.32 | 29.06 |      | 80.0  |         |
|                                        |                                                                                        | Z        | 3.02   | 80.23  | 18.57 |      | 80.0  |         |
| 10415-<br>AAA                          | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)                           | X        | 0.88   | 63.60  | 14.08 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 1.05   | 65.44  | 16.40 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 0.90   | 62.27  | 13.77 |      | 150.0 |         |
| 10416-<br>AAA                          | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle)                      | X        | 3.72   | 67.22  | 15.78 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 4.26   | 67.46  | 16.59 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 4.18   | 66.47  | 15.97 |      | 150.0 |         |
| 10417-<br>AAB                          | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps, 99pc duty cycle)                           | Х        | 3.72   | 67.22  | 15.78 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 4.26   | 67.46  | 16.59 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 4.18   | 66.47  | 15.97 |      | 150.0 |         |
| 10418-<br>AAA                          | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps, 99pc duty cycle, Long<br>preambule)  | ×        | 3.67   | 67.37  | 15.86 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Υ        | 4.26   | 67.73  | 16.69 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 4.18   | 66.68  | 16.03 |      | 150.0 |         |
| 10419-<br>AAA                          | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps, 99pc duty cycle, Short<br>preambule) | ×        | 3.70   | 67.32  | 15.83 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | <u>Y</u> | 4.28   | 67.63  | 16.66 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 4.19   | 66.61  | 16.02 |      | 150.0 |         |
| 10422-<br>AAB                          | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)                                           | Х        | 3.79   | 67.23  | 15.85 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 4.37   | 67.55  | 16.64 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 4.30   | 66.59  | 16.04 |      | 150.0 |         |
| 10423-<br>AAB                          | IEEE 802.11n (HT Greenfield, 43.3<br>Mbps, 16-QAM)                                     | Х        | 3.85   | 67.43  | 15.91 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 4.48   | 67.79  | 16.72 |      | 150.0 |         |
| 1-1                                    |                                                                                        | Z        | 4.41   | 66.83  | 16.12 |      | 150.0 |         |
| 10424-<br>AAB                          | IEEE 802.11n (HT Greenfield, 72.2<br>Mbps, 64-QAM)                                     | X        | 3.80   | 67.32  | 15.87 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Y        | 4.41   | 67.73  | 16.70 |      | 150.0 |         |
| 40.405                                 |                                                                                        | Z        | 4.34   | 66.77  | 16.09 |      | 150.0 |         |
| 10425-<br>AAB                          | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)                                            | X        | 4.52   | 67.29  | 16.36 | 0.00 | 150.0 | ± 9.6 % |
| ************************************** | ***************************************                                                | Y        | 5.01   | 67.60  | 16.77 |      | 150.0 |         |
| 40400                                  |                                                                                        | Z        | 5.00   | 66.98  | 16.36 |      | 150.0 |         |
| 10426-<br>AAB                          | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)                                          | Х        | 4.54   | 67.39  | 16.40 | 0.00 | 150.0 | ± 9.6 % |
|                                        |                                                                                        | Υ        | 5.06   | 67.79  | 16.86 |      | 150.0 |         |
|                                        |                                                                                        | Z        | 5.04   | 67.17  | 16.45 |      | 150.0 |         |

| 10427-<br>AAB                         | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)                 | Х      | 4.54         | 67.34          | 16.38          | 0.00                                    | 150.0          | ± 9.6 % |
|---------------------------------------|----------------------------------------------------------------|--------|--------------|----------------|----------------|-----------------------------------------|----------------|---------|
|                                       |                                                                | Υ      | 5.02         | 67.56          | 16.74          |                                         | 150.0          |         |
|                                       |                                                                | Z      | 4.99         | 66.89          | 16.30          | *************************************** | 150.0          |         |
| 10430-<br>AAB                         | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)                               | Х      | 2.54         | 67.86          | 12.99          | 0.00                                    | 150.0          | ± 9.6 % |
|                                       |                                                                | Υ      | 5.20         | 77.46          | 20.26          |                                         | 150.0          |         |
| 10101                                 |                                                                | Z      | 4.04         | 72.15          | 17.87          |                                         | 150.0          |         |
| 10431-<br>AAB                         | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)                              | Χ      | 3.04         | 66.93          | 14.37          | 0.00                                    | 150.0          | ±9.6%   |
|                                       |                                                                | Y<br>Z | 3.88         | 68.36          | 16.49          |                                         | 150.0          |         |
| 10432-<br>AAB                         | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)                              | X      | 3.75<br>3.52 | 66.95<br>67.40 | 15.66<br>15.50 | 0.00                                    | 150.0<br>150.0 | ± 9.6 % |
|                                       |                                                                | Υ      | 4.19         | 67.98          | 16.66          |                                         | 150.0          |         |
|                                       |                                                                | Z      | 4.09         | 66.85          | 15.96          |                                         | 150.0          |         |
| 10433-<br>AAB                         | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)                              | X      | 3.82         | 67.39          | 15.92          | 0.00                                    | 150.0          | ± 9.6 % |
| · · · · · · · · · · · · · · · · · · · |                                                                | Υ      | 4.43         | 67.78          | 16.72          |                                         | 150.0          |         |
|                                       |                                                                | Z      | 4.36         | 66.81          | 16.12          |                                         | 150.0          |         |
| 10434-<br>AAA                         | W-CDMA (BS Test Model 1, 64 DPCH)                              | Х      | 1.61         | 62.74          | 9.15           | 0.00                                    | 150.0          | ±9.6%   |
|                                       |                                                                | <      | 5.68         | 78.98          | 20.05          |                                         | 150.0          |         |
| 40405                                 |                                                                | Z      | 3.98         | 72.24          | 17.17          |                                         | 150.0          |         |
| 10435-<br>AAC                         | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х      | 1.04         | 73.03          | 15.81          | 3.23                                    | 80.0           | ±9.6%   |
| w                                     |                                                                | Y      | 100.00       | 122.83         | 28.83          |                                         | 80.0           |         |
| 10447-                                | LITE EDD (OCDMA 5 MILE E TM 0.4                                | Z      | 2.85         | 79.40          | 18.23          |                                         | 80.0           |         |
| AAB                                   | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,<br>Clipping 44%)              | X      | 1.63         | 62.08          | 8.98           | 0.00                                    | 150.0          | ± 9.6 % |
|                                       |                                                                | Y      | 3.10         | 68.15          | 14.99          |                                         | 150.0          |         |
| 10448-<br>AAB                         | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,<br>Clippin 44%)              | Z<br>X | 2.89<br>2.97 | 66.18<br>66.84 | 13.94<br>14.33 | 0.00                                    | 150.0<br>150.0 | ± 9.6 % |
|                                       |                                                                | Υ      | 3.76         | 68.19          | 16.40          |                                         | 150.0          |         |
|                                       |                                                                | Z      | 3.63         | 66.75          | 15.54          |                                         | 150.0          |         |
| 10449-<br>AAB                         | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,<br>Cliping 44%)              | X      | 3.43         | 67.31          | 15.47          | 0.00                                    | 150.0          | ±9.6 %  |
|                                       |                                                                | Υ      | 4.05         | 67.84          | 16.58          |                                         | 150.0          |         |
|                                       |                                                                | Ζ      | 3.95         | 66.68          | 15.86          |                                         | 150.0          |         |
| 10450-<br>AAB                         | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,<br>Clipping 44%)             | Х      | 3.70         | 67,17          | 15.79          | 0.00                                    | 150.0          | ± 9.6 % |
|                                       |                                                                | Υ      | 4.26         | 67.58          | 16.60          |                                         | 150.0          |         |
| ····                                  |                                                                | Z      | 4.17         | 66.58          | 15.96          |                                         | 150.0          |         |
| 10451-<br>AAA                         | W-CDMA (BS Test Model 1, 64 DPCH,<br>Clipping 44%)             | Х      | 1.22         | 60.20          | 6.79           | 0.00                                    | 150.0          | ±9.6 %  |
|                                       |                                                                | Y      | 2.78         | 67.25          | 13.76          |                                         | 150.0          |         |
| 10456-<br>AAB                         | IEEE 802.11ac WiFl (160MHz, 64-QAM, 99pc duty cycle)           | Z<br>X | 2.61<br>5.60 | 65.48<br>67.64 | 12.83<br>16.61 | 0.00                                    | 150.0<br>150.0 | ± 9.6 % |
|                                       | SUPU date Oyoto)                                               | Y      | 6.26         | 68.94          | 17.34          |                                         | 150.0          |         |
|                                       |                                                                | ż      | 6.00         | 67.69          | 16.64          |                                         | 150.0          |         |
| 10457-<br>AAA                         | UMTS-FDD (DC-HSDPA)                                            | X      | 3.27         | 66.46          | 15.58          | 0.00                                    | 150.0          | ± 9.6 % |
|                                       |                                                                | Y      | 3.68         | 66.34          | 16.37          |                                         | 150.0          |         |
| 10/59                                 | CDMA2000 (1vEV DO Boy B 2                                      | Z      | 3.59         | 65.30          | 15.71          |                                         | 150.0          |         |
| 10458-<br>AAA                         | CDMA2000 (1xEV-DO, Rev. B, 2 carriers)                         | X      | 1.12<br>3.56 | 60.00          | 5,83           | 0.00                                    | 150.0          | ±9.6 %  |
| AAA                                   |                                                                |        | 3 55         | 71.73          | 16.05          | I                                       | 150.0          | 1       |
| AAA                                   |                                                                | Y      |              |                |                |                                         |                |         |
| 10459-                                | CDMA2000 (1xEV-DO, Rev. B, 3                                   | Z<br>X | 3.03<br>2.37 | 68.42<br>61.19 | 14.58<br>9.10  | 0.00                                    | 150.0<br>150.0 | ± 9.6 % |
|                                       |                                                                | Z      | 3.03         | 68.42          | 14.58          | 0.00                                    | 150.0          | ± 9.6 % |

| 10460-        | UMTS-FDD (WCDMA, AMR)                                                | Х       | 0.77           | 69.97           | 14.37          | 0.00    | 150.0        | ± 9.6 %     |
|---------------|----------------------------------------------------------------------|---------|----------------|-----------------|----------------|---------|--------------|-------------|
| AAA           |                                                                      | Υ       | 1.81           | 00.00           | 22.94          |         | 150.0        |             |
| ····          |                                                                      | Z       | 0.70           | 83.33<br>66.15  | 13.99          |         | 150.0        |             |
| 10461-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X       | 1.10           | 74.88           | 17.91          | 3,29    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 100.00         | 130.63          | 32.41          |         | 80.0         |             |
|               |                                                                      | Z       | 2.28           | 78.08           | 18.84          |         | 80.0         |             |
| 10462-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | Х       | 5.93           | 230.19          | 29.26          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Υ       | 0.59           | 60.00           | 5.55           |         | 80.0         |             |
|               |                                                                      | Z       | 0.64           | 60.00           | 7.06           |         | 80.0         |             |
| 10463-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | Х       | 3.96           | 233.23          | 22.29          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 23.26          | 230.85          | 21.52          |         | 80.0         |             |
| 10464-        | LTE-TDD (SC-FDMA, 1 RB, 3 MHz,                                       | Z<br>X  | 0.66<br>0.60   | 60.00<br>67.04  | 6.36<br>13.62  | 3.23    | 80.0         | 4.069/      |
| AAA           | QPSK, UL Subframe=2,3,4,7,8,9)                                       |         |                |                 |                | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | ΙΥ<br>Ζ | 100.00<br>1.46 | 124.51<br>72.00 | 29.50<br>15.83 |         | 80.0<br>80.0 |             |
| 10465-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9)  | X       | 6.88           | 228.32          | 21.10          | 3.23    | 80.0         | ± 9.6 %     |
| 1000          | (Will, 02 005)(dillo 2,0), ([1,0,0)                                  | Y       | 0.24           | 55.14           | 2.95           |         | 80.0         |             |
|               |                                                                      | Z       | 0.64           | 60.00           | 7.00           |         | 80.0         |             |
| 10466-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9)  | Х       | 4.90           | 230.59          | 11.80          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 24.92          | 227.37          | 29.84          |         | 80.0         |             |
|               |                                                                      | Z       | 0.66           | 60.00           | 6.32           |         | 80.0         |             |
| 10467-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)        | X       | 0.65           | 68.17           | 14.23          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Υ       | 100.00         | 125.25          | 29.82          |         | 0.08         |             |
|               |                                                                      | Z       | 1.58           | 73.06           | 16.29          |         | 80.0         |             |
| 10468-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9)  | X       | 6.75           | 228.62          | 22.92          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 0.24           | 55.19           | 3.02           |         | 80.0         |             |
| 10469-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9)  | Z<br>X  | 0.64<br>4.89   | 60.00<br>230.67 | 7.02<br>12.36  | 3.23    | 80.0<br>80.0 | ± 9.6 %     |
| 70.0          | 2,0,1,1,0,0,                                                         | Y       | 24.62          | 227.52          | 30.16          |         | 80.0         | <del></del> |
|               |                                                                      | Ż       | 0.66           | 60.00           | 6.32           |         | 80.0         |             |
| 10470-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | Х       | 0.65           | 68,21           | 14.25          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 100.00         | 125.26          | 29.81          |         | 80.0         |             |
|               |                                                                      | Z       | 1.58           | 73.08           | 16.29          |         | 80.0         |             |
| 10471-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9) | X       | 6.71           | 228.68          | 22.79          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 0.24           | 55.16           | 2.98           | ļ       | 80.0         |             |
| 10472-        | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-                                  | Z<br>X  | 0.64<br>4.83   | 60.00<br>230.72 | 7.01<br>12.16  | 3.23    | 80.0<br>80.0 | 1069/       |
| AAC           | QAM, UL Subframe=2,3,4,7,8,9)                                        | Y       |                | 230.72          |                | 3,23    |              | ± 9.6 %     |
|               |                                                                      | Z       | 24.39<br>0.66  | 60.00           | 30.29<br>6.30  | <b></b> | 80.0<br>80.0 |             |
| 10473-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | X       | 0.65           | 68,12           | 14.21          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Υ       | 100.00         | 125.20          | 29.78          |         | 80.0         |             |
|               |                                                                      | Z       | 1.57           | 73.01           | 16.25          |         | 80.0         |             |
| 10474-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | X       | 6.67           | 228.73          | 22.56          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Y       | 0.59           | 60.00           | 5.48           |         | 80.0         |             |
|               |                                                                      | Z       | 0.64           | 60.00           | 7.01           |         | 80.0         |             |
| 10475-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)     | X       | 4.82           | 230.67          | 11.80          | 3.23    | 80.0         | ± 9.6 %     |
|               |                                                                      | Υ       | 24.34          | 227.67          | 30.21          |         | 80.0         |             |
|               |                                                                      | Z       | 0.66           | 60.00           | 6.30           |         | 80.0         |             |

| 10477-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | Х      | 6.74         | 228.54          | 21.21          | 3.23         | 80.0         | ± 9.6 %  |
|---------------|----------------------------------------------------------------------|--------|--------------|-----------------|----------------|--------------|--------------|----------|
|               | 1 1 1 3 - 3 - 7                                                      | Y      | 0.23         | 55.08           | 2.89           |              | 80.0         |          |
|               |                                                                      | Z      | 0.64         | 60.00           | 6.98           |              | 80.0         |          |
| 10478-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9) | Х      | 4.84         | 230.57          | 11.22          | 3.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 24.37        | 227.68          | 30.04          |              | 80.0         |          |
|               |                                                                      | Z      | 0.66         | 60.00           | 6.29           |              | 80.0         |          |
| 10479-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)    | X      | 3.02         | 84.98           | 21.47          | 3.23         | 80.0         | ±9.6 %   |
| ***           |                                                                      | Y      | 100.00       | 125.48          | 31.72          |              | 80.0         |          |
| 10480-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)  | X      | 5.02<br>0.47 | 83.00<br>60.00  | 20.76<br>6.63  | 3.23         | 80.0<br>80.0 | ± 9.6 %  |
|               |                                                                      | Y      | 1.92         | 67.54           | 11.86          |              | 80.0         |          |
| ···           |                                                                      | Z      | 1.73         | 65.44           | 11.67          |              | 80.0         |          |
| 10481-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)  | Х      | 0.22         | 55.04           | 3.12           | 3.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 1.09         | 61.90           | 8.89           |              | 80.0         |          |
|               |                                                                      | Z      | 1.31         | 62.31           | 9.77           |              | 80.0         |          |
| 10482-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | Х      | 53.67        | 208.87          | 10.65          | 2.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 1.05         | 62.14           | 9.95           |              | 80.0         |          |
| 40400         | LITE TOD (OO FOMA FOR OR ONLY                                        | Z      | 0.98         | 60.56           | 9.26           |              | 80.0         |          |
| 10483-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | X      | 64.01        | 327.64          | 15.81          | 2.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Y<br>Z | 1.10<br>1.21 | 60.00           | 7.60           |              | 80.0         |          |
| 10484-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | X      | 72.15        | 60.00<br>316.72 | 8.23<br>7.23   | 2.23         | 80.0<br>80.0 | ± 9.6 %  |
|               | 0 : Q. III, 02 Odolidilo 2,0,1,1,1,0,0,                              | Y      | 1.13         | 60.00           | 7.59           |              | 80.0         | -        |
|               |                                                                      | Ż      | 1.24         | 60.00           | 8.22           |              | 80.0         |          |
| 10485-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X      | 0.75         | 60.00           | 6.88           | 2.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 2.48         | 72.41           | 16.54          |              | 80.0         |          |
|               |                                                                      | Ζ      | 1.64         | 65.93           | 13.71          |              | 80.0         |          |
| 10486-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | Х      | 1.01         | 60.00           | 5.53           | 2.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 1.68         | 63.79           | 11.57          |              | 80.0         |          |
|               |                                                                      | Z      | 1.58         | 62.22           | 10.94          |              | 80.0         |          |
| 10487-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | X      | 1.04         | 60.00           | 5.50           | 2.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 1.66         | 63.28           | 11.27          |              | 80.0         |          |
| 10488-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)     | X      | 1.59<br>1.44 | 61.98<br>64.72  | 10.79<br>13.06 | 2.23         | 80.0<br>80.0 | ± 9.6 %  |
|               |                                                                      | Υ      | 2.82         | 72.60           | 18.56          |              | 80.0         |          |
|               |                                                                      | Z      | 2.27         | 68.12           | 16.38          |              | 80.0         |          |
| 10489-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)   | Х      | 1.47         | 61.87           | 10.73          | 2.23         | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 2.82         | 68.91           | 16.54          |              | 80.0         |          |
| 112 12 13     |                                                                      | Z      | 2.48         | 66.05           | 15.16          |              | 80.0         |          |
| 10490-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)   | X      | 1.47         | 61.55           | 10.50          | 2.23         | 80.0         | ± 9.6 %  |
| ····          |                                                                      | Y      | 2.86         | 68.61           | 16.37          |              | 80.0         |          |
| 10491-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)     | X      | 2.55<br>1.98 | 65.97<br>66.25  | 15.11<br>14.91 | 2.23         | 80.0<br>80.0 | ± 9.6 %  |
| 770           | Gr ON, OL GUDITAINE-2,0,4,7,0,8)                                     | Y      | 2.98         | 70.44           | 18.02          |              | 80.0         | -        |
|               |                                                                      | Z      | 2.64         | 67.54           | 16.51          | <del> </del> | 80.0         | <b>_</b> |
| 10492-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)   | X      | 2.19         | 64.63           | 13.64          | 2.23         | 80.0         | ± 9.6 %  |
|               | ,                                                                    | Y      | 3.11         | 67.88           | 16.76          |              | 80.0         |          |
|               |                                                                      | Ż      | 2.90         | 65.95           | 15.77          |              | 80.0         |          |

| 10.455        | 1, /22                                                                     |   |      |        | T     |          | τ    | r       |
|---------------|----------------------------------------------------------------------------|---|------|--------|-------|----------|------|---------|
| 10493-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 2.21 | 64.43  | 13.47 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 3.16 | 67.71  | 16.66 |          | 80.0 |         |
|               |                                                                            | Z | 2.96 | 65.87  | 15.72 |          | 80.0 |         |
| 10494-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)           | Х | 2.11 | 67.23  | 15.74 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Y | 3.21 | 71.79  | 18.57 |          | 80.0 |         |
|               |                                                                            | Z | 2.78 | 68.52  | 16.88 |          | 80.0 |         |
| 10495-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 2.35 | 65.50  | 14.66 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 3.14 | 68.07  | 17.04 |          | 80.0 |         |
|               |                                                                            | Z | 2.93 | 66.16  | 16.02 | ****     | 80.0 |         |
| 10496-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | X | 2.42 | 65.39  | 14.61 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 3.21 | 67.85  | 16.95 |          | 80.0 |         |
|               |                                                                            | Z | 3.02 | 66.06  | 16.01 |          | 80.0 |         |
| 10497-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X | 4.50 | 220.48 | 26.76 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 0.82 | 60.00  | 6.90  |          | 80.0 |         |
|               |                                                                            | Z | 0.88 | 60.00  | 7.23  |          | 80.0 |         |
| 10498-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 0.00 | 60.00  | 0.00  | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 1.06 | 60.00  | 5.49  |          | 80.0 |         |
|               |                                                                            | Z | 1.08 | 60.00  | 6.01  |          | 80.0 |         |
| 10499-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 0.00 | 60.00  | 0.00  | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 1.10 | 60.00  | 5.30  |          | 80.0 |         |
|               |                                                                            | Z | 1.11 | 60.00  | 5.84  |          | 80.0 |         |
| 10500-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)           | X | 0.83 | 60.00  | 8.23  | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 2.68 | 72,91  | 17.52 |          | 80.0 |         |
|               |                                                                            | Z | 1.91 | 67.05  | 14.90 |          | 80.0 |         |
| 10501-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)         | X | 1.03 | 60.00  | 6.96  | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 2.26 | 66.74  | 13.90 |          | 80.0 |         |
| ····          |                                                                            | Z | 1.97 | 64.14  | 12.76 |          | 80.0 |         |
| 10502-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | X | 1.05 | 60.00  | 6.86  | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 2.24 | 66.31  | 13.60 |          | 80.0 |         |
|               |                                                                            | Z | 1.99 | 63.95  | 12.58 |          | 80,0 |         |
| 10503-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)           | X | 1.42 | 64.51  | 12.94 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 2.78 | 72.32  | 18.42 |          | 80.0 |         |
| 4050 (        | LITE TOP (OR TOWN                                                          | Z | 2.24 | 67.93  | 16.27 |          | 80.0 |         |
| 10504-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 1.45 | 61.75  | 10.65 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Y | 2.79 | 68.76  | 16.45 |          | 80.0 |         |
| 40505         | LITE TOD (OO ET) (A LESS) EE                                               | Z | 2.46 | 65.95  | 15.09 |          | 80.0 |         |
| 10505-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 1.46 | 61.45  | 10.42 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 2.84 | 68.47  | 16.29 |          | 80.0 |         |
| 40500         |                                                                            | Z | 2.53 | 65.87  | 15.05 |          | 80.0 |         |
| 10506-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | X | 2.09 | 67.08  | 15.65 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Y | 3.18 | 71.61  | 18.48 |          | 80.0 |         |
| 40507         | LITE TOD (OO DOWN 1000)                                                    | Z | 2.76 | 68.39  | 16.81 |          | 80.0 |         |
| 10507-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)  | X | 2.34 | 65.41  | 14.60 | 2.23     | 80.0 | ± 9.6 % |
|               |                                                                            | Υ | 3.12 | 67.99  | 16.99 |          | 80.0 |         |
|               |                                                                            | Z | 2.92 | 66.10  | 15.98 | <b> </b> | 80.0 |         |

| 10508-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 2.40         | 65.29           | 14.54          | 2.23 | 80.0           | ± 9.6 %  |
|---------------|---------------------------------------------------------------------------|---|--------------|-----------------|----------------|------|----------------|----------|
|               |                                                                           | Υ | 3.20         | 67.76           | 16.90          |      | 80.0           |          |
|               |                                                                           | Z | 3.01         | 65.99           | 15.96          |      | 80.0           |          |
| 10509-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X | 2.58         | 67.03           | 16.09          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 3.55         | 70.28           | 17.97          |      | 80.0           |          |
| 10510         | 1                                                                         | Z | 3.24         | 67.94           | 16.71          |      | 80.0           |          |
| 10510-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 2.84         | 65.59           | 15.48          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 3.55         | 67.42           | 17.00          |      | 80.0           |          |
| 40544         | LTE TOD (00 5014) 4000/ 50                                                | Z | 3.41         | 66.05           | 16.23          |      | 80.0           |          |
| 10511-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | Х | 2.92         | 65.56           | 15.46          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 3.62         | 67.28           | 16.95          |      | 80.0           |          |
|               |                                                                           | Z | 3.49         | 65.96           | 16.22          |      | 80.0           |          |
| 10512-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X | 2.57         | 67.43           | 16.22          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Y | 3.65         | 71.51           | 18.37          |      | 80.0           |          |
| 10513-        | LTE-TDD (SC-FDMA, 100% RB, 20                                             | Z | 3.23         | 68.73           | 16.92          | 0.00 | 80.0           | 1000     |
| AAC           | MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)                                  | X | 2.79         | 65.51           | 15.59          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Y | 3.45         | 67.50           | 17.07          |      | 80.0           |          |
| 40544         | 1.TE TOD (0.0 FD) 14 (200) DD 00                                          | Z | 3.30         | 66.08           | 16.26          |      | 80.0           |          |
| 10514-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | Х | 2.87         | 65.41           | 15.56          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 3.50         | 67.18           | 16.96          |      | 80.0           |          |
|               |                                                                           | Z | 3.36         | 65.86           | 16.21          |      | 80.0           |          |
| 10515-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps, 99pc duty cycle)              | X | 0.84         | 63.77           | 14.11          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 1.02         | 65.86           | 16.61          |      | 150.0          |          |
| 40540         | IEEE 000 445 MEE 0 4 OU - /D000 5 5                                       | Z | 0.85         | 62.40           | 13.77          | 0.00 | 150.0          |          |
| 10516-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)               | X | 0.62<br>4.44 | 73.89           | 17.55          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Z | 0.45         | 111.45<br>67.70 | 33.24<br>14.48 |      | 150.0<br>150.0 |          |
| 10517-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11<br>Mbps, 99pc duty cycle)             | X | 0.45         | 65.50           | 14.61          | 0.00 | 150.0          | ± 9.6 %  |
| 7771          | Milipa, John daty Cycle)                                                  | Y | 0.96         | 70.28           | 18.66          |      | 150.0          |          |
|               |                                                                           | Ż | 0.68         | 63.72           | 13.93          |      | 150.0          |          |
| 10518-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps, 99pc duty cycle)              | X | 3.70         | 67.39           | 15.82          | 0,00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Υ | 4.26         | 67.62           | 16.61          |      | 150.0          |          |
|               |                                                                           | Z | 4.17         | 66.58           | 15.96          |      | 150.0          |          |
| 10519-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12<br>Mbps, 99pc duty cycle)             | X | 3.79         | 67.51           | 15.88          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 4.38         | 67.73           | 16.67          |      | 150.0          |          |
| 40500         | TEE 000 (4. % WES COLL (OFFICE CO.                                        | Z | 4.31         | 66.74           | 16.05          | 0.00 | 150.0          |          |
| 10520-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18<br>Mbps, 99pc duty cycle)             | X | 3.65         | 67.31           | 15.75          | 0.00 | 150.0          | ± 9.6 %  |
| ·             |                                                                           | Z | 4.25<br>4.16 | 67.68<br>66.65  | 16.61<br>15.95 |      | 150.0<br>150.0 | <u> </u> |
| 10521-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24<br>Mbps, 99pc duty cycle)             | X | 3.59         | 67.16           | 15.66          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 4.18         | 67.62           | 16.58          |      | 150.0          |          |
|               |                                                                           | Z | 4.10         | 66.58           | 15.92          |      | 150.0          |          |
| 10522-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36<br>Mbps, 99pc duty cycle)             | Х | 3.61         | 67.21           | 15.68          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Υ | 4.20         | 67.65           | 16.61          |      | 150.0          |          |
|               |                                                                           | Z | 4.13         | 66.67           | 15.99          |      | 150.0          |          |

| 10523-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48                           | X      | 3,58         | 67.41          | 15.78          | 0.00 | 150.0          | ± 9.6 %  |
|---------------|---------------------------------------------------------------|--------|--------------|----------------|----------------|------|----------------|----------|
| AAB           | Mbps, 99pc duty cycle)                                        |        | 5,50         | 0,.4,          | 10.76          | 0.00 | 130.0          | 1 3.0 /6 |
|               | -                                                             | Υ      | 4.19         | 67.90          | 16.68          |      | 150.0          |          |
|               |                                                               | Z      | 4.09         | 66.77          | 15.97          |      | 150.0          |          |
| 10524-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54<br>Mbps, 99pc duty cycle) | X      | 3.55         | 67.17          | 15.73          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Υ      | 4.18         | 67.74          | 16.69          |      | 150.0          |          |
|               |                                                               | Z      | 4.09         | 66.69          | 16.02          |      | 150.0          |          |
| 10525-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)             | Х      | 3.68         | 66.62          | 15.57          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.25         | 66.93          | 16.35          |      | 150.0          |          |
| 40500         | IEEE 000 44 WIE (0014) MOOA                                   | Z      | 4.15         | 65.82          | 15.66          |      | 150.0          |          |
| 10526-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)             | X      | 3.72         | 66.70          | 15.62          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.34         | 67.14          | 16.44          |      | 150.0          |          |
| 10527-        | IEEE 802.11ac WiFi (20MHz, MCS2,                              | Z      | 4.25         | 66,06          | 15.76          |      | 150.0          | 1000     |
| AAB           | 99pc duty cycle)                                              | X      | 3.68         | 66.74          | 15.58          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.29         | 67.16          | 16.40          |      | 150.0          |          |
| 10529         | IEEE 900 1100 WIE: (OOM) In MOCO                              | Z      | 4.18         | 66.03          | 15.70          | 0.00 | 150.0          | 1000     |
| 10528-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)             | X      | 3.67         | 66.65          | 15.55          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.30         | 67.15          | 16.42          |      | 150.0          |          |
| 10529-        | IEEE 802.11ac WiFi (20MHz, MCS4,                              | Z      | 4.20<br>3.67 | 66.04          | 15.73          | 0.00 | 150.0          | 1060/    |
| AAB           | 99pc duty cycle)                                              | Y      | 4.30         | 66.65<br>67.15 | 15.55<br>16.42 | 0.00 | 150.0<br>150.0 | ± 9.6 %  |
|               |                                                               |        |              |                |                |      |                |          |
| 10531-        | IEEE 802.11ac WiFi (20MHz, MCS6,                              | Z<br>X | 4.20         | 66.04          | 15.73          | 0.00 | 150.0          | 1000     |
| AAB           | 99pc duty cycle)                                              | . [ [  | 3.64         | 66.66          | 15.53          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.25         | 67.14          | 16,38          |      | 150.0          |          |
| 40500         | IEEE 000 dd DWEI (000 dd DOOR                                 | Z      | 4.15         | 66.02          | 15.69          |      | 150.0          |          |
| 10532-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)             | Х      | 3.57         | 66.55          | 15.48          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.15         | 67.03          | 16.34          |      | 150.0          |          |
| 40500         | IEEE 000 44 WIE (001 III 140 00                               | Z      | 4.04         | 65.89          | 15,62          |      | 150.0          |          |
| 10533-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)             | Х      | 3.68         | 66.88          | 15.62          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Υ      | 4.30         | 67.28          | 16.44          |      | 150.0          |          |
| 40001         |                                                               | Z      | 4.20         | 66.13          | 15.73          |      | 150.0          |          |
| 10534-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)             | X      | 4.34         | 66.44          | 15.93          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.85         | 66.86          | 16.39          |      | 150.0          |          |
| 40505         | 1555 000 44 - 1405 (404 %)                                    | Z      | 4.79         | 66.06          | 15.87          |      | 150.0          |          |
| 10535-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)             | Х      | 4.34         | 66.46          | 15.95          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.87         | 66.95          | 16.44          |      | 150.0          |          |
| 10500         | IEEE OOD 44 WEEL 440141 14005                                 | Z      | 4.82         | 66.17          | 15.93          |      | 150.0          |          |
| 10536-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)             | Х      | 4.25         | 66.45          | 15.91          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.78         | 66.98          | 16.43          |      | 150.0          |          |
| 10507         | JEEE 000 445 - 14051 (4044) - 11000                           | Z      | 4.71         | 66.14          | 15.89          |      | 150.0          |          |
| 10537-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)             | X      | 4.35         | 66.61          | 16.01          | 0,00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.86         | 67.05          | 16.47          |      | 150.0          |          |
| 10500         |                                                               | Z      | 4.80         | 66.24          | 15.94          |      | 150.0          |          |
| 10538-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)             | X      | 4.37         | 66.44          | 15.94          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Y      | 4.89         | 66.89          | 16,42          |      | 150.0          |          |
| 10510         |                                                               | Z      | 4.84         | 66.13          | 15.93          |      | 150.0          |          |
| 10540-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)             | X      | 4.31         | 66.35          | 15.93          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                               | Υ      | 4.83         | 66.86          | 16.43          |      | 150.0          |          |
|               |                                                               | Z      | 4.77         | 66.08          | 15.92          |      | 150.0          |          |

| 10541-                                  | IEEE 802.11ac WiFi (40MHz, MCS7,                   | Х | 4.33 | 66.41 | 15.92    | 0.00     | 150.0 | ± 9.6 % |
|-----------------------------------------|----------------------------------------------------|---|------|-------|----------|----------|-------|---------|
| AAB                                     | 99pc duty cycle)                                   |   |      |       | <u> </u> | ,        |       |         |
|                                         |                                                    | Y | 4.83 | 66.83 | 16.39    |          | 150.0 |         |
| 40E40                                   | IEEE 000 44 - 14/FT /40141 - 14000                 | Z | 4.77 | 66.02 | 15.87    |          | 150.0 |         |
| 10542-<br>AAB                           | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)  | X | 4.45 | 66.54 | 16.01    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 4.97 | 66.88 | 16.43    |          | 150.0 |         |
|                                         |                                                    | Z | 4.91 | 66.12 | 15.94    |          | 150.0 |         |
| 10543-<br>AAB                           | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)  | X | 4.48 | 66.49 | 16.02    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.04 | 66.97 | 16.50    |          | 150.0 |         |
| 10511                                   |                                                    | Z | 5.01 | 66.28 | 16.06    |          | 150.0 |         |
| 10544-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)  | Х | 4.77 | 66.20 | 15.88    | 0.00     | 150.0 | ± 9.6 % |
|                                         | ***                                                | Υ | 5.21 | 66.81 | 16.32    |          | 150.0 |         |
|                                         |                                                    | Z | 5.15 | 66.11 | 15.87    |          | 150.0 |         |
| 10545-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)  | Х | 4.82 | 66,41 | 15.96    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.37 | 67.24 | 16.50    |          | 150.0 |         |
|                                         |                                                    | Z | 5.34 | 66.63 | 16.10    |          | 150.0 |         |
| 10546-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)  | X | 4.77 | 66.27 | 15.89    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Y | 5.24 | 66.91 | 16.35    |          | 150.0 |         |
|                                         |                                                    | Z | 5.18 | 66.22 | 15.90    |          | 150.0 |         |
| 10547-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)  | X | 4.83 | 66.38 | 15.95    | 0.00     | 150.0 | ±9.6 %  |
|                                         |                                                    | Y | 5.36 | 67.18 | 16.48    |          | 150.0 |         |
|                                         |                                                    | Z | 5.31 | 66.51 | 16.04    |          | 150.0 |         |
| 10548-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)  | Х | 4,82 | 66.54 | 16.01    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.39 | 67.48 | 16.61    |          | 150.0 |         |
|                                         |                                                    | Z | 5.39 | 66.96 | 16.24    |          | 150.0 |         |
| 10550-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)  | Х | 4.79 | 66.46 | 16.00    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Y | 5.34 | 67.29 | 16.55    |          | 150.0 |         |
|                                         |                                                    | Z | 5.30 | 66.62 | 16.12    |          | 150.0 |         |
| 10551-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)  | X | 4.75 | 66.25 | 15.87    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.21 | 66.84 | 16.29    |          | 150.0 |         |
|                                         |                                                    | Z | 5.16 | 66.14 | 15.84    |          | 150.0 |         |
| 10552-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)  | X | 4.78 | 66.50 | 15.97    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.22 | 66.98 | 16.36    |          | 150.0 |         |
| *************************************** |                                                    | Z | 5.16 | 66.23 | 15.88    |          | 150.0 |         |
| 10553-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)  | X | 4.79 | 66.33 | 15.90    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.26 | 66.86 | 16.32    |          | 150.0 |         |
|                                         |                                                    | Z | 5.20 | 66.16 | 15.87    |          | 150.0 |         |
| 10554-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | X | 5.25 | 66,42 | 15.95    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Y | 5.65 | 67.07 | 16.36    |          | 150.0 |         |
|                                         |                                                    | Z | 5.60 | 66.46 | 15.97    |          | 150.0 |         |
| 10555-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | Х | 5.31 | 66.63 | 16.05    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Y | 5.71 | 67.24 | 16.43    |          | 150.0 |         |
|                                         |                                                    | Z | 5.68 | 66.67 | 16.06    |          | 150.0 |         |
| 10556-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle) | Х | 5.32 | 66.65 | 16.05    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Υ | 5.77 | 67.42 | 16.51    |          | 150.0 |         |
|                                         |                                                    | Z | 5.74 | 66.86 | 16.15    |          | 150.0 |         |
| 10557-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle) | X | 5.28 | 66.55 | 16.01    | 0.00     | 150.0 | ± 9.6 % |
|                                         |                                                    | Y | 5.72 | 67.25 | 16.45    |          | 150.0 |         |
|                                         |                                                    | Z | 5.67 | 66.64 | 16.06    | <u> </u> | 150.0 |         |

| 10558-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)                  | Х  | 5,24         | 66.46          | 15.98          | 0.00 | 150.0          | ± 9.6 %                                |
|---------------|---------------------------------------------------------------------|----|--------------|----------------|----------------|------|----------------|----------------------------------------|
| ······        |                                                                     | TY | 5.69         | 67.20          | 16.44          |      | 150.0          | ······································ |
| <del></del>   |                                                                     | Z  | 5.65         | 66.61          | 16.06          |      | 150.0          |                                        |
| 10560-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)                  | Х  | 5.28         | 66.44          | 16.00          | 0.00 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 5.72         | 67.18          | 16.47          |      | 150.0          |                                        |
| ***********   |                                                                     | Z  | 5.68         | 66.60          | 16.09          |      | 150.0          |                                        |
| 10561-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)                  | Х  | 5.21         | 66.38          | 15.99          | 0.00 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 5.66         | 67.17          | 16.49          |      | 150.0          |                                        |
|               |                                                                     | Z. | 5.63         | 66.59          | 16.12          |      | 150.0          |                                        |
| 10562-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)                  | Х  | 5.30         | 66.67          | 16.13          | 0.00 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 5.70         | 67.29          | 16.55          |      | 150.0          |                                        |
|               |                                                                     | Z  | 5.66         | 66.70          | 16.17          |      | 150.0          |                                        |
| 10563-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)                  | Х  | 5.57         | 67.31          | 16.43          | 0.00 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Υ  | 5.83         | 67.40          | 16.57          |      | 150.0          |                                        |
|               |                                                                     | Z. | 5.78         | 66.77          | 16.18          |      | 150.0          |                                        |
| 10564-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 9 Mbps, 99pc duty cycle)  | Х  | 3.98         | 67.19          | 15.91          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Υ  | 4.54         | 67.45          | 16.63          |      | 150.0          |                                        |
|               |                                                                     | Z  | 4.49         | 66.59          | 16.10          |      | 150.0          |                                        |
| 10565-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 12 Mbps, 99pc duty cycle) | Х  | 4.14         | 67.73          | 16.32          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 4.73         | 67.88          | 16.97          |      | 150.0          |                                        |
|               |                                                                     | Z  | 4.67         | 67.02          | 16.44          |      | 150.0          |                                        |
| 10566-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 18 Mbps, 99pc duty cycle) | Х  | 3.97         | 67.32          | 16.02          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 4.56         | 67.66          | 16.76          |      | 150.0          |                                        |
|               |                                                                     | Z  | 4.51         | 66.79          | 16.21          |      | 150.0          |                                        |
| 10567-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 24 Mbps, 99pc duty cycle) | Х  | 4.06         | 67.96          | 16.56          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 4.62         | 68.16          | 17.21          |      | 150.0          | _                                      |
|               |                                                                     | Z  | 4.55         | 67.23          | 16.63          |      | 150.0          |                                        |
| 10568-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 36 Mbps, 99pc duty cycle) | Х  | 3.80         | 66.64          | 15.45          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 4.41         | 67.18          | 16.36          |      | 150.0          |                                        |
|               |                                                                     | Z  | 4.38         | 66.42          | 15.88          |      | 150.0          |                                        |
| 10569-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 48 Mbps, 99pc duty cycle) | X  | 4.07         | 68.35          | 16.82          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Υ  | 4.63         | 68.53          | 17.43          |      | 150.0          |                                        |
|               |                                                                     | Z  | 4.55         | 67.52          | 16.81          |      | 150.0          |                                        |
| 10570-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 54 Mbps, 99pc duty cycle) | Х  | 3.99         | 67.81          | 16.52          | 0.46 | 150.0          | ± 9.6 %                                |
|               |                                                                     | Υ  | 4.60         | 68.17          | 17.24          |      | 150.0          |                                        |
|               |                                                                     | Z  | 4.53         | 67.25          | 16.66          |      | 150.0          |                                        |
| 10571-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 90pc duty cycle)        | Х  | 0.93         | 63.68          | 14.15          | 0.46 | 130.0          | ± 9.6 %                                |
|               |                                                                     | Υ  | 1.11         | 65.62          | 16.53          |      | 130.0          |                                        |
|               |                                                                     | Z  | 0.97         | 62.81          | 14.25          | 1    | 130.0          |                                        |
| 10572-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps, 90pc duty cycle)        | Х  | 0.94         | 64.27          | 14.56          | 0.46 | 130.0          | ± 9.6 %                                |
|               |                                                                     | Y  | 1.13         | 66.40          | 17.03          |      | 130.0          |                                        |
| 10573-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5                                | Z  | 0.97<br>1.10 | 63.27<br>79.41 | 14.57<br>19.97 | 0.46 | 130.0<br>130.0 | ± 9.6 %                                |
| AAA           | Mbps, 90pc duty cycle)                                              | 1  |              |                |                |      |                |                                        |
|               |                                                                     | Υ  | 29.09        | 140.84         | 40.18          |      | 130.0          |                                        |
|               |                                                                     | Z  | 0.81         | 73.52          | 17.65          |      | 130.0          |                                        |
| 10574-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)          | Х  | 1.00         | 70.10          | 17.80          | 0.46 | 130.0          | ± 9.6 %                                |
|               |                                                                     | Υ  | 1.40         | 75.63          | 21.83          |      | 130.0          |                                        |
|               |                                                                     | Z  | 0.96         | 67.63          | 16.92          |      | 130.0          |                                        |

| 10575-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | X        | 3.74 | 66.83 | 15,70 | 0.46     | 130.0 | ± 9.6 % |
|---------------|---------------------------------------------------------------|----------|------|-------|-------|----------|-------|---------|
| AAA           | OFDM, 6 Mbps, 90pc duty cycle)                                |          |      |       |       | 0.40     | 100,0 | 20.070  |
|               |                                                               | Y        | 4.30 | 67.12 | 16.57 |          | 130.0 |         |
| 10576-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z        | 4.26 | 66.31 | 16.08 |          | 130.0 |         |
| AAA           | OFDM, 9 Mbps, 90pc duty cycle)                                | X        | 3.78 | 67.20 | 15.91 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.34 | 67.41 | 16.71 | <u> </u> | 130.0 | ļ       |
| 10577-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z        | 4.29 | 66.55 | 16.18 |          | 130.0 |         |
| AAA           | OFDM, 12 Mbps, 90pc duty cycle)                               | X        | 3.89 | 67.42 | 16.06 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | <u> </u> | 4.48 | 67.61 | 16.83 |          | 130.0 |         |
| 10578-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z        | 4.44 | 66.77 | 16.33 |          | 130.0 |         |
| AAA           | OFDM, 18 Mbps, 90pc duty cycle)                               |          | 3.83 | 67.60 | 16.23 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.40 | 67.82 | 17.00 | <b></b>  | 130.0 |         |
| 10579-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z        | 4.35 | 66.92 | 16.45 | 0.40     | 130.0 |         |
| AAA           | OFDM, 24 Mbps, 90pc duty cycle)                               |          | 3.51 | 66.09 | 15.01 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.12 | 66.74 | 16.08 |          | 130.0 |         |
| 10580-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z        | 4.09 | 65.97 | 15.60 | 0.10     | 130.0 |         |
| AAA           | OFDM, 36 Mbps, 90pc duty cycle)                               |          | 3.49 | 65.97 | 14.89 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.12 | 66.69 | 16.03 |          | 130.0 |         |
| 10581-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z        | 4.11 | 65.99 | 15.59 |          | 130.0 |         |
| AAA           | OFDM, 48 Mbps, 90pc duty cycle)                               | X        | 3.74 | 67.63 | 16.20 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.33 | 67.99 | 17.02 |          | 130.0 |         |
| 10582-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                              | Z<br>X   | 4.26 | 67.01 | 16.43 |          | 130.0 |         |
| AAA           | OFDM, 54 Mbps, 90pc duty cycle)                               |          | 3.37 | 65.61 | 14.64 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.03 | 66,45 | 15.82 |          | 130.0 |         |
| 10502         | IEEE 000 44-/h MEE: E OU L (OED) A O                          | Z        | 4.01 | 65.72 | 15.36 |          | 130.0 |         |
| 10583-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps, 90pc duty cycle)  | Х        | 3.74 | 66.83 | 15.70 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.30 | 67.12 | 16.57 |          | 130.0 | ·       |
| 10584-        | IEEE 000 44-/6 WIELE OUT (OED) 1                              | Z        | 4.26 | 66.31 | 16.08 |          | 130.0 |         |
| AAB           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps, 90pc duty cycle)  | Х        | 3.78 | 67.20 | 15.91 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.34 | 67.41 | 16.71 |          | 130.0 |         |
| 40E0E         | IEEE 000 44-# WIEE 5 OUT (OED) 4.40                           | Z        | 4.29 | 66.55 | 16.18 |          | 130.0 |         |
| 10585-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12<br>Mbps, 90pc duty cycle) | Х        | 3.89 | 67.42 | 16.06 | 0.46     | 130.0 | ±9.6%   |
| *****         |                                                               | Y        | 4.48 | 67.61 | 16.83 |          | 130.0 |         |
| 10506         | IEEE 000 44-# MEELE ON TOPPIA 40                              | Z        | 4.44 | 66.77 | 16.33 |          | 130.0 |         |
| 10586-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18<br>Mbps, 90pc duty cycle) | X        | 3.83 | 67.60 | 16.23 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.40 | 67.82 | 17.00 |          | 130.0 |         |
| 10587-        | IEEE 900 446/b WIELE OUT (OFD) 4                              | Z        | 4.35 | 66.92 | 16.45 | 0.10     | 130.0 |         |
| AAB           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24<br>Mbps, 90pc duty cycle) | X        | 3.51 | 66.09 | 15.01 | 0.46     | 130.0 | ± 9.6 % |
| ·····         |                                                               | Y        | 4.12 | 66.74 | 16.08 |          | 130.0 |         |
| 10500         | HEEF DOO 44-15 MIES FOLL (OFFICE OF                           | Z        | 4.09 | 65.97 | 15.60 |          | 130.0 |         |
| 10588-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36<br>Mbps, 90pc duty cycle) | X        | 3.49 | 65.97 | 14.89 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.12 | 66.69 | 16.03 |          | 130.0 |         |
| 10589-        | JEEC 900 446/b WICLE OUT (OFDIA 40                            | Z        | 4.11 | 65.99 | 15.59 |          | 130.0 |         |
| 10589-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48<br>Mbps, 90pc duty cycle) | X        | 3.74 | 67.63 | 16.20 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Y        | 4.33 | 67.99 | 17.02 |          | 130.0 |         |
| 10500         | IEEE 000 44 a WEEL COLL (OFFICE                               | Z        | 4.26 | 67.01 | 16.43 |          | 130.0 |         |
| 10590-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54<br>Mbps, 90pc duty cycle) | Х        | 3.37 | 65.61 | 14.64 | 0.46     | 130.0 | ± 9.6 % |
|               |                                                               | Υ        | 4.03 | 66.45 | 15.82 |          | 130.0 |         |
|               |                                                               | Z        | 4.01 | 65.72 | 15.36 |          | 130.0 |         |

|               |                                                       |   |      | ,     |       |      | ,     |              |
|---------------|-------------------------------------------------------|---|------|-------|-------|------|-------|--------------|
| 10591-        | IEEE 802.11n (HT Mixed, 20MHz,                        | X | 3.91 | 67.05 | 15.98 | 0.46 | 130.0 | ± 9.6 %      |
| AAB           | MCS0, 90pc duty cycle)                                |   |      |       |       |      |       |              |
|               |                                                       | Y | 4.46 | 67.24 | 16.72 |      | 130.0 |              |
|               |                                                       | Z | 4.42 | 66.45 | 16.24 | 0.40 | 130.0 | - 0 0 0/     |
| 10592-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle) | X | 3.96 | 67.20 | 16.07 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 4.56 | 67.49 | 16.83 |      | 130.0 |              |
|               |                                                       | Z | 4.52 | 66.71 | 16.36 |      | 130.0 |              |
| 10593-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle) | X | 3.89 | 67.09 | 15.91 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 4.48 | 67.36 | 16.68 |      | 130.0 |              |
|               |                                                       | Z | 4.44 | 66.57 | 16.20 |      | 130.0 |              |
| 10594-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle) | Х | 3.93 | 67.20 | 16.06 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Y | 4.53 | 67.56 | 16.87 |      | 130.0 |              |
|               |                                                       | Z | 4.50 | 66.76 | 16.38 |      | 130.0 |              |
| 10595-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle) | Х | 3.88 | 67.15 | 15.95 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 4.50 | 67.54 | 16.78 | ,,,, | 130.0 |              |
|               |                                                       | Z | 4.46 | 66.73 | 16.29 |      | 130.0 |              |
| 10596-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle) | X | 3.78 | 66.88 | 15.82 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 4.41 | 67.44 | 16.74 |      | 130.0 |              |
|               |                                                       | Z | 4.38 | 66.66 | 16.26 |      | 130.0 |              |
| 10597-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | X | 3.79 | 66.92 | 15.72 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Y | 4.37 | 67.31 | 16.57 |      | 130.0 |              |
|               |                                                       | Z | 4.34 | 66.51 | 16.09 |      | 130.0 |              |
| 10598-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle) | X | 3.85 | 67.45 | 16.19 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 4.40 | 67.66 | 16.93 |      | 130.0 |              |
|               |                                                       | Z | 4.34 | 66.79 | 16.40 |      | 130.0 |              |
| 10599-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | Х | 4.79 | 67.73 | 16.77 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Y | 5.21 | 67.73 | 17.04 |      | 130.0 |              |
|               |                                                       | Z | 5.16 | 67.02 | 16.62 |      | 130.0 |              |
| 10600-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | X | 4.68 | 67.39 | 16.57 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 5.21 | 67.78 | 17.04 |      | 130.0 |              |
|               |                                                       | Z | 5.26 | 67.42 | 16.79 |      | 130.0 |              |
| 10601-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle) | Х | 4.64 | 67.32 | 16.56 | 0.46 | 130.0 | ± 9.6 %      |
| ****          |                                                       | Υ | 5.18 | 67.81 | 17.08 |      | 130.0 | -            |
|               |                                                       | Z | 5.18 | 67.25 | 16.73 |      | 130.0 |              |
| 10602-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | X | 4.63 | 67.06 | 16.35 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Y | 5.19 | 67.55 | 16.86 |      | 130.0 |              |
|               |                                                       | Z | 5,23 | 67.15 | 16.59 |      | 130.0 |              |
| 10603-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | Х | 4.68 | 67.32 | 16.65 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Y | 5.23 | 67.74 | 17.10 |      | 130.0 |              |
|               |                                                       | Z | 5.27 | 67.35 | 16.84 |      | 130.0 |              |
| 10604-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle) | Х | 4.64 | 67.04 | 16.46 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Υ | 5.12 | 67.34 | 16.87 |      | 130.0 |              |
|               |                                                       | Z | 5.13 | 66.84 | 16.55 |      | 130.0 |              |
| 10605-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) | Х | 4.61 | 67.01 | 16.45 | 0.46 | 130.0 | ± 9.6 %      |
|               | 1                                                     | Y | 5.17 | 67.54 | 16.97 |      | 130.0 |              |
|               |                                                       | Z | 5.21 | 67.15 | 16.70 |      | 130.0 |              |
| 10606-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle) | × | 4.52 | 66.73 | 16.13 | 0.46 | 130.0 | ± 9.6 %      |
|               |                                                       | Y | 5.04 | 67.22 | 16.65 |      | 130.0 |              |
|               |                                                       | Z | 5.04 | 66.71 | 16.33 |      | 130.0 | <del> </del> |

| 10607-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS0,                  | Х | 3.77 | 66.40 | 15.66 | 0.46 | 130.0 | ± 9.6 % |
|---------------|---------------------------------------------------|---|------|-------|-------|------|-------|---------|
| AAB           | 90pc duty cycle)                                  |   |      |       |       |      |       |         |
|               |                                                   | Y | 4.33 | 66.69 | 16.43 |      | 130.0 |         |
| 10608-        | IEEE 000 44 WEE (OOM) 1 14004                     | Z | 4.27 | 65.78 | 15.88 |      | 130.0 |         |
| AAB           | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle) | × | 3.82 | 66,54 | 15.73 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.44 | 66.96 | 16.55 |      | 130.0 |         |
|               |                                                   | Z | 4.38 | 66.06 | 16.01 |      | 130.0 |         |
| 10609-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | Х | 3.73 | 66.35 | 15.52 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.34 | 66.78 | 16.36 |      | 130.0 |         |
| 40040         | 1555.000.14                                       | Z | 4.28 | 65.87 | 15.81 |      | 130.0 |         |
| 10610-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle) | X | 3.78 | 66.52 | 15.70 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.40 | 66.99 | 16.56 |      | 130.0 |         |
| 40044         |                                                   | Z | 4.34 | 66.07 | 16.00 |      | 130.0 |         |
| 10611-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) | X | 3.70 | 66.30 | 15.52 | 0.46 | 130.0 | ± 9.6 % |
| ····          |                                                   | Y | 4.30 | 66.73 | 16.37 |      | 130.0 |         |
| 40040         |                                                   | Z | 4.25 | 65.83 | 15.82 |      | 130.0 |         |
| 10612-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) | X | 3.61 | 66.09 | 15.37 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Υ | 4.27 | 66.79 | 16.38 |      | 130.0 |         |
|               |                                                   | Z | 4.22 | 65.92 | 15.84 |      | 130.0 |         |
| 10613-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle) | X | 3.64 | 66.03 | 15.27 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.27 | 66.59 | 16.20 |      | 130.0 |         |
|               |                                                   | Z | 4.22 | 65.72 | 15.67 |      | 130.0 |         |
| 10614-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | X | 3.70 | 66.56 | 15.73 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Υ | 4.27 | 66.95 | 16.54 |      | 130.0 |         |
|               |                                                   | Z | 4.20 | 66.00 | 15.96 |      | 130.0 |         |
| 10615-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | Х | 3.64 | 65.99 | 15.16 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Υ | 4.28 | 66.52 | 16.09 |      | 130.0 |         |
|               |                                                   | Z | 4.23 | 65.64 | 15.56 |      | 130.0 |         |
| 10616-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | X | 4.45 | 66.34 | 16.08 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.95 | 66.71 | 16.53 |      | 130.0 |         |
|               |                                                   | Z | 4.93 | 66.07 | 16.13 |      | 130.0 |         |
| 10617-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | Х | 4.43 | 66.27 | 16.03 | 0.46 | 130.0 | ±9.6 %  |
|               |                                                   | Υ | 4.97 | 66.78 | 16.54 |      | 130.0 |         |
|               |                                                   | Z | 4.96 | 66.18 | 16.16 |      | 130.0 |         |
| 10618-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | X | 4.37 | 66.39 | 16.11 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.90 | 66.88 | 16.61 |      | 130.0 |         |
|               |                                                   | Z | 4.86 | 66.19 | 16.18 |      | 130.0 |         |
| 10619-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle) | X | 4.42 | 66.32 | 16.00 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.94 | 66.79 | 16.49 |      | 130.0 |         |
|               |                                                   | Z | 4.93 | 66.18 | 16.10 |      | 130.0 |         |
| 10620-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | X | 4.43 | 66.13 | 15.93 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.96 | 66.62 | 16.45 |      | 130.0 |         |
|               |                                                   | Z | 4.96 | 66.05 | 16.09 |      | 130.0 |         |
| 10621-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle) | X | 4.50 | 66.48 | 16.27 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 5.00 | 66.84 | 16.69 |      | 130.0 |         |
|               |                                                   | Z | 4.97 | 66.18 | 16.29 |      | 130.0 | _       |
| 10622-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | X | 4.46 | 66.43 | 16.25 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                   | Y | 4.98 | 66.91 | 16.73 |      | 130.0 |         |
|               |                                                   | Z | 4.96 | 66.27 | 16.33 |      | 130.0 |         |

June 25, 2018

|                                         |                                                    |          |      | ,     |       |                                         |       |          |
|-----------------------------------------|----------------------------------------------------|----------|------|-------|-------|-----------------------------------------|-------|----------|
| 10623-<br>AAB                           | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)  | X        | 4.39 | 66.10 | 15.89 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Y        | 4.89 | 66.49 | 16.36 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 4.86 | 65.84 | 15.96 |                                         | 130.0 |          |
| 10624-<br>AAB                           | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)  | X        | 4.54 | 66.35 | 16.10 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Y        | 5.06 | 66.70 | 16.53 | *************************************** | 130.0 |          |
|                                         |                                                    | Z        | 5.05 | 66.11 | 16.17 |                                         | 130.0 |          |
| 10625-<br>AAB                           | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)  | Х        | 4.65 | 66,63 | 16.32 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Υ        | 5.15 | 66.88 | 16.69 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.16 | 66.34 | 16.36 |                                         | 130.0 |          |
| 10626-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)  | X        | 4.87 | 66.09 | 16.03 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Υ        | 5.31 | 66.64 | 16.44 | ••••                                    | 130.0 |          |
|                                         |                                                    | Z        | 5.28 | 66.07 | 16.09 |                                         | 130.0 |          |
| 10627-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)  | X        | 4.96 | 66.39 | 16.17 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Y        | 5.52 | 67.25 | 16.73 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.53 | 66.80 | 16.43 |                                         | 130.0 |          |
| 10628-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)  | X        | 4.83 | 65.96 | 15.85 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Υ        | 5.28 | 66.56 | 16.30 |                                         | 130.0 |          |
| 1005-                                   |                                                    | Z        | 5.27 | 66.03 | 15.96 | 0.10                                    | 130.0 |          |
| 10629-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)  | Х        | 4.89 | 66.11 | 15.93 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Y        | 5.45 | 66.99 | 16.52 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.45 | 66.49 | 16.20 |                                         | 130.0 |          |
| 10630-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)  | Х        | 4.94 | 66.47 | 16.13 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Υ        | 5.52 | 67.40 | 16.73 |                                         | 130.0 | -        |
|                                         |                                                    | Z        | 5.58 | 67.09 | 16.50 |                                         | 130.0 |          |
| 10631-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)  | Х        | 5.04 | 67.01 | 16.63 | 0.46                                    | 130.0 | ±9.6%    |
|                                         |                                                    | Y        | 5.56 | 67.66 | 17.07 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.56 | 67.16 | 16.74 |                                         | 130.0 |          |
| 10632-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)  | X        | 5.02 | 66.85 | 16.55 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Υ        | 5.59 | 67.70 | 17.10 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.59 | 67.18 | 16.77 |                                         | 130.0 |          |
| 10633-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)  | Х        | 4.86 | 66.17 | 16.01 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | <b>Y</b> | 5.30 | 66.64 | 16.39 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.27 | 66.07 | 16.03 |                                         | 130.0 |          |
| 10634-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)  | Х        | 4.95 | 66,64 | 16,30 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Υ        | 5.35 | 66.92 | 16.58 | ļ                                       | 130.0 |          |
|                                         |                                                    | Z        | 5.32 | 66.32 | 16.21 |                                         | 130.0 | <u> </u> |
| 10635-<br>AAB                           | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)  | X        | 4.70 | 65.44 | 15.34 | 0.46                                    | 130.0 | ± 9.6 %  |
| *************************************** |                                                    | Υ        | 5.17 | 66.01 | 15.82 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.16 | 65.50 | 15.50 |                                         | 130.0 |          |
| 10636-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle) | X        | 5.37 | 66.35 | 16.11 | 0.46                                    | 130.0 | ±9.6%    |
|                                         |                                                    | Y        | 5.75 | 66.94 | 16.50 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.74 | 66.45 | 16.20 |                                         | 130.0 |          |
| 10637-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle) | X        | 5.47 | 66.68 | 16.28 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Y        | 5.84 | 67.17 | 16.61 |                                         | 130.0 |          |
|                                         |                                                    | Z        | 5.85 | 66.75 | 16.34 |                                         | 130.0 |          |
| 10638-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle) | Х        | 5.45 | 66.60 | 16.21 | 0.46                                    | 130.0 | ± 9.6 %  |
|                                         |                                                    | Y        | 5.91 | 67.37 | 16.68 |                                         | 130.0 | T        |
|                                         |                                                    | Z        | 5.90 | 66.89 | 16.39 |                                         | 130.0 |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.83             |                 |                 |                  |                  |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|------------------|------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>ს.ი</b> ა     | 67.15           | 16.61           |                  | 130.0            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.82             | 66.67           | 16.32           |                  | 130.0            |                 |
| IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.32             | 66.22           | 15.99           | 0.46             | 130.0            | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.75             | 66.89           | 16.42           |                  | 130.0            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.75             | 66.45           | 16.15           |                  | 130.0            |                 |
| IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.45             | 66.45           | 16.13           | 0.46             | 130.0            | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 0.46             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| IEEE 000 44 MEEL (400MH) - MOOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                 |                  |                  |                 |
| 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | <u> </u>        |                 | 0.46             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| IEEE 802 1100 WIEL (100M) In MCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | <u> </u>         |                  |                 |
| 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 0.46             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| IEEE 802 11ac WIEI /1608/III - \$4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  | ·                |                 |
| 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 0.46             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| LTE TOD (SC EDMA 4 DD E MILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| QPSK, UL Subframe=2,7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 9.30             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| LTE TOR (OA FOLIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| QPSK, UL Subframe=2,7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 | <u></u>         | 9.30             | 60.0             | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  | 60.0             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  | 60.0             |                 |
| CDMA2000 (1x Advanced)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 0.00             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 | 5.54            |                  | 150.0            |                 |
| LTE-TDD (OFDMA, 5 MHz, E-TM 3.1,<br>Clipping 44%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 | 12.30           | 2.23             | 80.0             | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                 |                  | 80.0             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                 |                  | 80.0             |                 |
| LTE-TDD (OFDMA, 10 MHz, E-TM 3.1,<br>Clipping 44%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 2.23             | 80.0             | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| LTE TOD (OFDIA) (FARE FREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>Z</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 |                 |                  | 80.0             |                 |
| Clipping 44%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 2.23             |                  | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| LTC TDD (OCCIVI OCCIVI TO THE TOTAL OCCIVITY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  | 80.0             |                 |
| LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,<br>Clipping 44%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 | 2.23             | 80.0             | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| Pulse Waveform (200Hz, 10%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.01             | 64.52<br>62.76  | 15.94<br>7.94   | 10.00            | 80.0<br>50.0     | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.59             | 65.57           | 0.70            |                  | EO 0             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
| Pulse Waveform (200Hz, 20%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.84             | 60.00           | 5.36            | 6.99             | 60.0             | ± 9.6 %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |                  |                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.33             | 63.54           | 7.82            |                  | 60.0             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)  IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)  IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)  IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)  IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)  IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)  LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)  LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)  CDMA2000 (1x Advanced)  LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)  LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)  LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | 90pc duty cycle) | 90pc duty cycle | 90pc duty cycle | 90pc duty cycle) | 90pc duty cycle) | 90pc duty cycle |

EX3DV4- SN:7409 June 25, 2018

| 10660-<br>AAA                           | Pulse Waveform (200Hz, 40%) | X | 0.39  | 60.00   | 3.98   | 3.98 | 80.0  | ± 9.6 % |
|-----------------------------------------|-----------------------------|---|-------|---------|--------|------|-------|---------|
|                                         |                             | Y | 0.54  | 61.57   | 5.88   |      | 80.0  |         |
| *************************************** |                             | Z | 0.45  | 60.00   | 5.04   |      | 80.0  |         |
| 10661-<br>AAA                           | Pulse Waveform (200Hz, 60%) | Х | 17.64 | 60.43   | 1.44   | 2.22 | 100.0 | ± 9.6 % |
|                                         |                             | Y | 0.23  | 60.00   | 4.28   |      | 100.0 |         |
|                                         |                             | Z | 0.25  | 60.00   | 3.48   |      | 100.0 |         |
| 10662-<br>AAA                           | Pulse Waveform (200Hz, 80%) | Х | 0.00  | 84.91   | 40.93  | 0.97 | 120.0 | ± 9.6 % |
|                                         |                             | Y | 49.30 | 1078.61 | 357.44 |      | 120.0 |         |
|                                         |                             | Z | 0.03  | 139.18  | 4.12   |      | 120.0 |         |

<sup>&</sup>lt;sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: EX3-7357\_Apr18

# **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:7357

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

2N 5-01-208

Calibration date:

April 18, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | iD               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-17 (No. ES3-3013_Dec17)    | Dec-18                 |
| DAE4                       | SN: 660          | 21-Dec-17 (No. DAE4-660_Dec17)    | Dec-18                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check; Jun-18 |
| Network Analyzer HP 8753E  | SN: US37390585   | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |

Calibrated by:

Name

Function

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7357\_Apr18

Page 1 of 39

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura

Accreditation No.: SCS 0108

**Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF 77

sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty\_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7357\_Apr18 Page 2 of 39

# Probe EX3DV4

SN:7357

Manufactured: February 5, 2015

Calibrated:

April 18, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.37     | 0.48     | 0.40     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 89.1     | 99.1     | 96.4     |           |

#### **Modulation Calibration Parameters**

| CIU | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>t</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0,0        | 1.0 | 0.00    | 151.5    | ±2.7 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 139.1    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 158.4    |                           |

Note: For details on UID parameters see Appendix.

#### **Sensor Model Parameters**

|   | C1<br>fF | C2<br>fF | α<br>V <sup>-1</sup> | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V⁻¹ | T6    |
|---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------|-------|
| X | 37.91    | 303.3    | 40.25                | 6.413                    | 0.832                    | 4.998    | 0.00                  | 0.454     | 1.006 |
| Υ | 48.33    | 363.1    | 36.01                | 10.58                    | 0.113                    | 5.100    | 0.00                  | 0.458     | 1.004 |
| Z | 39.38    | 305.2    | 38.03                | 5.76                     | 0.610                    | 5.046    | 0.00                  | 0.461     | 1.008 |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 64                   | 54.2                                  | 0.75                               | 14.92   | 14.92   | 14.92   | 0.00               | 1,00                       | ± 13.3 %     |
| 150                  | 52.3                                  | 0.76                               | 13.49   | 13.49   | 13.49   | 0.00               | 1.00                       | ± 13.3 %     |
| 300                  | 45.3                                  | 0.87                               | 12.37   | 12.37   | 12,37   | 0.08               | 1.20                       | ± 13.3 %     |
| 450                  | 43.5                                  | 0.87                               | 11.17   | 11.17   | 11.17   | 0.14               | 1.20                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 10.50   | 10.50   | 10.50   | 0.45               | 0.85                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 10.11   | 10.11   | 10.11   | 0.37               | 0.93                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.80    | 8.80    | 8.80    | 0.38               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 8.47    | 8.47    | 8.47    | 0.18               | 0.83                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.83    | 7.83    | 7.83    | 0.33               | 0.86                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.43    | 7.43    | 7.43    | 0.37               | 0.89                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.13    | 7.13    | 7.13    | 0.27               | 0.98                       | ± 12.0 %     |
| 5250                 | 35.9                                  | 4.71                               | 5.62    | 5.62    | 5.62    | 0.35               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                                  | 5.07                               | 4.93    | 4.93    | 4.93    | 0.40               | 1.80                       | ± 13.1 %     |
| 5750                 | 35.4                                  | 5.22                               | 5.23    | 5.23    | 5.23    | 0.40               | 1.80                       | ± 13.1 %     |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

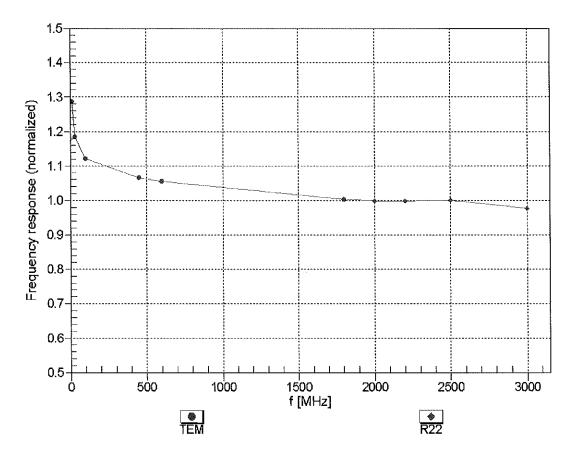
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

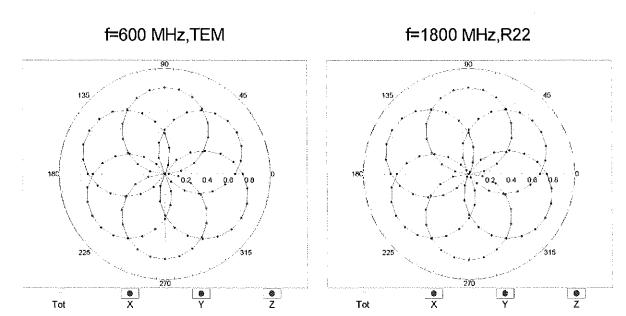
#### Calibration Parameter Determined in Body Tissue Simulating Media

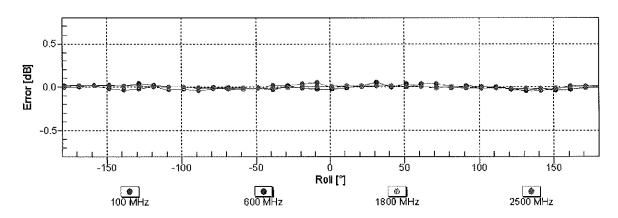
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 61.9                                  | 0.80                 | 12.99   | 12.99   | 12.99   | 0.00               | 1.00                       | ± 13.3 %     |
| 300                  | 58.2                                  | 0.92                 | 12.08   | 12.08   | 12.08   | 0.05               | 1.20                       | ± 13.3 %     |
| 450                  | 56.7                                  | 0.94                 | 11.52   | 11.52   | 11.52   | 0.08               | 1.20                       | ± 13.3 %     |
| 750                  | 55.5                                  | 0.96                 | 10.37   | 10.37   | 10.37   | 0.47               | 0.85                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                 | 10.17   | 10.17   | 10.17   | 0.37               | 0.93                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                 | 8.43    | 8.43    | 8.43    | 0.37               | 0.86                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                 | 8.08    | 8.08    | 8.08    | 0.36               | 0.83                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81                 | 7.74    | 7.74    | 7.74    | 0.38               | 0.85                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                 | 7.60    | 7.60    | 7.60    | 0.35               | 0.88                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                 | 7.44    | 7.44    | 7.44    | 0.33               | 0.93                       | ± 12.0 %     |
| 5250                 | 48.9                                  | 5.36                 | 4.78    | 4.78    | 4.78    | 0.50               | 1.80                       | ± 13.1 %     |
| 5600                 | 48.5                                  | 5.77                 | 4.20    | 4.20    | 4.20    | 0.50               | 1.80                       | ± 13.1 %     |
| 5750                 | 48.3                                  | 5.94                 | 4.21    | 4.21    | 4.21    | 0.50               | 1.80                       | ± 13.1 %     |


<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

Certificate No: EX3-7357\_Apr18

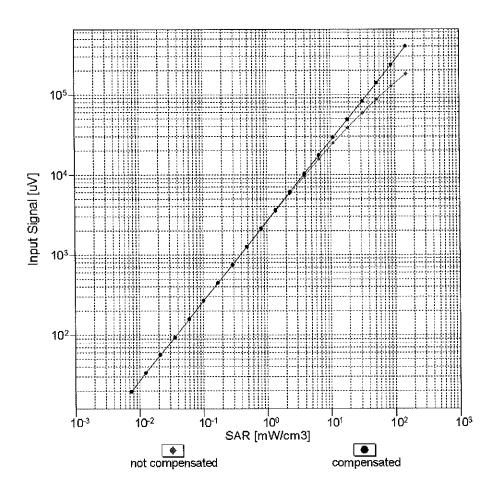
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

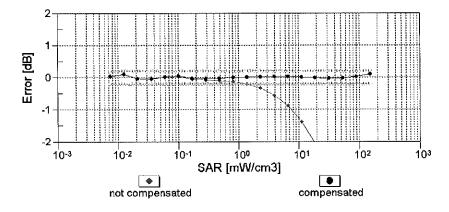

<sup>&</sup>lt;sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



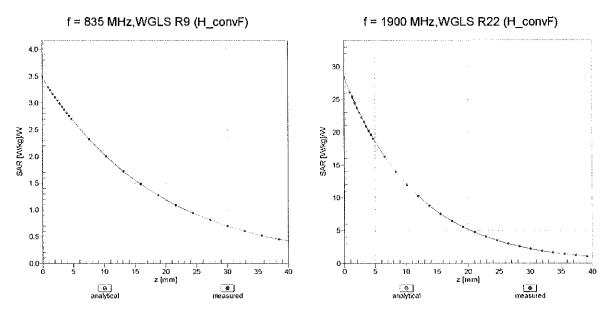
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

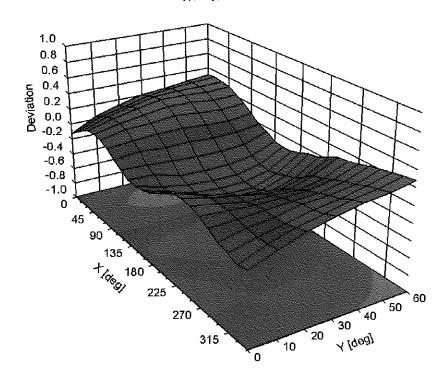


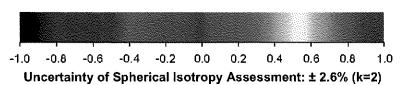



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)







Uncertainty of Linearity Assessment: ± 0.6% (k=2)

### **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz





# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 11.4       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

**Appendix: Modulation Calibration Parameters** 

| UID                    | lix: Modulation Calibration Parar Communication System Name |    | A<br>dB | dΒ√μV  | С     | D<br>dB | VR<br>mV | Max<br>Unc <sup>E</sup><br>(k=2) |
|------------------------|-------------------------------------------------------------|----|---------|--------|-------|---------|----------|----------------------------------|
| 0                      | CW                                                          | Х  | 0.00    | 0.00   | 1.00  | 0.00    | 151.5    | ± 2.7 %                          |
|                        |                                                             | Υ  | 0.00    | 0.00   | 1.00  |         | 139.1    |                                  |
|                        |                                                             | Z  | 0.00    | 0.00   | 1.00  |         | 158.4    |                                  |
| 10010-<br>CAA          | SAR Validation (Square, 100ms, 10ms)                        | ·Χ | 1.67    | 61.93  | 7.65  | 10.00   | 20.0     | ± 9.6 %                          |
|                        |                                                             | Υ  | 2.82    | 69.17  | 11.50 |         | 20.0     |                                  |
|                        |                                                             | Ζ  | 1.68    | 62.20  | 7.72  |         | 20.0     |                                  |
| 10011-<br>CAB          | UMTS-FDD (WCDMA)                                            | Х  | 0.91    | 67.36  | 14.64 | 0.00    | 150.0    | ± 9.6 %                          |
|                        |                                                             | Υ  | 1.03    | 67.52  | 15.32 |         | 150.0    |                                  |
|                        |                                                             | Ζ  | 0.87    | 67.00  | 14.33 |         | 150.0    |                                  |
| 10012-<br>CAB          | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)                    | Х  | 1.03    | 63.20  | 14.83 | 0.41    | 150.0    | ± 9.6 %                          |
| ****                   |                                                             | Υ  | 1.15    | 63.79  | 15.34 |         | 150.0    |                                  |
|                        |                                                             | Z  | 1.01    | 63.27  | 14.81 |         | 150.0    |                                  |
| 10013-<br>CAB          | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps)           | Х  | 4.63    | 66.39  | 16.96 | 1.46    | 150.0    | ± 9.6 %                          |
|                        |                                                             | Υ  | 4.87    | 66.69  | 17.19 |         | 150.0    |                                  |
|                        |                                                             | Z  | 4.64    | 66.53  | 16.99 |         | 150.0    |                                  |
| 10021-<br>D <b>A</b> C | GSM-FDD (TDMA, GMSK)                                        | Х  | 3.67    | 70.27  | 12.79 | 9.39    | 50.0     | ± 9.6 %                          |
|                        |                                                             | Υ  | 100.00  | 116,17 | 27.83 |         | 50.0     |                                  |
|                        |                                                             | Ζ  | 17.04   | 87.58  | 18.77 |         | 50.0     |                                  |
| 10023-<br>DAC          | GPRS-FDD (TDMA, GMSK, TN 0)                                 | Х  | 3.48    | 69.40  | 12.45 | 9.57    | 50.0     | ± 9.6 %                          |
|                        |                                                             | Υ  | 100.00  | 115.39 | 27.52 |         | 50.0     |                                  |
|                        |                                                             | Ζ  | 8.91    | 80.25  | 16.55 |         | 50.0     |                                  |
| 10024-<br>DAC          | GPRS-FDD (TDMA, GMSK, TN 0-1)                               | Х  | 1.80    | 66.18  | 9.84  | 6.56    | 60.0     | ±9.6 %                           |
|                        |                                                             | Υ  | 100.00  | 120.19 | 28.55 |         | 60.0     |                                  |
|                        |                                                             | Z  | 100.00  | 103.30 | 20.82 |         | 60.0     |                                  |
| 10025-<br>DAC          | EDGE-FDD (TDMA, 8PSK, TN 0)                                 | Х  | 3.42    | 64.49  | 22.34 | 12.57   | 50.0     | ± 9.6 %                          |
|                        |                                                             | Υ  | 6.04    | 85.62  | 35.55 |         | 50.0     |                                  |
|                        |                                                             | Ζ  | 3.44    | 65.04  | 22.85 |         | 50.0     |                                  |
| 10026-<br>DAC          | EDGE-FDD (TDMA, 8PSK, TN 0-1)                               | X  | 6.25    | 83.47  | 29.08 | 9.56    | 60.0     | ±9.6 %                           |
|                        |                                                             | Υ  | 9.24    | 95.88  | 35.47 |         | 60.0     |                                  |
|                        |                                                             | Z  | 6.56    | 85.41  | 30.17 |         | 60.0     |                                  |
| 10027-<br>DAC          | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                             | Х  | 0.96    | 63.24  | 7.67  | 4.80    | 80.0     | ± 9.6 %                          |
|                        |                                                             | Υ  | 100.00  | 125.59 | 30.06 |         | 80.0     |                                  |
|                        | }                                                           | Z  | 100.00  | 100.14 | 18.62 |         | 80.0     |                                  |
| 10028-<br>DAC          | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                           | Х  | 0.48    | 60.36  | 5.50  | 3.55    | 100.0    | ± 9.6 %                          |
|                        |                                                             | Υ  | 100.00  | 132.37 | 32.13 |         | 100.0    |                                  |
|                        |                                                             | Z  | 99.97   | 95.45  | 15.98 |         | 100.0    |                                  |
| 10029-<br>DAC          | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)                             | Х  | 4.19    | 75.28  | 24.64 | 7.80    | 80.0     | ± 9.6 %                          |
|                        |                                                             | Υ  | 5.35    | 81.78  | 28.49 |         | 80.0     |                                  |
|                        |                                                             | Z  | 4.26    | 76.21  | 25.31 |         | 80.0     |                                  |
| 10030-<br>CAA          | IEEE 802.15.1 Bluetooth (GFSK, DH1)                         | Х  | 1.09    | 63.09  | 7.76  | 5.30    | 70.0     | ± 9.6 %                          |
| ~/ W l                 |                                                             | Υ  | 100.00  | 120.14 | 28.06 |         | 70.0     |                                  |
|                        |                                                             | Z  | 4.93    | 76.05  | 12.90 |         | 70.0     |                                  |
| 10031-<br>CAA          | IEEE 802.15.1 Bluetooth (GFSK, DH3)                         | Х  | 0.27    | 60.00  | 3.17  | 1.88    | 100.0    | ± 9.6 %                          |
|                        |                                                             | Υ  | 100.00  | 135.00 | 31.47 |         | 100.0    |                                  |
|                        |                                                             | Z  | 0.26    | 60.00  | 3.07  |         | 100.0    |                                  |

| 10032-        | IEEE 802.15.1 Bluetooth (GFSK, DH5)                     | Х      | 27.08           | 314.20           | 3,36           | 1.17     | 100.0          | ± 9.6 % |
|---------------|---------------------------------------------------------|--------|-----------------|------------------|----------------|----------|----------------|---------|
| CAA           |                                                         | Υ      | 400.00          | 440.00           | 05.00          |          | 400.0          |         |
|               |                                                         | Z      | 100.00<br>1.21  | 149.06<br>330.96 | 35.68<br>55.77 |          | 100.0<br>100.0 |         |
| 10033-<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)               | X      | 3.08            | 73.10            | 16.00          | 5.30     | 70.0           | ± 9.6 % |
|               |                                                         | Υ      | 100.00          | 136.30           | 37.75          |          | 70.0           |         |
|               |                                                         | Z      | 7.37            | 86.92            | 21.69          |          | 70.0           |         |
| 10034-<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)               | Х      | 1.25            | 65.91            | 11.39          | 1.88     | 100.0          | ± 9.6 % |
|               |                                                         | Υ      | 5.27            | 87.77            | 22.72          |          | 100.0          |         |
|               |                                                         | Z      | 1.70            | 70.42            | 13.93          |          | 100.0          |         |
| 10035-<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)               | Х      | 0.99            | 64.64            | 10.52          | 1.17     | 100.0          | ± 9.6 % |
|               |                                                         | Y      | 2.59            | 77.96            | 18.88          |          | 100.0          |         |
| 10036-        | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)                   | X      | 1.19<br>3.48    | 67.26<br>74.91   | 12.19<br>16.77 | E 20     | 100.0          | 1060/   |
| CAA           | IEEE 002.13.1 Bide(00th (6-DPSK, DH1)                   |        |                 |                  |                | 5.30     | 70.0           | ± 9.6 % |
|               |                                                         | Y<br>Z | 100.00<br>11.33 | 136.90<br>93.27  | 38.02<br>23.71 | ·        | 70.0<br>70.0   |         |
| 10037-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)                   | X      | 1.18            | 65.50            | 11.18          | 1.88     | 100.0          | ± 9.6 % |
|               |                                                         | Υ      | 4.66            | 86.12            | 22.16          |          | 100.0          |         |
|               |                                                         | Z      | 1.56            | 69.56            | 13.55          |          | 100.0          |         |
| 10038-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)                   | Х      | 1.00            | 64.92            | 10.78          | 1.17     | 100.0          | ± 9.6 % |
|               |                                                         | Υ      | 2.61            | 78.41            | 19.18          |          | 100.0          |         |
|               |                                                         | Z      | 1.21            | 67.70            | 12.52          |          | 100.0          |         |
| 10039-<br>CAB | CDMA2000 (1xRTT, RC1)                                   | Х      | 0.95            | 64.99            | 10.40          | 0.00     | 150.0          | ± 9.6 % |
|               |                                                         | Υ      | 1.84            | 72.12            | 15.71          |          | 150.0          |         |
| 10010         |                                                         | Z      | 1.02            | 65.84            | 10.98          | <u>-</u> | 150.0          |         |
| 10042-<br>CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-<br>DQPSK, Halfrate) | Х      | 1.77            | 64.37            | 9.09           | 7.78     | 50.0           | ±9.6%   |
|               |                                                         | Y      | 100.00          | 113.16           | 25.71          |          | 50.0           |         |
| 10044-<br>CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM)                        | Z<br>X | 2.56<br>0.31    | 68.32<br>133.81  | 10.93<br>11.51 | 0.00     | 50.0<br>150.0  | ± 9.6 % |
|               |                                                         | Y      | 0.00            | 104.03           | 5.27           | 1        | 150.0          |         |
|               |                                                         | Z      | 0.33            | 142.49           | 0.98           |          | 150.0          |         |
| 10048-<br>CAA | DECT (TDD, TDMA/FDM, GFSK, Full<br>Slot, 24)            | Х      | 4.01            | 66.51            | 12.74          | 13.80    | 25.0           | ± 9.6 % |
|               |                                                         | Υ      | 100.00          | 110.91           | 26.95          |          | 25.0           |         |
|               |                                                         | Z      | 5.44            | 70.40            | 14.40          |          | 25.0           |         |
| 10049-<br>CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)             | X      | 3.70            | 68.56            | 12.33          | 10.79    | 40.0           | ± 9.6 % |
|               |                                                         | Y      | 100.00          | 112.50           | 26.54          |          | 40.0           |         |
| 10056-<br>CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps)                          | Z<br>X | 5.22<br>6.09    | 72.87<br>76.95   | 14.17<br>17.81 | 9.03     | 40.0<br>50.0   | ± 9.6 % |
|               |                                                         | Υ      | 100.00          | 128.62           | 35.43          |          | 50.0           |         |
|               |                                                         | Ζ      | 13.22           | 89.10            | 22.41          |          | 50.0           |         |
| 10058-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)                       | Х      | 3.39            | 71.63            | 22.33          | 6.55     | 100.0          | ± 9.6 % |
|               |                                                         | Y      | 4.14            | 76.10            | 25.11          |          | 100.0          |         |
| 10059-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2                      | Z<br>X | 3.42<br>1.03    | 72.27<br>63.98   | 22.83<br>15.22 | 0.61     | 100.0          | ± 9.6 % |
| OVD           | Mbps)                                                   | Υ      | 1.18            | 64.90            | 16.05          | -        | 110.0          |         |
|               |                                                         | Z      | 1.02            | 64.18            | 15.34          |          | 110.0          |         |
| 10060-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)              | X      | 5.25            | 93.28            | 23.11          | 1.30     | 110.0          | ± 9.6 % |
| ·-            | 1                                                       | Υ      | 100.00          | 145.92           | 38.93          |          | 110.0          |         |
|               |                                                         | Z      | 39.44           | 123.36           | 31,22          | 1        | 110.0          |         |

| 10061-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11               | Х          | 1.80          | 74.31 | 19.24 | 2.04                                   | 110.0 | ± 9.6 % |
|---------------|---------------------------------------------------|------------|---------------|-------|-------|----------------------------------------|-------|---------|
| CAB           | Mbps)                                             |            | . <del></del> |       |       |                                        |       |         |
|               |                                                   | Y          | 3.02          | 83.93 | 24.56 | ······································ | 110.0 |         |
| 10062-        | AFFE 000 44-9, WES 5 OLL (OFD) 4 O                | Z          | 2.14          | 78.36 | 21.37 |                                        | 110.0 |         |
| CAC           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps)       | X          | 4.44          | 66.41 | 16.45 | 0.49                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.68          | 66.67 | 16.57 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.45          | 66.51 | 16.42 |                                        | 100.0 |         |
| 10063-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps)       | X          | 4.45          | 66.48 | 16.52 | 0.72                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.69          | 66.78 | 16.69 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.46          | 66.59 | 16.51 |                                        | 100.0 | ******  |
| 10064-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)         | X          | 4.70          | 66.70 | 16.72 | 0.86                                   | 100.0 | ± 9.6 % |
| ***           |                                                   | Y          | 4.99          | 67.05 | 16.93 |                                        | 100.0 |         |
| 40005         |                                                   | Z          | 4.72          | 66.83 | 16.73 |                                        | 100.0 |         |
| 10065-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)         | X          | 4.56          | 66.53 | 16.77 | 1.21                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.85          | 66.96 | 17.05 |                                        | 100.0 |         |
| 10000         |                                                   | Z          | 4.58          | 66.69 | 16.81 |                                        | 100.0 |         |
| 10066-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)         | Х          | 4.57          | 66.51 | 16.90 | 1.46                                   | 100.0 | ±9.6 %  |
|               |                                                   | Υ          | 4.87          | 66.98 | 17.22 |                                        | 100.0 |         |
| 1005-         |                                                   | Z          | 4.60          | 66.69 | 16.96 |                                        | 100.0 |         |
| 10067-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)         | X          | 4.86          | 66.77 | 17.36 | 2.04                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 5.15          | 67.13 | 17.68 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.89          | 66.94 | 17.44 |                                        | 100.0 |         |
| 10068-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)         | X          | 4.88          | 66.65 | 17.49 | 2.55                                   | 100.0 | ±9.6 %  |
|               |                                                   | Υ          | 5.20          | 67.19 | 17.93 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.91          | 66.87 | 17.60 |                                        | 100.0 |         |
| 10069-<br>CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)         | Х          | 4.95          | 66.72 | 17.70 | 2.67                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 5.28          | 67.17 | 18.11 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.99          | 66.91 | 17.80 |                                        | 100.0 |         |
| 10071-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 9 Mbps)  | Х          | 4.71          | 66.43 | 17.22 | 1.99                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.96          | 66.77 | 17.51 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.73          | 66.59 | 17.28 |                                        | 100.0 |         |
| 10072-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 12 Mbps) | Х          | 4.67          | 66.65 | 17.37 | 2.30                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.94          | 67.10 | 17.75 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.69          | 66.85 | 17.47 |                                        | 100.0 |         |
| 10073-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 18 Mbps) | Х          | 4.72          | 66.79 | 17.66 | 2.83                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.99          | 67.24 | 18.08 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.75          | 67.01 | 17.79 |                                        | 100.0 |         |
| 10074-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 24 Mbps) | X          | 4.72          | 66.70 | 17.78 | 3.30                                   | 100.0 | ± 9.6 % |
|               |                                                   | Υ          | 4.95          | 67.09 | 18.23 |                                        | 100.0 |         |
|               |                                                   | Z          | 4.74          | 66.91 | 17.92 |                                        | 100.0 |         |
| 10075-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 36 Mbps) | Х          | 4.74          | 66.71 | 18.01 | 3.82                                   | 90.0  | ± 9.6 % |
|               |                                                   | Υ          | 4.98          | 67.20 | 18,56 |                                        | 90.0  |         |
|               |                                                   | <u>  Z</u> | 4.76          | 66.94 | 18.18 |                                        | 90.0  |         |
| 10076-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 48 Mbps) | X          | 4.77          | 66.58 | 18.17 | 4.15                                   | 90.0  | ± 9.6 % |
|               | .,                                                | Y          | 4.98          | 66.93 | 18.66 |                                        | 90.0  | ļ       |
|               |                                                   | Z          | 4.79          | 66.78 | 18.33 |                                        | 90.0  |         |
| 10077-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 54 Mbps) | Х          | 4.80          | 66.66 | 18.27 | 4.30                                   | 90.0  | ± 9.6 % |
|               |                                                   | Υ          | 5.00          | 66.98 | 18.75 |                                        | 90.0  |         |
|               |                                                   | Z          | 4.82          | 66.86 | 18.43 |                                        | 90.0  |         |

|               | ·                                                       |   |        |        |       |          |       |         |
|---------------|---------------------------------------------------------|---|--------|--------|-------|----------|-------|---------|
| 10081-<br>CAB | CDMA2000 (1xRTT, RC3)                                   | X | 0.45   | 61.00  | 7.50  | 0.00     | 150.0 | ± 9.6 % |
|               | ***                                                     | Υ | 0.83   | 65.94  | 12.49 | <u> </u> | 150.0 |         |
|               |                                                         | Z | 0.46   | 61.34  | 7.83  |          | 150.0 |         |
| 10082-<br>CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-<br>DQPSK, Fullrate) | Х | 0.68   | 60.00  | 3.10  | 4.77     | 80.0  | ± 9.6 % |
|               |                                                         | Υ | 0.78   | 61.11  | 4.54  |          | 80.0  |         |
|               |                                                         | Ζ | 0.72   | 60.00  | 2.85  |          | 80.0  |         |
| 10090-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-4)                           | X | 1.84   | 66,30  | 9.91  | 6.56     | 60.0  | ± 9.6 % |
|               |                                                         | Υ | 100.00 | 120.24 | 28.59 |          | 60.0  |         |
|               |                                                         | Z | 100.00 | 103.44 | 20.90 |          | 60.0  |         |
| 10097-<br>CAB | UMTS-FDD (HSDPA)                                        | Х | 1.71   | 67.90  | 15.28 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 1.82   | 67.70  | 15.69 |          | 150.0 |         |
|               |                                                         | Z | 1.68   | 67.71  | 15.15 |          | 150.0 |         |
| 10098-<br>CAB | UMTS-FDD (HSUPA, Subtest 2)                             | Х | 1.67   | 67.85  | 15.26 | 0.00     | 150.0 | ± 9.6 % |
| ·             | ***************************************                 | Y | 1.79   | 67.66  | 15.66 |          | 150.0 |         |
| 40000         | EDOE EDD (TDMA COCK THE C                               | Z | 1.64   | 67.65  | 15.11 |          | 150.0 |         |
| 10099-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4)                           | X | 6.29   | 83.56  | 29.10 | 9.56     | 60.0  | ± 9.6 % |
|               |                                                         | Υ | 9.34   | 96.14  | 35.56 |          | 60.0  |         |
| 10100         |                                                         | Z | 6.61   | 85.53  | 30.21 |          | 60.0  |         |
| 10100-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)             | × | 2.90   | 69.76  | 16.53 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 3.14   | 70.37  | 16.71 | ·        | 150.0 |         |
|               |                                                         | Z | 2.89   | 69.82  | 16.39 |          | 150.0 |         |
| 10101-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM)           | Х | 3.04   | 67.08  | 15.83 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 3.24   | 67.51  | 15.94 |          | 150.0 |         |
|               |                                                         | Z | 3.03   | 67.13  | 15.70 |          | 150.0 |         |
| 10102-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM)           | Х | 3.15   | 67.10  | 15.95 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 3.34   | 67.47  | 16.02 |          | 150.0 |         |
|               |                                                         | Z | 3.13   | 67.15  | 15.83 |          | 150.0 |         |
| 10103-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)             | Х | 4.81   | 72.04  | 18.88 | 3.98     | 65.0  | ± 9.6 % |
|               |                                                         | Υ | 6.41   | 77.25  | 21.56 |          | 65.0  |         |
|               |                                                         | Z | 5.14   | 73.67  | 19.73 |          | 65.0  |         |
| 10104-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM)           | Х | 5.09   | 70.84  | 19.13 | 3.98     | 65.0  | ± 9.6 % |
|               |                                                         | Υ | 5.94   | 73.69  | 20.83 |          | 65.0  |         |
|               |                                                         | Z | 5.16   | 71.44  | 19.51 |          | 65.0  |         |
| 10105-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM)           | Х | 4.78   | 69.37  | 18.75 | 3.98     | 65.0  | ± 9,6 % |
|               |                                                         | Υ | 5.83   | 73.15  | 20.89 |          | 65.0  |         |
|               |                                                         | Z | 4.90   | 70.20  | 19.25 |          | 65.0  |         |
| 10108-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)             | X | 2.51   | 69.24  | 16.41 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 2.74   | 69.60  | 16.54 |          | 150.0 |         |
|               |                                                         | Z | 2.49   | 69.21  | 16.24 |          | 150.0 |         |
| 10109-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM)           | Х | 2.68   | 67.06  | 15.67 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 2.89   | 67.36  | 15.84 |          | 150.0 |         |
| 45445         |                                                         | Z | 2.67   | 67.07  | 15.55 |          | 150.0 |         |
| 10110-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)                 | Х | 1.99   | 68.49  | 15.84 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 2.22   | 68.71  | 16.15 |          | 150.0 |         |
|               |                                                         | Z | 1.98   | 68.38  | 15.68 |          | 150.0 |         |
| 10111-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)               | Х | 2.41   | 68.19  | 15.80 | 0.00     | 150.0 | ± 9.6 % |
|               |                                                         | Υ | 2.61   | 68.17  | 16.11 |          | 150.0 |         |
|               |                                                         | Z | 2.40   | 68.17  | 15.74 |          | 150.0 |         |

| 10110                                   | T                                                |   |      |         |       |      |       |         |
|-----------------------------------------|--------------------------------------------------|---|------|---------|-------|------|-------|---------|
| 10112-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM)    | X | 2.81 | 67.12   | 15.76 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 3.02 | 67.35   | 15.89 |      | 150.0 |         |
|                                         |                                                  | Z | 2.80 | 67.12   | 15.64 |      | 150.0 |         |
| 10113-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)        | X | 2.56 | 68.40   | 15.97 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 2.76 | 68.30   | 16.24 |      | 150.0 |         |
|                                         |                                                  | Z | 2.55 | 68.39   | 15.92 |      | 150.0 |         |
| 10114-<br>CAC                           | IEEE 802.11n (HT Greenfield, 13.5<br>Mbps, BPSK) | Х | 4.95 | 66.96   | 16.54 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 5.12 | 67.17   | 16.44 |      | 150.0 |         |
|                                         |                                                  | Z | 4.92 | 66.97   | 16.39 |      | 150.0 |         |
| 10115-<br>CAC                           | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)    | Х | 5.23 | 67.14   | 16.63 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 5.41 | 67.31   | 16.52 |      | 150.0 |         |
|                                         |                                                  | Z | 5.18 | 67.06   | 16.45 |      | 150.0 |         |
| 10116-<br>CAC                           | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)   | Х | 5.04 | 67.18   | 16.57 | 0.00 | 150.0 | ±9.6 %  |
|                                         |                                                  | Υ | 5.22 | 67.37   | 16.47 |      | 150.0 |         |
|                                         |                                                  | Ζ | 5.01 | 67.18   | 16.42 |      | 150.0 |         |
| 10117-<br>CAC                           | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)         | Х | 4.94 | 66.92   | 16.53 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 5.09 | 67.03   | 16.39 |      | 150.0 |         |
|                                         |                                                  | Z | 4.91 | 66.91   | 16.38 |      | 150.0 |         |
| 10118-<br>CAC                           | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)         | Х | 5.34 | 67.47   | 16.81 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Y | 5.50 | 67.52   | 16.63 |      | 150.0 |         |
|                                         |                                                  | Z | 5.27 | 67.32   | 16.58 |      | 150.0 |         |
| 10119-<br>CAC                           | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)        | X | 5.06 | 67.24   | 16.61 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Y | 5.20 | 67.31   | 16.45 |      | 150.0 |         |
|                                         |                                                  | Z | 5.01 | 67.18   | 16.43 |      | 150.0 |         |
| 10140-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM)    | Х | 3.17 | 67.11   | 15.85 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Y | 3,38 | 67.48   | 15.94 |      | 150.0 |         |
|                                         |                                                  | Z | 3,16 | 67.15   | 15.73 |      | 150.0 |         |
| 10141-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM)    | Х | 3.30 | 67.28   | 16.06 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 3.50 | 67.57   | 16.11 |      | 150.0 |         |
|                                         |                                                  | Z | 3.29 | 67.32   | 15.94 | ···  | 150.0 |         |
| 10142-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)          | X | 1.73 | 68.17   | 14.94 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 2.00 | 68.71   | 15.82 |      | 150.0 |         |
|                                         |                                                  | Z | 1.72 | 68.11   | 14.89 |      | 150.0 |         |
| 10143-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)        | Х | 2.15 | 68.15   | 14.63 | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 2.47 | 68.91   | 15.82 |      | 150.0 |         |
|                                         |                                                  | Ζ | 2.17 | 68.32   | 14.76 |      | 150.0 |         |
| 10144-<br>CAD                           | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)        | Х | 1.86 | 65.26   | 12.63 | 0.00 | 150.0 | ± 9.6 % |
| ······································  |                                                  | Υ | 2.24 | 66.62   | 14.22 |      | 150.0 |         |
| *************************************** |                                                  | Z | 1.88 | 65.43   | 12.77 |      | 150.0 |         |
| 10145-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK)     | X | 0.67 | 60.16   | 6.91  | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Υ | 1.22 | 65.11   | 11.80 | i    | 150.0 |         |
|                                         |                                                  | Z | 0.71 | 60.61   | 7.39  |      | 150.0 |         |
| 10146-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM)   | X | 0.95 | 60.06   | 6.44  | 0.00 | 150.0 | ± 9.6 % |
|                                         |                                                  | Y | 1.65 | 64.56   | 10.76 |      | 150.0 |         |
|                                         |                                                  |   |      | 61.07   | 7.44  |      | 150.0 |         |
|                                         |                                                  | Z | 1.07 | 1 01.07 |       |      |       |         |
| 10147-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM)   | X | 0.99 | 60.33   | 6.68  | 0.00 | 150.0 | ± 9.6 % |
| 10147-<br>CAE                           | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM)   |   |      |         |       | 0.00 |       | ± 9.6 % |

| 10110         | LTE EDD (OO EDMA SOOV DD OO MIL            | 1 1    |              | 07.40          | 15.70          |      | 1.50.0         |         |
|---------------|--------------------------------------------|--------|--------------|----------------|----------------|------|----------------|---------|
| 10149-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)  | X      | 2.69         | 67.13          | 15.72          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 2.90         | 67.42          | 15.88          |      | 150.0          |         |
|               |                                            | Z      | 2.68         | 67.14          | 15.60          |      | 150.0          |         |
| 10150-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)  | Х      | 2.82         | 67.19          | 15.80          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 3.03         | 67.40          | 15.93          |      | 150.0          |         |
|               |                                            | Z      | 2.81         | 67.19          | 15.69          |      | 150.0          |         |
| 10151-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)    | Х      | 5.01         | 74.56          | 19.93          | 3.98 | 65.0           | ± 9.6 % |
|               |                                            | Υ      | 6.65         | 79.71          | 22.70          |      | 65.0           |         |
|               |                                            | Ζ      | 5.36         | 76.27          | 20.86          |      | 65.0           |         |
| 10152-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)  | Х      | 4.60         | 70.61          | 18.55          | 3.98 | 65.0           | ± 9.6 % |
|               |                                            | Υ      | 5.50         | 73.80          | 20.64          |      | 65.0           |         |
|               |                                            | Ζ      | 4.69         | 71.33          | 19.06          |      | 65.0           |         |
| 10153-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)  | ×      | 4.95         | 71.72          | 19.46          | 3.98 | 65.0           | ± 9.6 % |
|               |                                            | Υ      | 5.84         | 74.66          | 21.37          |      | 65.0           |         |
| 4045          |                                            | Z      | 5.05         | 72.49          | 19.99          |      | 65.0           |         |
| 10154-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)    | X      | 2.04         | 68.92          | 16.11          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 2.27         | 69.12          | 16.41          |      | 150.0          |         |
| 1015-         |                                            | Z      | 2.03         | 68.83          | 15.96          |      | 150.0          |         |
| 10155-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)  | Х      | 2.41         | 68.23          | 15.84          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Y      | 2.61         | 68.18          | 16.13          |      | 150.0          |         |
| 10150         |                                            | Z      | 2.40         | 68.21          | 15.77          |      | 150.0          |         |
| 10156-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)     | Х      | 1.51         | 67.60          | 14.13          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 1.84         | 68.81          | 15.61          |      | 150.0          |         |
|               |                                            | Z      | 1.52         | 67.67          | 14.19          |      | 150.0          |         |
| 10157-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | X      | 1.63         | 65.15          | 12.07          | 0.00 | 150.0          | ± 9.6 % |
| ****          |                                            | Υ      | 2.08         | 67.20          | 14.25          |      | 150.0          |         |
|               |                                            | Ζ      | 1.66         | 65.43          | 12.31          |      | 150.0          |         |
| 10158-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)  | Х      | 2.57         | 68.50          | 16.04          | 0.00 | 150,0          | ± 9.6 % |
|               |                                            | Υ      | 2.77         | 68.36          | 16.29          |      | 150.0          |         |
|               |                                            | Z      | 2.56         | 68.48          | 15.98          |      | 150.0          |         |
| 10159-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)   | Х      | 1.70         | 65.38          | 12.24          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 2.19         | 67.65          | 14.54          |      | 150.0          |         |
|               |                                            | Z      | 1.74         | 65.76          | 12.53          |      | 150.0          |         |
| 10160-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)    | X      | 2.62         | 68.99          | 16.41          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 2.74         | 68.65          | 16.32          |      | 150.0          |         |
| 101-1         |                                            | Z      | 2.56         | 68.70          | 16.16          |      | 150.0          |         |
| 10161-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)  | Х      | 2.71         | 67.15          | 15.66          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 2.92         | 67.34          | 15.86          |      | 150.0          |         |
|               |                                            | Z      | 2.70         | 67.15          | 15.57          |      | 150.0          |         |
| 10162-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | Х      | 2.82         | 67.38          | 15.82          | 0.00 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 3.03         | 67.49          | 15.97          |      | 150.0          |         |
| 10166-        | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,         | Z<br>X | 2.81<br>3.14 | 67.37<br>68.82 | 15.72<br>18.96 | 3.01 | 150.0<br>150.0 | ± 9.6 % |
| CAE           | QPSK)                                      |        |              |                |                |      |                |         |
|               |                                            | Y      | 3.40         | 68.62          | 18.58          |      | 150.0          |         |
| 40407         | LITE EDD (OO ED) (A SOO ED)                | Z      | 3.24         | 69.38          | 19.21          |      | 150.0          | :       |
| 10167-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х      | 3.68         | 71.26          | 19.14          | 3.01 | 150.0          | ± 9.6 % |
|               |                                            | Υ      | 4.01         | 70.93          | 18.84          |      | 150.0          |         |
|               | '                                          | Z      | 3.86         | 71.98          | 19.46          |      | 150.0          |         |

| 10168-<br>CAE                           | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 4.20  | 74.21  | 20.88 | 3.01 | 150.0 | ± 9.6 %                                 |
|-----------------------------------------|--------------------------------------------|---|-------|--------|-------|------|-------|-----------------------------------------|
|                                         |                                            | Υ | 4.39  | 72.91  | 20.06 | -    | 150.0 |                                         |
|                                         |                                            | Z | 4.45  | 75.16  | 21.28 | _    | 150.0 |                                         |
| 10169-<br>CAD                           | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)      | Х | 2.49  | 66.95  | 18.11 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Y | 2.73  | 67.59  | 18.14 | -    | 150.0 |                                         |
|                                         |                                            | Z | 2.58  | 67.69  | 18.47 |      | 150.0 |                                         |
| 10170-<br>CAD                           | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)    | Х | 3.17  | 72.06  | 20.27 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Υ | 3.45  | 72.20  | 20.01 |      | 150.0 |                                         |
| *************************************** |                                            | Z | 3.40  | 73.44  | 20.89 |      | 150.0 | *************************************** |
| 10171-<br>AAD                           | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)    | X | 2.61  | 67.98  | 17.29 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Υ | 2.93  | 68.85  | 17.54 |      | 150.0 |                                         |
|                                         |                                            | Ζ | 2.74  | 68.83  | 17.69 |      | 150.0 |                                         |
| 10172-<br>CAD                           | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)      | Х | 3.59  | 76.79  | 22.90 | 6.02 | 65.0  | ± 9.6 %                                 |
|                                         |                                            | Υ | 7.70  | 92.12  | 29.64 |      | 65.0  |                                         |
|                                         |                                            | Ζ | 4.50  | 82.04  | 25.61 |      | 65.0  |                                         |
| 10173-<br>CAD                           | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)    | Х | 5.40  | 81.69  | 22.80 | 6.02 | 65.0  | ±9.6%                                   |
|                                         |                                            | Y | 14.31 | 100.07 | 30.15 |      | 65.0  |                                         |
|                                         |                                            | Z | 8.60  | 91.21  | 26.84 |      | 65.0  |                                         |
| 10174-<br>CAD                           | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)    | Х | 3.41  | 73.68  | 19.23 | 6.02 | 65.0  | ± 9.6 %                                 |
|                                         |                                            | Υ | 12.55 | 96.17  | 28.30 |      | 65.0  |                                         |
|                                         |                                            | Z | 5.50  | 82.57  | 23.30 |      | 65.0  |                                         |
| 10175-<br>CAE                           | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)      | Х | 2.47  | 66.66  | 17.85 | 3.01 | 150.0 | ±9.6 %                                  |
|                                         |                                            | Υ | 2.70  | 67.34  | 17.92 |      | 150.0 |                                         |
|                                         |                                            | Z | 2.55  | 67.36  | 18.19 |      | 150.0 |                                         |
| 10176-<br>CAE                           | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)    | Х | 3.18  | 72.09  | 20.28 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Y | 3.46  | 72.22  | 20.02 |      | 150.0 |                                         |
|                                         |                                            | Z | 3.41  | 73.46  | 20.90 |      | 150.0 |                                         |
| 10177-<br>CAG                           | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)       | X | 2.48  | 66.79  | 17.93 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Y | 2.72  | 67.46  | 18.00 |      | 150.0 |                                         |
|                                         |                                            | Z | 2.57  | 67.51  | 18.28 |      | 150.0 |                                         |
| 10178-<br>CAE                           | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)     | Х | 3.15  | 71.92  | 20.18 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Υ | 3.43  | 72.05  | 19.92 |      | 150.0 |                                         |
|                                         |                                            | Z | 3.38  | 73.25  | 20.78 |      | 150.0 |                                         |
| 10179-<br>CAE                           | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)    | Х | 2.85  | 69.85  | 18.61 | 3.01 | 150.0 | ±9.6%                                   |
|                                         |                                            | Υ | 3.17  | 70.44  | 18.65 |      | 150.0 |                                         |
|                                         |                                            | Z | 3.03  | 70.94  | 19.12 |      | 150.0 |                                         |
| 10180-<br>CAE                           | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)     | Х | 2.61  | 67.94  | 17.25 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Υ | 2.92  | 68.79  | 17.50 |      | 150.0 |                                         |
|                                         |                                            | Ζ | 2.74  | 68.78  | 17.65 |      | 150.0 |                                         |
| 10181-<br>CAD                           | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)      | Х | 2.48  | 66.77  | 17.93 | 3.01 | 150.0 | ±9.6 %                                  |
|                                         |                                            | Υ | 2.71  | 67.45  | 18.00 |      | 150.0 |                                         |
|                                         |                                            | Z | 2.56  | 67.49  | 18.28 |      | 150.0 |                                         |
| 10182-<br>CAD                           | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,<br>16-QAM) | Х | 3.15  | 71.89  | 20.17 | 3.01 | 150.0 | ± 9.6 %                                 |
|                                         |                                            | Υ | 3.42  | 72.03  | 19.91 |      | 150.0 |                                         |
|                                         |                                            | Z | 3.37  | 73.22  | 20.77 |      | 150.0 |                                         |
| 10183-                                  | LITE FOO /OO FOMA A DO ACAMILE             | X | 2.60  | 67.92  | 17.24 | 3.01 | 150.0 | ± 9.6 %                                 |
| 10183-<br>AAC                           | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)    |   |       |        |       |      |       |                                         |
|                                         |                                            | Y | 2.92  | 68.77  | 17.49 |      | 150.0 |                                         |

| 10184-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)          | Х | 2.49 | 66.81 | 17.95 | 3.01                                    | 150.0 | ± 9.6 % |
|---------------|-----------------------------------------------|---|------|-------|-------|-----------------------------------------|-------|---------|
|               |                                               | Y | 2.72 | 67.49 | 18.02 |                                         | 150.0 |         |
|               |                                               | ż | 2.57 | 67.53 | 18.30 |                                         | 150.0 |         |
| 10185-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)        | X | 3.16 | 71.97 | 20.21 | 3.01                                    | 150.0 | ± 9.6 % |
|               | ,                                             | Υ | 3.44 | 72.09 | 19.94 |                                         | 150.0 |         |
|               |                                               | Ζ | 3.39 | 73.31 | 20.81 |                                         | 150.0 |         |
| 10186-<br>AAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)        | Х | 2.62 | 67.98 | 17.28 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 2.93 | 68.83 | 17.52 | ,                                       | 150.0 |         |
|               |                                               | Z | 2.74 | 68.82 | 17.67 | ······································  | 150.0 |         |
| 10187-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)        | Х | 2.50 | 66.88 | 18.03 | 3.01                                    | 150.0 | ±9.6 %  |
|               |                                               | Υ | 2.73 | 67.53 | 18.08 |                                         | 150.0 |         |
|               |                                               | Ζ | 2.58 | 67.61 | 18.38 |                                         | 150.0 |         |
| 10188-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)      | Х | 3.26 | 72.60 | 20.60 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 3.53 | 72.62 | 20.27 | *************************************** | 150.0 |         |
|               |                                               | Z | 3.51 | 74.04 | 21.24 |                                         | 150.0 |         |
| 10189-<br>AAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)      | Х | 2.67 | 68.35 | 17.55 | 3.01                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 2.99 | 69.18 | 17.77 |                                         | 150.0 |         |
|               |                                               | Z | 2.80 | 69.24 | 17.97 |                                         | 150.0 |         |
| 10193-<br>CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)  | Х | 4.32 | 66.50 | 16.16 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.52 | 66.59 | 16.14 |                                         | 150.0 |         |
|               |                                               | Ζ | 4.31 | 66.50 | 16.05 |                                         | 150.0 |         |
| 10194-<br>CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | X | 4.47 | 66.75 | 16.31 | 0.00                                    | 150.0 | ±9.6%   |
|               |                                               | Υ | 4,69 | 66.90 | 16.27 |                                         | 150.0 |         |
|               |                                               | Z | 4.46 | 66.77 | 16.19 |                                         | 150.0 |         |
| 10195-<br>CAC | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | Х | 4.51 | 66.78 | 16.33 | 0.00                                    | 150.0 | ± 9.6 % |
|               | -                                             | Υ | 4.73 | 66.93 | 16.28 |                                         | 150.0 |         |
|               |                                               | Z | 4.50 | 66.80 | 16.21 |                                         | 150.0 |         |
| 10196-<br>CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)       | Х | 4.31 | 66.51 | 16.16 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.52 | 66.65 | 16.16 |                                         | 150.0 |         |
|               |                                               | Z | 4.30 | 66.52 | 16.05 |                                         | 150.0 |         |
| 10197-<br>CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)      | Х | 4.48 | 66.77 | 16.32 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.70 | 66.92 | 16.28 |                                         | 150.0 |         |
|               |                                               | Ζ | 4.47 | 66.78 | 16.20 |                                         | 150.0 |         |
| 10198-<br>CAC | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)      | Х | 4.50 | 66.79 | 16.33 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.73 | 66,95 | 16.30 |                                         | 150.0 |         |
|               |                                               | Ζ | 4.49 | 66.81 | 16.22 |                                         | 150.0 |         |
| 10219-<br>CAC | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)       | Х | 4.26 | 66.54 | 16.13 | 0.00                                    | 150,0 | ± 9.6 % |
|               |                                               | Υ | 4.47 | 66.66 | 16.12 |                                         | 150.0 |         |
|               |                                               | Z | 4.25 | 66.55 | 16.01 | <u> </u>                                | 150.0 |         |
| 10220-<br>CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)    | Х | 4.47 | 66.73 | 16.30 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.70 | 66.89 | 16.27 |                                         | 150.0 |         |
|               |                                               | Z | 4.46 | 66.74 | 16.19 |                                         | 150.0 |         |
| 10221-<br>CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)    | Х | 4.51 | 66.73 | 16.32 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 4.74 | 66.87 | 16.28 |                                         | 150.0 |         |
|               |                                               | Z | 4.51 | 66.74 | 16.20 |                                         | 150.0 |         |
| 10222+<br>CAC | IEEE 802.11n (HT Mixed, 15 Mbps,<br>BPSK)     | Х | 4.91 | 66.89 | 16.51 | 0.00                                    | 150.0 | ± 9.6 % |
|               |                                               | Υ | 5.06 | 67.05 | 16.39 |                                         | 150.0 |         |
|               |                                               | Z | 4.88 | 66.88 | 16.36 | <del></del>                             | 150.0 |         |

| 10223-<br>CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)  | X | 5.21  | 67.18  | 16.67 | 0.00 | 150.0 | ± 9.6 %  |
|---------------|-------------------------------------------|---|-------|--------|-------|------|-------|----------|
| ,,            |                                           | Υ | 5.37  | 67.24  | 16.51 |      | 150.0 |          |
| ····          |                                           | ż | 5.17  | 67.14  | 16.51 |      | 150.0 |          |
| 10224-<br>CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | X | 4.95  | 66.99  | 16.48 | 0.00 | 150.0 | ± 9.6 %  |
|               |                                           | Y | 5.11  | 67.16  | 16.37 |      | 150.0 |          |
|               |                                           | Z | 4.91  | 66.98  | 16.33 |      | 150.0 |          |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                          | Х | 2.57  | 65.87  | 14,82 | 0.00 | 150.0 | ± 9.6 %  |
|               |                                           | Υ | 2.79  | 66.10  | 15.32 |      | 150.0 |          |
|               |                                           | Z | 2.57  | 65.89  | 14.81 |      | 150.0 |          |
| 10226-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)  | Х | 5.70  | 82.73  | 23.27 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Υ | 15.45 | 101.64 | 30.73 |      | 65.0  |          |
|               |                                           | Ζ | 9.36  | 92.89  | 27.50 |      | 65.0  |          |
| 10227-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)  | Х | 5.51  | 81.11  | 22.01 | 6.02 | 65.0  | ±9.6 %   |
|               |                                           | Υ | 15.16 | 99.52  | 29.37 |      | 65.0  |          |
|               |                                           | Z | 9.33  | 91.39  | 26.29 |      | 65.0  |          |
| 10228-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)    | Х | 4.37  | 80.87  | 24.58 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Y | 8.06  | 93.39  | 30.16 |      | 65.0  |          |
|               |                                           | Z | 5.51  | 86.54  | 27.40 |      | 65.0  |          |
| 10229-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)    | Х | 5.43  | 81.78  | 22.83 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Y | 14.43 | 100.19 | 30.19 |      | 65.0  |          |
|               |                                           | Z | 8.67  | 91.34  | 26.89 |      | 65.0  |          |
| 10230-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)    | X | 5.22  | 80.18  | 21.60 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Υ | 14.07 | 98.09  | 28.85 |      | 65.0  |          |
|               |                                           | Z | 8.56  | 89.82  | 25.70 |      | 65.0  |          |
| 10231-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz,<br>QPSK)   | Х | 4.21  | 80.08  | 24.19 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Y | 7.72  | 92.42  | 29.75 |      | 65.0  | <u> </u> |
|               |                                           | Z | 5.25  | 85.50  | 26.93 |      | 65.0  |          |
| 10232-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)    | X | 5.42  | 81.76  | 22.83 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Y | 14.40 | 100.18 | 30.19 |      | 65.0  |          |
|               |                                           | Z | 8.65  | 91.31  | 26.89 |      | 65.0  |          |
| 10233-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)    | Х | 5.21  | 80.16  | 21.59 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Y | 14.03 | 98.05  | 28.84 |      | 65.0  |          |
|               |                                           | Z | 8.53  | 89.78  | 25.69 |      | 65.0  |          |
| 10234-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)      | Х | 4.09  | 79.41  | 23.80 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Υ | 7.46  | 91.57  | 29.34 |      | 65.0  |          |
|               |                                           | Z | 5.06  | 84.64  | 26.49 |      | 65.0  |          |
| 10235-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)   | X | 5.43  | 81.79  | 22.84 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Υ | 14.42 | 100.22 | 30.20 |      | 65.0  |          |
|               |                                           | Ζ | 8.66  | 91.36  | 26.90 |      | 65.0  |          |
| 10236-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)   | Х | 5,25  | 80.28  | 21.63 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Υ | 14.26 | 98.30  | 28.91 |      | 65.0  |          |
|               |                                           | Z | 8.64  | 89.96  | 25.74 |      | 65.0  |          |
| 10237-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)     | Х | 4.21  | 80.11  | 24.20 | 6.02 | 65.0  | ± 9.6 %  |
|               |                                           | Υ | 7.73  | 92.49  | 29.78 |      | 65.0  |          |
|               |                                           | Z | 5.25  | 85.54  | 26.95 |      | 65.0  |          |
| 10238-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz,           | Х | 5.41  | 81.74  | 22.82 | 6.02 | 65.0  | ± 9.6 %  |
| CAD           | 16-QAM)                                   |   |       | ł      | 1     | 1    | 1     |          |
| CAD           | 16-QAM)                                   | Y | 14.37 | 100.15 | 30.18 |      | 65.0  |          |

| 10239-        | LTE-TDD (SC-FDMA, 1 RB, 15 MHz,            | Х | 5.19  | 80.13 | 21.58 | 6.02 | 65.0 | ± 9.6 %  |
|---------------|--------------------------------------------|---|-------|-------|-------|------|------|----------|
| CAD           | 64-QAM)                                    |   |       |       |       | 0.02 | 00.0 | 2 070 70 |
|               |                                            | Υ | 13.97 | 98.01 | 28.83 |      | 65.0 |          |
|               | ·                                          | Ζ | 8.50  | 89.73 | 25.67 |      | 65.0 |          |
| 10240-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)      | Х | 4.20  | 80.08 | 24.19 | 6.02 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.71  | 92.44 | 29.76 |      | 65.0 |          |
|               |                                            | Z | 5.24  | 85.50 | 26.94 |      | 65.0 |          |
| 10241-<br>CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х | 6,28  | 77.75 | 23.74 | 6.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.17  | 79.66 | 25.20 |      | 65.0 |          |
|               |                                            | Z | 6.62  | 79.11 | 24.64 |      | 65.0 |          |
| 10242-<br>CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 5.61  | 75.51 | 22.71 | 6.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.01  | 79.22 | 24.95 |      | 65.0 |          |
|               |                                            | Z | 6.04  | 77.21 | 23.74 |      | 65.0 |          |
| 10243-<br>CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)   | Х | 4.77  | 72.80 | 22,43 | 6.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.72  | 75.84 | 24.40 |      | 65.0 |          |
|               |                                            | Ζ | 4.99  | 73.88 | 23.19 |      | 65.0 |          |
| 10244-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)   | Х | 3.08  | 66,71 | 12.88 | 3.98 | 65.0 | ± 9,6 %  |
|               |                                            | Υ | 5.65  | 76.51 | 19.16 |      | 65.0 |          |
|               |                                            | Z | 3.79  | 70.31 | 15.20 |      | 65.0 |          |
| 10245-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)   | Х | 3.05  | 66.35 | 12.65 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.47  | 75.72 | 18.77 |      | 65.0 |          |
|               |                                            | Ζ | 3.68  | 69.62 | 14.83 |      | 65.0 |          |
| 10246-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)     | Х | 2.73  | 68.50 | 14.10 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 6.90  | 84.10 | 22.59 |      | 65.0 |          |
| _,            |                                            | Ζ | 3.38  | 72.30 | 16.31 |      | 65.0 |          |
| 10247-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | Х | 3.32  | 68.16 | 14.83 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.00  | 75.29 | 19.75 |      | 65.0 |          |
|               |                                            | Z | 3.63  | 70.11 | 16.18 |      | 65.0 |          |
| 10248-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)   | Х | 3.35  | 67.83 | 14.68 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 4.95  | 74.49 | 19.36 |      | 65.0 | -        |
|               |                                            | Z | 3.62  | 69.55 | 15.90 |      | 65.0 |          |
| 10249-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)     | Х | 3.90  | 73.79 | 17.79 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.87  | 86.63 | 24.46 |      | 65.0 |          |
|               |                                            | Z | 4.87  | 78.17 | 20.05 |      | 65.0 |          |
| 10250-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)  | Х | 4.46  | 72.43 | 19.10 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.61  | 76.63 | 21.92 |      | 65.0 |          |
| -             |                                            | Z | 4.70  | 73.89 | 20.05 |      | 65.0 |          |
| 10251-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)  | Х | 4.27  | 70.46 | 17.79 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.36  | 74.41 | 20.57 |      | 65.0 |          |
|               |                                            | Z | 4.43  | 71.53 | 18.56 |      | 65.0 |          |
| 10252-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)    | Х | 4.80  | 76.28 | 20.36 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.12  | 83.67 | 24.31 |      | 65.0 |          |
|               |                                            | Ζ | 5.40  | 79.04 | 21.81 |      | 65.0 |          |
| 10253-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)  | Х | 4.54  | 70.25 | 18.29 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.37  | 73.18 | 20.35 |      | 65.0 |          |
|               |                                            | Z | 4.62  | 70.94 | 18.80 |      | 65.0 |          |
| 10254-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | Х | 4.85  | 71.22 | 19.07 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 5.69  | 74.00 | 21.02 |      | 65.0 |          |
|               |                                            | Z | 4.94  | 71.96 | 19.60 |      | 65.0 |          |

| 10255-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)        | Х          | 4.83 | 74.07 | 19.88 | 3.98     | 65.0 | ± 9.6 % |
|---------------|------------------------------------------------|------------|------|-------|-------|----------|------|---------|
|               |                                                | Υ          | 6.20 | 78.60 | 22.49 |          | 65.0 |         |
|               |                                                | Z          | 5.10 | 75.57 | 20.75 |          | 65.0 |         |
| 10256-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM) | Х          | 2.29 | 63.25 | 9.85  | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 4.33 | 72.34 | 16.30 |          | 65.0 |         |
|               |                                                | Z          | 2.61 | 65.28 | 11.48 |          | 65.0 |         |
| 10257-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM) | X          | 2.28 | 62.96 | 9.60  | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 4.16 | 71.35 | 15.76 |          | 65.0 |         |
| 10050         |                                                | Z          | 2.56 | 64.75 | 11.10 |          | 65.0 |         |
| 10258-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK)   | X          | 1.96 | 64.07 | 10.75 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 4.97 | 78.32 | 19.50 |          | 65.0 |         |
| 40050         |                                                | Z          | 2.22 | 66.21 | 12,33 |          | 65.0 |         |
| 10259-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)      | Х          | 3.77 | 69.86 | 16.44 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 5.26 | 75.82 | 20.54 | ·····    | 65.0 |         |
| 40000         | LITE TOD (OO EDMA 4000) CO CAND                | Z          | 4.07 | 71.70 | 17.67 | 0.00     | 65.0 |         |
| 10260-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)      | X          | 3.81 | 69.66 | 16.35 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 5.26 | 75.42 | 20.36 |          | 65.0 |         |
| 10007         | LITE TOD (OO FOLIA 4000) DE CANO               | Z          | 4.10 | 71.41 | 17.53 | 6.5-     | 65.0 |         |
| 10261-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)        | X          | 4.13 | 74.31 | 18.63 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 6.91 | 83.89 | 23.89 |          | 65.0 |         |
| 40000         | LITE TOP (OO FOMA 4000) DD 5 MIL               | <u>  Z</u> | 4.85 | 77.73 | 20.46 |          | 65.0 |         |
| 10262-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)      | X          | 4.45 | 72.36 | 19.04 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 5.60 | 76.58 | 21.88 |          | 65.0 |         |
|               |                                                | Z          | 4.68 | 73.81 | 19.99 |          | 65.0 |         |
| 10263-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)      | X          | 4.26 | 70.44 | 17.79 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 5.34 | 74.38 | 20.56 |          | 65.0 |         |
|               |                                                | Z          | 4.42 | 71.51 | 18.55 |          | 65.0 |         |
| 10264-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)        | X          | 4.75 | 76.08 | 20.25 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 7.04 | 83.44 | 24.20 |          | 65.0 |         |
|               |                                                | Z          | 5.33 | 78.79 | 21.68 |          | 65.0 |         |
| 10265-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM)  | X          | 4.60 | 70.61 | 18.56 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 5.50 | 73.80 | 20.64 |          | 65.0 |         |
|               |                                                | Z          | 4.69 | 71.34 | 19.07 |          | 65.0 |         |
| 10266-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM)  | X          | 4.95 | 71.71 | 19.45 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 5.83 | 74.64 | 21.36 |          | 65.0 |         |
| 10000         |                                                | Z          | 5.05 | 72.48 | 19.97 |          | 65.0 |         |
| 10267-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)    | Х          | 5.01 | 74.52 | 19.91 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 6.63 | 79.66 | 22.68 |          | 65.0 |         |
| 10000         | 1 777 700 (00 77)                              | <u> </u>   | 5.35 | 76.22 | 20.84 |          | 65.0 |         |
| 10268-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM)  | Х          | 5.27 | 70.89 | 19.25 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Y          | 6.07 | 73.43 | 20.81 |          | 65.0 |         |
| 1000-         | LITE TOD (OO EDI)                              | Z          | 5.33 | 71.43 | 19.60 |          | 65.0 |         |
| 10269-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM)  | Х          | 5.29 | 70.58 | 19.15 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 6.04 | 72.94 | 20.64 | <u> </u> | 65.0 |         |
|               |                                                | Z          | 5.34 | 71.06 | 19.47 | <u>.</u> | 65.0 |         |
| 10270-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)    | X          | 5.17 | 72.58 | 19.33 | 3.98     | 65.0 | ± 9.6 % |
|               |                                                | Υ          | 6.28 | 76.09 | 21.29 |          | 65.0 |         |
|               |                                                | Z          | 5.35 | 73.62 | 19.93 |          | 65.0 |         |

| 10274-<br>CAB                       | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)                          | Х      | 2.41          | 66.43          | 14.82          | 0.00     | 150.0          | ± 9.6 % |
|-------------------------------------|--------------------------------------------------------------------|--------|---------------|----------------|----------------|----------|----------------|---------|
| · · · · · · · · · · · · · · · · · · |                                                                    | Y      | 2.58          | 66.48          | 15.24          | <u> </u> | 150.0          |         |
|                                     |                                                                    | Ż      | 2.39          | 66.38          | 14.76          |          | 150.0          |         |
| 10275-<br>CAB                       | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)                           | Х      | 1.45          | 67.76          | 15.04          | 0.00     | 150.0          | ± 9.6 % |
|                                     |                                                                    | Υ      | 1.61          | 67.98          | 15.58          |          | 150.0          |         |
|                                     |                                                                    | Z      | 1,42          | 67.56          | 14.85          |          | 150.0          |         |
| 102 <b>7</b> 7-<br>CAA              | PHS (QPSK)                                                         | X      | 1.74          | 59.75          | 5.31           | 9.03     | 50,0           | ± 9.6 % |
|                                     |                                                                    | Υ      | 1.81          | 61.19          | 6.71           |          | 50.0           |         |
| 10278-                              | DHC (ODCK DW 004MH= D-H-K 0.5)                                     | Z      | 1.73          | 59.88          | 5.41           | 0.00     | 50.0           |         |
| CAA                                 | PHS (QPSK, BW 884MHz, Rolloff 0.5)                                 | X      | 2.71          | 64.14          | 10.09          | 9.03     | 50.0           | ± 9.6 % |
|                                     |                                                                    | Y      | 10.58         | 86.01          | 20.92          |          | 50.0           |         |
| 10279-                              | PHS (QPSK, BW 884MHz, Rolloff 0.38)                                | Z      | 2.95<br>2.77  | 65.66<br>64.34 | 11.11          | 0.00     | 50.0           | 1000    |
| CAA                                 | FIIS (QFSK, BVV 004IVIIIZ, KUIIUII U.30)                           |        |               |                | 10.25          | 9.03     | 50.0           | ± 9.6 % |
|                                     |                                                                    | Y<br>Z | 10.86<br>3.03 | 86.33          | 21.10          |          | 50.0           |         |
| 10290-                              | CDMA2000, RC1, SO55, Full Rate                                     | X      | 0.78          | 65.92<br>62.91 | 11.30<br>9.04  | 0.00     | 50.0<br>150.0  | ± 9.6 % |
| AAB                                 | Sent (2000) No 1, 0000, 1 uli Nate                                 | ^<br>Y |               |                |                | 0.00     |                | 1 3.0 % |
|                                     |                                                                    | Z      | 1.44<br>0.82  | 68.67<br>63.50 | 13.91<br>9.52  |          | 150.0<br>150.0 |         |
| 10291-                              | CDMA2000, RC3, SO55, Full Rate                                     | X      | 0.62          | 60.90          | 7.41           | 0.00     | 150.0          | ± 9.6 % |
| AAB                                 | 55111 2000, 1100, 5000, 1 un 11ul                                  | Y      | 0.81          | 65.70          |                | 0.00     | -              | 1 9.0 % |
|                                     |                                                                    | Z      | 0.46          | 61.22          | 12.35<br>7.73  |          | 150.0<br>150.0 |         |
| 10292-<br>AAB                       | CDMA2000, RC3, SO32, Full Rate                                     | X      | 0.52          | 62.90          | 8.81           | 0.00     | 150.0          | ± 9.6 % |
| AAD                                 |                                                                    | Υ      | 1.08          | 70.34          | 14.96          |          | 150.0          |         |
|                                     |                                                                    | Z      | 0.54          | 63.47          | 9,26           |          | 150.0          |         |
| 10293-<br>AAB                       | CDMA2000, RC3, SO3, Full Rate                                      | X      | 0.85          | 67.98          | 11.75          | 0.00     | 150.0          | ± 9.6 % |
|                                     |                                                                    | Υ      | 1.81          | 77.73          | 18.47          |          | 150.0          |         |
|                                     |                                                                    | Z      | 0.93          | 69.19          | 12.44          |          | 150.0          |         |
| 10295-<br>AAB                       | CDMA2000, RC1, SO3, 1/8th Rate 25 fr.                              | Х      | 10.59         | 83.36          | 20.91          | 9.03     | 50.0           | ± 9.6 % |
|                                     |                                                                    | Υ      | 13.63         | 95.28          | 28.15          |          | 50.0           |         |
|                                     |                                                                    | Ζ      | 12.33         | 87.48          | 22.99          |          | 50.0           |         |
| 10297-<br>AAC                       | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                            | X      | 2.52          | 69.36          | 16.49          | 0.00     | 150.0          | ± 9.6 % |
|                                     |                                                                    | Υ      | 2.75          | 69.70          | 16.61          |          | 150.0          |         |
| 10298-<br>AAC                       | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)                             | Z<br>X | 2.51<br>1.02  | 69.33<br>63.71 | 16.32<br>10.46 | 0.00     | 150.0<br>150.0 | ± 9.6 % |
| 70.0                                |                                                                    | Υ      | 1.56          | 67.65          | 14.07          |          | 150.0          | [       |
|                                     |                                                                    | Z      | 1.06          | 64.21          | 10.86          | <u> </u> | 150.0          |         |
| 10299-<br>AAC                       | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)                           | X      | 1.41          | 63.10          | 9.49           | 0.00     | 150.0          | ± 9.6 % |
|                                     |                                                                    | Υ      | 2.20          | 67.48          | 13.20          |          | 150.0          |         |
|                                     |                                                                    | Z      | 1.66          | 65.04          | 10.89          |          | 150.0          |         |
| 10300-<br>AAC                       | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)                           | Х      | 1.19          | 60.99          | 7.64           | 0.00     | 150.0          | ±9.6%   |
|                                     |                                                                    | Y      | 1.75          | 63.96          | 10.73          |          | 150.0          |         |
| 10301-                              | IEEE 802 160 M/MAN / /20-40 5                                      | Z      | 1.30          | 61.89          | 8.49           |          | 150.0          |         |
| AAA                                 | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)                 | X      | 4.40          | 65.21          | 17.25          | 4.17     | 50.0           | ± 9.6 % |
| ~~                                  |                                                                    | Υ      | 4.79          | 65.64          | 17.57          |          | 50.0           |         |
| 10302-                              | IEEE 900 460 M/MAY (20:40, 5                                       | Z      | 4.51          | 65.62          | 17.36          |          | 50.0           |         |
| AAA                                 | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols) | X      | 4.89          | 66.01          | 18.10          | 4.96     | 50.0           | ± 9.6 % |
|                                     |                                                                    | Υ      | 5.23          | 66.10          | 18.21          |          | 50.0           |         |
|                                     |                                                                    | Z      | 4.90          | 65.76          | 17.79          | 1        | 50.0           | l       |

| IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.65                                                | 65.68                                               | 17.92                                               | 4.96                                                | 50.0                                                | ± 9.6 %                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.97                                                | 65.72                                               | 18.04                                               |                                                     | 50.0                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.43                                                | 65.21                                               | 17.19                                               | 4.17                                                | 50.0                                                | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.78                                                | 65.59                                               | 17.51                                               |                                                     | 50.0                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.47                                                | 65.30                                               | 17.12                                               |                                                     | 50.0                                                |                                |
| IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.15                                                | 67.54                                               | 18.96                                               | 6.02                                                | 35.0                                                | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| 10MHz, 64QAM, PUSC, 18 symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 6.02                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| IFFF 000 40 - MANANY (00:40, 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                     |                                                     | 0.00                                                |                                                     |                                |
| 10MHz, QPSK, PUSC, 18 symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 6.02                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| IEEE 000 40 - MENANY (00 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | ~ ~ ~                                               |                                                     |                                |
| IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 6.02                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| (FFF 000 40 - \0.00 40 40 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 0.00                                                |                                                     |                                |
| 10MHz, 16QAM, AMC 2x3, 18 symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 6.02                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| 1555 000 40 W/MAY (00 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{Z}{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                     |                                                     |                                                     |                                                     | . 0 0 8/                       |
| 164 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                     |                                                     | 6.02                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 0.00                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| iDEN 1:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 6.99                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| iDEN 1:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 10.00                                               |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 96pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 0.17                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| LEER AGO AL LINE A COLUMN TO THE COLUMN TO T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | <del> </del>                                        |                                                     |                                |
| IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 96pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | 0.17                                                |                                                     | ±9.6%                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| IEEE 802.11a WiFi 5 GHz (OFDM, 6<br>Mbps, 96pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     | 16.23                                               | 0.17                                                |                                                     | ± 9.6 %                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                     |                                                     | <b></b>                                             |                                                     |                                |
| IEEE 802.11ac WiFi (20MHz, 64-QAM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.34<br>4.44                                        | 66.49                                               | 16.17<br>16.30                                      | 0.00                                                | 150.0<br>150.0                                      | ± 9.6 %                        |
| 99pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ż                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.43                                                | 66.80                                               | 16.17                                               |                                                     | 150.0                                               |                                |
| LEET 000 44 MIE: /40ML - C4 OAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.15                                                | 66.76                                               | 16.42                                               | 0.00                                                | 150.0                                               | ± 9.6 %                        |
| IEEE 802.11ac WiFi (40MHz, 64-QAM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                     |                                                     |                                                     |                                                     |                                |
| 99pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.39                                                | 67.16                                               | 16.44                                               |                                                     | 150.0                                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)  IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)  IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)  IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)  IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)  IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)  IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)  IEEE 802.11e WiFi 2.4 GHz (DSSS, 1 MHz, QPSK)  IDEN 1:6  IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)  IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | EEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | EEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | EEE 802.16e WIMAX (29:18, 5ms, |

| 10402-<br>AAD | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)                                    | X        | 5.46           | 67.17           | 16.51          | 0.00    | 150.0          | ± 9.6 % |
|---------------|----------------------------------------------------------------------------------------|----------|----------------|-----------------|----------------|---------|----------------|---------|
|               |                                                                                        | Y        | 5.63           | 67.44           | 16.43          |         | 150.0          | <b></b> |
|               |                                                                                        | Z        | 5.43           | 67.19           | 16.37          |         | 150.0          |         |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                                             | Х        | 0.78           | 62.91           | 9.04           | 0.00    | 115.0          | ±9.6 %  |
|               |                                                                                        | Y        | 1.44           | 68.67           | 13.91          |         | 115.0          |         |
| 40404         | 00144000044 514 50 5                                                                   | Z        | 0.82           | 63.50           | 9.52           |         | 115.0          |         |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                                             | X        | 0.78           | 62.91           | 9.04           | 0.00    | 115.0          | ± 9.6 % |
|               |                                                                                        | Y        | 1.44           | 68.67           | 13.91          |         | 115.0          |         |
| 10406-<br>AAB | CDMA2000, RC3, SO32, SCH0, Full<br>Rate                                                | X        | 0.82<br>100.00 | 63.50<br>119.25 | 9.52<br>28.40  | 0.00    | 115.0<br>100.0 | ± 9.6 % |
|               |                                                                                        | Y        | 9.50           | 91.59           | 22.98          |         | 100.0          |         |
|               |                                                                                        | Z        | 100.00         | 122.00          | 29.77          |         | 100.0          |         |
| 10410-<br>AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)        | X        | 3.12           | 77.42           | 16.90          | 3.23    | 80.0           | ± 9.6 % |
|               |                                                                                        | Y        | 100.00         | 127.40          | 32.46          |         | 80.0           |         |
|               |                                                                                        | Z        | 100.00         | 125.01          | 30.73          |         | 80.0           |         |
| 10415-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)                           | Х        | 0.90           | 62.74           | 14.48          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ        | 1.00           | 62.96           | 14.62          |         | 150.0          |         |
| 40440         | LEEE COO 44 MIET CA COLL (EDD                                                          | Z        | 0.88           | 62.66           | 14.28          |         | 150.0          |         |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle)                      | X        | 4.32           | 66.51           | 16.25          | 0.00    | 150.0          | ±9.6%   |
|               |                                                                                        | Y        | 4.52           | 66.62           | 16,21          |         | 150.0          |         |
| 10417-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6                                                     | Z        | 4.30           | 66.52           | 16.13          | 0.00    | 150.0          |         |
| AAB           | Mbps, 99pc duty cycle)                                                                 | ^<br>  Y | 4.32           | 66.51           | 16.25          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Z        | 4.52           | 66.62           | 16.21          |         | 150.0          |         |
| 10418-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                                       | X        | 4.30<br>4.31   | 66.52<br>66.71  | 16.13          | 0.00    | 150.0          | 1000    |
| AAA           | OFDM, 6 Mbps, 99pc duty cycle, Long preambule)                                         | ^        | 4.31           | 00.71           | 16.30          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ        | 4.51           | 66.79           | 16.23          |         | 150.0          |         |
|               |                                                                                        | Ζ        | 4.30           | 66.71           | 16.18          |         | 150.0          |         |
| 10419-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps, 99pc duty cycle, Short<br>preambule) | ·        | 4.33           | 66.64           | 16.29          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ        | 4.53           | 66.73           | 16.23          |         | 150.0          |         |
| 1000          |                                                                                        | Z        | 4.32           | 66.65           | 16.17          |         | 150.0          |         |
| 10422-<br>AAB | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)                                           | Х        | 4.44           | 66.62           | 16.30          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Y        | 4.65           | 66.73           | 16.25          |         | 150.0          |         |
| 10423-        | IEEE 802.11n (HT Greenfield, 43.3                                                      | Z        | 4.43           | 66.63           | 16.18          |         | 150.0          |         |
| AAB           | Mbps, 16-QAM)                                                                          | X        | 4.57           | 66.89           | 16.39          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Y 7      | 4.81           | 67.05           | 16.36          |         | 150.0          |         |
| 10424-        | IEEE 802.11n (HT Greenfield, 72.2                                                      | Z<br>X   | 4.56<br>4.50   | 66.90<br>66.84  | 16.28          | 0.00    | 150.0          | 1000    |
| AAB           | Mbps, 64-QAM)                                                                          | ^<br>  Y | 4.73           | 67.00           | 16.37<br>16.33 | 0.00    | 150.0<br>150.0 | ± 9.6 % |
|               |                                                                                        | Ż        | 4.49           | 66.86           | 16.33          |         | 150.0          |         |
| 10425-<br>AAB | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)                                            | X        | 5.17           | 67.18           | 16.65          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ        | 5.33           | 67.30           | 16.51          |         | 150.0          |         |
|               |                                                                                        | Z        | 5.13           | 67.14           | 16.48          | ******* | 150.0          |         |
| 10426-<br>AAB | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)                                          | Х        | 5.23           | 67.40           | 16.76          | 0.00    | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ        | 5.34           | 67.33           | 16.52          |         | 150.0          |         |
|               |                                                                                        | Z        | 5.16           | 67.27           | 16.54          |         | 150.0          |         |

| 10427-<br>AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)       | Х      | 5.16           | 67.07           | 16.58          | 0,00 | 150.0          | ± 9.6 % |
|---------------|------------------------------------------------------|--------|----------------|-----------------|----------------|------|----------------|---------|
|               |                                                      | Υ      | 5.35           | 67.30           | 16.51          |      | 150.0          |         |
|               |                                                      | Z      | 5.13           | 67.07           | 16.44          | ,    | 150.0          |         |
| 10430-<br>AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)                     | Х      | 4.20           | 72.13           | 18.43          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Υ      | 4.22           | 70.70           | 18.10          |      | 150.0          |         |
|               |                                                      | Ζ      | 4.22           | 72.19           | 18.46          |      | 150.0          |         |
| 10431-<br>AAB | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)                    | Х      | 3.93           | 67.10           | 16.09          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Y      | 4.20           | 67.18           | 16.20          |      | 150.0          |         |
| 10432-        | LITE EDD (OFD) A AS NO.                              | Z      | 3.93           | 67.10           | 16.01          |      | 150.0          |         |
| AAB           | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)                    | X      | 4.26           | 66.93           | 16.28          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Y      | 4.50           | 67.05           | 16.28          |      | 150.0          |         |
| 10433-        | LIE EDD (OFDMA COMILE E TM O 4)                      | Z      | 4.25           | 66.94           | 16.17          |      | 150.0          |         |
| AAB           | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)                    | X      | 4.52           | 66.87           | 16.39          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      |        | 4.75           | 67.03           | 16.35          |      | 150.0          |         |
| 10434-        | W-CDMA (BS Test Model 1, 64 DPCH)                    | Z      | 4.51           | 66.89           | 16.27          | 0.00 | 150.0          | 1000    |
| AAA           | W-ODIVIA (DO TEST WIDGELT, D4 DPCH)                  | X      | 4.28           | 72.84           | 18.10          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Y      | 4.33           | 71.56           | 18.07          |      | 150.0          |         |
| 10435-        | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,                      | Z      | 4.34           | 73.06           | 18.24          | 0.00 | 150.0          | 1000    |
| AAC           | QPSK, UL Subframe=2,3,4,7,8,9)                       | Y      | 2.96           | 76.73           | 16.60          | 3.23 | 80.0           | ±9.6 %  |
|               |                                                      |        | 100.00         | 127.17          | 32.36          |      | 80.0           |         |
| 10447-<br>AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,<br>Clipping 44%)    | Z<br>X | 100.00<br>3.15 | 124.69<br>66.77 | 30.58<br>14.81 | 0.00 | 80.0<br>150.0  | ± 9.6 % |
| AAD           | Clipping 44%)                                        | Υ      | 2.40           | 07.40           | 45.50          |      | 450.0          |         |
|               |                                                      | Z      | 3.49           | 67.18           | 15.50          |      | 150.0          |         |
| 10448-<br>AAB | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,<br>Clippin 44%)    | X      | 3.17<br>3.79   | 66.84<br>66.88  | 14.85<br>15.96 | 0.00 | 150.0<br>150.0 | ± 9.6 % |
| 7010          | Onppin 4470)                                         | Υ      | 4.04           | 66.96           | 16.06          |      | 150.0          |         |
|               |                                                      | Z      | 3.79           | 66.88           | ***            |      | 150.0          |         |
| 10449-<br>AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,<br>Cliping 44%)    | X      | 4.09           | 66.75           | 15.87<br>16.17 | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Υ      | 4.31           | 66.88           | 16.18          |      | 150.0          |         |
|               |                                                      | Z      | 4.08           | 66.77           | 16.07          |      | 150.0          |         |
| 10450-<br>AAB | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,<br>Clipping 44%)   | X      | 4.31           | 66.64           | 16.24          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Υ      | 4.51           | 66.80           | 16.21          |      | 150.0          |         |
|               |                                                      | Z      | 4.30           | 66.66           | 16.12          |      | 150.0          |         |
| 10451-<br>AAA | W-CDMA (BS Test Model 1, 64 DPCH,<br>Clipping 44%)   | Х      | 2.94           | 66.45           | 13.98          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Υ      | 3.38           | 67.33           | 15.10          |      | 150.0          |         |
| 40450         |                                                      | Z      | 2.98           | 66.61           | 14.10          |      | 150.0          |         |
| 10456-<br>AAB | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) | X      | 6.17           | 67.89           | 16.91          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                      | Y      | 6.20           | 67.84           | 16.66          |      | 150.0          |         |
| 40457         | LINETO EDD (DO MOTE A)                               | Z      | 6.10           | 67.86           | 16.74          |      | 150.0          |         |
| 10457-<br>AAA | UMTS-FDD (DC-HSDPA)                                  | X      | 3.65           | 65.21           | 15.97          | 0.00 | 150.0          | ± 9.6 % |
|               | <u> </u>                                             | Y      | 3.78           | 65.27           | 15.92          |      | 150.0          |         |
| 10458-<br>AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers)               | Z<br>X | 3.63<br>3.63   | 65.21<br>70.67  | 15.85<br>16.50 | 0.00 | 150.0<br>150.0 | ± 9.6 % |
| /\/\          | Carriers)                                            | Y      | 2.07           | 70.00           | 17.45          |      | 1500           |         |
|               |                                                      | Z      | 3.97<br>3.75   | 70.83<br>71.23  | 17.45<br>16.87 | ·    | 150.0          |         |
| 10459-        | CDMA2000 (1xEV-DO, Rev. B, 3                         | X      | 4.91           | 69.28           |                | 0.00 | 150.0<br>150.0 | +0 c 0/ |
| AAA           | carriers)                                            |        |                |                 | 18.19          | 0.00 |                | ± 9.6 % |
|               |                                                      | Y      | 5.06           | 68,34           | 18.09          |      | 150.0          |         |
|               |                                                      | Ζ      | 4.97           | 69.44           | 18.31          |      | 150.0          |         |

| 10460-        | UMTS-FDD (WCDMA, AMR)                                                | Х      | 0.82           | 68,91           | 15,77          | 0.00 | 150.0          | ± 9.6 % |
|---------------|----------------------------------------------------------------------|--------|----------------|-----------------|----------------|------|----------------|---------|
| AAA           |                                                                      | V      | 0.00           | 00.00           | 40.45          |      | 450.0          |         |
|               |                                                                      | Y<br>Z | 0.90<br>0.77   | 68.29<br>68.38  | 16.15<br>15.37 |      | 150.0<br>150.0 |         |
| 10461-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X      | 2.32           | 75.39           | 17.14          | 3.29 | 80.0           | ± 9.6 % |
|               |                                                                      | Υ      | 100.00         | 131.59          | 34.49          |      | 80.0           |         |
|               |                                                                      | Ζ      | 100.00         | 129.59          | 32.92          |      | 80.0           |         |
| 10462-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | Х      | 0.76           | 60.00           | 7.09           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Y      | 4.63           | 77.57           | 16.00          |      | 80.0           |         |
| 10100         | 1 TE TEE (00 FEMA ( FE ( 1 M))                                       | Z      | 0.74           | 60.00           | 7.79           |      | 80.0           |         |
| 10463-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | Х      | 0.79           | 60.00           | 6.50           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Y      | 1.49           | 65.34           | 10.90          |      | 80.0           |         |
| 10464-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz,<br>QPSK, UL Subframe=2,3,4,7,8,9)     | X      | 0.76<br>1.48   | 60.00<br>69.57  | 7.16<br>14.21  | 3.23 | 80.0<br>80.0   | ± 9.6 % |
| 7777          | Q1 014, 02 045141110 2,5,3,1,5,5)                                    | Υ      | 100.00         | 128.72          | 32.98          |      | 80.0           |         |
|               |                                                                      | Ż      | 100.00         | 125.35          | 30.81          |      | 80.0           |         |
| 10465-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9)  | Х      | 0.76           | 60.00           | 7.02           | 3.23 | 80.0           | ± 9.6 % |
| ****          |                                                                      | Υ      | 2.92           | 72.75           | 14.31          |      | 80.0           |         |
|               |                                                                      | Z      | 0.74           | 60.00           | 7.72           |      | 80.0           |         |
| 10466-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9)  | Х      | 0.79           | 60.00           | 6.46           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Y      | 1.30           | 63.97           | 10.25          |      | 80.0           |         |
| 40407         | LITE TOD (OO FOMA A DD SMILE                                         | Z      | 0.76           | 60.00           | 7.11           | 0.00 | 80.0           |         |
| 10467-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)        | Х      | 1.57           | 70.35           | 14.56          | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Y      | 100.00         | 129.06          | 33.13          |      | 80.0           |         |
| 10468-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9)  | Z<br>X | 100.00<br>0.76 | 125.82<br>60.00 | 31.02<br>7.04  | 3.23 | 80.0<br>80.0   | ± 9.6 % |
| AAC           | QAIVI, OL Subitame-2,3,4,7,6,9)                                      | Y      | 3.25           | 73.90           | 14.73          | Į.   | 80.0           |         |
|               |                                                                      | Z      | 0.74           | 60.00           | 7.74           |      | 80.0           |         |
| 10469-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9)  | X      | 0.79           | 60.00           | 6.46           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Υ      | 1.30           | 64.00           | 10.26          |      | 80.0           |         |
|               |                                                                      | Z      | 0.76           | 60.00           | 7.11           |      | 80.0           |         |
| 10470-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | Х      | 1.56           | 70.33           | 14.55          | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Υ      | 100.00         | 129.11          | 33.14          |      | 80.0           |         |
| 40.474        |                                                                      | Z      | 100.00         | 125.84          | 31.01          |      | 80.0           |         |
| 10471-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9) | X      | 0.76           | 60.00           | 7.03           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Y<br>Z | 3.21           | 73.75           | 14.66          |      | 80.0           |         |
| 10472-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)     | X      | 0.74<br>0.79   | 60.00<br>60.00  | 7.73<br>6.44   | 3.23 | 80.0<br>80.0   | ± 9.6 % |
|               |                                                                      | Y      | 1.29           | 63.92           | 10.21          |      | 80.0           |         |
|               |                                                                      | Z      | 0.76           | 60.00           | 7.09           |      | 80.0           |         |
| 10473-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | Х      | 1.56           | 70.28           | 14.52          | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Υ      | 100.00         | 129.06          | 33.12          |      | 80.0           |         |
|               |                                                                      | Z      | 100.00         | 125.78          | 30.99          |      | 80.0           |         |
| 10474-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | X      | 0.76           | 60.00           | 7.02           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Υ      | 3.17           | 73.64           | 14.62          |      | 80.0           |         |
| 101===        |                                                                      | Z      | 0.74           | 60.00           | 7.73           |      | 80.0           |         |
| 10475-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9) | Х      | 0.78           | 60.00           | 6.45           | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                      | Y      | 1.29           | 63.89           | 10.20          |      | 80.0           |         |
|               |                                                                      | Z      | 0.76           | 60.00           | 7.09           |      | 80.0           |         |

| 10477-        | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-                                | Х      | 0.76          | 60.00           | 7.00           | 3.23     | 80.0         | ± 9.6 %  |
|---------------|--------------------------------------------------------------------|--------|---------------|-----------------|----------------|----------|--------------|----------|
| AAC           | QAM, UL Subframe=2,3,4,7,8,9)                                      | Υ      | 2.04          | 70 70           | 44.07          |          | 00.0         |          |
|               |                                                                    | Z      | 2.91<br>0.74  | 72.72<br>60.00  | 14.27          |          | 80.0         |          |
| 10478-        | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-                                | X      | 0.74          | 60.00           | 7.70<br>6.43   | 3.23     | 80.0<br>80.0 | ± 9.6 %  |
| AAC           | QAM, UL Subframe=2,3,4,7,8,9)                                      |        |               |                 |                | 3.23     |              | I 9.0 %  |
|               |                                                                    | Y      | 1.28          | 63.82           | 10.16          | <u> </u> | 80.0         |          |
| 10479-        | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,                                 | Z      | 0.76          | 60.00           | 7.08           | 2 00     | 80.0         |          |
| AAA           | QPSK, UL Subframe=2,3,4,7,8,9)                                     | Х      | 4.36          | 78.87           | 19,25          | 3,23     | 80.0         | ±9.6%    |
|               |                                                                    | Y      | 6.72          | 85.93           | 23.37          |          | 80.0         |          |
| 10480-        | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,                                 | Z<br>X | 31.53<br>2.01 | 108.71<br>65.44 | 28.80<br>11.92 | 3.23     | 80.0<br>80.0 | ± 9.6 %  |
| AAA           | 16-QAM, UL Subframe=2,3,4,7,8,9)                                   | Υ      | 7.23          | 81.86           | 20.03          |          | 80.0         |          |
|               |                                                                    | Z      | 6.32          | 79.43           | 17.87          |          | 80.0         |          |
| 10481-        | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,                                 | X      | 1.64          | 62.93           | 10.36          | 3.23     | 80.0         | ± 9.6 %  |
| AAA           | 64-QAM, UL Subframe=2,3,4,7,8,9)                                   | Y      | 5.72          | 78.02           |                | 0.20     |              | ± 9.0 /6 |
|               |                                                                    | Z      |               |                 | 18.32<br>14.62 |          | 80.0         |          |
| 10482-        | LTE-TDD (SC-FDMA, 50% RB, 3 MHz,                                   | X      | 3.41<br>1.29  | 71.49<br>62.41  | 14.62          | 2.23     | 80.0<br>80.0 | ± 9.6 %  |
| AAA           | QPSK, UL Subframe=2,3,4,7,8,9)                                     |        |               |                 |                | 2.23     |              | I 9.0 %  |
|               |                                                                    | Y      | 3.64          | 76.21           | 18.93          | ļ        | 80.0         |          |
| 10483-        | LTE-TDD (SC-FDMA, 50% RB, 3 MHz,                                   | Z<br>X | 1.66          | 65.83           | 12.91          | 2.23     | 80.0         | 1069     |
| AAA           | 16-QAM, UL Subframe=2,3,4,7,8,9)                                   |        | 1.52          | 61.14           | 9.55           | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 4.09          | 73.43           | 17.03          |          | 80.0         |          |
| 10484-        | LTE-TDD (SC-FDMA, 50% RB, 3 MHz,                                   | Z      | 2.32          | 66.35           | 12.70          | 0.00     | 80.0         | 1000     |
| AAA           | 64-QAM, UL Subframe=2,3,4,7,8,9)                                   |        | 1.52          | 60.89           | 9.42           | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.80          | 72.18           | 16.53          |          | 80.0         |          |
| 4040E         | LTE TOD (CC EDNA CO) OD EANL                                       | Z      | 2.19          | 65.41           | 12.27          | 0.00     | 80.0         |          |
| 10485-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)    | Х      | 1.96          | 67.14           | 14.58          | 2.23     | 80.0         | ±9.6%    |
|               |                                                                    | Υ      | 3.64          | 76.20           | 19.95          |          | 80.0         |          |
| 40400         | LITE TOD (OO FOLIA CON DD CAN)                                     | Z      | 2.47          | 70.93           | 16.63          |          | 80.0         |          |
| 10486-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)  | Х      | 1.93          | 63.65           | 12.21          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.34          | 71.00           | 17.20          |          | 80.0         |          |
| 40.407        |                                                                    | Z      | 2.25          | 65.99           | 13.71          |          | 80.0         |          |
| 10487-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)  | Х      | 1.95          | 63.41           | 12.07          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.31          | 70.45           | 16.94          |          | 80.0         |          |
|               |                                                                    | Z      | 2.25          | 65.61           | 13.50          |          | 80.0         |          |
| 10488-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)   | Х      | 2.57          | 68.84           | 16.72          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.64          | 73.87           | 19.67          |          | 80.0         |          |
|               |                                                                    | Z      | 2.88          | 71.05           | 17.92          |          | 80.0         |          |
| 10489-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X      | 2.71          | 66.42           | 15.54          | 2.23     | 80,0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.41          | 69.51           | 17.78          |          | 80.0         |          |
|               |                                                                    | Z      | 2.89          | 67.77           | 16.40          |          | 80.0         |          |
| 10490-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х      | 2.80          | 66.35           | 15.53          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.50          | 69.28           | 17.68          |          | 80.0         |          |
|               |                                                                    | Z      | 2.97          | 67.63           | 16.34          |          | 80.0         |          |
| 10491-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)   | Х      | 2.93          | 68.13           | 16.75          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.79          | 71.78           | 18.88          |          | 80.0         |          |
|               |                                                                    | Z      | 3.14          | 69.61           | 17.57          |          | 80.0         |          |
| 10492-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х      | 3.14          | 66.26           | 16.05          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                    | Υ      | 3.72          | 68.46           | 17.58          |          | 80.0         |          |
|               |                                                                    | Z      | 3,26          | 67.14           | 16.60          |          | 80.0         |          |

| 10493-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х            | 3.20 | 66.19 | 16.02 | 2.23 | 80.0 | ± 9.6 % |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------|-------|------|------|---------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.78 | 68.30 | 17.52 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 3,32 | 67.03 | 16.55 |      | 80.0 |         |
| 10494-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х            | 3.09 | 69.16 | 17.09 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Υ            | 4.18 | 73.66 | 19.49 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 3.38 | 70.96 | 18.01 |      | 80.0 |         |
| 10495-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х            | 3.16 | 66.52 | 16.26 | 2,23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.75 | 68.86 | 17.79 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 3.28 | 67.44 | 16.81 |      | 80.0 |         |
| 10496-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х            | 3.25 | 66.39 | 16.25 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.82 | 68.54 | 17.67 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 3.36 | 67.23 | 16.76 |      | 80.0 |         |
| 10497-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X            | 0.98 | 60.00 | 8.08  | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 2.67 | 71.65 | 16.05 |      | 80.0 |         |
| 40463         | LITE TOP (OR EDITE : COST DE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z            | 0.96 | 60.00 | 8.56  |      | 80.0 |         |
| 10498-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Х            | 1.18 | 60.00 | 7.01  | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 1.73 | 63.28 | 11.10 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 1.15 | 60.00 | 7.42  |      | 80.0 |         |
| 10499-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Х            | 1.20 | 60.00 | 6.87  | 2.23 | 80.0 | ±9.6 %  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Υ            | 1.65 | 62.50 | 10.55 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 1.17 | 60.00 | 7.27  |      | 80.0 |         |
| 10500-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х            | 2.22 | 67.95 | 15.51 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.54 | 74.72 | 19.65 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 2.63 | 70.95 | 17.16 |      | 80.0 |         |
| 10501-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х            | 2.29 | 65.10 | 13.66 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Υ            | 3.38 | 70.39 | 17.41 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 2.58 | 67.13 | 14.94 |      | 80.0 |         |
| 10502-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х            | 2.32 | 64.94 | 13.52 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Υ            | 3,43 | 70.21 | 17.27 |      | 80.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z            | 2.61 | 66.92 | 14.77 |      | 80.0 |         |
| 10503-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х            | 2.54 | 68.66 | 16.62 | 2,23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.60 | 73.66 | 19.57 | ļ    | 80.0 |         |
| 40501         | 1 == === (0.0 === 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == 1.0 == | Z            | 2.84 | 70.82 | 17.80 |      | 80.0 |         |
| 10504-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х            | 2.69 | 66.32 | 15.48 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.40 | 69.42 | 17.73 |      | 80.0 |         |
| 40505         | LITE TOD (OO EDIAN ASSOCIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z            | 2.87 | 67.65 | 16.32 |      | 80.0 |         |
| 10505-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X            | 2.78 | 66.26 | 15.46 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.48 | 69.19 | 17.63 |      | 80.0 |         |
| 10500         | LITE TOD (OO FDMA 1000) DW 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z            | 2.96 | 67.52 | 16.27 |      | 80.0 |         |
| 10506-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х            | 3.07 | 69.03 | 17.01 | 2.23 | 80.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 4.15 | 73.51 | 19.42 |      | 80.0 |         |
| 10507         | LITE TOP (OR EDITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z            | 3.35 | 70.80 | 17.93 |      | 80.0 |         |
| 10507-<br>AAC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X            | 3.15 | 66.46 | 16.22 | 2.23 | 0.08 | ± 9.6 % |
|               | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \hat{\ } $ | 0.10 |       |       |      |      |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y            | 3.73 | 68.80 | 17.76 |      | 80.0 |         |

| 10508-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | Х | 3.24         | 66.32          | 16.20          | 2.23 | 80.0           | ± 9.6 % |
|---------------|---------------------------------------------------------------------------|---|--------------|----------------|----------------|------|----------------|---------|
|               |                                                                           | Υ | 3.81         | 68.47          | 17.63          |      | 80.0           |         |
| 40505         |                                                                           | Z | 3.35         | 67.15          | 16.71          |      | 80.0           |         |
| 10509-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | Х | 3.51         | 68.36          | 16.83          | 2.23 | 80.0           | ±9.6%   |
|               |                                                                           | Y | 4.41         | 71.84          | 18.68          |      | 0,08           |         |
| 40540         | LTE TOP (00 EDIA)                                                         | Z | 3.72         | 69.67          | 17.51          |      | 80.0           |         |
| 10510-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | Х | 3.65         | 66.40          | 16.44          | 2.23 | 80.0           | ± 9.6 % |
|               |                                                                           | Υ | 4.20         | 68.42          | 17.64          |      | 80.0           |         |
| 10511-        | LTC TDD (CO CDMA 4000) DD 45                                              | Z | 3.74         | 67.11          | 16.83          |      | 80.0           |         |
| AAC           | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 3.72         | 66.27          | 16.42          | 2.23 | 80.0           | ± 9.6 % |
|               |                                                                           | Υ | 4.25         | 68.13          | 17.55          |      | 80.0           |         |
| 10.00.10      |                                                                           | Z | 3.81         | 66.92          | 16.79          |      | 80.0           |         |
| 10512-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | Х | 3.53         | 69.27          | 17.06          | 2.23 | 80.0           | ± 9.6 % |
|               |                                                                           | Y | 4.71         | 73.81          | 19.35          |      | 80.0           |         |
| 10513-        | LTE-TDD (SC-FDMA, 100% RB, 20                                             | Z | 3.83         | 70.97          | 17.89          | 0.00 | 80.0           | 1000    |
| AAC           | MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)                                  |   | 3.53         | 66.49          | 16.47          | 2.23 | 80.0           | ± 9.6 % |
| <del></del>   |                                                                           | Y | 4.09         | 68.73          | 17.78          |      | 80.0           |         |
| 40544         | LTE TOP (OO EDIM (OO) DE OO                                               | Z | 3.62         | 67.27          | 16.91          |      | 80.0           |         |
| 10514-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | Х | 3.58         | 66.23          | 16.41          | 2.23 | 80.0           | ± 9.6 % |
|               |                                                                           | Y | 4.11         | 68.25          | 17.62          |      | 80.0           |         |
|               |                                                                           | Z | 3.67         | 66.92          | 16.81          |      | 80.0           |         |
| 10515-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps, 99pc duty cycle)              | X | 0.86         | 62.95          | 14.53          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Y | 0.96         | 63.14          | 14.68          |      | 150.0          |         |
| 10516-        | IEEE 900 445 WIELQ 4 OLI- (DOOD, E.E.                                     | Z | 0.84         | 62,85          | 14.32          |      | 150.0          |         |
| AAA           | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)               | X | 0.68         | 75.09          | 17.93          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Z | 0.60<br>0.59 | 73.58          | 17.39<br>17.02 |      | 150.0          |         |
| 10517-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11<br>Mbps, 99pc duty cycle)             | X | 0.71         | 65.13          | 15.13          | 0.00 | 150.0<br>150.0 | ± 9.6 % |
| 7001          | Mispo, cope daty cycle)                                                   | Y | 0.81         | 65.08          | 15.31          |      | 150.0          |         |
|               |                                                                           | ż | 0.69         | 64.87          | 14.81          |      | 150.0          |         |
| 10518-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps, 99pc duty cycle)              | X | 4.31         | 66.61          | 16.23          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Υ | 4.51         | 66.70          | 16.19          |      | 150.0          |         |
|               |                                                                           | Z | 4.30         | 66.61          | 16.12          |      | 150.0          |         |
| 10519-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12<br>Mbps, 99pc duty cycle)             | Х | 4.46         | 66.79          | 16.33          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Y | 4.69         | 66.93          | 16.31          |      | 150.0          |         |
| 40000         | LIEFE 000 44-# MEELE OV. 105011                                           | Z | 4.45         | 66.80          | 16.22          |      | 150.0          |         |
| 10520-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18<br>Mbps, 99pc duty cycle)             | X | 4.32         | 66.72          | 16.24          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Z | 4.55<br>4.31 | 66.89<br>66.74 | 16.23<br>16.13 | -    | 150.0<br>150.0 |         |
| 10521-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24<br>Mbps, 99pc duty cycle)             | X | 4.25         | 66.68          | 16.22          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Υ | 4.48         | 66.88          | 16.21          |      | 150.0          |         |
|               |                                                                           | Z | 4.24         | 66.71          | 16.11          |      | 150.0          |         |
| 10522-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36<br>Mbps, 99pc duty cycle)             | Х | 4.30         | 66.84          | 16.33          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                           | Υ | 4.54         | 66.98          | 16.30          |      | 150.0          |         |
|               |                                                                           | Z | 4.30         | 66.85          | 16.22          |      | 150.0          |         |

|               |                                                            |   |      | r     |       |              | T     |          |
|---------------|------------------------------------------------------------|---|------|-------|-------|--------------|-------|----------|
| 10523-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48                        | X | 4.22 | 66.79 | 16.22 | 0.00         | 150.0 | ± 9.6 %  |
| AAB           | Mbps, 99pc duty cycle)                                     | 1 | 4.40 | 00.05 | 40.45 | ************ | 450.0 |          |
|               |                                                            | Y | 4.42 | 66.85 | 16.15 |              | 150.0 |          |
| 10524-        | IEEE 000 44-/5 MBELE OUT (OEDM E4                          | Z | 4.21 | 66.79 | 16.10 |              | 150.0 | 1060/    |
| AAB           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) |   | 4.25 | 66.78 | 16.31 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Υ | 4.48 | 66.90 | 16.27 |              | 150.0 |          |
|               |                                                            | Z | 4.24 | 66.79 | 16.19 |              | 150.0 |          |
| 10525-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)          | X | 4.28 | 65.85 | 15.93 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Y | 4.47 | 65.95 | 15.86 |              | 150.0 |          |
|               |                                                            | Z | 4.27 | 65.86 | 15.81 |              | 150.0 |          |
| 10526-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)          | Х | 4.41 | 66.15 | 16.05 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Υ | 4.64 | 66.31 | 16.00 |              | 150.0 |          |
|               |                                                            | Ζ | 4.40 | 66.17 | 15.93 |              | 150.0 |          |
| 10527-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)          | X | 4.34 | 66.11 | 15.98 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Y | 4.56 | 66.27 | 15.95 |              | 150.0 |          |
|               |                                                            | Z | 4.33 | 66.13 | 15.87 |              | 150.0 |          |
| 10528-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)          | Х | 4.35 | 66.13 | 16.02 | 0.00         | 150.0 | ± 9.6 %  |
| <del></del>   |                                                            | Υ | 4.58 | 66.29 | 15.98 |              | 150.0 |          |
|               |                                                            | Z | 4.34 | 66.15 | 15.90 |              | 150.0 |          |
| 10529-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)          | Х | 4.35 | 66.13 | 16.02 | 0.00         | 150.0 | ± 9.6 %  |
| ***           |                                                            | Y | 4.58 | 66.29 | 15.98 |              | 150.0 |          |
|               |                                                            | Z | 4.34 | 66.15 | 15.90 |              | 150.0 |          |
| 10531-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)          | Х | 4.32 | 66.16 | 16.00 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Y | 4.57 | 66.39 | 15.99 |              | 150.0 |          |
|               |                                                            | Z | 4.31 | 66.19 | 15.89 |              | 150.0 |          |
| 10532-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)          | Х | 4.20 | 66.01 | 15.92 | 0.00         | 150.0 | ±9.6 %   |
|               |                                                            | Y | 4.43 | 66.24 | 15.92 |              | 150.0 |          |
|               |                                                            | Z | 4.19 | 66.04 | 15.81 |              | 150.0 |          |
| 10533-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)          | Х | 4.36 | 66.21 | 16,02 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Υ | 4.59 | 66.34 | 15.97 | 1            | 150.0 |          |
|               |                                                            | Z | 4.35 | 66.22 | 15.90 |              | 150.0 |          |
| 10534-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)          | Х | 4.94 | 66.18 | 16.13 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Y | 5.11 | 66.38 | 16.03 |              | 150.0 |          |
|               |                                                            | Z | 4.91 | 66.20 | 15.99 |              | 150.0 |          |
| 10535-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)          | Х | 4.99 | 66,35 | 16.21 | 0.00         | 150.0 | ±9.6%    |
|               |                                                            | Υ | 5,18 | 66.56 | 16.12 | <b>†</b>     | 150.0 | <u> </u> |
|               |                                                            | Z | 4.97 | 66.36 | 16.07 |              | 150.0 |          |
| 10536-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)          | X | 4.87 | 66.32 | 16.17 | 0.00         | 150.0 | ± 9.6 %  |
| <del></del>   |                                                            | Υ | 5.05 | 66.51 | 16.07 | <b></b>      | 150.0 |          |
|               |                                                            | Z | 4.85 | 66.34 | 16.04 | <b></b>      | 150.0 |          |
| 10537-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)          | X | 4.94 | 66.34 | 16.18 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Υ | 5.10 | 66.48 | 16.06 |              | 150,0 |          |
|               |                                                            | Z | 4.91 | 66.31 | 16.03 |              | 150.0 |          |
| 10538-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)          | Х | 5.01 | 66.30 | 16.21 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Υ | 5.19 | 66.49 | 16.11 |              | 150.0 |          |
|               |                                                            | Z | 4.98 | 66.30 | 16.06 |              | 150.0 |          |
| 10540-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)          | X | 4.93 | 66.22 | 16.18 | 0.00         | 150.0 | ± 9.6 %  |
|               |                                                            | Y | 5.13 | 66.52 | 16.13 |              | 150.0 |          |
|               |                                                            | Z | 4.91 | 66.26 | 16.06 |              | 150.0 |          |

| 10541-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)  | Х | 4.90 | 66.09 | 16.10 | 0.00 | 150.0 | ± 9.6 %                               |
|---------------|----------------------------------------------------|---|------|-------|-------|------|-------|---------------------------------------|
|               |                                                    | Y | 5.10 | 66.38 | 16.06 |      | 150.0 |                                       |
|               |                                                    | Z | 4.88 | 66.13 | 15.98 |      | 150.0 |                                       |
| 10542-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)  | Х | 5.07 | 66.24 | 16.19 | 0.00 | 150.0 | ± 9.6 %                               |
| ·             |                                                    | Y | 5.25 | 66.45 | 16.11 |      | 150.0 |                                       |
|               |                                                    | Z | 5.04 | 66.26 | 16.06 |      | 150.0 |                                       |
| 10543-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)  | Х | 5.16 | 66.37 | 16.29 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Y | 5.33 | 66.48 | 16.14 |      | 150.0 |                                       |
|               |                                                    | Z | 5.12 | 66.32 | 16.12 |      | 150.0 |                                       |
| 10544-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)  | X | 5.28 | 66.21 | 16.10 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Y | 5.42 | 66.50 | 16.03 |      | 150.0 |                                       |
|               |                                                    | Z | 5.25 | 66.26 | 15.98 |      | 150.0 |                                       |
| 10545-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)  | Х | 5.51 | 66.84 | 16.38 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.61 | 66.90 | 16.18 |      | 150.0 |                                       |
|               |                                                    | Z | 5.45 | 66.77 | 16.19 |      | 150.0 | , , , , , , , , , , , , , , , , , , , |
| 10546-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)  | Х | 5.32 | 66.36 | 16.14 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.48 | 66.70 | 16.10 |      | 150.0 |                                       |
|               |                                                    | Z | 5.29 | 66.40 | 16.02 |      | 150.0 |                                       |
| 10547-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)  | X | 5.43 | 66.58 | 16.25 | 0,00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.55 | 66.74 | 16.11 |      | 150.0 |                                       |
|               |                                                    | Z | 5.37 | 66.52 | 16.07 |      | 150.0 |                                       |
| 10548-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)  | Х | 5.67 | 67.49 | 16.67 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.79 | 67.62 | 16.52 |      | 150.0 |                                       |
|               |                                                    | Z | 5.59 | 67.37 | 16.46 |      | 150.0 |                                       |
| 10550-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)  | Х | 5.44 | 66.73 | 16.35 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Y | 5.51 | 66.72 | 16.12 |      | 150.0 |                                       |
|               |                                                    | Z | 5.36 | 66.62 | 16.14 |      | 150.0 |                                       |
| 10551-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)  | Х | 5.31 | 66.31 | 16.10 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Y | 5.52 | 66.76 | 16.10 |      | 150.0 |                                       |
|               |                                                    | Z | 5.30 | 66.41 | 15.99 |      | 150.0 |                                       |
| 10552-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)  | Х | 5.28 | 66.30 | 16.09 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.44 | 66.57 | 16.01 |      | 150.0 |                                       |
|               |                                                    | Z | 5.25 | 66.34 | 15.96 |      | 150.0 |                                       |
| 10553-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)  | Х | 5.34 | 66.26 | 16.10 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Y | 5.52 | 66.60 | 16.06 |      | 150.0 |                                       |
|               |                                                    | Z | 5.31 | 66.32 | 15.98 |      | 150.0 |                                       |
| 10554-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | X | 5.72 | 66.58 | 16.20 | 0,00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.83 | 66.86 | 16.12 |      | 150.0 |                                       |
|               |                                                    | Z | 5.67 | 66.61 | 16.06 |      | 150.0 |                                       |
| 10555-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | Х | 5.84 | 66.90 | 16.34 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.95 | 67.15 | 16.24 |      | 150.0 |                                       |
|               |                                                    | Z | 5.79 | 66.90 | 16.19 |      | 150.0 |                                       |
| 10556-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle) | Х | 5.87 | 66.98 | 16.38 | 0.00 | 150,0 | ± 9.6 %                               |
|               |                                                    | Y | 5.98 | 67.20 | 16.26 |      | 150.0 |                                       |
|               |                                                    | Z | 5.82 | 66.99 | 16.23 |      | 150.0 |                                       |
| 10557-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle) | Х | 5.81 | 66.79 | 16.30 | 0.00 | 150.0 | ± 9.6 %                               |
|               |                                                    | Υ | 5.94 | 67.10 | 16.23 |      | 150.0 |                                       |
|               | ,                                                  | Z | 5.77 | 66.83 | 16.17 |      | 150.0 |                                       |

| 10558-                                  | IEEE 802.11ac WiFi (160MHz, MCS4,                                   | Х   | 5.82 | 66.86   | 16.35 | 0.00    | 150.0 | ± 9.6 %      |
|-----------------------------------------|---------------------------------------------------------------------|-----|------|---------|-------|---------|-------|--------------|
| AAC                                     | 99pc duty cycle)                                                    | 1   | 5.00 |         | 40.00 |         | (50.0 |              |
|                                         |                                                                     | Y   | 5.99 | 67.26   | 16.33 |         | 150.0 |              |
| 10560-                                  | IEEE 802.11ac WiFi (160MHz, MCS6,                                   | Z   | 5.79 | 66.94   | 16.24 | 0.00    | 150.0 | 1000         |
| AAC                                     | 99pc duty cycle)                                                    | X   | 5.84 | 66.78   | 16.35 | 0.00    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 5.98 | 67.11   | 16.29 |         | 150.0 |              |
|                                         |                                                                     | Z   | 5.80 | 66.82   | 16.22 |         | 150.0 |              |
| 10561-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)                  | X   | 5.78 | 66.81   | 16.39 | 0.00    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 5.91 | 67.08   | 16.31 |         | 150.0 |              |
|                                         |                                                                     | Z   | 5.74 | 66.84   | 16.26 |         | 150.0 |              |
| 10562-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)                  | Х   | 5.83 | 66.94   | 16.46 | 0.00    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 6.02 | 67.44   | 16.49 |         | 150.0 |              |
|                                         |                                                                     | Z   | 5.80 | 67.03   | 16.35 |         | 150.0 |              |
| 10563-<br>AAC                           | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)                  | X   | 5.98 | 67.08   | 16.50 | 0.00    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 6.21 | 67.62   | 16.54 |         | 150.0 |              |
|                                         |                                                                     | Z   | 5.91 | 67.01   | 16.31 |         | 150.0 |              |
| 10564-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 9 Mbps, 99pc duty cycle)  | X   | 4.63 | 66.62   | 16.36 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 4.84 | 66.79   | 16.36 |         | 150.0 |              |
|                                         |                                                                     | Z   | 4.61 | 66.63   | 16.24 |         | 150.0 |              |
| 10565-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 12 Mbps, 99pc duty cycle) | X   | 4.83 | 67.05   | 16.69 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 5.06 | 67.22   | 16.67 |         | 150.0 |              |
|                                         |                                                                     | Z   | 4.82 | 67.07   | 16.58 |         | 150.0 |              |
| 10566-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 18 Mbps, 99pc duty cycle) | Х   | 4.66 | 66.85   | 16.48 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 4.90 | 67.07   | 16.49 |         | 150.0 |              |
|                                         |                                                                     | Z   | 4.65 | 66.88   | 16.38 |         | 150.0 |              |
| 10567-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 24 Mbps, 99pc duty cycle) | Х   | 4.70 | 67.27   | 16.87 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 4.93 | 67.45   | 16.84 |         | 150.0 |              |
| *************************************** | ****                                                                | Z   | 4.69 | 67.33   | 16.78 |         | 150.0 |              |
| 10568-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 36 Mbps, 99pc duty cycle) | X   | 4.56 | 66.58   | 16.20 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 4.81 | 66.86   | 16.28 |         | 150.0 |              |
|                                         |                                                                     | Z   | 4.55 | 66.62   | 16.10 |         | 150.0 |              |
| 10569-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 48 Mbps, 99pc duty cycle) | Х   | 4.68 | 67.48   | 17.00 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 4.88 | 67.55   | 16.91 |         | 150.0 |              |
|                                         |                                                                     | Z   | 4.67 | 67.53   | 16.91 |         | 150.0 |              |
| 10570-<br>AAA                           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 54 Mbps, 99pc duty cycle) | Х   | 4.69 | 67.30   | 16.91 | 0.46    | 150.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 4.92 | 67.39   | 16.83 |         | 150.0 |              |
|                                         |                                                                     | Z   | 4.68 | 67.31   | 16.79 | <b></b> | 150.0 |              |
| 10571-<br>AAA                           | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 90pc duty cycle)        | Х   | 1.00 | 63.45   | 14.91 | 0.46    | 130.0 | ± 9.6 %      |
|                                         |                                                                     | Y   | 1.13 | 64.20   | 15.58 |         | 130.0 |              |
|                                         |                                                                     | Z   | 0.98 | 63.57   | 14.96 | ,,,,,   | 130.0 |              |
| 10572-<br>AAA                           | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps, 90pc duty cycle)        | Х   | 1.01 | 64.01   | 15.28 | 0.46    | 130.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 1.14 | 64.75   | 15.94 |         | 130.0 |              |
|                                         |                                                                     | Z   | 0.99 | 64.16   | 15.34 |         | 130.0 | <u> </u>     |
| 10573-<br>AAA                           | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)         | Х   | 1.87 | 85.75   | 21.98 | 0.46    | 130.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 1.92 | 86.55   | 24.04 |         | 130.0 |              |
|                                         |                                                                     | Z   | 2.25 | 89.51   | 23.31 |         | 130.0 |              |
| 10574-<br>AAA                           | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11<br>Mbps, 90pc duty cycle)       | X   | 1.08 | 70.06   | 18.36 | 0.46    | 130.0 | ± 9.6 %      |
|                                         |                                                                     | Υ   | 1.22 | 70.33   | 18.86 |         | 130.0 |              |
|                                         |                                                                     | ż   | 1.09 | 70.58   | 18.62 |         | 130.0 | <del> </del> |
|                                         | 1                                                                   | 1 4 | 1.08 | 1 10.00 | 10.02 | L       | 130.0 |              |

| 10575-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | ТХТ    | 4.39         | 66.32          | 16.32          | 0.46 | 130.0          | ± 9.6 %  |
|---------------|---------------------------------------------------------------------|--------|--------------|----------------|----------------|------|----------------|----------|
| AAA           | OFDM, 6 Mbps, 90pc duty cycle)                                      |        |              |                |                | 0.10 |                | 2 0.0 70 |
|               |                                                                     | Y      | 4.62         | 66.58          | 16.43          |      | 130.0          |          |
| 10576-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | Z      | 4.39         | 66.40          | 16.27          |      | 130.0          |          |
| AAA           | OFDM, 9 Mbps, 90pc duty cycle)                                      | X      | 4.42         | 66.53          | 16.41          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.65         | 66.74          | 16.49          |      | 130.0          |          |
| 10577-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | Z      | 4.42         | 66.60          | 16.36          |      | 130.0          |          |
| AAA           | OFDM, 12 Mbps, 90pc duty cycle)                                     | X      | 4.59         | 66.78          | 16.57          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.85         | 67.03          | 16.66          |      | 130.0          |          |
| 10578-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 18 Mbps, 90pc duty cycle) | X      | 4.59<br>4.49 | 66.86<br>66.94 | 16.52<br>16.68 | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.74         | 67.18          | 16.75          |      | 130.0          |          |
|               |                                                                     | Z      | 4.50         | 67.02          | 16.64          |      | 130.0          |          |
| 10579-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 24 Mbps, 90pc duty cycle) | Х      | 4.24         | 66.07          | 15.88          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.51         | 66.48          | 16.08          |      | 130.0          |          |
| 10555         |                                                                     | Z      | 4.24         | 66.15          | 15.83          |      | 130.0          |          |
| 10580-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 36 Mbps, 90pc duty cycle) | X      | 4.28         | 66.14          | 15.91          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.56         | 66.53          | 16.11          |      | 130.0          |          |
| 40504         | IFFE 000 44 - M/F: 0.4 OLL /D.000                                   | Z      | 4.29         | 66.22          | 15.86          |      | 130.0          |          |
| 10581-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 48 Mbps, 90pc duty cycle) | X      | 4.40         | 66.99          | 16.63          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.64         | 67.22          | 16.70          |      | 130.0          |          |
| 10582-        | JEEE 902 44# WIF: 2.4 CH= /DCCC                                     | Z      | 4.40         | 67.08          | 16.59          | 0.40 | 130.0          |          |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 54 Mbps, 90pc duty cycle) | Х      | 4.17         | 65.84          | 15.66          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.45         | 66,25          | 15.88          |      | 130.0          |          |
| 10502         | IEEE 000 44-/- WIELE OLL- (OEDM 0                                   | Z      | 4.18         | 65.90          | 15.60          |      | 130.0          |          |
| 10583-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps, 90pc duty cycle)        | X      | 4.39         | 66.32          | 16.32          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.62         | 66.58          | 16.43          |      | 130.0          |          |
| 10584-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps, 90pc duty cycle)        | Z<br>X | 4.39<br>4.42 | 66.40<br>66.53 | 16.27<br>16.41 | 0.46 | 130.0<br>130.0 | ± 9.6 %  |
| 70.0          | Inope, cope daty dysic/                                             | Y      | 4.65         | 66.74          | 16.49          |      | 130.0          |          |
|               |                                                                     | ż      | 4.42         | 66.60          | 16.36          |      | 130.0          |          |
| 10585-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12<br>Mbps, 90pc duty cycle)       | X      | 4.59         | 66.78          | 16.57          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Υ      | 4.85         | 67.03          | 16.66          |      | 130.0          |          |
|               |                                                                     | Z      | 4.59         | 66.86          | 16.52          |      | 130.0          |          |
| 10586-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18<br>Mbps, 90pc duty cycle)       | Х      | 4.49         | 66.94          | 16.68          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Υ      | 4.74         | 67.18          | 16.75          |      | 130.0          |          |
| 1055-         |                                                                     | Z      | 4.50         | 67.02          | 16.64          |      | 130.0          |          |
| 10587-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24<br>Mbps, 90pc duty cycle)       | Х      | 4.24         | 66.07          | 15.88          | 0.46 | 130.0          | ± 9.6 %  |
| ,             |                                                                     | Y      | 4.51         | 66.48          | 16.08          |      | 130.0          |          |
| 40E00         | IEEE 000 440% MEET COLL (OFFILE CO.                                 | Z      | 4.24         | 66.15          | 15.83          | n 1- | 130.0          |          |
| 10588-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)          | X      | 4.28         | 66.14          | 15.91          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.56         | 66.53          | 16.11          |      | 130.0          |          |
| 10589-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)          | Z      | 4.29<br>4.40 | 66.22<br>66.99 | 15.86<br>16.63 | 0.46 | 130.0<br>130.0 | ± 9.6 %  |
| <u> </u>      |                                                                     | Y      | 4.64         | 67.22          | 16.70          |      | 130.0          |          |
|               |                                                                     | Ż      | 4.40         | 67.08          | 16.59          | -    | 130.0          |          |
| 10590-<br>AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54<br>Mbps, 90pc duty cycle)       | X      | 4.17         | 65.84          | 15.66          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y      | 4.45         | 66.25          | 15.88          |      | 130.0          |          |
|               | 1                                                                   | 1 1    | 7.70         | 1 00.20        | 10.00          | 1    | 1 100.0        | i        |

| 40504         | TIEFE COO 44 (UTA): 1 COM                             | 1            | 4 = =        | 00.40          | 40.40          | 0.40 | 1 400 0        |                                                  |
|---------------|-------------------------------------------------------|--------------|--------------|----------------|----------------|------|----------------|--------------------------------------------------|
| 10591-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle) | ×            | 4.55         | 66.42          | 16.46          | 0.46 | 130.0          | ± 9.6 %                                          |
| VVD           | WC30, sope duty cycle)                                |              | 4.78         | 66.64          | 16.53          |      | 130.0          |                                                  |
|               | ***************************************               | Ż            | 4.55         | 66.49          | 16.40          |      | 130.0          |                                                  |
| 10592-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle) | X            | 4.67         | 66.72          | 16.59          | 0.46 | 130.0          | ± 9.6 %                                          |
|               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,               | Y            | 4.93         | 66.98          | 16.66          |      | 130.0          |                                                  |
|               |                                                       | Z            | 4.68         | 66.80          | 16.53          |      | 130.0          |                                                  |
| 10593-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle) | Х            | 4.59         | 66.59          | 16.43          | 0.46 | 130.0          | ±9.6 %                                           |
|               |                                                       | Υ            | 4.85         | 66.88          | 16.54          |      | 130.0          |                                                  |
|               |                                                       | Z            | 4.59         | 66.67          | 16.38          |      | 130.0          |                                                  |
| 10594-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle) | X            | 4.64         | 66.77          | 16.61          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       | Y Z          | 4.90         | 67.05          | 16.69          |      | 130.0<br>130.0 |                                                  |
| 10595-        | IEEE 802.11n (HT Mixed, 20MHz,                        | X            | 4.65<br>4.61 | 66.86<br>66.75 | 16.56<br>16.51 | 0.46 | 130.0          | ± 9.6 %                                          |
| AAB           | MCS4, 90pc duty cycle)                                | <b>-</b>   ^ | 4.87         | 67.00          | 16.51          | 0.40 | 130.0          | I 9.0 %                                          |
|               |                                                       | Z            | 4.61         | 66.82          | 16.45          |      | 130.0          | <u></u>                                          |
| 10596-        | IEEE 802.11n (HT Mixed, 20MHz,                        | X            | 4.54         | 66.71          | 16,50          | 0.46 | 130.0          | ± 9.6 %                                          |
| AAB           | MCS5, 90pc duty cycle)                                | Ŷ            | 4.80         | 67.00          | 16.60          | 0.40 | 130.0          | ± 0.0 /0                                         |
|               |                                                       | Z            | 4.54         | 66.79          | 16.44          |      | 130.0          |                                                  |
| 10597-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | X            | 4.49         | 66.57          | 16.34          | 0.46 | 130.0          | ± 9.6 %                                          |
| 7             |                                                       | Y            | 4.75         | 66.90          | 16.48          |      | 130.0          |                                                  |
|               |                                                       | Z            | 4.49         | 66.65          | 16.29          |      | 130.0          |                                                  |
| 10598-<br>AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle) | Х            | 4.48         | 66.81          | 16.63          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       | Υ            | 4.73         | 67.12          | 16.73          |      | 130.0          |                                                  |
|               |                                                       | Z            | 4.49         | 66.91          | 16.58          |      | 130.0          |                                                  |
| 10599-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | X            | 5.31         | 67.13          | 16.85          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       | Y            | 5.45         | 67.20          | 16.74          |      | 130.0          |                                                  |
| 40000         |                                                       | Z            | 5.25         | 67.05          | 16.69          |      | 130.0          |                                                  |
| 10600-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | Х            | 5.48         | 67.76          | 17.14          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       | Y            | 5.57         | 67.58          | 16.91          |      | 130.0          |                                                  |
| 10001         | IFFF 000 dds (UT Missed dobd)                         | Z            | 5.39         | 67.54          | 16.90          | 0.40 | 130.0          |                                                  |
| 10601-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle) | X            | 5.31         | 67.28          | 16.91          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       |              | 5.47         | 67.34          | 16.80<br>16.76 |      | 130.0          |                                                  |
| 10602-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | X            | 5.27<br>5.43 | 67.22<br>67.41 | 16.89          | 0,46 | 130.0<br>130.0 | ± 9.6 %                                          |
|               |                                                       | Υ            | 5.56         | 67.39          | 16.75          |      | 130.0          |                                                  |
|               |                                                       | Z            | 5.40         | 67.36          | 16.75          |      | 130.0          |                                                  |
| 10603-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | X            | 5.54         | 67.82          | 17.25          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       | Y            | 5.64         | 67.67          | 17.02          |      | 130.0          |                                                  |
| 1000:         | 1555 000 44 (1554)                                    | Z            | 5.49         | 67.76          | 17.09          |      | 130.0          |                                                  |
| 10604-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle) | X            | 5.42         | 67.47          | 17.05          | 0.46 | 130.0          | ± 9.6 %                                          |
|               |                                                       | Y            | 5.46         | 67.19          | 16.76          |      | 130.0          |                                                  |
| 10605-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) | Z<br>X       | 5.37<br>5.43 | 67.38<br>67.47 | 16.88<br>17.04 | 0.46 | 130.0<br>130.0 | ± 9.6 %                                          |
| TV1D          | mood, dope duty cycle)                                | Y            | 5.56         | 67.49          | 16.91          |      | 130.0          |                                                  |
|               |                                                       | Z            | 5.37         | 67.38          | 16.87          |      | 130.0          |                                                  |
| 10606-<br>AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle) | X            | 5.17         | 66.77          | 16.54          | 0.46 | 130.0          | ± 9.6 %                                          |
|               | , , , , , , , , , , , , , , , , , , , ,               | Y            | 5.31         | 66.83          | 16.45          |      | 130.0          | <del>                                     </del> |
|               |                                                       | Z            | 5.12         | 66.68          | 16.37          |      | 130.0          | 1                                                |

| 10607-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS0,                  | Х      | 4.40         | 65.75          | 16.09          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|---------------|---------------------------------------------------|--------|--------------|----------------|----------------|-----------------------------------------|----------------|-----------------------------------------|
| AAD           | 90pc duty cycle)                                  | Y      | 4,62         | 65.97          | 16.16          |                                         | 120.0          |                                         |
|               |                                                   | Z      | 4.40         | 65.83          | 16.16          |                                         | 130.0<br>130.0 |                                         |
| 10608-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle) | X      | 4.54         | 66.09          | 16.24          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               | oopo vary oyaro,                                  | TY     | 4.80         | 66.37          | 16.32          |                                         | 130.0          |                                         |
|               |                                                   | Ż      | 4.55         | 66.18          | 16.20          |                                         | 130.0          |                                         |
| 10609-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | X      | 4.43         | 65.91          | 16.05          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Υ      | 4.69         | 66.22          | 16.16          |                                         | 130.0          |                                         |
|               |                                                   | Z      | 4.44         | 66.00          | 16.00          |                                         | 130.0          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 10610-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle) | Х      | 4.49         | 66.09          | 16.23          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Υ      | 4.74         | 66.38          | 16.32          |                                         | 130.0          |                                         |
| 40044         | IFFE 000 44 MEL (00MH 1400)                       | Z      | 4.49         | 66.18          | 16.19          |                                         | 130.0          |                                         |
| 10611-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) | Х      | 4.40         | 65.88          | 16.06          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 4.66         | 66.19          | 16.17          |                                         | 130.0          |                                         |
| 10612-        | IEEE 802 11ac WiE: (20MU-, MCCC                   | Z      | 4.40         | 65.97          | 16.02          | 0.40                                    | 130.0          |                                         |
| AAB           | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) | X      | 4.39         | 66.01          | 16.10          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 4.66         | 66.35          | 16.22          |                                         | 130.0          |                                         |
| 10613-        | IEEE 802.11ac WiFi (20MHz, MCS6,                  | Z      | 4.40<br>4.38 | 66.10          | 16.06          | 0.40                                    | 130.0          |                                         |
| AAB           | 90pc duty cycle)                                  |        |              | 65.82          | 15.94          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y<br>Z | 4.67         | 66.22          | 16.10          |                                         | 130.0          |                                         |
| 10614-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | X      | 4.39<br>4.35 | 65.92<br>66.06 | 15.90<br>16.21 | 0.46                                    | 130.0<br>130.0 | ± 9.6 %                                 |
|               |                                                   | Y      | 4.61         | 66.40          | 16.32          |                                         | 130.0          |                                         |
|               |                                                   | Z      | 4.36         | 66.17          | 16.17          |                                         | 130.0          |                                         |
| 10615-<br>AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | X      | 4.39         | 65.69          | 15.81          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 4.66         | 66.03          | 15.96          |                                         | 130.0          |                                         |
|               |                                                   | Z      | 4.39         | 65.77          | 15.76          | *************************************** | 130.0          |                                         |
| 10616-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | X      | 5.07         | 66.15          | 16.34          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 5.27         | 66.44          | 16.35          |                                         | 130.0          |                                         |
|               |                                                   | Z      | 5.05         | 66.21          | 16.25          |                                         | 130.0          |                                         |
| 10617-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | X      | 5.14         | 66.37          | 16.43          | 0.46                                    | 130.0          | ±9.6 %                                  |
|               |                                                   | Y      | 5.34         | 66.62          | 16.41          |                                         | 130.0          |                                         |
| 400.0         |                                                   | Z      | 5.12         | 66.42          | 16.33          |                                         | 130.0          | *************************************** |
| 10618-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | X      | 5.03         | 66.38          | 16.45          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 5.22         | 66.62          | 16.43          |                                         | 130.0          |                                         |
| 40040         | IEEE 000 44 - MIEL (1014)                         | Z      | 5.02         | 66.45          | 16.36          |                                         | 130.0          |                                         |
| 10619-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle) | X      | 5.07         | 66.24          | 16,31          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 5.24         | 66.43          | 16.27          |                                         | 130.0          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |
| 10620         |                                                   | Z      | 5.03         | 66.23          | 16.18          |                                         | 130.0          |                                         |
| 10620-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | X      | 5.13         | 66.23          | 16.35          | 0.46                                    | 130.0          | ±9.6 %                                  |
|               |                                                   | Y      | 5.33         | 66.47          | 16.34          |                                         | 130.0          |                                         |
| 10621-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle) | Z<br>X | 5.11<br>5.12 | 66.25<br>66.28 | 16.24<br>16.51 | 0.46                                    | 130.0<br>130.0 | ± 9.6 %                                 |
| ·             | - copo daty ofoto)                                | Y      | 5.33         | 66.60          | 16.51          |                                         | 130.0          |                                         |
|               |                                                   | T ż    | 5.11         | 66.38          | 16.44          |                                         | 130.0          |                                         |
| 10622-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | X      | 5.11         | 66.38          | 16.55          | 0.46                                    | 130.0          | ± 9.6 %                                 |
|               |                                                   | Y      | 5.34         | 66.76          | 16.59          |                                         | 130.0          |                                         |
|               |                                                   | Ż      | 5.11         | 66.50          | 16.49          |                                         | 130.0          |                                         |

EX3DV4- SN:7357 April 18, 2018

| 10623-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   | 4.99 | 65.86 | 16.14 | 0.46 | 130.0 | ± 9.6 % |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|-------|------|-------|---------|
|               | opposition of the state of the | Y   | 5.22 | 66.30 | 16.24 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l ż | 4.98 | 65.96 | 16.08 |      | 130.0 |         |
| 10624-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   | 5.20 | 66.20 | 16.38 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y   | 5.41 | 66.49 | 16.39 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.19 | 66.26 | 16.30 |      | 130.0 |         |
| 10625-<br>AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.30 | 66.37 | 16.54 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.75 | 67.41 | 16.90 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.33 | 66.58 | 16.52 |      | 130.0 |         |
| 10626-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.40 | 66.14 | 16.28 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y   | 5.57 | 66.51 | 16.31 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.38 | 66.23 | 16.21 |      | 130.0 |         |
| 10627-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   | 5.71 | 67.03 | 16.70 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y   | 5.80 | 67.06 | 16.54 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.65 | 66.96 | 16.54 |      | 130.0 |         |
| 10628-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.40 | 66.15 | 16.18 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.60 | 66,59 | 16.25 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.38 | 66.23 | 16.10 |      | 130.0 |         |
| 10629-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.55 | 66.49 | 16.35 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.67 | 66.64 | 16.26 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.49 | 66.42 | 16.19 |      | 130.0 |         |
| 10630-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.95 | 67.89 | 17.05 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 6.08 | 68.07 | 16.98 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.84 | 67.71 | 16.83 |      | 130.0 |         |
| 10631-<br>AAB | IEEE 802.11ac WIFi (80MHz, MCS5, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   | 5.77 | 67.48 | 17.05 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y   | 5.99 | 67.89 | 17.07 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.74 | 67.53 | 16.95 |      | 130.0 |         |
| 10632-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X   | 5.72 | 67.25 | 16.96 | 0.46 | 130.0 | ± 9,6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.77 | 67.11 | 16.70 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.64 | 67.12 | 16.77 |      | 130.0 |         |
| 10633-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.44 | 66.28 | 16.29 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y   | 5.66 | 66.76 | 16.36 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.44 | 66.43 | 16.24 |      | 130.0 |         |
| 10634-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.44 | 66.38 | 16.39 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.64 | 66,78 | 16.43 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.43 | 66.48 | 16.32 |      | 130.0 |         |
| 10635-<br>AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х   | 5.30 | 65.61 | 15.72 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.53 | 66.14 | 15.85 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.29 | 65.70 | 15.64 |      | 130.0 |         |
| 10636-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х   | 5.86 | 66.55 | 16.40 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 5.98 | 66.87 | 16.39 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.82 | 66.61 | 16.30 |      | 130.0 |         |
| 10637-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х   | 6.02 | 66.98 | 16.61 | 0.46 | 130.0 | ±9.6 %  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 6.13 | 67.25 | 16.56 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.97 | 67.00 | 16.48 |      | 130.0 |         |
| 10638-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х   | 6.03 | 67.01 | 16.60 | 0.46 | 130.0 | ±9.6 %  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ   | 6.13 | 67.22 | 16.53 |      | 130.0 |         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z   | 5.97 | 67.00 | 16.46 |      | 130.0 | 1       |

| 10639-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)       | X      | 5.96         | 66.80          | 16.53          | 0.46     | 130.0         | ± 9.6 % |
|---------------|----------------------------------------------------------|--------|--------------|----------------|----------------|----------|---------------|---------|
|               |                                                          | Y      | 6.11         | 67.17          | 16.55          |          | 130.0         |         |
|               |                                                          | Z      | 5.93         | 66.87          | 16.44          |          | 130.0         |         |
| 10640-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)       | Х      | 5.92         | 66.70          | 16.42          | 0.46     | 130.0         | ± 9.6 % |
|               |                                                          | Y      | 6.12         | 67,19          | 16.50          |          | 130.0         |         |
| 40044         |                                                          | Z      | 5.91         | 66.82          | 16.35          |          | 130.0         |         |
| 10641-<br>AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)       | Х      | 6.06         | 66.91          | 16,55          | 0.46     | 130.0         | ± 9.6 % |
|               |                                                          | Y      | 6.16         | 67.10          | 16.47          |          | 130.0         |         |
| 10642-        | IEEE 902 11co WiE: (100MH - M000                         | Z      | 6.01         | 66.89          | 16.41          |          | 130.0         |         |
| AAC           | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)       | X      | 6.04         | 66.98          | 16.76          | 0.46     | 130.0         | ± 9.6 % |
|               |                                                          | Y      | 6.20         | 67.33          | 16.75          | <u> </u> | 130.0         |         |
| 10643-        | IEEE 802.11ac WiFi (160MHz, MCS7,                        | Z      | 6.02         | 67.07          | 16.68          |          | 130.0         |         |
| AAC           | 90pc duty cycle)                                         | X      | 5.90         | 66.69          | 16.50          | 0.46     | 130.0         | ± 9.6 % |
|               |                                                          | Y      | 6.04         | 67.03          | 16.51          |          | 130.0         |         |
| 10644-        | IEEE 802.11ac WiFi (160MHz, MCS8,                        | Z      | 5.87         | 66.78          | 16.42          | 0.10     | 130.0         |         |
| AAC           | 90pc duty cycle)                                         | X      | 5.95         | 66.86          | 16.60          | 0.46     | 130.0         | ± 9.6 % |
|               |                                                          |        | 6.19         | 67.50          | 16.76          |          | 130.0         |         |
| 10645-        | IEEE 802.11ac WiFi (160MHz, MCS9,                        | Z<br>X | 5.94         | 66.99          | 16.54          | 0.40     | 130.0         |         |
| AAC           | 90pc duty cycle)                                         |        | 6.44         | 67.99          | 17.14          | 0.46     | 130.0         | ± 9.6 % |
|               |                                                          | Y      | 6.47         | 67.94          | 16.94          |          | 130.0         |         |
| 10646-<br>AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz,<br>QPSK, UL Subframe=2,7) | Z<br>X | 6.16<br>7.50 | 67.33<br>90.48 | 16.68<br>30.44 | 9.30     | 130.0<br>60.0 | ± 9.6 % |
|               | di Siq on Sabitamo 2,1)                                  | Y      | 17.43        | 112.38         | 39.34          |          | 60.0          |         |
|               |                                                          | Z      | 9.26         | 96.56          | 33.29          |          | 60.0          |         |
| 10647-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)   | X      | 6.74         | 88.72          | 29.93          | 9.30     | 60.0<br>60.0  | ± 9.6 % |
|               |                                                          | Y      | 14.54        | 108.61         | 38.31          |          | 60.0          |         |
|               |                                                          | Z      | 8.10         | 94.14          | 32.60          |          | 60.0          |         |
| 10648-<br>AAA | CDMA2000 (1x Advanced)                                   | X      | 0.39         | 60.00          | 6.32           | 0.00     | 150.0         | ±9.6 %  |
|               |                                                          | Υ      | 0.67         | 63.31          | 10.55          |          | 150.0         |         |
|               |                                                          | Z      | 0.38         | 60.00          | 6.43           |          | 150.0         |         |
| 10652-<br>AAB | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)           | Х      | 3.10         | 65.49          | 15.51          | 2.23     | 80.0          | ± 9.6 % |
|               |                                                          | Υ      | 3.52         | 66.85          | 16.73          |          | 80.0          |         |
| 10050         |                                                          | Z      | 3.18         | 66,07          | 15.91          |          | 80.0          |         |
| 10653-<br>AAB | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1,<br>Clipping 44%)       | X      | 3.70         | 65.11          | 16.04          | 2.23     | 80.0          | ±9.6 %  |
|               |                                                          | Y      | 4.03         | 66.07          | 16.78          |          | 80.0          |         |
| 40054         | LTE TOO (OFDIA) AS NOT THE                               | Z      | 3.73         | 65.44          | 16.24          |          | 80.0          |         |
| 10654-<br>AAB | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1,<br>Clipping 44%)       | Х      | 3.73         | 64.77          | 16.12          | 2.23     | 80.0          | ±9.6%   |
|               |                                                          | Y      | 4.00         | 65.69          | 16.76          |          | 80.0          |         |
| 10655-        | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,                        | Z      | 3.74         | 65.07          | 16.28          | · · ·    | 80.0          |         |
| AAB           | Clipping 44%)                                            | X      | 3.81         | 64.71          | 16.17          | 2.23     | 80.0          | ± 9.6 % |
|               |                                                          | Y      | 4.06         | 65.68          | 16.79          |          | 80.0          |         |
| 10658-<br>AAA | Pulse Waveform (200Hz, 10%)                              | Z<br>X | 3.81<br>3.06 | 65.01<br>66.59 | 16.32<br>11.16 | 10.00    | 80.0<br>50.0  | ± 9.6 % |
| 1             |                                                          | Y      | 100.00       | 111.68         | 26.09          |          | E0.0          |         |
|               |                                                          | Z      | 3.93         | 69.81          | 12.66          |          | 50.0<br>50.0  |         |
| 10659-        | Pulse Waveform (200Hz, 20%)                              | X      | 1.63         | 63.81          | 8.65           | 6.99     | 60.0          | ± 9.6 % |
| AAA           |                                                          |        |              |                |                |          | '             |         |
| AAA           |                                                          | Y      | 100.00       | 113,13         | 25.67          |          | 60.0          |         |

EX3DV4- SN:7357 April 18, 2018

| 10660-<br>AAA | Pulse Waveform (200Hz, 40%) | X | 0.57   | 60.00  | 5,26   | 3.98 | 80.0  | ± 9.6 % |
|---------------|-----------------------------|---|--------|--------|--------|------|-------|---------|
|               |                             | Y | 100.00 | 118.24 | 26.52  |      | 80.0  |         |
|               |                             | Z | 0.68   | 61.70  | 6.30   |      | 80.0  |         |
| 10661-<br>AAA | Pulse Waveform (200Hz, 60%) | Х | 0.32   | 60.00  | 3.83   | 2.22 | 100.0 | ± 9.6 % |
|               |                             | Y | 100.00 | 125.46 | 28.15  |      | 100.0 |         |
|               |                             | Z | 0.29   | 60.00  | 3.83   |      | 100.0 |         |
| 10662-<br>AAA | Pulse Waveform (200Hz, 80%) | Х | 7.43   | 367.15 | 53.93  | 0.97 | 120.0 | ± 9.6 % |
|               |                             | Y | 100.00 | 135.73 | 30.13  |      | 120.0 |         |
|               |                             | Z | 0.00   | 228.51 | 107.76 |      | 120.0 |         |

<sup>&</sup>lt;sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: EX3-3589\_Jan19

#### CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3589

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

n)-06-2016

Calibration date:

January 25, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3589\_Jan19

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| DAE4                       | SN: 660          | 19-Dec-18 (No. DAE4-660_Dec18)    | Dec-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-18 (No. ES3-3013_Dec18)    | Dec-19                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |

Name Function Signature

Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: January 29, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

notation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: EX3-3589\_Jan19

information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

• Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

January 25, 2019 EX3DV4 - SN:3589

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

**Basic Calibration Parameters** 

| Dasic Calibration I arai                   | Heters   |          |          | 1 11 (10) |
|--------------------------------------------|----------|----------|----------|-----------|
|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0,44     | 0.40     | 0.39     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 104.1    | 102.3    | 101.6    |           |

Calibration Possite for Modulation Response

| UID    | ion Results for Modulation Communication System Name |   | A<br>dB | B<br>dBõV | С     | D<br>dB  | VR<br>mV | Max<br>dev. | Max<br>Unc <sup>E</sup><br>(k=2) |
|--------|------------------------------------------------------|---|---------|-----------|-------|----------|----------|-------------|----------------------------------|
| 0      | CW                                                   | X | 0.00    | 0.00      | 1.00  | 0.00     | 161.0    | ± 2.2 %     | ± 4.7 %                          |
| U      | 044                                                  | Υ | 0.00    | 0.00      | 1.00  |          | 172.8    |             |                                  |
|        |                                                      | Z | 0.00    | 0.00      | 1.00  |          | 161.9    |             |                                  |
| 10352- | Pulse Waveform (200Hz, 10%)                          | X | 15.00   | 89.05     | 22.73 | 10.00    | 60.0     | ± 1.8 %     | ± 9.6 %                          |
| AAA    | Tuiso vidvoisiii (moorii)                            | Y | 15.00   | 87.03     | 21.09 |          | 60.0     |             |                                  |
| ,,,,,  | ł                                                    | Z | 15.00   | 88.89     | 22.24 |          | 60.0     |             |                                  |
| 10353- | Pulse Waveform (200Hz, 20%)                          | X | 15.00   | 89.55     | 21.62 | 6.99     | 80.0     | ± 0.9 %     | ± 9.6 %                          |
| AAA    | , 4,55                                               | Υ | 15.00   | 87.28     | 19.70 |          | 80.0     |             |                                  |
|        |                                                      | Z | 15.00   | 89.25     | 21.07 |          | 80.0     |             |                                  |
| 10354- | Pulse Waveform (200Hz, 40%)                          | X | 15.00   | 91.62     | 21.02 | 3.98     | 95.0     | ± 0.9 %     | ± 9.6 %                          |
| AAA    | ,                                                    | Y | 15.00   | 87.00     | 17.73 |          | 95.0     |             | <br>                             |
|        |                                                      | Z | 15.00   | 91.02     | 20.33 |          | 95.0     |             |                                  |
| 10355- | Pulse Waveform (200Hz, 60%)                          | X | 15.00   | 97.72     | 22.56 | 2.22     | 120.0    | ± 1.3 %     | ± 9.6 %                          |
| AAA    | , , , ,                                              | Y | 15.00   | 85.70     | 15.52 |          | 120.0    | <u> </u>    | 1                                |
|        |                                                      | Z | 15.00   | 94.39     | 20.55 |          | 120.0    |             |                                  |
| 10387- | QPSK Waveform, 1 MHz                                 | X | 0.93    | 64.13     | 11.59 | 0.00     | 150.0    | ± 3.0 %     | ± 9.6 %                          |
| AAA    | ,                                                    | Y | 0.57    | 60.00     | 7.45  |          | 150.0    |             |                                  |
|        |                                                      | Z | 0.83    | 63.49     | 10.36 |          | 150.0    |             | +                                |
| 10388- | QPSK Waveform, 10 MHz                                | X | 2.36    | 68.76     | 16.09 | 0.00     | 150.0    | ± 1.5 %     | ± 9.6 %                          |
| AAA    |                                                      | Y | 1.95    | 66.09     | 14.43 | <u> </u> | 150.0    | 1           |                                  |
|        |                                                      | Z | 2.37    | 69.14     | 16.27 |          | 150.0    |             |                                  |
| 10396- | 64-QAM Waveform, 100 kHz                             | X | 3.76    | 72.95     | 19.72 | 3.01     | 150.0    | ± 0.7 %     | ± 9.6 %                          |
| AAA    |                                                      | Y | 3.11    | 69.51     | 18.06 |          | 150.0    | 1           |                                  |
|        |                                                      | Z | 4.24    | 75.35     | 20.59 |          | 150.0    |             |                                  |
| 10399- | 64-QAM Waveform, 40 MHz                              | X | 3.57    | 67.40     | 15.92 | 0.00     | 150.0    | ± 2.7 %     | ± 9.6 %                          |
| AAA    |                                                      | Υ | 3.33    | 66.26     | 15.18 | _]       | 150.0    | 1           |                                  |
|        |                                                      | Z | 3.47    | 67.09     | 15.77 |          | 150.0    |             |                                  |
| 10414- | WLAN CCDF, 64-QAM, 40MHz                             | Х | 4.95    | 65.72     | 15.56 | 0.00     | 150.0    | ± 4.8 %     | ± 9.6 %                          |
| AAA    |                                                      | Υ | 4.74    | 65.16     | 15.23 |          | 150.0    |             |                                  |
|        | }                                                    | Z | 4.81    | 65.57     | 15.48 |          | 150.0    | <u> </u>    |                                  |

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

Certificate No: EX3-3589\_Jan19

<sup>&</sup>lt;sup>^</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

January 25, 2019

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

**Sensor Model Parameters** 

| ,11301 1                                         | C1<br>fF | C2<br>fF | α<br>V <sup>-1</sup> | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V⁻¹ | Т6   |
|--------------------------------------------------|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------|------|
| X                                                | 55.3     | 407.97   | 34.85                | 27.50                    | 1.34                     | 5.10     | 1.23                  | 0.50      | 1.01 |
| $\frac{\lambda}{\nabla}$                         | 46.7     | 357.99   | 37.12                | 21.71                    | 1.59                     | 5.07     | 0.00                  | 0.73      | 1.01 |
| <del>-                                    </del> | 46.1     | 339.04   | 34.64                | 23.94                    | 1.27                     | 5.07     | 1.73                  | 0.40      | 1.01 |

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -30.3      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

EX3DV4- SN:3589 January 25, 2019

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 41.9                                  | 0.89                 | 8.67    | 8.67    | 8.67    | 0.70               | 0.80                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                 | 8.39    | 8.39    | 8.39    | 0.63               | 0.81                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                 | 7.31    | 7.31    | 7.31    | 0.40               | 0.80                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                 | 7.08    | 7.08    | 7.08    | 0.39               | 0.80                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                 | 6.77    | 6.77    | 6.77    | 0.31               | 0.85                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                 | 6.46    | 6.46    | 6.46    | 0.30               | 0.85                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                 | 6.25    | 6.25    | 6.25    | 0.40               | 0.83                       | ± 12.0 %     |
| 3500                 | 37.9                                  | 2.91                 | 6.16    | 6.16    | 6.16    | 0.26               | 1.20                       | ± 13.1 %     |
| 3700                 | 37.7                                  | 3.12                 | 6.02    | 6.02    | 6.02    | 0.26               | 1.20                       | ± 13.1 %     |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (a and o) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

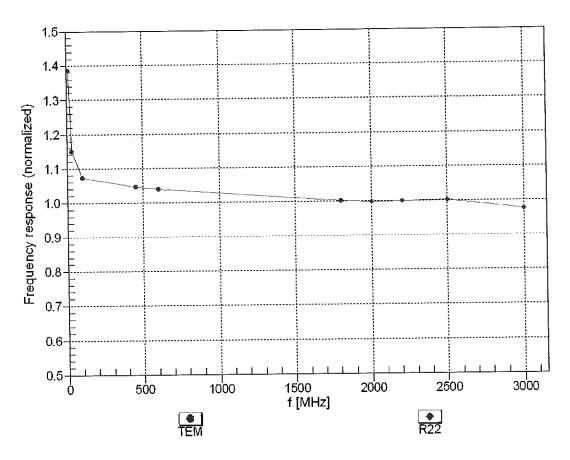
<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

January 25, 2019

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

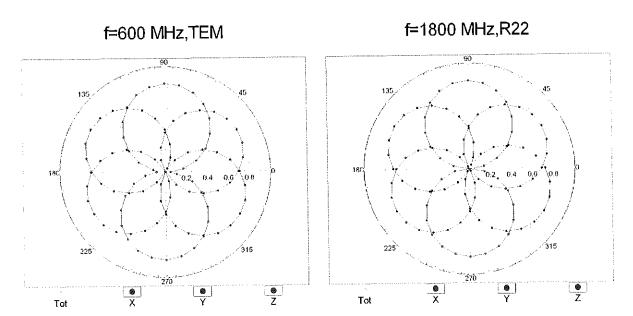
### Calibration Parameter Determined in Body Tissue Simulating Media

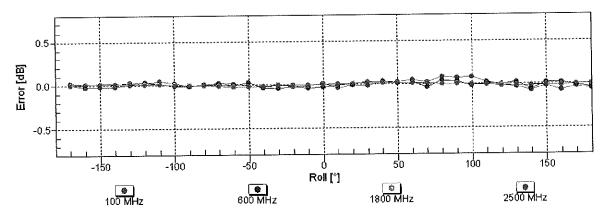
| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|--------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 55.5                                  | 0.96               | 8.34    | 8.34    | 8.34    | 0.42               | 0.84                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97               | 8,29    | 8.29    | 8.29    | 0.41               | 0.84                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49               | 6.82    | 6.82    | 6.82    | 0.43               | 0.80                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52               | 6.75    | 6.75    | 6.75    | 0.35               | 0.85                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81               | 6.71    | 6.71    | 6.71    | 0.36               | 0.87                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95               | 6.66    | 6.66    | 6.66    | 0.34               | 0.88                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16               | 6.47    | 6.47    | 6.47    | 0.28               | 0.95                       | ± 12.0 %     |
| 3500                 | 51.3                                  | 3.31               | 6.21    | 6.21    | 6.21    | 0.25               | 1.25                       | ± 13.1 %     |
| 3700                 | 51.0                                  | 3.55               | 6.13    | 6.13    | 6.13    | 0.20               | 1.25                       | ± 13.1 %     |


<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz. frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

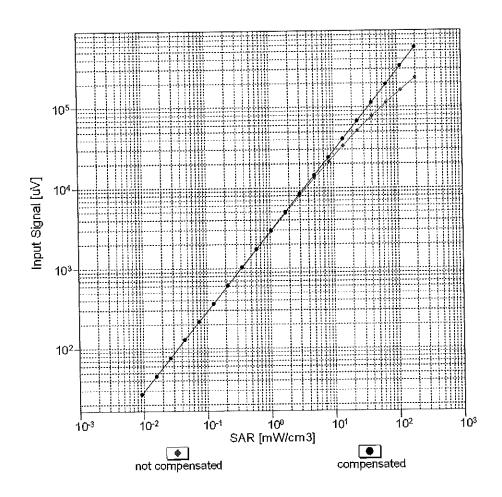
the ConvF uncertainty for indicated target tissue parameters.

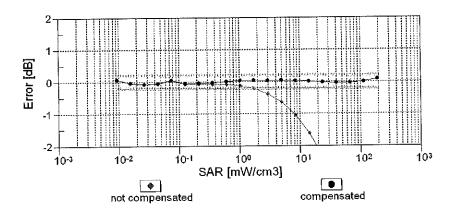

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



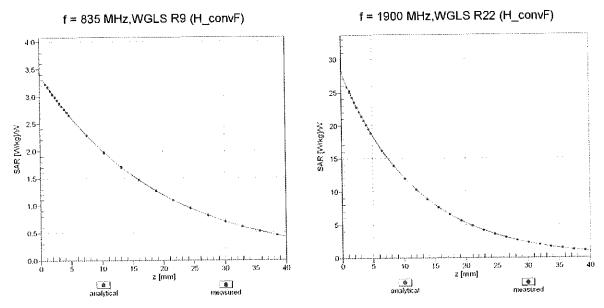
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

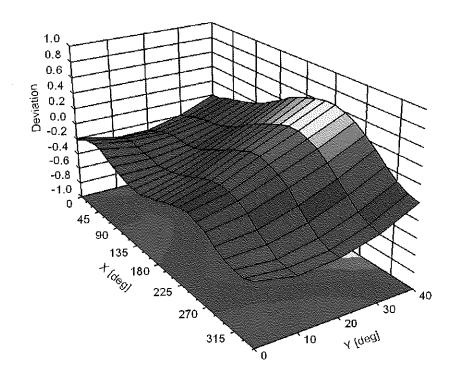





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error ( $\phi$ ,  $\vartheta$ ), f = 900 MHz



EX3DV4- SN:3589 January 25, 2019

### **Appendix: Modulation Calibration Parameters**

| UID            | Rev        | Communication System Name                                                  | Group          | PAR           | Unc <sup>E</sup>   |
|----------------|------------|----------------------------------------------------------------------------|----------------|---------------|--------------------|
| 0              | 1          | CW                                                                         | cw             | (dB)          | (k=2)              |
| 10010          | CAA        | SAR Validation (Square, 100ms, 10ms)                                       | Test           | 0.00<br>10.00 | ± 4.7 %<br>± 9.6 % |
| 10011          | CAB        | UMTS-FDD (WCDMA)                                                           | WCDMA          | 2.91          | ±9.6 %             |
| 10012          | CAB        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)                                   | WLAN           | 1.87          | ± 9.6 %            |
| 10013          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)                              | WLAN           | 9.46          | ± 9.6 %            |
| 10021          | DAC        | GSM-FDD (TDMA, GMSK)                                                       | GSM            | 9.39          | ±9.6 %             |
| 10023          | DAC        | GPRS-FDD (TDMA, GMSK, TN 0)                                                | GSM            | 9.57          | ± 9.6 %            |
| 10024          | DAC        | GPRS-FDD (TDMA, GMSK, TN 0-1)                                              | GSM            | 6.56          | ± 9.6 %            |
| 10025          | DAC        | EDGE-FDD (TDMA, 8PSK, TN 0)                                                | GSM            | 12.62         | ± 9.6 %            |
| 10026          | DAC        | EDGE-FDD (TDMA, 8PSK, TN 0-1)                                              | GSM            | 9.55          | ± 9.6 %            |
| 10027          | DAC        | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                                            | GSM            | 4.80          | ±9.6 %             |
| 10028          | DAC        | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                                          | GSM            | 3.55          | ± 9.6 %            |
| 10029          | DAC        | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)                                            | GSM            | 7.78          | ± 9.6 %            |
| 10030          | CAA        | IEEE 802.15.1 Bluetooth (GFSK, DH1)                                        | Bluetooth      | 5.30          | ± 9.6 %            |
| 10031          | CAA        | IEEE 802.15.1 Bluetooth (GFSK, DH3)                                        | Bluetooth      | 1.87          | ± 9.6 %            |
| 10032          | CAA        | IEEE 802.15.1 Bluetooth (GFSK, DH5)                                        | Bluetooth      | 1.16          | ±9.6 %             |
| 10033          | CAA        | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)                                  | Bluetooth      | 7.74          | ± 9.6 %            |
| 10034          | CAA        | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)                                  | Bluetooth      | 4.53          | ±9.6%              |
| 10035          | CAA        | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)                                  | Bluetooth      | 3.83          | ± 9.6 %            |
| 10036          | CAA        | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)                                      | Bluetooth      | 8.01          | ± 9.6 %            |
| 10037          | CAA        | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)                                      | Bluetooth      | 4.77          | ± 9.6 %            |
| 10038          | CAA        | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)                                      | Bluetooth      | 4.10          | ±9.6%              |
| 10039          | CAB        | CDMA2000 (1xRTT, RC1)                                                      | CDMA2000       | 4.57          | ±9.6%              |
| 10042          | CAB        | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)                        | AMPS           | 7.78          | ±9.6%              |
| 10044          | CAA        | IS-91/EIA/TIA-553 FDD (FDMA, FM)                                           | AMPS           | 0.00          | ±96%               |
| 10048          | CAA        | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)                                  | DECT           | 13.80         | ±9.6%              |
| 10049          | CAA        | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)                                | DECT           | 10.79         | ±9.6%              |
| 10056<br>10058 | DAC        | UMTS-TDD (TD-SCDMA, 1.28 Mcps)                                             | TD-SCDMA       | 11.01         | ±9.6%              |
| 10056          | CAB        | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | GSM<br>WLAN    | 6.52          | ±9.6%              |
| 10059          | CAB        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)                                 | WLAN           | 2.12<br>2.83  | ±9.6 %             |
| 10061          | CAB        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1.1 Mbps)                                 | WLAN           | 3.60          | ± 9.6 %            |
| 10062          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)                                   | WLAN           | 8.68          | ± 9.6 %            |
| 10063          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)                                   | WLAN           | 8.63          | ± 9.6 %            |
| 10064          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)                                  | WLAN           | 9.09          | ± 9.6 %            |
| 10065          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)                                  | WLAN           | 9.00          | ± 9.6 %            |
| 10066          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)                                  | WLAN           | 9.38          | ± 9.6 %            |
| 10067          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)                                  | WLAN           | 10.12         | ± 9.6 %            |
| 10068          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)                                  | WLAN           | 10.24         | ± 9.6 %            |
| 10069          | CAC        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)                                  | WLAN           | 10.56         | ± 9.6 %            |
| 10071          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)                              | WLAN           | 9.83          | ± 9.6 %            |
| 10072          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)                             | WLAN           | 9.62          | ± 9.6 %            |
| 10073          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)                             | WLAN           | 9.94          | ± 9.6 %            |
| 10074          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)                             | WLAN           | 10.30         | ± 9.6 %            |
| 10075          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)                             | WLAN           | 10.77         | ±9.6 %             |
| 10076          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)                             | WLAN           | 10.94         | ± 9.6 %            |
| 10077          | CAB        | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)                             | WLAN           | 11.00         | ± 9.6 %            |
| 10081          | CAB        | CDMA2000 (1xRTT, RC3)                                                      | CDMA2000       | 3.97          | ± 9.6 %            |
| 10082          | CAB        | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)                        | AMPS           | 4.77          | ± 9.6 %            |
| 10090          | DAC        | GPRS-FDD (TDMA, GMSK, TN 0-4)                                              | GSM            | 6.56          | ±9.6%              |
| 10097<br>10098 | CAB<br>CAB | UMTS-FDD (HSDPA) UMTS-FDD (HSUPA, Subtest 2)                               | WCDMA<br>WCDMA | 3.98<br>3.98  | ± 9.6 %<br>± 9.6 % |
| 10098          | DAC        | EDGE-FDD (TDMA, 8PSK, TN 0-4)                                              | GSM            | 9.55          | ± 9.6 %            |
| 10100          | CAE        | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)                                   | LTE-FDD        | 5.67          | ± 9.6 %            |
| 10101          | CAE        | LTE-FDD (SC-FDMA, 100 % RB, 20 MHz, 16-QAM)                                | LTE-FDD        | 6.42          | ± 9.6 %            |
| 10101          | CAE        | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)                                 | LTE-FDD        | 6,60          | ± 9.6 %            |
| 10103          | CAG        | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)                                   | LTE-TDD        | 9.29          | ± 9.6 %            |
| 10104          | CAG        | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)                                 | LTE-TDD        | 9.97          | ± 9.6 %            |
|                | CAG        | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)                                 | LTE-TDD        | 10.01         | ± 9.6 %            |
| 10105          |            |                                                                            |                |               |                    |

EX3DV4- SN:3589 January 25, 2019

|                |     |                                                                                      | LITE EDD           | C 40         | 1060/              |
|----------------|-----|--------------------------------------------------------------------------------------|--------------------|--------------|--------------------|
| 10109          | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)                                           | LTE-FDD            | 6.43<br>5.75 | ± 9.6 %<br>± 9.6 % |
| 10110          | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)                                              | LTE-FDD            | 6.44         | ± 9.6 %            |
| 10111          | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD            | 6.59         | ±9.6 %             |
| 10112          | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)                                           | LTE-FDD            | 6.62         | ± 9.6 %            |
| 10113          | CAC | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)                                        | WLAN               | 8.10         | ± 9.6 %            |
| 10115          | CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)                                        | WLAN               | 8.46         | ± 9.6 %            |
| 10116          | CAC | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)                                       | WLAN               | 8.15         | ±9.6 %             |
| 10117          | CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)                                             | WLAN               | 8.07         | ± 9.6 %            |
| 10118          | CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)                                             | WLAN               | 8.59         | ± 9.6 %            |
| 10119          | CAC | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)                                            | WLAN               | 8.13         | ± 9.6 %            |
| 10140          | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)                                           | LTE-FDD            | 6.49         | ± 9.6 %            |
| 10141          | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)                                           | LTE-FDD            | 6,53         | ± 9.6 %            |
| 10142          | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)                                              | LTE-FDD            | 5.73         | ± 9.6 %            |
| 10143          | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)                                            | LTE-FDD            | 6.35         | ± 9.6 %            |
| 10144          | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)                                            | LTE-FDD            | 6.65         | ±9.6%              |
| 10145          | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)                                            | LTE-FDD            | 5.76         | ±9.6%              |
| 10146          | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)                                          | LTE-FDD            | 6.41         | ±9.6%              |
| 10147          | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)                                          | LTE-FDD            | 6.72         | ± 9.6 %            |
| 10149          | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)                                            | LTE-FDD            | 6.42         | ± 9.6 %            |
| 10150          | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)                                            | LTE-FDD            | 6.60         | ± 9.6 %            |
| 10151          | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                                              | LTE-TDD            | 9.28         | ± 9.6 %            |
| 10152          | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)                                            | LTE-TDD            | 9.92         | ±9.6%              |
| 10153          | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)                                            | LTE-TDD            | 10.05        | ±9.6%              |
| 10154          | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)                                              | LTE-FDD            | 5.75         | ± 9.6 %            |
| 10155          | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)                                            | LTE-FDD            | 6.43         | ± 9.6 %            |
| 10156          | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)                                               | LTE-FDD            | 5.79         | ± 9.6 %            |
| 10157          | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)                                             | LTE-FDD            | 6.49         | ± 9.6 %            |
| 10158          | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)                                            | LTE-FDD<br>LTE-FDD | 6.62         | ± 9.6 %<br>± 9.6 % |
| 10159          | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)                                             | LTE-FDD            | 5.82         | ± 9.6 %            |
| 10160          | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)                                              | LTE-FDD            | 6.43         | ± 9.6 %            |
| 10161          | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | LTE-FDD            | 6.58         | ± 9.6 %            |
| 10162          | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 04-QAM)                                            | LTE-FDD            | 5.46         | ± 9.6 %            |
| 10166<br>10167 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QF3R)  LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD            | 6.21         | ± 9.6 %            |
| 10168          | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)                                           | LTE-FDD            | 6.79         | ± 9.6 %            |
| 10169          | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)                                                | LTE-FDD            | 5.73         | ± 9.6 %            |
| 10170          | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)                                              | LTE-FDD            | 6.52         | ± 9.6 %            |
| 10171          | AAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)                                              | LTE-FDD            | 6.49         | ± 9.6 %            |
| 10172          | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)                                                | LTE-TDD            | 9.21         | ±9.6%              |
| 10172          | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)                                              | LTE-TDD            | 9.48         | ± 9.6 %            |
| 10174          | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)                                              | LTE-TDD            | 10.25        | ± 9.6 %            |
| 10175          | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)                                                | LTE-FDD            | 5.72         | ± 9.6 %            |
| 10176          | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)                                              | LTE-FDD            | 6.52         | ± 9.6 %            |
| 10177          | CAI | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)                                                 | LTE-FDD            | 5.73         | ± 9.6 %            |
| 10178          | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)                                               | LTE-FDD            | 6.52         | ± 9.6 %            |
| 10179          | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)                                              | LTE-FDD            | 6,50         | ± 9.6 %            |
| 10180          | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)                                               | LTE-FDD            | 6.50         | ± 9.6 %            |
| 10181          | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)                                                | LTE-FDD            | 5.72         | ± 9.6 %            |
| 10182          | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)                                              | LTE-FDD            | 6.52         | ± 9.6 %            |
| 10183          | AAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)                                              | LTE-FDD            | 6.50         | ± 9.6 %            |
| 10184          | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)                                                 | LTE-FDD            | 5.73         | ± 9.6 %            |
| 10185          | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)                                               | LTE-FDD            | 6.51         | ± 9.6 %            |
| 10186          | AAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)                                               | LTE-FDD            | 6.50         | ± 9.6 %            |
| 10187          | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)                                               | LTE-FDD            | 5,73         | ± 9.6 %            |
| 10188          | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)                                             | LTE-FDD            | 6.52         | ± 9.6 %            |
| 10189          | AAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)                                             | LTE-FDD            | 6.50         | ± 9.6 %            |
| 10193          | CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)                                         | WLAN               | 8.09         | ± 9.6 %            |
| 10194          | CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)                                        | WLAN               | 8.12         | ± 9.6 %<br>± 9.6 % |
| 10195          | CAC | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)                                        | WLAN               | 8.21         |                    |
| 10196          | CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)                                              | WLAN WLAN          | 8.10         | ± 9.6 %<br>± 9.6 % |
| 10197          | CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)                                             | WLAN               | 8.13<br>8.27 | ± 9.6 %            |
| 10198          | CAC | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)                                             | WLAN               | 8.03         | ± 9.6 %            |
| 10219          | CAC | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)                                              | AAFWIA             | 1 0.00       | 1 - 0.0 /0         |