The ltem is composed of the following ingredients:		
Water	50-73\%	
Non-ionic detergents	25-50\%	polyoxyethylenesorbitan monolaurate
NaCl	0-2 \%	
Preservative	0.05-0.1	Preventol-D7
Safety relevant ingredients:		
CAS-No. 55965-84-9	< 0.1 \%	aqueous preparation, containing 5 -chloro-2-methyl-3(2H)isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5	<50 \%	polyoxyethylenesorbitan monolaurate

CAS-No. 9005-64-5 $\quad<50 \%$ polyoxyethylenesorbitan monolaurate
According to international guidelines, the product is not a dangerous mixture and therefore not required to be marked by symbols.

Figure D-4

Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-5
2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMG9750	CPCTEST	SAR EVALUATION REPORT	snmsun	Approved by: Quality Manager
Test Dates: 11/25/18-01/11/19	DUT Type: Portable Handset			APPENDIX D: Page 4 of 6
2019 PCTEST Engineering Laboratory, Inc.				$\begin{aligned} & \hline \text { REV } 21.2 \mathrm{M} \\ & 12 / 05 / 2018 \end{aligned}$

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

Water	$50-65 \%$
Mineral oil	$10-30 \%$
Emulsifiers	$8-25 \%$
Sodium salt	$0-1.5 \%$

Figure D-6
Composition of 5 GHz Head Tissue Equivalent Matter
Note: $3.5-5 \mathrm{GHz}$ head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-7
5 GHz Head Tissue Equivalent Matter

| FCC ID: A3LSMG9750 | SAR EVALUATION REPORT | Approved by: |
| :--- | :--- | :--- | :---: |
| Test Dates: | DUT Type: | Quality Manager |
| $11 / 25 / 18-01 / 11 / 19$ | Portable Handset | APPENDIX D: |
| © 2019 PCTEST Engineering Laboratory, Inc. | Page 50 | |

3 Composition / Information on ingredients

The Item is composed of the following ingredients:

Water	$60-80 \%$
Esters, Emulsifiers, Inhibitors	$20-40 \%$
Sodium salt	$0-1.5 \%$

Figure D-8
Composition of 5 GHz Body Tissue Equivalent Matter
Note: $3.5-5 \mathrm{GHz}$ Body liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-9
5 GHz Body Tissue Equivalent Matter

FCC ID: A3LSMG9750	CPCTEST	SAR EVALUATION REPORT	snmsun:-	Approved by: Quality Manager
Test Dates: 11/25/18-01/11/19	DUT Type: Portable Handset			APPENDIX D: Page 6 of 6
© 2019 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 21.2 \mathrm{M} \\ 12 / 05 / 2018 \end{array}$

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-1
SAR System Validation Summary - 1g

$\begin{aligned} & \text { SAR } \\ & \text { System } \end{aligned}$	Freq. (MHz)	Date	$\begin{aligned} & \text { Probe } \\ & \text { SN } \end{aligned}$	Probe Cal Point		Cond. (σ)	Perm. (Er)	cw validation			MOD. VALIDATION			
						SENSITIVITY		PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	$\begin{aligned} & \text { DUTY } \\ & \text { FACTOR } \end{aligned}$	PAR		
M	750	11/2/2018	3287	750	Head		0.908	42.19	PASS	PASS	PASS	N/A	N/A	N/A
I	750	11/1/2018	7406	750	Head	0.898	42.449	PASS	PASS	PASS	N/A	N/A	N/A	
M	835	11/5/2018	3287	835	Head	0.912	40.952	PASS	PASS	PASS	GMSK	PASS	N/A	
M	1750	11/5/2018	3287	1750	Head	1.342	39.217	PASS	PASS	PASS	N/A	N/A	N/A	
M	1900	11/5/2018	3287	1900	Head	1.43	39.014	PASS	PASS	PASS	GMSK	PASS	N/A	
G	2450	8/7/2018	7410	2450	Head	1.865	39.618	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
G	2600	8/8/2018	7410	2600	Head	2.04	39.033	PASS	PASS	PASS	TDD	PASS	N/A	
H	5250	7/5/2018	7409	5250	Head	4.492	34.994	PASS	PASS	PASS	OFDM	N/A	PASS	
H	5600	7/5/2018	7409	5600	Head	4.839	34.496	PASS	PASS	PASS	OFDM	N/A	PASS	
H	5750	7/5/2018	7409	5750	Head	4.995	34.288	PASS	PASS	PASS	OFDM	N/A	PASS	
D	750	8/15/2018	7357	750	Body	0.97	53.479	PASS	PASS	PASS	N/A	N/A	N/A	
1	835	8/8/2018	7406	835	Body	0.98	53.497	PASS	PASS	PASS	GMSK	PASS	N/A	
H	835	11/1/2018	7409	835	Body	0.955	53.843	PASS	PASS	PASS	GMSK	PASS	N/A	
J	835	9/11/2018	3347	835	Body	0.984	54.197	PASS	PASS	PASS	GMSK	PASS	N/A	
J	1750	9/5/2018	3347	1750	Body	1.454	53.515	PASS	PASS	PASS	N/A	N/A	N/A	
E	1900	8/9/2018	3213	1900	Body	1.57	51.136	PASS	PASS	PASS	GMSK	PASS	N/A	
E	1900	12/3/2018	3332	1900	Body	1.518	51.796	PASS	PASS	PASS	GMSK	PASS	N/A	
J	2450	10/15/2018	3347	2450	Body	2.025	51.09	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
K	2450	4/3/2018	3319	2450	Body	2.043	51.13	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
1	2450	12/27/2018	7406	2450	Body	2.028	51.4	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
K	2600	4/3/2018	3319	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A	
L	5250	10/29/2018	7308	5250	Body	5.511	48.77	PASS	PASS	PASS	OFDM	N/A	PASS	
L	5600	10/29/2018	7308	5600	Body	5.994	48.2	PASS	PASS	PASS	OFDM	N/A	PASS	
L	5750	10/29/2018	7308	5750	Body	6.219	47.96	PASS	PASS	PASS	OFDM	N/A	PASS	
D	5750	6/11/2018	7357	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS	

Table E-2
SAR System Validation Summary - $\mathbf{1 0 g}$

$\begin{gathered} \text { SAR } \\ \text { System } \end{gathered}$	Freq. (MHz)	Date	$\begin{aligned} & \text { Probe } \\ & \text { SN } \end{aligned}$	Probe Cal Point		Cond. (σ)	Perm. (ε r)	cw validation			MOD. VALIDATION			
						SENSITIVIITY		PROBE LINEARITY	$\begin{gathered} \text { PROBE } \\ \text { ISOTROPY } \\ \hline \end{gathered}$	MOD. TYPE	$\begin{aligned} & \text { DUTY } \\ & \text { FACTOR } \end{aligned}$	PAR		
J	1750	9/5/2018	3347	1750	Body		1.454	53.515	PASS	PASS	PASS	N/A	N/A	N/A
E	1900	8/9/2018	3213	1900	Body	1.57	51.136	PASS	PASS	PASS	GMSK	PASS	N/A	
E	1900	12/3/2018	3332	1900	Body	1.518	51.796	PASS	PASS	PASS	GMSK	PASS	N/A	
K	2450	4/3/2018	3319	2450	Body	2.043	51.13	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
K	2600	4/3/2018	3319	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A	
L	5250	10/29/2018	7308	5250	Body	5.511	48.77	PASS	PASS	PASS	OFDM	N/A	PASS	
L	5600	10/29/2018	7308	5600	Body	5.994	48.2	PASS	PASS	PASS	OFDM	N/A	PASS	
L	5750	10/29/2018	7308	5750	Body	6.219	47.96	PASS	PASS	PASS	OFDM	N/A	PASS	

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A3LSMG9750	C)PCTEST	SAR EVALUATION REPORT	sumsun	Approved by: Quality Manager
Test Dates: 11/25/18-01/11/19	DUT Type: Portable Handset			APPENDIX E: Page 1 of 1
2019 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 21.2 \mathrm{M} \\ 12 / 05 / 2018 \end{array}$

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G. 1 Power Verification Procedure

The power verification was performed according to the following procedure:

1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G. 2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

G. 3 Main Antenna Verification Summary

Table G-1
Power Measurement Verification for Main Antenna

Mechanism(s)		Mode/Band	Conducted Power (dBm)		
1st	2nd		Un-triggered (Max)	Mechanism \#1 (Reduced)	Mechanism \#2 (Reduced)
Hotspot On		GPRS 1900	26.81	24.86	
Hotspot On	Grip	GPRS 1900	26.79	24.78	24.77
Grip		GPRS 1900	26.74	24.7	
Grip	Hotspot On	GPRS 1900	26.72	24.69	24.66
Hotspot On		UMTS 1900	24.46	20.47	
Hotspot On	Grip	UMTS 1900	24.49	20.49	20.46
Grip		UMTS 1900	24.45	21.49	
Grip	Hotspot On	UMTS 1900	24.43	21.51	20.48
Hotspot On		LTE FDD Band 4	24.87	20.86	
Hotspot On	Grip	LTE FDD Band 4	24.84	20.68	20.87
Grip		LTE FDD Band 4	24.88	21.49	
Grip	Hotspot On	LTE FDD Band 4	24.91	21.47	20.81
Hotspot On		LTE FDD Band 2	24.66	20.46	
Hotspot On	Grip	LTE FDD Band 2	24.58	20.42	20.45
Grip		LTE FDD Band 2	24.47	21.45	
Grip	Hotspot On	LTE FDD Band 2	24.52	21.44	20.42
Hotspot On		LTE FDD Band 25	24.47	20.45	
Hotspot On	Grip	LTE FDD Band 25	24.51	20.47	20.43
Grip		LTE FDD Band 25	24.49	21.46	
Grip	Hotspot On	LTE FDD Band 25	24.56	21.48	20.42
Hotspot On		LTE TDD Band 41	23.96	21.96	
Hotspot On	Grip	LTE TDD Band 41	23.95	21.97	21.96
Grip		LTE TDD Band 41	23.94	21.94	
Grip	Hotspot On	LTE TDD Band 41	23.94	21.98	21.94

Table G-2

Distance Measurement Verification for Main Antenna

Mechanism(s)	Test Condition	Band	Distance Measurements (mm)		Minimum Distance per
			Moving Toward	Moving Away	
Grip	Phablet - Back Side	Mid	9	11	8
Grip	Phablet - Back Side	High	9	11	8
Grip	Phablet - Front Side	Mid	7	9	8
Grip	Phablet - Front Side	High	7	9	6
Grip	Phablet - Bottom Edge	Mid	10	13	
Grip	Phablet - Bottom Edge	High	10	13	10

*Note: Mid band refers to: GSM1900, UMTS B2, LTE B2/4/25;
High band refers to: LTE B41

FCC ID: A3LSMG9750	CPCTEST	SAR EVALUATION REPORT	shmsunf	Reviewed by: Quality Manager
Test Dates: 11/25/18-01/11/19	DUT Type: Portable Handse			APPENDIX G: Page 2 of 3
© 2019 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.05 \mathrm{M} \\ 11 / 15 / 2017 \end{array}$

G. 4 WIFI Verification Summary

Table G-3
Power Measurement Verification WIFI

Mechanism(s)	Mode/Band	Conducted Power (dBm)	
1st		Un-triggered (Max)	Mechanism \#1 (Reduced)
Held-to-Ear	802.11b	18.84	15.53
Held-to-Ear	802.11g	16.46	15.07
Held-to-Ear	802.11 n (2.4GHz)	16.32	14.97
Held-to-Ear	802.11a	15.11	11.53
Held-to-Ear	802.11n (5 GHz , 20MHz BW)	15.2	11.54
Held-to-Ear	802.11ac (20MHz BW)	15.19	11.65
Held-to-Ear	802.11n ($5 \mathrm{GHz}, 40 \mathrm{MHz} \mathrm{BW}$)	14.21	11.23
Held-to-Ear	802.11ac (40MHz BW)	14.4	11.54
Held-to-Ear	802.11ac (80MHz BW)	13.34	11.48

*Note: 802.11ax and MIMO WIFI modes were not evaluated due to equipment limitations.

FCC ID: A3LSMG9750	GPCTEST	SAR EVALUATION REPORT	shmsun	Reviewed by: Quality Manager
Test Dates: $11 / 25 / 18-01 / 11 / 19$	DUT Type: Portable Handset			APPENDIX G: Page 3 of 3
© 2019 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.05 \mathrm{M} \\ 11 / 15 / 2017 \end{array}$

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4×4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 - Example of Exclusion Table for SISO Configurations

Table 2 - Example of Exclusion Table for 4×4 Downlink MIMO Configurations

Note: [CC] indicates component carrier with 4×4 DL MIMO antenna configuration

| FCC ID: A3LSMG9750 | PCTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |
| Test Dates: | DUT Type: | APPENDIX H: | |
| $11 / 25 / 18-01 / 11 / 19$ | Portable Handset | Page 1 of 4 | |

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)iii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1
DL CA Power Measurement Setup

Figure 2
DL CA with DL 4x4 MIMO Power Measurement Setup

| FCC ID: A3LSMG9750 | PCTEST: | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 41 as PCC

Table 1
Maximum Output Powers

Combination	pcc									scc1				scce				Power	
	PCCC and	PCC BW $[\mathrm{MHz}]$	PcC(U) c .		mod.	$\begin{gathered} \text { PCC UL\# } \\ \text { RB } \end{gathered}$	$\begin{array}{\|c} \text { rectul rat } \\ \text { oftreser } \end{array}$	$\begin{aligned} & \text { PCC (DL) } \\ & \text { Channel } \end{aligned}$	CC (DL) Freq. [MHz]	scceand	$\begin{gathered} \text { SCC BW } \\ {[\mathrm{MHz}]} \end{gathered}$	SCC (DL) Channel		scc ana	$\begin{gathered} \text { SCC BW } \\ {[M H z]} \end{gathered}$	SCC (DL) Channel	$\begin{gathered} \text { SCC (DL) } \\ \text { Freq. }[\mathrm{MHz}] \end{gathered}$		
	${ }_{\text {LIE E41 }}^{\text {LTEP4 }}$	$\frac{5}{5}$	-39750 37950	$\underset{\substack{2506 \\ 2506}}{ }$	$\xrightarrow{\text { apsk }}$ OPSk	$\stackrel{1}{1}$	${ }_{24}^{24}$	(39750	$\underset{\substack{250 \\ 2506}}{ }$		20 20 20	${ }_{\substack{41990 \\ 3887}}$	$\underbrace{25177}_{\text {2580 }}$					¢24.61 24.65	${ }_{2}^{24.62}$
CAA 410	LIE ¢4	15	40185	2599.5	OPSK	1	0	40885	2599.	LTE 89	20	4036	2566	LTE 84			25684		

1.4 DL CA with DL 4x4 MIMO RF Conduction Powers

This device supports downlink 4×4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied.

Per May 2017 TCB Workshop Notes, SAR for 4×4 DL MIMO was not needed since the maximum average output power in 4×4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4×4 DL MIMO inactive. Additionally, SAR for 4×4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4×4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4×4 MIMO Downlink and downlink carrier aggregation inactive.

1.4.1 LTE 4x4 MIMO DL Standalone Powers

Table 2
Maximum Output Powers

LTE Band	Bandwidth $[\mathrm{MHz}]$	Channel	Frequency $[\mathrm{MHz}]$	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power $[\mathrm{dBm}]$	Single Antenna Tx. Power $[\mathrm{dBm}]$
41	5	39750	2506	QPSK	1	24	24.65	24.62

1.4.2 LTE Band 41 as PCC

Table 3
Maximum Output Powers

Combination	PCC										SCC 1					SCC 2					Power	
	PCC Band	PCC BW [MHz]	$\begin{gathered} \mathrm{PCC} \\ \text { (UL) Ch. } \end{gathered}$	PCC (UL) Freq. [MHz]	Mod.	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	$\left\lvert\, \begin{array}{c\|} \hline \text { PCC UL } \\ \text { RB Offset } \end{array}\right.$	$\begin{gathered} \mathrm{PCC} \\ \text { (DL) Ch. } \end{gathered}$	$\begin{array}{\|c} \mathrm{PCC} \text { (DL) Freq. } \\ {[\mathrm{MHz}]} \end{array}$	DL Ant. Config.	SCC Band	$\begin{array}{\|c} \hline \text { SCC BWW } \\ {[\mathrm{MHz}]} \end{array}$	$\begin{gathered} \mathrm{ScC} \\ (\mathrm{DL}) \mathrm{ch} . \end{gathered}$	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	scc bw [MHz]	$\begin{gathered} \mathrm{ScC} \\ \text { (DL) Ch. } \end{gathered}$	SCC (DL) Freq. [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA $[41 \mathrm{~A}]-41 \mathrm{~A}(1)$	LTE B41	5	39750	2506	QPSK	1	24	39750	2506	4×4	LTE B41	20	41490	2680	2×2	.	.	-	.	.	24.64	24.62
CA $[41 \mathrm{~A}]-41 \mathrm{~A}(1)$	LTE B41	5	39750	2506	QPSK	1	24	39750	2506	2x2	LTE B41	20	41490	2680	4×4	-	-	-	-	-	24.62	24.62
CA $[41 \mathrm{~A}][-41 \mathrm{~A}](1)$	LTE B41	5	39750	2506	QPSK	1	24	39750	2506	4×4	LTE B41	20	41490	2680	4×4	-	.	-	-	.	24.66	24.62
CA [41C] (1)	LTE B41	5	39750	2506	QPSK	1	24	39750	2506	4x4	LTE B41	20	39867	2517.7	4×4	-	-	-	-	-	24.70	24.62
CA [41D]	LTE B41	15	40185	2549.5	QPSK	1	0	40185	2549.5	4×4	LTE B41	20	40356	2566.6	4×4	LTE B41	20	40554	2586.4	4×4	24.69	24.57

| FCC ID: A3LSMG9750 | PCTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |
| Test Dates: | DUT Type: | APPENDIX H: | |
| $11 / 25 / 18-01 / 11 / 19$ | Portable Handset | Page 3 of 4 | |

1.5 Downlink Carrier Aggregation with CA_41C Uplink Carrier Aggregation enabled

This device supports uplink carrier aggregation (ULCA) with additional Carrier Aggregation configurations active in the downlink. Power measurements were performed with ULCA active and additional CA configurations active in the downlink for the configuration per Fall 2017 TCB Workshop Notes.

Per FCC Guidance, additional SAR measurements for these configurations were not required since their maximum output power was not more than 0.25 dB higher than the maximum output power for with only ULCA active.

1.5.1 DL Carrier Aggregation RF Conducted Powers

Table 4
Maximum Output Powers

	PCC							scc1							SCC2				Power	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel		Modulation	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	$\left\lvert\, \begin{gathered} \text { PCC UL } \\ \text { RB Offset } \end{gathered}\right.$	SCC Band	$\begin{array}{\|c\|} \hline \text { SCC } \\ \text { Bandwidth } \\ \text { [MHz] } \end{array}$	$\begin{array}{\|c\|} \hline \text { SCC } \\ \text { (UL/DL) } \\ \text { Channel } \end{array}$		Modulation	SCC UL\# RB	SCC UL RB Offset	SCC Band	$\begin{gathered} \text { SCC } \\ \text { Bandwidth } \\ {[\mathrm{MHz}]} \end{gathered}$	SCC DL Channel	SCC DL Frequency [MHz]	ULCA Tx. Power with add'I CA config. active in DL (dBm)	ULCA Tx Power (dBm)
CA_41D	LTE B41	20	40185	2549.5	QPSK	1	0	LTE B41	20	39987	2529.7	QPSK	1	99	LTE B41	20	40383	2569.3	24.28	24.19

1.5.2 DL Carrier Aggregation with DL 4×4 MIMO RF Conducted Powers

Note: 4×4 DL MIMO is only operating in the downlink. Uplink transmission is limited to a single output stream for each component carrier of ULCA.

Table 5
Maximum Output Powers

	PCC								SCC1								Power	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channe	PCC (UL/DL) Frequency [MHz]	Modulation	$\begin{array}{\|c} \hline \text { PCC UL\# } \\ \text { RB } \end{array}$	PCC UL RB Offset	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (UL/DL) Channe	SCC (UL/DL) Frequency $[\mathrm{MHz}]$	Modulation	SCC UL\# RB	$\left\lvert\, \begin{array}{c\|} \text { SCC UL RB } \\ \text { Offset } \end{array}\right.$	DL Ant. Config.	ULCA Tx. Power with add'I CA config. active in DL (dBm)	ULCA Tx Power (dBm)
CA [41C] (1)	LTE B41	20	40185	2549.5	QPSK	1	0	4×4	LTE B41	20	39987	2529.7	QPSK	1	99	4×4	24.34	24.19

| FCC ID: A3LSMG9750 | PCTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |
| Test Dates: | DUT Type: | APPENDIX H: | |
| $11 / 25 / 18-01 / 11 / 19$ | Portable Handset | | Page 4 of 4 |

APPENDIX I: IEEE 802.11AX RU SAR EXCLUSION

1.1 IEEE 802.11ax RU SAR Exclusion

To make the most efficient use of the additional available subcarriers (data tones), IEEE 802.11ax can utilize Orthogonal Frequency-Division Multiple Access (OFDMA) which divides the existing 802.11 channels into smaller subchannels called Resource Units (RUs). Possible RU sizes are: 26T, 52T, 106T, 242T, 484T and 996T.

Per FCC Guidance, 802.11ax was considered a higher order 802.11 mode when compared to $\mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{h} / \mathrm{ac}$ to apply KDB Publication 248227 D01v02r02 for OFDM mode selection. Therefore, SAR tests were not required for 802.11ax based on the maximum allowed output powers of OFDM modes and the reported SAR values. Per FCC Guidance, maximum conducted powers were performed for each RU size to demonstrate that the output powers would not be higher than the other OFDM 802.11 modes.

1.2 IEEE 802.11ax RU Target Powers

1.2.1 Maximum 802.11ax RU WLAN Output Power

| FCC: A3LSMG9750 | RAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- |
| Quality | | |
| Manager | | |
| Test Dates: | DUT Type: | APPENDIX I: |
| $11 / 25 / 18-01 / 11 / 19$ | Portable Handset | Page 1 of 7 |

1.2.2 Reduced 802.11ax RU WLAN Output Power

| FCC: A3LSMG9750 | RAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- |
| Quality | | |
| Manager | | |

1.2.3 Maximum 802.11ax RU WLAN Output Power During Conditions with Simultaneous 2.4 GHz WLAN and 5 GHz WLAN

		SISO (ANT1/2) /in dBm				MIMO (ALL) /in dBm			
Tones		2.4G	5G/20Mhz	5G/40Mhz	5G/80Mhz	2.4G	5G/20Mhz	5G/40Mhz	5G/80Mhz
		Ch \& RU index							
26 T	Maximum	14	11	11	11	14	11	11	11
		$\begin{gathered} \text { ch 12: 13, } \\ \text { ch } 13: 1 \\ \hline \end{gathered}$				$\begin{aligned} & \text { ch 12: } 13, \\ & \text { ch 13: } 1 \end{aligned}$			
		13	10	10	10	13	10	10	10
	Nominal	$\begin{aligned} & \text { ch 12: } 12, \\ & \text { ch 13: } 0 \end{aligned}$				$\begin{gathered} \text { ch } 12: 12, \\ \text { ch } 13: 0 \\ \hline \end{gathered}$			
52 T	Maximum	15	13	12	11	15	13	12	11
		$\begin{gathered} \hline \text { ch 12: } 13.5 \text {, } \\ \text { ch } 13: 2.5 \\ \hline \end{gathered}$				$\begin{gathered} \hline \text { ch 12: } 13.5, \\ \text { ch } 13: 2.5 \end{gathered}$			
	Nominal	14	12	11	10	14	12	11	10
		$\begin{gathered} \hline \text { ch 12: } 12.5, \\ \text { ch } 13: 1.5 \\ \hline \end{gathered}$				$\begin{gathered} \text { ch 12: } 12.5, \\ \text { ch } 13: 1.5 \\ \hline \end{gathered}$			
$106 T$	Maximum	16	14	13	12	16	15	13	12
		$\begin{aligned} & \text { ch 12: } 15, \\ & \text { ch } 13: 4.5 \end{aligned}$				$\begin{aligned} & \text { ch 12: } 15, \\ & \text { ch 13: } 4.5 \end{aligned}$			
	Nominal	15	13	12	11	15	14	12	11
		$\begin{aligned} & \text { ch } 12: 14, \\ & \text { ch } 13: 3.5 \end{aligned}$				$\begin{aligned} & \text { ch } 12: 14, \\ & \text { ch } 13: 3.5 \\ & \hline \end{aligned}$			
242 T	Maximum	17	14	14	13	17	16	14	13
		ch 1: 16, ch 11: 15 ch 12: 15 ch $13: 12$				ch 1: 16, ch 11: 15 ch 12: 15 ch $13: 12$			
		16				16			
	Nominal	ch 1: 15, ch 11: 14 ch 12: 14 ch $13: 11$	13	13	12	ch 1: 15, ch 11: 14 ch 12: 14 ch $13: 11$	15	13	12
484 T	Maximum			14	13			14	13
	Nominal			13	12			13	12
$996 T$	Maximum				13				13
	Nominal				12				12

| FCC: A3LSMG9750 | RAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- |
| Quality | | |
| Manager | | |

1.2.4 Reduced 802.11ax RU WLAN Output Power During Conditions with Simultaneous 2.4 GHz WLAN and 5 GHz WLAN

		SISO (ANT1/2) /in dBm				MIMO (ALL) /in dBm			
Tones		2.4G	5G/20Mhz	5G/40Mhz	5G/80Mhz	2.4G	5G/20Mhz	5G/40Mhz	5G/80Mhz
		Ch \& RU index							
26T	Maximum	14	11	11	11	14	11	11	11
		$\begin{gathered} \text { ch } 12: 13 \\ \text { ch } 13: 1 \\ \hline \end{gathered}$				$\begin{gathered} \text { ch 12: } 13, \\ \text { ch } 13: 1 \\ \hline \end{gathered}$			
	Nominal	13	10	10	10	13	10	10	10
		$\begin{aligned} & \text { ch } 12: 12, \\ & \text { ch } 13: 0 \end{aligned}$				$\begin{gathered} \text { ch } 12: 12, \\ \text { ch } 13: 0 \\ \hline \end{gathered}$			
52T	Maximum	14	13	12	11	15	13	12	11
		$\begin{gathered} \text { ch } 12: 13.5, \\ \text { ch } 13: 2.5 \end{gathered}$				$\begin{gathered} \text { ch 12: } 13.5, \\ \text { ch } 13: 2.5 \end{gathered}$			
	Nominal	13	12	11	10	14	12	11	10
		$\begin{gathered} \text { ch 12: } 12.5, \\ \text { ch } 13: 1.5 \end{gathered}$				$\begin{gathered} \text { ch } 12: 12.5, \\ \text { ch } 13: 1.5 \\ \hline \end{gathered}$			
106T	Maximum	14	14	13	12	16	15	13	12
		ch 13: 4.5				$\begin{aligned} & \text { ch } 12: 15, \\ & \text { ch } 13: 4.5 \end{aligned}$			
	Nominal	13	13	12	11	15	14	12	11
		ch 13: 3.5				$\begin{aligned} & \text { ch } 12: 14, \\ & \text { ch } 13: 3.5 \\ & \hline \end{aligned}$			
$242 T$	Maximum	14	14	14	13	17	16	14	13
		ch 13: 12				ch 1: 16, ch 11: 15 ch 12: 15 ch 13: 12			
	Nominal	13	13	13	12	16	15	13	12
		ch 13: 11				ch 1: 15, ch 11: 14 ch 12: 14 ch 13: 11			
484T	Maximum			14	13			14	13
	Nominal			13	12			13	12
996 T	Maximum				13				13
	Nominal				12				12

| FCC: A3LSMG9750 | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- |
| Quality | | |
| Manager | | |

1.3 IEEE 802.11ax Measured Powers

Table 1
Maximum 2.4 GHz 802.11ax RU Output Power - Ant 1

RU Index	Tones	Ch. 1	Ch. 2	Ch. 6	Ch. 10	Ch. 11
		Average	Average	Average	Average	Average
0	26	13.7		13.63		13.35
4	26	13.67		13.58		13.69
8	26	13.45		13.49		13.79
37	52	14.84		14.63		14.88
38	52	14.43		14.69		14.65
40	52	14.92		14.55		14.52
53	106	15.32		15.79		15.59
54	106	15.7		15.54		15.41
61	242	15.41	16.65	16.51	16.78	14.79

Table 2
Maximum 2.4 GHz 802.11ax RU Output Power - Ant 2

RU Index	Tones	Ch. 1	Ch. 2	Ch. 6	Ch. 10	Ch. 11
		Average	Average	Average	Average	Average
0	26	13.53		13.87		13.71
4	26	13.63		13.82		13.89
8	26	13.98		13.73		13.87
37	52	14.56		14.58		14.59
38	52	14.6		14.86		14.82
40	52	14.72		14.79		14.65
53	106	15.84		15.92		15.79
54	106	15.46		15.37		15.57
61	242	15.69	16.73	16.74	16.73	14.73

| FCC: A3LSMG9750 | RAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- |
| Quality | | |
| Manager | | |

Table 3
Maximum 5 GHz 802.11ax RU Output Power - Ant 1

$5 \mathrm{GHz}-80 \mathrm{MHz}$

RU Index	Tones	UNII 1	UNII 2A		UNII 2C		
		Ch. 42	Ch. 58	Ch. 106	Ch. 122	Ch. 138	Ch. 155
	Average	Average	Average	Average	Average	Average	
0	26	10.83	10.48	10.68	10.72	10.84	10.90
17	26	10.71	10.92	10.85	10.80	10.87	10.63
36	26	10.79	10.90	10.83	10.88	10.96	10.60
37	52	10.63	10.69	10.84	10.85	10.51	10.49
44	52	10.64	10.95	10.85	10.70	10.84	10.65
52	52	10.88	10.54	10.92	10.99	10.50	10.80
53	106	11.78	11.97	11.90	11.94	11.58	11.62
56	106	11.65	11.98	11.88	11.89	11.89	11.72
60	106	11.99	11.67	11.59	11.51	11.77	11.91
61	242	12.67	12.73	12.68	12.61	12.77	12.82
62	242	12.43	12.49	12.95	12.96	12.97	12.68
64	242	12.59	12.85	12.80	12.78	12.84	12.44
65	484	12.80	12.92	12.93	12.91	12.93	12.75
66	484	12.91	12.94	12.55	12.62	12.77	12.74
67	996	12.95	12.56	12.86	12.98	12.94	12.64

| FCC: A3LSMG9750 | PCTEST | SAR EVALUATION REPORT | Reviewed by:
 Quality
 Manager |
| :--- | :--- | :--- | :--- | :--- |
| Test Dates: | DUT Type: | | |
| 11/25/18-01/11/19 | Portable Handset | APPENDIX I:
 Page 6 of 7 | |

Table 4
Maximum 5 GHz 802.11ax RU Output Power - Ant 2

$5 \mathrm{GHz}-80 \mathrm{MHz}$

RU Index	Tones	UNII 1	UNII 2A		UNII 2C		UNII 3
		Ch. 42	Ch. 58	Ch. 106	Ch. 122	Ch. 138	Ch. 155
		Average	Average	Average	Average	Average	Average
0	26	10.92	10.51	10.64	10.65	10.63	10.57
18	26	10.75	10.91	10.80	10.70	10.56	10.99
36	26	10.99	10.75	10.59	10.55	10.56	10.43
37	52	10.64	10.70	10.69	10.77	10.81	10.95
44	52	10.63	10.86	10.66	10.52	10.92	10.75
52	52	10.68	10.91	10.71	10.62	10.78	10.54
53	106	11.83	11.51	11.92	11.99	11.91	11.73
56	106	11.57	11.79	11.64	11.61	11.97	11.71
60	106	11.79	11.52	11.97	11.86	11.52	11.68
61	242	12.58	12.75	12.54	12.62	12.54	12.76
63	242	12.80	12.51	12.50	12.47	12.77	12.50
64	242	12.96	12.70	12.71	12.59	12.78	12.46
65	484	12.87	12.58	12.94	12.96	12.84	12.56
66	484	12.87	12.62	12.54	12.34	12.79	12.53
67	996	12.66	12.62	12.87	12.83	12.62	12.88

FCC: A3LSMG9750	CPCTEST	SAR EVALUATION REPORT	shmsunf	Reviewed by: Quality Manager
Test Dates: 11/25/18-01/11/19	DUT Type: Portable Handset			APPENDIX I: Page 7 of 7

© 2019 PCTEST Engineering Laboratory, Inc.

