

Plot 7-227. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 484 Tones (UNII Band 2C) – Ch. 122)

Plot 7-228. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 484 Tones (UNII Band 2C) – Ch. 138)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 175 of 510		
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 175 of 519		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory, Inc.					

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
3	5755	151	ax (40MHz)	484T	MCS0	0.04	30.00	-29.96
Band	5795	159	ax (40MHz)	484T	MCS0	0.26	30.00	-29.74
ä	5775	155	ax (80MHz)	484T	MCS0	2.05	30.00	-27.95


Table 7-77. Band 3 Conducted Power Spectral Density Measurements SISO ANT1 (484 Tones)

Plot 7-229. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax – 484 Tones (UNII Band 3) – Ch. 151)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 176 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 176 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			

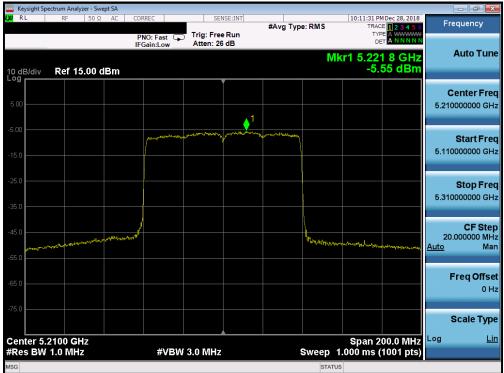
Plot 7-230. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax – 484 Tones (UNII Band 3) – Ch. 159)

Plot 7-231. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 484 Tones (UNII Band 3) – Ch. 155)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 177 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 177 of 519
© 2019 PCTEST Engineering Labo	pratory. Inc.			V 8.8 11/19/2018

SISO Antenna-1 Power Spectral Density Measurements (996 Tones)

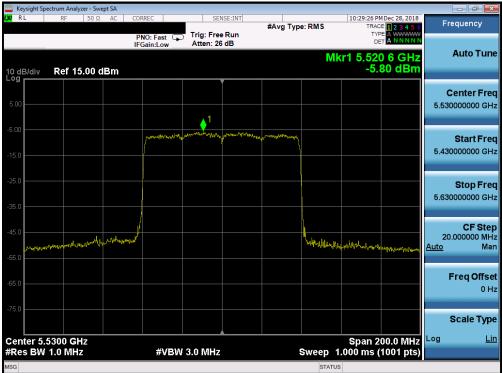
	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
Band 1	5210	42	ax (80MHz)	996T	MCS0	-5.55	11.00	-16.55
Band 2A	5290	58	ax (80MHz)	996T	MCS0	-4.34	11.00	-15.34
2C	5530	106	ax (80MHz)	996T	MCS0	-5.80	11.00	-16.80
	5610	122	ax (80MHz)	996T	MCS0	-2.18	11.00	-13.18
Band	5690	138	ax (80MHz)	996T	MCS0	-2.34	11.00	-13.34


 Table 7-78. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT1 (996 Tones)

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density	Margin [dB]
Band 1	5210	42	ax (80MHz)	996T	MCS0	-5.55	-7.66	-13.21	10.0	-23.21


Table 7-79. Bands 1 e.r.i.p Conducted Power Spectral Density Measurements (ISED 996 Tones)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 179 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 178 of 519
© 2019 PCTEST Engineering Lat	poratory Inc			V 8 8 11/19/2018


Plot 7-232. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 1) – Ch. 42)

Plot 7-233. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 2A) – Ch. 58)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 510		
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 179 of 519		
© 2019 PCTEST Engineering Lab	© 2019 PCTEST Engineering Laboratory, Inc.					

Plot 7-234. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 2C) – Ch. 106)

Plot 7-235. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 2C) – Ch. 122)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 190 of 510		
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 180 of 519		
© 2019 PCTEST Engineering Labo	© 2019 PCTEST Engineering Laboratory, Inc.					

Plot 7-236. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 2C) – Ch. 138)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 191 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 181 of 519
© 2019 PCTEST Engineering Labo	pratory Inc.			V 8 8 11/19/2018

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
Band 3	5775	155	ax (80MHz)	996T	MCS0	-1.35	30.00	-31.35

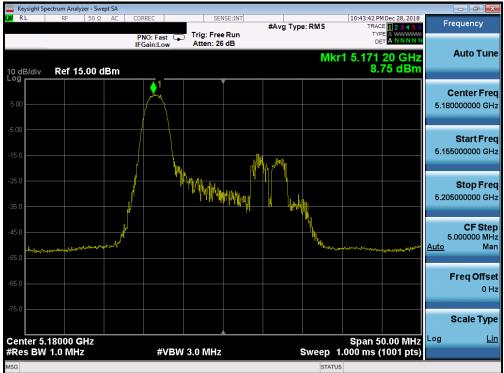
 Table 7-80. Band 3 Conducted Power Spectral Density Measurements SISO ANT1 (996 Tones)

Plot 7-237. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 3) – Ch. 155)

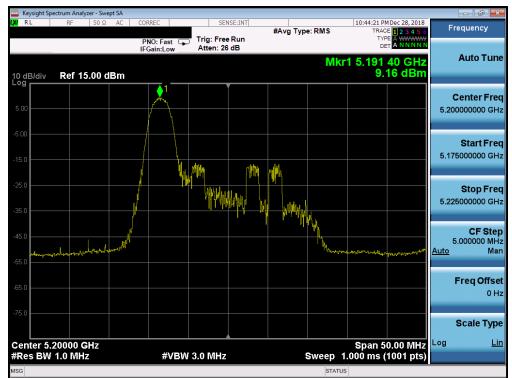
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 192 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 182 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

SISO Antenna-2 Power Spectral Density Measurements (26 Tones)

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	26T	MCS0	8.75	11.00	-2.25
Ļ	5200	40	ax (20MHz)	26T	MCS0	9.16	11.00	-1.84
, pr	5240	48	ax (20MHz)	26T	MCS0	8.04	11.00	-2.96
Band	5190	38	ax (40MHz)	26T	MCS0	7.99	11.00	-3.01
_	5230	46	ax (40MHz)	26T	MCS0	8.18	11.00	-2.82
	5210	42	ax (80MHz)	26T	MCS0	8.30	11.00	-2.70
	5260	52	ax (20MHz)	26T	MCS0	8.96	11.00	-2.04
∢	5280	56	ax (20MHz)	26T	MCS0	7.76	11.00	-3.24
d 2	5320	64	ax (20MHz)	26T	MCS0	8.06	11.00	-2.94
Band 2A	5270	54	ax (40MHz)	26T	MCS0	8.17	11.00	-2.83
ш	5310	62	ax (40MHz)	26T	MCS0	8.31	11.00	-2.69
	5290	58	ax (80MHz)	26T	MCS0	8.76	11.00	-2.24
	5500	100	ax (20MHz)	26T	MCS0	8.69	11.00	-2.31
	5600	120	ax (20MHz)	26T	MCS0	8.51	11.00	-2.49
	5720	144	ax (20MHz)	26T	MCS0	8.91	11.00	-2.09
2C	5510	102	ax (40MHz)	26T	MCS0	8.21	11.00	-2.79
Bnad	5590	118	ax (40MHz)	26T	MCS0	8.60	11.00	-2.40
Bn	5710	142	ax (40MHz)	26T	MCS0	6.48	11.00	-4.52
	5530	106	ax (80MHz)	26T	MCS0	7.54	11.00	-3.46
	5610	122	ax (80MHz)	26T	MCS0	8.07	11.00	-2.93
	5690	138	ax (80MHz)	26T	MCS0	6.30	11.00	-4.70


Table 7-81. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT2 (26 Tones)

	Frequen cy [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	26T	MCS0	8.75	-7.68	1.07	10.0	-8.93
-	5200	40	ax (20MHz)	26T	MCS0	9.16	-7.68	1.48	10.0	-8.52
	5240	48	ax (20MHz)	26T	MCS0	8.04	-7.38	0.66	10.0	-9.34
Band	5190	38	ax (40MHz)	26T	MCS0	7.99	-7.68	0.31	10.0	-9.69
-	5230	46	ax (40MHz)	26T	MCS0	8.18	-7.38	0.80	10.0	-9.20
	5210	42	ax (80MHz)	26T	MCS0	8.30	-7.68	0.62	10.0	-9.38


Table 7-82. Bands 1 e.r.i.p Conducted Power Spectral Density Measurements (ISED 26 Tones)

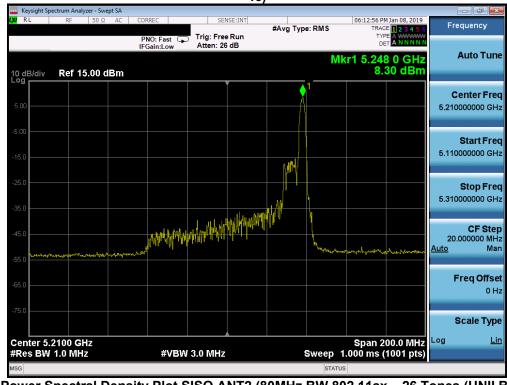
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 192 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 183 of 519
© 2019 PCTEST Engineering Labo	V 8 8 11/19/2018			

Plot 7-238. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 36)

Plot 7-239. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 40)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 194 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 184 of 519
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

Plot 7-240. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 48)


Plot 7-241. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 38)

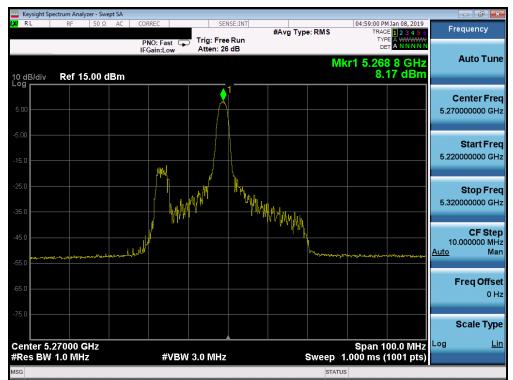
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 195 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 185 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Plot 7-242. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 46)

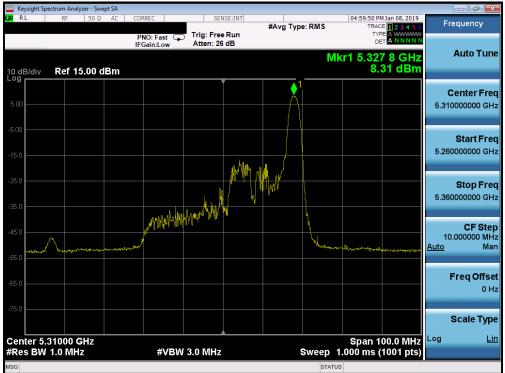
Plot 7-243. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 42)

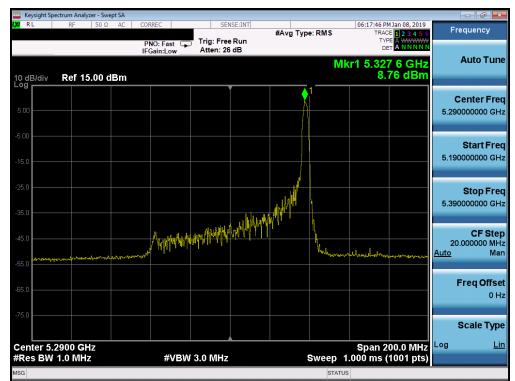
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 196 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 186 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			

Plot 7-244. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 52)


Plot 7-245. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 56)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 197 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 187 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			


Plot 7-246. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 64)


Plot 7-247. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 54)

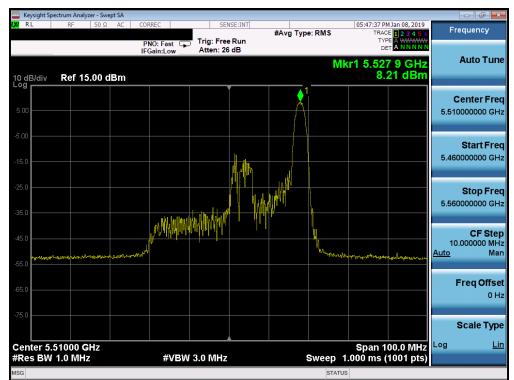
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 199 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 188 of 519
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

Plot 7-248. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 62)

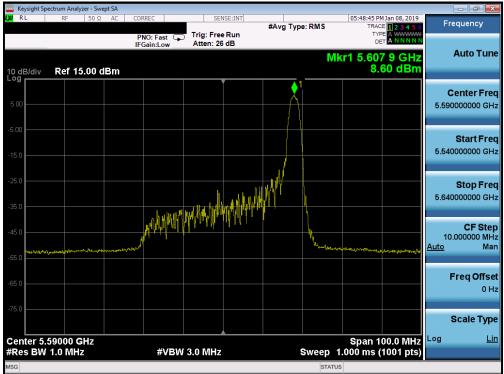
Plot 7-249. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 58)

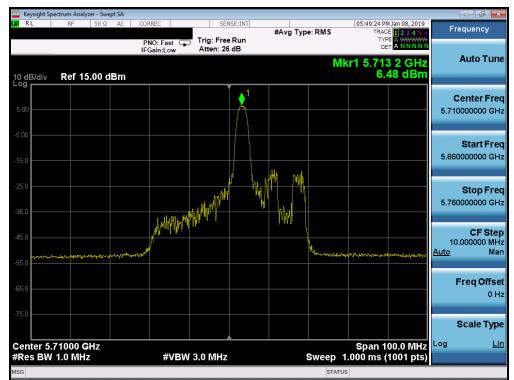
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 190 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 189 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			

Plot 7-250. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 100)


Plot 7-251. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 120)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 190 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

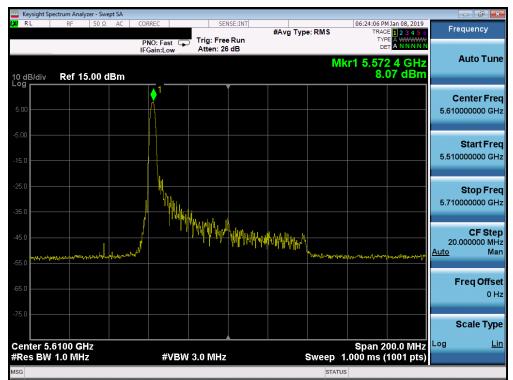

Plot 7-252. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 144)


Plot 7-253. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 102)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 101 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 191 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Plot 7-254. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 118)

Plot 7-255. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 142)


FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 102 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 192 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			

© 2019 PCTEST Engineering Laboratory, Inc.

Keysight Sp	pectrum Analyzer	- Swept SA								
X/IRL	RF 5	i0 Ω AC	CORREC		NSE:INT	#Avg Typ	e: RMS	TRAC	4 Jan 08, 2019 E 1 2 3 4 5 6 E A WWWWW	Frequency
10 dB/div	Ref 15.0	0 dBm	PNO: Fast G IFGain:Low	Atten: 26			Mł	(r1 5.49)	2 2 GHz 54 dBm	Auto Tune
5.00										Center Free 5.530000000 GH:
-5.00			hall de la							Start Free 5.430000000 GH:
-25.0			··· 970	1 1						Stop Free 5.630000000 GH:
-45.0	mmennenlyter	موسعة ومسعة	h		n far forførder og for	##Pr.hipi	haven whe	Www.madenutyattivy	บารสุบใจระสารุจึงงาร์ตูก	CF Step 20.000000 MH: <u>Auto</u> Mar
-65.0										Freq Offse 0 H:
-75.0 Center 5.	.5300 GHz							Span 2	00.0 MHz	Scale Type
	1.0 MHz		#VB\	V 3.0 MHz			Sweep 1	.000 ms (1001 pts)	
MSG							STATUS	5		

Plot 7-256. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 106)

Plot 7-257. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 122)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 193 of 519	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

Plot 7-258. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 138)

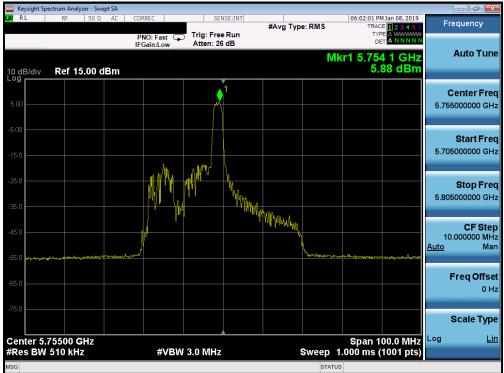
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 104 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 194 of 519
© 2019 PCTEST Engineering Labo	ratory Inc			V 8 8 11/19/2018

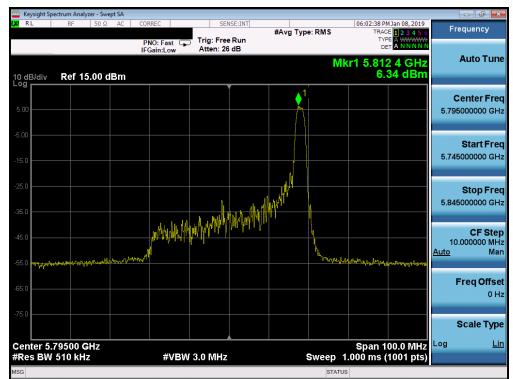
_		Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
		5745	149	ax (20MHz)	26T	MCS0	6.24	30.00	-23.76
	8	5785	157	ax (20MHz)	26T	MCS0	6.70	30.00	-23.30
		5825	165	ax (20MHz)	26T	MCS0	6.45	30.00	-23.55
	Band	5755	151	ax (40MHz)	26T	MCS0	5.88	30.00	-24.12
	_	5795	159	ax (40MHz)	26T	MCS0	6.34	30.00	-23.66
		5775	155	ax (80MHz)	26T	MCS0	8.91	30.00	-21.09

Table 7-83. Band 3 Conducted Power Spectral Density Measurements SISO ANT2 (26 Tones)


Plot 7-259. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 149)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 510
1M1811260212-15.A3L				Page 195 of 519
© 2019 PCTEST Engineering Lab	oratory Inc.			V 8 8 11/19/2018


Plot 7-260. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 157)


Plot 7-261. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 165)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 106 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 196 of 519	
© 2019 PCTEST Engineering Labo	ratory. Inc.			V 8.8 11/19/2018	

Plot 7-262. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 151)

Plot 7-263. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 159)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 107 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 197 of 519	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

Plot 7-264. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 155)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 198 of 519
© 2019 PCTEST Engineering Labor	atory Inc			V 8 8 11/19/2018

SISO Antenna-2 Power Spectral Density Measurements (52 Tones)

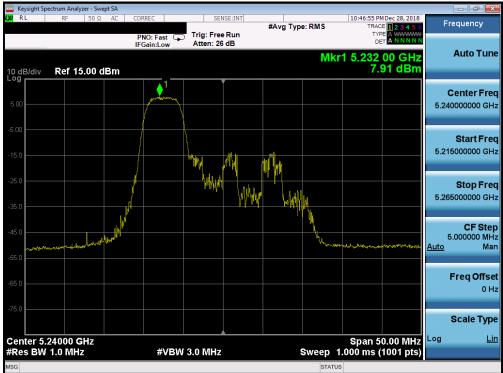
	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	52T	MCS0	8.04	11.00	-2.96
-	5200	40	ax (20MHz)	52T	MCS0	8.04	11.00	-2.96
, pr	5240	48	ax (20MHz)	52T	MCS0	7.91	11.00	-3.09
Band	5190	38	ax (40MHz)	52T	MCS0	7.75	11.00	-3.25
_	5230	46	ax (40MHz)	52T	MCS0	8.09	11.00	-2.91
	5210	42	ax (80MHz)	52T	MCS0	8.16	11.00	-2.84
٩	5260	52	ax (20MHz)	52T	MCS0	8.04	11.00	-2.96
	5280	56	ax (20MHz)	52T	MCS0	7.68	11.00	-3.32
d 2	5320	64	ax (20MHz)	52T	MCS0	8.34	11.00	-2.66
Band 2A	5270	54	ax (40MHz)	52T	MCS0	7.98	11.00	-3.02
Ξ	5310	62	ax (40MHz)	52T	MCS0	7.94	11.00	-3.06
	5290	58	ax (80MHz)	52T	MCS0	8.17	11.00	-2.83
	5500	100	ax (20MHz)	52T	MCS0	8.32	11.00	-2.68
	5600	120	ax (20MHz)	52T	MCS0	8.74	11.00	-2.26
	5720	144	ax (20MHz)	52T	MCS0	8.63	11.00	-2.37
2C	5510	102	ax (40MHz)	52T	MCS0	8.39	11.00	-2.61
Bnad	5590	118	ax (40MHz)	52T	MCS0	8.33	11.00	-2.67
Bn	5710	142	ax (40MHz)	52T	MCS0	8.06	11.00	-2.94
	5530	106	ax (80MHz)	52T	MCS0	7.91	11.00	-3.09
	5610	122	ax (80MHz)	52T	MCS0	7.87	11.00	-3.13
	5690	138	ax (80MHz)	52T	MCS0	8.21	11.00	-2.79

Table 7-84. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT2 (52 Tones)

	Frequen cy [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	52T	MCS0	8.04	-7.68	0.36	10.0	-9.64
	5200	40	ax (20MHz)	52T	MCS0	8.04	-7.68	0.36	10.0	-9.64
1 pc	5240	48	ax (20MHz)	52T	MCS0	7.91	-7.38	0.53	10.0	-9.47
Band	5190	38	ax (40MHz)	52T	MCS0	7.75	-7.68	0.07	10.0	-9.93
-	5230	46	ax (40MHz)	52T	MCS0	8.09	-7.38	0.71	10.0	-9.29
	5210	42	ax (80MHz)	52T	MCS0	8.16	-7.68	0.48	10.0	-9.52

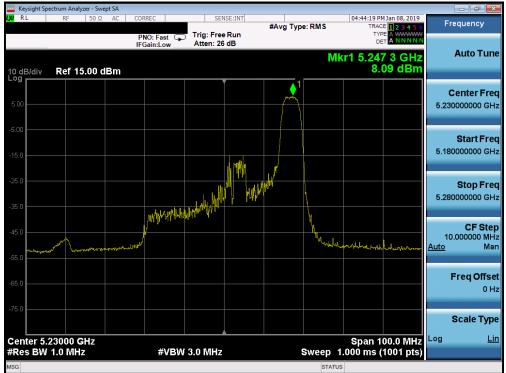

Table 7-85. Bands 1 e.r.i.p Conducted Power Spectral Density Measurements (ISED 52 Tones)

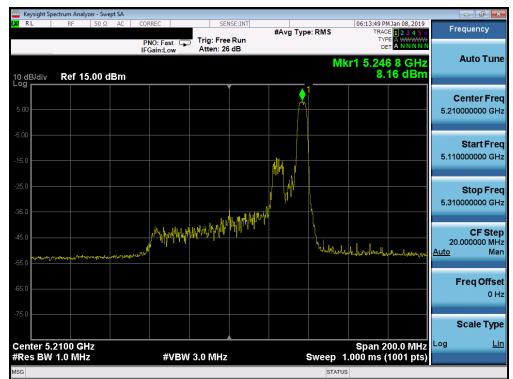
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 199 of 519
© 2019 PCTEST Engineering Labo	ratory Inc.			V 8 8 11/19/2018


Plot 7-265. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 1) – Ch. 36)


Plot 7-266. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 1) – Ch. 40)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 200 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 200 of 519	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				


Plot 7-267. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 1) – Ch. 48)


Plot 7-268. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 52 Tones (UNII Band 1) – Ch. 38)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 201 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 201 of 519	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

Plot 7-269. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax - 52 Tones (UNII Band 1) - Ch. 46)

Plot 7-270. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax - 52 Tones (UNII Band 1) - Ch. 42)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 202 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 202 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			

Plot 7-271. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax - 52 Tones (UNII Band 2A) - Ch. 52)

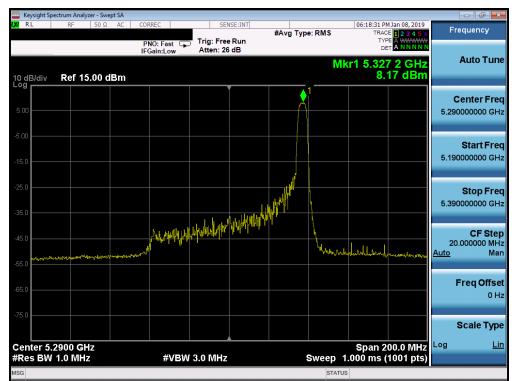


Plot 7-272. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax - 52 Tones (UNII Band 2A) - Ch. 56)

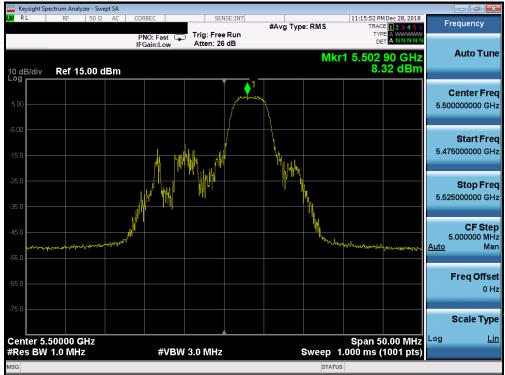

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 202 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 203 of 519
© 2010 PCTEST Engineering Lat	V 8 8 11/10/2018			

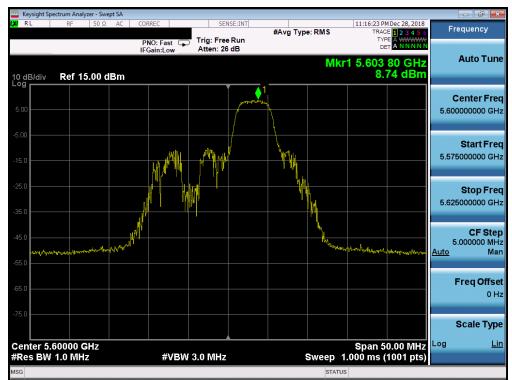
V 8.8 11/19/2018

Plot 7-273. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 2A) – Ch. 64)


Plot 7-274. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 52 Tones (UNII Band 2A) – Ch. 54)

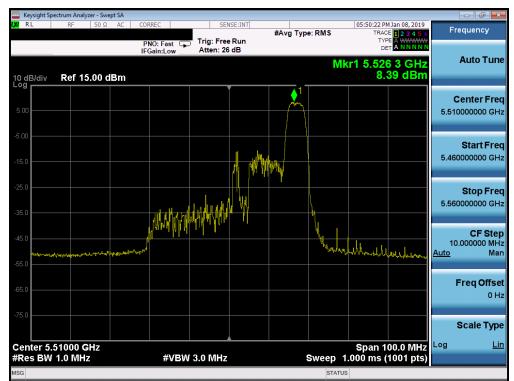
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 204 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 204 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			


Plot 7-275. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 52 Tones (UNII Band 2A) – Ch. 62)

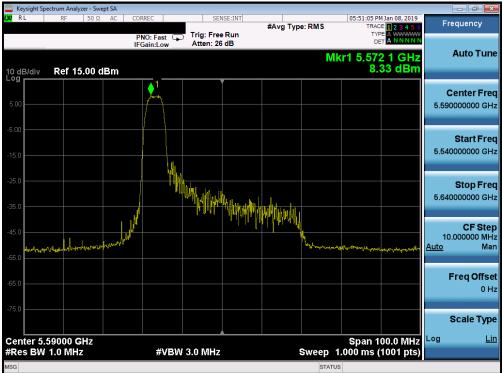

Plot 7-276. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 52 Tones (UNII Band 2A) – Ch. 58)

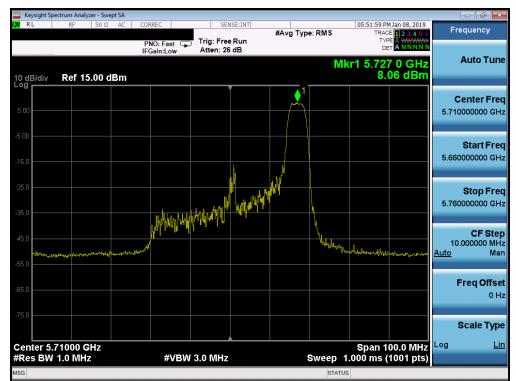
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 205 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 205 of 519	
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018	

Plot 7-277. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 2C) – Ch. 100)


Plot 7-278. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 2C) – Ch. 120)

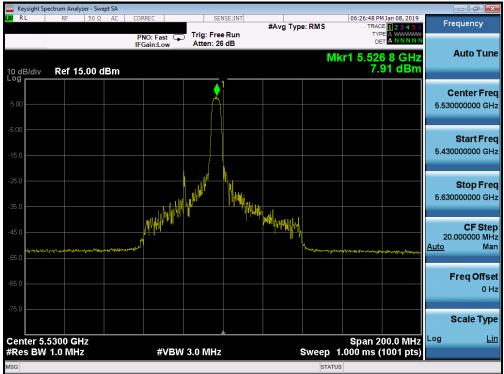
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 206 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 206 of 519
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			


Plot 7-279. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 2C) – Ch. 144)


Plot 7-280. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 52 Tones (UNII Band 2C) – Ch. 102)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 207 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 207 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Plot 7-281. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax - 52 Tones (UNII Band 2C) - Ch. 118)



Plot 7-282. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax - 52 Tones (UNII Band 2C) - Ch. 142)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 208 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 208 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

© 2019 PCTEST Engineering Laboratory, Inc.

Plot 7-283. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax - 52 Tones (UNII Band 2C) - Ch. 106)

Plot 7-284. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax - 52 Tones (UNII Band 2C) - Ch. 122)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 200 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 209 of 519
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

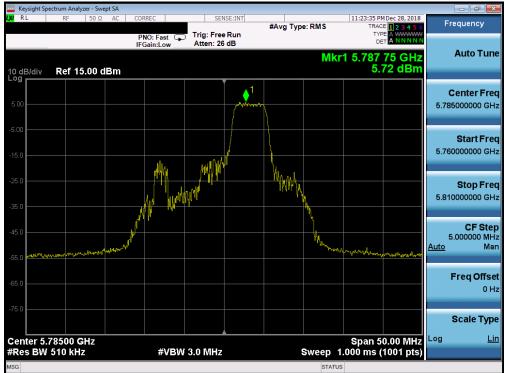
© 2019 PCTEST Engineering Laboratory, Inc.

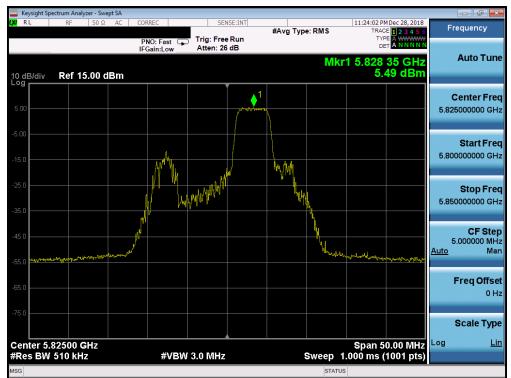
	Spectrum A	analyzer - Swe	ept SA									
X/RL	RF	50 Ω		ORREC			NSE:INT	#Avg Typ	e:RMS	TRAC	MJan 18, 2019 E 1 2 3 4 5 6	Frequency
			1	PNO: Fast FGain:Low		Trig: Fre Atten: 26						Auto Tune
10 dB/div	Ref	15.00 d	IBm						Ν	/kr1 5.68 8.1	7 4 GHz 21 dBm	AutoTune
						<u> </u>	1					Center Fred
5.00												5.69000000 GH
5.00												Start Fred
-15.0												5.590000000 GH
					ŕ	all a state of the						
-25.0						-	W. Hilden					Stop Free 5.790000000 GH:
35.0				JAN	m The		, 111	MAN MALLIN.				
45.0								1 I I I I I I I I I I I I I I I I I I I				CF Step 20.000000 MH
-55.0	- and	harman bayan	- de la come de la come La come de la	, a,					here way	apalantan ana ang ang ang ang ang ang ang ang a	in the state of th	<u>Auto</u> Mar
-65.0												Freq Offse
-05.0												0 H:
-75.0												Scale Type
Center :	5 6000	CH7								Snap 2	00.0 MHz	Log <u>Lir</u>
#Res BV				#V	BW <u>3</u>	.0 MHz			Sweep	span 2 1.000 ms (00.0 101112	
ISG									STA			

Plot 7-285. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 52 Tones (UNII Band 2C) – Ch. 138)

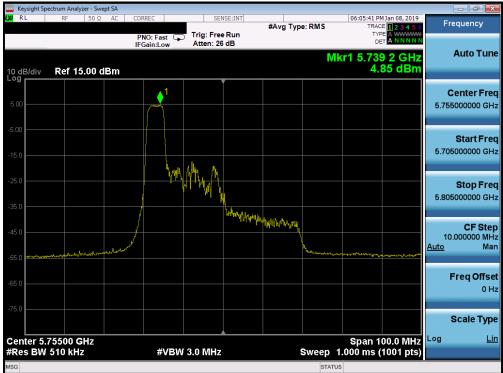
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 210 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 210 of 519
© 2019 PCTEST Engineering Laboration	atory Inc			V 8 8 11/19/2018

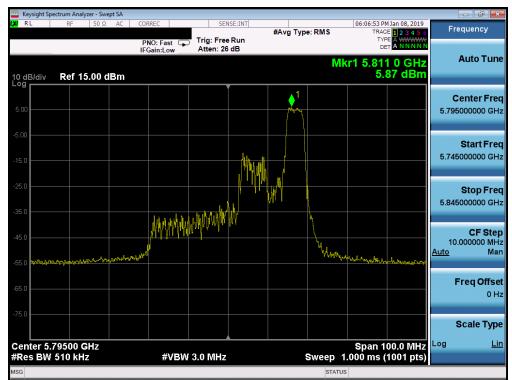
	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	ax (20MHz)	52T	MCS0	5.18	30.00	-24.82
<i>с</i>	5785	157	ax (20MHz)	52T	MCS0	5.72	30.00	-24.28
	5825	165	ax (20MHz)	52T	MCS0	5.49	30.00	-24.51
Band	5755	151	ax (40MHz)	52T	MCS0	4.85	30.00	-25.15
	5795	159	ax (40MHz)	52T	MCS0	5.87	30.00	-24.13
	5775	155	ax (80MHz)	52T	MCS0	9.00	30.00	-21.00


Table 7-86. Band 3 Conducted Power Spectral Density Measurements SISO ANT2 (52 Tones)


Plot 7-286. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 3) – Ch. 149)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 211 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 211 of 519	
© 2019 PCTEST Engineering Lab	2019 PCTEST Engineering Laboratory Inc				


Plot 7-287. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 3) – Ch. 157)


Plot 7-288. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 52 Tones (UNII Band 3) – Ch. 165)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 212 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 212 of 519	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				


Plot 7-289. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 52 Tones (UNII Band 3) – Ch. 151)

Plot 7-290. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 52 Tones (UNII Band 3) – Ch. 159)

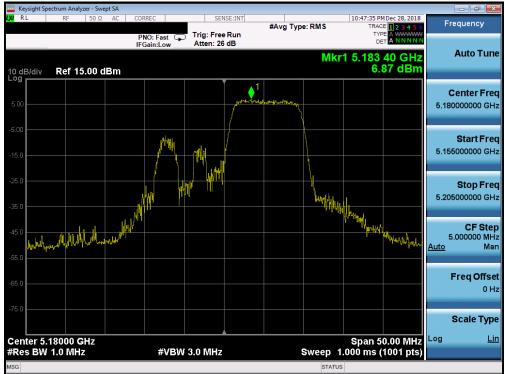
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 212 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 213 of 519	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

Plot 7-291. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 52 Tones (UNII Band 3) – Ch. 155)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 214 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 214 of 519	
© 2019 PCTEST Engineering Labo	2019 PCTEST Engineering Laboratory Inc				

SISO Antenna-2 Power Spectral Density Measurements (106 Tones)

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	106T	MCS0	6.87	11.00	-4.13
-	5200	40	ax (20MHz)	106T	MCS0	7.20	11.00	-3.80
, p	5240	48	ax (20MHz)	106T	MCS0	7.05	11.00	-3.95
Band	5190	38	ax (40MHz)	106T	MCS0	6.89	11.00	-4.11
_	5230	46	ax (40MHz)	106T	MCS0	6.76	11.00	-4.24
	5210	42	ax (80MHz)	106T	MCS0	7.23	11.00	-3.77
	5260	52	ax (20MHz)	106T	MCS0	7.03	11.00	-3.97
∢	5280	56	ax (20MHz)	106T	MCS0	7.14	11.00	-3.86
d 2	5320	64	ax (20MHz)	106T	MCS0	7.26	11.00	-3.74
Band 2A	5270	54	ax (40MHz)	106T	MCS0	6.87	11.00	-4.13
ш	5310	62	ax (40MHz)	106T	MCS0	7.06	11.00	-3.94
	5290	58	ax (80MHz)	106T	MCS0	7.25	11.00	-3.75
	5500	100	ax (20MHz)	106T	MCS0	7.16	11.00	-3.84
	5600	120	ax (20MHz)	106T	MCS0	7.58	11.00	-3.42
	5720	144	ax (20MHz)	106T	MCS0	6.78	11.00	-4.22
2C	5510	102	ax (40MHz)	106T	MCS0	7.06	11.00	-3.94
Bnad	5590	118	ax (40MHz)	106T	MCS0	7.68	11.00	-3.32
Bn	5710	142	ax (40MHz)	106T	MCS0	7.62	11.00	-3.38
	5530	106	ax (80MHz)	106T	MCS0	7.19	11.00	-3.81
	5610	122	ax (80MHz)	106T	MCS0	7.41	11.00	-3.59
	5690	138	ax (80MHz)	106T	MCS0	7.50	11.00	-3.50


Table 7-87. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT2 (106 Tones)

	Frequen cy [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	106T	MCS0	6.87	-7.68	-0.81	10.0	-10.81
-	5200	40	ax (20MHz)	106T	MCS0	7.20	-7.68	-0.48	10.0	-10.48
	5240	48	ax (20MHz)	106T	MCS0	7.05	-7.38	-0.33	10.0	-10.33
Band	5190	38	ax (40MHz)	106T	MCS0	6.89	-7.68	-0.79	10.0	-10.79
-	5230	46	ax (40MHz)	106T	MCS0	6.76	-7.38	-0.62	10.0	-10.62
	5210	42	ax (80MHz)	106T	MCS0	7.23	-7.68	-0.45	10.0	-10.45

Table 7-88. Bands 1 e.r.i.p Conducted Power Spectral Density Measurements (ISED 106 Tones)

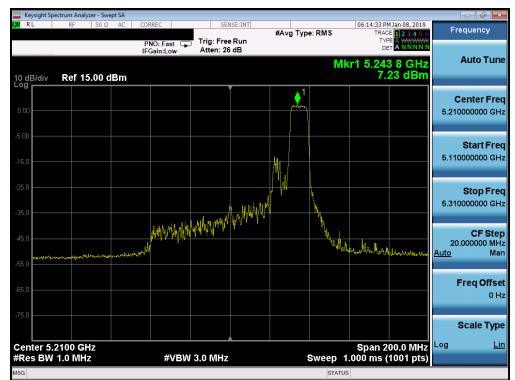
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 215 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 215 of 519	
© 2019 PCTEST Engineering Labo	2019 PCTEST Engineering Laboratory Inc.				

Plot 7-292. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 1) – Ch. 36)

Plot 7-293. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 1) – Ch. 40)

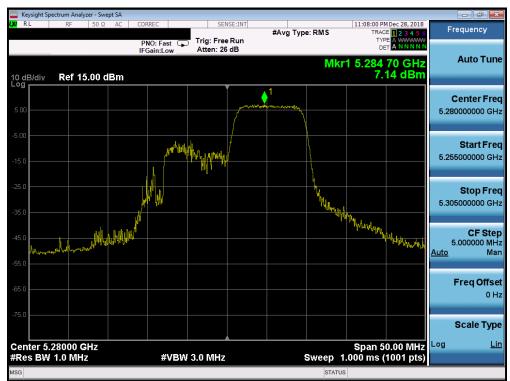
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 216 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 216 of 519	
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018				

Plot 7-294. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 1) – Ch. 48)


Plot 7-295. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 1) – Ch. 38)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dago 217 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 217 of 519	
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018				


Plot 7-296. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 1) – Ch. 46)

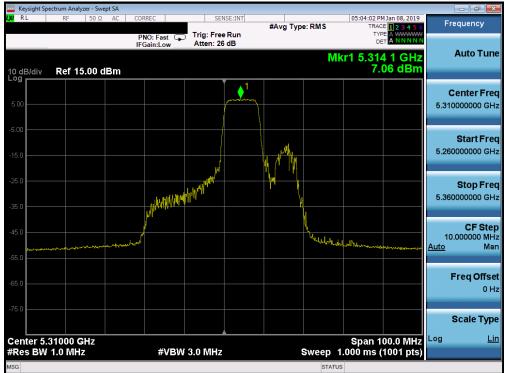

Plot 7-297. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 106 Tones (UNII Band 1) – Ch. 42)

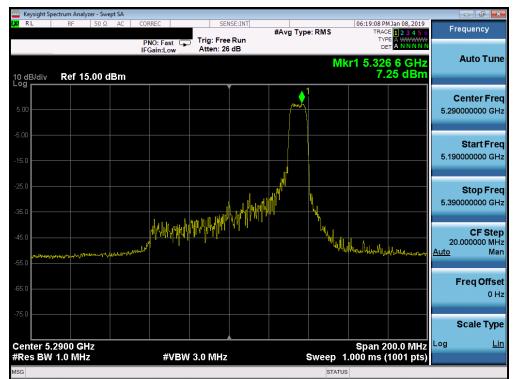
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 219 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 218 of 519
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

Plot 7-298. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 2A) – Ch. 52)

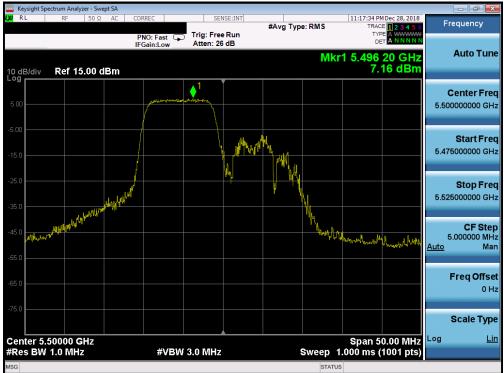
Plot 7-299. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 2A) – Ch. 56)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 210 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 219 of 519	
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018				


Plot 7-300. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 2A) – Ch. 64)

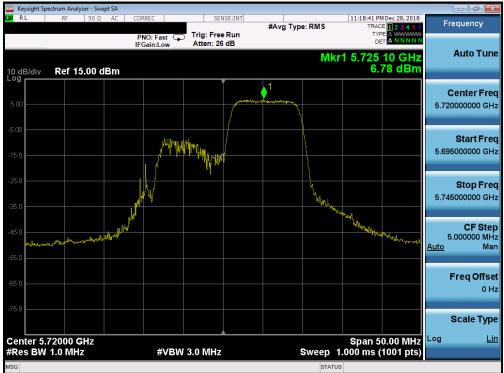

Plot 7-301. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 2A) – Ch. 54)

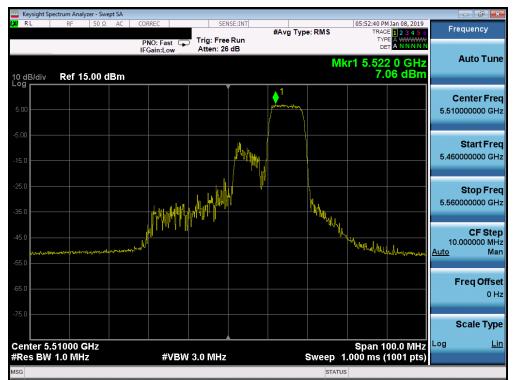
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 220 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 220 of 519	
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018				


Plot 7-302. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 2A) – Ch. 62)

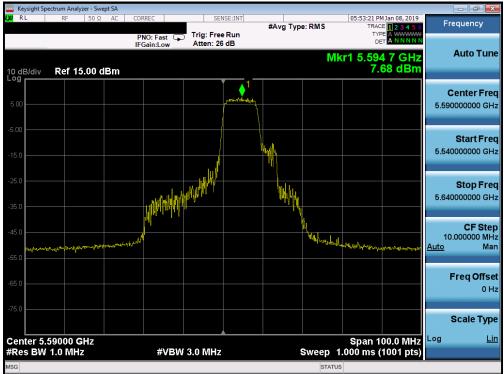
Plot 7-303. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 106 Tones (UNII Band 2A) – Ch. 58)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 221 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 221 of 519
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018


Plot 7-304. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 100)


Plot 7-305. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 120)

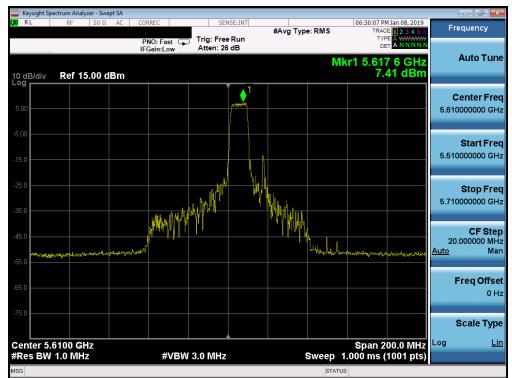
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 222 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 222 of 519
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018


Plot 7-306. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 144)

Plot 7-307. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 102)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 222 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 223 of 519	
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018				

Plot 7-308. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 118)


Plot 7-309. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 142)

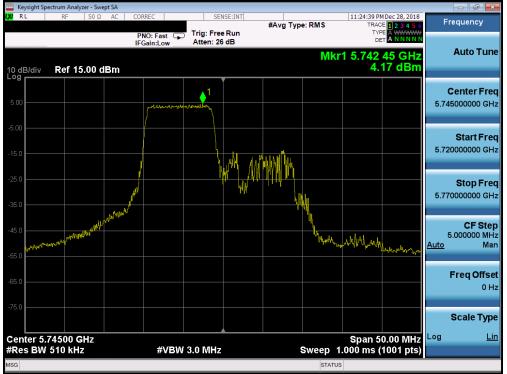
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 224 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 224 of 519
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018

Plot 7-310. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 106)

Plot 7-311. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 122)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 225 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 225 of 519	
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018	

Keysight Spo		lyzer - Swej	pt SA										x
X/RL	RF	50 Ω	AC	CORREC PNO: Fa	et 🕢	SEN	Run	#Avg Ty	e: RMS	TRA	M Jan 18, 2019 CE 1 2 3 4 5 6 PE A WWWWW ET A N N N N N	Frequency	
10 dB/div	Ref 1	5.00 d	Bm	IFGain:Lo	ow	Atten: 26			R	/kr1 5.69		Auto Tu	ine
5.00												Center Fr 5.690000000 G	
-5.00							 	Ma				Start Fr 5.590000000 G	
-25.0					ant Ac							Stop Fr 5.790000000 G	
45.0	-hermer aft	**********	-Julion app-brik	11M 10	n papa a	1'		· rvilijing	M Markatska	Jonestipes, marganet	and an and a second second	CF St 20.000000 M <u>Auto</u> M	
65.0												Freq Offs 0	se H
-75.0												Scale Ty	/pe
Center 5.0 #Res BW				#	VBW	3.0 MHz			Sweep	Span 2 1.000 ms	00.0 191112		<u>-11</u>
ISG									STA				_


Plot 7-312. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 106 Tones (UNII Band 2C) – Ch. 138)

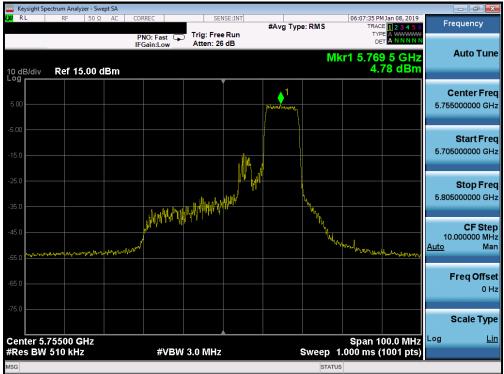
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 226 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 226 of 519
© 2019 PCTEST Engineering Labo	ratory Inc			V 8 8 11/19/2018

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	ax (20MHz)	106T	MCS0	4.17	30.00	-25.83
e	5785	157	ax (20MHz)	106T	MCS0	4.24	30.00	-25.76
	5825	165	ax (20MHz)	106T	MCS0	4.15	30.00	-25.85
Band	5755	151	ax (40MHz)	106T	MCS0	4.78	30.00	-25.22
_	5795	159	ax (40MHz)	106T	MCS0	4.54	30.00	-25.46
	5775	155	ax (80MHz)	106T	MCS0	7.63	30.00	-22.37

Table 7-89. Band 3 Conducted Power Spectral Density Measurements SISO ANT2 (106 Tones)

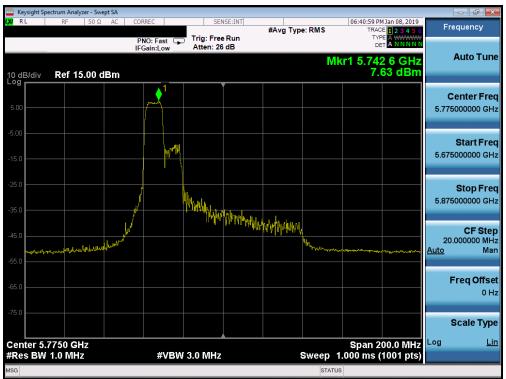
Plot 7-313. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 3) – Ch. 149)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 227 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 227 of 519
© 2019 PCTEST Engineering Lab	oratory Inc.			V 8 8 11/19/2018


Plot 7-314. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 3) – Ch. 157)

Plot 7-315. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 106 Tones (UNII Band 3) – Ch. 165)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 228 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 228 of 519
© 2019 PCTEST Engineering Labo	pratory. Inc.			V 8.8 11/19/2018


Plot 7-316. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 3) – Ch. 151)

Plot 7-317. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 106 Tones (UNII Band 3) – Ch. 159)

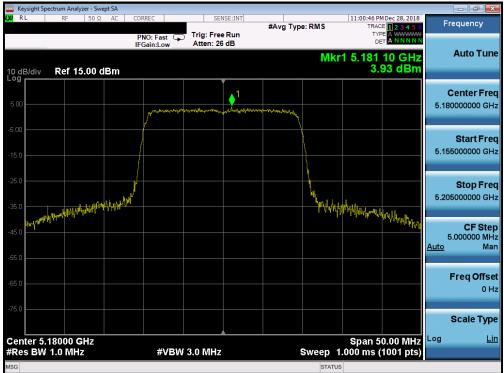
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 220 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 229 of 519
© 2019 PCTEST Engineering Labo	pratory. Inc.			V 8.8 11/19/2018

Plot 7-318. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 106 Tones (UNII Band 3) – Ch. 155)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 220 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 230 of 519	
© 2019 PCTEST Engineering Labo	ratory Inc			V 8 8 11/19/2018

SISO Antenna-2 Power Spectral Density Measurements (242 Tones)

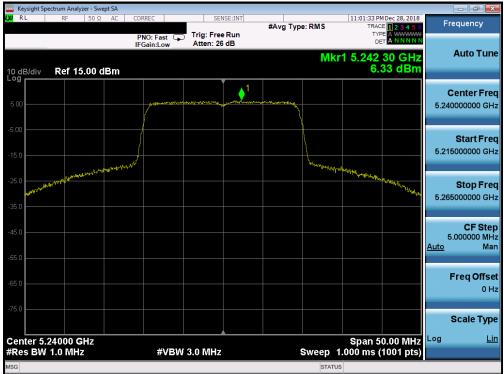
	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	242T	MCS0	3.93	11.00	-7.07
_	5200	40	ax (20MHz)	242T	MCS0	6.45	11.00	-4.55
1 br	5240	48	ax (20MHz)	242T	MCS0	6.33	11.00	-4.67
Band	5190	38	ax (40MHz)	242T	MCS0	1.36	11.00	-9.64
_	5230	46	ax (40MHz)	242T	MCS0	5.44	11.00	-5.56
	5210	42	ax (80MHz)	242T	MCS0	0.93	11.00	-10.07
	5260	52	ax (20MHz)	242T	MCS0	6.29	11.00	-4.71
∢	5280	56	ax (20MHz)	242T	MCS0	6.33	11.00	-4.67
Band 2A	5320	64	ax (20MHz)	242T	MCS0	4.67	11.00	-6.33
an	5270	54	ax (40MHz)	242T	MCS0	5.51	11.00	-5.49
Ξ	5310	62	ax (40MHz)	242T	MCS0	3.18	11.00	-7.82
	5290	58	ax (80MHz)	242T	MCS0	1.23	11.00	-9.77
	5500	100	ax (20MHz)	242T	MCS0	6.65	11.00	-4.35
	5600	120	ax (20MHz)	242T	MCS0	6.78	11.00	-4.22
	5720	144	ax (20MHz)	242T	MCS0	6.96	11.00	-4.04
2C	5510	102	ax (40MHz)	242T	MCS0	4.04	11.00	-6.96
Bnad	5590	118	ax (40MHz)	242T	MCS0	6.04	11.00	-4.96
Bn	5710	142	ax (40MHz)	242T	MCS0	6.23	11.00	-4.77
	5530	106	ax (80MHz)	242T	MCS0	3.32	11.00	-7.68
	5610	122	ax (80MHz)	242T	MCS0	5.17	11.00	-5.83
	5690	138	ax (80MHz)	242T	MCS0	4.70	11.00	-6.30

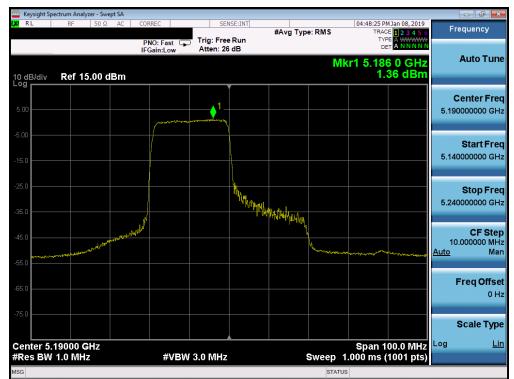

Table 7-90. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT2 (242 Tones)

	Frequen cy [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	ax (20MHz)	242T	MCS0	3.93	-7.68	-3.75	10.0	-13.75
-	5200	40	ax (20MHz)	242T	MCS0	6.45	-7.68	-1.23	10.0	-11.23
	5240	48	ax (20MHz)	242T	MCS0	6.33	-7.38	-1.05	10.0	-11.05
Band	5190	38	ax (40MHz)	242T	MCS0	1.36	-7.68	-6.32	10.0	-16.32
-	5230	46	ax (40MHz)	242T	MCS0	5.44	-7.38	-1.94	10.0	-11.94
	5210	42	ax (80MHz)	242T	MCS0	0.93	-7.68	-6.75	10.0	-16.75

Table 7-91. Bands 1 e.r.i.p Conducted Power Spectral Density Measurements (ISED 242 Tones)

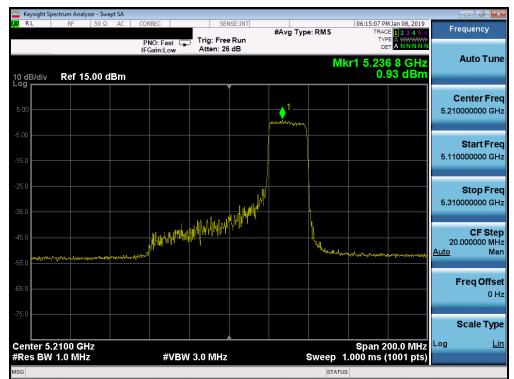
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 231 of 519
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Handset	
© 2019 PCTEST Engineering Labo	pratory Inc.	·		V 8 8 11/19/2018


Plot 7-319. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 36)


Plot 7-320. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 40)

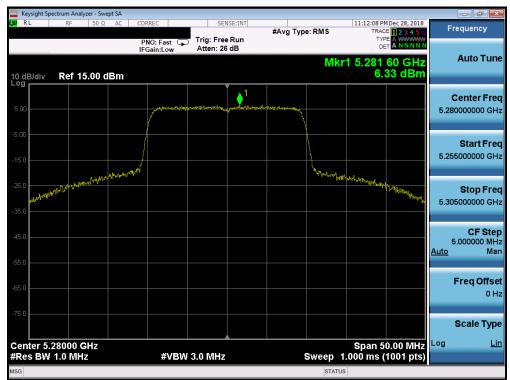
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 222 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 232 of 519	
© 2019 PCTEST Engineering Labo	ratory. Inc.			V 8.8 11/19/2018

Plot 7-321. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 1) - Ch. 48)


Plot 7-322. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 38)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 222 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 233 of 519	
© 2019 PCTEST Engineering Labo	pratory. Inc.			V 8.8 11/19/2018

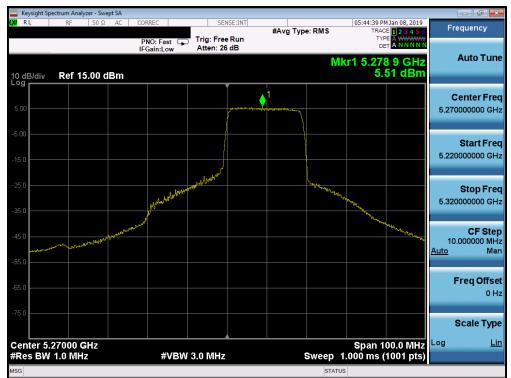
Plot 7-323. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 46)


Plot 7-324. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 42)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 224 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 234 of 519	
© 2019 PCTEST Engineering Labo	pratory. Inc.			V 8.8 11/19/2018

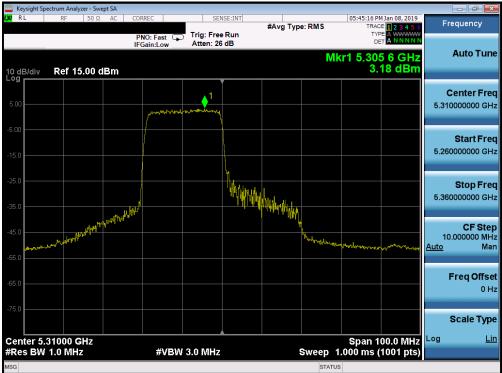
	ectrum Analy:											
IXI RL	RF	50 Ω A	C COR	REC	SE	NSE:INT	#Avg Typ	e: RMS		Dec 28, 2018	F	requency
			PN	lO:Fast ⊂ ain:Low	Trig: Free Atten: 26		• ,,		TYP			
			IFG	am:Low	Atten: 20	ub.		Mkr	1 5 261	15 GHz		Auto Tune
10 dB/div Log	Ref 15	.00 dBr	n						6.2	29 dBm		
LOg						<u>_</u> 1						Center Freq
5.00				Jan Marting	- Harden Martin	and the state of t	-					0000000 GHz
				ſ				U				
-5.00			/									Start Freq
-15.0								l			5.23	5000000 GHz
-15.0			Marywald					Howard				
-25.0	and the state of the	NANNA						. 16	Weinsmitheling	to the balance		Stop Freq
Markan A										Mary and a construction of the second s	5.28	5000000 GHz
-35.0												
-45.0												CF Step
40.0											Auto	5.000000 MHz Man
-55.0											<u>/(uto</u>	man
												Freq Offset
-65.0												0 Hz
-75.0												
1010												Scale Type
Center 5.	26000 0								Cnop 5		Log	Lin
#Res BW				#VB۱	V 3.0 MHz			Sweep 1	span ə .000 ms (0.00 MHz 1001 pts)	9	<u></u>
MSG								STATUS				

Plot 7-325. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 52)


Plot 7-326. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 56)

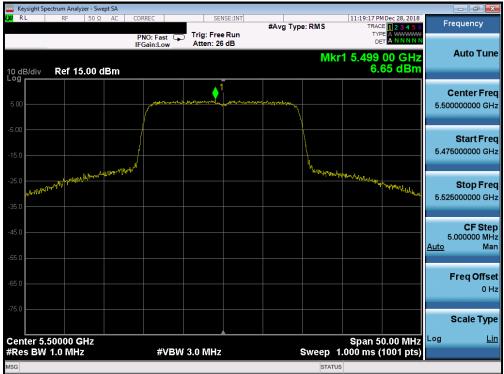
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 225 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 235 of 519	
© 2019 PCTEST Engineering Lab	V 8.8 11/19/2018			

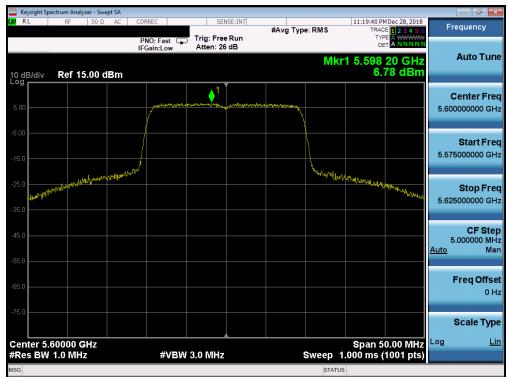
#Res BV	V 1.0 MHz		#VB	W 3.0 MHz			Sweep 1	.000 ms (1001 pts)		
	.32000 GH	z						Span 5	0.00 MHz	Log	<u>Lin</u>
											Scale Type
-75.0											0 Hz
-65.0											Freq Offset
-55.0										<u>Auto</u>	Man
-45.0											CF Step 5.000000 MHz
-35.0 <mark>₩1</mark> ₩	have and a second second							····	wylwypawnilly	0.04	000000 0112
-25.0	in the second states and	hundershughed	w.14				M. M. M. Markhar	In Marketter		5.34	Stop Freq
-15.0										0.20	
										5 29	Start Freq
-5.00			<pre>////////////////////////////////////</pre>							0.02	
5.00					♦ ¹						Center Freq 0000000 GHz
10 dB/div Log	Ref 15.0	00 dBm					Mkr	1 5.321 4.0	10 GHz 67 dBm		Auto Func
			PNO: Fast C IFGain:Low	Trig: Free Atten: 26							Auto Tune
L <mark>XI</mark> RL	RF	50Ω AC	CORREC		NSE:INT	#Avg Typ	e: RMS	TRAC	Dec 28, 2018	Fr	requency
🔤 Keysight S	pectrum Analyzer	- Swept SA									


Plot 7-327. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 64)

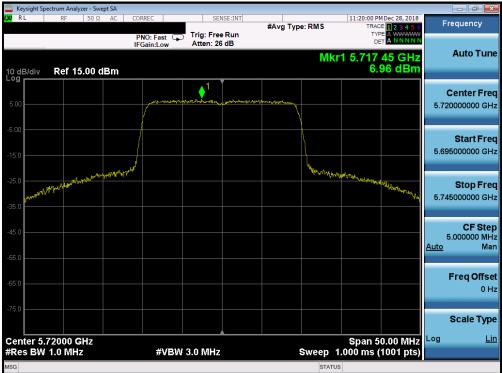
Plot 7-328. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 54)

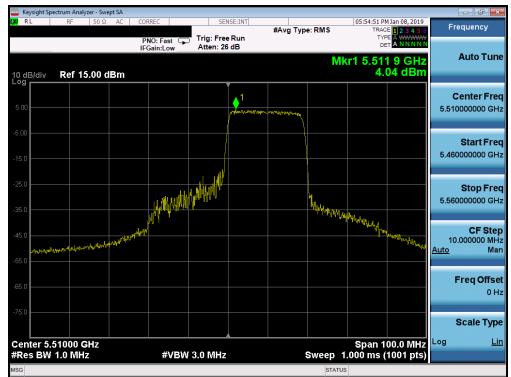
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 226 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 236 of 519	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			


Plot 7-329. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 62)

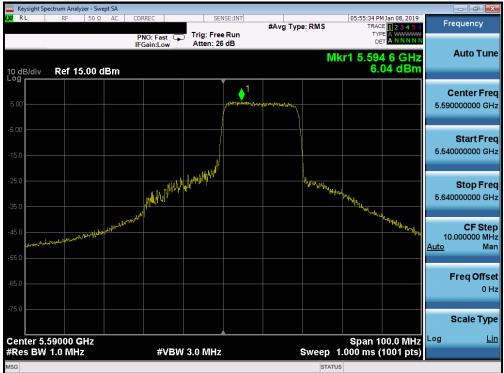

Plot 7-330. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 58)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 227 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset	Page 237 of 519	
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018


Plot 7-331. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 100)


Plot 7-332. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 120)

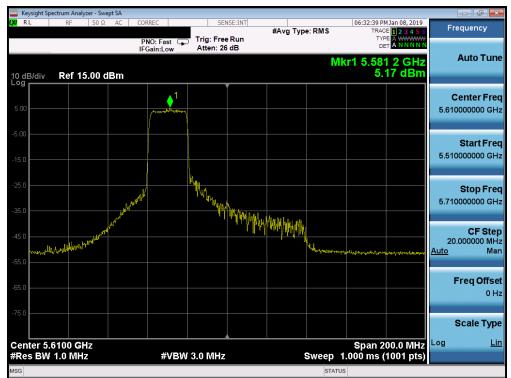
FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 220 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 238 of 519
© 2019 PCTEST Engineering Labo	ratory, Inc.			V 8.8 11/19/2018


Plot 7-333. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 144)

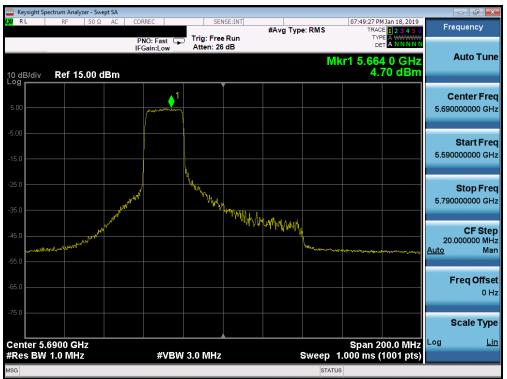

Plot 7-334. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 102)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 220 of 510	
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 239 of 519	
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018	

Plot 7-335. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 118)

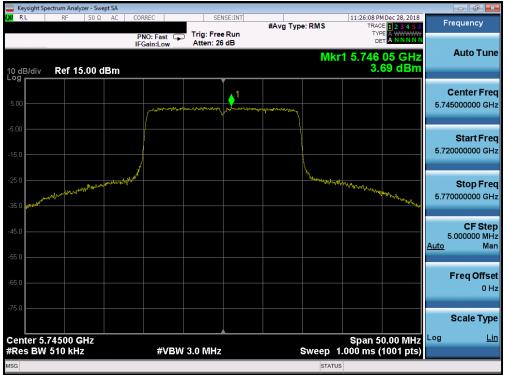

Plot 7-336. Power Spectral Density Plot SISO ANT2 (40MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 142)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 240 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 240 of 519
© 2019 PCTEST Engineering Lab	oratory. Inc.			V 8.8 11/19/2018


Plot 7-337. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 106)

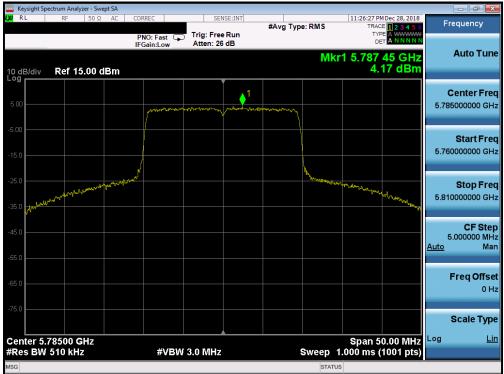
Plot 7-338. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 122)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 241 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 241 of 519
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018


Plot 7-339. Power Spectral Density Plot SISO ANT2 (80MHz BW 802.11ax – 242 Tones (UNII Band 2C) – Ch. 138)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 242 of 519
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 242 01 5 19
© 2019 PCTEST Engineering Lab	oratory Inc			V 8 8 11/19/2018

	Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	ax (20MHz)	242T	MCS0	3.69	30.00	-26.31
e	5785	157	ax (20MHz)	242T	MCS0	4.17	30.00	-25.83
	5825	165	ax (20MHz)	242T	MCS0	4.22	30.00	-25.78
Band	5755	151	ax (40MHz)	242T	MCS0	3.66	30.00	-26.34
_	5795	159	ax (40MHz)	242T	MCS0	3.71	30.00	-26.29
	5775	155	ax (80MHz)	242T	MCS0	5.37	30.00	-24.63


Table 7-92. Band 3 Conducted Power Spectral Density Measurements SISO ANT2 (242 Tones)

Plot 7-340. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 3) – Ch. 149)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 242 of 510
1M1811260212-15.A3L 11/9/2018 - 1/22/2019		Portable Handset		Page 243 of 519
© 2019 PCTEST Engineering Lab	poratory Inc.			V 8 8 11/19/2018

Plot 7-341. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 3) - Ch. 157)

Plot 7-342. Power Spectral Density Plot SISO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 3) - Ch. 165)

FCC ID: A3LSMG9700		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 244 of 510
1M1811260212-15.A3L	11/9/2018 - 1/22/2019	Portable Handset		Page 244 of 519
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018