

FCC CFR47 PART 22 SUBPART H
FCC CFR47 PART 24 SUBPART E
FCC CFR47 PART 27 SUBPART F
FCC CFR47 PART 27 SUBPART H
FCC CFR47 PART 27 SUBPART L
FCC CFR47 PART 27 SUBPART M
FCC CFR47 PART 90 SUBPART S

WWAN

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, ANT+, NFC and WPT

MODEL NUMBER: SM-G973N

FCC ID: A3LSMG973KOR

REPORT NUMBER: 4788725709-E1V1

ISSUE DATE: JAN 07, 2018

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	01/07/18	Initial issue	Junwhan Lee

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	7
4.	4.1. MEASURING INSTRUMENT CALIBRATION	7
4.	1.2. SAMPLE CALCULATION	7
4.	4.3. MEASUREMENT UNCERTAINTY	7
5.	EQUIPMENT UNDER TEST	8
5.	5.1. DESCRIPTION OF EUT	8
5.	5.2. MAXIMUM OUTPUT POWER	8
5.	5.3. DESCRIPTION OF AVAILABLE ANTENNAS	14
5.	5.4. WORST-CASE ORIENTATION	15
5.	5.5. DESCRIPTION OF TEST SETUP	17
6.	TEST AND MEASUREMENT EQUIPMENT	19
7. S	SUMMARY TABLE	20
8. P	PEAK TO AVERAGE RATIO	21
8.	3.1. CONDUCTED PEAK TO AVERAGE RESULT	22
9.	LIMITS AND CONDUCTED RESULTS	35
9.	9.1. OCCUPIED BANDWIDTH	35
	9.1.1. OCCUPIED BANDWIDTH RESULTS	
9.	9.2. BAND EDGE EMISSIONS	
	9.2.1. BAND EDGE RESULT	
9	9.3. OUT OF BAND EMISSIONS	
	9.3.1. OUT OF BAND EMISSIONS RESULT	
9.	9.4. FREQUENCY STABILITY	134
	9.4.1. FREQUENCY STABILITY RESULTS	135
10.	RADIATED TEST RESULTS	143
10	10.1. RADIATED POWER (ERP & EIRP)	
	10.1.1. ERP/EIRP Results	
11	10.2. FIELD STRENGTH OF SPURIOUS RADIATION	
70	10.2.1. SPURIOUS RADIATION PLOTS	
	Page 3 of 219	

UL Korea, Ltd. Suwon Laboratory

FORM ID: FCC_22/24/27

11.	Appendix B: SETUP PHOTOS	.210
Appe	endix B : Part 15B test report for cellular receiver mode was issued separately	

DATE: JAN 07, 2019

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, ANT+,

NFC and WPT

MODEL NUMBER: SM-G973N

SERIAL NUMBER: R39KA0LF8MV, R39KA0LFAKR (CONDUCTED)

R39K80JB6R, R39K80JB5M, R39KA0LE9RE (RADIATED);

DATE TESTED: NOV 20, 2018 - JAN 07, 2019;

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H, 24E, 27H, 27L, 27F, 27M and 90S Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Korea, Ltd. By:

Tested By:

SungGil Park Suwon Lab Engineer UL Korea, Ltd. Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 22.
- 3. FCC CFR 47 Part 24.
- 4. FCC CFR 47 Part 27.
- 5. FCC CFR 47 Part 90.
- 6. ANSI TIA-603-E, 2016
- 7. ANSI C63.4: 2014
- 8. KDB 971168 D01 Power Meas License Digital Systems v03r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro					
☐ Chamber 1					
☐ Chamber 2					
☐ Chamber 3					

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

DATE: JAN 07, 2019

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) - cable loss(between the SG and substitution antenna) + Substitution Antenna Factor

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.32 dB
Radiated Disturbance, Below 1GHz	3.86 dB
Radiated Disturbance, Above 1 GHz	5.97 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: JAN 07, 2019

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, ANT+, NFC and WPT. This test report addresses the WWAN operational mode.

5.2. **MAXIMUM OUTPUT POWER**

The transmitter has a maximum average radiated ERP / EIRP output powers as follows:

GSM

CON								
FCC Part 22/24								
Band	Frequency Range	Modulation	Radiated					
	[MHz]		Avg [dBm]	Avg [mW]				
GSM850	824~849	GPRS	28.35	683.91				
GSIVIOSO	024~049	EGPRS	24.94	311.89				
GSM1900	1850~1910	GPRS	26.61	458.14				
	1650~1910	EGPRS	26.45	441.57				

WCDMA

FCC Part 22/24							
Band	Frequency Range	Modulation	Radiated				
	[MHz]		Avg [dBm]	Avg [mW]			
Band 5	824~849	REL99	18.71	74.30			
	024~049	HSDPA	18.71	Avg [mW]			
Band 4	1710~1755	REL99	24.28	267.92			
Danu 4	1710~1733	HSDPA	24.15	260.02			
Band 2	1850~1910	REL99	23.79	239.33			
Dariu Z	1050~1910	HSDPA	22.99	199.07			

FCC Part 22							
Band	Frequency Range	BandWidth	Modulation	Radiated			
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]		
		10	QPSK	19.81	95.72		
		10	16QAM	17.71	59.02		
		5	QPSK	19.19	82.99		
Band 5	824 ~ 849	7	16QAM	17.09	51.17		
Danu 3	024 ~ 049	3	QPSK	19.16	82.41		
		3	16QAM	17.10	51.29		
		1.4	QPSK	19.31	85.31		
		1.4	16QAM	17.30	53.70		

FCC Part 27							
Band	Frequency Range	BandWidth	Modulation	Radi	ated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]		
		10	QPSK	14.04	25.35		
		10	16QAM	12.99	19.91		
		5	QPSK	14.45	27.86		
Band 12	699 ~ 716	7	16QAM	13.55	22.65		
Dallu 12	099 ~ 110	3	QPSK	14.98	31.48		
		3	16QAM	14.15	26.00		
		1.4	QPSK	14.29	26.85		
		1.4	16QAM	13.21	20.94		

FCC Part 27						
Band	Frequency Range	BandWidth	Modulation	Radiated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
		10	QPSK	18.43	69.66	
Band 13	777 ~ 787	10	16QAM	17.15	51.88	
Danu 13	111 ~ 101	5	QPSK	18.64	Avg [mW] 69.66	
		3	16QAM	17.95	62.37	

FCC Part 24							
Band	Frequency Range	BandWidth	Modulation	Radiated			
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]		
		20	QPSK	22.24	167.49		
		20	16QAM	21.18	131.22		
		15	QPSK	21.72	148.59		
		13	16QAM	21.18	131.22		
		10	QPSK	22.05	131.22 160.32 122.18		
Band 25	1850 ~ 1915	10	16QAM	20.87	122.18		
Danu 25	1030 ~ 1913	5	QPSK	21.02	160.32 122.18 126.47		
		7	16QAM	20.62	115.35		
		3	QPSK	21.41	138.36		
		י	16QAM	20.49	111.94		
		1.4	QPSK	21.77	150.31		
		1.4	16QAM	20.64	115.88		

LTE Band 26 (Part90)

Band	Frequency Range	BandWidth	Modulation	Radiated	
	[MHz]	[MHz]	Peak	Avg [dBm]	Avg [mW]
		15	QPSK	16.64	46.13
		13	16QAM	15.74	37.50
		10	QPSK	15.38	34.51
		10	16QAM	14.70	29.51
Band 26	814 ~ 824	5	QPSK	16.59	45.60
Danu 20	014 ~ 024	3	16QAM	15.81	38.11
		3	QPSK	16.43	43.95
		3	16QAM	15.68	36.98
		1.4	QPSK	16.74	47.21
		1.4	16QAM	15.39	34.59

LTE Band 26 (Part22)

Band	Frequency Range	BandWidth	Modulation	Radiated		
	[MHz]	[MHz]	Peak	Avg [dBm]	Avg [mW]	
		15	QPSK	18.58	72.11	
		15	16QAM	17.24	52.97	
	824 ~ 849	10	QPSK	18.20	66.07	
			16QAM	17.14	51.76	
Band 26		5	QPSK	18.27	67.14	
Danu 20	024 ~ 049	3	16QAM	17.53	56.62	
		3	QPSK	18.37	68.71	
		3	16QAM	17.22	52.72	
		1.4	QPSK	18.25	66.83	
		1.4	16QAM	17.09	51.17	

FCC Part 27						
Band	Frequency Range	BandWidth	Modulation	Radiated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
		20	QPSK	24.36	272.90	
			16QAM	24.41	276.06	
		15	QPSK	24.26	266.69	
Band 41	2496 - 2690	15	16QAM 23.49	223.36		
Dallu 41	2490 - 2090	10	QPSK	23.09	203.70	
		10	16QAM 23.08	23.08	203.24	
		5	QPSK	23.23	210.38	
		3	16QAM	22.50	177.83	

LTE Band 66

FCC Part 27						
Band	Frequency Range	BandWidth	Modulation	Radiated		
	[MHz]	[MHz]	_	Avg [dBm]	Avg [mW]	
		20	QPSK	22.82	191.43	
		20	16QAM 21.72	21.72	148.59	
		15	QPSK	22.76	188.80	
		15	16QAM 21.42	21.42	138.68	
		10	QPSK	22.58	181.13	
Band 66	1710 ~ 1780	10	16QAM 21.36	21.36	136.77	
Dallu 00	1710 ~ 1760	5	QPSK	22.63	183.23	
		5	QPSK 22.76 16QAM 21.42 QPSK 22.58 16QAM 21.36 QPSK 22.63 16QAM 21.58	21.58	143.88	
		3	QPSK	22.76	188.80	
		3	16QAM	21.85	153.11	
		1.4	QPSK	22.96	197.70	
		1.4	16QAM	22.07	161.06	

LTE Band 2

LTE Band 2 (Frequency range: 1850-1910 MHz) is covered by LTE Band 25 (Frequency range: 1850-1915 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

DATE: JAN 07, 2019

LTE Band 4

LTE Band 4 (Frequency range: 1710-1755 MHz) is covered by LTE Band 66 (Frequency range: 1710-1780 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

LTE Band 17

LTE Band 17 (Frequency range: 704-716 MHz) is covered by LTE Band 12 (Frequency range: 699-716 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a internal antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
WCDMA Band 2 / LTE Band 2 / LTE Band 25 1850 ~ 1910 MHz	-5.39
WCDMA Band 4 / LTE Band 4 / LTE Band 66 1710 ~ 1755 MHz	-4.53
WCDMA Band 5 / LTE Band 5 / LTE Band 26 814 ~ 849 MHz	-2.74
LTE Band 12 / LTE Band 17 699 ~ 716 MHz	-2.21
LTE Band 41 2496 ~ 2690 MHz	-4.18
LTE Band 13 777 ~ 787 MHz	-5.06

DATE: JAN 07, 2019

5.4. WORST-CASE ORIENTATION

Following modes should be considered as worst-case scenario for all other measurements.

- GSM GPRS/EGPRS
- UMTS REL 99/HSDPA

For all LTE Bands, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM and 64QAM modulations. It was found that QPSK and 16QAM results were worst case. All testing was performed using QPSK and 16QAM modulations to represent the worst case. However, the out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest power in QPSK.

Highest power setting for each bands						
LTE Band	Frequency (MHz)	Bandwidth (MHz)	RB size	RB offset		
	829.0		1	0		
5	836.5	10MHz	1	0		
	844.0		1	0		
	700.5		1	8		
12 (17)	707.5	3MHz	1	8		
	714.5		1	8		
13	782.0	10MHz	1	0		
	1851.5	3MHz	1	8		
25	1882.5		1	8		
	1913.5		1	14		
	816.5		1	12		
	821.5		1	12		
26	826.5	5MHz	1	12		
	831.5		1	12		
	846.0		1	0		
	2506.0		1	0		
41	2593.0	20MHz	1	0		
	2680.0		1	0		
	1711.5		1	8		
66	1745.0	3MHz	1	0		
	1778.5		1	8		

- ERP/EIRP

For GSM1900 / LTE B5 / LTE B66 / WCDMA B4, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case

For LTE B25, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation.

For GSM850 / WCDMA B5 / WCDMA B2 / LTE B12 / LTE B13 / LTE B26 / LTE B41, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

- Radiated spurious emissions

For GSM1900 / LTE B66 / WCDMA B4, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation.

For LTE B13 / LTE B25, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation.

For GSM850 / LTE B5 / LTE B12 / LTE B26 / LTE B41 / WCDMA B2, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

Note: All radiated spurious tests were performed connected with earphone and charger for evaluation of worst case mode. (For erp/eirp tests, the EUT didn't connected with earphone and charger)

For check the Part15B receiver mode:

For LTE B13, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation.

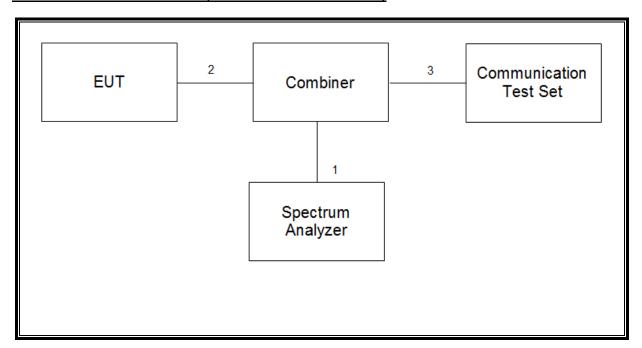
For GSM850 / LTE B5 / LTE B12 / LTE B17 / LTE B26, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

DATE: JAN 07, 2019

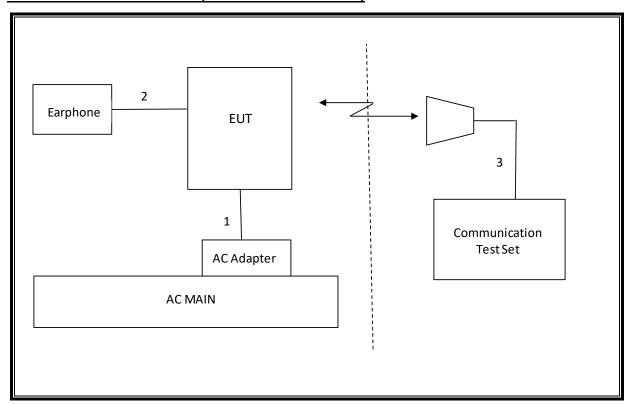
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC II						
Charger	SAMSUNG	EP-TA200	R37KB5B03T1SE3	N/A		
Data Cable	SAMSUNG	EP-DG970BBE	N/A	N/A		
Earphone	SAMSUNG	EO-IG955	N/A	N/A		


I/O CABLE

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	DC Power	1	С Туре	Shielded	1.1m	N/A		
2	Audio	2	Mini-Jack	Unshielded	1.2m	N/A		


TEST SETUP

The EUT is continuously communicated to the call box during the tests.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Description Manufacturer Model S/N Cal Due							
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	06-30-19				
Antenna, Horn, 40 GHz	ETS	3116C	00166155	12-04-19				
Preamplifier	ETS	3116C-PA	00168841	08-09-19				
Antenna, Horn, 40 GHz	ETS	3116C	00168645	12-04-19				
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-04-20				
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-04-20				
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-04-20				
Antenna, Horn, 18 GHz	ETS	3115	00167211	08-04-20				
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-04-20				
Antenna, Horn, 18 GHz	ETS	3117	00168724	08-04-20				
Antenna, Horn, 18 GHz	ETS	3117	00205959	08-04-20				
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-04-20				
Combiner	WEINSCHEL	1575	2152	08-08-19				
Communications Test Set	R&S	CMW500	115331	08-07-19				
DC Power Supply	Agilent / HP	E3640A	MY54226395	08-06-19				
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-07-19				
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-06-19				
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-07-19				
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-07-19				
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-07-19				
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-07-19				
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-06-19				
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-06-19				
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-06-19				
EMI Test Receive, 44 GHz	R&S	ESW40	101590	08-06-19				
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G005	08-08-19				
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G006	08-08-19				
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	08-08-19				
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	08-08-19				
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G001	08-08-19				
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G002	08-08-19				
Attenuator	PASTERNACK	PE7087-10	A009	08-08-19				
Attenuator	PASTERNACK	PE7087-10	A001	08-08-19				
Attenuator	PASTERNACK	PE7087-10	A008	08-08-19				
Attenuator	PASTERNACK	PE7087-10	2	08-07-19				
Attenuator	PASTERNACK	PE7395-10	A011	08-08-19				
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-26-19				
Temperature Chamber	ESPEC	SH-642	93001109	08-06-19				
UL Software								
Description	Manufacturer	Model		Version				
Antenna port test software	UL	CLT		Ver 2.5				

Page 19 of 219

7. SUMMARY TABLE

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Band width (99%)	N/A		Pass
22.917(a) 24.238(a) 27.53(c),(g),(h) 90.691	Band Edge / Conducted Spurious Emission	-13dBm		Pass
27.53(m)	Conducted Spurious Emission	-25 dBm		Pass
27.53(m)	Emission mask	Section 9.2.2	Conducted	Pass
2.1046	Conducted output power	N/A		See the RF exposure test report. (4788725709-S1 FCC Report SAR)
22.355 24.235 27.54 90.213	Frequency Stability	2.5PPM		Pass
22.913(a)(5)		38.5 dBm		Pass
27.50(c)(10) 27.50(b)(10)	Effective Radiated Power	34.77 dBm		Pass
90.635(b)		34.77 dBm		Pass
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated	33dBm	Radiated	Pass
27.50(d)(4)	Power	30dBm		Pass
22.917(a) 24.238(a) 27.53 (c),(g),(h) 90.691	Radiated Spurious Emission	-13dBm		Pass
27.53 (m)		-25dBm		Pass

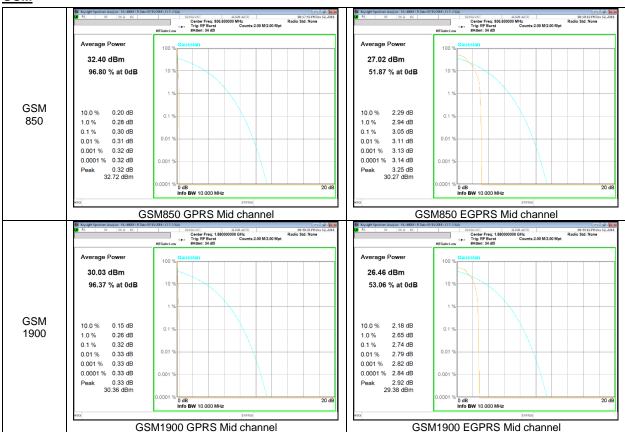
8. PEAK TO AVERAGE RATIO

Test Procedure

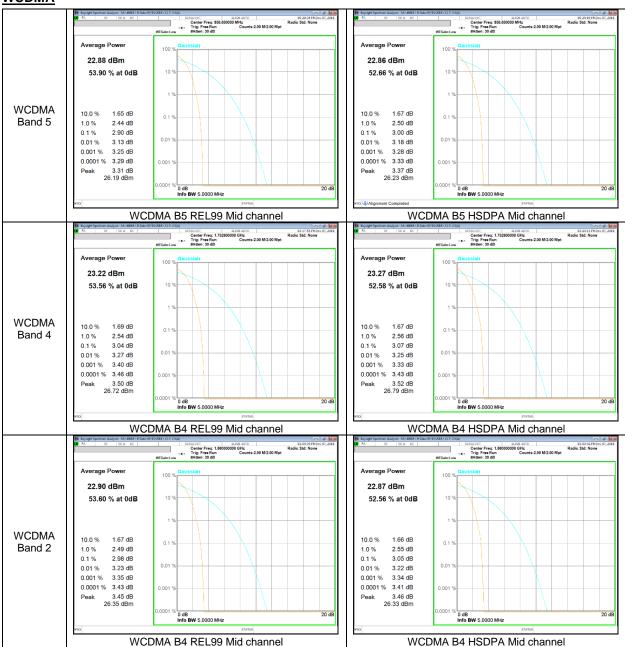
Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

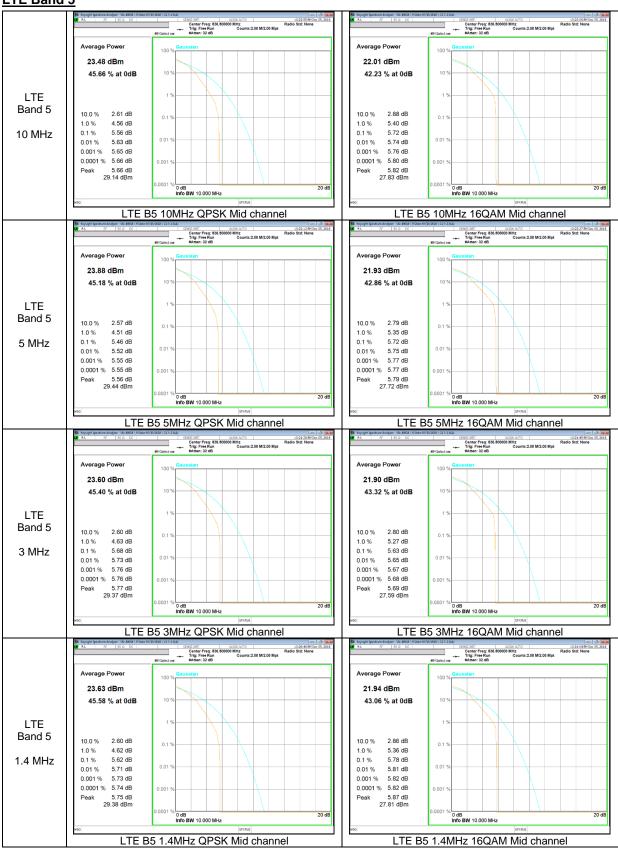
The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

Test Spec

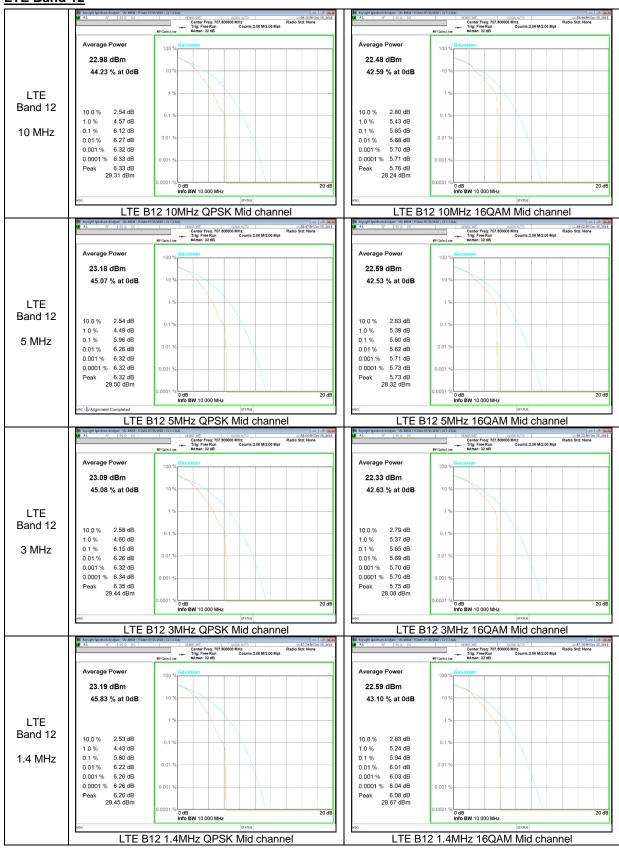

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

RESULTS

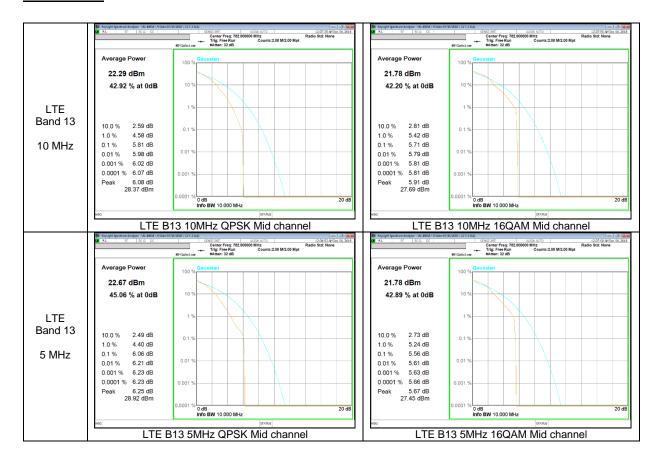

DATE: JAN 07, 2019

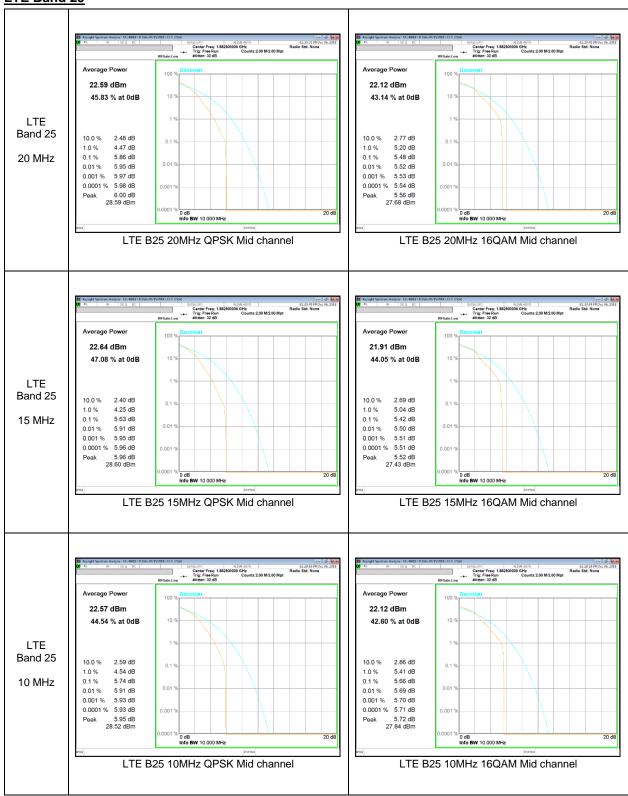

CONDUCTED PEAK TO AVERAGE RESULT 8.1.

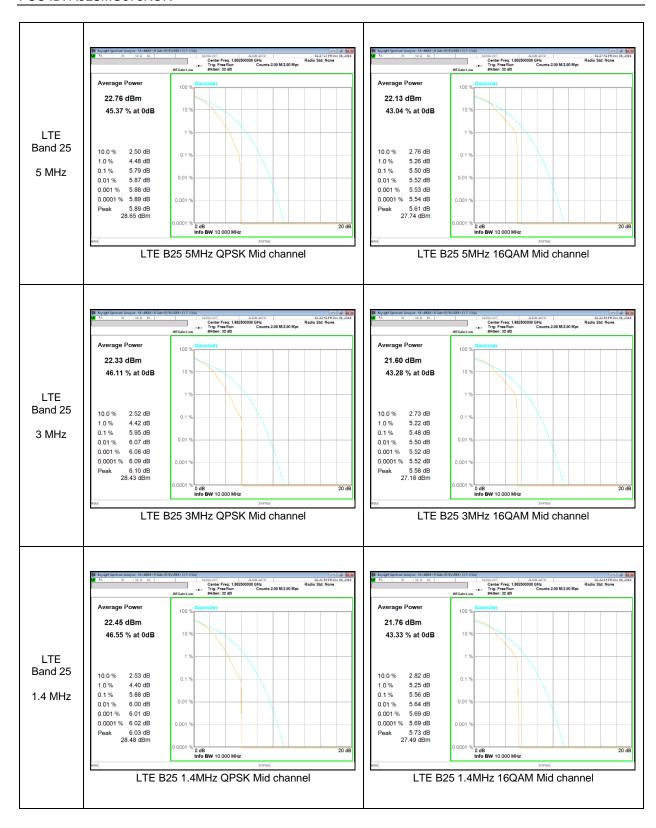
GSM

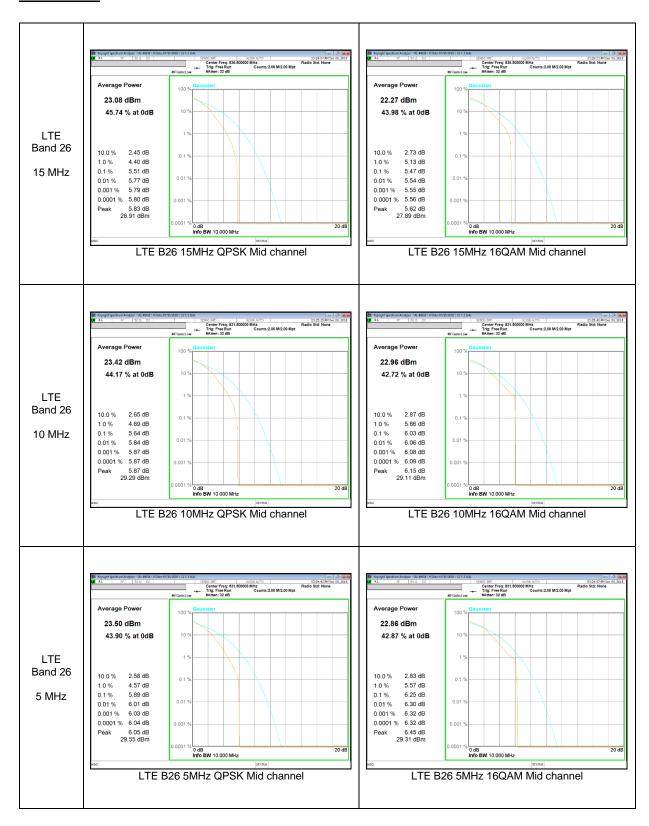


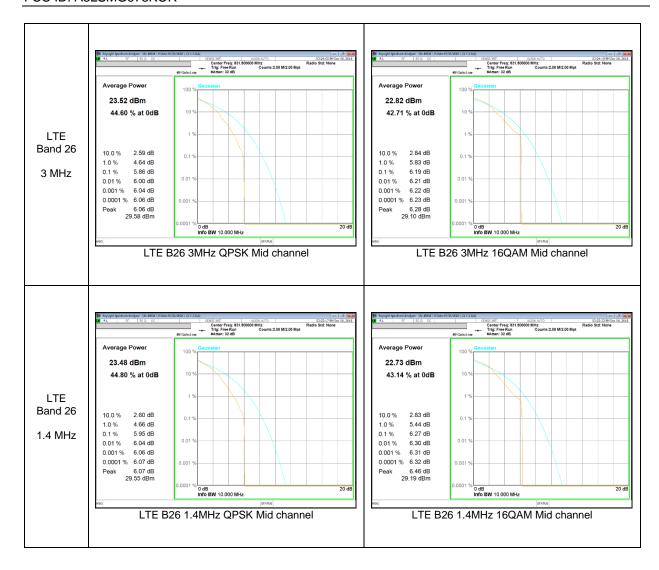
WCDMA

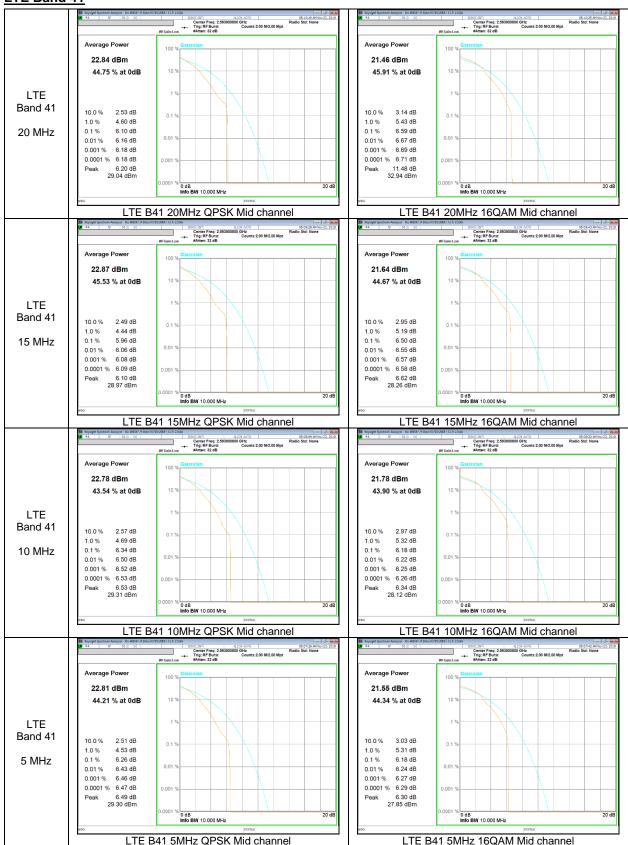




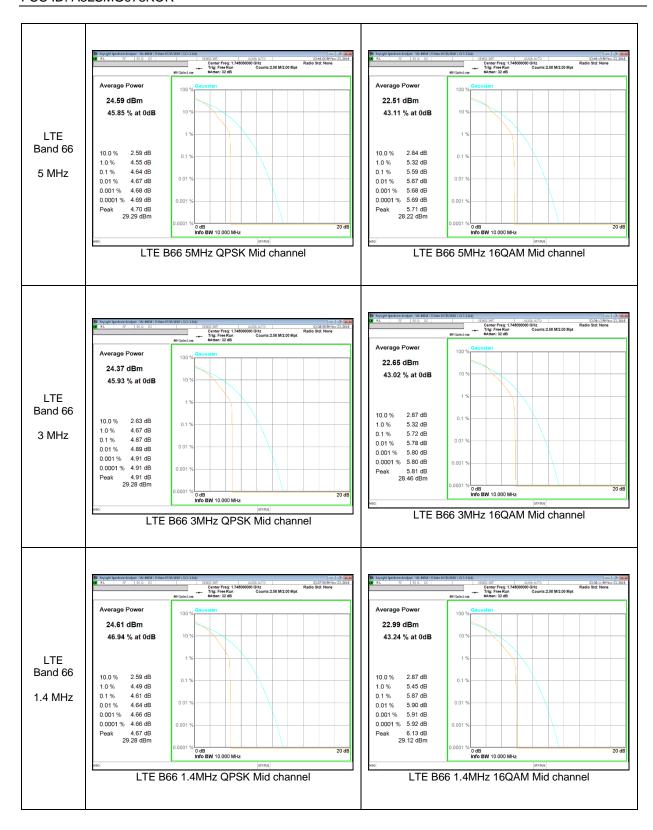

Page 24 of 219




Page 25 of 219







Page 31 of 219

LTE Band 2 (Frequency range: 1850-1910 MHz) is covered by LTE Band 25 (Frequency range: 1850-1915 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

LTE Band 4

LTE Band 4 (Frequency range: 1710-1755 MHz) is covered by LTE Band 66 (Frequency range: 1710-1780 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

LTE Band 17

LTE Band 17 (Frequency range: 704-716 MHz) is covered by LTE Band 12 (Frequency range: 699-716 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

9. LIMITS AND CONDUCTED RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

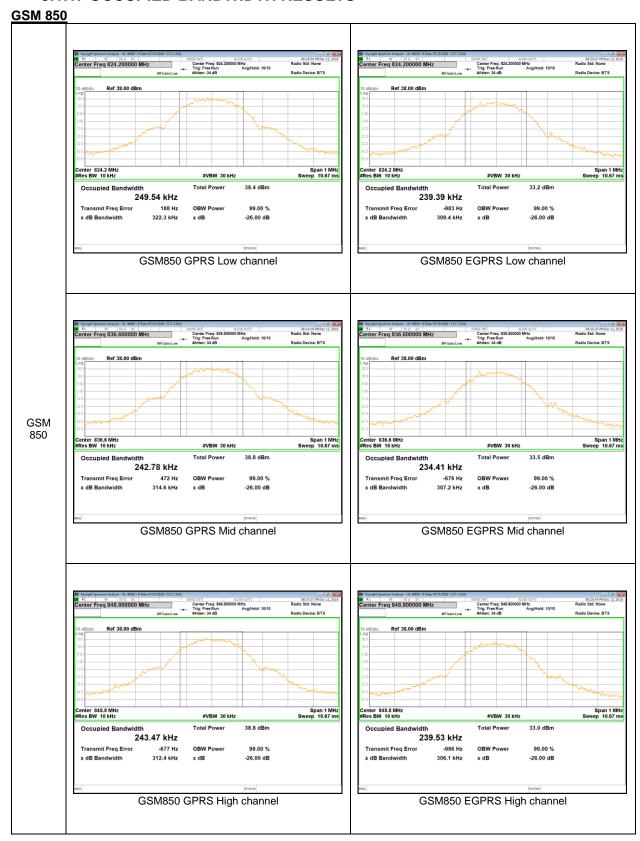
FCC: §2.1049

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.


(KDB 971168 D01 Power Meas License Digital Systems v03r01)

RESULTS


See the following pages.

DATE: JAN 07, 2019


9.1.1. OCCUPIED BANDWIDTH RESULTS

GSM 1900

