

Plot 7-232. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

Plot 7-233. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 151 of 237
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 151 01 237
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 01/18/2019

Plot 7-234. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 152 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 152 of 237
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019			

Summed MIMO Power Spectral Density Measurements

	F	Ohermel			Antenna-1	Antenna-2	Summed	Max Power	Manula
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Power Density	Power Density	MIMO Power	Density	Margin [dB]
		-			[dBm]	[dBm]	Density [dBm]	[dBm/MHz]	
	5180	36	а	6	5.33	3.09	7.36	11.0	-3.64
	5200	40	а	6	5.51	3.19	7.51	11.0	-3.49
	5240	48	а	6	6.01	3.75	8.04	11.0	-2.96
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.10	3.18	7.26	11.0	-3.74
_	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.42	3.14	7.44	11.0	-3.56
Band 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.76	3.56	7.81	11.0	-3.19
Bar	5180	36	ax (20MHz)	6.5/7.2 (MCS0)	4.48	4.47	7.49	11.0	-3.51
	5200	40	ax (20MHz)	6.5/7.2 (MCS0)	4.86	4.88	7.88	11.0	-3.12
	5240	48	ax (20MHz)	6.5/7.2 (MCS0)	5.63	5.35	8.50	11.0	-2.50
	5190	38	n (40MHz)	13.5/15 (MCS0)	0.46	-0.32	3.10	11.0	-7.90
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.66	-0.02	4.53	11.0	-6.47
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-2.83	-3.15	0.02	11.0	-10.98
	5260	52	а	6	6.64	4.57	8.74	11.0	-2.26
	5280	56	а	6	6.81	4.46	8.80	11.0	-2.20
	5320	64	а	6	4.90	2.23	6.77	11.0	-4.23
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	6.31	3.91	8.29	11.0	-2.71
-	5280	56	n (20MHz)	6.5/7.2 (MCS0)	6.32	4.11	8.36	11.0	-2.64
1 24	5320	64	n (20MHz)	6.5/7.2 (MCS0)	3.50	1.68	5.69	11.0	-5.31
Band 2A	5260	52	ax (20MHz)	6.5/7.2 (MCS0)	5.84	5.71	8.79	11.0	-2.21
	5280	56	ax (20MHz)	6.5/7.2 (MCS0)	5.48	5.57	8.54	11.0	-2.46
	5320	64	ax (20MHz)	6.5/7.2 (MCS0)	5.74	5.54	8.65	11.0	-2.35
	5270	54	n (40MHz)	13.5/15 (MCS0)	2.49	1.59	5.07	11.0	-5.93
	5310	62	n (40MHz)	13.5/15 (MCS0)	2.64	1.97	5.33	11.0	-5.67
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-1.70	-2.55	0.90	11.0	-10.10
	5500	100	а	6	5.79	5.36	8.59	11.0	-2.41
	5600	120	а	6	5.45	5.20	8.34	11.0	-2.66
	5720	144	а	6	5.79	5.60	8.70	11.0	-2.30
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	5.94	4.86	8.44	11.0	-2.56
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	5.23	4.56	7.92	11.0	-3.08
	5720	144	n (20MHz)	6.5/7.2 (MCS0)	5.25	5.19	8.23	11.0	-2.77
Ŋ	5500	100	ax (20MHz)	6.5/7.2 (MCS0)	5.50	5.55	8.54	11.0	-2.46
Band 2C	5600	120	ax (20MHz)	6.5/7.2 (MCS0)	5.07	4.82	7.96	11.0	-3.04
Bai	5720	144	ax (20MHz)	6.5/7.2 (MCS0)	4.93	5.04	8.00	11.0	-3.00
	5510	102	n (40MHz)	13.5/15 (MCS0)	1.83	1.85	4.85	11.0	-6.15
	5590	118	n (40MHz)	13.5/15 (MCS0)	1.34	1.52	4.44	11.0	-6.56
	5710	142	n (40MHz)	13.5/15 (MCS0)	1.34	1.62	4.49	11.0	-6.51
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-2.06	-2.70	0.65	11.0	-10.35
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-2.66	-3.01	0.18	11.0	-10.82
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.99	-5.66	-2.30	11.0	-13.30

Table 7-25. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 152 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 153 of 237
© 2010 PCTEST Engineering Labor	V 0 0 01/18/2010			

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	Antenn-2 Power Density [dBm]	Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	3.11	3.32	6.22	30.0	-23.78
	5785	157	а	6	3.30	3.73	6.53	30.0	-23.47
	5825	165	а	6	2.75	3.04	5.90	30.0	-24.10
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	2.88	2.62	5.77	30.0	-24.23
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	2.78	3.02	5.91	30.0	-24.09
q 3	5825	165	n (20MHz)	6.5/7.2 (MCS0)	2.34	2.81	5.59	30.0	-24.41
Band	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	2.35	2.65	5.51	30.0	-24.49
-	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	2.81	3.05	5.94	30.0	-24.06
	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	2.53	2.42	5.49	30.0	-24.51
	5755	151	n (40MHz)	13.5/15 (MCS0)	-1.14	2.65	4.17	30.0	-25.83
	5795	159	n (40MHz)	13.5/15 (MCS0)	-1.20	-0.69	2.07	30.0	-27.93
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-2.29	-0.58	1.66	30.0	-28.34

Table 7-26. Band 3 MIMO Conducted Power Spectral Density Measurements

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degre 154 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 154 of 237
© 2019 PCTEST Engineering Laboratory Inc				V 9 0 01/18/2019

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted power spectral density was measured to be 5.10 dBm for Antenna-1 and 3.18 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(5.10 dBm + 3.18 dBm) = (3.24 mW + 2.08 mW) = 5.32 mW = 7.26 dBm

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 155 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 155 of 237
				V 0 0 01/18/2010

7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-30 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-27. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 156 of 007
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 156 of 237
© 2010 PCTEST Engineering Labor	V 0 0 01/18/2010			

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

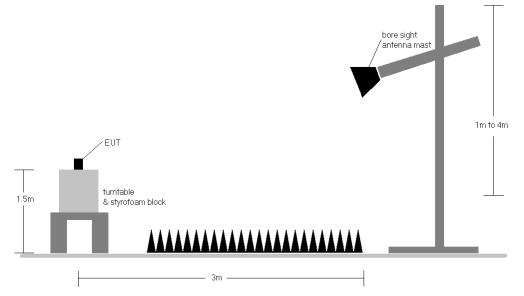


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 157 of 237
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 157 01 257
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 01/18/2019

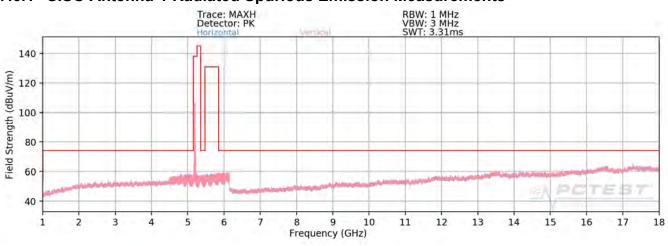
Test Notes

- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-30.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-30. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

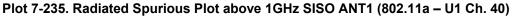
Sample Calculations

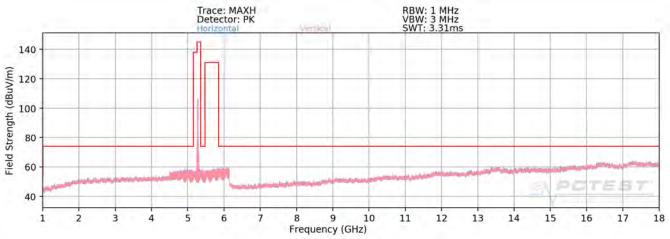
Determining Spurious Emissions Levels

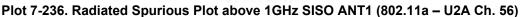
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

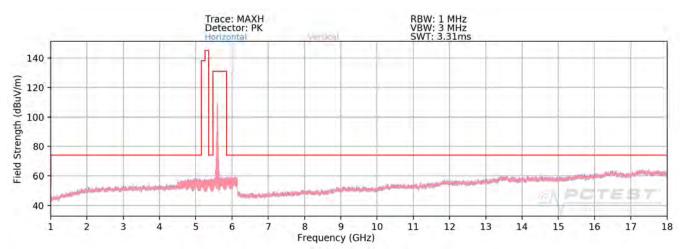

Radiated Band Edge Measurement Offset

 The amplitude offset shown in the radiated restricted band edge plots in Section Radiated Spurious Emission Measurements – Above 1GHz was calculated using the formula:

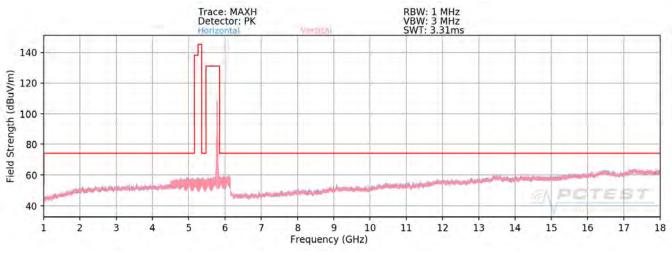

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 159 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 158 of 237
© 2019 PCTEST Engineering Laboratory Inc				V 9 0 01/18/2019

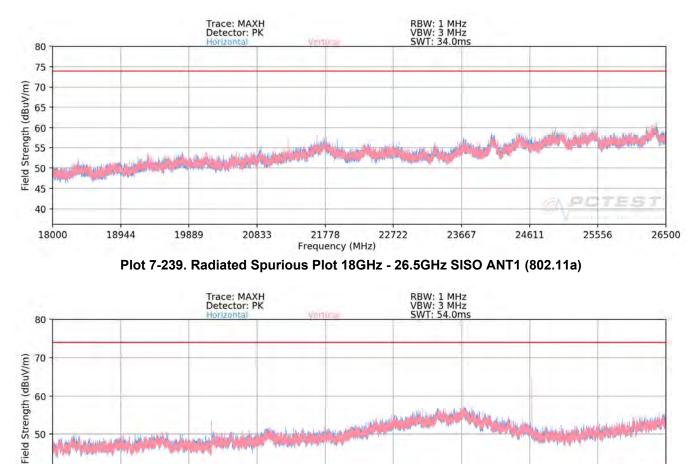




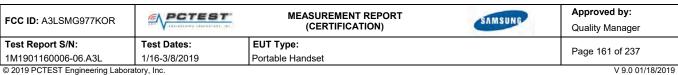
7.6.1 SISO Antenna-1 Radiated Spurious Emission Measurements



FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 150 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 159 of 237
© 2019 PCTEST Engineering Laboratory. Inc.				V 9.0 01/18/2019



Plot 7-238. Radiated Spurious Plot above 1GHz SISO ANT1 (802.11a - U3 Ch. 157)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:		Dage 160 of 227					
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 160 of 237					
© 2019 PCTEST Engineering Labor	© 2019 PCTEST Engineering Laboratory, Inc.								

Frequency (MHz) Plot 7-240. Radiated Spurious Plot 26.5GHz - 40GHz SISO ANT1 (802.11a)

SISO Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz)

SISO Antenna-1 Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5180MHz			
Channel:	36			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	V	108	354	-70.26	18.75	0.00	55.49	68.20	-12.71
*	15540.00	Average	V	-	-	-84.88	28.13	0.00	50.25	53.98	-3.73
*	15540.00	Peak	V	-	-	-76.22	28.13	0.00	58.91	73.98	-15.07
*	20720.00	Average	V	-	-	-75.75	17.17	-9.54	38.87	53.98	-15.11
*	20720.00	Peak	V	-	-	-65.31	17.17	-9.54	49.31	73.98	-24.67
	25900.00	Peak	V	-	-	-65.14	19.93	-9.54	52.24	68.20	-15.96

Table 7-28. Radiated Measurements SISO ANT1

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	V	199	12	-69.24	19.45	0.00	57.21	68.20	-10.99
*	15600.00	Average	V	-	-	-86.44	27.65	0.00	48.21	53.98	-5.77
*	15600.00	Peak	V	-	-	-75.63	27.65	0.00	59.02	73.98	-14.96
*	20800.00	Average	V	-	-	-76.35	17.65	-9.54	38.76	53.98	-15.22
*	20800.00	Peak	V	-	-	-65.25	17.65	-9.54	49.86	73.98	-24.12
	26000.00	Peak	V	-	-	-65.33	20.68	-9.54	52.81	68.20	-15.39

Table 7-29. Radiated Measurements SISO ANT1

Worst Case Mode:

802.11a

FCC ID: A3LSMG977KOR	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 162 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 162 of 237
© 2019 PCTEST Engineering Labor	atory Inc			V 9 0 01/18/2019

Worst Case Transfer Rate: 6Mbps Distance of Measurements: 1 & 3 Meters 5240MHz **Operating Frequency:** Channel: 48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	V	212	14	-70.42	19.76	0.00	56.34	68.20	-11.86
*	15720.00	Average	V	-	-	-84.96	27.55	0.00	49.59	53.98	-4.39
*	15720.00	Peak	V	-	-	-76.45	27.55	0.00	58.10	73.98	-15.88
*	20960.00	Average	V	-	-	-76.70	17.53	-9.54	38.29	53.98	-15.69
*	20960.00	Peak	V	-	-	-65.20	17.53	-9.54	49.79	73.98	-24.19
	26200.00	Peak	V	-	-	-65.43	20.23	-9.54	52.26	68.20	-15.94

Table 7-30. Radiated Measurements SISO ANT1

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	179	7	-70.64	19.25	0.00	55.61	68.20	-12.59
*	15780.00	Average	Н	-	-	-84.94	27.22	0.00	49.28	53.98	-4.70
*	15780.00	Peak	Н	-	-	-75.79	27.22	0.00	58.43	73.98	-15.55
*	21040.00	Average	Н	-	-	-76.84	17.48	-9.54	38.09	53.98	-15.89
*	21040.00	Peak	Н	-	-	-64.74	17.48	-9.54	50.19	73.98	-23.79
	26300.00	Peak	Н	-	-	-64.85	20.33	-9.54	52.94	68.20	-15.26

Table 7-31. Radiated Measurements SISO ANT1

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 162 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 163 of 237
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019			

© 2019 PCTEST Engineering Laboratory, Inc.

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5280MHz			
Channel:	56			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	125	10	-69.90	19.37	0.00	56.47	68.20	-11.73
*	15840.00	Average	Н	-	-	-84.67	27.28	0.00	49.61	53.98	-4.37
*	15840.00	Peak	н	-	-	-75.84	27.28	0.00	58.44	73.98	-15.54
*	21120.00	Average	Н	-	-	-76.44	17.27	-9.54	38.28	53.98	-15.69
*	21120.00	Peak	Н	-	-	-64.60	17.27	-9.54	50.12	73.98	-23.85
	26400.00	Peak	Н	-	-	-64.50	20.27	-9.54	53.23	68.20	-14.97

Table 7-32. Radiated Measurements SISO ANT1

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	122	11	-80.61	20.07	0.00	46.46	53.98	-7.52
*	10640.00	Peak	Н	122	11	-70.75	20.07	0.00	56.32	73.98	-17.66
*	15960.00	Average	Н	-	-	-85.00	27.42	0.00	49.42	53.98	-4.56
*	15960.00	Peak	Н	-	-	-76.02	27.42	0.00	58.40	73.98	-15.58
*	21280.00	Average	Н	-	-	-76.83	17.58	-9.54	38.21	53.98	-15.77
*	21280.00	Peak	Н	-	-	-65.32	17.58	-9.54	49.72	73.98	-24.26
	26600.00	Peak	Н	-	-	-51.49	3.11	-9.54	49.08	68.20	-19.12

Table 7-33. Radiated Measurements SISO ANT1

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 164 of 227
1M1901160006-06.A3L	1/16-3/8/2019		Page 164 of 237	
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019			

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5500MHz			
Channel:	100			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	213	37	-82.20	20.71	0.00	45.51	53.98	-8.47
*	11000.00	Peak	Н	213	37	-73.27	20.71	0.00	54.44	73.98	-19.54
	16500.00	Peak	н	-	-	-76.08	28.80	0.00	59.72	68.20	-8.48
	22000.00	Peak	Н	-	-	-69.00	18.05	-9.54	46.51	68.20	-21.69
	27500.00	Peak	Н	-	-	-49.14	2.08	-9.54	50.40	68.20	-17.80

Table 7-34. Radiated Measurements SISO ANT1

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5600MHz 120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	н	202	30	-81.98	19.68	0.00	44.70	53.98	-9.28
*	11200.00	Peak	Н	202	30	-73.95	19.68	0.00	52.73	73.98	-21.25
	16800.00	Peak	Н	-	-	-75.43	28.91	0.00	60.48	68.20	-7.72
*	22400.00	Average	Н	-	-	-80.53	19.05	-9.54	35.98	53.98	-18.00
*	22400.00	Peak	Н	-	-	-69.52	19.05	-9.54	46.99	73.98	-26.99
	28000.00	Peak	Н	-	-	-50.53	3.19	-9.54	50.11	68.20	-18.09

Table 7-35. Radiated Measurements SISO ANT1

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 165 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 165 of 237
@ 2010 DOTEST Engineering Labor	stam (la a		V 0 0 01/10/2010

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5720MHz			
Channel:	144			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	242	341	-83.90	20.76	0.00	43.86	53.98	-10.12
*	11440.00	Peak	Н	242	341	-75.47	20.76	0.00	52.29	73.98	-21.69
	17160.00	Peak	Н	-	-	-76.11	29.65	0.00	60.54	68.20	-7.66
*	22880.00	Average	Н	-	-	-81.42	18.60	-9.54	34.63	53.98	-19.35
*	22880.00	Peak	Н	-	-	-70.04	18.60	-9.54	46.01	73.98	-27.97
	28600.00	Peak	Н	-	-	-49.53	1.74	-9.54	49.66	68.20	-18.54

Table 7-36. Radiated Measurements SISO ANT1

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	н	192	202	-83.71	20.29	0.00	43.58	53.98	-10.40
*	11490.00	Peak	Н	192	202	-74.85	20.29	0.00	52.44	73.98	-21.54
ſ	17235.00	Peak	Н	-	-	-75.29	29.45	0.00	61.16	68.20	-7.04
*	22980.00	Average	Н	-	-	-75.40	18.46	-9.54	40.52	53.98	-13.46
*	22980.00	Peak	Н	-	-	-65.05	18.46	-9.54	50.87	73.98	-23.11
	28725.00	Peak	Н	-	-	-50.56	2.47	-9.54	49.37	68.20	-18.83

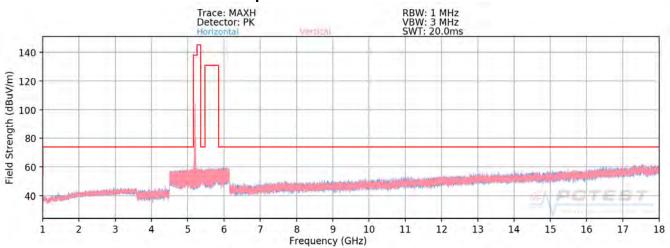
Table 7-37. Radiated Measurements SISO ANT1

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 166 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 166 of 237
© 2010 DOTEST Engineering Labor	ston: Inc		1/ 0 0 01/10/2010

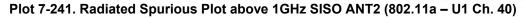
Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5785MHz			
Channel:	157			

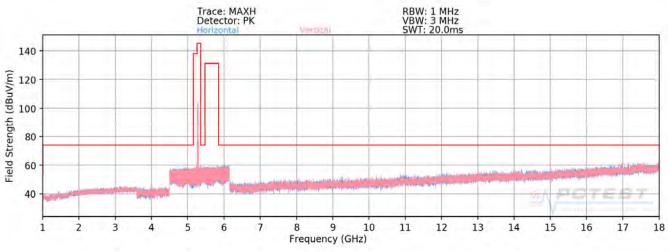
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	I Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	-	-	-83.79	20.87	0.00	44.08	53.98	-9.90
*	11570.00	Peak	Н	-	-	-75.15	20.87	0.00	52.72	73.98	-21.26
	17355.00	Peak	Н	-	-	-76.06	29.88	0.00	60.82	68.20	-7.38
	23140.00	Peak	Н	-	-	-66.46	18.84	-9.54	49.84	68.20	-18.36
	28925.00	Peak	Н	-	-	-50.77	2.80	-9.54	49.49	68.20	-18.71

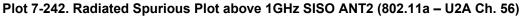
Table 7-38. Radiated Measurements SISO ANT1

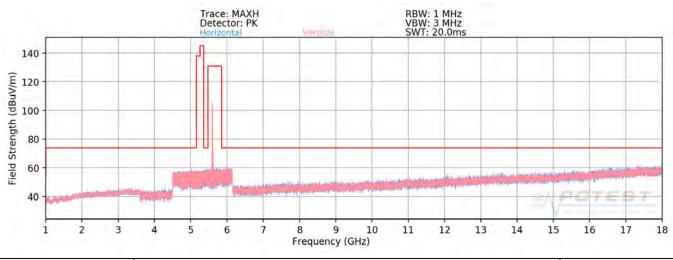

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	-	-	-83.42	21.73	0.00	45.31	53.98	-8.67
*	11650.00	Peak	Н	-	-	-75.07	21.73	0.00	53.66	73.98	-20.32
	17475.00	Peak	Н	-	-	-76.01	30.16	0.00	61.15	68.20	-7.05
	23300.00	Peak	Н	-	-	-65.93	19.55	-9.54	51.07	68.20	-17.13
	29125.00	Peak	Н	-	-	-49.97	1.07	-9.54	48.56	68.20	-19.64

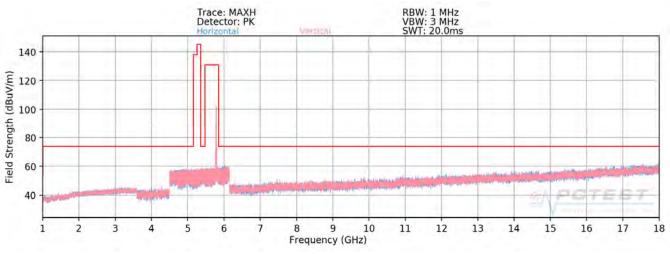

Table 7-39. Radiated Measurements SISO ANT1


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Daga 167 of 227	
1M1901160006-06.A3L	1/16-3/8/2019			Page 167 of 237	
© 2010 DOTECT Engineering Labor	stam (la a			1/0001/10/2010	

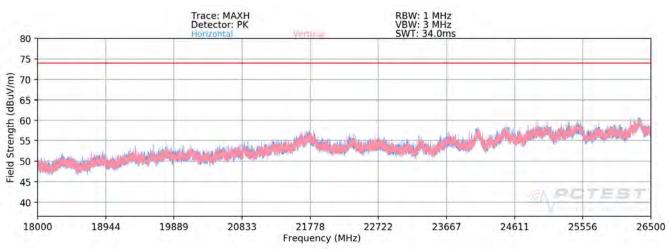




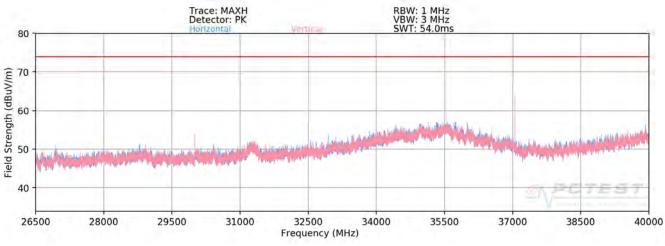
7.6.2 SISO Antenna-2 Radiated Spurious Emission Measurements



FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	ype:		
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 168 of 237	
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019				



Plot 7-244. Radiated Spurious Plot above 1GHz SISO ANT2 (802.11a - U3 Ch. 157)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 160 of 227	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 169 of 237	
© 2010 PCTEST Engineering Labor	aton/ Inc	•		V 0 0 01/18/2010	

SISO Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz)

Plot 7-246. Radiated Spurious Plot 26.5GHz - 40GHz SISO ANT2 (802.11a)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 007	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 170 of 237	
© 2019 PCTEST Engineering Labor	atory Inc.			V 9 0 01/18/2019	

SISO Antenna-2 Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	V	234	211	-74.39	18.75	0.00	51.36	68.20	-16.84
*	15540.00	Average	V	-	-	-85.12	28.13	0.00	50.01	53.98	-3.97
*	15540.00	Peak	V	-	-	-76.73	28.13	0.00	58.40	73.98	-15.58
*	20720.00	Average	V	-	-	-77.47	17.17	-9.54	37.15	53.98	-16.83
*	20720.00	Peak	V	-	-	-66.29	17.17	-9.54	48.33	73.98	-25.65
	25900.00	Peak	V	-	-	-65.21	19.93	-9.54	52.17	68.20	-16.03

Table 7-40. Radiated Measurements SISO ANT2

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

	802.11a
	6Mbps
-	1 & 3 Meters
	5200MHz
	40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	V	286	307	-75.03	19.45	0.00	51.42	68.20	-16.78
*	15600.00	Average	V	-	-	-84.80	27.65	0.00	49.85	53.98	-4.13
*	15600.00	Peak	V	-	-	-76.98	27.65	0.00	57.67	73.98	-16.31
*	20800.00	Average	V	-	-	-77.66	17.65	-9.54	37.45	53.98	-16.53
*	20800.00	Peak	V	-	-	-65.83	17.65	-9.54	49.28	73.98	-24.70
	26000.00	Peak	V	-	-	-65.12	20.68	-9.54	53.02	68.20	-15.18

Table 7-41. Radiated Measurements SISO ANT2

Worst Case Mode:

802.11a

110101 0400		0021114			
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 171 of 237	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 171 01 237	
© 2019 PCTEST Engineering Labora	tory Inc			V 9 0 01/18/2019	

Worst Case Transfer Rate: 6Mbps Distance of Measurements: 1 & 3 Meters 5240MHz **Operating Frequency:** Channel: 48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	V	384	7	-75.22	19.76	0.00	51.54	68.20	-16.66
*	15720.00	Average	V	-	-	-85.01	27.55	0.00	49.54	53.98	-4.44
*	15720.00	Peak	V	-	-	-73.55	27.55	0.00	61.00	73.98	-12.98
*	20960.00	Average	V	-	-	-77.65	17.53	-9.54	37.34	53.98	-16.64
*	20960.00	Peak	V	-	-	-65.70	17.53	-9.54	49.29	73.98	-24.69
	26200.00	Peak	V	-	-	-65.74	20.23	-9.54	51.95	68.20	-16.25

Table 7-42, Radiated Measurements SISO ANT2

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	V	132	210	-72.77	19.25	0.00	53.48	68.20	-14.72
*	15780.00	Average	V	-	-	-89.98	27.22	0.00	44.24	53.98	-9.74
*	15780.00	Peak	V	-	-	-76.22	27.22	0.00	58.00	73.98	-15.98
*	21040.00	Average	V	-	-	-77.45	17.48	-9.54	37.48	53.98	-16.50
*	21040.00	Peak	V	-	-	-65.99	17.48	-9.54	48.94	73.98	-25.04
	26300.00	Peak	V	-	-	-64.35	20.33	-9.54	53.44	68.20	-14.76

Table 7-43. Radiated Measurements SISO ANT2

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 007	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 172 of 237	
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019				

© 2019 PCTEST Engineering Laboratory, Inc.

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	V	-	-	-74.85	19.37	0.00	51.52	68.20	-16.68
*	15840.00	Average	V	-	-	-84.86	27.28	0.00	49.42	53.98	-4.56
*	15840.00	Peak	V	-	-	-74.94	27.28	0.00	59.34	73.98	-14.64
*	21120.00	Average	V	-	-	-77.21	17.27	-9.54	37.51	53.98	-16.46
*	21120.00	Peak	V	-	-	-65.96	17.27	-9.54	48.76	73.98	-25.21
	26400.00	Peak	V	-	-	-65.23	20.27	-9.54	52.50	68.20	-15.70

Table 7-44. Radiated Measurements SISO ANT2

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	V	295	9	-83.09	20.07	0.00	43.98	53.98	-10.00
*	10640.00	Peak	V	295	9	-75.01	20.07	0.00	52.06	73.98	-21.92
*	15960.00	Average	V	-	-	-85.04	27.42	0.00	49.38	53.98	-4.60
*	15960.00	Peak	V	-	-	-76.09	27.42	0.00	58.33	73.98	-15.65
*	21280.00	Average	V	-	-	-76.90	17.58	-9.54	38.14	53.98	-15.84
*	21280.00	Peak	V	-	-	-65.90	17.58	-9.54	49.14	73.98	-24.84
	26600.00	Peak	V	-	-	-51.69	3.11	-9.54	48.88	68.20	-19.32

Table 7-45. Radiated Measurements SISO ANT2

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 172 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 173 of 237
© 2010 DOTEST Engineering Labor	atam (Inc			V 0 0 01/10/2010

802.11a
6Mbps
1 & 3 Meters
5500MHz
100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	V	-	-	-84.05	20.71	0.00	43.66	53.98	-10.32
*	11000.00	Peak	V	-	-	-75.02	20.71	0.00	52.69	73.98	-21.29
	16500.00	Peak	V	-	-	-78.04	28.80	0.00	57.76	68.20	-10.44
	22000.00	Peak	V	-	-	-65.96	18.05	-9.54	49.55	68.20	-18.65
	27500.00	Peak	V	-	-	-50.37	2.08	-9.54	49.17	68.20	-19.03

Table 7-46. Radiated Measurements SISO ANT2

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6Mbps 1 & 3 Meters 5600MHz 120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	V	172	2	-83.60	19.68	0.00	43.08	53.98	-10.90
*	11200.00	Peak	V	172	2	-74.61	19.68	0.00	52.07	73.98	-21.91
	16800.00	Peak	V	-	-	-74.92	28.91	0.00	60.99	68.20	-7.21
*	22400.00	Average	V	-	-	-77.40	19.05	-9.54	39.11	53.98	-14.87
*	22400.00	Peak	V	-	-	-66.51	19.05	-9.54	50.00	73.98	-23.98
	28000.00	Peak	V	-	-	-50.15	3.19	-9.54	50.49	68.20	-17.71

Table 7-47, Radiated Measurements SISO ANT2

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dage 174 of 937
1M1901160006-06.A3L	1/16-3/8/2019			Page 174 of 237
© 2010 DOTECT Engineering Labor	atam: Inc			1/0001/10/2010

V 9.0 01/18/2019

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	V	258	29	-83.96	20.76	0.00	43.80	53.98	-10.18
*	11440.00	Peak	V	258	29	-74.76	20.76	0.00	53.00	73.98	-20.98
	17160.00	Peak	V	-	-	-76.02	29.65	0.00	60.63	68.20	-7.57
*	22880.00	Average	V	-	-	-77.72	18.60	-9.54	38.33	53.98	-15.65
*	22880.00	Peak	V	-	-	-66.53	18.60	-9.54	49.52	73.98	-24.46
	28600.00	Peak	V	-	-	-50.02	1.74	-9.54	49.17	68.20	-19.03

Table 7-48. Radiated Measurements SISO ANT2

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	V	-	-	-83.72	20.29	0.00	43.57	53.98	-10.41
*	11490.00	Peak	V	-	-	-75.27	20.29	0.00	52.02	73.98	-21.96
	17235.00	Peak	V	-	-	-75.76	29.45	0.00	60.69	68.20	-7.51
*	22980.00	Average	V	-	-	-77.45	18.46	-9.54	38.47	53.98	-15.51
*	22980.00	Peak	V	-	-	-66.65	18.46	-9.54	49.27	73.98	-24.71
	28725.00	Peak	V	-	-	-50.17	2.47	-9.54	49.76	68.20	-18.44

Table 7-49. Radiated Measurements SISO ANT2

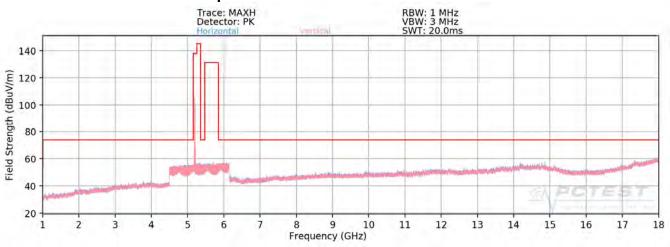
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 475 af 007	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 175 of 237	
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019				

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

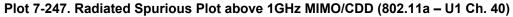
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	V	258	314	-83.40	20.87	0.00	44.47	53.98	-9.51
*	11570.00	Peak	V	258	314	-75.48	20.87	0.00	52.39	73.98	-21.59
	17355.00	Peak	V	-	-	-75.77	29.88	0.00	61.11	68.20	-7.09
	23140.00	Peak	V	-	-	-66.65	18.84	-9.54	49.65	68.20	-18.55
	28925.00	Peak	V	-	-	-50.29	2.80	-9.54	49.97	68.20	-18.23

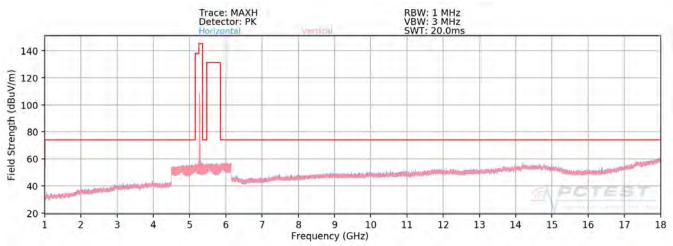
Table 7-50. Radiated Measurements SISO ANT2

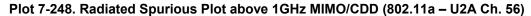
Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

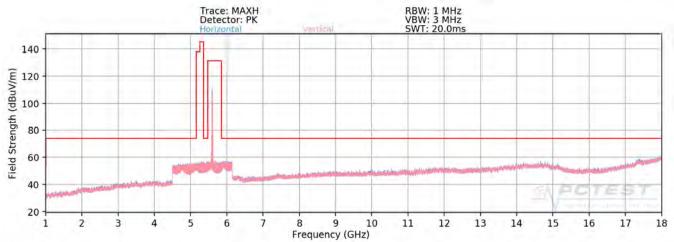

802.11a 6Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	V	123	257	-83.62	21.73	0.00	45.11	53.98	-8.87
*	11650.00	Peak	V	123	257	-74.98	21.73	0.00	53.75	73.98	-20.23
	17475.00	Peak	V	-	-	-75.32	30.16	0.00	61.84	68.20	-6.36
	23300.00	Peak	V	-	-	-66.60	19.55	-9.54	50.40	68.20	-17.80
	29125.00	Peak	V	-	-	-50.02	1.07	-9.54	48.51	68.20	-19.69

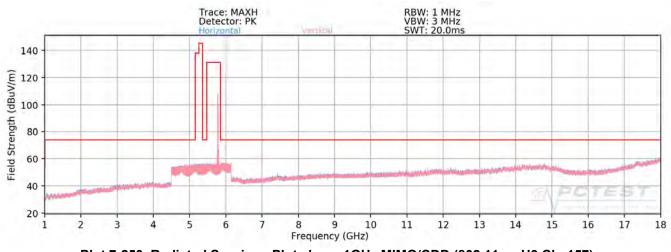

Table 7-51, Radiated Measurements SISO ANT2


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 176 of 927
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 176 of 237
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019			



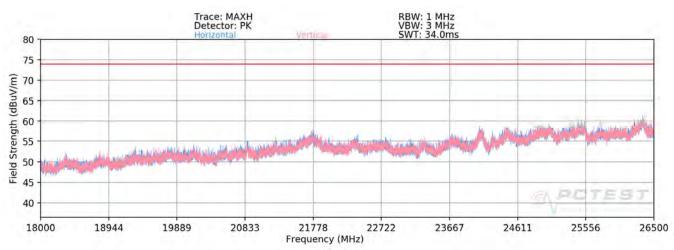


7.6.3 MIMO/CDD Radiated Spurious Emission Measurements

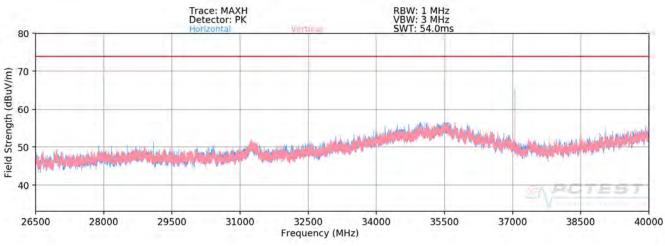


Plot 7-249. Radiated Spurious Plot above 1GHz MIMO/CDD (802.11a – U2C Ch. 120)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 177 of 007
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 177 of 237
© 2010 PCTEST Engineering Labor	atory Inc			V 0 0 01/18/2010



Plot 7-250. Radiated Spurious Plot above 1GHz MIMO/CDD (802.11a - U3 Ch. 157)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 179 of 937		
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 178 of 237		
© 2019 PCTEST Engineering Labora	© 2019 PCTEST Engineering Laboratory, Inc.					

MIMO Radiated Spurious Emissions Measurements (Above 18GHz)

Plot 7-252. Radiated Spurious Plot 26.5GHz - 40GHz MIMO/CDD (802.11a)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 179 of 237
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 179 01 237
© 2019 PCTEST Engineering Labora	atory. Inc.			V 9.0 01/18/2019

MIMO Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

802.11a
6Mbps
1 & 3 Meters
5180MHz
36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	305	87	-61.83	12.74	0.00	57.91	68.20	-10.29
*	15540.00	Average	Н	-	-	-77.06	15.28	0.00	45.22	53.98	-8.76
*	15540.00	Peak	Н	-	-	-66.36	15.28	0.00	55.92	73.98	-18.06
*	20720.00	Average	Н	-	-	-77.64	17.17	-9.54	36.98	53.98	-17.00
*	20720.00	Peak	Н	-	-	-66.46	17.17	-9.54	48.16	73.98	-25.82
	25900.00	Peak	Н	-	-	-65.32	19.93	-9.54	52.06	68.20	-16.14
	Table 7.52 Padjated Measurements MIMO/CDD										

Table 7-52. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a
6Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	111	94	-62.20	12.24	0.00	57.04	68.20	-11.16
*	15600.00	Average	н	-	-	-77.21	15.40	0.00	45.19	53.98	-8.78
*	15600.00	Peak	Н	-	-	-66.21	15.40	0.00	56.19	73.98	-17.78
*	20800.00	Average	Н	-	-	-77.80	17.65	-9.54	37.31	53.98	-16.67
*	20800.00	Peak	Н	-	-	-65.85	17.65	-9.54	49.26	73.98	-24.72
	26000.00	Peak	Н	-	-	-65.13	20.68	-9.54	53.01	68.20	-15.19

Table 7-53. Radiated Measurements MIMO/CDD

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 190 of 227		
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 180 of 237		
© 2019 PCTEST Engineering Labora	© 2019 PCTEST Engineering Laboratory, Inc.					

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5240MHz			
Channel:	48			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Stronath	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	112	32	-61.11	12.41	0.00	58.30	68.20	-9.90
*	15720.00	Average	Н	-	-	-77.10	16.70	0.00	46.60	53.98	-7.38
*	15720.00	Peak	Н	-	-	-65.73	16.70	0.00	57.97	73.98	-16.01
*	20960.00	Average	Н	-	-	-77.80	17.53	-9.54	37.19	53.98	-16.78
*	20960.00	Peak	Н	-	-	-65.75	17.53	-9.54	49.25	73.98	-24.73
	26200.00	Peak	Н	-	-	-65.74	20.23	-9.54	51.95	68.20	-16.25

Table 7-54. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6Mbps 1 & 3 Meters 5240MHz 48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	170	57	-61.18	12.41	0.00	58.23	68.20	-9.97
*	15720.00	Average	Н	-	-	-77.21	16.70	0.00	46.49	53.98	-7.49
*	15720.00	Peak	Н	-	-	-65.81	16.70	0.00	57.89	73.98	-16.09
*	20960.00	Average	Н	-	-	-77.99	17.53	-9.54	37.00	53.98	-16.98
*	20960.00	Peak	Н	-	-	-65.81	17.53	-9.54	49.18	73.98	-24.80
	26200.00	Peak	Η	-	-	-65.76	20.23	-9.54	51.93	68.20	-16.27

Table 7-55. Radiated Measurements MIMO/CDD with WCP

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	t Report S/N: Test Dates: EUT Type:			Dage 191 of 927
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 181 of 237
© 2010 DOTECT Engineering Labor	atam: Inc			V/0.0.01/10/2010

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5260MHz			
Channel:	52			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	Н	114	47	-61.34	13.16	0.00	58.82	68.20	-9.38
*	15780.00	Average	Н	-	-	-77.48	16.21	0.00	45.73	53.98	-8.25
*	15780.00	Peak	Н	-	-	-65.95	16.21	0.00	57.26	73.98	-16.72
*	21040.00	Average	Н	-	-	-77.51	17.48	-9.54	37.42	53.98	-16.56
*	21040.00	Peak	Н	-	-	-66.13	17.48	-9.54	48.80	73.98	-25.18
	26300.00	Peak	Η	-	-	-64.37	20.33	-9.54	53.42	68.20	-14.78

Table 7-56. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5280MHz 56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	112	34	-61.88	13.66	0.00	58.78	68.20	-9.42
*	15840.00	Average	Н	-	-	-78.50	15.64	0.00	44.14	53.98	-9.84
*	15840.00	Peak	Н	-	-	-65.78	15.64	0.00	56.86	73.98	-17.12
*	21120.00	Average	Н	-	-	-77.34	17.27	-9.54	37.38	53.98	-16.60
*	21120.00	Peak	Н	-	-	-66.01	17.27	-9.54	48.72	73.98	-25.26
	26400.00	Peak	Н	-	-	-65.31	20.27	-9.54	52.42	68.20	-15.78

Table 7-57. Radiated Measurements MIMO/CDD

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 192 of 227	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 182 of 237	
© 2010 DCTEST Engineering Lober	aton/ Inc			1/ 0 0 01/19/2010	

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5320MHz			
Channel:	64			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	115	30	-78.54	14.15	0.00	42.61	53.98	-11.37
*	10640.00	Peak	Н	115	30	-62.03	14.15	0.00	59.12	73.98	-14.86
*	15960.00	Average	Н	-	-	-77.47	15.01	0.00	44.54	53.98	-9.44
*	15960.00	Peak	Н	-	-	-65.13	15.01	0.00	56.88	73.98	-17.10
*	21280.00	Average	Н	-	-	-76.94	17.58	-9.54	38.10	53.98	-15.88
*	21280.00	Peak	Н	-	-	-65.94	17.58	-9.54	49.10	73.98	-24.88
	26600.00	Peak	Н	-	-	-51.84	3.11	-9.54	48.74	68.20	-19.46

Table 7-58. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a
6Mbps
1 & 3 Meters
5260MHz
52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	163	51	-61.64	13.16	0.00	58.52	68.20	-9.68
*	15780.00	Average	Н	-	-	-77.48	16.21	0.00	45.73	53.98	-8.25
*	15780.00	Peak	Н	-	-	-65.95	16.21	0.00	57.26	73.98	-16.72
*	21040.00	Average	Н	-	-	-77.62	17.48	-9.54	37.31	53.98	-16.67
*	21040.00	Peak	Н	-	-	-66.21	17.48	-9.54	48.72	73.98	-25.26
	26300.00	Peak	Н	-	-	-64.51	20.33	-9.54	53.28	68.20	-14.92

Table 7-59. Radiated Measurements MIMO/CDD with WCP

FCC ID: A3LSMG977KOR	V HALING AND AND FC		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 192 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 183 of 237
© 2010 DCTEST Engineering Labor	aton/ Inc			V 0 0 01/10/2010

Worst Case Mode:	802.11a				
Worst Case Transfer Rate:	6Mbps				
Distance of Measurements:	1 & 3 Meters				
Operating Frequency:	5500MHz				
Channel:	100				

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	115	30	-78.91	13.55	0.00	41.64	53.98	-12.34
*	11000.00	Peak	Н	115	30	-62.48	13.55	0.00	58.07	73.98	-15.91
	16500.00	Peak	Н	-	-	-64.74	16.10	0.00	58.36	68.20	-9.84
	22000.00	Peak	Н	-	-	-66.15	18.05	-9.54	49.36	68.20	-18.84
	27500.00	Peak	Н	-	-	-50.55	2.08	-9.54	48.99	68.20	-19.21

Table 7-60. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5600MHz 120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	Н	117	55	-77.65	13.31	0.00	42.66	53.98	-11.32
*	11200.00	Peak	Н	117	55	-63.24	13.31	0.00	57.07	73.98	-16.91
	16800.00	Peak	Н	-	-	-65.22	17.53	0.00	59.31	68.20	-8.89
*	22400.00	Average	Н	-	-	-77.46	19.05	-9.54	39.04	53.98	-14.93
*	22400.00	Peak	Н	-	-	-66.67	19.05	-9.54	49.84	73.98	-24.14
	28000.00	Peak	Н	-	-	-50.19	3.19	-9.54	50.46	68.20	-17.74

Table 7-61. Radiated Measurements MIMO/CDD

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 194 of 927
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 184 of 237	
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019			

Worst Case Mode:	802.11a				
Worst Case Transfer Rate:	6Mbps				
Distance of Measurements:	1 & 3 Meters				
Operating Frequency:	5720MHz				
Channel:	144				

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	113	110	-77.44	15.10	0.00	44.66	53.98	-9.32
*	11440.00	Peak	Н	113	110	-61.28	15.10	0.00	60.82	73.98	-13.16
	17160.00	Peak	Н	-	-	-64.79	18.83	0.00	61.04	68.20	-7.16
*	22880.00	Average	Н	-	-	-77.73	18.60	-9.54	38.33	53.98	-15.65
*	22880.00	Peak	Н	-	-	-66.65	18.60	-9.54	49.40	73.98	-24.58
	28600.00	Peak	Н	-	-	-50.19	1.74	-9.54	49.00	68.20	-19.20

Table 7-62. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5720MHz 144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	159	80	-77.70	15.10	0.00	44.40	53.98	-9.58
*	11440.00	Peak	Н	159	80	-61.41	15.10	0.00	60.69	73.98	-13.29
	17160.00	Peak	Н	-	-	-64.94	18.83	0.00	60.89	68.20	-7.31
*	22880.00	Average	Н	-	-	-77.87	18.60	-9.54	38.18	53.98	-15.80
*	22880.00	Peak	Н	-	-	-66.70	18.60	-9.54	49.35	73.98	-24.63
	28600.00	Peak	Н	-	-	-50.20	1.74	-9.54	48.99	68.20	-19.21

Table 7-63. Radiated Measurements MIMO/CDD with WCP

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 195 of 927
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 185 of 237
© 2010 BCTEST Engineering Labor	aton / Inc			1/ 0 0 01/19/2010

802.11a				
6Mbps				
1 & 3 Meters				
5745MHz				
149				

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	144	60	-78.13	15.22	0.00	44.09	53.98	-9.89
*	11490.00	Peak	Н	144	60	-62.89	15.22	0.00	59.33	73.98	-14.65
	17235.00	Peak	Н	-	-	-65.00	19.54	0.00	61.54	68.20	-6.66
*	22980.00	Average	Н	-	-	-77.52	18.46	-9.54	38.40	53.98	-15.58
*	22980.00	Peak	Н	-	-	-66.66	18.46	-9.54	49.25	73.98	-24.72
	28725.00	Peak	Н	-	-	-50.18	2.47	-9.54	49.75	69.20	-19.45

Table 7-64. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5785MHz 157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Strength	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	150	21	-77.88	15.02	0.00	44.14	53.98	-9.84
*	11570.00	Peak	н	150	21	-63.48	15.02	0.00	58.54	73.98	-15.44
	17355.00	Peak	Н	-	-	-65.39	23.41	0.00	65.02	68.20	-3.18
	23140.00	Peak	Н	-	-	-66.78	18.84	-9.54	49.52	68.20	-18.68
	28925.00	Peak	Н	-	-	-50.43	2.80	-9.54	49.83	68.20	-18.37

Table 7-65. Radiated Measurements MIMO/CDD

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 186 of 237
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory, Inc.				V 9.0 01/18/2019

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5825MHz		
Channel:	165		

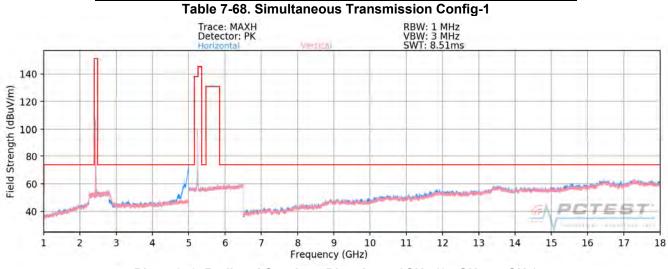
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	122	26	-76.35	14.92	0.00	45.57	53.98	-8.41
*	11650.00	Peak	Н	122	26	-61.49	14.92	0.00	60.43	73.98	-13.55
	17475.00	Peak	Н	-	-	-64.28	21.86	0.00	64.58	68.20	-3.62
	23300.00	Peak	Н	-	-	-66.75	19.55	-9.54	50.25	68.20	-17.95
	29125.00	Peak	Н	-	-	-50.18	1.07	-9.54	48.34	68.20	-19.86

 Table 7-66. Radiated Measurements MIMO/CDD

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	162	72	-76.73	14.92	0.00	45.19	53.98	-8.79
*	11650.00	Peak	Н	162	72	-61.61	14.92	0.00	60.31	73.98	-13.67
	17475.00	Peak	Н	-	-	-64.39	21.86	0.00	64.47	68.20	-3.73
	23300.00	Peak	Н	-	-	-66.87	19.55	-9.54	50.13	68.20	-18.07
	29125.00	Peak	Н	-	-	-50.21	1.07	-9.54	48.32	68.20	-19.88


Table 7-67. Radiated Measurements MIMO/CDD with WCP

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 197 of 997
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 187 of 237
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019			

7.6.4 Simultaneous Tx Radiated Spurious Emissions Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1	2
Channel	6	48
Operating Frequency (MHz)	2437	5240
Data Rate (Mbps)	1Mbps	6Mbps
Mode	802.11b	802.11a

Plot 7-253. Radiated Spurious Plot above 1GHz (2.4GHz - 5GHz)

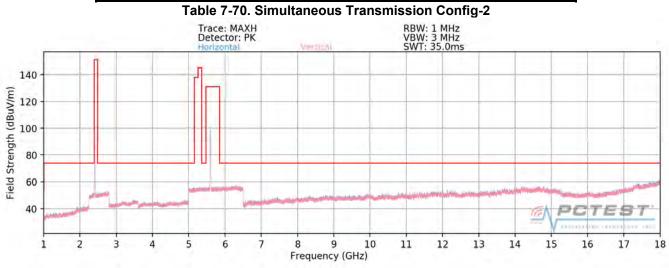

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3249.00	Peak	Н	-	-	-67.53	0.95	40.42	68.20	-27.78
6092.00	Peak	Н	-	-	-68.86	6.42	44.56	68.20	-23.64
8123.00	Average	Н	-	-	-81.19	10.21	36.02	53.98	-17.96
8123.00	Peak	Н	-	-	-68.70	10.21	48.51	73.98	-25.47
8935.00	Peak	Н	-	-	-69.92	11.78	48.86	68.20	-19.34
10966.00	Average	Н	-	-	-83.58	14.39	37.81	53.98	-16.17
10966.00	Peak	Н	-	-	-71.24	14.39	50.15	73.98	-23.83
13809.00	Peak	Н	-	-	-72.11	16.84	51.73	68.20	-16.47
16652.00	Peak	Н	-	-	-72.99	16.70	50.71	68.20	-17.49
	[MHz] 3249.00 6092.00 8123.00 8123.00 8935.00 10966.00 10966.00 13809.00	[MHz] Detector 3249.00 Peak 6092.00 Peak 8123.00 Average 8123.00 Peak 8935.00 Peak 10966.00 Average 10966.00 Peak 13809.00 Peak 16652.00 Peak	[MHz] Detector Poi. [H/V] 3249.00 Peak H 6092.00 Peak H 8123.00 Average H 8123.00 Peak H 8123.00 Peak H 8123.00 Peak H 8123.00 Peak H 10966.00 Peak H 10966.00 Peak H 13809.00 Peak H 16652.00 Peak H	[MHz] Detector Pol. [H/V] Height [cm] 3249.00 Peak H - 6092.00 Peak H - 8123.00 Average H - 8123.00 Peak H - 8123.00 Peak H - 8123.00 Peak H - 8935.00 Peak H - 10966.00 Average H - 10966.00 Peak H - 13809.00 Peak H - 16652.00 Peak H -	[MHz] Detector Pol. [H/V] Height [cm] Azimuth [degree] 3249.00 Peak H - - 6092.00 Peak H - - 6092.00 Peak H - - 8123.00 Average H - - 8123.00 Peak H - - 8935.00 Peak H - - 10966.00 Average H - - 10966.00 Peak H - - 13809.00 Peak H - - 16652.00 Peak H - -	[MHz] Detector Poi. [H/V] Height [cm] Azimuth [degree] Level [dBm] 3249.00 Peak H - - - - - - - - - - - - 6092.00 Peak H - - - - 68.86 - 8123.00 Peak H - - - - 81.19 - 8123.00 Peak H - - - - - - - - - 81.19 - - 89.35.00 Peak H -	[MHz] Detector Pol. [H/V] Height [cm] Azimuth [degree] Level [dBm] [dB/m] 3249.00 Peak H - - -67.53 0.95 6092.00 Peak H - - -68.86 6.42 8123.00 Peak H - - -81.19 10.21 8123.00 Peak H - - -68.70 11.21 8935.00 Peak H - - -69.92 11.78 10966.00 Average H - - -71.24 14.39 13809.00 Peak H - - -72.11 16.84	[MHz]DetectorPol. [H/V]Height [cm]Azimuth [degree]Level [dBm]GB/m]Strength [dB/m]3249.00PeakH67.530.9540.426092.00PeakH68.866.4244.568123.00PeakH81.1910.2136.028123.00PeakH68.7010.2148.518935.00PeakH69.9211.7848.8610966.00PeakH83.5814.3937.8110966.00PeakH71.2414.3950.1513809.00PeakH72.9916.7050.71	[MHz]DetectorPol. [H/V]Height [cm]Azimuth [degree]Level [dBm][dB/m]Strength [dB/m]Edght/m]3249.00PeakH67.530.9540.4268.206092.00PeakH68.866.4244.5668.208123.00AverageH81.1910.2136.0253.988123.00PeakH68.7010.2148.5173.988935.00PeakH69.9211.7848.8668.2010966.00AverageH83.5814.3937.8153.9810966.00PeakH71.2414.3950.1573.9813809.00PeakH72.1116.8451.7368.2016652.00PeakH72.9916.7050.7168.20

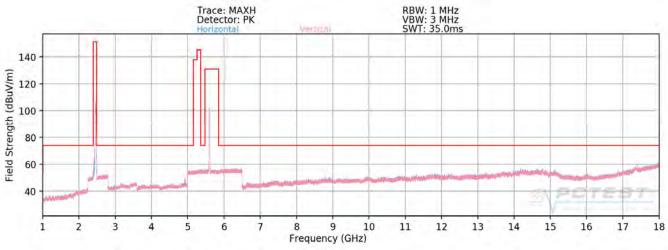
Table 7-69. Radiated Measurements (ANT1 2.4GHz – ANT2 5GHz)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dage 199 of 927				
1M1901160006-06.A3L	1/16-3/8/2019			Page 188 of 237				
© 2019 PCTEST Engineering Labora	© 2019 PCTEST Engineering Laboratory, Inc.							

Description	2.4 GHz Emission	5 GHz Emission
Antenna	2	1
Channel	1	120
Operating Frequency (MHz)	2412	5600
Data Rate (Mbps)	1Mbps	MCS0
Mode	802.11b	802.11ac

Plot 7-254. Radiated Spurious Plot above 1GHz (5GHz – 2.4 GHz)

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	3946.00	Average	Н	-	-	-79.87	3.36	30.49	53.98	-23.49
*	3946.00	Peak	Н	-	-	-67.30	3.36	43.06	73.98	-30.92
	7152.00	Peak	Н	-	-	-69.22	8.78	46.56	68.20	-21.64
	8788.00	Peak	Н	-	-	-69.24	10.87	48.63	68.20	-19.57
	10340.00	Peak	Н	-	-	-70.05	12.55	49.50	68.20	-18.70
*	11976.00	Average	Н	-	-	-83.53	15.12	38.59	53.98	-15.39
*	11976.00	Peak	Н	-	-	-71.45	15.12	50.67	73.98	-23.31
	15164.00	Peak	Н	-	-	-72.20	17.27	52.07	68.20	-16.13


Table 7-71. Radiated Measurements (ANT1 5GHz – ANT2 2.4GHz)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 190 of 227	
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 189 of 237	
© 2019 PCTEST Engineering Labora	V 9.0 01/18/2019				

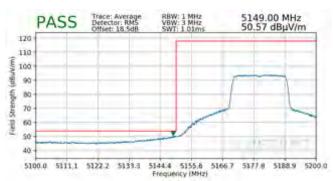
Description	2.4 GHz Emission	5 GHz Emission
Antenna	1, 2	1, 2
Channel	11	120
Operating Frequency (MHz)	2462	5600
Data Rate (Mbps)	6Mbps	6Mbps
Mode	802.11g	802.11a

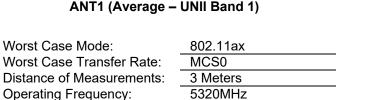
Table 7-72. Dual Band Simultaneous Transmission

Plot 7-255. Radiated Spurious Plot above 1GHz (Dual Band Simult. Tx)

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	2814.00	Average	Н	-	-	-81.70	-2.01	23.29	53.98	-30.69
*	2814.00	Peak	Н	-	-	-68.10	-2.01	36.89	73.98	-37.09
	6952.00	Peak	Н	-	-	-68.19	8.47	47.28	68.20	-20.92
	8738.00	Peak	Н	-	-	-68.74	11.01	49.27	68.20	-18.93
	10090.00	Peak	Н	-	-	-70.39	12.70	49.31	68.20	-18.89
*	11876.00	Average	Н	-	-	-83.87	16.20	39.33	53.98	-14.65
*	11876.00	Peak	Н	-	-	-71.51	16.20	51.69	73.98	-22.29
	15014.00	Peak	H	-	-	-72.39	17.59	52.20	68.20	-16.00

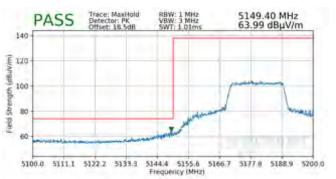
Table 7-73. Radiated Measurements (Dual Band Simult. Tx)

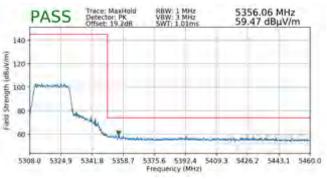

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 190 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019	


Channel:

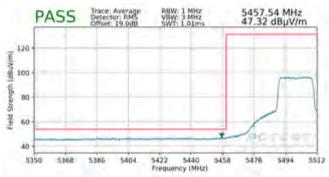
7.6.5 SISO Antenna-1 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]

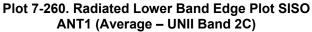
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

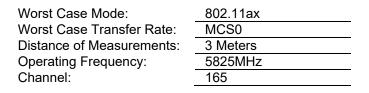

Plot 7-256. Radiated Lower Band Edge Plot SISO ANT1 (Average – UNII Band 1)

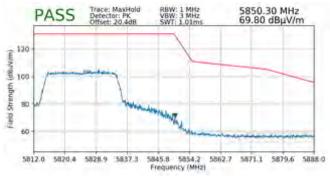

64

Plot 7-257. Radiated Lower Band Edge Plot SISO ANT1 (Peak – UNII Band 1)

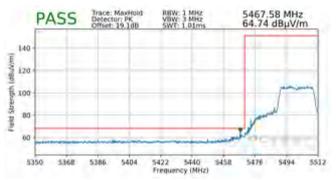



Plot 7-259. Radiated Upper Band Edge Plot SISO ANT1 (Peak – UNII Band 2A)

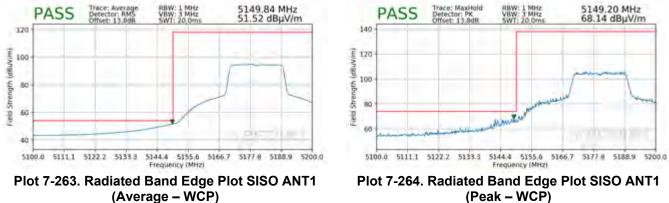

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 191 of 237
© 2010 PCTEST Engineering Labor	V 0 0 01/18/2010			



Worst Case Mode:802.11axWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100



Plot 7-262. Radiated Upper Band Edge Plot SISO ANT1 (Peak – UNII Band 3)



Plot 7-261. Radiated Lower Band Edge Plot SISO ANT1 (Peak – UNII Band 2C)

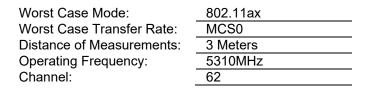
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 192 of 237
			V 0 0 01/18/2010	

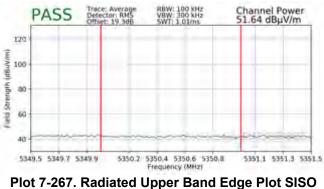
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

(Peak – WCP)

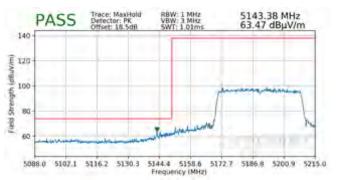

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 102 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 193 of 237
© 2010 PCTEST Engineering Laboratory Inc.				V 0 0 01/18/2010

V 9.0 01/18/2019




7.6.6 SISO Antenna-1 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

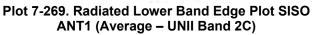
802.11ax
MCS0
3 Meters
5190MHz
38

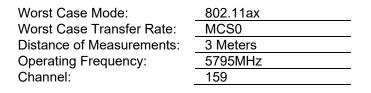


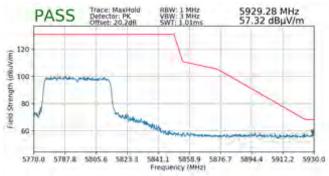
Plot 7-265. Radiated Lower Band Edge Plot SISO ANT1 (Average – UNII Band 1)

Plot 7-267. Radiated Upper Band Edge Plot SIS ANT1 (Average – UNII Band 2A)

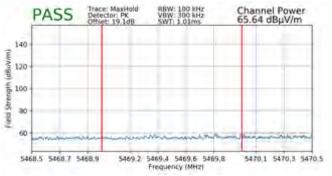
Plot 7-266. Radiated Lower Band Edge Plot SISO ANT1 (Peak – UNII Band 1)


Plot 7-268. Radiated Upper Band Edge Plot SISO ANT1 (Peak – UNII Band 2A)

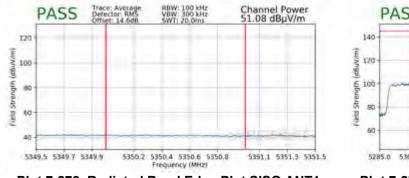

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 104 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 194 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019	



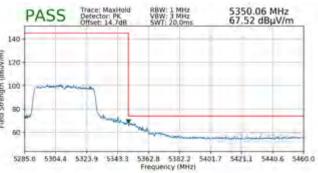
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102



Plot 7-271. Radiated Upper Band Edge Plot SISO ANT1 (Peak – UNII Band 3)

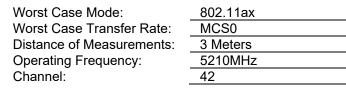


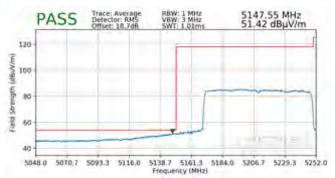
Plot 7-270. Radiated Lower Band Edge Plot SISO ANT1 (Peak – UNII Band 2C)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 195 of 237
				V 9 0 01/18/2019

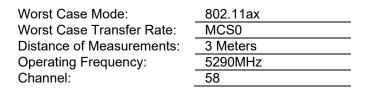
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5310MHz
Channel:	62

Plot 7-272. Radiated Band Edge Plot SISO ANT1 (Average – WCP)

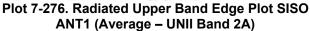


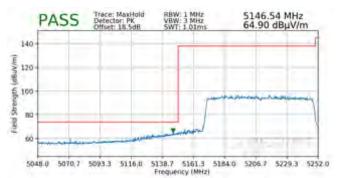


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 106 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 196 of 237
© 2019 PCTEST Engineering Laboratory Inc.			V 9 0 01/18/2019	

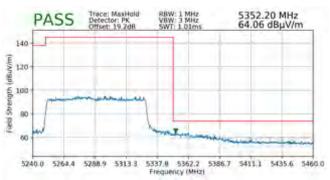



7.6.7 SISO Antenna-1 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]





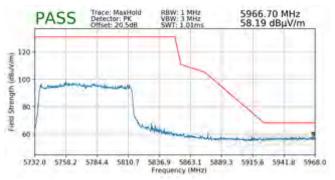
Plot 7-274. Radiated Lower Band Edge Plot SISO ANT1 (Average – UNII Band 1)



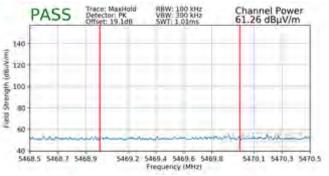
Plot 7-275. Radiated Lower Band Edge Plot SISO ANT1 (Peak – UNII Band 1)

Plot 7-277. Radiated Upper Band Edge Plot SISO ANT1 (Peak – UNII Band 2A)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 107 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 197 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019	



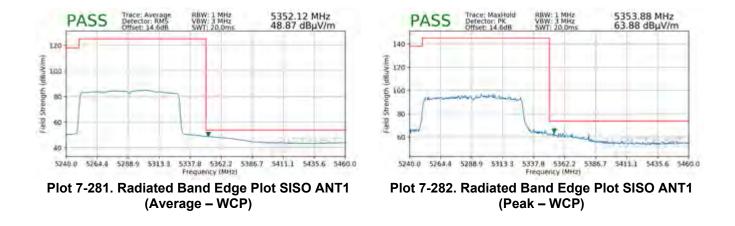
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106



Plot 7-278. Radiated Lower Band Edge Plot SISO ANT1 (Average – UNII Band 2C)

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

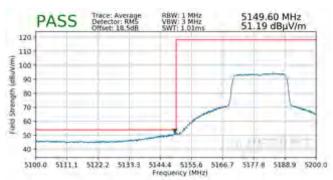
Plot 7-280. Radiated Upper Band Edge Plot SISO ANT1 (Peak – UNII Band 3)



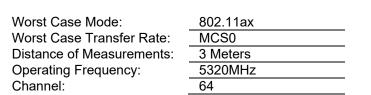
Plot 7-279. Radiated Lower Band Edge Plot SISO ANT1 (Peak – UNII Band 2C)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset		Page 198 of 237
© 2010 PCTEST Engineering Laboratory Inc.				V 0 0 01/18/2010

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5290MHz
Channel:	58

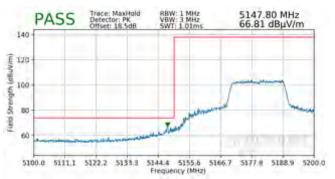


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 199 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



7.6.8 SISO Antenna-2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

802.11ax
MCS0
3 Meters
5180MHz
36



Plot 7-283. Radiated Lower Band Edge Plot SISO ANT2 (Average – UNII Band 1)

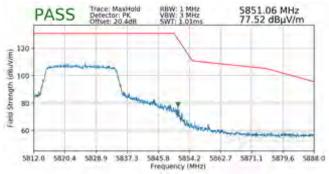
Plot 7-285. Radiated Upper Band Edge Plot SISO ANT2 (Average – UNII Band 2A)

Plot 7-284. Radiated Lower Band Edge Plot SISO ANT2 (Peak – UNII Band 1)

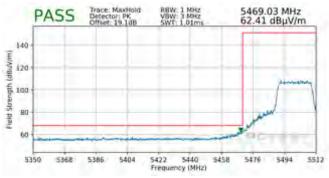


Plot 7-286. Radiated Upper Band Edge Plot SISO ANT2 (Peak – UNII Band 2A)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 200 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



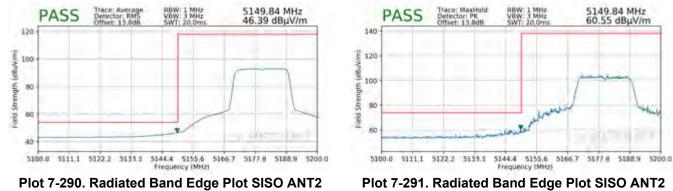
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100



Plot 7-287. Radiated Lower Band Edge Plot SISO ANT2 (Average – UNII Band 2C)

802.11ax
MCS0
3 Meters
5825MHz
165

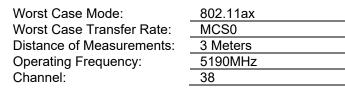
Plot 7-289. Radiated Upper Band Edge Plot SISO ANT2 (Peak – UNII Band 3)



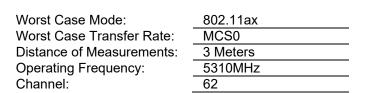
Plot 7-288. Radiated Lower Band Edge Plot SISO ANT2 (Peak – UNII Band 2C)

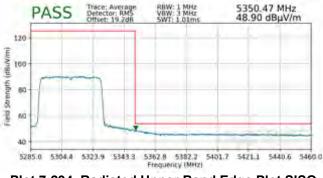
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 201 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 201 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019

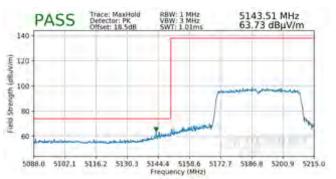
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36


(Average – WCP)

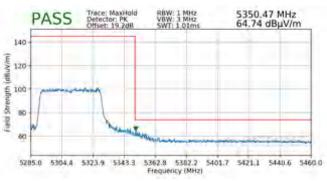
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 202 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 202 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019




7.6.9 SISO Antenna-2 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

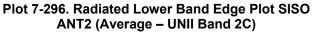


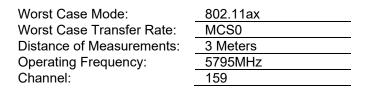
Plot 7-292. Radiated Lower Band Edge Plot SISO ANT2 (Average – UNII Band 1)

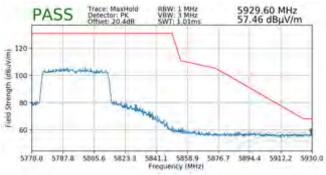


Plot 7-294. Radiated Upper Band Edge Plot SISO ANT2 (Average – UNII Band 2A)

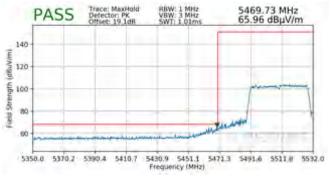
Plot 7-293. Radiated Lower Band Edge Plot SISO ANT2 (Peak – UNII Band 1)


Plot 7-295. Radiated Upper Band Edge Plot SISO ANT2 (Peak – UNII Band 2A)

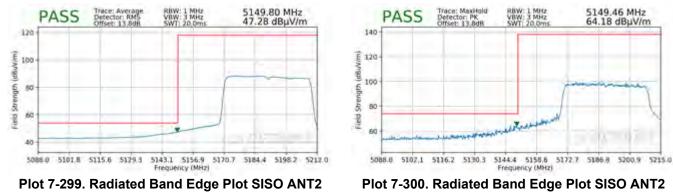

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 202 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 203 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102



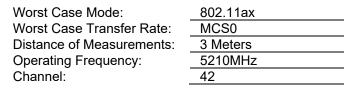
Plot 7-298. Radiated Upper Band Edge Plot SISO ANT2 (Peak – UNII Band 3)

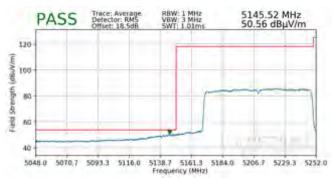


Plot 7-297. Radiated Lower Band Edge Plot SISO ANT2 (Peak – UNII Band 2C)

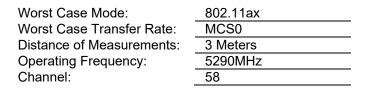
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 204 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 204 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019

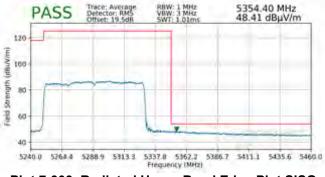
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38

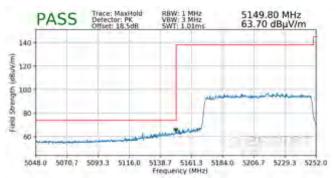

(Average – WCP)



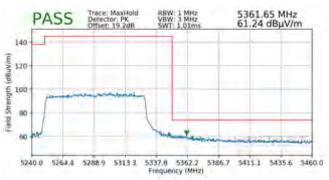
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 205 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 205 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019




7.6.10 SISO Antenna-2 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]



Plot 7-301. Radiated Lower Band Edge Plot SISO ANT2 (Average – UNII Band 1)

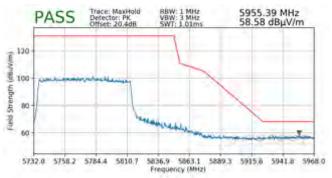


Plot 7-303. Radiated Upper Band Edge Plot SISO ANT2 (Average – UNII Band 2A)

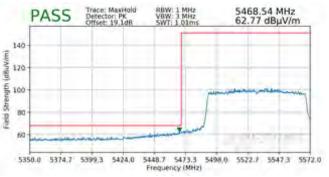
Plot 7-302. Radiated Lower Band Edge Plot SISO ANT2 (Peak – UNII Band 1)

Plot 7-304. Radiated Upper Band Edge Plot SISO ANT2 (Peak – UNII Band 2A)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 206 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 206 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



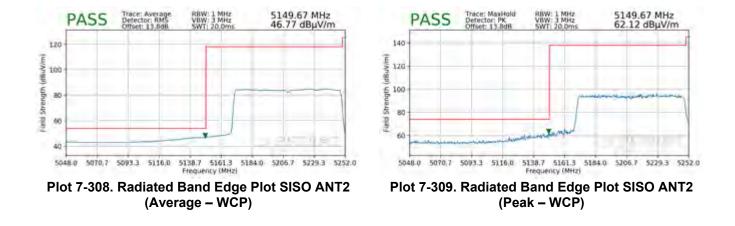
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106



Plot 7-305. Radiated Lower Band Edge Plot SISO ANT2 (Average – UNII Band 2C)

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

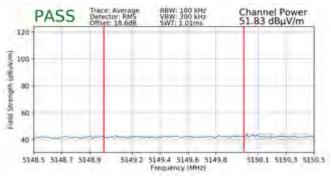
Plot 7-307. Radiated Upper Band Edge Plot SISO ANT2 (Peak – UNII Band 3)



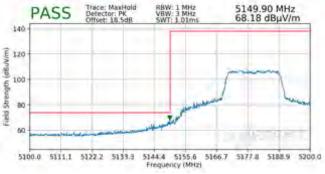
Plot 7-306. Radiated Lower Band Edge Plot SISO ANT2 (Peak – UNII Band 2C)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 207 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 207 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019

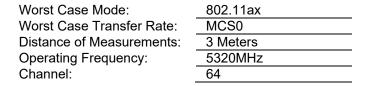
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42

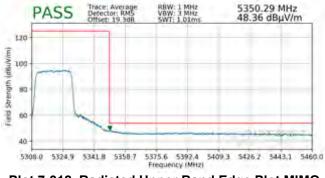


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 200 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 208 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



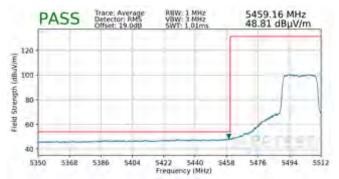
7.6.11 MIMO Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36



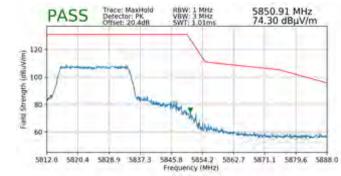
Plot 7-310. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)

Plot 7-311. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

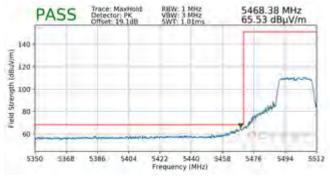


Plot 7-313. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 209 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



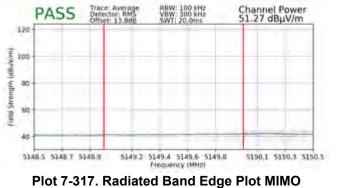
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100



Plot 7-314. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

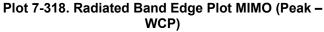
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

Plot 7-316. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)



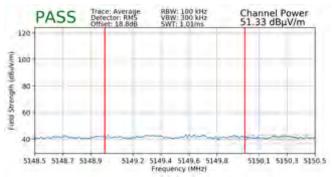
Plot 7-315. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 210 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 210 of 237
© 2019 PCTEST Engineering Laboratory, Inc.		V 9.0 01/18/2019	

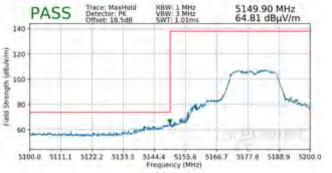


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

(Average – WCP)



FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 011 of 007
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 211 of 237
© 2019 PCTEST Engineering Laboratory, Inc.		V 9.0 01/18/2019	



7.6.12 CDD Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

Plot 7-319. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)

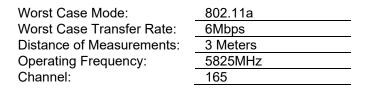
Plot 7-320. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

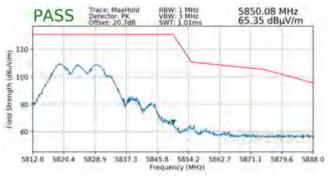
Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5320MHz
Channel:	64

Plot 7-321. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

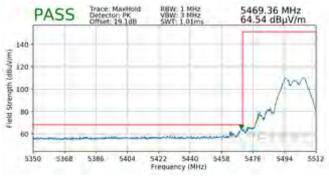


Plot 7-322. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 010 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 212 of 237
© 2019 PCTEST Engineering Laboratory, Inc.		V 9.0 01/18/2019	

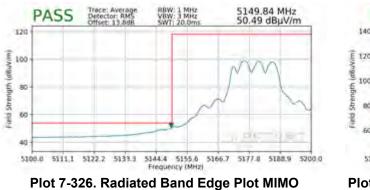


Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100

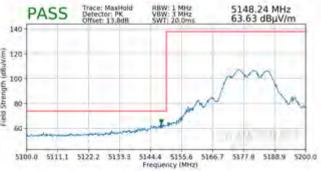


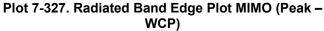
Plot 7-323. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

Plot 7-325. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)



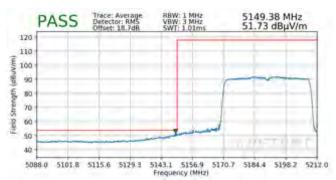
Plot 7-324. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 212 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 213 of 237
© 2019 PCTEST Engineering Laboratory, Inc.		V 9.0 01/18/2019	

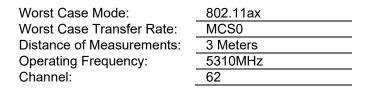


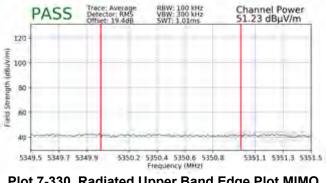
Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

(Average – WCP)

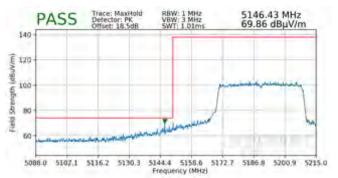


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 214 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 214 of 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019

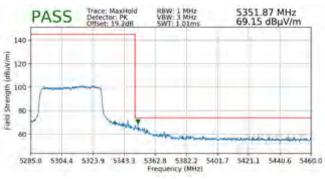



7.6.13 MIMO Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

802.11ax
MCS0
3 Meters
5190MHz
38

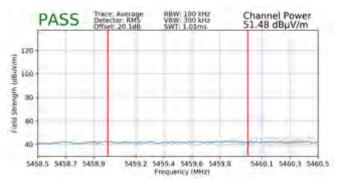


Plot 7-328. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)

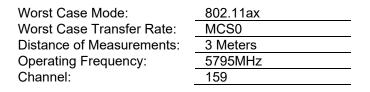


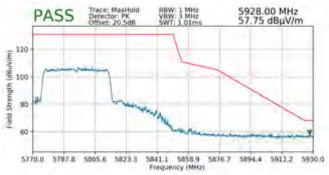
Plot 7-330. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

Plot 7-329. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

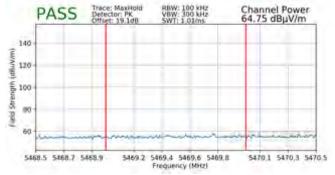


Plot 7-331. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 215 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 215 of 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019



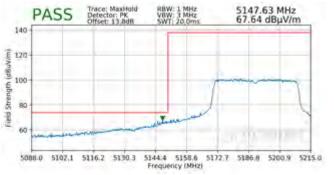
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102

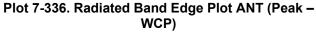


Plot 7-332. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

Plot 7-334. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)

Plot 7-333. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 216 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 216 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.	·	V 9.0 01/18/2019

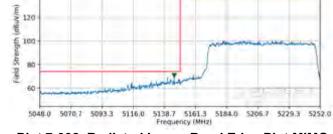


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38

Plot 7-335. Radiated Band Edge Plot ANT (Average – WCP)



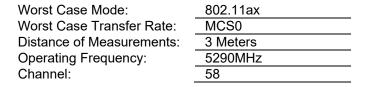
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 017 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 217 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.		V 9.0 01/18/2019



7.6.14 MIMO Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

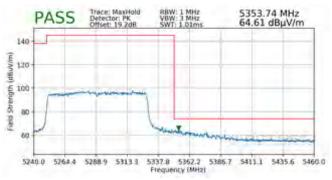
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42

Plot 7-337. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)


RBW: 1 MHz VBW: 3 MHz SWT: 1,01m 5145.72 MHz 69.19 dBµV/m

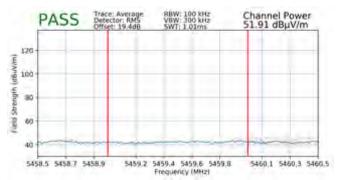
Trace: MaxHold Detector: PK Offset: 18.5dB

PASS


140

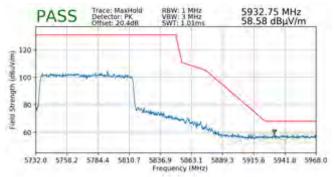
Plot 7-338. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

Plot 7-339. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

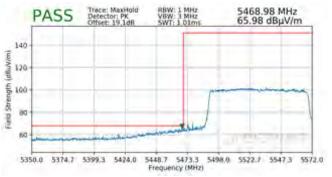


Plot 7-340. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 219 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 218 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.		V 9.0 01/18/2019



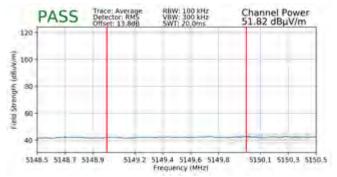
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106



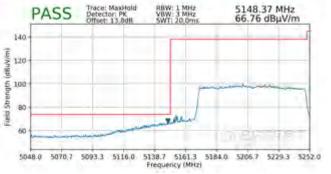
Plot 7-341. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

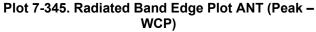
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

Plot 7-343. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)



Plot 7-342. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)


FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 210 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 219 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42

Plot 7-344. Radiated Band Edge Plot ANT (Average – WCP)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 220 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 220 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-65 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-74. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 221 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 221 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

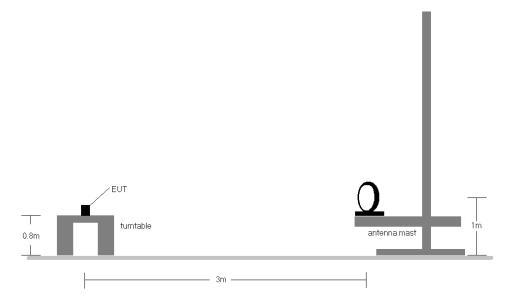
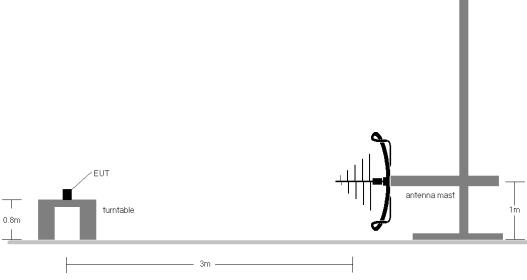
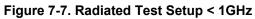
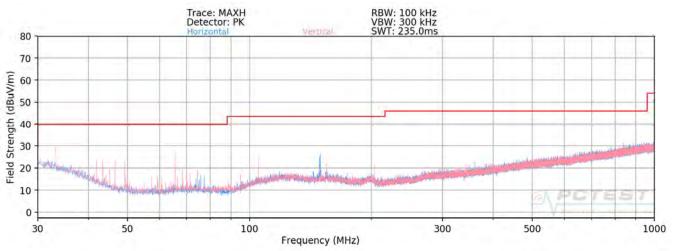




Figure 7-6. Radiated Test Setup < 30MHz

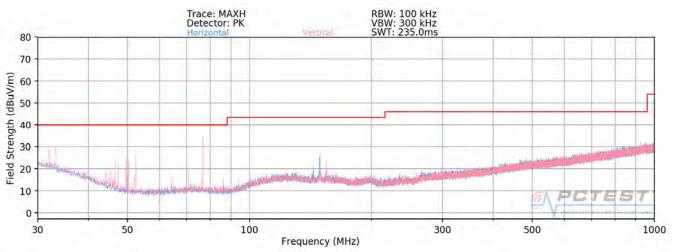
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 202 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 222 of 237
© 2019 PCTEST Engineering Laboratory, Inc.			V 9.0 01/18/2019



- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-65.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 202 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 223 of 237
© 2019 PCTEST Engineering La	boratory. Inc.	-	V 9.0 01/18/2019

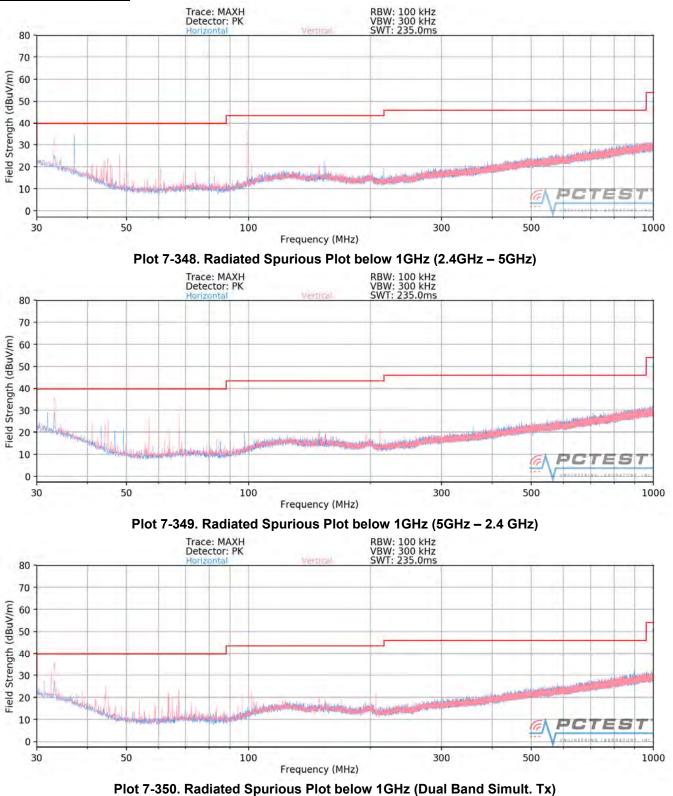
SISO Antenna-1 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]



Plot 7-346. Radiated Spurious Plot below 1GHz SISO ANT1 (802.11a - U3 Ch. 157)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 224 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 224 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.		V 9.0 01/18/2019

SISO Antenna-2 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]



Plot 7-347. Radiated Spurious Plot below 1GHz SISO ANT2 (802.11a - U3 Ch. 157)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 205 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 225 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.		V 9.0 01/18/2019

Simultaneous Tx Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 of 007
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 226 of 237
© 2019 PCTEST Engineering La	boratory. Inc.	•	V 9.0 01/18/2019

7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-75. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

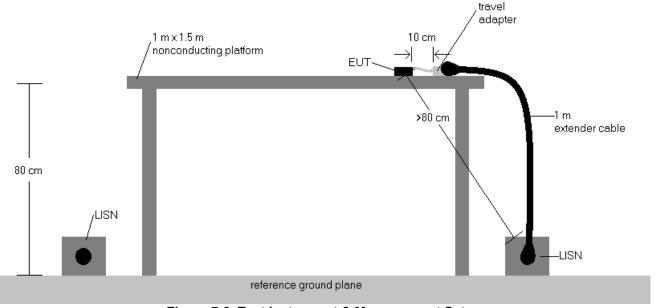
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

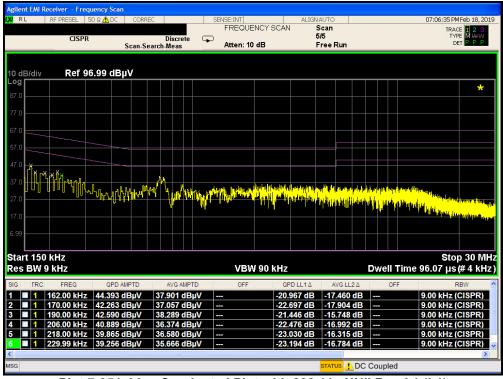
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

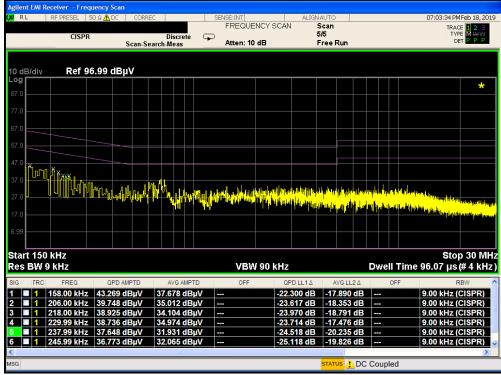
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 207 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 227 of 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019

Test Setup

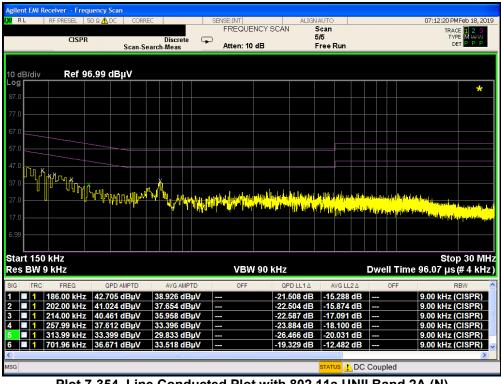
The EUT and measurement equipment were set up as shown in the diagram below.



Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

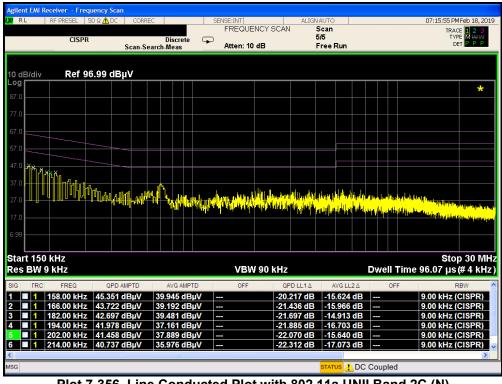
FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 220 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 228 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.		V 9.0 01/18/2019


Plot 7-352. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 229 of 237
© 2019 PCTEST Engineering Lal	poratory, Inc.		V 9.0 01/18/2019

RL	RF PRESEL	50 Ω 🤼	DC	CORR	REC					SE:INT			ALIC	in auto							07:09:3	2 PM F	eb 18, 20
	CISPI	R	S	can-Si	earch		crete as		2	FREQU Atten: 1		SCAN		Scan 5/5 Free							-	TRACE TYPE DET	123 M₩₩ PPPP
dB/div	Pof (96.99	dBul	,																			
g		0.35		, 																			
o																							*
o 																							
°	· · · · · · · · · · · · · · · · · · ·		*			=									1								
o 🗕 🗕 🗌																							
ԻՆյեն	10nĥ				l 🗼	<																	
	uuu interest																						
	լ վ՝ սլտվ	hadl			X (1		11.41	1.			ن يعلن	XX	År dat	to de la				. –					
- U	լ Մ՝ սլտվ	ԽԽ	ւրկլիպ	ավ	M/	١.		w.	M			Vertin	<mark>Ådan all</mark> Mandalla		latepter Late	<u>40 4</u>	eduals.	hun	lu shi	Dooga M		1	
	լ, ընդե	ախդ	ւկյի	h f	ň(1	1,	W	1-1hj		hiyin i					laterter Fritz	takan Mjur	edinale <mark>Prakta</mark>	lan Aliyi	in chi ¹ tr _{un} i	lagari Vittar		times.	
- U		hulvul	ւսլիս		Ň(1	N ^N	h					<mark>îstanlatı</mark> <mark>Adamlar</mark>	1111111 111 ₁₁	leter ⁽ ⁽ ⁽)	nden M ⁱⁿ	ideni İmiliye	l (den All y	la shri ^A fri _M ri	logan Vitera	N. Ang paga	times Yatibe	n ann ann an Tairtean
		Խլուր	104 <u>1</u> 014	lp¶ ⁴	Ň		M	- h					Îndone de Prince - P	i i i i i i i i i i i i i i i i i i i	laterter <mark>1. Antra 1. Antra</mark>	nden M ^{jur}	i dana İstiklar	l tan Tany	in and ^A lm _{ain} t	langan Militan		National Second	ni ang nenga <mark>alim at ni a</mark>
		տևդ	ענע _{נו} ותי	lp (1			** *	₩ ₩				Μ.ΥΥ΄	<mark>idadada</mark> Pinajer				t daget t og taget	h tan A shirt	la shr ^A lm _{a a}	lingen Villegen		Nata Mara	n an
0 0 9		տիշդ											indundada <mark>Andana -</mark> P				telogia telogia			linger Ville og			
0 0 9 2 art 150		տիսկ	(, 4,) , y	Lp-1 ⁻¹																	s	top	30 M
0 0 9		w W	<mark>ı∟ų_b)n</mark> ı	Lp-f ^{-f}							N 90						rinn I-HH Dw	rell			s	top	30 M
0 9 9 art 150 s BW 9	FREQ			PTD			G AMF					KHZ QP	D LL1 Δ		AVG LL		Dw			ie 91	S 5.07	itop µs (# RB	30 M ≇4 kH ₩
art 150 s BW 9	FREQ 218.00 kHz	z 40.1	2PD AMF 159 dE	PTD BµV		.17	1 dE	BμV		VBI		KHZ QP -22.7	D LL1A 736 dE	, , , , , , , , , , , , , , , , , , ,	6.724	dB	Dw		Tim	ie 91 9.	S 5.07 00 kH	itop µs (# RB	30 M # 4 kH W ISPR)
art 150 s BW 9	FREQ 218.00 kHz 625.63 kHz	z 40.1 z 34.2	2PD AMF 159 dE 287 dE	PTD BuV BuV	30	.17 .81	1 dE 5 dE	BμV BμV		VBI		kHz QP -22.7 -21.7	D LL1A 736 dE 713 dE		5.724 5.185	dB dB			Tim	ie 91 9. 9.	S 5.07 00 kH 00 kH	itop µs (# RB Iz (C Iz (C	30 M # 4 kH W ISPR) ISPR)
art 150 s BW 9	FREQ 218.00 kHz 625.63 kHz 713.96 kHz	z 40.1 z 34.2 z 39.5	2PD AMF 159 dE 287 dE 596 dE	PTD BuV BuV	30 35	.17 .81 .94	1 di 5 di 1 di	3μV 3μV 3μV	_	VBI		KHZ -22.7 -21.7 -16.4	D LL1A 736 dB 713 dB 104 dB	-16 -18 -18	6.724 5.185 0.059	dB dB dB			Tim	91 9. 9. 9.	S 5.07 00 kH 00 kH 00 kH	itop µs (# RB Iz (C Iz (C	30 M # 4 kH W ISPR) ISPR) ISPR)
art 150 s BW 9	FREQ 218.00 kHz 625.63 kHz 713.96 kHz 2.7978 MH	z 40.1 z 34.2 z 39.5 z 31.9	2PD AMF 159 dE 287 dE 596 dE 598 dE		30 35 28	.17 .81 .94 .36	1 di 5 di 1 di 1 di	3µV 3µV 3µV 3µV		VBI		кНz 22.7 21.7 16.4 24.0	D LL1A 736 dE 713 dE 404 dE 002 dE	, -10 -11 -10 -11	6.724 5.185 0.059 7.639	dB dB dB dB			Tim	ie 91 9. 9. 9. 9.	S 5.07 00 kH 00 kH 00 kH 00 kH	itop µs (# Iz (C Iz (C Iz (C	30 M # 4 kH ISPR) ISPR) ISPR) ISPR) ISPR)
art 150 s BW 9	FREQ 218.00 kHz 625.63 kHz 713.96 kHz 2.7978 MH 2.9218 MH	z 40.1 z 34.2 z 39.5 z 31.9 z 31.5	2PD AMF 159 dE 287 dE 596 dE 998 dE 510 dE	ртр ЗµV ЗµV ЗµV ЗµV	30 35 28 28	.17 .81 .94 .36	1 d 5 d 1 d 1 d 8 d	3μV 3μV 3μV 3μV 3μV		VBI		KHz -22.7 -21.7 -16.4 -24.0 -24.4	D LL1A 736 dE 713 dE 404 dE 002 dE 490 dE	-16 -16 -17 -17 -17	6.724 5.185 0.059 7.639 7.212	dB dB dB dB dB			Tim	91 9. 9. 9. 9. 9. 9. 9. 9.	S 5.07 00 kH 00 kH 00 kH 00 kH	itop µs (# Iz (C Iz (C Iz (C Iz (C	30 M # 4 kH ISPR) ISPR) ISPR) ISPR) ISPR)
art 150 s BW 9	FREQ 218.00 kHz 625.63 kHz 713.96 kHz 2.7978 MH	z 40.1 z 34.2 z 39.5 z 31.9 z 31.5	2PD AMF 159 dE 287 dE 596 dE 998 dE 510 dE	ртр ЗµV ЗµV ЗµV ЗµV	30 35 28 28	.17 .81 .94 .36	1 di 5 di 1 di 1 di	3μV 3μV 3μV 3μV 3μV		VBI		KHz -22.7 -21.7 -16.4 -24.0 -24.4	D LL1A 736 dE 713 dE 404 dE 002 dE	-16 -16 -17 -17 -17	6.724 5.185 0.059 7.639	dB dB dB dB dB			Tim	91 9. 9. 9. 9. 9. 9. 9. 9.	S 5.07 00 kH 00 kH 00 kH 00 kH	itop µs (# Iz (C Iz (C Iz (C Iz (C	30 M # 4 kH ISPR) ISPR) ISPR) ISPR) ISPR)

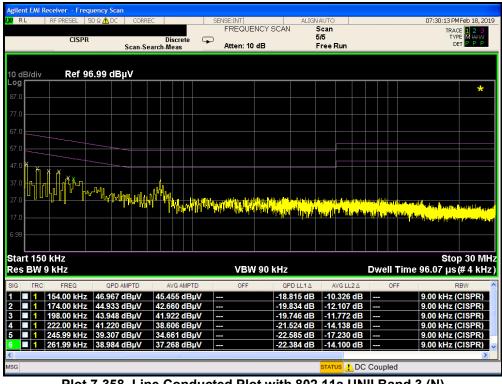
Plot 7-353. Line Conducted Plot with 802.11a UNII Band 2A (L1)


Plot 7-354. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 220 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 230 of 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019

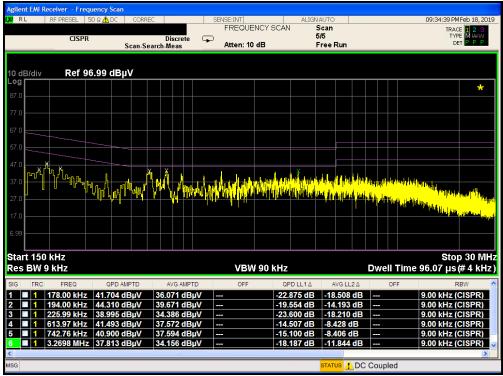
	RF PRESEL	50 Ω 🚹	DC	CORR	EC		_			E:INT				GN AUTO							07::		MFeb 18	
	CISPE	R	S	can-S	earch		crete	9		REQU		SCAN		Scan 5/5 Free									ACE 1 2 /PE M W DET P P	3 .W P
dB/div	Ref 9	96.99	dBu\	,																				
g																								*
0																								
0																								
U																								
							=																	ſ
	, AND N.	4			. /)																		
	o nii o ()o (41 -)	V/M	ղիրդ	الروران	Ψ.	k I	ditio		Jan a	لياله و	المربعا فأ		Athenas		له مر	1.1.1	a	1.1.	ын					
				1111 LAT U	- 4			100.0	W WW	Chronine 1		ingen in teg hiti sa di	r de de la c	des tribut	111	9 J	100	out a	and the	CALCER 1	1 au	. L.		
	U	•h	1.6	nfN .		1	 '	Y	W W	y the state								inter Inter	VII.	Justili	n Maria A Maria	ti din	Transference	¹ TI
		•_v		niĥi .		4	1 1'''	WW	yr wy y	, in the									V h	<mark>ji di</mark>	n hite Ningal	in eile. <mark>Jeang</mark>	an an an an an an an an an an an an an a	Ън _{eb}
		U		n fiði -		1		TY HA	all and a	In the second second second second second second second second second second second second second second second							(1)))) (1))))		V ¹ II	<mark>ji je</mark> ni		nedia <mark>Juany</mark>	ar ang tutu Ngang tutu	۲۲ مد
o				n fol				TY HA				<u> </u>							V"),			neolio <mark>Jarac</mark> y	1. 22 20 2. 20 1. 22 20 2. 20	רי שיי
9							/ 1 "	ΨΨΨ														Sto	op 30	M
o 9 art 150	kHz						1			· 	N 90						Dv	vel				Sto		M
9 art 150 s BW 9	kHz		PD AMF			AVO	G AMF	PTD		· 		kHz	D LL1A		AVG LL	.2 Δ	Dv					Sto	op 30	M
art 150 s BW 9	kHz kHz FREQ 162.00 kHz	Q 44.3	IPD AMF	PTD	39	9.11	7 dE	BμV		VBI		kHz QF	D LL1A 962 dE	3 -1	6. 24 3	dB	Dv	(I Ti	me	96.0 9.00	Sto 7 µs	op 30 5 (# 4 I RBW (CISPI	M ∢⊦ २)
art 150 s BW 9	KHZ KHZ FREQ 162.00 KHZ 174.00 KHZ	2 44.3 2 43.8	PD AMF 199 dE 71 dB	PTD BµV BµV	39	9.11 0.49	7 dE 1 dE	3μV 3μV		VBI		KHz QF -20.1	D LL1A 962 dE 897 dE	3 -1(3 -1(6.243 4.277	dB dB		(-	I Ti	me	96.0 9.00 9.00	Sto 97 µs kHz kHz	pp 30 s (# 4 I RBW (CISPI (CISPI	M <⊢ २)
art 150 s BW 9	kHz kHz FREQ 162.00 kHz	2 44.3 2 43.8 2 43.2	IPD AMF	PTD BµV BµV BµV	39	9.11 0.49 8.26	7 dE	3μV 3μV 3μV	_	VBI		KHz -20.1 -20.1	D LL1A 962 dE	3 -1 3 -1 3 -1	6. 24 3	dB dB dB		(-	I Ti	me	96.0 9.00 9.00 9.00	Sto 17 µs kHz kHz kHz	op 30 5 (# 4 I RBW (CISPI	™ <। २) २)
art 150 s BW 9 trc 1 1 1 1 1 1 1 1 1 1	kHz kHz 162.00 kHz 174.00 kHz 182.00 kHz 194.00 kHz 229.99 kHz	2 44.3 2 43.8 2 43.2 2 42.4 2 39.7	PD AMF 99 dE 71 dE 75 dE 81 dE 20 dE	РТD ВµV ВµV ВµV ВµV ВµV	39 40 38 37 34	9.11 0.49 8.26 7.26 4.62	7 di 1 di 6 di 8 di 9 di	3μV 3μV 3μV 3μV 3μV		VBI		kHz -20.9 -20.1 -21.1 -21.1 -21.1 -22.1	D LL1A 962 dE 897 dE 119 dE 383 dE 730 dE	3 -1(3 -1) 3 -1(3 -1) 3 -1(3 -1)	6.243 4.277 6.128 6.596 7.821	dB dB dB dB dB		(I Ti	me	96.0 9.00 9.00 9.00 9.00	Sto 7 µs kHz kHz kHz kHz kHz	pp 30 s (# 4 I (CISPI (CISPI (CISPI (CISPI (CISPI (CISPI	▼ ↓
art 150 s BW 9 IRC 1 1 1 1 1 1 1 1 1 1 1 1	KHz KHz FREQ 162.00 kHz 174.00 kHz 182.00 kHz 194.00 kHz	2 44.3 2 43.8 2 43.2 2 42.4 2 39.7	PD AMF 99 dE 71 dE 75 dE 81 dE	РТD ВµV ВµV ВµV ВµV ВµV	39 40 38 37 34	9.11 0.49 8.26 7.26 4.62	7 de 1 de 6 de 8 de	3μV 3μV 3μV 3μV 3μV		VBI		kHz -20.9 -20.1 -21.1 -21.1 -21.1 -22.1	D LL1A 962 dE 897 dE 119 dE 383 dE	3 -1(3 -1) 3 -1(3 -1) 3 -1(3 -1)	6.243 4.277 6.128 6.596	dB dB dB dB dB		(I Ti	me	96.0 9.00 9.00 9.00 9.00	Sto 7 µs kHz kHz kHz kHz kHz	000 30 6 (# 4 1 RBW (CISPI (CISPI (CISPI (CISPI	◎ <

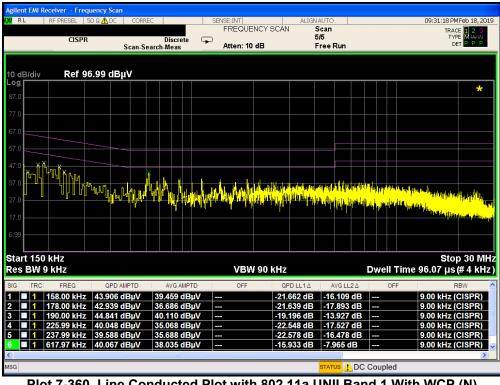
Plot 7-355. Line Conducted Plot with 802.11a UNII Band 2C (L1)



FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 221 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 231 of 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019

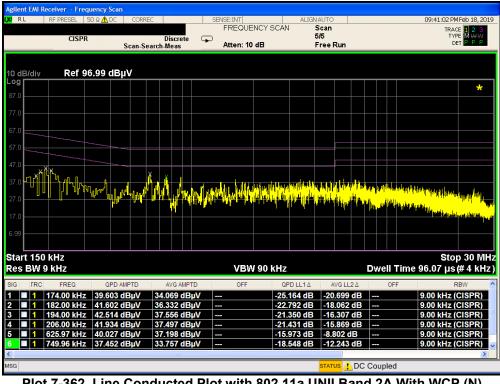
	RF PRESEL	50 Ω 🧘	DC	CORR	EC				SENSE	E:INT REQUE		COAN	ALIC	SN AUTO Scar							07:2		MFeb 1	
	CISPI	R	S	can-Se		Disc Mea		Ģ	5	tten: 1		SCAN		5/5 Free								TY	CE 1 2 PE M W DET P F	4W
dB/div	Ref 9	96.99	dBµ\	,																				
^g							Τ												Τ					*
.0																								
.0																								
·		_																						
							+								-									
₀╟ĹſĹ	ĴhŇ I љ				. ňu																			
_µ∥∥	ՙՙՙֈֈՠֈֈՙՠ	կլլո		_shall	1,114,14	Υ.	١.	utilities	a ala	an e st	Lines and Lines	han bear	يلغ بين	است ا	II						la .			
			1 .mlW	s jaind fill l				TU NINNUN	Har III		auto di	רפופיך		of such a	Sec.	<mark>defilied</mark>	and be	1.0		1110035				
			11 թայթյ։ Դի	fund hill	n	"	ų₩	T hink	ry r	WW			n al	al Tal		endinan Marija		ad yu	ulii,	nnan Ma ⁿ n		li dun	ki da kiliki	sky,
			f ¹ uha	And ML	₩	μ.	ŅΪĬĬ	, ANAMA	r _h rr			14.41 14.41				la film Na Station		adout adout	nny Ny	n an	li direla Indiana	<mark>l) (</mark> lain <mark>Lina a (la</mark>	<mark>ipapana</mark>	sty. _{IP}
.0			lo ⁿ ley.	And All	n	***	μŴ	U ANNA A								la dina Militaria Militaria		adall adall	an an an an an an an an an an an an an a	ng Pa		<mark>l) (</mark> landa) <mark>Landa (</mark> m	ha dhatailte Nathatailte	tid. −nγ
.0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And All	¥ 4	** (NHI I	a k alana												M _{lp} ha		<mark>di sikata</mark> <mark>Lita si je</mark>	N de talut <mark>P</mark> de parter	Al _{da} ∼op
.0 39 art 150) kHz		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And ML			ηψ I													M _{lp} B _A			р 30	
.0 39 art 150) kHz			And Mb							N 90	kHz					Dv	vell	Tir	me (96.0		p 30	
.0 39 art 150 95 BW 1) kHz	Q	IPD AMP		_		AMP	TD				QP	DLL1A		AVG LI				Ti	- [7 µs	(# 4 RBW	kН
.0 99 art 150 es BW 1) KHZ 9 KHZ FREQ 158.00 KHZ	Q z 42.5	PD AMF	μV	38.	.054	dB	TD		VBV		QP	96 dE	3 -1	7.514	dB		C			9.00	7 µs kHz	(# 4 RBW (CISP	kH R)
.0 99 art 150 es BW 1) KHz 9 KHz 158.00 KHz 178.00 KHz	z 42.5 z 43.8	PD AMF 73 dE 43 dE	βµV βµV	38. 40.	.054 .104	dB dB	тр тр з µV		VBV		QP -22.9	996 dE 736 dE	3 -1 3 -1	7.514 4.475	dB dB		C			9.00 9.00	7μs kHz kHz	(#4 RBW (CISP (CISP	kH R) R)
.0 99 art 150 es BW 1) KHz 9 KHz FREQ 158.00 KHz	z 42.5 z 43.8 z 41.6	PD AMF	BμV BμV BμV	38. 40. 37.	.054 .104 .659	dB	TD SµV SµV		VBV		QP -22.9 -20.7	96 dE	3 -1 3 -1 3 -1	7.514	dB dB dB		0			9.00 9.00 9.00	7 µs kHz kHz kHz	(# 4 RBW (CISP	kH R) R) R)
.0 39 art 150 95 BW 1) kHz 9 kHz 158.00 kHz 178.00 kHz 194.00 kHz 214.00 kHz 673.96 kHz	z 42.5 z 43.8 z 41.6 z 38.0 z 37.7	PD AMF 73 dB 43 dB 83 dB 31 dB 88 dB	BμV BμV BμV BμV	38. 40. 37. 35. 34.	.054 .104 .659 .146 .122	dE dE dE dE dE dE	TD SUV SUV SUV SUV		VBV		QP -22.9 -20.7 -22.1 -25.0 -18.2	996 dE 736 dE 181 dE 017 dE 212 dE	3 -1 3 -1 3 -1 3 -1 3 -1 3 -1	7.514 4.475 6.205 7.903 1.878	dB dB dB dB dB dB		C			9.00 9.00 9.00 9.00 9.00	7 μs kHz kHz kHz kHz kHz	(# 4 RBW (CISP (CISP (CISP (CISP (CISP	k R) R) R) R)
art 150 es BW 5 Inc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) kHz 9 kHz 158.00 kHz 178.00 kHz 178.00 kHz 214.00 kHz	z 42.5 z 43.8 z 41.6 z 38.0 z 37.7	PD AMF 73 dE 43 dE 83 dE 31 dE	BμV BμV BμV BμV	38. 40. 37. 35. 34.	.054 .104 .659 .146 .122	dE dE dE dE	TD SUV SUV SUV SUV		VBV		QP -22.9 -20.7 -22.1 -25.0 -18.2	996 dE 736 dE 181 dE 017 dE	3 -1 3 -1 3 -1 3 -1 3 -1 3 -1	7.514 4.475 6.205 7.903	dB dB dB dB dB dB		C			9.00 9.00 9.00 9.00 9.00	7 μs kHz kHz kHz kHz kHz	(# 4 RBW (CISP (CISP (CISP (CISP	kH R) R) R) R)


Plot 7-357. Line Conducted Plot with 802.11a UNII Band 3 (L1)


Plot 7-358. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 022 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 232 of 237
© 2019 PCTEST Engineering Lal	boratory, Inc.		V 9.0 01/18/2019

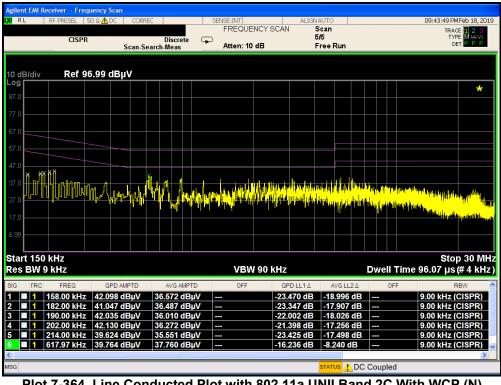
Plot 7-359. Line Conducted Plot with 802.11a UNII Band 1 With WCP (L1)


Plot 7-360. Line Conducted Plot with 802.11a UNII Band 1 With WCP (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 022 of 027
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 233 of 237
© 2019 PCTEST Engineering La	poratory, Inc.		V 9.0 01/18/2019

RL	RF PRESEL	50 Ω 🧘	DC	CORR	EC					SE:INT					GN AU							0			eb 18, 20
	CISPE	ł	S	can-S	earc		crete as		2	FREC Atten		NCY 8	SCAN		Sca 5/5 Fre	n e Ru	ın						т		1 2 3 M₩₩ P P P P
dB/div	Pef 0	6.99	dBuð	,																					
g			l I																						*
																									*
.0																									
.0																									
			_																						
.0	K K				Xv	~	_									╞	\rightarrow	\rightarrow							
₀┡╖ᡗ	híl. L.	n			ηţ	Â	J		l.	. 1	الدم	No. A	La section	ահոհո	Labela	ш	144	1.1	. ا	U.s	ال مناه	h.,.			
	<u> </u> Դ ՄՆԴ	ๆ [LL I	<u>_h</u>	٧ì	n"	ιų,	J. J.	MAN	HH M		W) n	Umr	lul pi	a ha an	n lie	ուլ Հան	L.	and.			. nddb	di _{n n} di	6. J.,	.d. the bar
.0	•						ų i	142	dine.	- tr. tr	19		<u> </u>		<mark>h h</mark> l i		T II		W	i lati	i, d	hu			e e de la
.0																					· 1		T la p	Nill er	ي فقد الل
art 150																									30 M
s BW 9	KHZ									v	ВW	90	KHZ						JWe		TIM	e 96	.07 J	IS (#	4 k⊦
TRC	FREQ	Q	PD AMP	DTO		AV	g amp	PTD		0	FF		QP	D LL1	7	AVG	LL2	Δ		OF	F			RB)	V
	198.00 kHz		28 dE			7.91								266 d			81 d								SPR)
	225.99 kHz		20 dE			2.65								076 d			40 d						00 kH		
	613.97 kHz 673.96 kHz		<u>11 dE</u> 23 dE			7.30 6.58								4 <u>89 d</u> 377 d			9 dE 8 dE						00 kH		
	673.96 KHZ 738.33 kHz		23 dE 39 dE			0.58 8.64								961 d			8 dE 9 dE								SPR)
للا الكلي وعداد																									
1	1.1299 MHz	z 40,2	42 dE	SUV_	4	0.73	5 a E	sµv_					-15.	758 d	в –	5.20	5 dE	s _				9.0)0 kH	z (Cl	SPRI

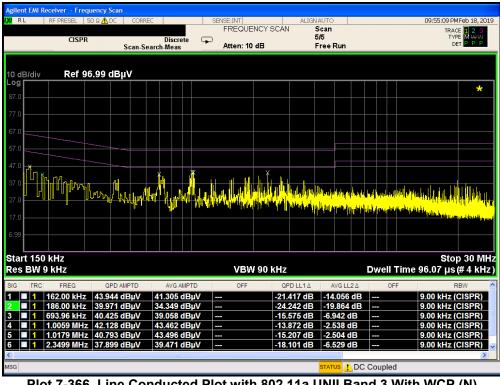
Plot 7-361. Line Conducted Plot with 802.11a UNII Band 2A With WCP (L1)


Plot 7-362. Line Conducted Plot with 802.11a UNII Band 2A With WCP (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 224 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 234 of 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019

	RF PRESEL	50 Ω 🧥	DC	CORR	REC				SE	ENSE:I					GN AUT						0	09:46:4	2 PM F	eb 18, 2
	CISPI	R	s	can-S	earc		scret	e	₽		EQUE en: 10		SCAN		Scar 5/5 Free	Run						1		1 2 3 M₩₩ P P P
				cun-o	cure																			
dB/div g	Ref 9	96.99	dBµ\	V								1							_	1				
.0																								*
.0																								
°																								
0								+								╞		Ħ	+					
o ă																								
٦Ň, 📙	XX				Ň.	¥.			ł		ι.		hud	Installe			alle.							
.□┠┛┨╶┟┼	ֈֈֈֈֈֈֈֈֈֈֈֈֈ	46.8		արեր հ		V L	М,	wi kal	սի խհ	N W	h			n provin 14	ीन जिम् जिन्द्र		16 C 1	Nyi le	ahder	n da p	n thủ g	all and	ı b	n Jaar
		ԱստՈ	, M	₩∕L∕I		V,	h.	MM	A M	i ya	h		Ŵ		a an an an an an an an an an an an an an	a ta ang <mark>ang ak p</mark> i	u U yry	n na a Na angla	abder N. (m.	ingenige i Ingenige i	ndinin Vilitin		<mark>l)eta</mark>	u Milly
.0		Ասվ		_₩ ኯኒ/	T (h. H	₩ <mark>M</mark>	N.	i i i i i i i i i i i i i i i i i i i	hyl						u yy U yy	ar _{to} d	dadar <mark>Yu</mark> lar	ingelige Ngalige Ngalige	ndinin Nijira,	^{lali} dos) <mark>Dodic</mark> ji	ilutaa <mark>Y^{iri}aa</mark>	ull ⁱ nly antora ,
		U _{lo} nil		ነት			h h	4 .	ښ ې	h iji)	h yl l				dangan dangan d		u yy U yyr	an the state of th		inter and a second second second second second second second second second second second second second second s Inter second second second second second second second second second second second second second second second s	ng Anity Ng Hita ng	laik (ker) <mark>(* Leskie</mark> g	l)woo <mark>y</mark> thau	u <mark>l'Andy</mark> underse,
.0 <mark>.0</mark> .0 .0				\\/\ 			, Py	*())	μ μ	d yn d								^{an} the second		in and a second se	nin djita	laik (tea) (tealing	l) Maa <mark>, ililaa</mark>	u N N N
	KH2			ΥΥ Υ				** \ M]	4									^{an} an an an an an an an an an an an an an		it, it _{de}	ninh Ninh			
0 9 9 art 150				\\\ \ \					<u> </u>			90										s	top	30 M ¥ 4 KH
art 150 s BW 9	kHz						G AM						kHz						ell	Tim		s	itop µs(#	30 M ≇4 kH
art 150 s BW 9					3		G AM				VBV		KHZ	D LL1A		AVG LL	-2 Δ			Tim	e 96	S).07	itop µs (†	30 M ≇4 kH
art 150 s BW 9	FREQ 154.00 kHz 182.00 kHz	z 43.1 z 40.8	49 dE 65 dE	BμV BμV	3	8.23 5.22	9 d 3 d	Βµ\ Βµ\	/ -		VBV		KHz QF -22.	D LL1 A 632 dE 529 dE	3 -1 3 -1	AVG LL 7.542 9.171	.2∆ dB dB		ell	Tim	e 90	S 5.07 00 kH	itop µs († RE Iz (C	30 M # 4 kF W ISPR) ISPR)
art 150 s BW 9	FREQ FREQ 154.00 kHz 182.00 kHz 202.00 kHz	z 43.1 z 40.8 z 42.2	49 dE 65 dE 88 dE	BμV BμV BμV	3	8.23 5.22 7.10	89 d 23 d 00 d	Βµ\ Βµ\ Βµ\	/ - / -		VBV		KHz -22. -23.	D LL1A 632 dE 529 dE 241 dE	3 -1 3 -1 3 -1	AVG LL 7.542 9.171 6.428	.2∆ dB dB	Dw 	ell	Tim	e 96 9. 9. 9.	S 5.07 00 kH 00 kH 00 kH	itop µs († RE Iz (C Iz (C	30 M # 4 kH ISPR) ISPR) ISPR)
art 150 s BW 9	FREQ 54.00 kHz 154.00 kHz 182.00 kHz 202.00 kHz 210.00 kHz	z 43.1 z 40.8 z 42.2 z 40.8	49 dE 65 dE 88 dE 93 dE	3μV 3μV 3μV 3μV	3 3 3	8.23 5.22 7.10 6.88	89 d 23 d 00 d 89 d	Βμ\ Βμ\ Βμ\ Βμ\	/ - / - / -		VBV		kHz -22. -23. -21. -22.	D LL1A 532 dE 529 dE 241 dE 312 dE	3 -1 3 -1 3 -1 3 -1 3 -1	AVG LI 7.542 9.171 6.428 6.317	2∆ dB dB dB		ell	Tim	e 96 9. 9. 9. 9.	S 5.07 00 kH 00 kH 00 kH 00 kH	itop µs († Iz (C Iz (C Iz (C	30 M # 4 kH ISPR) ISPR) ISPR) ISPR)
art 150 s BW 9	FREQ FREQ 154.00 kHz 182.00 kHz 202.00 kHz	z 43.1 z 40.8 z 42.2 z 40.8 z 41.4	49 dE 65 dE 88 dE	3μV 3μV 3μV 3μV 3μV	3 3 3 3	8.23 5.22 7.10 6.88 7.65	89 d 23 d 00 d 89 d 55 d	Βµ\ Βµ\ Βµ\	/ - / - / -		VBV		KHz -22. -23. -21. -22. -24.	D LL1A 632 dE 529 dE 241 dE	3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1	AVG LL 7.542 9.171 6.428	2∆ dB dB dB dB	Dw 	ell	Tim	e 96 9. 9. 9. 9. 9. 9.	S).07 00 kH 00 kH 00 kH 00 kH 00 kH	itop µs († Iz (C Iz (C Iz (C Iz (C	30 M # 4 kH ISPR) ISPR) ISPR)

Plot 7-363. Line Conducted Plot with 802.11a UNII Band 2C With WCP (L1)


Plot 7-364. Line Conducted Plot with 802.11a UNII Band 2C With WCP (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 225 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 235 of 237
© 2019 PCTEST Engineering La	poratory, Inc.		V 9.0 01/18/2019

RL	RF PRESEL	50 Ω 🧥	DC	CORRE	C				SENSE FF		ENCY :	CAN	ALIG	VAUTO Scan						09:		MFeb 18	
	CISPE	R	s	can-Se		Discr Meas		Ģ)	ten: 10				5/5 Free	Run							ACE 12 /PE M W DET P P	
	Dof (d D)	,																			
dB/div g	Reis	96.99	авµч												1								
																							*
.0																							
.0																							
.0																							
.0					-X	+				x	×	_				-							
			lu -		ո հե		. 1			. I	1. ¹ . 1	Lat I	1	1		L.							
		_						_	1	Let the			iller fill.	الم الم ال	N. 1.	والمتلكية	1. 1. 1.	11	الداليات				
╹╹	ՐԱՐՐԴԿ	l. l	լնո	al ar	W.	l u	, W		h (4)			1H			n n	a de la constante de	1 <mark>7</mark> 111	nd de	ndullet	<mark>i Priba</mark> l	line hale	ألامت البار	H.
_ חול און ה	ſ ^ĸ ĿſĬſŰŀŀĸ	And a	, î î î î	d)/*	W	Ŵ	i W	W	<mark>₩</mark> ₩					latera da,	n a Ngg	epika) Njar	Trini Nahi	ntell Thin	ndahd Nach	in anna Mh	Weekster	ul ni	ll.
.0 .0 .0	ſ⁰┟╢╏╜╏╨╖		, <mark>j</mark> îu,	¢) /*	M	۱,	rw)		<mark>∲Å<mark>∦</mark>∦∕</mark>					<mark>(111) (</mark> 111) (nd de Calep	n de dij Nji na s	in an	ndall All ha	ntidot Typyt	identeal Villagar	Nortofr ^{Ader} yst	uU,n₩ ^A ra _{alaa}	ال
.0 .0	<u>ויירין גע</u> ראיי		, Lu	Ų₽ ^m	W"	۱,	rw)		¢Å <mark></mark> ₩∕					<mark>(state)</mark> Generates	nd yn Malegy	seleti Njur	Tolai National	n (all) State	ndatad Tiqaya	identean Vél _{ispo} r	n an	uluyni ^{Arugul} ar	()).
				U ∕″			 		n an						n en Hater		1 Talin M	ntell Title	ntabit Typyte	terran Villapar	lley toje ¹ dec _{ije} j	ulu,n∥ ^A naassas	₩ ,
.0 .0 .9							/								ridan Fidar		10 10		n dahar Tapa da	it ring) Vil _{i (n.} ,			
0 0 19 29 art 150	kHz					W			¢M _A ∕						" 40 " 40 						Sto	op 30	M
art 150	kHz kHz			1					¢Μ _γ γ∕	VBV	v 90	٢	· ·				Dwe	ell T	ime		Sto	op 30 s (# 4 I	M
art 150 s BW 9	KHz KHz FREQ					AVG /	AMPT		¢. Aγγγ)			(Hz QPC	DLL1Δ	A	NVG LL		Dwe		ime	96.0	Sto 07 µs	op 30 s (# 4 I	M
art 150 s BW 9	KHz kHz kHz FREQ 725.96 kHz	z 43.2	23 dE	BμV	41.3	AVG /	AMPT			VBV		(Hz 0PC -12.7	DLL1A 777 dB	A	WG LL	iΒ		ell T	ime	96.0	Sto 07 µs 0 kHz	op 30 6 (# 4 RBW (CISPF	M kH R)
art 150 s BW 9	KHz 9 KHz FREQ 725.96 KHz 977.94 KHz	z 43.2 z 42.7	23 dE 56 dE	BμV BμV	41.3 42.2	AVG / 329 263	AMPT dBj dBj			VBV		(Hz _12.7 _13.2	DLL1A 777 dB	A -4.(-3.1	WG LL 671 c 737 c	iB iB		ell T	ime	96.0 9.00	Sto 07 µs) kHz) kHz	pp 30 s (# 4 H RBW (CISPF (CISPF	M kH R) R)
art 150 s BW 9 I TRC I 1 I 1 I 1 I 1	KHz KHz 725.96 kHz 977.94 kHz 997.94 kHz 1.5979 MH:	z 43.2 z 43.2 z 42.7 z 42.3 z 42.3	23 dE 56 dE 09 dE 70 dE	3μV 3μV 3μV 3μV	41.3 42.2 44.1 42.4	AVG / 329 263 102 417	AMPT dBi dBi dBi			VBV		(Hz -12.7 -13.2 -12.2	DLL1A 777 dB	A -4.(-3.) -1.(-3.)	WG LL 671 c 898 c 583 c	iB iB iB iB		ell T	ime	96.0 9.00 9.00 9.00	Sto 07 µs 0 kHz 0 kHz 0 kHz 0 kHz	pp 30 s (# 4 H (CISPF (CISPF (CISPF (CISPF	M kH R) R) R) R)
art 150 s BW 9 1 1 1 1 1	KHZ FREQ 725.96 kHz 977.94 kHz 997.94 kHz 2.1339 MH:	z 43.2 z 43.2 z 42.7 z 42.3 z 42.3 z 42.3	23 dE 56 dE 09 dE 70 dE 79 dE	3μV 3μV 3μV 3μV 3μV	41.3 42.2 44.7 42.4 41.9	AVG / 329 263 102 417 957	AMPT dBj dBj dBj dBj dBj	1∧ 1∧ 1∧ 1∧ 1∧ 1∧ 1∧		VBV		<hz -12.7 -13.2 -12.2 -13.6 -13.4</hz 	2LL1A 77 dB 44 dB 91 dB 30 dB 21 dB	-4.(-3.) -1.(-3.) -3.(WG LL 671 c 737 c 898 c 583 c 043 c	iB iB iB iB iB		ell T	ime	96.0 9.00 9.00 9.00 9.00	Sto 07 µ9 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz	pp 30 6 (# 4 H (CISPF (CISPF (CISPF (CISPF (CISPF	M KH R R R R R R R R R R R R R R R R R R
art 150 s BW 9 1 1 1 1 1	KHz KHz 725.96 kHz 977.94 kHz 997.94 kHz 1.5979 MH:	z 43.2 z 43.2 z 42.7 z 42.3 z 42.3 z 42.3	23 dE 56 dE 09 dE 70 dE 79 dE	3μV 3μV 3μV 3μV 3μV	41.3 42.2 44.7 42.4 41.9	AVG / 329 263 102 417 957	AMPT dBi dBi dBi	1∧ 1∧ 1∧ 1∧ 1∧ 1∧ 1∧		VBV		<hz -12.7 -13.2 -12.2 -13.6 -13.4</hz 	0 LL1A 77 dB 44 dB 91 dB 330 dB	-4.(-3.) -1.(-3.) -3.(WG LL 671 c 898 c 583 c	iB iB iB iB iB		ell T	ime	96.0 9.00 9.00 9.00 9.00	Sto 07 µ9 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz	pp 30 s (# 4 H (CISPF (CISPF (CISPF (CISPF	M KH

Plot 7-365. Line Conducted Plot with 802.11a UNII Band 3 With WCP (L1)

Plot 7-366. Line Conducted Plot with 802.11a UNII Band 3 With WCP (N)

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 226 of 227
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 236 of 237
© 2019 PCTEST Engineering La	poratory, Inc.		V 9.0 01/18/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG977KOR** is in compliance with Part 15 Subpart E (15.407) of the FCC Rules.

FCC ID: A3LSMG977KOR		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 237 of 237
1M1901160006-06.A3L	1/16-3/8/2019	Portable Handset	Page 237 01 237
© 2019 PCTEST Engineering La	boratory, Inc.		V 9.0 01/18/2019