

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

Page 1 of 55

MEASUREMENT REPORT FCC PART 15.247 Bluetooth (Low Energy)

Applicant Name:

FCC ID:

Test Report S/N:

APPLICANT:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 01/22 - 05/08/2019 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1903060032-11.A3L

A3LSMG977T

Samsung Electronics Co., Ltd.

Application Type:	Certification
Model:	SM-G977T
Additional Model:	SM-G977P
EUT Type:	Portable Handset
Max. RF Output Power:	9.627 mW (9.84 dBm) Peak Conducted
Frequency Range:	2402 – 2480MHz
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15 Subpart C (15.247)
Test Procedure(s):	ANSI C63.10-2013, KDB 558074 D01 v05r02, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

 1M1903060032-11.A3L
 01/22 - 05/08/2019
 Portable Handset
 Prage 10155

 © 2019 PCTEST Engineering Laboratory, Inc.
 V 9.0 02/01/2019

 All rights reserved. Unless otherwise specified, no part of this report any be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enury about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

EUT Type:

Test Dates:

TABLE OF CONTENTS

1.0	INTF	RODUCTION	3
	1.1	Scope	3
	1.2	PCTEST Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PRC	DUCT INFORMATION	4
	2.1	Equipment Description	4
	2.2	Device Capabilities	4
	2.3	Test Configuration	4
	2.4	EMI Suppression Device(s)/Modifications	4
3.0	DES	CRIPTION OF TESTS	5
	3.1	Evaluation Procedure	5
	3.2	AC Line Conducted Emissions	5
	3.3	Radiated Emissions	6
	3.4	Environmental Conditions	6
4.0	ANT	ENNA REQUIREMENTS	7
5.0	MEA	SUREMENT UNCERTAINTY	8
6.0	TES	T EQUIPMENT CALIBRATION DATA	9
7.0	TES	T RESULTS	10
	7.1	Summary	.10
	7.2	6dB Bandwidth Measurement – Bluetooth (LE)	.11
	7.3	Output Power Measurement – Bluetooth (LE)	.19
	7.4	Power Spectral Density – Bluetooth (LE)	.27
	7.5	Conducted Emissions at the Band Edge	.35
	7.6	Conducted Spurious Emissions	.40
	7.7	Radiated Spurious Emission Measurements	.45
	7.8	Radiated Restricted Band Edge Measurements	.50
	7.9	Line-Conducted Test Data	.51
8.0	CON	ICLUSION	55

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 2 of 55
© 2019 PCTEST Engineering Lat	poratory. Inc.	÷		V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 3 of 55
© 2010 BCTERT Engineering Leberatory Inc.				

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMG977T**. The data found in this test report was taken with the EUT operating in Bluetooth low energy mode. While in low energy mode, the Bluetooth transmitter hops pseudo-randomly between 40 channels, three of which are "advertising channels". When the transmitter is hopping only between the three advertising channels, the EUT does not fall under the category of a "hopper" as defined in 15.247(a)(iii) which states that a "frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels." As operation on only the advertising channels does not qualify the EUT as a hopper, the EUT is certified as a DTS device in this mode. The data found in this report is representative of the device when it transmits on its advertising channels. Typical Bluetooth operation is covered under the DSS report found with this application.

Test Device Serial No.: 2554B, 8913B, 9728B, 0234M, 0251M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (n41, n260, n261, EN-DC), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE), NFC, Wireless Phone Transfer

Ch.	Frequency (MHz)
0	2402
:	:
19	2440
:	:
39	2480

Table 2-1. Frequency / Channel Operations

Note: This device supports Bluetooth LE operations with 125kbps, 500kbps, 1Mbps and 2Mbps.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT placed on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 4 of 55
© 2019 PCTEST Engineering Labora	V 9.0 02/01/2019			

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 5 of 55

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo C of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 6 of 55
© 2019 PCTEST Engineering Labo	V 9.0 02/01/2019			

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna(s) of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga Z of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 7 of 55
© 2010 PCTEST Engineering Lat	oratory Inc			V 9 0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 9 of FF
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 8 of 55
© 2019 PCTEST Engineering Lat	poratory Inc			V 9 0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	10/31/2018	Annual	10/31/2019	WL25-1
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	6/7/2018	Biennial	6/7/2020	9203-2178
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/9/2018	Biennial	8/9/2020	135427
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	6/18/2018	Biennial	6/18/2020	114451
Keysight Technologies	N9030A	PXA Signal Analyzer	8/6/2018	Annual	8/6/2019	MY54490576
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	8/23/2018	Annual	8/23/2019	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	9/12/2018	Annual	9/12/2019	101716
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/17/2018	Annual	8/17/2019	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Rohde & Schwarz	TC-TA18	Cross Polarized Vivaldi Test Antenna	7/16/2018	Biennial	7/16/2020	101073
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	8/17/2018	Biennial	8/17/2020	101072
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	9/19/2018	Annual	9/19/2019	100040
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107
Sunol Sciences	DRH-118	Antenna	2/14/2019	Biennial	2/14/2021	A102416-2

 Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 9 of 55
© 2019 PCTEST Engineering Lab	oratory. Inc.	•		V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMG977T
FCC Classification:	Digital Transmission System (DTS)
Number of Channels:	<u>40</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4(4)]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Bluetooth LE Automation," Version 3.6.
- 5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 0.2.16.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 10 of 55
© 2019 PCTEST Engineering Lat	poratory Inc			V 9 0 02/01/2019

7.2 6dB Bandwidth Measurement – Bluetooth (LE) §15.247(a.2); RSS-247 [5.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

- 1. The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \ge 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

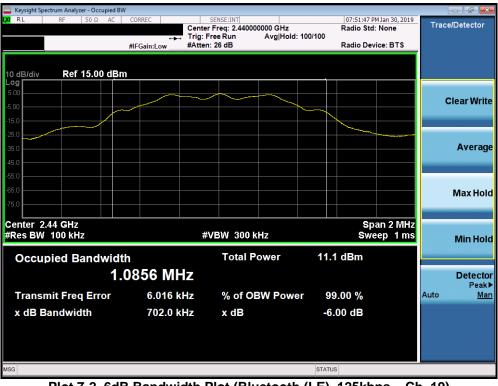
The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

None

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 55	
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 11 of 55	
© 2019 PCTEST Engineering Labo	pratory. Inc.	•		V 9.0 02/01/2019	

Frequency [MHz]	Data Rate	Channel No.	Bluetooth Mode	Measured Bandwidth [kHz]	Minimum Bandwidth [kHz]	Pass / Fail
2402	125 kbps	0	LE	701.7	500	Pass
2440	125 kbps	19	LE	702.0	500	Pass
2480	125 kbps	39	LE	700.4	500	Pass
2402	500 kbps	0	LE	668.0	500	Pass
2440	500 kbps	19	LE	670.8	500	Pass
2480	500 kbps	39	LE	750.3	500	Pass
2402	1 Mbps	0	LE	685.0	500	Pass
2440	1 Mbps	19	LE	680.9	500	Pass
2480	1 Mbps	39	LE	690.8	500	Pass
2402	2 Mbps	0	LE	1265.0	500	Pass
2440	2 Mbps	19	LE	1276.0	500	Pass
2480	2 Mbps	39	LE	1266.0	500	Pass


Table 7-2. Conducted Bandwidth Measurements

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of FF
1M1903060032-11.A3L	3L 01/22 - 05/08/2019 Portable Handset			Page 12 of 55
© 2019 PCTEST Engineering Labo	pratory. Inc.	•		V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occupied BW				- @ <u>*</u>
LXX RL RF 50Ω AC		SENSE:INT nter Freq: 2.402000000 GHz	07:46:13 PM Jan 30, 2 Radio Std: None	Trace/Detector
		g: Free Run Avg Hold: 10 ten: 26 dB	00/100 Radio Device: BTS	5
10 dB/div Ref 15.00 dBm				
5.00				
-5.00				Clear Write
-15.0	~			
-25.0				
-35.0				Average
-45.0				
-55.0				
-65.0				Max Hold
Center 2.402 GHz #Res BW 100 kHz		#VBW 300 kHz	Span 2 IV Sweep 1	
#RES DW TOURN2			Sweep i	Min Hold
Occupied Bandwidt	h	Total Power	10.6 dBm	
1.0	0816 MHz			Detector
Transmit Freq Error	13.073 kHz	% of OBW Power	99.00 %	Peak▶ Auto <u>Man</u>
x dB Bandwidth	701.7 kHz	x dB	-6.00 dB	
	101.1 KI12	X UB	0.00 40	
MSG			STATUS	

Plot 7-1. 6dB Bandwidth Plot (Bluetooth (LE), 125kbps - Ch. 0)

Plot 7-2. 6dB Bandwidth Plot (Bluetooth (LE), 125kbps - Ch. 19)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019 Portable Handset			Page 13 of 55
© 2019 PCTEST Engineering Labor	atory, Inc.			V 9.0 02/01/2019

Plot 7-3. 6dB Bandwidth Plot (Bluetooth (LE), 125kbps - Ch. 39)

Plot 7-4. 6dB Bandwidth Plot (Bluetooth (LE), 500kbps - Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 14 of FF	
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 14 of 55	
© 2019 PCTEST Engineering Labo	ratory, Inc.	•		V 9.0 02/01/2019	

© 2019 PCTEST Engineering Laboratory, Inc.


Plot 7-6. 6dB Bandwidth Plot (Bluetooth (LE), 500kbps - Ch. 39)

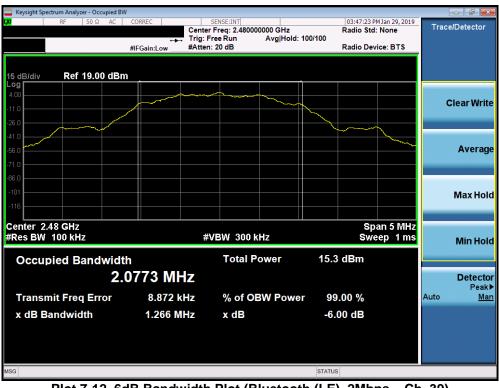
FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 55	
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 15 of 55	
© 2019 PCTEST Engineering Lab	oratory Inc			V 9 0 02/01/2019	

Center Freq: 2.402000000 GHz Trig: Free Run Avg Hold: 100/100 Radio Device: BTS 5 dB/div Ref 10.00 dBm Clear Write Clear Write Clear Write Clear Write Max Hold Max Hold	Keysight Spectrum Analyzer												
Trig: Free Run Avg Hold: 100/100 Radio Device: BTS SdB/dlv Ref 10.00 dBm Image: Clear Write O Image: Clear Write Image: Clear Write	KI RF 5	50Ω A	C C	ORREC				00000 GHz				Trac	e/Detector
s dB/div Ref 10.00 dBm						Trig: Free	Run		: 100/100		DTO		
org o			#I	FGain:Lo	DW	#Atten: 2	0 dB			Radio L	Device: B1S		
org o			_										
Clear Write Clear Write Clear Write Clear Write Clear Write Clear Write Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Clear Write Average Max Hold Clear Write Clear Write	15 dB/div Ref 10	0.00 d	<u>Bm</u>							• •			
00 00 <td< td=""><td>-5.00</td><td></td><td></td><td>~~~~~</td><td></td><td></td><td></td><td></td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>×</td><td></td><td></td><td></td></td<>	-5.00			~~~~~					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×			
6.0 6	-20.0	and and								- man			Clear Write
Average Average Average Average Max Hold Max Hold Max Hold Penter 2.402 GHz Res BW 100 kHz Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %	-35.0												
0.0 0	-50.0										_		
So Max Hold So Max Hold So Max Hold So Span 2 MHz Senter 2.402 GHz Span 2 MHz Res BW 100 kHz #VBW 300 kHz Span 2 MHz Occupied Bandwidth Total Power 12.8 dBm 1.0808 MHz Detector Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %	-65.0												Average
Imposed in the second secon	-80.0												
Min Hold Image: Senter 2.402 GHz Res BW 100 kHz Span 2 MHz Sweep 1 ms Occupied Bandwidth 1.0808 MHz Total Power 12.8 dBm 12.8 dBm 12.8 dBm Image: Detector Peak Auto Min Hold Min Hold Min Hold Min Hold Min Hold Min Hold Image: Senter 2.402 GHz Min Hold Min Hold <tr< td=""><td>-95.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	-95.0												
Interview	-110												MaxHold
Res BW 100 kHz #VBW 300 kHz Sweep 1 ms Occupied Bandwidth Total Power 12.8 dBm 1.0808 MHz Detector Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %	-125												Μάλ Πυιυ
Res BW 100 kHz #VBW 300 kHz Sweep 1 ms Occupied Bandwidth Total Power 12.8 dBm 1.0808 MHz Detector Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %													
Occupied Bandwidth Total Power 12.8 dBm 1.0808 MHz Detector Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %						#\/E							
1.0808 MHz Detector Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %	#Res DW TOURNZ					#VE	SWN 300	KΠZ		3	weep This		Min Hold
1.0808 MHz Detector Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %	Occupied Ba	ndwi	dth				Total I	Power	12	2.8 dBm			
Transmit Freq Error 14.541 kHz % of OBW Power 99.00 %				202	ΜН	7							Detecto
x dB Bandwidth 685.0 kHz x dB -6.00 dB	Transmit Freq	Error		14.5	641 kH	z	% of O	BW Pow	er	99.00 %		Auto	Mar
	x dB Bandwidt	h		68	5.0 kl	z	x dB			6.00 dB			
G	MSG								STA	TUS			

Plot 7-7. 6dB Bandwidth Plot (Bluetooth (LE), 1Mbps - Ch. 0)

Plot 7-8. 6dB Bandwidth Plot (Bluetooth (LE), 1Mbps - Ch. 19)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 16 of FF
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 16 of 55
© 2019 PCTEST Engineering Labor	V 9.0 02/01/2019			


Plot 7-10. 6dB Bandwidth Plot (Bluetooth (LE), 2Mbps – Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 17 of 55
© 2019 PCTEST Engineering Lab	oratory. Inc.	•		V 9.0 02/01/2019

Plot 7-11. 6dB Bandwidth Plot (Bluetooth (LE), 2Mbps - Ch. 19)

Plot 7-12. 6dB Bandwidth Plot (Bluetooth (LE), 2Mbps – Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of FF
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 18 of 55
© 2019 PCTEST Engineering Labora	V 9.0 02/01/2019			

7.3 Output Power Measurement – Bluetooth (LE) §15.247(b.3); RSS-247 [5.4(4)]

Test Overview and Limits

The transmitter antenna terminal of the EUT is connected to the input of a spectrum analyzer. Measurements are made while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.1 KDB 558074 D01 v05r02 – Section 8.3.1.1

Test Settings

- 1. RBW = 3MHz
- 2. VBW = 50MHz
- 3. Span \geq 3 x RBW
- 4. Sweep = auto couple
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None

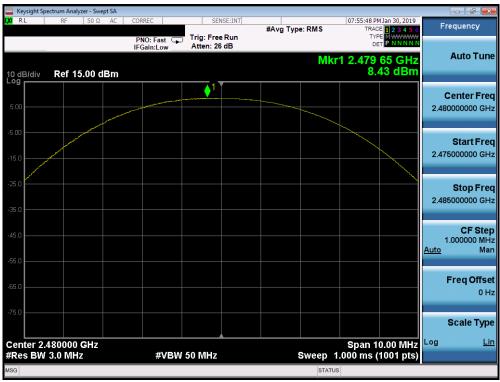
FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 55		
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 19 of 55		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory. Inc.					

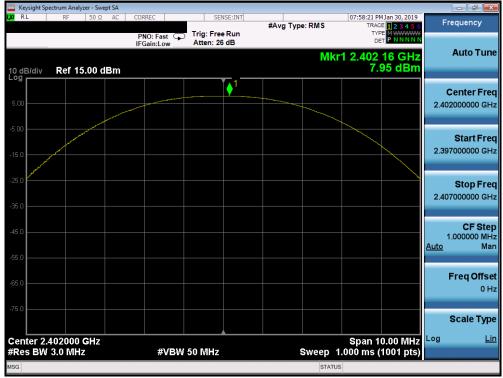
Frequency	Data Rate	Channel	Bluetooth	Peak Condu	cted Power
[MHz]	[Mbps]	No.	Mode	[dBm]	[mW]
2402	125 kbps	0	LE	7.82	6.051
2440	125 kbps	19	LE	8.30	6.758
2480	125 kbps	39	LE	8.43	6.961
2402	500 kbps	0	LE	7.95	6.240
2440	500 kbps	19	LE	8.73	7.456
2480	500 kbps	39	LE	8.25	6.683
2402	1 Mbps	0	LE	7.85	6.101
2440	1 Mbps	19	LE	8.51	7.096
2480	1 Mbps	39	LE	8.11	6.476
2402	2 Mbps	0	LE	9.13	8.185
2440	2 Mbps	19	LE	9.84	9.627
2480	2 Mbps	39	LE	9.13	8.185


Table 7-3. Conducted Output Power Measurements (Bluetooth (LE))

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 20 of 55
© 2019 PCTEST Engineering Lab	V 9.0 02/01/2019			

Keysight Spectrum Analyz						
LXI RL RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	07:45:41 PM Jan 30, 2019 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 26 dB	•	TYPE MWWWWW DET PNNNNN	Auto Turo
10 dB/div Ref 15.	00 dBm			Mk	r1 2.402 10 GHz 7.818 dBm	Auto Tune
			1			Center Freq
5.00	ar and a second and a second and a second and a second a	and the second se				2.402000000 GHz
-5.00						Start Freq
-15.0						2.397000000 GHz
-25.0						Stop Freq
-35.0						2.407000000 GHz
-45.0						CF Step 1.000000 MH
-55.0						<u>Auto</u> Mar
-65.0						Freq Offse
						0 Hz
-75.0						Scale Type
Center 2.402000 (#Res BW 3.0 MHz	Hz	#VBW	50 MHz	Sweep	Span 10.00 MHz 1.000 ms (1001 pts)	Log <u>Lir</u>
MSG			50-WIL12	Sweep		


Plot 7-13. Peak Power Plot (Bluetooth (LE), 125kbps - Ch. 0)


Plot 7-14. Peak Power Plot (Bluetooth (LE), 125kbps – Ch. 19)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 21 of 55
© 2019 PCTEST Engineering Labora	V 9 0 02/01/2019			

Plot 7-15. Peak Power Plot (Bluetooth (LE), 125kbps - Ch. 39)

Plot 7-16. Peak Power Plot (Bluetooth (LE), 500kbps - Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 22 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 22 of 55
© 2010 PCTEST Engineering Lab	oratory Inc			V 0 0 02/01/2010

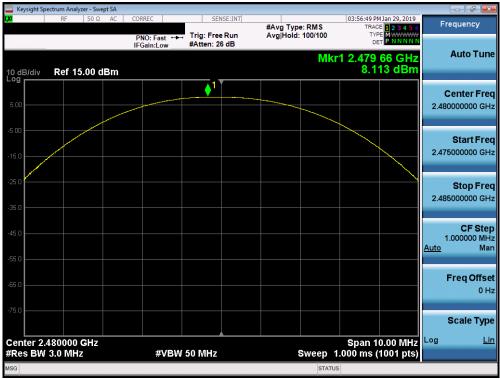
X/RL	RF 50	DΩ AC								_	
		J SE AC	CORREC	SE	NSE:INT	#Avg Typ	e: RMS	TRAC	4 Jan 30, 2019 E 1 2 3 4 5 6	F	equency
			PNO: Fast IFGain:Low	Trig: Fre Atten: 20				TYF DE			Auto Tuno
10 dB/div	Ref 15.00	0 dBm					Mkr	1 2.439 8.	69 GHz 73 dBm		Auto Tune
5.00			and the second	1							Center Fred 0000000 GH:
-5.00										2.43	Start Free 5000000 GH:
-25.0										2.44	Stop Fre 5000000 GH
45.0										<u>Auto</u>	CF Ste 1.000000 MH Ma
65.0											Freq Offse 0 H
75.0											Scale Typ
Center 2.4 #Res BW 3	40000 GH 3.0 MHz	IZ	#VE	3W 50 MHz			Sweep 1	Span 1 .000 ms (0.00 MHz 1001 pts)	Log	Lii
MSG							STATUS				

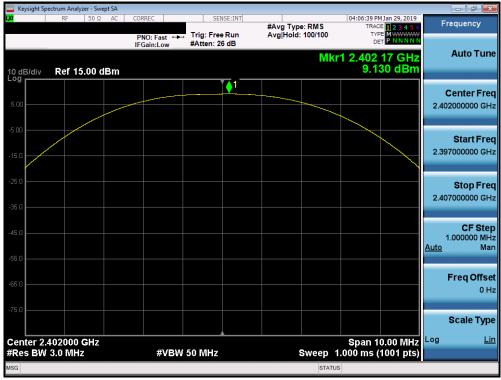
Plot 7-17. Peak Power Plot (Bluetooth (LE), 500kbps – Ch. 19)

Plot 7-18. Peak Power Plot (Bluetooth (LE), 500kbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 23 of 55
© 2019 PCTEST Engineering Labora	V 9.0 02/01/2019			

Keysight Sp	ectrum Analyzer - Si						- 6 -
l <mark>X</mark> I	RF 50 9	Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	03:54:27 PM Jan 29, 2019 TRACE 1 2 3 4 5 6	Frequency
			PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100	TYPE MWWWWW DET PNNNNN	
			in Guinicon		Mkı	1 2.401 96 GHz	Auto Tune
10 dB/div Log	Ref 15.00	dBm				7.854 dBm	
-09				↓ 1			Center Freq
5.00							2.402000000 GHz
-5.00							Start Freq
-15.0							2.397000000 GHz
-25.0							Stop Freq
-35.0							2.407000000 GHz
00.0							
-45.0							CF Step 1.000000 MHz
							<u>Auto</u> Man
-55.0							
-65.0							Freq Offset
							0 Hz
-75.0							Scale Type
Center 2. #Res BW	402000 GHz 3.0 MHz	-	#\/R\//	50 MHz	Sween	Span 10.00 MHz I.000 ms (1001 pts)	Log <u>Lin</u>
#Res DV	5.0 WH2		#VDVV	50-WI112	Sweep		
							0)


Plot 7-19. Peak Power Plot (Bluetooth (LE), 1Mbps - Ch. 0)


Plot 7-20. Peak Power Plot (Bluetooth (LE), 1Mbps - Ch. 19)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 24 of 55
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

Plot 7-21. Peak Power Plot (Bluetooth (LE), 1Mbps - Ch. 39)

Plot 7-22. Peak Power Plot (Bluetooth (LE), 2Mbps - Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 25 of 55
				V 0 0 02/01/2010

ISG					STAT		
Center 2. #Res BW	440000 GH2 3.0 MHz	Z	#VB\	V 50 MHz	Sweep	Span 10.00 MHz 1.000 ms (1001 pts)	Log <u>Lir</u>
							Scale Type
-75.0							
-65.0							Freq Offse 0 Hi
-55.0							Erog Offee
							1.000000 MH: <u>Auto</u> Mar
-45.0							CF Step 1.000000 MH
-35.0							2.445000000 GH
-25.0							Stop Free
-15.0							
							Start Fred 2.435000000 GHz
-5.00							
5.00							Center Fred 2.440000000 GHz
10 dB/div	Ref 15.00	dBm		Y ≬ 1		9.855 0.611	
					Mk	r1 2.440 23 GHz 9.835 dBm	Auto Tune
			PNO: Fast ↔	Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100		
×	RF 50	Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	04:22:51 PM Jan 29, 2019 TRACE 1 2 3 4 5 6	Frequency

Plot 7-23. Peak Power Plot (Bluetooth (LE), 2Mbps – Ch. 19)

Plot 7-24. Peak Power Plot (Bluetooth (LE), 2Mbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 26 of 55
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

7.4 Power Spectral Density – Bluetooth (LE) §15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

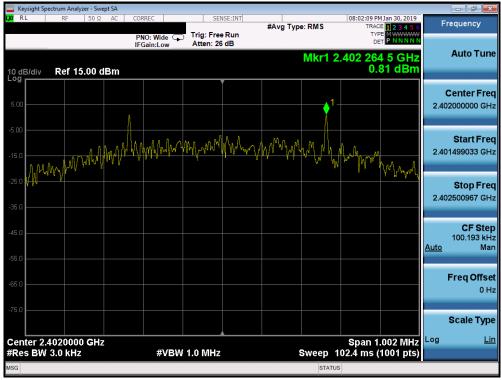
FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 27 of 55
© 2019 PCTEST Engineering Laboratory, Inc.				V 9.0 02/01/2019

Frequency [MHz]	Data Rate [Mbps]	Channel No.	Bluetooth Mode	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]
2402	125 kbps	0	LE	1.13	8.0	-6.87
2440	125 kbps	19	LE	1.46	8.0	-6.54
2480	125 kbps	39	LE	1.74	8.0	-6.26
2402	500 kbps	0	LE	0.81	8.0	-7.19
2440	500 kbps	19	LE	1.90	8.0	-6.10
2480	500 kbps	39	LE	5.96	8.0	-2.04
2402	1 Mbps	0	LE	5.79	8.0	-2.21
2440	1 Mbps	19	LE	6.75	8.0	-1.25
2480	1 Mbps	39	LE	6.49	8.0	-1.51
2402	2 Mbps	0	LE	3.61	8.0	-4.39
2440	2 Mbps	19	LE	4.36	8.0	-3.64
2480	2 Mbps	39	LE	4.21	8.0	-3.79

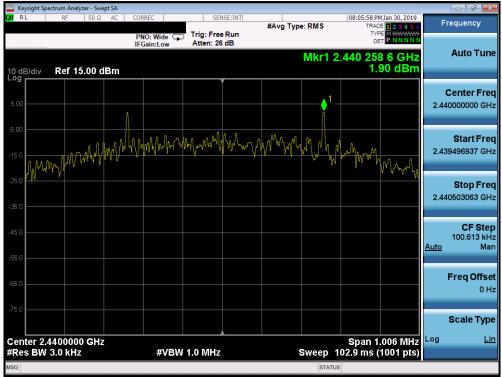
Table 7-4. Conducted Power Density Measurements

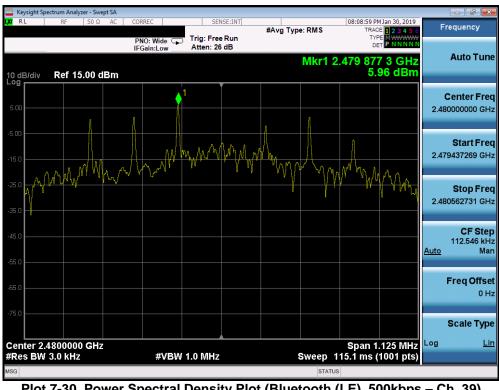
FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 28 of 55
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019

Plot 7-25. Power Spectral Density Plot (Bluetooth (LE), 125kbps - Ch. 0)



FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of FF
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 29 of 55
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 02/01/2019




Plot 7-28. Power Spectral Density Plot (Bluetooth (LE), 500kbps - Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 30 of 55
© 2019 PCTEST Engineering Laboratory Inc.				V 9 0 02/01/2019

Plot 7-29. Power Spectral Density Plot (Bluetooth (LE), 500kbps - Ch. 19)

Plot 7-30. Power Spectral Density Plot (Bluetooth (LE), 500kbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 31 of 55
© 2019 PCTEST Engineering Laboratory Inc				V 9 0 02/01/2019

Plot 7-31. Power Spectral Density Plot (Bluetooth (LE), 1Mbps - Ch. 0)

Plot 7-32. Power Spectral Density Plot (Bluetooth (LE), 1Mbps - Ch. 19)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 32 of 55
© 2019 PCTEST Engineering Laboratory Inc.				V 9 0 02/01/2019

Plot 7-33. Power Spectral Density Plot (Bluetooth (LE), 1Mbps - Ch. 39)

Plot 7-34. Power Spectral Density Plot (Bluetooth (LE), 2Mbps - Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of FF
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 33 of 55
				V 9 0 02/01/2019

Plot 7-35. Power Spectral Density Plot (Bluetooth (LE), 2Mbps – Ch. 19)

Plot 7-36. Power Spectral Density Plot (Bluetooth (LE), 2Mbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory. Inc.				V 9 0 02/01/2019

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

For the following out of band conducted spurious emissions plots at the band edge, the EUT was set to transmit at maximum power with the largest packet size available. These settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth.

Test Procedure Used

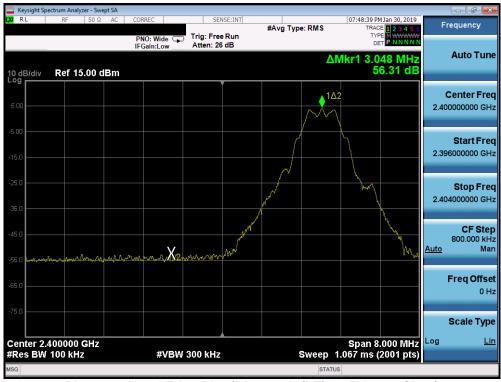
ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

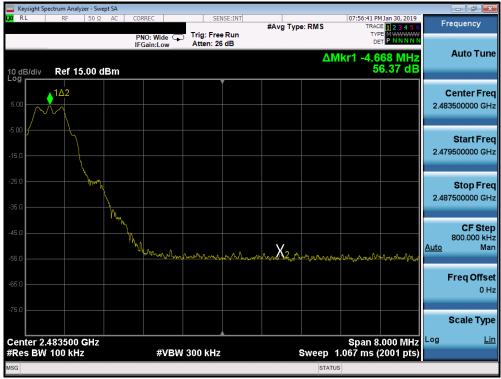
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

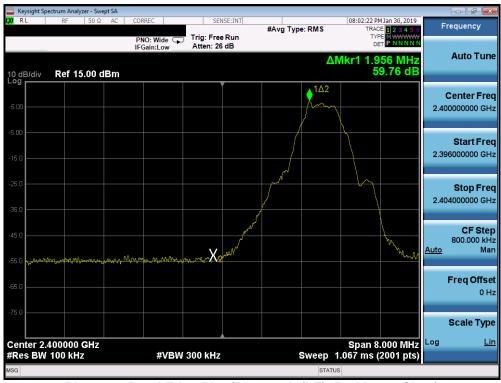
The EUT and measurement equipment were set up as shown in the diagram below.

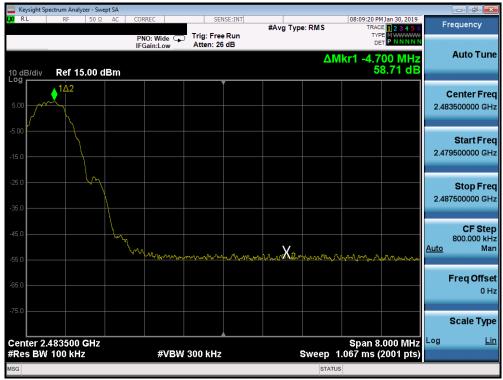

Figure 7-4. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 25 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 35 of 55
© 2019 PCTEST Engineering Labor	V 9.0 02/01/2019			


Plot 7-37. Band Edge Plot (Bluetooth (LE), 125kbps - Ch. 0)


Plot 7-38. Band Edge Plot (Bluetooth (LE), 125kbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory Inc.				V 9 0 02/01/2019

Plot 7-39. Band Edge Plot (Bluetooth (LE), 500kbps - Ch. 0)

Plot 7-40. Band Edge Plot (Bluetooth (LE), 500kbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 55	
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 37 of 55	
© 2010 PCTEST Engineering Lat	poratory Inc			V 9 0 02/01/2019	

Plot 7-41. Band Edge Plot (Bluetooth (LE), 1Mbps - Ch. 0)

Plot 7-42. Band Edge Plot (Bluetooth (LE), 1Mbps – Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 38 of 55
© 2019 PCTEST Engineering Lab	oratory Inc			V 9 0 02/01/2019

Plot 7-43. Band Edge Plot (Bluetooth (LE), 2Mbps - Ch. 0)

Plot 7-44. Band Edge Plot (Bluetooth (LE), 2Mbps – Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 55
1M1903060032-11.A3L 01/22 - 05/08/2019 Portable Handset			Page 39 of 55	
© 2019 PCTEST Engineering Labora	V 9.0 02/01/2019			

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

For the following out of band conducted spurious emissions plots, the EUT was set to transmit at maximum power with the largest packet size available. The worst case spurious emissions were found in this configuration.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 8.5 of KDB 558074 D01 v05r02 and Section 11.11.3 of ANSI C63.10-2013.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of FF
1M1903060032-11.A3L 01/22 - 05/08/2019 Portable Handset		Portable Handset		Page 40 of 55
© 2010 PCTEST Engineering Labora	V 9 0 02/01/2019			

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 41 of 55
© 2019 PCTEST Engineering Labo	pratory Inc.			V 9 0 02/01/2019

	oectrum Analyze										
L <mark>XI</mark>	RF	50 Ω AC	COR	REC		NSE:INT	#Avg Typ		TRAC	4 Jan 29, 2019 E 1 2 3 4 5 6	Peak Search
				NO:Fast ← Gain:Low	Trig: Fre #Atten: 2		Avg Hold	: 100/100	TYF		
10 dB/div Log	Ref 10.	00 dBn	ı					MI	kr1 3.14 -47.1	1 3 GHz 72 dBm	Next Peak
0.00											Next Pk Right
-10.0											
-20.0										DL1 -23.44 dBm	Next Pk Left
-30.0											Marker Delta
-40.0						at and	lin Distriktion (meter stat				
and the second s			Land Land								Mkr→CF
-60.0											Mkr→RefLv
-80.0											
Start 30									Stop 10	.000 GHz	More 1 of 2
	1.0 MHz			#VB	N 3.0 MHz		s	weep 18	stop 10 8.00 ms (3	0001 pts)	
MSG								STATU			

Plot 7-45. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 0)

Plot 7-46. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 0)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 55	
1M1903060032-11.A3L	01/22 - 05/08/2019	01/22 - 05/08/2019 Portable Handset			
© 2019 PCTEST Engineering Lab	V 9 0 02/01/2019				

Keysight S	pectrum Analy												
1	RF	50 Ω	AC	CORREC			NSE:INT	#Avg Typ		TRAC	M Jan 29, 2019 E 1 2 3 4 5 6	Freq	Jency
				PNO: F IFGain:I	ast ⊶► ∟ow	#Atten: 2		Avg Hold	: 100/100	DE			
0 dB/div	Ref 10) 00 de	Rm						M	kr1 3.30	5 8 GHz 54 dBm	A	uto Tur
							Ţ						
0.00													nter Fre
0.00												5.01500	10000 Gr
10.0													
													tart Fre
20.0											DL1 -22.45 dBm	00.00	0000 111
30.0												_	top Fre
												10.00000	
40.0					1								
i0.0	والألبين والمراجع	فاسرف	i	ah an Ai <mark>N</mark>	and the state of t	الله، وما يوليون الم	all and a substantial sectors.	line a labiting a silupat	la an di san di san	and the second	and the state of the second		CF Ste
		a da ang ng n	1.10		and the second	and the second secon	a ale all'all'a de la compañía de la			an a	and the second	997.00 Auto	0000 M M
50.0													m
												Ere	eq Offs
70.0													01
30.0													
												Sc	ale Ty
tart 30	MHz						<u> </u>			Ston 10	.000 GHz	Log	L
	1.0 MH	z		-	#VBW	3.0 MHz	2	9	weep 1	8.00 ms (3	0001 pts)		
G									STATU	s			

Plot 7-47. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 19)

Plot 7-48. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 19)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 55
1M1903060032-11.A3L	03060032-11.A3L 01/22 - 05/08/2019 Portable Handset			Page 43 of 55
© 2019 PCTEST Engineering Laboration	V 9.0 02/01/2019			

Keysight Spe	ctrum Analyze												
L <mark>XI</mark>	RF	50 Ω A	IC C	ORREC		SEI	ISE:INT	#Avg Typ		TRAC	M Jan 29, 2019 DE 1 2 3 4 5 6	Fre	equency
				PNO: Fast FGain:Low		Trig: Free #Atten: 2		Avg Hold	: 100/100	TYI			
10 dB/div	Ref 10.	.00 dBr	n						М	kr1 3.30 -45.3	1 8 GHz 88 dBm		Auto Tune
0.00													enter Fred 000000 GH2
-10.0											DL1 -22.30 dBm	30.	Start Free 000000 MH
-30.0				1								10.000	Stop Fred 0000000 GH:
-50.0												997. <u>Auto</u>	CF Step 000000 MH Mar
-70.0												F	F req Offse 0 H
-80.0												5	Scale Type
Start 30 N #Res BW				#VI	BW :	3.0 MHz			weep 1	Stop 10 8.00 ms (3	.000 GHz 0001 pts)	Log	Lir
MSG									STATU	S			

Plot 7-49. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 39)

Plot 7-50. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 39)

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 44 of 55
1M1903060032-11.A3L	3060032-11.A3L 01/22 - 05/08/2019 Portable Handset			
© 2019 PCTEST Engineering Laboration	V 9.0 02/01/2019			

7.7 Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-5 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3

KDB 558074 D01 v05r02 - Section 8.6, 8.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3kHz > 1/T
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to run for at least 50 times (1/duty cycle) traces

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 45 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 45 of 55
© 2010 PCTEST Engineering Labor	V 0 0 02/01/2010			

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW is set depending on measurement frequency, as specified in Table 7-6 below
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Frequency	RBW
9 – 150kHz	200 – 300Hz
0.15 – 30MHz	9 – 10kHz
30 – 1000MHz	100 – 120kHz
> 1000MHz	1MHz

Table 7-6. RBW as a Function of Frequency

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

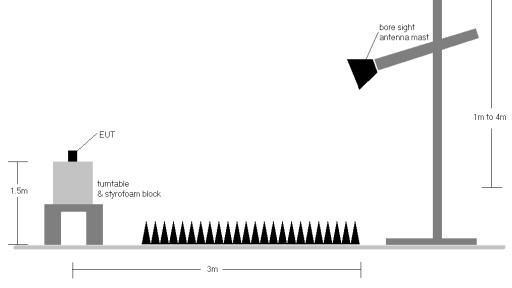


Figure 7-6. Radiated Test Setup >1GHz

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of FE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 46 of 55
© 2019 PCTEST Engineering Labor	atory Inc			V 9 0 02/01/2019

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-5.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- Average measurements were recorded using a VBW of 3kHz, per Section 4.1.4.2.3 of ANSI C63.10-2013, since 1/T is equal to just under 3kHz. This method was used because the EUT could not be configured to operate with a duty cycle > 98%. Both average and peak measurements were made using a peak detector
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 8. No significant radiated band edge emissions were found in the 2310 2390MHz restricted band.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

Determining Spurious Emissions Levels

- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- $\circ \quad \text{Margin}_{[dB]} = \text{Field Strength Level}_{[dB\mu V/m]} \text{Limit}_{[dB\mu V/m]}$

Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in this section was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 55	
1M1903060032-11.A3L	01/22 - 05/08/2019	19 Portable Handset		Page 47 of 55	
© 2019 PCTEST Engineering Labora	V 9.0.02/01/2019				

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Avg	Н	-	-	-78.34	3.31	31.97	53.98	-22.01
4804.00	Peak	Н	-	-	-66.17	3.31	44.14	73.98	-29.84
12010.00	Avg	н	-	-	-79.91	15.35	42.44	53.98	-11.54
12010.00	Peak	н	-	-	-68.69	15.35	53.66	73.98	-20.32

 Table 7-7. Radiated Measurements @ 3 meters

Bluetooth Mode:LEDistance of Measurements:3 MetOperating Frequency:2440Channel:19

3 Meters 2440MHz

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	Н	-	-	-78.17	3.76	32.59	53.98	-21.39
4960.00	Peak	Н	-	-	-65.50	3.76	45.26	73.98	-28.72
7440.00	Avg	Н	-	-	-78.88	8.57	36.69	53.98	-17.29
7440.00	Peak	Н	-	-	-66.51	8.57	49.06	73.98	-24.92
12400.00	Avg	Н	-	-	-79.84	15.31	42.47	53.98	-11.50
12400.00	Peak	Н	-	-	-68.79	15.31	53.52	73.98	-20.45

Table 7-8. Radiated Measurements @ 3 meters

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 55				
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 48 of 55				

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	Н	-	-	-78.17	3.76	32.59	53.98	-21.39
4960.00	Peak	н	-	-	-65.50	3.76	45.26	73.98	-28.72
7440.00	Avg	н	-	-	-78.88	8.57	36.69	53.98	-17.29
7440.00	Peak	Н	-	-	-66.51	8.57	49.06	73.98	-24.92
12400.00	Avg	Н	-	-	-79.84	15.31	42.47	53.98	-11.50
12400.00	Peak	Н	-	-	-68.79	15.31	53.52	73.98	-20.45

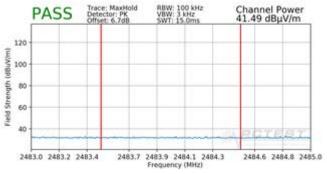
Table 7-9. Radiated Measurements @ 3 meters

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	Н	-	-	-78.32	3.76	32.44	53.98	-21.54
4960.00	Peak	Н	-	-	-66.03	3.76	44.73	73.98	-29.25
7440.00	Avg	н	-	-	-78.97	8.57	36.60	53.98	-17.38
7440.00	Peak	н	-	-	-66.31	8.57	49.26	73.98	-24.72
12400.00	Avg	н	-	-	-79.89	15.31	42.42	53.98	-11.55
12400.00	Peak	Н	-	-	-69.03	15.31	53.28	73.98	-20.69

Table 7-10. Radiated Measurements with WCP @ 3 meters

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset	Page 49 of 55
© 2010 DOTE OT Engineering Labor	ston: las		V 0 0 00/01/2010


7.8 Radiated Restricted Band Edge Measurements §15.209; RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

Bluetooth Mode:	LE
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	39
Data Rate:	2Mbps

Plot 7-51. Radiated Restricted Upper Band Edge Measurement (Average)

RBW: 100 kHz VBW: 3 kHz SWT: 15.0ms

2483.7 2483.9 2484.1 2484.3 Frequency (MHz)

Plot 7-53. Radiated Restricted Upper Band Edge

Measurement with WCP (Average)

Channel Power 41.26 dBµV/m

2484.6 2484.8 2485.0

Trace: MaxHold

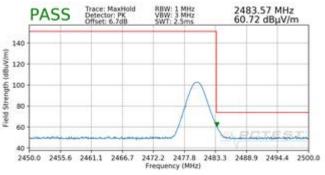
Detector: PK Offset: 6.7dE

PASS

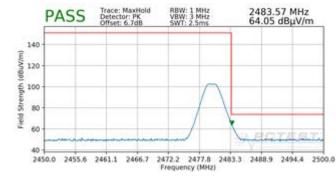
2483.0 2483.2 2483.4

120

100


80

60


40

Strength (dBuV/m)

Field.

Plot 7-52. Radiated Restricted Upper Band Edge Measurement (Peak)

Plot 7-54. Radiated Restricted Upper Band Edge Measurement with WCP (Peak)

Note:

A channel integration method was used to determine compliance with the out of band average radiated spurious emissions limit in the 2483.5 – 2500MHz band. Per KDB 558074 D01 v05r02 Section 8.7.3 and ANSI C63.10-2013 Section 11.13.3.3, a measurement was performed using a RBW of 100kHz at the 2483.5MHz band edge. The results were integrated up to the 1MHz reference bandwidth to show compliance with the 15.209 radiated limit for emissions greater than 1GHz.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 50 of 55
© 2019 PCTEST Engineering Lab	oratory. Inc.	•		V 9.0 02/01/2019

7.9 Line-Conducted Test Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)					
(101712)	Quasi-peak	Average				
0.15 – 0.5	66 to 56*	56 to 46*				
0.5 – 5	56	46				
5 – 30	60	50				

Table 7-11. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

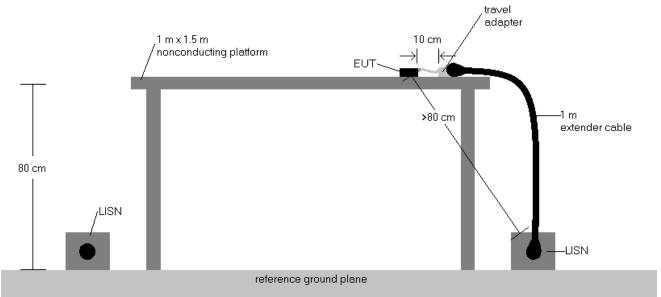
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

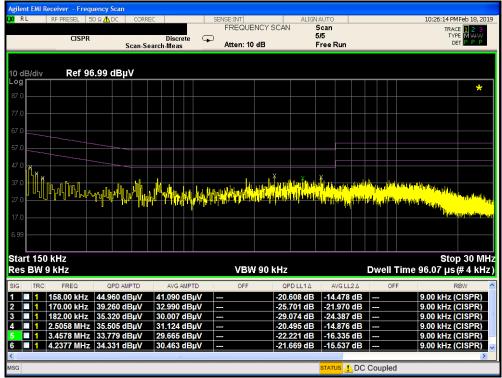

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 51 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 51 of 55
© 2010 PCTEST Engineering Labor	atory Inc	•		V 9 0 02/01/2019

Test Setup

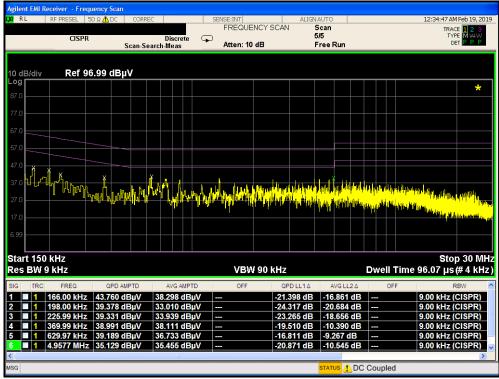
The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 52 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 52 of 55
© 2019 PCTEST Engineering Labo	ratory Inc			V 9 0 02/01/2019

RL	RF PRESEL S	50 Ω <u> </u>	DC 0	CORREC				SENSE				ALIGN	IAUTO						10:23:3	30 PM Fe	eb 18, 2
	CISPR	ł	Sci	an-Sea		screte	, G	э ^П	REQUE	NCY SO	CÁN		Scan 5/5 Free F	Run						TRACE TYPE DET	123 M*** PPP
dB/div	Ref 9	16.99 c																			
g																					*
0					_																
Ĩ .																					
	<u></u>																				
																				=	
					XX		+			X	. 🕅	(I			.X.						
																		11. A			
.0 4 5 N	nalificar a				А	0 11 1	1.6.6		st idill	A HOLD	Lible i d	Runi A		(Algebra	hinn h	<u>ц Ці,</u>	68 J 199	n lan lan.	1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
U I	իմենայի		ի տվ ¹	H, I,	ñ.	₩µ¥	W.M	Mini	A P				PP S (B) Like (D)	yaypu) <mark>abaantu</mark>	n na secono Na secono	Pogosi Mila	ning tin La Ki lan	uperate nimi	n fai sh Linne Na	Koloron,	n di na
╏╫┟╖╢	^{լո(ՄՄ} Խպ(ի		phu _u t	H _I .	i lup	₩₽	W		n ta					kalanda <mark>Alan j</mark> irti	n hin An hin	n na mar Million	n an	<mark>ii)</mark> wear eine las	^{ala} ldar ^A la	Eng _{ern}	nuluu
U I	^{ſĸſťŀ} ŀĸIJ		ի տ, ^I	₩ŗ⋏₩	i l _{ul}	Ψ	¥√V	Viu lv	n fi					rand Langel	nnin Annin	n an		<mark>iii)</mark> wear aiteatian	ⁿ inn ⁿ inn	Entran Lateration	nadany , antara,
	ſĸĨťŀŀŀĸĮŀĸ	u _{llo} lv\)	phor t	^k l _j , _w	n M	W	¥v≬/	<u>Mah</u> r	n <mark>fil</mark> h			in i jar Liu ja _{la} j		Parine) Lingel	in i	n og gan <mark>heller s</mark> er		in <mark>i wa</mark> na	^{an} i than ^{an} i than	Entran Istra	nadan <mark>Jahan</mark>
	ſvſ ^{tſĸ} ŀwŢŀŊ	In the second		₩ _₽ ₩	í l _{ut}	¥φ	\ ∳\}ļ							erene) Lin _g (Li		n an		ing were a	ali da ang Ali da ang Ali da ang ang ang ang ang ang ang ang ang an	The source	ngalaa ,angaga
	J " 1JU	₽ _{₩₽} ₩\\					N∳√\(/							erende) <mark>erenden</mark> erenden eren				ing wear			
art 150	kHz	₽ _{₩₽₩} ₽₹\)	phore t	H _I A.			₩///		['	/ 90 k				verane de <mark>e late</mark> nte		Dwe		ime 9	6.07	stop :	30 N
art 150 s BW 9	kHz kHz							YAA Y	VBW		Hz					Dwe		ime 9		štop∶ µs(#	30 Ⅳ 4 kH
art 150 s BW 9	KHZ FREQ		PD AMPT			G AMP			['	/ 90 k	HZ QPD L	LL1∆		VG LL2	۵.	Dwe	OFF		6.07	Stop # µs (#	30 M 4 kH
art 150 s BW 9	kHz kHz	QF 40.62		υV	AV 37.18 32.40	39 di	BμV		VBW	/ 90 ki	Hz	LL1 Δ 10 dB	-8.8	VG LL2 311 dl .597 d	2 A B			ę		Stop µs (# RBV	30 M 4 kH N SPR)
art 150 s BW 9	kHz kHz 673.96 kHz 697.96 kHz 2.5018 MHz	40.62 36.60 z 38.06	PD AMPT 20 dBj 03 dBj 61 dBj	μV μV μV	37.18 32.40 34.67	39 di 03 di 78 di	BµV BµV BµV		VBW	/ 90 ki	APD L 15.38 19.39 17.93	LL1A 0 dB 7 dB 9 dB	-8.8 -13 -11	311 d .597 (.322 (≧∆ B dB dB			9	0.00 kl 0.00 kl 0.00 kl	Stop : µs (# RBV Hz (CI Hz (CI Hz (CI	30 № 4 kł × SPR) SPR) SPR)
art 150 s BW 9 IRC 1 1 1	KHz KHz FREQ 673.96 kHz 697.96 kHz 2.5018 MHz 3.1018 MHz	40.62 40.62 36.60 z 38.06 z 38.06	PD AMPT 20 dBj 03 dBj 61 dBj 43 dBj	μV μV μV μV	37.18 32.40 34.67 34.27	39 de 03 de 78 de 78 de	BµV BµV BµV BµV		VBW	/ 90 ki	Hz 15.38 19.39 17.93 17.45	LL1A 10 dB 17 dB 19 dB 17 dB	-8.8 -13 -11 -11	311 dl .597 d .322 d .722 d	B dB dB dB dB			999	0.00 kl 0.00 kl 0.00 kl 0.00 kl	Stop : µs (# RBV Hz (CI Hz (CI Hz (CI Hz (CI	30 M 4 kl SPR) SPR) SPR) SPR)
ant 150 s BW 9 TRC 1 1 1 1	KHz KHz KHz 673.96 kHz 697.96 kHz 2.5018 MHz 3.1018 MHz 3.2178 MHz	40.62 36.60 z 38.54 z 38.54 z 38.54 z 38.79	PD AMPT 20 dBµ 03 dBµ 61 dBµ 43 dBµ 92 dBµ	μV μV μV μV	37.18 32.40 34.67 34.27 32.28	39 de 03 de 78 de 78 de 55 de	ВµV ВµV ВµV ВµV ВµV		VBW	/ 90 ki	Hz 15.38 19.39 17.93 17.45 19.20	LL1A 7 dB 9 dB 7 dB 7 dB 8 dB	-8.8 -13 -11 -11 -13	311 di .597 d .322 d .722 d .745 d	:∆ B dB dB dB dB				0.00 kl 0.00 kl 0.00 kl 0.00 kl 0.00 kl	Stop : µs (# Iz (CI Iz (CI Iz (CI Iz (CI Iz (CI Iz (CI	30 N 4 kl SPR) SPR) SPR) SPR) SPR)
ant 150 s BW 9 TRC 1 1 1 1	KHz KHz FREQ 673.96 kHz 697.96 kHz 2.5018 MHz 3.1018 MHz	40.62 36.60 z 38.54 z 38.54 z 38.54 z 38.79	PD AMPT 20 dBµ 03 dBµ 61 dBµ 43 dBµ 92 dBµ	μV μV μV μV	37.18 32.40 34.67 34.27	39 de 03 de 78 de 78 de 55 de	ВµV ВµV ВµV ВµV ВµV		VBW	/ 90 ki	Hz 15.38 19.39 17.93 17.45	LL1A 7 dB 9 dB 7 dB 7 dB 8 dB	-8.8 -13 -11 -11 -13	311 dl .597 d .322 d .722 d	:∆ B dB dB dB dB				0.00 kl 0.00 kl 0.00 kl 0.00 kl	Stop : µs (# Iz (CI Iz (CI Iz (CI Iz (CI Iz (CI Iz (CI	30 M 4 kl SPR) SPR) SPR) SPR) SPR)


Plot 7-56. Line Conducted Plot with Bluetooth LE (N) with Travel Adapter

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 52 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 53 of 55
© 2019 PCTEST Engineering Lab	oratory. Inc.	•		V 9.0 02/01/2019

		50 Ω <u>Å</u> D(c co	RREC				ENSE:INT FREQUE	ENCY SCA		NAUTO Scan 5/5					1	TR	AM Feb 19, 2 ACE 1 2 3 YPE M ##W
	CISPR		Scan	-Searc	Disc h-Mea		Ģ	Atten: 10	dB		Free F	Run						DET P P P
	Def 0	6 00 d	D															
dB/div	Rel 9	6.99 d	ωμν															
7.0																		*
7.0																		
.0			~			++												
··· ^	M n a			ĬŤ.	Ť						X	×. ¥						
.0	ᢉᡀᡁᢧ	. / }-	. Karahild	. // J	ŧÌ –	1		h. ditta ti					h tok		No Pice	^{di} lahura.	h.	
7.0	10841	՝ կտ եե	4 M M	ዝ ግ	П. н	19/16	in N	THE THE			hilles h	have the	ll.				a na sa	us tillite.
				ľ	- I I.	'T'IT			14			. 1 . 1 . 1	10 J.A	1	, , , , , , , , , , , , , , , , , , , 	ind produced	hater	idd d the states of the
al i																	сuнд,	
7.0																		N NUMBER
																		i di li di jika pote
																		i di di di kata ja mata ja
39																		
art 150																	St	op 30 M
art 150								VBV	V 90 kHz	2			Dv	vell	Tim		St	
art 150 es BW	9 kHz	QPI	D AMPTD		AVG	AMPT	D	VBV		PD LL1 Δ	A	VG LL2 /			Tim		St	op 30 M
art 150 es BW	9 kHz	43.42	6 dBµV		AVG 9.158				-21	PD LL1 A	-15	.420 d) B			ne 96	St 5.07 μ	op 30 M s(#4 kH
art 150 s BW	9 kHz FREQ 178.00 kHz 625.97 kHz	43.42 43.17	edBµV 4 dBµV	4	9.158 0.384	3 dBµ 4 dBµ	۸۲ ۸۲	OFF	-21 -12	PD LL1∆ .153 dB .826 dB	-15 -5.6	420 d 16 dB	B			ne 96 9.0 9.0	St 5.07 µ 00 kHz 00 kHz	op 30 M s (# 4 kH RBW : (CISPR) : (CISPR)
art 150 es BW	9 kHz FREQ 178.00 kHz 625.97 kHz 725.96 kHz	43.42 43.17 41.22	26 dBµ\ 24 dBµ\ 24 dBµ\	4	9.158 0.384 8.156	3 dBj 1 dBj 6 dBj	Nr Vr	OFF	-21 -12 -14	PD LL1A .153 dB .826 dB .776 dB	-15 -5.6	420 d 16 dB	B	0		ne 96 9.0 9.0 9.0	St 5.07 µ 00 kHz 00 kHz 00 kHz	op 30 M s (# 4 kH (CISPR) (CISPR) (CISPR)
art 150 es BW	9 kHz FREQ 178.00 kHz 625.97 kHz 725.96 kHz 4.4777 MHz	43.42 43.17 41.22 37.27	26 dBμV /4 dBμV /4 dBμV /8 dBμV	4 3 3	9.158 0.384 8.156 6.460	3 dBj 1 dBj 5 dBj) dBj	- VL	OFF	-21 -12 -14 -18	PD LL1A .153 dB .826 dB .776 dB .722 dB	-15 -5.6 -7.8	420 d 16 dB 44 dB	B	0		ne 96 9.0 9.0 9.0 9.0	St 5.07 µ 00 kHz 00 kHz 00 kHz 00 kHz	op 30 M s (# 4 kH RBW z (CISPR) z (CISPR) z (CISPR) z (CISPR)
art 150 es BW	9 kHz FREQ 178.00 kHz 625.97 kHz 725.96 kHz 4.4777 MHz 5.4616 MHz	43.42 43.17 41.22 37.27 38.09	26 dBµV 24 dBµV 24 dBµV 28 dBµV 21 dBµV	4 3 3 3	9.158 0.384 8.156 6.460 7.203	3 dBµ 4 dBµ 5 dBµ 9 dBµ 3 dBµ	- VL - VL - VL - VL - VL	OFF	-21 -12 -14 -14 -18 -21	PD LL1A .153 dB .826 dB .776 dB .722 dB .909 dB	-15 -5.6 -7.8 -9.5 -12	.420 d 16 dB 44 dB 40 dB .797 d	B B	0		ne 96 9.0 9.0 9.0 9.0	St 5.07 µ 00 kHz 00 kHz 00 kHz 00 kHz 00 kHz	op 30 M s (# 4 kH RBW 2 (CISPR) 2 (CISPR) 2 (CISPR) 2 (CISPR) 2 (CISPR)
art 150 es BW	9 kHz FREQ 178.00 kHz 625.97 kHz 725.96 kHz 4.4777 MHz	43.42 43.17 41.22 37.27 38.09	26 dBµV 24 dBµV 24 dBµV 28 dBµV 21 dBµV	4 3 3 3	9.158 0.384 8.156 6.460	3 dBµ 4 dBµ 5 dBµ 9 dBµ 3 dBµ	- VL - VL - VL - VL - VL	OFF	-21 -12 -14 -14 -18 -21	PD LL1A .153 dB .826 dB .776 dB .722 dB	-15 -5.6 -7.8 -9.5 -12	420 d 16 dB 44 dB	B B	0		ne 96 9.0 9.0 9.0 9.0	St 5.07 µ 00 kHz 00 kHz 00 kHz 00 kHz 00 kHz	op 30 M s (# 4 kH RBW z (CISPR) z (CISPR) z (CISPR) z (CISPR)

Plot 7-57. Line Conducted Plot with Bluetooth LE (L1) with Wireless Charging Pad

Plot 7-58. Line Conducted Plot with Bluetooth LE (N) with Wireless Charging Pad

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 54 of 55
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 54 of 55
© 2019 PCTEST Engineering Labor	atory. Inc.	·		V 9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG977T** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMG977T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo EE of EE
1M1903060032-11.A3L	01/22 - 05/08/2019	Portable Handset		Page 55 of 55
© 2019 PCTEST Engineering Lab	oratory Inc			V 9 0 02/01/2019