

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 12/20/17 – 01/09/18 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1712210331-01.A3L

FCC ID:

A3LSMG960U

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type:	Portable Handset
Application Type:	Class II Permissive Change
FCC Rule Part(s):	CFR §2.1093
Model:	SM-G960U
Additional Model(s):	SM-G960U1, SM-G960W, SM-G960XU
Original Grant Date:	01/11/18
Permissive Change(s):	See FCC Change Documentation

Equipment	Band & Mode	Band & Mode Tx Frequency		SAR	
Class			1g Head (W/kg)	1g Body- Worn (W/kg)	
PCE	LTE Band 30	2307.5 - 2312.5 MHz	0.11	0.27	
PCE	LTE Band 7	2502.5 - 2567.5 MHz	0.12	0.44	
Simultaneou	Simultaneous SAR per KDB 690783 D01v01r03:			1.48	

Note: The table above shows Test data evaluated for the current test report. Please refer to RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for original compliance evaluation.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

y Ortanez

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dana 4 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 1 of 47
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.04 M

REV 20.04 M 11/01/2017

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	. 3
2	LTE INFO	DRMATION	. 9
3	INTRODU	JCTION	10
4	DOSIME	TRIC ASSESSMENT	11
5	DEFINITI	ON OF REFERENCE POINTS	12
6	TEST CC	NFIGURATION POSITIONS	13
7	RF EXPC	SURE LIMITS	16
8	FCC MEA	ASUREMENT PROCEDURES	17
9	RF CONI	DUCTED POWERS	19
10	SYSTEM	VERIFICATION	34
11	SAR DAT	A SUMMARY	36
12	FCC MUL	TI-TX AND ANTENNA SAR CONSIDERATIONS	39
13		ASUREMENT VARIABILITY	
14		ENT LIST	
15			
16		SION	
17		NCES	
APPEN APPEN APPEN	DIX A: DIX B:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS	
APPEN	DIX E:	SAR SYSTEM VALIDATION	
APPEN	DIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN APPEN		POWER REDUCTION VERIFICATION DOWNLINK LTE CA TEST EXCLUSION	
APPEN	DIX I:	CONDUCTED POWERS FOR 4X4 DOWNLINK MIMO	

FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 2 of 47
1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 2 of 47
	12/20/17 = 01/09/18	Foltable Halluset		

1 **DEVICE UNDER TEST**

1.1 **Device Overview** г

Band & Mode	Operating Modes	Tx Frequency
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
CDMA/EVDO BC0 (§22H)	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 14	Voice/Data	790.5 - 795.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
LTE Band 38	Voice/Data	2572.5 - 2617.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
ANT+	Data	2402 - 2480 MHz
MST	Data	555 Hz - 8.33 kHz

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 2 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 3 of 47
201	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.04 M

© 2018 PCTEST Engineering Laboratory, Inc.

1.2 Power Reduction for SAR

This device utilizes a single step power reduction mechanism for SAR compliance under portable hotspot conditions for some wireless modes and bands. All hotspot SAR evaluations for this device were performed at the maximum allowed output power when hotspot is enabled. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications for the capabilities evaluated in this test report. See RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for complete maximum and nominal output power specifications.

Mode / Band		Modulated Average (dBm)
LTE Dand 20	Maximum	24.5
LTE Band 30	Nominal	24.0
LTE Dand 7	Maximum	23.5
LTE Band 7	Nominal	23.0

1.3.1 Maximum PCE Output Power

1.3.2 Reduced PCE Power

Mode / Band		Modulated Average (dBm)
LTE Band 30	Maximum	21.5
	Nominal	21.0
LTE Dand 7	Maximum	21.5
LTE Band 7	Nominal	21.0

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 4 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 4 of 47
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.04 M

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is \leq 160 mm and the diagonal display is \leq 150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 5 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 5 01 47
© 201	8 PCTEST Engineering Laboratory, Inc.	•			REV 20.04 M

Simultaneous Transmission					
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	1x CDMA voice + 5 GHz WI-FI	Yes	Yes	N/A	
3	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^ Bluetooth Tethering is considered
4	1x CDMA voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A	*
5	1x CDMA voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	
6	1x CDMA voice + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	N/A	
7	1x CDMA voice + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	
8	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
9	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	
10	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^Bluetooth Tethering is considered
11	GSM voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A	
12	GSM voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	
13	GSM voice + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	N/A	
14	GSM voice + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	
15	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	
16	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	
17	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^ Bluetooth Tethering is considered
18	UMTS + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	.
19	UMTS + 5 GHz WI-FI MIMO	Yes	Yes	Yes	
20	UMTS + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	Yes	
21	UMTS + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	Yes	
22	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	
23	LTE + 5 GHz WI-FI	Yes	Yes	Yes	
24	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^ Bluetooth Tethering is considered
25	LTE + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	
26	LTE + 5 GHz WI-FI MIMO	Yes	Yes	Yes	
27	LTE + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	Yes	
28	LTE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	Yes	
29	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
30	CDMA/EVDO data + 5 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
31	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered
32	CDMA/EVDO data + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
33	CDMA/EVDO data + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
	CDMA/EVDO data + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
35	CDMA/EVDO data + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
	GPRS/EDGE + 2.4 GHz WI-FI	N/A	N/A	Yes	
37	GPRS/EDGE + 5 GHz WI-FI	N/A	N/A	Yes	
38	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	N/A	Yes^	^ Bluetooth Tethering is considered
39	GPRS/EDGE + 2.4 GHz WI-FI MIMO	N/A	N/A	Yes	-
40	GPRS/EDGE + 5 GHz WI-FI MIMO	N/A	N/A	Yes	
41	GPRS/EDGE + 2.4 GHz WI-FI + 5 GHz WI-FI	N/A	N/A	Yes	
	GPRS/EDGE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	N/A	N/A	Yes	

Table 1-1 Simultanoous Transmission Sconarios

1. Bluetooth cannot transmit simultaneously with WLAN.

2. All licensed modes share the same antenna path and cannot transmit simultaneously.

- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII2A, and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN. 802.11a/g/n/ac supports CDD and STBC and 802.11n/ac additionally supports SDM.
- 7. This device supports VOLTE.
- 8. This device supports VoWIFI.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama C of 47	
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 6 of 47	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.04 M 11/01/2017

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

There were no changes made to the WIFI and BT operations within this device. Please see original compliance evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for complete evaluation of these operating modes.

(B) Licensed Transmitter(s)

Only operations relevant to this permissive change were evaluated for compliance. Please see original compliance evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for complete evaluation of all other operating modes. The operational description includes a description of all changed items.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

This device supports downlink 4x4 MIMO operations for some LTE Bands. Per May 2017 TBC Workshop Notes, SAR for downlink 4x4 MIMO was not needed since the maximum average output power in 4x4 downlink MIMO mode was not > 0.25 dB higher than the maximum output power with downlink 4x4 MIMO inactive.

This device supports 64QAM on the uplink and 256QAM on the downlink for LTE Operations. Conducted powers for 64QAM uplink configurations were measured per Section 5.1 of FCC KDB Publication 941225 D05v02r05. SAR was not required for 64QAM since the highest maximum output power for 64 QAM is $\leq \frac{1}{2}$ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg, per Section 5.2.4 of FCC KDB Publication 941225 D05v02r05.

This device uses antenna B for LTE Band 7 and LTE Band 30 standalone operations. During some inter-band downlink carrier aggregation scenarios with Band 7 or Band 30 as the PCC, the transmit operations for these bands are switched to Antenna A. Both antennas were completely evaluated for SAR following FCC KDB procedures for all test positions and exposure conditions for LTE Band 7 and 30. Per FCC Guidance, the device was connected in a radiated downlink carrier aggregation scenario for evaluations of Antenna A. The operational description contains more information about this switching mechanism.

For LTE Band 7 and Band 30, additional hotspot evaluations were not required as there was no change to the maximum allowed target for this exposure condition. Please see original evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for LTE Band 7 and LTE Band 30 hotspot compliance data.

1.8 **Guidance Applied**

- IEEE 1528-2013 •
- FCC KDB Publication 941225, D05v02r04, D05Av01r02 (4G)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) •
- Fall 2017 TCB Workshop Notes (LTE Carrier Aggregation)

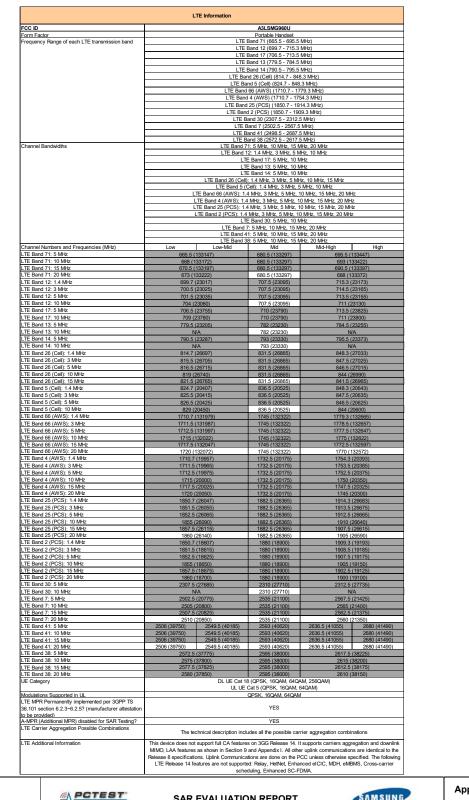
	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		De	
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Page 7 of 47	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.04 M 11/01/2017

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, eld including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an ctronic or n poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

May 2017 TCB Workshop Notes (LTE 4x4 Downlink MIMO) •

1.9 **Device Serial Numbers**


©

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Page 8 of 47	
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	1 age 0 01 47	
201	2018 PCTEST Engineering Laboratory, Inc.				

11/01/2017

2 LTE INFORMATION

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by:	
					Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 9 of 47	
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Fage 9 01 47	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.04 M 11/01/2017

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 **SAR Mathematical Equation**

SAR =	<u>d</u>	$\left(\underline{dU}\right)$		$\left(\frac{dU}{\rho dv}\right)$
5/IK –	dt	dm	dt	$\langle \rho dv \rangle$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dage 10 of 17	
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 10 of 47	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

11/01/2017

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

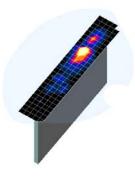


Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

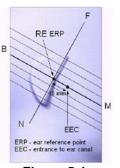
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤ 8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤ 5	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
3-4 GHz	≤12	≤ 5	≤4	≤3	≤ 1.5*Δz _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5	≤ 1.5*Δz _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*Δz _{zoom} (n-1)	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Dama 44 of 47		
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 11 of 47		
201	2018 PCTEST Engineering Laboratory, Inc.					

© 2018 PCTEST Engineering Laboratory, Inc.

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

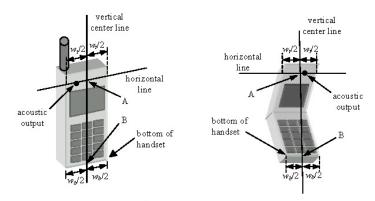


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Dama 40 of 47		
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 12 of 47		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

11/01/2017

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02.

6.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dama 42 of 47	
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 13 of 47	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.				

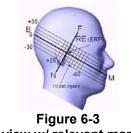
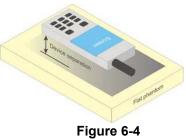


Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

Side view w/ relevant markings


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Page 14 of 47		
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 14 01 47		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

RE\ 20.04 11/01/2017

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Extremity Exposure Configurations 6.6

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body. SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	AMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Page 15 of 47	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.04 M 11/01/2017

7 **RF EXPOSURE LIMITS**

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT		
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR ^{Head}	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over 1. the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body. 2

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and 3. over the appropriate averaging time.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	De
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 16 of 47
© 20′	8 PCTEST Engineering Laboratory, Inc.	•		REV 20.04 M

RE\ 20.04 11/01/2017

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.3 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.3.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.3.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.3.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dawa 47 of 47	
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 17 of 47	
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.04 M 11/01/2017

8.3.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg for FDD and ≤ 0.6 W/kg for TDD, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.3.5 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 10 of 47
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Page 18 of 47
© 201	2018 PCTEST Engineering Laboratory, Inc.				

9 **RF CONDUCTED POWERS**

9.1 **LTE Conducted Powers**

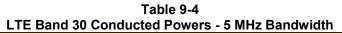
9.1.1	Maximum Antenna B LTE Band 30
-------	-------------------------------

Table 9-1
LTE Band 30 Conducted Powers - 10 MHz Bandwidth

LTE Band 30 10 MHz Bandwidth					
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz)	MPR Allowed per	MPR [dB]
			Conducted Power [dBm]	3GPP [dB]	
	1	0	24.18		0
	1	25	24.09	0	0
	1	49	24.02		0
QPSK	25	0	23.16		1
	25	12	23.13	0-1	1
	25	25	23.10	0-1	1
	50	0	23.14		1
	1	0	23.26		1
	1	25	23.23	0-1	1
	1	49	23.19		1
16QAM	25	0	22.23		2
	25	12	22.20	0-2	2
	25	25	22.15	0-2	2
	50	0	22.18		2
	1	0	22.33		2
	1	25	22.22	0-2	2
	1	49	22.21		2
64QAM	25	0	21.25		3
	25	12	21.21	0-3	3
	25	25	21.16	0-3	3
	50	0	21.20		3

Table 9-2 LTE Band 30 Conducted Powers - 5 MHz Bandwidth

LTE Band 30 5 MHz Bandwidth					
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.14		0
	1	12	24.06	0	0
	1	24	24.03		0
QPSK	12	0	23.12		1
	12	6	23.13		1
	12	13	23.07	0-1	1
	25	0	23.11		1
	1	0	23.21		1
	1	12	23.18	0-1	1
	1	24	23.22		1
16QAM	12	0	22.15		2
	12	6	22.18		2
	12	13	22.10	0-2	2
	25	0	22.17		2
	1	0	22.28		2
	1	12	22.22	0-2	2
	1	24	22.23		2
64QAM	12	0	21.18		3
	12	6	21.18	0-3	3
	12	13	21.12	0-3	3
	25	0	21.14		3


Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da an 40 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 19 of 47
© 20′	2018 PCTEST Engineering Laboratory, Inc.				

REV 20.04 M 11/01/2017

	LTE Band 30 10 MHz Bandwidth						
Modulation	RB Size	RB Offset	Offset Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm] MPR Allowed per 3GPP [dB]		MPR [dB]		
	1	0	23.82		0		
	1	25	23.71	0	0		
	1	49	23.63		0		
QPSK	25	0	22.80	0-1	1		
	25	12	22.73		1		
	25	25	22.69	0-1	1		
	50	0	22.77		1		
	1	0	23.06		1		
	1	25	23.02	0-1	1		
	1	49	22.92		1		
16QAM	25	0	21.88		2		
	25	12	21.86	0-2	2		
	25	25	21.76	0-2	2		
	50	0	21.80		2		
	1	0	22.05		2		
	1	25	21.99	0-2	2		
	1	49	21.91		2		
64QAM	25	0	20.87		3		
	25	12	20.83	0-3	3		
	25	25	20.78	0-3	3		
	50	0	20.83		3		

Table 9-3 I TE Band 30 Conducted Powers - 10 MHz Bandwidth

LTE Band 30					
		ſ	5 MHz Bandwidth Mid Channel	[
			27710		
Modulation	RB Size	RB Offset	(2310.0 MHz)	MPR Allowed per	MPR [dB]
			Conducted Power	3GPP [dB]	
			[dBm]		
	1	0	23.76		0
	1	12	23.73	0	0
	1	24	23.69		0
QPSK	12	0	22.78		1
	12	6	22.79	0-1	1
	12	13	22.72	0-1	1
	25	0	22.70		1
	1	0	23.06		1
	1	12	23.02	0-1	1
	1	24	22.92		1
16QAM	12	0	21.84		2
	12	6	21.85	0-2	2
	12	13	21.79	0-2	2
	25	0	21.80		2
	1	0	22.02		2
	1	12	22.03	0-2	2
	1	24	22.04		2
64QAM	12	0	20.84		3
	12	6	20.81	0-3	3
	12	13	20.78	0-5	3
	25	0	20.82		3

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID A3LSMG960U	<u>PCTEST</u>	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 00 of 47	
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 20 of 47	
© 201	2018 PCTEST Engineering Laboratory, Inc.					

11/01/2017

Reduced Antenna B LTE Band 30

			LTE Band 30 10 MHz Bandwidth		
<i>l</i> odulation	RB Size	RB Size RB Offset Conducted Power [dBm] MId Channel MPR Allowed per 3GPP [dB]			MPR [dB]
	1	0	21.08		0
	1	25	20.84	0	0
	1	49	20.81		0
QPSK	25	0	20.92		0
	25	12	20.93	0-1	0
	25	25	20.86	0-1	0
	50	0	20.90		0
	1	0	21.20		0
[1	25	20.96	0-1	0
[1	49	20.95		0
16QAM	25	0	20.97		0
	25	12	20.98	0-2	0
[25	25	20.93	0=2	0
	50	0	20.95		0
l	1	0	21.26		0
	1	25	21.03	0-2	0
	1	49	20.99		0
64QAM	25	0	20.98		0
	25	12	20.97	0-3	0
	25	25	20.94	0-0	0
	50	0	20.96	1	0

Table 9-5 LTE Band 30 Conducted Powers - 10 MHz Bandwidth

Table 9-6
LTE Band 30 Conducted Powers - 5 MHz Bandwidth

			LTE Band 30 5 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	20.87		0
	1	12	20.70	0	0
	1	24	20.69		0
QPSK	12	0	20.76		0
	12	6	20.79	0-1	0
	12	13	20.74	0-1	0
	25	0	20.73		0
	1	0	20.96		0
	1	12	20.85	0-1	0
	1	24	20.79		0
16QAM	12	0	20.76		0
	12	6	20.77	0-2	0
	12	13	20.72	0=2	0
	25	0	20.86		0
	1	0	21.03		0
	1	12	20.94	0-2	0
	1	24	20.96		0
64QAM	12	0	20.79		0
	12	6	20.87	0-3	0
	12	13	20.79	0-3	0
	25	0	20.78]	0

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager		
	Document S/N:	Test Dates: DUT Type:			Page 21 of 47		
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Fage 21 01 47		
© 201	2018 PCTEST Engineering Laboratory, Inc.						

			LTE Band 30 10 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	21.08		0
	1	25	20.87	Ö	0
	1	49	20.86		0
QPSK	25	0	20.94		0
	25	12	20.91	0-1	0
	25	25	20.90	0-1	0
	50	0	20.88		0
	1	0	21.39		0
	1	25	21.27	0-1	0
	1	49	21.25		0
16QAM	25	0	21.02		0
	25	12	21.01	0-2	0
	25	25	20.98	0-2	0
	50	0	20.97		0
	1	0	20.85		0
	1	25	20.73	0-2	0
	1	49	20.74		0
64QAM	25	0	20.81		0
	25	12	20.82	0-3	0
	25	25	20.78	0-3	0
	50	0	20.76		0

Table 9-7 TE Daniel 00 Camelus 4 a al D a . . . a

Table 9-8
LTE Band 30 Conducted Powers - 5 MHz Bandwidth

	LTE Band 30 5 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	21.01		0			
	1	12	20.84	0	0			
	1	24	20.81		0			
QPSK	12	0	20.93		0			
	12	6	20.89	0-1	0			
	12	13	20.81	0-1	0			
	25	0	20.85		0			
	1	0	21.25		0			
	1	12	21.10	0-1	0			
	1	24	21.16		0			
16QAM	12	0	20.96		0			
	12	6	20.92	0-2	0			
	12	13	20.85	0-2	0			
	25	0	20.89		0			
	1	0	21.22		0			
	1	12	21.14	0-2	0			
	1	24	21.05		0			
64QAM	12	0	21.02		0			
	12	6	21.01	0-3	0			
	12	13	20.89	0-3	0			
	25	0	20.90		0			

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager		
Document S/N:	Test Dates: DUT Type:			Dama 00 of 47		
1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 22 of 47		
2018 PCTEST Engineering Laboratory, Inc.						

RE 11/01/2017

9.1.5

Maximum Antenna B LTE Band 7

		L		ucted Powers -		hath	
				LTE Band 7 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MDR Allowed per	
Modulation	RB Size	RB Offset	20850 (2510.0 MHz)	21100 (2535.0 MHz)	21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	23.28	23.14	23.31		0
	1	50	23.04	23.03	23.08	0	0
	1	99	23.11	23.04	23.01		0
QPSK	50	0	22.21	22.15	22.22		1
	50	25	22.14	22.14	22.12	0-1	1
	50	50	22.15	22.13	22.04	- 0-1 -	1
	100	0	22.15	22.14	22.16		1
	1	0	22.48	22.46	22.48	0-1	1
	1	50	22.34	22.40	22.35		1
	1	99	22.45	22.43	22.31		1
16QAM	50	0	21.29	21.22	21.28		2
	50	25	21.19	21.20	21.20	0.0	2
	50	50	21.24	21.22	21.11	0-2	2
	100	0	21.28	21.21	21.22		2
	1	0	21.48	21.34	21.46		2
	1	50	21.21	21.17	21.16	0-2	2
	1	99	21.31	21.29	21.18		2
64QAM	50	0	20.30	20.24	20.32		3
	50	25	20.24	20.23	20.24		3
	50	50	20.24	20.20	20.16	0-3	3
	100	0	20.29	20.21	20.22		3

Table 9-9 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

Table 9-10 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

	LTE Band 7								
		1	-	15 MHz Bandwidth	r				
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	20825	21100	21375	MPR Allowed per	MPR [dB]		
modulation	ND 0120	ND Onset	(2507.5 MHz)	(2535.0 MHz)	(2562.5 MHz)	3GPP [dB]			
				Conducted Power [dBm					
	1	0	23.27	23.09	23.19		0		
	1	36	23.09	23.04	23.05	0	0		
	1	74	23.02	23.07	23.00		0		
QPSK	36	0	22.21	22.11	22.15		1		
	36	18	22.14	22.11	22.10	0-1	1		
	36	37	22.07	22.12	22.04		1		
	75	0	22.13	22.10	22.07		1		
	1	0	22.49	22.40	22.47	0-1	1		
	1	36	22.42	22.37	22.35		1		
	1	74	22.30	22.42	22.23		1		
16QAM	36	0	21.31	21.22	21.21		2		
	36	18	21.26	21.19	21.18	0.0	2		
	36	37	21.18	21.21	21.12	0-2	2		
	75	0	21.21	21.17	21.16		2		
	1	0	21.45	21.26	21.37		2		
	1	36	21.26	21.22	21.20	0-2	2		
	1	74	21.18	21.25	21.14		2		
64QAM	36	0	20.31	20.19	20.22		3		
	36	18	20.27	20.20	20.18		3		
	36	37	20.19	20.18	20.11	0-3	3		
	75	0	20.23	20.19	20.17		3		

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager			
	Document S/N:	Test Dates:	es: DUT Type:				
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 23 of 47			
201	2018 PCTEST Engineering Laboratory, Inc.						

© 2018 PCTEST Engineering Laboratory, Inc.

		E	E Dallu / Colle	lucted Powers -			
				LTE Band 7			
			Law Obarrad	10 MHz Bandwidth	Ulark Okamusi	1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20800 (2505.0 MH-)	21100 (2525.0 MHz)	21400	MPR Allowed per 3GPP [dB]	MPR [dB]
			(2505.0 MHz)	(2535.0 MHz) Conducted Power [dBm	(2565.0 MHz)		
	1	0	23.11	23.07	23.09		0
	1	25	23.03	23.05	23.00	0	0
	1	49	22.96	23.06	22.95		0
QPSK	25	49	22.08	22.12	22.07		1
QI OIT	25	12	22.00	22.12	22.07		1
	25	25	21.98	22.14	22.03	- 0-1 -	1
	50	0	22.03	22.08	22.02		1
	1	0	22.44	22.41	22.42		1
	1	25	22.36	22.39	22.33	0-1	1
	1	49	22.29	22.39	22.27		1
16QAM	25	0	21.19	21.19	21.16		2
	25	12	21.13	21.20	21.18	-	2
	25	25	21.10	21.18	21.10	0-2	2
	50	0	21.10	21.20	21.12		2
	1	0	21.30	21.24	21.27		2
	1	25	21.20	21.25	21.20	0-2	2
	1	49	21.13	21.26	21.14	-	2
64QAM	25	0	20.21	20.20	20.19		3
	25	12	20.18	20.21	20.17	1 F	3
	25	25	20.12	20.20	20.10	0-3	3
	50	0	20.12	20.19	20.13	1	3

Table 9-11 I TE Band 7 Conducted Powers - 10 MHz Bandwidth

Table 9-12 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				LTE Band 7 5 MHz Bandwidth			
			Low Channel 20775	Mid Channel 21100	High Channel 21425	MPR Allowed per	
Modulation	RB Size	RB Offset	(2502.5 MHz)	(2535.0 MHz)	(2567.5 MHz)	3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	· · · · · · · · · · · · · · · · · · ·		
	1	0	23.17	23.05	22.96		0
	1	12	23.15	23.04	22.96	0	0
	1	24	23.08	23.03	23.01		0
QPSK	12	0	22.24	22.07	22.03		1
	12	6	22.25	22.13	22.05	0-1	1
	12	13	22.18	22.11	22.00		1
	25	0	22.22	22.08	22.00		1
	1	0	22.50	22.39	22.28	0-1	1
	1	12	22.49	22.38	22.28		1
	1	24	22.44	22.38	22.16		1
16QAM	12	0	21.34	21.17	21.13		2
	12	6	21.32	21.25	21.15	0-2	2
	12	13	21.27	21.17	21.09	0-2	2
	25	0	21.28	21.18	21.07		2
	1	0	21.39	21.23	21.15		2
	1	12	21.35	21.24	21.15	0-2	2
	1	24	21.27	21.18	21.10		2
64QAM	12	0	20.33	20.19	20.10		3
	12	6	20.35	20.23	20.13	0-3	3
	12	13	20.31	20.17	20.10	0-3	3
	25	0	20.30	20.18	20.10		3

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dage 24 of 47	
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 24 of 47	
004	0 DOTECT Engineering Leberatery Inc.				

9.1.6

Maximum Antenna A LTE Band 7

				LTE Band 7	20 Mil 2 Dallaw	iatii	
				20 MHz Bandwidth		-	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850	21100	21350	MPR Allowed per	MPR [dB]
			(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	22.58	22.66	23.00		0
	1	50	22.29	22.65	22.70	0	0
	1	99	22.54	22.51	22.65		0
QPSK	50	0	21.50	21.76	21.86		1
	50	25	21.42	21.72	21.75		1
	50	50	21.37	21.65	21.53		1
	100	0	21.41	21.75	21.73		1
	1	0	21.86	22.07	22.43	0-1	1
	1	50	21.54	22.04	22.00		1
	1	99	21.70	22.05	22.07		1
16QAM	50	0	20.54	20.88	20.98		2
	50	25	20.46	20.82	20.82		2
	50	50	20.49	20.74	20.63	0-2	2
	100	0	20.42	20.70	20.85		2
	1	0	20.82	21.03	21.22		2
	1	50	20.54	20.76	20.96	0-2	2
	1	99	20.65	20.91	20.92] [2
64QAM	50	0	19.57	19.85	19.98		3
	50	25	19.47	19.82	19.63	0-3	3
	50	50	19.51	19.74	19.70		3
	100	0	19.44	19.77	19.89	1 [3

Table 9-13 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

Table 9-14 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

				LTE Band 7			
	1	1		15 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20825	21100	21375	MPR Allowed per	MPR [dB]
			(2507.5 MHz)	(2535.0 MHz)	(2562.5 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	22.64	22.84	22.89		0
	1	36	22.44	22.83	22.74	0	0
	1	74	22.17	22.88	22.75		0
QPSK	36	0	21.59	21.91	21.78		1
	36	18	21.43	21.91	21.80	0-1	1
	36	37	21.28	21.83	21.68	0-1	1
	75	0	21.38	21.85	21.77		1
	1	0	21.85	22.13	22.26	0-1	1
	1	36	21.55	22.15	22.12		1
	1	74	21.47	22.10	22.09		1
16QAM	36	0	20.64	21.02	20.85		2
	36	18	20.54	20.98	20.90	0-2	2
	36	37	20.38	20.94	20.77	0-2	2
	75	0	20.47	20.95	20.86		2
	1	0	20.94	21.20	21.18		2
	1	36	20.70	21.04	21.05	0-2	2
	1	74	20.62	21.18	21.04		2
64QAM	36	0	19.65	20.06	19.88		3
	36	18	19.56	20.02	19.92	0.2	3
	36	37	19.39	19.91	19.79	0-3	3
	75	0	19.44	19.93	19.88		3

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 25 of 47	
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Fage 25 01 47	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.04 M	

		L	E Danu / Cond	lucted Powers -		lati	
				LTE Band 7			
	1			10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20800	21100	21400	MPR Allowed per	MPR [dB]
			(2505.0 MHz)	(2535.0 MHz)	(2565.0 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	22.73	22.90	22.86	4 – –	0
	1	25	22.55	22.88	22.84	0	0
	1	49	22.56	22.94	22.75		0
QPSK	25	0	21.62	21.92	21.83		1
	25	12	21.72	21.88	21.76	0-1	1
	25	25	21.59	21.86	21.77		1
	50	0	21.67	21.86	21.76		1
	1	0	21.98	22.20	22.16	0-1	1
	1	25	21.85	22.13	22.24		1
	1	49	21.78	22.24	22.16		1
16QAM	25	0	20.75	20.98	20.90		2
	25	12	20.82	21.03	20.87	0-2	2
	25	25	20.69	20.94	20.86	0-2	2
	50	0	20.77	20.95	20.84		2
	1	0	21.06	21.29	21.22		2
	1	25	20.94	21.20	21.20	0-2	2
	1	49	20.79	21.35	21.11		2
64QAM	25	0	19.75	20.03	19.92		3
	25	12	19.79	20.04	19.88	0.2	3
	25	25	19.69	19.97	19.89	0-3	3
	50	0	19.75	20.00	19.85		3

Table 9-15 I TE Band 7 Conducted Powers - 10 MHz Bandwidth

Table 9-16 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				LTE Band 7 5 MHz Bandwidth			
			Low Channel 20775	Mid Channel 21100	High Channel 21425	MPR Allowed per	
Modulation	RB Size	RB Offset	(2502.5 MHz)	(2535.0 MHz)	(2567.5 MHz)	3GPP [dB]	MPR [dB]
			· · · · · · · · · · · · · · · · · · ·	Conducted Power [dBm		· · · · ·	
	1	0	22.77	22.89	22.86		0
	1	12	22.81	22.88	22.81	0	0
	1	24	22.75	22.86	22.77		0
QPSK	12	0	21.85	21.97	21.85		1
	12	6	21.89	21.99	21.85	0-1	1
	12	13	21.80	21.90	21.82		1
	25	0	21.83	21.90	21.82		1
	1	0	22.10	22.15	22.18	0-1	1
	1	12	22.06	22.07	22.26		1
	1	24	22.05	22.11	22.14		1
16QAM	12	0	20.94	21.04	20.96		2
	12	6	20.96	21.05	20.99	0-2	2
	12	13	20.88	20.97	20.90	0-2	2
	25	0	20.94	21.00	20.88		2
	1	0	21.21	21.32	21.18		2
	1	12	21.13	21.33	21.20	0-2	2
	1	24	21.16	21.25	21.08		2
64QAM	12	0	19.97	20.10	19.93		3
	12	6	19.89	20.10	19.96	0-3	3
	12	13	19.88	19.97	19.88	0-3	3
1	25	0	19.83	20.04	19.92		3

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 26 of 47
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 26 of 47
004	0 DOTECT Engineering Leberster (Inc.			

9.1.7

Reduced Antenna B LTE Band 7

				aucted Powers -	ZU WITZ Danuw	lutil	
				LTE Band 7 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850 (2510.0 MHz)	21100 (2535.0 MHz)	21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	20.67	20.44	20.80		0
	1	50	20.40	20.35	20.57	0	0
	1	99	20.45	20.53	20.62		0
QPSK	50	0	20.57	20.47	20.74		0
	50	25	20.48	20.45	20.65	0-1	0
	50	50	20.52	20.44	20.57		0
	100	0	20.59	20.46	20.67		0
	1	0	20.83	20.62	20.96	0-1	0
	1	50	20.56	20.55	20.75		0
	1	99	20.62	20.72	20.78		0
16QAM	50	0	20.65	20.53	20.81		0
	50	25	20.57	20.52	20.73	0-2	0
	50	50	20.61	20.51	20.67	0-2	0
	100	0	20.67	20.54	20.75		0
	1	0	20.89	20.73	21.03		0
	1	50	20.62	20.63	20.80	0-2	0
	1	99	20.70	20.78	20.84		0
64QAM	50	0	19.64	19.53	19.80		1
	50	25	19.39	19.44	19.70	0-3	1
	50	50	19.54	19.45	19.56		1
	100	0	19.51	19.49	19.66	I F	1

Table 9-17 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

Table 9-18 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

				LTE Band 7			
		1	1	15 MHz Bandwidth	1	1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20825	21100	21375	MPR Allowed per	MPR [dB]
			(2507.5 MHz)	(2535.0 MHz)	(2562.5 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	20.45	20.47	20.76		0
	1	36	20.21	20.37	20.58	0	0
	1	74	20.19	20.52	20.50		0
QPSK	36	0	20.35	20.46	20.65		0
	36	18	20.33	20.49	20.58	0-1	0
	36	37	20.20	20.42	20.57		0
	75	0	20.30	20.42	20.58		0
	1	0	20.50	20.61	20.90	0-1	0
	1	36	20.39	20.51	20.69		0
	1	74	20.40	20.69	20.75		0
16QAM	36	0	20.42	20.50	20.72		0
	36	18	20.39	20.49	20.65	0.0	0
	36	37	20.29	20.45	20.67	0-2	0
	75	0	20.37	20.50	20.65		0
	1	0	20.69	20.69	20.98		0
	1	36	20.42	20.62	20.81	0-2	0
	1	74	20.43	20.74	20.72		0
64QAM	36	0	19.63	19.58	19.76		1
	36	18	19.59	19.50	19.66	0-3	1
	36	37	19.46	19.48	19.60		1
	75	0	19.54	19.49	19.61		1

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:	Dama 07 of 47				
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 27 of 47				
201	118 PCTEST Engineering Laboratory, Inc.							

© 2018 PCTEST Engineering Laboratory, Inc.

		L	E Banu / Cont	lucted Powers -	TO MINZ Balluw	nutri	
				LTE Band 7			
			Law Obarrad	10 MHz Bandwidth	Ulat Observal		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20800	21100	21400	MPR Allowed per	MPR [dB]
			(2505.0 MHz)	(2535.0 MHz) Conducted Power [dBm	(2565.0 MHz)	3GPP [dB]	
	1	0	20.30	20.43	20.67		0
	1	25	20.25	20.39	20.61	0	0
	1	49	20.23	20.39	20.61		0
QPSK	25	49	20.12	20.37	20.56		0
QFSK		-				-	
	25	12	20.24	20.45	20.64	0-1	0
	25	25	20.19	20.43	20.59		0
	50	0	20.28	20.41	20.56		0
	1	0	20.42	20.59	20.82	0-1	0
	1	25	20.33	20.54	20.76		0
	1	49	20.38	20.58	20.70		0
16QAM	25	0	20.35	20.50	20.68		0
	25	12	20.32	20.52	20.72	0-2	0
	25	25	20.26	20.46	20.65	0-2	0
	50	0	20.32	20.48	20.61		0
	1	0	20.50	20.71	20.86		0
	1	25	20.59	20.63	20.83	0-2	0
	1	49	20.42	20.65	20.84]	0
64QAM	25	0	19.52	19.51	19.64		1
	25	12	19.47	19.56	19.69	1 [1
	25	25	19.38	19.45	19.56	0-3	1
	50	0	19.41	19.52	19.56	1	1

Table 9-19 I TE Band 7 Conducted Powers - 10 MHz Bandwidth

Table 9-20 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				LTE Band 7			
APSK 1 (APSK 1) (APSK 1)				5 MHz Bandwidth		TT	
			Low Channel	Mid Channel	High Channel	_	
Modulation	RB Size	RB Offset	20775 (2502.5 MHz)	21100 (2535.0 MHz)	21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	20.34	20.42	20.68		0
	1	12	20.33	20.35	20.55	0	0
	1	24	20.28	20.38	20.57		0
QPSK	12	0	20.37	20.41	20.60		0
	12	6	20.39	20.45	20.65	- 0-1	0
	12	13	20.37	20.21	20.61	0-1	0
	25	0	20.32	20.43	20.60		0
	1	0	20.59	20.55	20.77	-	0
	1	12	20.47	20.59	20.65	0-1	0
	1	24	20.40	20.56	20.70		0
16QAM	12	0	20.45	20.48	20.71		0
	12	6	20.46	20.52	20.72	0-2	0
	12	13	20.36	20.46	20.66	0-2	0
	25	0	20.44	20.46	20.68		0
	1	0	20.66	20.65	20.85		0
	1	12	20.62	20.63	20.79	0-2	0
	1	24	20.50	20.65	20.73		0
64QAM	12	0	19.62	19.53	19.67		1
	12	6	19.63	19.55	19.67	0-3	1
	12	13	19.59	19.51	19.62	0-3	1
	25	0	19.57	19.47	19.56		1

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 29 of 47
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 28 of 47
004	0 DOTECT Engineering Leberster (Inc.			

9.1.8

Reduced Antenna A LTE Band 7

		E= 1		aucted Powers -	20 Millz Dalluw	hath	
				LTE Band 7			
			Low Channel	20 MHz Bandwidth Mid Channel	High Channel		
Madulation	RB Size	RB Offset	20850	21100	21350	MPR Allowed per	
wodulation	RD SIZE	RB Unset	(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	' MPR [dB]
QPSK				Conducted Power [dBm]		
	1	0	21.12	21.27	21.48		0
	1	50	21.02	21.11	21.37	0	0
	1	99	20.91	21.16	21.49		0
QPSK	50	0	21.15	21.29	21.39		0
	50	25	21.07	21.16	21.46	0-1	0
	50	50	21.02	21.06	21.38	0-1	0
	100	0	21.06	21.12	21.43		0
	1	0	21.40	21.47	21.46		0
	1	50	21.28	21.37	21.41	0-1	0
	1	99	21.22	21.29	21.50		0
16QAM	50	0	21.23	21.38	21.45		0
	50	25	21.12	21.28	21.34	0.2	0
	50	50	21.07	21.16	21.46	0-2	0
	100	0	21.11	21.24	21.49		0
	1	0	21.49	21.48	21.48		0
	1	50	21.32	21.46	21.39	0-2	0
	1	99	21.19	21.41	21.49		0
64QAM	50	0	19.63	19.68	19.84		1
	50	25	19.50	19.65	19.77		1
	50	50	19.52	19.59	19.65	0-3	1
	100	0	19.53	19.60	19.78]	1

Table 9-21 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

Table 9-22 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

				LTE Band 7			
				15 MHz Bandwidth		• • • • • • • • • • • • • • • • • • •	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20825	21100		MPR Allowed per	MPR [dB]
			(2507.5 MHz)	(2535.0 MHz)		3GPP [dB]	
				Conducted Power [dBm	vidth High Channel 21375 MPR Allowed (2562.5 MHz) 3GPP [dB]		
	1	0	21.30	21.05	-		0
	1	36	21.02	21.11	21.18	0	0
	1	74	20.74	21.15	21.16		0
QPSK	36	0	21.18	21.12	21.26		0
	36	18	21.07	21.11	21.25	0.1	0
	36	37	20.83	21.11	21.15	0-1	0
	75	0	21.02	21.09	21.23		0
	1	0	21.27	21.40	21.50		0
	1	36	21.30	21.36	21.44	0-1	0
	1	74	21.07	21.47	21.47		0
16QAM	36	0	21.20	21.11	21.12		0
	36	18	21.06	21.14	20.88	0.0	0
	36	37	20.89	21.12	21.11	0-2	0
	75	0	20.98	21.10	21.22		0
	1	0	21.46	21.45	21.45		0
	1	36	21.29	21.43	21.36	0-2	0
	1	74	21.16	21.38	21.46		0
64QAM	36	0	19.63	19.59	19.73		1
	36	18	19.56	19.58	19.52	0.2	1
	36	37	19.47	19.48	19.53	0-3	1
	75	0	19.49	19.48	19.59		1

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 20 of 47
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 29 of 47
201	8 PCTEST Engineering Laboratory, Inc.		·	REV 20.04 M

© 2018 PCTEST Engineering Laboratory, Inc.

		L	E Banu / Cont	ducted Powers -		nath	
				LTE Band 7			
			Low Channel	10 MHz Bandwidth Mid Channel	High Channel		
			20800	21100	21400	MPR Allowed per	
Modulation	RB Size	RB Offset	(2505.0 MHz)	(2535.0 MHz)	(2565.0 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
QPSK	1	0	21.27	21.11	21.31		0
QPSK	1	25	20.98	21.10	21.28	0	0
QPSK	1	49	20.86	21.16	21.17		0
QPSK	25	0	21.14	21.10	21.26		0
	25	12	21.13	21.15	21.24	0-1	0
	25	25	20.97	21.07	21.24	0-1	0
	50	0	21.06	21.08	21.21		0
	1	0	21.50	21.40	21.50		0
	1	25	21.30	21.38	21.49	0-1	0
	1	49	21.10	21.46	21.50		0
16QAM	25	0	21.13	21.10	20.90		0
	25	12	21.14	21.10	21.08	0-2	0
	25	25	20.97	21.08	21.20	0-2	0
	50	0	21.11	21.07	21.16		0
	1	0	21.47	21.46	21.46		0
	1	25	21.30	21.44	21.37	0-2	0
	1	49	21.17	21.39	21.47		0
64QAM	25	0	19.60	19.63	19.74		1
	25	12	19.50	19.66	19.77	0-3	1
	25	25	19.50	19.61	19.78	0-3	1
16QAM	50	0	19.54	19.63	19.74		1

Table 9-23 I TE Band 7 Conducted Powers - 10 MHz Bandwidth

Table 9-24 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				LTE Band 7			
				5 MHz Bandwidth		т <u> </u>	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20775 (2502.5 MHz)	21100 (2535.0 MHz)	21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	21.16	21.09	21.28		0
	1	12	21.07	21.10	21.29	0	0
	1	24	20.92	21.05	21.23] [0
QPSK	12	0	21.19	21.11	21.29		0
	12	6	21.14	21.15	21.32	0-1	0
	12	13	21.02	21.11	21.26	0-1	0
	25	0	21.10	21.07	21.26		0
	1	0	21.50	21.39	21.49		0
	1	12	21.34	21.45	21.50	0-1	0
	1	24	21.30	21.30	21.47		0
16QAM	12	0	21.17	21.10	21.26		0
	12	6	21.16	21.17	21.28	0-2	0
	12	13	21.02	21.09	21.23	0-2	0
	25	0	21.09	21.10	21.24] [0
	1	0	21.46	21.47	21.44		0
	1	12	21.29	21.44	21.35	0-2	0
	1	24	21.16	21.40	21.45] [0
64QAM	12	0	19.59	19.61	19.78		1
	12	6	19.58	19.61	19.80		1
	12	13	19.50	19.58	19.74	0-3	1
	25	0	19.52	19.52	19.71		1

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dago 20 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 30 of 47
004	0 DOTECT Engineering Leberster (Inc.			

9.1.9 LTE Band 30 Antenna A Maximum Carrier Aggregation **Conducted Powers**

Table 9-25

LTE Band 30 Three Component Carrier Conducted Powers

					PCC				SCC 1							Power			
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]		LTE Ant. A Tx Power (dBm)
CA_2A-12A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B12	10	5095	737.5	23.64	23.82
CA_29A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B29	10	9715	722.5	LTE B66	20	66786	2145	23.62	23.82

Table 9-26 LTE Band 30 Four Component Carrier Conducted Powers

					PCC						SCI	1				SCC 2			SCO	3		Po	wer
Combination	PCC Band	PCC BW (MHz)	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW (MHz)	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW (MHz)	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW (MHz)	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	
CA_2A-2A-5A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B2	20	700	1940	LTE BS	10	2525	881.5	23.57	23.82
CA_2A-2A-12A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B2	20	700	1940	LTE B12	10	5095	737.5	23.58	23.82
CA_2A-2A-29A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B2	20	700	1940	LTE B29	10	9715	722.5	23.60	23.82
CA 2A-4A-5A-30A	LTE B30 AntA	10	27710	2310	QP5K	1	0	9820	2355	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	LTE B5	10	2525	881.5	23.61	23.82
CA_2A-4A-12A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	LTE B12	10	5095	737.5	23.60	23.82
CA_2A-4A-29A-30A	LTE B30 AntA	10	27710	2310	QP5K	1	0	9820	2355	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	LTE B29	10	9715	722.5	23.59	23.82
CA 2A-5A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B5	10	2525	881.5	LTE B66	20	66786	2145	23.57	23.82
CA_2A-12A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B12	10	5095	737.5	LTE B66	20	66786	2145	23.62	23.82
CA_2A-29A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B29	10	9715	722.5	LTE B66	20	66786	2145	23.82	23.82
	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B5	10	2525	881.5	LTE B66	20	66786	2145	LTE B66	20	67236	2190	23.57	23.82
CA_12A-30A-66A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B12	10	5095	737.5	LTE B66	20	66786	2145	LTE B66	20	67236	2190	23.59	23.82

Table 9-27

LTE Band 30 Five Component Carrier Conducted Powers

	PCC SCC 1											SCC 2				SCC 3					SCC	Power					
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MH2]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Ant. A Tx Power (dBm)
CA_2A-58-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	LTE B2	20	900	1960	LTE B5	10	2525	881.5	LTE B5	5	2453	874.3	LTE B66	20	66786	2145	23.80	23.82
CA_58-30A-66A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	Ó	9820	2355	LTE B5	10	2525	881.5	LTE BS	5	2453	874.3	LTE 866	20	66786	2145	LTE B66	20	67236	2190	23.77	23.82

LTE Band 7 Antenna B Maximum Carrier Aggregation 9.1.10 **Conducted Powers**

Table 9-28

					PCC						S	cc		Pov	wer
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B7	20	3152	2660.2	23.37	23.31
CA_7A-7A (1)	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B7	20	2850	2630	23.36	23.31

LTE Band 7 Antenna A Maximum Carrier Aggregation 9.1.11 **Conducted Powers**

-

		Ľ	TE Ba	and 7	Thre	e Co		ble 9· nent (er Co	nduc	ted P	ower	S		
				PCC						SC	C 1			S	CC 2	
PCC Band	PCC Bandwidth	PCC (UL)	PCC (UL) Frequency	Modulation	PCC UL# RB	PCC UL RB	PCC (DL)	PCC (DL) Frequency	SCC Band	SCC Bandwidth	SCC (DL)	SCC (DL) Frequency	SCC Band	SCC Bandwidth	SCC (DL)	sco

Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]		LTE Ant. A Tx Power (dBm)
CA_2A-7A-12A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	LTE B2	20	900	1960	LTE B12	10	5095	737.5	23.04	23.00
CA_4A-4A-7A (1)	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	LTE B4	20	2175	2132.5	LTE B4	10	2350	2150	23.02	23.00

Table 9-30 LTE Band 7 Four Component Carrier Conducted Powers

					PCC						SC	C 1			so	C 2			SCC	3		Po	wer
Combination	PCC Band	PCC BW (MHz)	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW (MHz)	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel			LTE Ant. A Tx Power (dBm)
CA_2A-4A-7C	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	LTE B7	20	3152	2660.2	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	23.03	23.00
CA 2A-4A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	LTE B7	20	2850	2630	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	23.01	23.00
CA_2A-4A-7A-12A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	LTE B12	10	5095	737.5	23.03	23.00

Notes:

1. SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those combinations required by FCC Guidance, power measurements were performed with downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 31 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Fage 51 01 47
© 201	8 PCTEST Engineering Laboratory, Inc.	•			REV 20.04 M

REV 20.04 M 11/01/2017

Pow

- 2. All control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- 3. For downlink carrier aggregation combinations, PCC uplink channel was selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intraband CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers. All selected downlink channels remained fully within the downlink transmission band of the respective component carrier.
- 4. Per FCC Guidance, for LTE Band 7 and LTE Band 30 Antenna A scenarios, the conducted power was compared to the CA 4A-7A and CA 4A-30A conducted powers, respectively, to determine SAR test exclusion.
- 5. Per KDB Publication 941225 D05Av01r02, SAR test for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 6. For the hotspot active reduced power scenarios, the maximum allowed output power did not change, therefore, no additional downlink CA measurements are required per KDB 941225 D05A v01r02 .Please see original evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1 A3L for downlink CA measurements for hotspot active conditions.

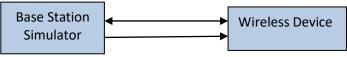


Figure 9-1 **Power Measurement Setup**

9.1.12 Downlink 2x2 MIMO LAA Maximum Carrier Aggregation **Conducted Powers**

			w0 0a		ompor		anne	i ngg	neyau		luucie		WEIS		
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	Frequency	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	Frequency	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _A	20	47290	5200	23.36	23.31
CA_7A-46 _B A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _B	20	48290	5300	23.39	23.31
CA_7A-46 _c A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _C	20	51290	5600	23.36	23.31
CA_7A-46 _D A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _D	20	53140	5785	23.35	23.31

Table 9-31 Two Carrier Component Carrier Aggregation Conducted Powers

Table 9-32

Three Carrier Component Carrier Aggregation Conducted Powers

Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _A	20	47290	5200	LTE B46 _A	20	47488	5219.8	23.36	23.31
CA_7A-46 _B C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _B	20	48290	5300	LTE B46 _B	20	48488	5319.8	23.39	23.31
CA_7A-46 _c C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46c	20	51290	5600	LTE B46c	20	51488	5619.8	23.38	23.31
CA_7A-46 _D C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _D	20	53140	5785	LTE B46 _D	20	53338	5804.8	23.34	23.31

Table 9-33 Four Carrier Component Carrier Aggregation Conducted Powers

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama 00 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 32 of 47
© 20′	8 PCTEST Engineering Laboratory, Inc.	•		REV 20.04 M

REV 20.04 M 11/01/2017

Combination	PCC Band		PCC (UL) Channel		Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel		SCC Band		SCC (DL) Channel		SCC Band		SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A D	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _A	20	47290	5200	LTE B46 _A	20	47488	5219.8	LTE B46 _A	20	47092	5180.2	23.35	23.31
CA_7A-468D	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B468	20	48290	5300	LTE B46 ₈	20	48488	5319.8	LTE B46 ₈	20	48092	5280.2	23.38	23.31
CA_7A-46cD	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _c	20	51290	5600	LTE B46 _c	20	51488	5619.8	LTE B46 _c	20	51092	5580.2	23.36	23.31
CA_7A-46 _b D	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	LTE B46 _D	20	53140	5785	LTE B46 _D	20	53338	5804.8	LTE B46 _D	20	52942	5765.2	23.37	23.31

This device supports LAA with downlink carrier aggregation only. All uplink communications and acknowledgements on the PCC remain identical to specifications when downlink carrier aggregation is inactive. For those combinations required by FCC Guidance, power measurements were performed with downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

The PCC uplink channel was selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation per 3GPP requirements. The SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band carriers, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For LAA operations, each Band 46 sub-band was evaluated independently due to the wide downlink bandwidth.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

For the hotspot active reduced power scenarios, the maximum allowed output power did not change, therefore, no additional downlink CA measurements are required per KDB 941225 D05A v01r02 .Please see original evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for downlink CA measurements for hotspot active conditions.

Base Station	◀────►	Wireless Device
Simulator	→	WITCIESS DEVICE

Figure 9-2 Power Measurement Setup for LAA 2X2 MIMO

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 22 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 33 of 47
© 201	8 PCTEST Engineering Laboratory, Inc.	·	•	REV 20.04 M

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

11/01/2017

10.1 Tissue Verification

			Measu	ured Tissue	Properties				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
12/21/2017	2300H	22.9	2300	1.689	38.737	1.670	39.500	1.14%	-1.93%
12/2 1/2017	23000	22.9	2310	1.701	38.698	1.679	39.480	1.31%	-1.98%
1/9/2018	2600H	21.1	2550	1.992	37.887	1.909	39.073	4.35%	-3.04%
1/9/2016	20000	21.1	2600	2.048	37.675	1.964	39.009	4.28%	-3.42%
1/9/2018	2300B	21.9	2300	1.853	51.724	1.809	52.900	2.43%	-2.22%
1/9/2016	2300B	21.9	2310	1.865	51.709	1.816	52.887	2.70%	-2.23%
12/20/2017	26000	22.0	2550	2.175	51.562	2.092	52.573	3.97%	-1.92%
12/20/2017	2600B	23.0	2600	2.247	51.348	2.163	52.509	3.88%	-2.21%

Table 10-1

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:		Page 34 of 47				
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Fage 54 01 47				
© 201	© 2018 PCTEST Engineering Laboratory, Inc.								

11/01/2017

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

	System Verification Results											
	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN		Measured SAR¹g (W/kg)	1 W Target SAR ^{1g} (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)
Ι	2300	HEAD	12/21/2017	23.5	21.1	0.100	1073	3213	4.620	48.600	46.200	-4.94%
D	2600	HEAD	01/09/2018	21.5	21.1	0.100	1126	3318	6.010	56.400	60.100	6.56%
J	2300	BODY	01/09/2018	20.4	20.3	0.100	1073	3209	5.080	48.100	50.800	5.61%
К	2600	BODY	12/20/2017	21.9	21.4	0.100	1126	7406	5.750	54.300	57.500	5.89%

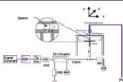


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 35 of 47	
	1M1712210331-01.A3L	L 12/20/17 – 01/09/18 Portable Handset				
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.04 M	

REV 20.04 M 11/01/2017

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

	LTE Band 30 Head SAR																				
	MEASUREMENT RESULTS																				
FR	EQUENC	r	Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Antenna	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#	
MHz	с	h.		[MHz]	[MHZ]	Power [dBm]	Power [dBm]	υπτ (αΒ)			Position	Config.				Number	Cycle	(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.5	24.18	0.13	0	Right	Cheek	Ant B	QPSK	1	0	20EEA	1:1	0.054	1.076	0.058		
2310.00	27710	Mid	LTE Band 30	10	23.5	23.16	0.20	1	Right	Cheek	Ant B	QPSK	25	0	20EEA	1:1	0.041	1.081	0.044		
2310.00	27710	Mid	LTE Band 30	10	24.5	24.18	0.05	0	Right	Tilt	Ant B	QPSK	1	0	20EEA	1:1	0.032	1.076	0.034		
2310.00	27710	Mid	LTE Band 30	10	23.5	23.16	0.19	1	Right	Tilt	Ant B	QPSK	25	0	20EEA	1:1	0.025	1.081	0.027		
2310.00	27710	Mid	LTE Band 30	10	24.5	24.18	0.12	0	Left	Cheek	Ant B	QPSK	1	0	20EEA	1:1	0.100	1.076	0.108	A1	
2310.00	27710	Mid	LTE Band 30	10	23.5	23.16	0.13	1	Left	Cheek	Ant B	QPSK	25	0	20EEA	1:1	0.048	1.081	0.052		
2310.00	27710	Mid	LTE Band 30	10	24.5	24.18	0.13	0	Left	Tilt	Ant B	QPSK	1	0	20EEA	1:1	0.028	1.076	0.030		
2310.00	27710	Mid	LTE Band 30	10	23.5	23.16	0.12	1	Left	Tilt	Ant B	QPSK	25	0	20EEA	1:1	0.020	1.081	0.022		
2310.00	27710	Mid	LTE Band 30	10	24.5	23.82	0.19	0	Right	Cheek	Ant A	QPSK	1	0	5FCA1	1:1	0.044	1.169	0.051		
2310.00	27710	Mid	LTE Band 30	10	23.5	22.80	0.18	1	Right	Cheek	Ant A	QPSK	25	0	5FCA1	1:1	0.035	1.175	0.041		
2310.00	27710	Mid	LTE Band 30	10	24.5	23.82	0.13	0	Right	Tilt	Ant A	QPSK	1	0	5FCA1	1:1	0.025	1.169	0.029		
2310.00	27710	Mid	LTE Band 30	10	23.5	22.80	0.19	1	Right	Tilt	Ant A	QPSK	25	0	5FCA1	1:1	0.019	1.175	0.022		
2310.00	27710	Mid	LTE Band 30	10	24.5	23.82	0.19	0	Left	Cheek	Ant A	QPSK	1	0	5FCA1	1:1	0.053	1.169	0.062		
2310.00	27710	Mid	LTE Band 30	10	23.5	22.80	0.12	1	Left	Cheek	Ant A	QPSK	25	0	5FCA1	1:1	0.039	1.175	0.046		
2310.00	27710	Mid	LTE Band 30	10	24.5	23.82	0.12	0	Left	Tilt	Ant A	QPSK	1	0	5FCA1	1:1	0.029	1.169	0.034		
2310.00	27710	Mid	LTE Band 30	10	23.5	22.80	0.13	1	Left	Tilt	Ant A	QPSK	25	0	5FCA1	1:1	0.018	1.175	0.021		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram															

Table 11-1 d 30 Hoad SAD . .

Table 11-2 LTE Band 7 Head SAR

	MEASUREMENT RESULTS																			
FR	FREQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Antenna Config.	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	с	h.		[WH2]	Power [dBm]	Power [ubin]	Driit (UB)			Position	Coning.				Number	Cycle	(W/kg)	Factor	(W/kg)	
2560.00	21350	High	LTE Band 7	20	23.5	23.31	0.13	0	Right	Cheek	Ant B	QPSK	1	0	20EEA	1:1	0.085	1.045	0.089	
2560.00	21350	High	LTE Band 7	20	22.5	22.22	0.19	1	Right	Cheek	Ant B	QPSK	50	0	20EEA	1:1	0.064	1.067	0.068	
2560.00	21350	High	LTE Band 7	20	23.5	23.31	-0.02	0	Right	Tilt	Ant B	QPSK	1	0	20EEA	1:1	0.096	1.045	0.100	
2560.00	21350	High	LTE Band 7	20	22.5	22.22	0.10	1	Right	Tilt	Ant B	QPSK	50	0	20EEA	1:1	0.080	1.067	0.085	
2560.00	21350	High	LTE Band 7	20	23.5	23.31	0.09	0	Left	Cheek	Ant B	QPSK	1	0	20EEA	1:1	0.112	1.045	0.117	A2
2560.00	21350	High	LTE Band 7	20	22.5	22.22	0.20	1	Left	Cheek	Ant B	QPSK	50	0	20EEA	1:1	0.091	1.067	0.097	
2560.00	21350	High	LTE Band 7	20	23.5	23.31	0.04	0	Left	Tilt	Ant B	QPSK	1	0	20EEA	1:1	0.061	1.045	0.064	
2560.00	21350	High	LTE Band 7	20	22.5	22.22	0.20	1	Left	Tilt	Ant B	QPSK	50	0	20EEA	1:1	0.046	1.067	0.049	
2560.00	21350	High	LTE Band 7	20	23.5	23.00	0.16	0	Right	Cheek	Ant A	QPSK	1	0	5FCA1	1:1	0.057	1.122	0.064	
2560.00	21350	High	LTE Band 7	20	22.5	21.86	0.21	1	Right	Cheek	Ant A	QPSK	50	0	5FCA1	1:1	0.045	1.159	0.052	
2560.00	21350	High	LTE Band 7	20	23.5	23.00	0.09	0	Right	Tilt	Ant A	QPSK	1	0	5FCA1	1:1	0.079	1.122	0.089	
2560.00	21350	High	LTE Band 7	20	22.5	21.86	0.17	1	Right	Tilt	Ant A	QPSK	50	0	5FCA1	1:1	0.063	1.159	0.073	
2560.00	21350	High	LTE Band 7	20	23.5	23.00	0.13	0	Left	Cheek	Ant A	QPSK	1	0	5FCA1	1:1	0.050	1.122	0.056	
2560.00	21350	High	LTE Band 7	20	22.5	21.86	0.14	1	Left	Cheek	Ant A	QPSK	50	0	5FCA1	1:1	0.042	1.159	0.049	
2560.00	21350	High	LTE Band 7	20	23.5	23.00	0.17	0	Left	Tilt	Ant A	QPSK	1	0	5FCA1	1:1	0.057	1.122	0.064	
2560.00	21350	High	LTE Band 7	20	22.5	21.86	0.12	1	Left	Tilt	Ant A	QPSK	50	0	5FCA1	1:1	0.044	1.159	0.051	
			ANSI / IEEE	Spatial Pea	k		•	•	Head 1.6 W/kg (mW/g) averaged over 1 gram											
Г																			٦	

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:	Page 36 of 47				
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Fage 50 01 47				
2018 PCTEST Engineering Laboratory, Inc.								

© 2018 PCTEST Engineering Laboratory, Inc.

11.2 Standalone Body-Worn SAR Data

Table 11-3
LTE FDD Body-Worn SAR

	MEASUREMENT RESULTS																			
FREQUENCY Mode Bandwidth Maximum Conducted Power [dBm] Drift [dB] Drift [dB] Antenna Device Serial Modulation RB Size RB Offset Spacing					Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #										
MHz	C	h.		[MFI2]	Power [dBm]	Power [ubiii]	Dint [ub]		coning.	Number						Cycle	(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.5	24.18	0.10	0	Ant B	20EEA	QPSK	1	0	15 mm	back	1:1	0.221	1.076	0.238	
2310.00	27710	Mid	LTE Band 30	10	23.5	23.16	0.04	1	Ant B	20EEA	QPSK	25	0	15 mm	back	1:1	0.182	1.081	0.197	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.82	0.07	0	Ant A	5FCA1	QPSK	1	0	15 mm	back	1:1	0.231	1.169	0.270	A3
2310.00	27710	Mid	LTE Band 30	10	23.5	22.80	0.03	1	Ant A	5FCA1	QPSK	25	0	15 mm	back	1:1	0.192	1.175	0.226	
2560.00	21350	High	LTE Band 7	20	23.5	23.31	0.00	0	Ant B	20EEA	QPSK	1	0	15 mm	back	1:1	0.362	1.045	0.378	
2560.00	21350	High	LTE Band 7	20	22.5	22.22	0.07	1	Ant B	20EEA	QPSK	50	0	15 mm	back	1:1	0.284	1.067	0.303	
2560.00	21350	High	LTE Band 7	20	23.5	23.00	0.10	0	Ant A	5FCA1	QPSK	1	0	15 mm	back	1:1	0.388	1.122	0.435	A4
2560.00	21350	High	LTE Band 7	20	22.5	21.86	0.02	1	Ant A	5FCA1	QPSK	50	0	15 mm	back	1:1	0.305	1.159	0.353	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak											1.6 W/kg	dy g (mW/g)							
			Uncontrol	led Exposu	ire/General F	Population								av	eraged o	ver 1 gra	ım			

11.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis.
- 9. Only operations relevant to this permissive change were evaluated for compliance. Please see original compliance evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for complete evaluation of all other operating modes. The operational description includes a description of all changed items.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.3.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 27 of 47
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 37 of 47
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.04 M

REV 20.04 M 11/01/2017

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or m including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry abo poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 5. For LTE Band 7 and LTE Band 30 Antenna A operations, the device was connected in a radiated downlink carrier aggregation scenario per FCC Guidance. Combination CA_4A-7A was used for LTE Band 7 Antenna A and CA_4A-30A for LTE Band 30 Antenna A.
- 6. For LTE Band 7 and Band 30, additional hotspot evaluations were not required as there was no change to the maximum allowed target for this exposure condition. Please see original evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for LTE Band 7 and LTE Band 30 hotspot compliance data.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	MSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 38 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Fage 36 01 47
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.04 M

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M1711010281-01-R1.A3L for the standalone reported SAR for modes and bands not evaluated for this permissive change.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Head SAR Simultaneous Transmission Analysis 12.3

Exposure Condition	Mode	4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
Condition		1	2	3	1+2+3
Head SAR	LTE Band 30	0.108	0.261	0.586	0.955
	LTE Band 7	0.117	0.261	0.586	0.964

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	LTE Band 30	0.108	0.095	0.401	0.604
Head SAR	LTE Band 7	0.117	0.095	0.401	0.613

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 20 of 47	
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Page 39 of 47	
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.04 M	

REV 20.04 11/01/2017

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Held to Ear)

Exposure Condition	Mode	4G SAR (W/kg)	2.4 GHz WLAN MIMO at 13 dBm SAR (W/kg)	5 GHz WLAN MIMO at 13 dBm SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 30	0.108	0.461	0.440	1.009
	LTE Band 7	0.117	0.461	0.440	1.018

Table 12-4

Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	Mode	4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Head SAR	LTE Band 30	0.108	0.632	0.740
	LTE Band 7	0.117	0.632	0.749

12.4 **Body-Worn Simultaneous Transmission Analysis**

Table 12-5 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.5 cm)

Exposure Condition	Mode	4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body-Worn	LTE Band 30	0.270	0.107	0.102	0.479
	LTE Band 7	0.435	0.107	0.102	0.644

Table 12-6

Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.5 cm)

Exposure Condition	Mode	4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body Morp	LTE Band 30	0.270	0.313	0.728	1.311
Body-Worn	LTE Band 7	0.435	0.313	0.728	1.476

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama 40 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 40 of 47
201	8 PCTEST Engineering Laboratory, Inc.		•	REV 20.04 M

© 2018 PCTEST Engineering Laboratory, Inc.

1.5 cm)							
Exposure Condition	Mode	4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN MIMO at 13 dBm SAR (W/kg)	Σ SAR (W/kg)	
		1	2	3	4	1+2+3+4	
Body-Worn	LTE Band 30	0.270	0.107	0.102	0.374	0.853	
Body-worn	LTE Band 7	0.435	0.107	0.102	0.374	1.018	

 Table 12-7

 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Body-Worn at

Table 12-8

Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.5 cm)

Exposure Condition	Mode	4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Body-Worn	LTE Band 30	0.270	0.059	0.329
	LTE Band 7	0.435	0.059	0.494

12.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by:	
				and the second second	Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 41 of 47	
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Fage 41 01 47	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.04 M	

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.8 W/kg for 1g SAR.

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kgfor all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Dage 42 of 47		
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset	Page 42 of 47		
© 2018 PCTEST Engineering Laboratory, Inc.						

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8648D	(9kHz-4GHz) Signal Generator	CBT	N/A	CBT	3629U00687
Agilent 8753ES		S-Parameter Vector Network Analyzer	8/17/2017	Annual	8/17/2018	MY40003841
Agilent 8753ES		S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	E4432B	ESG-D Series Signal Generator	3/24/2017	Annual	3/24/2018	US40053896
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/22/2017	Annual	3/22/2018	MY45470194
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB44450273
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Agilent	N9020A	MXA Signal Analyzer	12/28/2016	Annual	12/28/2017	US46470561
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1231535
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1231538
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
Anritsu	MT8820C	Radio Communication Analyzer	5/23/2017	Annual	5/23/2018	6201240328
Anritsu	MT8821C	Radio Communication Analyzer	7/25/2017	Annual	7/25/2018	6201664756
Anritsu	MT8821C	Radio Communication Analyzer	11/17/2017	Annual	11/17/2018	6201381794
Anritsu	MT8821C	Radio Communication Analyzer	8/15/2017	Annual	8/15/2018	6200901190
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/1/2017	Biennial	3/1/2019	170152009
Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261694
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	NC-100	Torque Wrench	3/8/2017	Annual	3/8/2018	9400 N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench (8" lb)	9/1/2016	Biennial	9/1/2018	21053
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
SPEAG	D2300V2	2300 MHz SAR Dipole	7/25/2016	Biennial	7/25/2018	1073
SPEAG	D2500V2	2600 MHz SAR Dipole	7/10/2017	Annual	7/10/2018	1075
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
				Annual		3213
SPEAG	ES3DV3	SAR Probe	9/22/2017		9/22/2018	
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3209
SPEAG	EX3DV4	SAR Probe	4/18/2017	Annual	4/18/2018	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/14/2017	Annual	6/14/2018	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2017	Annual	3/13/2018	1415
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2017	Annual	4/11/2018	1407
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	7/11/2017	Annual	7/11/2018	1039

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

Each equipment item was used solely within its respective calibration period.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dage 42 of 47		
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Page 43 of 47		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.04 M 11/01/2017

15 **MEASUREMENT UNCERTAINTIES**

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	x
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	x
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	x
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	x
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	x
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	x
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	x
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	×
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	×
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	x
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)	1	RSS	1	1		11.5	11.3	60
						00.0		
Expanded Uncertainty		k=2				23.0	22.6	

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:	Dage 44 of 47				
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Page 44 of 47				
001	2018 PCTEST Engineering Laboratory Inc.							

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 45 of 47
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset	Fage 45 01 47
© 20′	8 PCTEST Engineering Laboratory, Inc.			REV 20.04 M

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 47		
	1M1712210331-01.A3L	12/20/17 - 01/09/18	Portable Handset		Page 46 of 47		
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.04 M 11/01/2017

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 47 of 47
	1M1712210331-01.A3L	12/20/17 – 01/09/18	Portable Handset		Fage 47 01 47
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.04 M

APPENDIX A: SAR TEST DATA

DUT: A3LSMG960U; Type: Portable Handset; Serial: 20EEA


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2300 Head Medium parameters used: f = 2310 MHz; $\sigma = 1.701$ S/m; $\varepsilon_r = 38.698$; $\rho = 1000$ kg/m³ Phantom section: Left Section

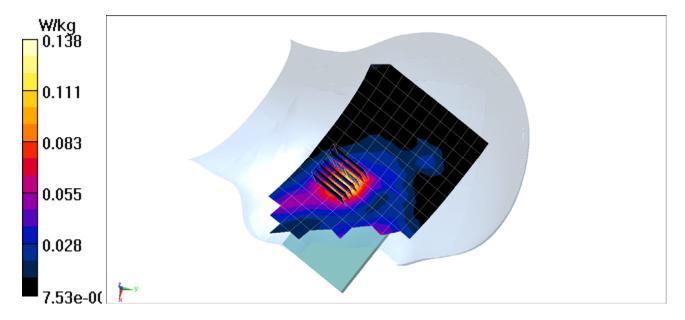
Test Date: 12-21-2017; Ambient Temp: 23.5°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(4.95, 4.95, 4.95); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 30 Antenna B, Left Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.532 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.173 W/kg SAR(1 g) = 0.100 W/kg

DUT: A3LSMG960U; Type: Portable Handset; Serial: 20EEA


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2600 Head Medium parameters used (interpolated):} \\ \mbox{f} = 2560 \mbox{ MHz; } \sigma = 2.003 \mbox{ S/m; } \epsilon_r = 37.845; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

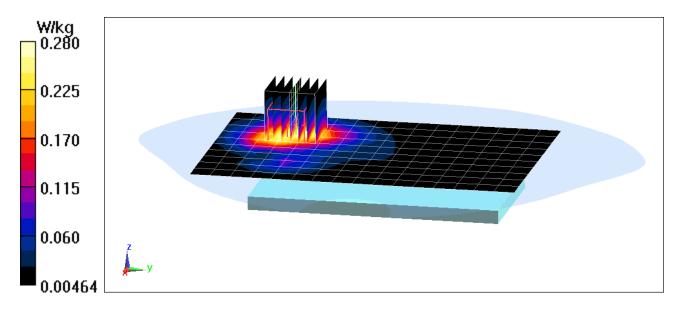
Test Date: 01-09-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3318; ConvF(4.58, 4.58, 4.58); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7Antenna B, Left Head, Cheek, High.ch, QPSK, 20 MHz Bandwidth, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.999 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.202 W/kg SAR(1 g) = 0.112 W/kg

DUT: A3LSMG960U; Type: Portable Handset; Serial: 5FCA1


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2300 Body Medium parameters used: f = 2310 MHz; $\sigma = 1.865$ S/m; $\varepsilon_r = 51.709$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

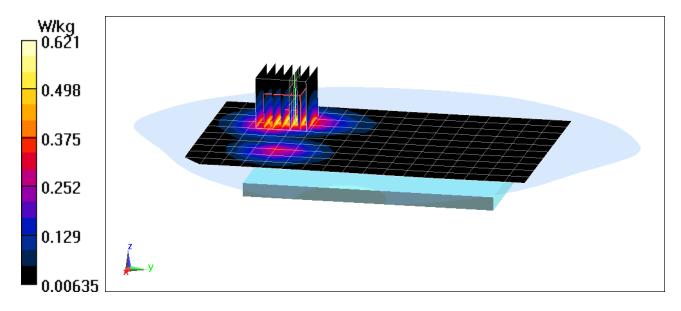
Test Date: 01-09-2018; Ambient Temp: 20.4°C; Tissue Temp: 20.3°C

Probe: ES3DV3 - SN3209; ConvF(4.62, 4.62, 4.62); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Left; Type: QD000P40CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 30, Antenna A Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.70 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.412 W/kg SAR(1 g) = 0.231 W/kg

DUT: A3LSMG960U; Type: Portable Handset; Serial: 5FCA1


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 7, Frequency: 2560 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2600 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2560 \mbox{ MHz; } \sigma = 2.189 \mbox{ S/m; } \epsilon_r = 51.519; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 12-20-2017; Ambient Temp: 21.9°C; Tissue Temp: 21.4°C

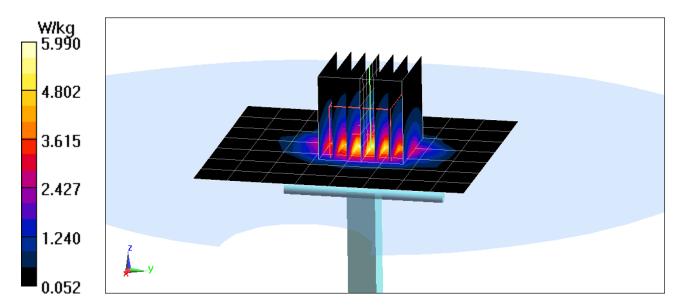
Probe: EX3DV4 - SN7406; ConvF(7.31, 7.31, 7.31); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: SAM with CRP v5.0, Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7 Antenna A, Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.68 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.786 W/kg SAR(1 g) = 0.388 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Head Medium parameters used: f = 2300 MHz; $\sigma = 1.689$ S/m; $\epsilon_r = 38.737$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

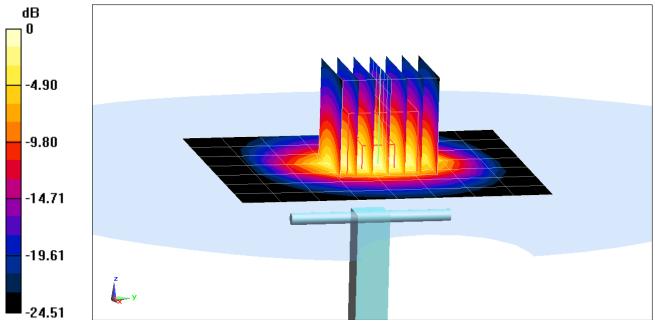
Test Date: 12-21-2017; Ambient Temp: 23.5°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(4.95, 4.95, 4.95); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 9.10 W/kg SAR(1 g) = 4.62 W/kg Deviation(1 g) = -4.94%

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head Medium parameters used: $f = 2600 \text{ MHz}; \sigma = 2.048 \text{ S/m}; \epsilon_r = 37.675; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-09-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

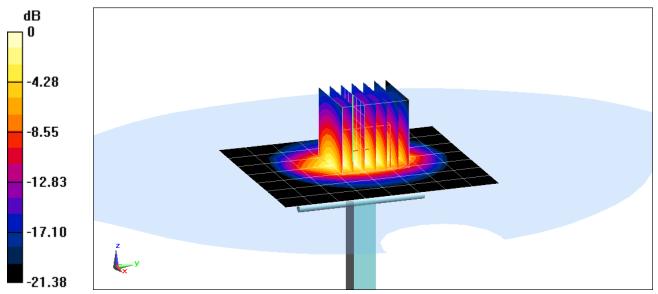
Probe: ES3DV3 - SN3318; ConvF(4.58, 4.58, 4.58); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 13.5 W/kg SAR(1 g) = 6.01 W/kg Deviation(1 g) = 6.56%

0 dB = 7.99 W/kg = 9.03 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Body Medium parameters used: f = 2300 MHz; $\sigma = 1.853$ S/m; $\epsilon_r = 51.724$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-09-2018; Ambient Temp: 20.4°C; Tissue Temp: 20.3°C

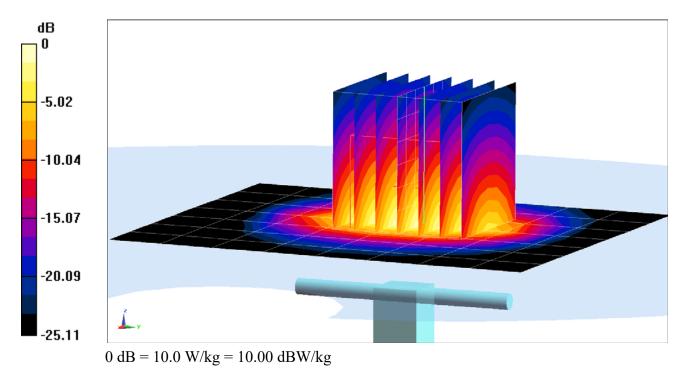
Probe: ES3DV3 - SN3209; ConvF(4.62, 4.62, 4.62); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Left; Type: QD000P40CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.1 W/kg SAR(1 g) = 5.08 W/kg Deviation(1 g) = 5.61%

0 dB = 6.65 W/kg = 8.23 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.247$ S/m; $\epsilon_r = 51.348$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-20-2017; Ambient Temp: 21.9°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7406; ConvF(7.31, 7.31, 7.31); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: SAM with CRP v5.0, Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 5.75 W/kg Deviation(1 g) = 5.89%

Β4

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3213_Feb17

BN17 63-01-2017

	 A second contract state 	N 1 42 4 1 4 1	1.1.1 1.1.1	and the second second	 A subjective state 	a di ka kuta di ka an		
	CALI						_	
								A
		-					1.2.2	
ч								
-2						"晨,晨晨,今月"	~	
	the second second second	1999 B. C.			entre a la relación de	and a second a		and the second second

Object

ES3DV3 - SN:3213

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

February 10, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	Ð	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			V G V
Approved by:	Katja Pokovic	Technical Manager	PAL
			/~ · ~ 55
			Issued: February 13, 2017
This calibration certificate	e shall not be reproduced except in fu	Il without written approval of the lab	oratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

, , , , , , , , , , , , , , , , , , ,	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z*; *Bx,y,z*; *Cx,y,z*; *Dx,y,z*; *VRx,y,z*: *A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3213

Calibrated:

Manufactured: October 14, 2008 February 10, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.44	1.32	1.29	± 10.1 %
DCP (mV) ^B	101.3	102.3	101.6	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	m∨	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	228.2	±3.5 %
		Y	0.0	0.0	1.0		230.0	
		Z	0.0	0.0	1.0		221.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V-1	ms.V⁻²	ms.V⁻¹	ms	V-2	V⁻¹	
Х	56.23	407.2	35.93	28.85	2.251	5.1	1.129	0.439	1.012
Y	55.47	400.7	35.87	28.65	2.277	5.1	1.321	0.386	1.013
Z	51.67	374.7	36	28.45	2.103	5.1	0.358	0.504	1.009

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁶ Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

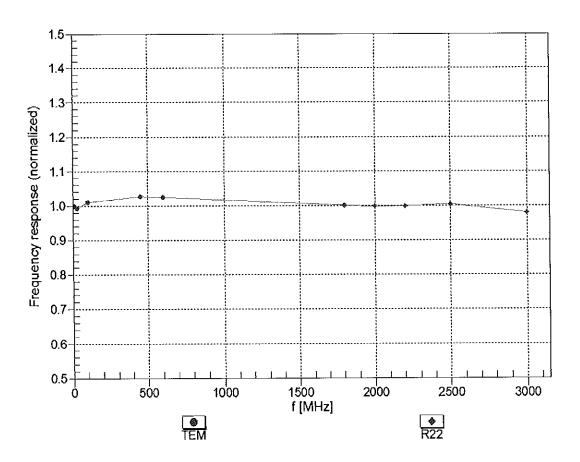
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.85	6.85	6.85	0.80	1.18	± 12.0 %
835	41.5	0.90	6.49	6.49	6.49	0.49	1.52	± 12.0 %
1750	40.1	1.37	5.49	5.49	5.49	0.60	1.35	± 12.0 %
1900	40.0	1.40	5.29	5.29	5,29	0.68	1.27	± 12.0 %
2300	39.5	1.67	4.95	4.95	4.95	0.70	1.28	± 12.0 %
2450	39.2	1.80	4.70	4.70	4.70	0.80	1.24	± 12.0 %
2600	39.0	1.96	4.52	4.52	4.52	0.78	1.28	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 end 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

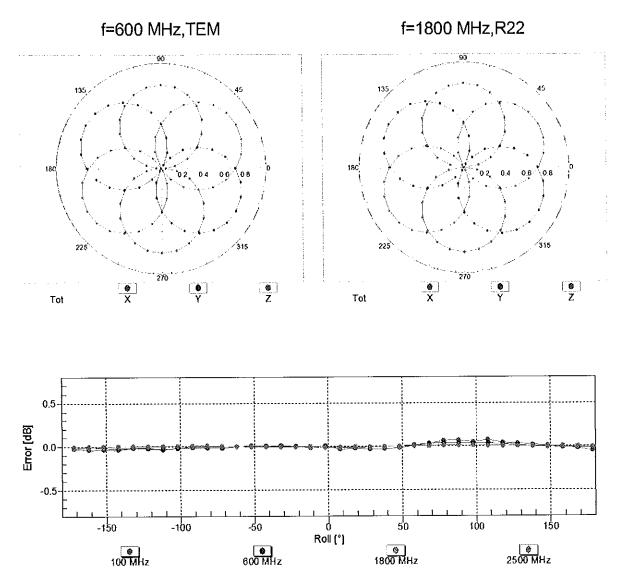
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

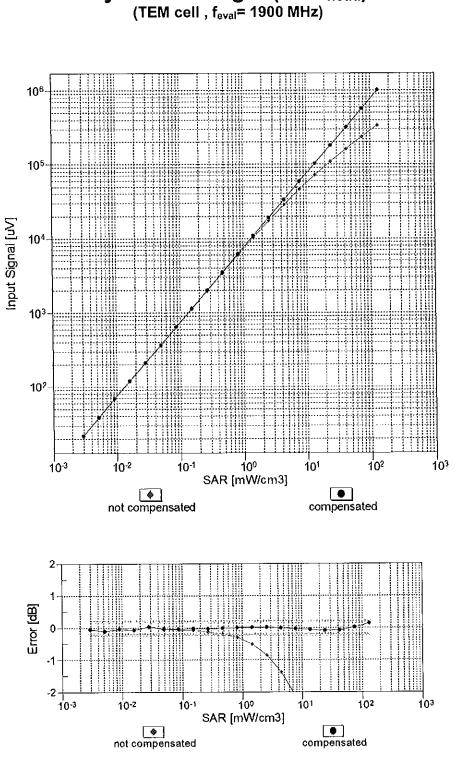

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.38	6.38	6.38	0.60	1.31	± 12.0 %
835	55.2	0.97	6.28	6.28	6.28	0.80	1.20	± 12.0 %
1750	53.4	1.49	5.09	5.09	5.09	0.66	1.33	± 12.0 %
1900	53.3	1.52	4.94	4.94	4.94	0.40	1.85	± 12.0 %
2300	52.9	1.81	4.69	4.69	4.69	0.80	1.24	± 12.0 %
2450	52.7	1.95	4.53	4.53	4.53	0.72	1.28	± 12.0 %
2600	52.5	2.16	4.32	4.32	4.32	0.80	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

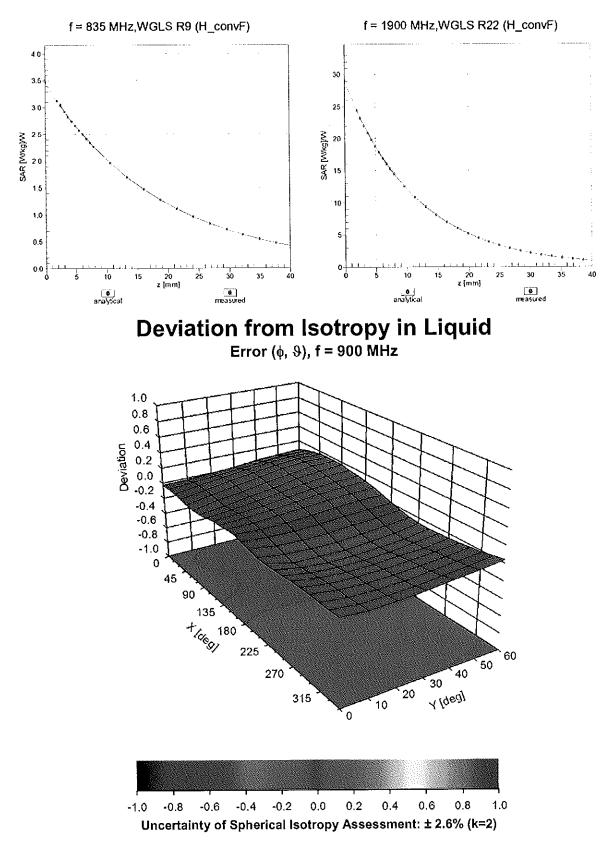
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	98.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	228.2	± 3.5 %
		Y	0.00	0.00	1.00		230.0	
40040		Z	0.00	0.00	1.00		221.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	11.07	84.26	20.62	10.00	25.0	± 9.6 %
		Y	10.49	83.36	20.27		25.0	
40044		Z	11.03	84.22	20.43		25.0	
10011- CAB	UMTS-FDD (WCDMA)	X	1.04	66.65	14.82	0.00	150.0	± 9.6 %
		Y	1.16	69.13	16.33		150.0	
40040		Z	1.01	66.30	14.54		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	1.30	64.60	15.49	0.41	150.0	± 9.6 %
		Y	1.33	65.49	16.22		150.0	
		Ζ	1.28	64.47	15.36		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.14	67.15	17.39	1.46	150.0	± 9.6 %
		Y	5.14	67.35	17.57		150.0	
(000)		Z	5.09	67.17	17.37		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	Х	62.94	114.81	31.61	9.39	50.0	± 9.6 %
		Y	41.95	107.82	29.66		50.0	
		Ζ	94.76	121.25	33.03		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	Х	46.50	109.76	30.33	9.57	50.0	± 9.6 %
		Y	33.70	104.15	28.69		50.0	
		Ζ	62.69	114.46	31.37		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	119.19	30.75	6.56	60.0	± 9.6 %
		Y	100.00	118.97	30.64		60.0	
		Z	100.00	118.83	30.48		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	×	18.95	107.68	41.29	12.57	50.0	± 9.6 %
		Y	31.91	124.81	47.58		50.0	
		Z	17.05	104.98	40.36	0 - 0	50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	Х	20.29	105.23	36.57	9.56	60.0	± 9.6 %
		Y	28.92	114.92	39.99		60.0	
10007		Z	20.11	105.49	36.71	4.00	60.0	10.0.0/
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.17	29.38	4.80	80.0	± 9.6 %
		Y	100.00	118.12	29.34		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	117.81 118.40	29.12 28.68	3.55	80.0 100.0	± 9.6 %
DAC			400.00	440.00	00.70		1000	
		Y Z	100.00	118.60	28.76		100.0	
10020	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z X	100.00 12.78	118.00 94.46	28.41 31.72	7.80	100.0	± 9.6 %
10029- DAC						7.00		1 3.0 %
		Y	16.27 12.37	100.85	34.22 31.64		80.0 80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	12.37	<u>94.11</u> 117.61	29.45	5.30	70.0	± 9.6 %
CAA		Y	100.00	117.52	29.40		70.0	
		Z	100.00	117.52	29.40		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	119.11	27.47	1.88	100.0	± 9.6 %
		Y	100.00	120.30	27.96	<u>+</u> .	100.0	1
		Ż	100.00	118.27	27.02	1	100.0	1

ES3DV3-- SN:3213

February 10, 2017

10032-		1.1.	1		·			aly 10, 20
CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	×	100.00	123.13	28.10	1.17	100.0	± 9.6 %
		Y	100.00	125.86	29.19		100.0	
10000		Z	100.00	121.81	27.46		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	19.81	99.27	27.58	5.30	70.0	± 9.6 %
		Y	23.75	102.32	28.48		70.0	
10004		Ż	20.10	99.19	27.31		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	6.18	84.61	21.36	1.88	100.0	± 9.6 %
		Y	8.74	90.01	23.19		100.0	
10035-		Z	6.07	84.02	20.83		100.0	
<u>CAA</u>	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	3.50	78.04	18.75	1.17	100.0	± 9.6 %
<u> </u>		Y	4.77	82.88	20.59		100.0	
40000		Z	3.40	77.42	18.19		100.0	· · · · ·
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	×	25.06	103.36	28.83	5.30	70.0	± 9.6 %
		Y	30.48	106.66	29.76		70.0	
10007		Z	25.78	103.46	28.61		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	5.91	84.02	21.13	1.88	100.0	± 9.6 %
		Y	8.37	89.43	22.97		100.0	
10038-		Z	5.74	83.28	20.55		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.58	78.59	19.05	1.17	100.0	± 9.6 %
		Y	4.93	83.62	20.94		100.0	·
10000		Z	3.47	77.94	18.48		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.75	70.49	15.41	0.00	150.0	± 9.6 %
		Y	2.11	73.63	16.88		150.0	·
		Z	1.63	69.80	14.78		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	117.99	30.44	7.78	50.0	±9.6 %
		Y	100.00	117.70	30.30		50.0	· · · · ·
- · · · · · · · · · · · · · · · · · · ·		Z	100.00	117.57	30.13		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	Х	0.01	92.86	0.28	0.00	150.0	± 9.6 %
		Y	0.00	128.30	10.22		150.0	
		Z	0.01	91.94	0.27		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	16.43	91.36	26.72	13.80	25.0	± 9.6 %
		Y	14.26	88.55	25.69		25.0	
		Z	18.21	93.36	27.20		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	х	21.81	96.95	27.09	10.79	40.0	± 9.6 %
·		Y	18.36	93.74	25.99		40.0	
		Ζ	24.94	99.20	27.59		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	16.12	92.43	26.40	9.03	50.0	±9.6 %
		Y	16.40	92.69	26.46		50.0	
		Ζ	16.84	93.23	26.48		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	9.13	87.64	28.49	6.55	100.0	±9.6 %
		Y	10.85	92.11	30.40		100.0	
		Ζ	8.80	87.14	28.33		100.0	
100	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	X	1.45	66.53	16.46	0.61	110.0	± 9.6 %
	Mbps)				1			
		Y	1.51	67.75	17.33	-	110.0	
CAB	Mbps)	Y Z	1.51 1.43	67.75 66.36	17.33 16.31		110.0 110.0	
CAB						1.30	110.0 110.0 110.0	± 9.6 %
10059- CAB 10060- CAB	Mbps) IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	Z	1.43	66.36	16.31	1.30	110.0	± 9.6 %

ES3DV3-SN:3213

February 10, 2017

Y 12.85 101.15 28.77 110.0 10062- IEEE 802.11a/h WIF15 GHz (OFDM, 6 X 4.86 66.91 16.67 0.49 100.0 CAB Mbps) Y 4.87 67.10 16.85 100.0 ICEE 802.11a/h WIF15 GHz (OFDM, 9 X 4.87 67.01 16.85 100.0 ICEE 802.11a/h WIF15 GHz (OFDM, 9 X 4.90 67.06 16.81 0.72 100.0 ± 9.6 % Mbps) Y 4.91 67.26 16.89 100.0 ± 9.6 % CAB Mbps) Y 4.91 67.26 16.81 0.72 100.0 ± 8.6 % CAB Mbps) Y 5.23 67.99 17.25 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.67 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.16 67.83	10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	7.70	91.83	25.70	2.04	110.0	± 9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		mopo/		12.85	101 15	28 77		110.0	
ID062- CAB IEEE F02.11a/n WIF15 GHz (OFDM, 6 Mbps) X 4.86 4.87 66.31 67.10 16.87 16.85 0.0.0 100.0 ID063- CAB IEEE 602.11a/n WIF15 GHz (OFDM, 9 Mbps) X 4.87 67.10 67.06 16.81 16.84 0.72 100.0 ID064- CAB IEEE 602.11a/n WIF15 GHz (OFDM, 9 Mbps) X 4.90 67.06 16.81 17.08 0.86 100.0 ID064- CAB IEEE 602.11a/n WIF15 GHz (OFDM, 12 X X 5.22 67.40 17.08 17.08 0.86 100.0 ± 9.6 % ID064- CAB Mbps) Y 5.23 67.40 17.25 1.21 100.0 ± 9.6 % ID066- CAB IEEE 602.11a/n WIF15 GHz (OFDM, 18 X X 5.12 67.42 67.42 17.25 1.21 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.61 77.48 17.48 1.46 100.0 ± 9.6 % CAB Mbps) Y 5.19 67.76 77.48 17.48 1.46 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.68 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Y 4.87 67.10 16.85 100.0 2 2.481 66.81 16.64 100.0 0003- EEE 802.11a/h WiFi 5 GHz (OFDM, 9 X 4.90 67.06 16.81 0.72 100.0 ± 9.6 % Abps) Y 4.91 67.26 16.89 100.0 ± 9.6 % CAB Mbps) Y 4.91 67.26 16.89 100.0 ± 9.6 % CAB Mbps) Y 5.23 67.59 17.25 100.0 ± 9.6 % CAB Mbps) Y 5.23 67.64 17.25 100.0 ± 9.6 % CAB Mbps) Y 5.16 67.38 17.46 100.0 ± 9.6 % CAB Mbps) Y 5.16 67.55 17.46 100.0 ± 9.6 % CAB Mbps) Y 5.11 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.74 17.95 2.04	10062- CAB						0.49		±9.6 %
ID063- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) X 4.90 67.06 16.81 0.72 100.0 ± 9.6 % 100.0 CAB Mbps) Y 4.91 67.26 16.99 100.0 CAB Mbps) Y 4.95 67.06 16.78 100.0 10064- Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 5.22 67.40 17.04 100.0 10065- IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 X 5.12 67.42 17.25 1.21 100.0 CAB Mbps) Y 5.13 67.61 17.43 100.0 CAB Mbps) Y 5.13 67.61 17.46 100.0 CAB Mbps) Y 5.19 67.76 17.66 100.0 CAB Mbps) Y 5.19 67.76 17.64 100.0 CAB Mbps) Y 5.50 67.76 17.93 100.0 CAB Mbps) Y 5.51 67.76 17.93			Y	4.87	67.10	16.85		100.0	
ID063- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) X 4.90 67.06 16.81 0.72 100.0 ± 9.6 % 100.0 CAB Mbps) Y 4.91 67.26 16.99 100.0 ± 9.6 % CAB Mbps) Y 4.95 67.00 17.08 0.86 100.0 ± 9.6 % CAB Mbps) Y 5.23 67.59 17.25 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.18 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.68 100.0			Z	4.81	66.91	16.64		100.0	
IEEE 802.11a/h WiFI 5 GHz (OFDM, 12 X 5.22 67.40 17.08 0.06 100.0 CAB Mbps) Y 5.23 67.59 17.25 100.0 10065- IEEE 802.11a/h WiFI 5 GHz (OFDM, 18 X 5.12 67.49 17.25 1.21 100.0 CAB Mbps) Y 5.13 67.40 17.25 1.21 100.0 ±9.6 % CAB Mbps) Y 5.13 67.40 17.21 100.0 ±9.6 % CAB Mbps) Y 5.18 67.55 17.48 1.46 100.0 ±9.6 % CAB Mbps) Y 5.51 67.76 17.66 100.0 ±9.6 % CAB Mbps) Y 5.51 67.76 17.95 2.04 100.0 ±9.6 % CAB Mbps) Y 5.61 67.96 18.15 100.0 ±9.6 % CAB Mbps) Y 5.64 68.03 18.52 100.0	10063- CAB		X	4.90	67.06	16.81	0.72	100.0	± 9.6 %
ID064 IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 X 5.22 67.40 17.08 0.86 100.0 ± 9.6 % CAB Mbps) Y 5.23 67.59 17.25 100.0 10065- IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 X 5.12 67.42 17.25 1.21 100.0 CAB Mbps) Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Mbps) Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Mbps) Y 5.18 67.55 17.48 1.46 100.0 ± 9.6 % CAB Mbps) Y 5.11 67.55 17.44 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.96 18.15 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.60 18.45 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.03 18.53 100.0 ± 9.6									
Y 5.23 67.59 17.26 100.0 10065 EEE 802.11a/n WiFi 5 GHz (OFDM, 18 X 5.12 67.42 17.25 1.21 100.0 ± 9.6 % CAB Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Y 5.13 67.61 17.46 1.00.0 ± 9.6 % 10066 EEEE 802.11a/n WiFi 5 GHz (OFDM, 24 X 5.18 67.55 17.44 1.00.0 ± 9.6 % CAB Mbps) Y 5.19 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.74 17.95 2.04 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.35 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.03 18.53 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB Mbps) Y <td>10064- CAB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.86</td> <td></td> <td>± 9.6 %</td>	10064- CAB						0.86		± 9.6 %
Z 5.16 67.38 17.04 100.0 CAB Kbps) Y 5.12 67.42 17.25 1.21 100.0 ± 9.6 % CAB Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Y 5.13 67.61 17.43 100.0 ± 9.6 % CAB Mps) Y 5.19 67.76 17.66 100.0 ± 9.6 % CAB Mps) Y 5.19 67.76 17.66 100.0 ± 9.6 % CAB Mps) Y 5.51 67.96 18.15 100.0 ± 9.6 % CAB Mps) Y 5.51 67.96 18.15 100.0 ± 9.6 % CAB Mps) Y 5.64 68.03 18.22 2.55 100.0 ± 9.6 % CAB Mps) Y 5.64 68.03 18.28 100.0 ± 9.6 % CAB Mps) Y 5.72 68.29 18.74	0/10		Y	5.23	67.59	17.25		100.0	
10065. CAB IEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps) X 5.12 67.42 17.25 1.21 100.0 ± 9.6 % 10066- CAB IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps) X 5.18 67.61 17.43 100.0 ± 9.6 % 10066- CAB IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps) X 5.18 67.55 17.44 1.00.0 ± 9.6 % 10067- CAB IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 X 5.50 67.74 17.95 2.04 100.0 ± 9.6 % 100667- CAB Mbps) Y 5.51 67.96 18.15 100.0 ± 9.6 % 00667- CAB Mbps) Y 5.51 67.96 18.15 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.53 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.28 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB									
Z 5.06 67.40 17.21 100.0 10066- CAB IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 X 5.18 67.55 17.48 1.46 100.0 ± 9.6 % CAB Mbps) Y 5.19 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.44 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.95 2.04 100.0 ± 9.6 % CAB Mbps) Y 5.54 67.76 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.32 2.55 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.03 18.28 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB Mbps) Y 5.29 67.59 17.77 100.0 ± 9.6 % CAB	10065- CAB		X	5.12	67.42	17.25	1.21	100.0	± 9.6 %
10066- CAB IEEE 802.11a/n WIFI 5 GHz (OFDM, 24 Mbps) X 5.18 67.55 17.48 1.46 100.0 ± 9.6 % CAB Y 5.19 67.76 17.66 100.0 ± 9.6 % CAB Y 5.19 67.76 17.46 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.74 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.74 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.22 2.55 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.28 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB Mbps) Y 5.22 67.55 17.76 100.0 ± 9.6 % CA			Y		67.61				
10066- CAB IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps) X 5.18 67.55 17.48 1.46 100.0 ± 9.6 % CAB Mbps) Y 5.19 67.76 17.66 100.0 ± 9.6 % CAB Mbps) Y 5.11 67.52 17.44 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.74 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.76 17.93 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.03 18.22 2.55 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0									
Z 5.11 67.52 17.44 100.0 10067- CAB Mbps) Y 5.50 67.74 17.95 2.04 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.96 18.15 100.0 ± 9.6 % 10068- CAB Mbps) Y 5.61 67.96 18.15 100.0 ± 9.6 % 10068- CAB Mbps) Y 5.64 68.06 18.32 2.55 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.03 18.28 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.23 67.91 17.97 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.23 67.91 18.09 2.30 100.0 ± 9.6 %	10066- CAB						1.46		±9.6 %
10067- CAB IEEE 802.11a/h WiF1 5 GHz (OFDM, 36 Mbps) X 5.50 67.74 17.95 2.04 100.0 ± 9.6 % CAB Mbps) Y 5.51 67.96 18.15 100.0 ± 9.6 % CAB IEEE 802.11a/h WiF1 5 GHz (OFDM, 48 X 5.63 68.06 18.32 2.55 100.0 ± 9.6 % CAB Mbps) Y 6.64 68.00 18.53 100.0 ± 9.6 % CAB Mbps) Y 6.64 68.03 18.53 100.0 ± 9.6 % CAB Mbps) Y 5.66 68.03 18.53 100.0 ± 9.6 % CAB Mbps) Y 5.71 68.03 18.48 100.0 ± 9.6 % CAB MDSS/OFDM, 9 Mbps) Y 5.28 67.38 17.78 1.99 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps)	· · · · ·								
CAB Mbps) Y 5.51 67.96 18.15 100.0 10068- CAB IEEE 802.11a/n WiF15 GHz (OFDM, 48 X 5.63 68.06 18.32 2.55 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.53 100.0 ± 9.6 % CAB Mbps) Y 5.64 68.30 18.23 100.0 ± 9.6 % CAB Mbps) Y 5.76 68.03 18.50 2.67 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % CAB MDS/ Z 5.564 68.03 18.48 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.28 67.59 17.97 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30									
Z 5.44 67.76 17.93 100.0 10068- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 X 5.63 68.06 18.32 2.55 100.0 ±9.6 % CAB Mbps) Y 5.64 68.03 18.53 100.0 ±9.6 % CAB Mbps) Y 5.64 68.03 18.28 100.0 ±9.6 % CAB Mbps) Y 5.72 68.03 18.26 2.67 100.0 ±9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ±9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.28 67.38 17.76 100.0 ±9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.77 100.0 ±9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ±9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.44 68.14 18.30 100.0 ±9.6 %	10067- CAB						2.04		± 9.6 %
10068- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) X 5.63 68.06 18.32 2.55 100.0 ± 9.6 % 0069- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) Y 5.64 68.03 18.53 100.0 100.0 10069- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) X 5.71 68.03 18.50 2.67 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 100.0 10074- CAB IEEE 802.11g WiFi 2.4 GHz X 5.28 67.38 17.78 1.99 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.23 67.40 17.76 100.0 100.0 10072- CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.46 68.24 18.51 2.83<									
CAB Mbps) Y 5.64 68.30 18.53 100.0 10069- CAB IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 X 5.71 68.03 18.28 100.0 10069- CAB IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 X 5.71 68.03 18.74 100.0 ± 9.6 % 10071- CAB IEEE 802.11g WIFI 2.4 GHz X 5.28 67.38 17.78 1.99 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.69 17.97 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.09 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.34 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.46 68.24 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y									1000
Z 5.66 68.03 18.28 100.0 10069- CAB IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 X 5.71 68.03 18.50 2.67 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.03 18.74 100.0 ± 9.6 % CAB Y 5.72 68.29 18.74 100.0 ± 9.6 % 10071- IEEE 802.11g WIFI 2.4 GHz X 5.28 67.38 17.78 1.99 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.97 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.46 68.24 18.51 2.83 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.	10068- CAB	•					2.55		±9.6%
10069- CAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) X 5.71 68.03 18.50 2.67 100.0 ± 9.6 % CAB Mbps) Y 5.72 68.29 18.74 100.0 ± 9.6 % 10071- (DSSS/OFDM, 9 Mbps) Z 5.64 68.03 18.48 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.77 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.97 100.0 ± 9.6 % 10072- (DSSS/OFDM, 12 WiFi 2.4 GHz X 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.46 68.24 18.51 2.83 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OF									
CAB Mbps) Y 5.72 68.29 18.74 100.0 10071- CAB IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 9 Mbps) X 5.28 67.38 17.78 1.99 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.77 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.29 67.59 17.97 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.48 68.31 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps)							0.07		
Z 5.64 68.03 18.48 100.0 10071- (DSS/OFDM, 9 Mbps) Y 5.28 67.38 17.78 1.99 100.0 ± 9.6 % 2 5.29 67.59 17.77 100.0 ± 9.6 % 2 5.23 67.40 17.76 100.0 ± 9.6 % 2 5.23 67.40 17.76 100.0 ± 9.6 % 2 5.23 67.40 17.76 100.0 ± 9.6 % 2 5.23 67.91 18.09 2.30 100.0 ± 9.6 % 2 5.28 67.91 18.07 100.0 ± 9.6 % 2 5.28 67.91 18.07 100.0 ± 9.6 % 2 5.46 68.24 18.51 2.83 100.0 ± 9.6 % 2 5.40 68.51 18.74 100.0 ± 9.6 % 2 5.40 68.31 18.76 3.30 100.0 ± 9.6 % 2 5.44 68.31 18.74	10069- CAB						2.67		± 9.6 %
10071- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) X 5.28 67.38 17.78 1.99 100.0 ± 9.6 % CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.97 100.0 100.0 CAB (DSSS/OFDM, 12 Mbps) Z 5.23 67.40 17.76 100.0 100.0 10072- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.48 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DS	40074		-						
CAB (DSSS/OFDM, 9 Mbps) Y 5.29 67.59 17.97 100.0 10072- IEEE 802.11g WiFi 2.4 GHz Z 5.23 67.40 17.76 100.0 CAB (DSSS/OFDM, 12 Mbps) Y 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.07 100.0 100.0 10073- IEEE 802.11g WiFi 2.4 GHz X 5.46 68.24 18.51 2.83 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.74 100.0 100.0 10074- IEEE 802.11g WiFi 2.4 GHz X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 100.0 100.0 100.0 100.0 1							1.00		+06%
Z 5.23 67.40 17.76 100.0 10072- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) X 5.33 67.91 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.09 2.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) X 5.46 68.24 18.51 2.83 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 GHz (DSSS/OFDM, 24 Mbps) X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % CAB (D	CAB						1.99		19.0 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
CAB (DSSS/OFDM, 12 Mbps) Y 5.34 68.14 18.30 100.0 10073- IEEE 802.11g WiFi 2.4 GHz Z 5.28 67.91 18.07 100.0 10073- IEEE 802.11g WiFi 2.4 GHz X 5.46 68.24 18.51 2.83 100.0 ± 9.6 % CAB (DSSS/OFDM, 18 Mbps) Y 5.48 68.51 18.74 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 GHz X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.63 68.74 19.25 3.82 90.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y							2.20		+06%
Z 5.28 67.91 18.07 100.0 10073- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) X 5.46 68.24 18.51 2.83 100.0 ± 9.6 % 10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) Y 5.48 68.51 18.74 100.0 10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.63 68.74 19.25 3.82 90.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.64 68.56 19.38 4.15 90.0 ± 9.6 % CAB (DSSS/OFDM				1			2.30		19.0 %
10073- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) X 5.46 68.24 18.51 2.83 100.0 ± 9.6 % 10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) Y 5.48 68.51 18.74 100.0 10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % 10075- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) Y 5.51 68.58 19.00 100.0 10075- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) X 5.63 68.74 19.25 3.82 90.0 ± 9.6 % 10076- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % 10076- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % 10077- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) Y 5.68 68.64 19.49 4.30 90.0 ± 9.6 % 10077- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) Y									
Y 5.48 68.51 18.74 100.0 10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % 10075- CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % 10075- CAB (DSSS/OFDM, 36 Mbps) Y 5.51 68.74 19.25 3.82 90.0 ± 9.6 % 10075- CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % 10076- CAB (DSSS/OFDM, 48 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % 10076- CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.89 19.38 4.15 90.0 ± 9.6 % 10076- CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.89 19.66 90.0 ± 9.6 % 10077- CAB (DSSS/OFDM, 54 Mbps) Y 5.68 68.64 19.49 4.30 90.0 ± 9.6 % 10077- CAB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2.83</td><td></td><td>± 9.6 %</td></t<>							2.83		± 9.6 %
Z 5.40 68.25 18.50 100.0 10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 ± 9.6 % 10075- IEEE 802.11g WiFi 2.4 GHz X 5.63 68.74 19.25 3.82 90.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.64 68.56 19.38 4.15 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.64 19.49 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y									
10074- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) X 5.49 68.30 18.76 3.30 100.0 ± 9.6 % CAB (DSSS/OFDM, 24 Mbps) Y 5.51 68.58 19.00 100.0 100.0 Image: CAB Image: CAB Y 5.51 68.58 19.00 100.0 100.0 Image: CAB Image: CAB Y 5.61 68.74 19.25 3.82 90.0 ± 9.6 % 10075- CAB IEEE 802.11g WiFi 2.4 GHz X 5.63 68.74 19.25 3.82 90.0 ± 9.6 % 10076- CAB IEEE 802.11g WiFi 2.4 GHz X 5.66 69.06 19.51 90.0 ± 9.6 % 10076- CAB IEEE 802.11g WiFi 2.4 GHz X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % 10077- CAB IEEE 802.11g WiFi 2.4 GHz Y 5.68 68.89 19.66 90.0 100.0 10077- CAB IEEE 802.11g WiFi 2.4 GHz Y 5.68 68.64 19.49 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y			Z	5.40	68.25				
Z 5.44 68.31 18.74 100.0 10075- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) X 5.63 68.74 19.25 3.82 90.0 ± 9.6 % V 5.66 69.06 19.51 90.0 ± 90.0 ± 90.0 IO076- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.56 19.38 4.15 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.89 19.66 90.0 ± 9.6 % IO077- CAB IEEE 802.11g WiFi 2.4 GHz X 5.68 68.64 19.49 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y 5.71 68.99 19.77 90.0 ± 9.6 %			X	5.49			3.30		± 9.6 %
10075- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) X 5.63 68.74 19.25 3.82 90.0 ± 9.6 % V 5.66 69.06 19.51 90.0 ±<									-l
CAB (DSSS/OFDM, 36 Mbps) Y 5.66 69.06 19.51 90.0 10076- IEEE 802.11g WiFi 2.4 GHz X 5.64 68.56 19.38 4.15 90.0 10076- IEEE 802.11g WiFi 2.4 GHz X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.89 19.66 90.0 ± 9.6 % 10077- IEEE 802.11g WiFi 2.4 GHz X 5.68 68.64 19.49 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y 5.71 68.99 19.77 90.0 ± 9.6 %							1		
Z 5.57 68.71 19.21 90.0 10076- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % V 5.68 68.89 19.66 90.0 ± 90.0 ± 9.6 % IO077- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) Y 5.68 68.64 19.49 4.30 90.0 ± 9.6 % 10077- CAB (DSSS/OFDM, 54 Mbps) Y 5.71 68.99 19.77 90.0 ± 9.6 %							3.82		± 9.6 %
10076- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) X 5.64 68.56 19.38 4.15 90.0 ± 9.6 % Y 5.68 68.89 19.66 90.0 ± 5.7 5.7 68.99 19.77 90.0									
CAB (DSSS/OFDM, 48 Mbps) Y 5.68 68.89 19.66 90.0 Image: CAB Z 5.60 68.57 19.36 90.0 10077- IEEE 802.11g WiFi 2.4 GHz CAB X 5.68 68.64 19.49 4.30 90.0 ± 9.6 % CAB (DSSS/OFDM, 54 Mbps) Y 5.71 68.99 19.77 90.0									1000
Z 5.60 68.57 19.36 90.0 10077- CAB IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) X 5.68 68.64 19.49 4.30 90.0 ± 9.6 % Y 5.71 68.99 19.77 90.0							4.15		± 9.6 %
10077- CAB IEEE 802.11g WiFi 2.4 GHz X 5.68 68.64 19.49 4.30 90.0 ± 9.6 % V 5.71 68.99 19.77 90.0 19.6 %							<u> </u>		
CAB (DSSS/OFDM, 54 Mbps) Y 5.71 68.99 19.77 90.0							1.00		
							4.30		± 9.6 %
Z 5.64 68.66 19.47 90.0			Y Z				<u> </u>	90.0 90.0	

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.88	65.55	12.70	0.00	150.0	± 9.6 %
		Y	1.01	67.94	14.05		150.0	<u> </u>
		Ż	0.82	64.98	12.07	· · · ·	150.0	·
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	2.05	63.91	8.77	4.77	80.0	± 9.6 %
		Y	2.06	64.02	8.81		80.0	<u> </u>
10000		Z	1.95	63.58	8.48		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	119.26	30.80	6.56	60.0	± 9.6 %
		Y	100.00	119.04	30.70		60.0	
10097-	UMTS-FDD (HSDPA)	Z	100.00	118.90	30.53		60.0	
CAB		X	1.83	67.01	15.38	0.00	150.0	± 9.6 %
		Y Z	1.91	68.15	16.11		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	$\frac{z}{x}$	1.80	66.92	15.21		150.0	ļ
CAB		Y	1.79	66.97	15.34	0.00	150.0	± 9.6 %
			1.88	68.14	16.10		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z	1.76	66.87	15.18		150.0	
DAC		Y	20.23	105.10	36.53	9.56	60.0	± 9.6 %
		z -	28.70	114.68	39.91		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	X	20.06 3.16	105.38	36.67		60.0	
CAC	MHz, QPSK)	Y		69.99	16.45	0.00	150.0	±9.6 %
			3.31	71.03	17.06		150.0	
10101-	LTE-FDD (SC-FDMA, 100% RB, 20	ZX	3.09	69.73	16.33		150.0	
CAC	MHz, 16-QAM)		3.32	67.51	15.87	0.00	150.0	± 9.6 %
		Y	3.38	68.00	16.23		150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Z X	3.27 3.43	67.36 67.46	15.78 15.96	0.00	150.0 150.0	± 9.6 %
0,10		Y	0.47	07.00				<u> </u>
			3.47	67.89	16.28		150.0	
10103- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Z X	<u>3.37</u> 8.65	67.33 78.54	15.88 21.48	3.98	150.0 65.0	±9.6 %
		Y	8.85	79.12	21.77		65.0	
		Ż	8.48	78.45	21.46	· · · · · · · · · · · · · · · · · · ·	65.0	
10104- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.46	76.91	21.40	3.98	65.0	±9.6 %
		Y	8.66	77.60	22.06		65.0	
<u> </u>		Z	8.34	76.89	21.66		65.0	· · · ·
10105- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.58	74.70	20.99	3.98	65.0	± 9.6 %
<u> </u>		Y	7.79	75.45	21.40		65.0	
40400		Z	7.31	74.25	20.79		65.0	• "
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.79	69.24	16.28	0.00	150.0	± 9.6 %
		Y	2.91	70.28	16.91		150.0	
10100		Z	2.71	69.00	16.16		150.0	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.98	67.28	15.76	0.00	150.0	±9.6 %
		Y	3.03	67.83	16.15		150.0	
10110		Z	2.92	67.15	15.65		150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.28	68.31	15.91	0.00	150.0	±9.6 %
		Ý	2.39	69.47	16.63		150.0	
40444		Z	2.21	68.09	15.75		150.0	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.66	67.75	15.94	0.00	150.0	± 9.6 %
		Y	2.72	68.40	16.37	·	150.0	
		Z						

10112- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.11	67.26	15.82	0.00	150.0	± 9.6 %
		Y	3.15	67.75	16.17		150.0	
		Z	3.05	67.15	15.72		150.0	
10113- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.82	67.88	16.07	0.00	150.0	±9.6 %
		Y	2.87	68.46	16.46		150.0	
		Z	2.76	67.81	15.94		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	5.24	67.28	16.46	0.00	150.0	±9.6 %
		Y	5.25	67.46	16.63		150.0	
		Z	5.20	67.29	16.46		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.61	67.64	16.65	0.00	150.0	± 9.6 %
		Y	5.61	67.79	16.81		150.0	
		Z	5.52	67.52	16.58		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	Х	5.36	67.55	16.52	0.00	150.0	± 9.6 %
		Y	5.37	67.74	16.69		150.0	
		Z	5.32	67.53	16.51		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.22	67.23	16.45	0.00	150.0	± 9.6 %
		Y	5.23	67.39	16.61		150.0	
		Z	5.17	67.16	16.41		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.69	67.85	16.77	0.00	150.0	± 9.6 %
		Y	5.70	68.02	16.93		150.0	
		Z	5.63	67.79	16.73		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.34	67.49	16.51	0.00	150.0	± 9.6 %
••••		Y	5.35	67.67	16.67		150.0	
		Z	5.29	67.47	16.49		150.0	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.47	67.47	15.89	0.00	150.0	± 9.6 %
		Y	3.51	67.91	16.21		150.0	
		Z	3.41	67.34	15.80	i	150.0	
10141- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.59	67.54	16.05	0.00	150.0	± 9.6 %
		Y	3.63	67.94	16.35		150.0	
		Z	3.53	67.43	15.97		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.05	68.16	15.60	0.00	150.0	± 9.6 %
		Y	2.17	69.48	16.39		150.0	
		Z	1.97	67.92	15.36		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.51	68.28	15.68	0.00	150.0	± 9.6 %
		Y	2.59	69.11	16.17		150.0	
		Z	2.43	68.15	15.43		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.35	66.54	14.37	0.00	150.0	± 9.6 %
		Y	2.42	67.28	14.84		150.0	
		Z	2.27	66.32	14.07		150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.37	65.72	12.66	0.00	150.0	± 9.6 %
		Y	1.46	66.99	13.37		150.0	
		Z	1.25	64.89	11.82		150.0	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	3.11	71.69	15.06	0.00	150.0	± 9.6 %
		Y	3.87	74.93	16.48		150.0	
		Z	2.20	67.57	12.72		150.0	
10147- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	3.99	75.14	16.65	0.00	150.0	± 9.6 %
0,0		Y	5.26	79.21	18.27		150.0	
		Ż	2.59	69.69	13.85	-1	150.0	1

10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.99	67.34	15.80	0.00	150.0	± 9.6 %
┝───		Y	3.04	67.88	16.19	<u> </u>	150.0	+
		Z	2.93	67.20	15.70	<u> </u>	150.0	
10150- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.11	67.30	15.85	0.00	150.0	± 9.6 %
		Y	3.16	67.79	16.21		150.0	
40454		Z	3.05	67.19	15.76		150.0	
10151- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.14	80.78	22.44	3.98	65.0	± 9.6 %
		Y	9.49	81.66	22.85		65.0	
10152-		Z	9.14	81.08	22.55		65.0	1
CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.08	77.12	21.52	3.98	65.0	± 9.6 %
		Y	8.33	77.95	21.96		65.0	
10153-		Z	7.95	77.09	21.46		65.0	
CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.46	77.89	22.17	3.98	65.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	8.68	78.63	22.56		65.0	
10154-		Z	8.36	77.94	22.15		65.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.33	68.67	16.15	0.00	150.0	± 9.6 %
		Y	2.44	69.83	16.86		150.0	·
10155-		Z	2.25	68.43	15.98		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.66	67.76	15.95	0.00	150.0	±9.6%
		Y	2.72	68.41	16.38		150.0	
10156-	LTE EDD (DO ED) LA ERA(DD E ANI	Z	2.60	67.68	15.82		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.90	68.21	15.44	0.00	150.0	± 9.6 %
		Y	2.03	69.70	16.30		150.0	
10457		Z	1.81	67.89	15.12		150.0	
10157- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.18	67.00	14.41	0.00	150.0	± 9.6 %
		Ý	2.26	67.93	14.96		150.0	·
10158-		Z	2.09	66.73	14.04		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.82	67.92	16.11	0.00	150.0	± 9.6 %
······		Y	2.87	68.51	16.50		150.0	
40450		Z	2.76	67.86	15.98		150.0	
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.28	67.39	14.67	0.00	150.0	± 9.6 %
		Y	2.36	68.28	15.19		150.0	
40400		Z	2.18	67.11	14.29		150.0	
10160- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.82	68.45	16.16	0.00	150.0	± 9.6 %
		Y	2.91	69.30	16.70		150.0	
10101		Z	2.76	68.35	16.07		150.0	
10161- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.01	67.20	15.78	0.00	150.0	± 9.6 %
		Y	3.05	67.71	16.14		150.0	
10160		Z	2.95	67.10	15.68		150.0	
10162- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	×	3.11	67.31	15.88	0.00	150.0	±9.6 %
		Y	3.16	67.80	16.23		150.0	
10100		Ζ	3.06	67.24	15.78	_	150.0	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	3.96	70.63	19.76	3.01	150.0	± 9.6 %
		Y	4.08	71.58	20.41		150.0	
10467		Z	3.69	69.63	19.19		150.0	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.16	74.36	20.54	3.01	150.0	± 9.6 %
		Y	5.47	75.00	04.44			
		z	4.54	75.92	21.41		150.0	

February 10, 2017

10168-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	X	5.71	76.55	21.79	3.01	150.0	± 9.6 %
CAD	64-QAM)	 					1.0.0	
		Y	6.04	78.08	22.60		150.0	
10100		Z	4.98	74.53	20.87		150.0	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.56	71.66	20.23	3.01	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.72	73.10	21.16		150.0	
		Z]	3.12	69.36	19.09		150.0	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	5.50	79.49	23.11	3.01	150.0	± 9.6 %
		Y	6.14	82.25	24.43		150.0	
		Z	4.23	74.96	21.26		150.0	
10171- AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.39	74.63	20.21	3.01	150.0	± 9.6 %
		Y	4.87	77.16	21.52		150.0	
		Z	3.55	71.26	18.74		150.0	
10172- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	36.90	115.61	35.71	6.02	65.0	± 9.6 %
		Y	89.16	134.58	40.97		65.0	
		Z	21.04	105.02	32.65		65.0	
10173- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	54.93	117.26	34.23	6.02	65.0	±9.6%
		Y	100.00	128.92	37.35		65.0	
		Z	30.85	107.44	31.57		65.0	
10174- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	39.60	109.76	31.68	6.02	65.0	± 9.6 %
		Y	70.95	120.74	34.73		65.0	
		Z	23.48	101.22	29.25		65.0	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.51	71.32	19.98	3.01	150.0	±9.6 %
		Y	3.68	72.77	20.92		150.0	
		Z	3.08	69.09	18.87		150.0	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5.51	79.52	23.12	3.01	150.0	± 9.6 %
		Y	6.15	82.28	24.44		150.0	
		Z	4.23	74.98	21.27		150.0	
10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.54	71.49	20.08	3.01	150.0	± 9.6 %
		Y	3.71	72.93	21.01		150.0	
		Z	3.11	69.22	18.95		150.0	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	5.43	79.21	22.98	3.01	150.0	± 9.6 %
0/10		Y	6.06	81.97	24.30		150.0	
		Z	4.19	74.78	21.16		150.0	
10179- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	4.90	76.90	21.51	3.01	150.0	± 9.6 %
		Y	5.47	79.59	22.84		150.0	
		Ż	3.86	73.02	19.88		150.0	
10180- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	4.38	74.54	20.15	3.01	150.0	± 9.6 %
		Y	4.86	77.07	21.46	T	150.0	
		Z	3.54	71.20	18.69		150.0	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.54	71.47	20.07	3.01	150.0	± 9.6 %
		Y	3.70	72.91	21.00	1	150.0	_
		Z	3.10	69.21	18.95		150.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.42	79.19	22.97	3.01	150.0	± 9.6 %
		Y	6.05	81.94	24.29		150.0	
		Z	4.19	74.76	21.15		150.0	
10183- AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	4.37	74.51	20.14	3.01	150.0	± 9.6 %
		Y	4.85	77.04	21.45		150.0	
1		Z	3.53	71.17	18.68	-1	150.0	1

Certificate No: ES3-3213_Feb17

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	X	3.55	71.52	20.09	3.01	150.0	± 9.6 %
CAD	QPSK)	+		<u> </u>				- 0.0 /
		Y Z	<u>3.72</u> 3.11	72.96	21.02	<u> </u>	150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	5.45	79.27	<u>18.97</u> 23.00	3.01	150.0 150.0	± 9.6 %
		Y	6.09	82.03	24.33	<u> </u>	450.0	
_		z	4.20	74.82	24.33	·	150.0	+
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	4.39	74.59	20.17	3.01	150.0 150.0	± 9.6 %
		Y	4.88	77.13	21.49		150.0	
10187-		Z	3.55	71.24	18.71		150.0	
CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.56	71.57	20.15	3.01	150.0	± 9.6 %
		Y	3.73	73.01	21.08		150.0	
10188-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	Z	3.12	69.30	19.03		150.0	
CAD	16-QAM)	X Y	5.67	80.08	23.42	3.01	150.0	± 9.6 %
			6.33	82.86	24.73		150.0	
10189-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	Z X	4.33	75.42	21.53		150.0	ļ
AAD	64-QAM)	Y	4.51	75.09	20.47	3.01	150.0	± 9.6 %
		Z	5.01 3.62	77.67	21.79	<u> </u>	150.0	ļ
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.64	66.65	18.97 16.17	0.00	150.0 150.0	± 9.6 %
		TY	4.65	00.04	40.05			
		Z	4.65	66.84	16.35		150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.82	66.64 67.00	16.13 16.30	0.00	150.0 150.0	± 9.6 %
		Y	4.83	67.19	16.48		150.0	<u>}</u>
		Z	4.76	66.96	16.26		150.0	·
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.87	67.02	16.31	0.00	150.0	± 9.6 %
		Y	4.87	67.22	16.49		150.0	
10100		Z	4.81	67.00	16.28		150.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	х	4.65	66.74	16.20	0.00	150.0	± 9.6 %
		Y	4.66	66.93	16.38		150.0	
10407		Z	4.59	66.71	16.15		150.0	
10197- CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.84	67.02	16.31	0.00	150.0	± 9.6 %
		Y	4.85	67.22	16.49		150.0	
10198-	IEEE 802.11n (HT Mixed, 65 Mbps, 64-	Z	4.78	66.99	16.27		150.0	
CAB	QAM)	X	4.87	67.04	16.32	0.00	150.0	± 9.6 %
		Y	4.88	67.24	16.50		150.0	
0219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	Z X	<u>4.81</u> 4.60	67.01 66.74	<u>16.29</u> 16.16	0.00	150.0 150.0	± 9.6 %
		Y	4.61	66.94	16.04		450.0	
		Z	4.61	66.71	16.34		150.0	
0220- CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.84	67.00	<u>16.11</u> 16.31	0.00	150.0 150.0	± 9.6 %
		Y	4.84	67.20	16.48		150.0	
		Z	4.77	66.96	16.26	·	150.0	
0221- CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.88	66.97	16.31	0.00	150.0	± 9.6 %
		Y	4.89	67.16	16.49		150.0	
0000		Z	4.82	66.95	16.28	· ·	150.0	
0222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.20	67.24	16.45	0.00	150.0	±9.6 %
		Y	5.21	67.41	16.61		150.0	
	1 1	Z	5.15	67.17	16.40		150.0	

10223- CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.54	67.51	16.61	0.00	150.0	± 9.6 %
		Y	5.54	67.65	16.76		150.0	
		Z	5.46	67.41	16.55		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.24	67.33	16.42	0.00	150.0	± 9.6 %
		Y	5.25	67.50	16.58		150.0	
		Z	5.19	67.27	16.38		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.89	66.01	15.34	0.00	150.0	± 9.6 %
		Y	2.91	66.41	15.64		150.0	
		Z	2.83	65.96	15.20		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	×	60.00	119.05	34.79	6.02	65.0	± 9.6 %
		Y	100.00	129.10	37.47		65.0	
		Z	33.08	108.86	32.05		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	44.36	111.89	32.33	6.02	65.0	± 9.6 %
		Y	77.77	122.52	35.25		65.0	
		Z	27.85	104.26	30.19		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	40.71	118.07	36.50	6.02	65.0	± 9.6 %
		Y	92.59	135.95	41.44		65.0	
		Z	26.22	109.78	34.13		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	54.96	117.26	34.24	6.02	65.0	± 9.6 %
		Y	100.00	128.91	37.35		65.0	
		Z	30.93	107.47	31.58		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	41.37	110.53	31.89	6.02	65.0	± 9.6 %
		Υ	71.92	120.98	34.79		65.0	
		Z	26.25	103.12	29.80		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	37.97	116.54	36.00	6.02	65.0	± 9.6 %
		Y	84.76	133.97	40.88		65.0	
		Z	24.71	108.49	33.69		65.0	
10232- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	54.99	117.28	34.24	6.02	65.0	± 9.6 %
		Y	100.00	128.92	37.35		65.0	
		Z	30.92	107.48	31.58		65.0	
10233- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	41.40	110.55	31.90	6.02	65.0	± 9.6 %
		Y	72.14	121.04	34.81		65.0	
		Z	26.24	103.13	29.80		65.0	
10234- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	35.49	114.97	35.47	6.02	65.0	± 9.6 %
		Y	77.34	131.82	40.23		65.0	
		Z	23.39	107.20	33.21		65.0	
10235- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	55.28	117.39	34.27	6.02	65.0	± 9.6 %
		Y	100.00	128.93	37.36		65.0	l
		Z	31.03	107.56	31.61		65.0	
10236- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	41.91	110.74	31.95	6.02	65.0	± 9.6 %
		Y	73.33	121.30	34.87		65.0	
		Z	26.52	103.28	29.84		65.0	<u> </u>
10237- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	38.41	116.80	36.08	6.02	65.0	± 9.6 %
		Y	86.80	134.49	41.01		65.0	1
		Z	24.91	108.68	33.74	1	65.0	
10238- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	55.05	117.31	34.25	6.02	65.0	± 9.6 %
		Y	100.00	128.93	37.35		65.0	

10239- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	41.42	110.58	31.91	6.02	65.0	± 9.6 %
		Y	72.33	121.11	34.83	<u>├</u>	65.0	
		Z	26.22	103.13	29.80	<u> </u>	65.0	
10240- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	38.25	116.72	36.05	6.02	65.0	± 9.6 %
		Y	86.28	134.37	40.98		65.0	·· · · · · · · · · · · · · · · · · · ·
		Z	24.82	108.62	33.73		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	12.92	88.42	28.30	6.98	65.0	±9.6 %
		Y	14.47	91.50	29.64		65.0	+
		Z	11.71	86.68	27.54	· · · · · · · · · · · · · · · · · · ·	65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	12.30	87.28	27.78	6.98	65.0	± 9.6 %
		Y	13.91	90.55	29.21		65.0	1
10010		Z	10.78	84.84	26.74		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.57	83.58	27.27	6.98	65.0	± 9.6 %
		Y	10.70	86.76	28.80		65.0	· · · · ·
		Z	8.63	81.57	26.33		65.0	1
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	9.97	81.73	21.53	3.98	65.0	± 9.6 %
		Y	10.43	82.64	21.91		65.0	1
40045		Z	8.76	79.58	20.36	·	65.0	T
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	9.75	81.12	21.26	3.98	65.0	± 9.6 %
· · · · ·		Y	10.17	81.97	21.61		65.0	1
40040		Z	8.56	78.97	20.07		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	9.14	83.08	21.95	3.98	65.0	± 9.6 %
		Y	9.72	84.22	22.38		65.0	
10017		Z	8.89	82.67	21.56		65.0	[
10247- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	7.53	77.68	20.47	3.98	65.0	± 9.6 %
		Y	7.73	78.28	20.74		65.0	
100/0		Ζ	7.33	77.37	20.13		65.0	
10248- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.50	77.17	20.25	3.98	65.0	± 9.6 %
<u> </u>		Y	7.71	77.80	20.54		65.0	
		Ζ	7.27	76.81	19.89		65.0	
10249- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	10.17	85.08	23.35	3.98	65.0	± 9.6 %
		Y	10.94	86.52	23.90		65.0	
		Z	10.18	85.27	23.26		65.0	
10250- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.40	79.60	22.53	3.98	65.0	± 9.6 %
		Y	8.67	80.38	22.90		65.0	· · · · · · · · · · · · · · · · · · ·
10054		Ζ	8.32	79.67	22.46		65.0	
10251- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.96	77.51	21.40	3.98	65.0	±9.6%
		Y	8.23	78.35	21.83		65.0	
10050		Z	7.84	77.49	21.29		65.0	
10252- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.91	84.03	23.67	3.98	65.0	±9.6 %
		Y	10.54	85.36	24.22		65.0	
0000		Z	9.99	84.47	23.78		65.0	
10253- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	7.87	76.54	21.30	3.98	65.0	±9.6 %
		Y	8.11	77.33	21.72		65.0	·
10054		Ζ	7.77	76.53	21.24		65.0	
10254- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.25	77.30	21.90	3.98	65.0	± 9.6 %
		Y	8.47	78.02	22.29		05.0	
		Ż	<u> </u>	10.02	22.23	1	65.0	

10255-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	8.82	80.37	22.51	3.98	65.0	± 9.6 %
CAC	QPSK)		0.40	04.00	00.05		05.0	
		Y	9.18	81.32	22.95		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	Z X	8.82 8.67	80.67 79.06	22.60 19.69	3.98	65.0 65.0	± 9.6 %
		Y	9.00	79.76	19.98		65.0	
		z	7.35	76.40	18.22		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.39	78.18	19.27	3.98	65.0	± 9.6 %
		Y	8.67	78.82	19.53		65.0	
		Z	7.11	75.57	17.80		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	7.67	79.80	20.11	3.98	65.0	±9.6 %
		Y	7.97	80.50	20.36		65.0	
		Z	7.13	78.64	19.35		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	7.87	78.36	21.19	3.98	65.0	± 9.6 %
		Y	8.11	79.04	21.50		65.0	
40000		Z	7.72	78.21	20.96	2.00	65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X Y	7.88	78.07	21.09	3.98	65.0	± 9.6 %
		Z	8.10 7.71	78.72 77.89	21.39		65.0 65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz,	X	9.63	83.94	20.85	3.98	65.0	± 9.6 %
	QPSK)	Y	10.30	85.33	23.81		65.0	
		z	9.64	84.17	23.22		65.0	
10262- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.39	79.56	22.49	3.98	65.0	± 9.6 %
0/10		Y	8.66	80.34	22.86		65.0	
		Z	8.31	79.62	22.42		65.0	
10263- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	7.95	77.50	21.40	3.98	65.0	± 9.6 %
		Y	8.22	78.34	21.82		65.0	
		Z	7.83	77.47	21.29		65.0	
10264- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	9.83	83.88	23.59	3.98	65.0	± 9.6 %
		Y	10.46	85.22	24.15		65.0	
		Z	9.91	84.30	23.70		65.0	
10265- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.08	77.12	21.52	3.98	65.0	± 9.6 %
		Y ·	8.33	77.96	21.96		65.0	
10266- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	7.95 8.45	77.09 77.88	21.47 22.16	3.98	65.0 65.0	± 9.6 %
0/10		Y	8.68	78.62	22.55	<u> </u>	65.0	
		Z	8.36	77.93	22.14	<u> </u>	65.0	
10267- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.12	80.75	22.43	3.98	65.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	9.47	81.62	22.84		65.0	
		Z	9.12	81.04	22.54		65.0	
10268- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.54	76.63	21.68	3.98	65.0	±9.6 %
		Y	8.73	77.26	22.04	1	65.0	
10269-	LTE-TDD (SC-FDMA, 100% RB, 15	Z X	8.44 8.47	76.63 76.21	21.67 21.58	3.98	65.0 65.0	± 9.6 %
CAC	MHz, 64-QAM)	+	0.04	70.00	04.04		05.0	
		Y	8.64	76.83	21.94	<u> </u>	65.0 65.0	
40070	LTE TOD (80 EDMA 400% DB 45	Z	8.37 8.62	76.22	21.56 21.50	3.98	65.0	± 9.6 %
10270- CAC	LTE-TDD (SC-FDMA, 100% RB, 15	^	0.02	10.00	21.00	0.90	00.0	- 5.0 /0
CAC	MHz, QPSK)	Y	8.81	78.56	21.80		65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.63	66.22	15.16	0.00	150.0	± 9.6 %
		Y	2.68	66.76	15.56	<u>+</u>	150.0	<u>+</u>
		Z	2.60	66.20	15.05	<u> </u>		
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.63	67.34	15.24	0.00	<u>150.0</u> 150.0	± 9.6 %
		Y	1.75	68.91	16.21		150.0	
		Z	1.59	67.10	15.04		150.0	·
10277- CAA	PHS (QPSK)	X	5.23	69.17	13.58	9.03	50.0	± 9.6 %
		Ý	5.23	69.14	13.54		50.0	· · · · ·
		Z	4.94	68.42	12.95		50.0	·
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.44	80.92	21.03	9.03	50.0	± 9.6 %
		Y	9.27	80.52	20.82		50.0	
40070		Z	8.80	79.60	20.21		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	9.60	81.11	21.12	9.03	50.0	± 9.6 %
		Y	9.45	80.75	20.93		50.0	
40200		Ζ	8.93	79.76	20.30		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.49	68.14	14.07	0.00	150.0	± 9.6 %
		Y	1.71	70.53	15.29		150.0	
10291-	CDM42000 D02 0055 5 10 1	Z	1.38	67.47	13.43		150.0	
AAB	CDMA2000, RC3, SO55, Full Rate	X	0.87	65.35	12.59	0.00	150.0	± 9.6 %
<u> </u>		Y	0.98	67.67	13.90		150.0	
10000		Z	0.81	64.81	11.96		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	1.01	68.28	14.43	0.00	150.0	± 9.6 %
		Y	1.28	72.37	16.47		150.0	
40202		Z	0.94	67.61	13.77		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	1.31	72.09	16.62	0.00	150.0	± 9.6 %
		Y	1.86	78.07	19.28		150.0	
10295-	CDM40000 D04 000 4/01 D 4 00 4	Z	1.24	71.48	16.00		150.0	
AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.68	86.43	25.21	9.03	50.0	± 9.6 %
		Y	12.34	87.51	25.61		50.0	
10297-		Z	12.30	87.31	25.27		50.0	
AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.80	69.32	16.34	0.00	150.0	±9.6 %
		Y	2.92	70.37	16.97		150.0	
10298-			2.72	69.08	16.22		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.65	67.43	14.29	0.00	150.0	±9.6 %
		Y	1.78	69.00	15.16		150.0	
10299-	TE EDD (SO EDMA FOR DE ALM	Z	1.54	66.87	13.72		150.0	
AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	3.71	73.80	16.79	0.00	150.0	±9.6 %
		Y	4.50	76.98	18.19		150.0	
10300-	TE-EDD (SC EDMA FOX DD AND	Z	2.80	70.24	14.88		150.0	
AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.66	68.22	13.61	0.00	150.0	± 9.6 %
		Y	2.97	70.07	14.57		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	Z X	2.16 5.56	65.95 67.67	12.13 18.53	4.17	150.0 80.0	± 9.6 %
		Y	5.78	60 70	10.40		0.2.5	
		Z	5.51	68.72	19.18		80.0	
10302-	IEEE 802.16e WIMAX (29:18, 5ms,	X	6.08	67.68	18.44	4.00	80.0	
AAA	10MHz, QPSK, PUSC, 3 CTRL symbols)	Ŷ		68.43	19.36	4.96	80.0	± 9.6 %
·		Z	6.31	69.64	20.14		80.0	
		6	6.00	68.40	19.26		80.0	

Y 6,17 69,77 20,23 80.0 10304 IEEE 802,169 WIMAX (20:16, 5ms, AAA X 5.57 67.76 18.57 4.17 80.0 ± 9.6 % 10304 IGMH-z, 64QAM, PUSC) Y 5.77 68.85 19.27 80.0 1 9.6 % 10305 IEEE 602,166 WIMAX (31:15, 10ms, AAA Y 7.842 24.99 6.02 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 15 symbols) Y 9.80 85.05 27.90 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 18 symbols) Y 6.78 73.45 22.69 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 18 symbols) Y 6.63 74.74 22.75 50.0 ± 9.6 % AAA 10MHz, 160AM, PUSC, 18 symbols) Y 6.92 71.39 21.28 6.02 50.0 ± 9.6 % AAA 10MHz, 160AM, PUSC, 18 symbols) Y 7.04 74.34 22.30 60.0 ± 9.6 % AAA 10MHz, 160AM, AWZ (29:18,	0303-	IEEE 802.16e WIMAX (31:15, 5ms,	X	5.91	68.44	19.38	4.96	80.0	± 9.6 %
Z 5.83 68.37 19.25 80.0 1004-1 IEEE 802.166 WiMAX (20:18, 5ms, X 5.57 67.76 18.57 4.17 80.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC) Y 5.77 68.85 19.27 68.00 4.00.0 10030- IEEE 602.166 WiMAX (31:15, 10ms, X 7.72 76.82 24.99 6.02 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 15 symbols) Y 9.80 85.05 27.90 65.0 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 18 symbols) Y 6.78 78.43 22.69 50.0 50.0 ± 9.6 % 7030- IEEE 802.16e WiMAX (29:18, 10ms, X 6.73 74.34 22.91 50.0 ± 9.6 % 7030- IEEE 802.16e WiMAX (29:18, 10ms, X 6.87 74.17 22.78 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 6.82 73.87 23.29 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 223, 18 symbols) Y	AAA	10MHz, 64QAM, PUSC)			00 ==	00.07			
10304- 104Hz, 640AM, PUSC) X 5.57 67.76 18.57 4.17 80.0 ± 9.6 % AAA 10MHz, 640AM, PUSC) Y 5.77 68.85 19.27 80.0 - 10305- 10305- 104Hz, 640AM, PUSC, 15 symbols) Y 5.77 78.82 24.99 6.02 50.0 ± 9.6 % 10304- 10305- 10306- 10306- 10306- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10307- 10308- 10417, QPSK, PUSC, 18 symbols) Y 6.78 77.45 22.69 50.0 ± 9.6 % AAA 10MHz, 640AM, PUSC, 18 symbols) Y 6.08 70.81 21.17 6.02 50.0 ± 9.6 % AAA 10MHz, 6204K, PUSC, 18 symbols) Y 6.78 77.434 22.21 50.0 - - 50.0 - - - - 22.6 % 6.74.17 22.32 6.02 50.0 ± 9.6 % AAA 10MHz, 160MA, MC203.18 symbols) Y 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA 10MHz, 160M, AMC23.18 symb									
Y 5.77 68.85 19.27 9 80.0 10305 IEEE 802.166 WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) X 7.72 78.82 24.99 6.02 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 15 symbols) Y 9.80 85.05 27.90 56.0 10306- IEEE 802.166 WIMAX (20:18, 10ms, AAA X 7.68 78.78 24.73 56.0 10307- IEEE 802.166 WIMAX (20:18, 10ms, AAA X 6.09 70.06 20.96 50.0 10308- IEEE 802.168 WIMAX (20:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) Y 6.83 74.34 22.91 50.0 10308- IEEE 802.468 WIMAX (20:18, 10ms, 10MHz, 10QAM, PUSC) X 6.84 74.87 23.29 6.02 50.0 10309- IEEE 802.468 WIMAX (29:18, 10ms, 10MHz, 10QAM, AMC 2x3, 18 symbols) Y 7.04 74.84 22.92 50.0 10309- IEEE 802.468 WIMAX (29:18, 10ms, 10MHz, 10QAM, AMC 2x3, 18 symbols) Y 6.92 73.67 22.92 50.0 9.6 %							4.17		± 9.6 %
Z 5.49 67.73 18.47 80.0 10305- 10305- 10305- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10306- 10307- 10307- 1027 Y 9.80 85.05 27.90 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 16 symbols) Y 6.19 70.81 21.17 6.02 50.0 ± 9.6 % AAA 10MHz, 64QAM, PUSC, 18 symbols) Y 6.78 73.45 22.86 50.0 ± 9.6 % AAA 10MHz, QPSK, PUSC, 18 symbols) Y 6.93 74.34 22.91 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.93 74.34 23.20 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.94 74.94 23.20 6.00 ± 9.6 % AAA 10MHz, 16QAM, AC (29.18, 10ms, AAA X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AC (23.18, 10ms, AAA X 6.18 70.09 21.13 60.0 50	<u> </u>		Y	5 77	68 85	19.27		80.0	
10305- IEEE 802.16e WIMAX (21:15, 10ms, 10MHz, 84QAM, PUSC, 15 symbols) X 7.72 78.82 24.99 6.02 50.0 ± 9.6% AAA 10MHz, 84QAM, PUSC, 15 symbols) Y 9.80 85.05 27.90 56.0 10306- IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 16 symbols) X 6.19 70.81 21.17 6.02 50.0 ± 9.6 % 10307- IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, GPSK, PUSC, 16 symbols) X 6.23 71.39 21.26 6.02 50.0 ± 9.6 % 10308- IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 18QAM, PUSC) Y 6.84 74.47 23.29 6.00 - 10308- IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 18QAM, AMC 2x3, 18 symbols) Y 6.92 71.43 23.10 50.0 ± 9.6 % AAA 10MHz, 18QAM, AMC 2x3, 18 symbols) Y 6.92 73.67 22.32 50.0 ± 9.6 % AAA 10MHz, 18QAM, AMC 2x3, 18 symbols) Y 6.92 73.67 22.56 50.0 ± 9.6 % AAA 10MHz, 1									
Y 9.80 85.05 27.90 50.0 C 7.68 77.87 24.73 50.0 10306- IEEE 802.16e WiMAX (28:18, 10ms, 10MHz, 642AM, PUSC, 18 symbols) Y 6.78 73.45 22.69 50.0 ± 9.6 % 10307- IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) Y 6.78 74.34 22.91 50.0 ± 9.6 % 10308- IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, IGGAM, PUSC) Y 6.83 74.34 22.91 50.0 ± 9.6 % 10308- IEEE 802.16e WiMAX (29:18, 10ms, AAA X 6.27 71.13 21.35 6.02 50.0 ± 9.6 % AAA 10MHz, 16GAM, AMC 2x3, 18 symbols X 6.29 71.13 21.35 6.02 50.0 ± 9.6 % AAA 10MHz, 16GAM, AMC 2x3, 18 symbols X 6.19 70.81 21.13 50.0 ± 9.6 % AAA 10MHz, 16GAM, 100% RB, 15 X 3.15 68.64 16.01 0.00 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols)							6.02		± 9.6 %
10306- AAA IEEE 802.16e WIMAX (29:18, 10ms, AAA X 6.19 70.81 21.17 6.02 50.0 ± 9.6 % 10307- 10307- 10307- 10306- 10306- 10306- 10306- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 10308- 104Hz, 160AM, PUSC) Y 6.33 71.39 21.28 6.02 50.0 ± 9.6 % AAA 10MHz, QPSK, PUSC, 18 symbols) Y 6.33 74.34 22.91 50.0 ± 9.6 % AAA 10MHz, IGOAM, PUSC) Y 7.04 74.87 23.29 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC (29:18, 10ms, AAA X 6.84 74.87 23.20 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) Y 6.92 73.87 22.92 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.92 73.87 22.92 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) </td <td></td> <td></td> <td></td> <td>9.80</td> <td>85.05</td> <td>27.90</td> <td></td> <td>50.0</td> <td></td>				9.80	85.05	27.90		50.0	
AAA 10MHz, 64QAM, PUSC, 18 symbols) Y 6.78 73.45 22.69 50.0 10307- IEEE 802.16e WMAX (29:18, 10ms, AAA X 6.23 71.39 21.26 6.02 50.0 ± 9.6 % 10307- IEEE 802.16e WMAX (29:18, 10ms, AAA X 6.23 71.39 21.26 6.02 50.0 ± 9.6 % 10308- IEEE 802.16e WMAX (29:18, 10ms, AAA X 6.84 74.47 23.29 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 23:18, 10ms, AAA X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 23:18 10ms, AAA X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % 10310- IEEE 802.16e WMAX (23:18 10ms, AAA X 6.19 71.01 21.18 6.00 20.0 ± 9.6 % 10310- IEEE 802.16e WMAX (23:18 19ms, 10MHz, QPSK, AMC 23.18 symbols) Y									
Z 6.09 70.68 20.96 50.0 ± 9.6 % AAA 10MHz, QPSK, PUSC, 18 symbols) Y 6.03 74.34 22.91 50.0 ± 9.6 % AAA 10MHz, QPSK, PUSC, 18 symbols) Y 6.03 74.34 22.91 50.0 ± 9.6 % 10306- IEEE 802.16e WIMAX (29:18, 10ms, AAA Z 6.66 74.17 22.78 6.00 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.04 74.83 23.10 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 29:18, 10ms, 160, X 6.29 71.13 21.38 6.02 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.92 73.87 22.92 50.0 103.0 10310- IEEE 802.16e WIMAX (29.18, 10ms, A 6.18 70.98 21.13 6.02 50.0 103.0 104.2 50.0 105.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.76 50.0 105							6.02	5	± 9.6 %
10307- IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) X 6.23 71.39 21.28 6.02 50.0 ± 9.6 % 10308- 10308- 10308- 4AA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) Y 6.93 74.34 22.91 50.0 10308- 10308- 4AA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) Y 6.92 73.87 22.75 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 3.37 68.40									
AAA 10MHz, QPSK, PUSC, 18 symbols) 7 6.33 74.34 22.91 50.0 10308- IEEE 802.16e WiMAX (29:18, 10ms, AAA 6.84 74.37 22.29 6.02 50.0 ± 9.6 % AAA 10MHz, 160AM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 160AM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 160AM, AMC 2x3, 18 symbols) X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) Y 6.92 73.87 22.92 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 3.28 69.57 16.56 150.0 ± 9.6 % AAB <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Z 6.66 74.17 22.78 50.0 10308- AAA 10MHz, 16QAM, PUSC) Y 7.04 74.97 23.29 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC (29.18, 10ms, AAA X 6.27 74.83 23.10 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC (29.18, 10ms, AAA X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 22:18, 10ms, AX K 6.19 71.13 21.18 6.02 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 5.82 73.76 12.18 60.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 5.82 73.55 22.58 60.0 ± 9.6 % AAB MHz							6.02		± 9.6 %
10308- 10MHz, 16QAM, PUSC) X 6.84 74.87 23.29 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, PUSC) Y 7.04 74.94 23.20 50.0 ± 9.6 % 10309- 10309- AAA IEEE 802.16e WiMAX (29:18, 10ms, AAA X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % AAA 10MHz, QPSK) Y 8.82 73.78 22.75 50.0 10.0 150.0 ± 9.6 % AAB MHz, QPSK) Y 3.28 69.67									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10200	1666 902 160 WilkAX (20:19 40-					6.00		1060/
Z 6.77 74.83 23.10 50.0 10309- AAA 10MHz, 16GAM, AMC 22:18, 10ms, 10MHz, 16GAM, AMC 223, 18 symbols) Y 6.29 71.13 21.36 6.02 50.0 $\pm 9.6 \%$ AAA 10MHz, 16GAM, AMC 22:18, 10ms, AAA Y 6.92 73.87 22.92 50.0 - 10310- AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.19 71.11 21.18 6.02 50.0 $\pm 9.6 \%$ 10310- AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.19 71.01 21.18 6.02 50.0 - 10311- AAB MHz, QPSK Y 6.62 73.76 22.75 50.0 -							6.02		± 9.0 %
10309- AAA IEEE 802.16e WiMAX (29:18, 10ms, AAA X 6.29 71.13 21.36 6.02 50.0 ± 9.6 % AAA IOMHz, 16QAM, AMC 2x3, 18 symbols) Y 6.92 73.87 22.92 50.0 ± 9.6 % IO310- AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols) X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % AAA IDEE 802.16e WiMAX (29:18, 10ms, AAA X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % AAA IDEE NDSC-FDMA, 100% RB, 15 X 3.15 68.64 16.01 0.00 150.0 ± 9.6 % AAB MHz, QPSK) Y 3.28 69.57 16.56 150.0 ± 9.6 % AAA IDEN 1:3 Z 7.93 80.00 19.43 6.99 70.0 ± 9.6 % AAA IDEN 1:3 Z 7.91 80.08 19.40 70.0 ± 9.6 % AAA Z 7.91 80.08 19.40 70.0 ± 9.6 % AAA Z 7.91 80.08 19.40 70.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
AAA 10MHz, 16QAM, AMC 2x3, 18 symbols) Y 6.92 73.87 22.92 50.0 10310- IEEE 802.16e WiMAX (29:18, 10ms, AAA X 6.18 70.98 21.13 50.0 19.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 19.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 19.6 % AAA 10MHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 150.0 ±9.6 % AAB MHz, QPSK) Y 3.28 69.57 16.56 150.0 ±9.6 % AAB MHz, QPSK) Y 3.28 69.57 18.50 150.0 ±9.6 % AAA IDEN 1:3 X 7.93 80.00 19.43 6.99 70.0 ±9.6 % AAA IDEN 1:6 X 10.36 86.77 24.35 10.00 30.0 ±9.6 % AAA Y 1.057 <td>10300-</td> <td>1EEE 802 16e M/MAX /29:18 10ms</td> <td></td> <td></td> <td></td> <td></td> <td>6.02</td> <td></td> <td>+96%</td>	10300-	1EEE 802 16e M/MAX /29:18 10ms					6.02		+96%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1		0.02	:	1 3.0 78
10310- AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols) X 6.19 71.01 21.18 6.02 50.0 ± 9.6 % IOMHz, QPSK, AMC 2x3, 18 symbols) Y 6.82 73.78 22.75 50.0 IO311- AAA LTE-FDD (SC-FDMA, 100% RB, 15 X 3.15 68.64 16.01 0.00 150.0 ± 9.6 % MHz, QPSK) Y 3.28 69.57 16.56 150.0 9.6 % AB MHz, QPSK) Y 3.28 69.57 16.56 150.0 9.6 % 9.6 % 9.6 % 9.6 % 9.6 % 9.6 % 9.6 % 9.6 % 9.6 % 9.6 % 9.6 %									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							6.02		± 9.6 %
Z 6.55 73.56 22.58 50.0 10311- AAB LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) X 3.15 68.64 16.01 0.00 150.0 ± 9.6 % AAB MHz, QPSK) Y 3.28 69.57 16.56 150.0 ± 9.6 % I0313- AAA iDEN 1:3 X 7.93 80.00 19.43 6.99 70.0 ± 9.6 % I0314- I0314- iDEN 1:6 Y 8.50 81.06 19.83 70.0 I0314- I0214- IDEN 1:6 X 10.36 86.77 24.35 10.00 30.0 ± 9.6 % AAA Y 11.09 87.90 24.72 30.0 10.01 30.0 ± 9.6 % AAA Y 1.16 64.08 15.18 0.17 150.0 ± 9.6 % AAB Mps, 96pc duty cycle) Y 1.16 64.08 15.18 0.17 150.0 ± 9.6 % AAB Mps, 96pc duty cycle) Y 1.19 64.95 16.40	7001		Y	6.82	73.78	22.75		50.0	1
10311- AAB LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) X 3.15 68.64 16.01 0.00 150.0 ± 9.6 % AAB MHz, QPSK) Z 3.07 68.40 15.89 150.0 100.0 10313- AAA IDEN 1:3 X 7.93 80.00 19.43 6.99 70.0 ± 9.6 % 10314- AAA IDEN 1:3 X 7.93 80.00 19.43 6.99 70.0 ± 9.6 % 10314- AAA IDEN 1:6 X 10.36 86.77 24.35 10.00 30.0 ± 9.6 % 10314- AAA IDEN 1:6 X 10.36 86.77 24.35 10.00 30.0 ± 9.6 % AAA Y 11.09 87.90 24.72 30.0 30.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 1.16 64.08 15.18 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 1.19 64.95 15.92 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			X				0.00		± 9.6 %
10313- AAA iDEN 1:3 X 7.93 80.00 19.43 6.99 70.0 ± 9.6 % AAA Y 8.50 81.06 19.83 70.0 10314- AAA Z 7.91 80.08 19.40 70.0 10314- AAA iDEN 1:6 X 10.36 86.77 24.35 10.00 30.0 ± 9.6 % AAA Z 10.37 87.90 24.72 30.0 30.0 ± 9.6 % AAA Z 10.57 87.37 24.52 30.0 20.0 20.0 10315- AAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 X 1.16 64.08 15.18 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 1.19 64.95 15.92 150.0 20.0				3.28	69.57				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		IDEN 1:3					6.99		± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
AAA Y 11.09 87.90 24.72 30.0 10315- IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) X 1.16 64.08 15.18 0.17 150.0 ± 9.6 % 10316- IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) Y 1.19 64.95 15.92 150.0 ± 9.6 % 10316- IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) Y 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10316- IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 ± 9.6 % 10317- IEEE 802.11a WiFi 5 GHz (OFDM, 6 AAB Y 4.75 67.05 16.58 150.0 ± 9.6 % 10317- IEEE 802.11a WiFi 5 GHz (OFDM, 6 AAB X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 4.74 66.8									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		iDEN 1:6					10.00		±9.6 %
10315- AAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) X 1.16 64.08 15.18 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 1.19 64.95 15.92 150.0 - 10316- AAB IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10316- AAB IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) Y 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10400- AAC 99pc duty cycle) Y 4.75 67.05 16.58 150.0 ± 9.6 % 10400- AAC 99pc duty cycle) Y 4.83 67.07 16.30 0.00 150.0 ± 9			_						
Y 1.19 64.95 15.92 150.0 10316- AAB IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10316- AAB IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 ± 9.6 % 10317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10317- AAB IEEE 802.11ac WiFi (20MHz, 64-QAM, AAC Y 4.75 67.05 16.58 150.0 150.0 10400- AAC IEEE 802.11ac WiFi (20MHz, 64-QAM, AAC Y 4.84 67.29 16.50 150.0 150.0 10401- AAC IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) Y 5.51 67.29 16.49 0.00 150.0 ± 9.6 %							0.17		± 9.6 %
Z 1.15 63.96 15.05 150.0 10316- AAB IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % IO316- AAB OFDM, 6 Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 I IO317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 I 150.0 ± 9.6 % IO317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % IO400- AAC 99pc duty cycle) Y 4.83 67.07 16.30 0.00 150.0 ± 9.6 % IO400- AAC 99pc duty cycle) Y 4.84 67.29 16.50 150.0 ± 9.6 % IO401- AAC IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) X 5.51<	7010		1 Y	1.19	64.95	15.92		150.0	
10316- AAB IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % AAB OFDM, 6 Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 IO317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 AAB X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % 10317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 ± 9.6 % 10400- AAC IEEE 802.11ac WiFi (20MHz, 64-QAM, AAC X 4.83 67.07 16.30 0.00 150.0 ± 9.6 % 10401- AAC Y 4.84 67.29 16.50 150.0 ± 9.6 % 10401- AAC P9pc duty cycle) Y 5.51 67.49 16.49 0.00 150.0 ± 9.6 %					63.96			150.0	
Image: Mark and the second state of the sec			X	4.74	66.85		0.17	150.0	±9.6 %
10317- AAB IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) X 4.74 66.85 16.40 0.17 150.0 ± 9.6 % AAB Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 150.0 IEEE 802.11ac WiFi (20MHz, 64-QAM, AAC Y 4.83 67.07 16.30 0.00 150.0 ± 9.6 % AAC 99pc duty cycle) Y 4.83 67.07 16.30 0.00 150.0 ± 9.6 % AAC 99pc duty cycle) Y 4.84 67.29 16.50 150.0 ± 9.6 % IO400- AAC IEEE 802.11ac WiFi (40MHz, 64-QAM, SOUTHZ, 64-QAM, X 5.51 67.29 16.49 0.00 150.0 ± 9.6 % 10401- AAC IEEE 802.11ac WiFi (40MHz, 64-QAM, SOUTHZ, 64-QAM, X 5.51 67.29 16.49 0.00 150.0 ± 9.6 % AAC 99pc duty cycle) Y 5.53 67.49 16.67 150.0 ± 9.6 %							L		
AAB Mbps, 96pc duty cycle) Y 4.75 67.05 16.58 150.0 Image: Constraint of the state of the s							ļ		
Z 4.69 66.84 16.36 150.0 10400- AAC IEEE 802.11ac WIFi (20MHz, 64-QAM, 99pc duty cycle) X 4.83 67.07 16.30 0.00 150.0 ± 9.6 % AC 99pc duty cycle) Y 4.84 67.29 16.50 150.0 Image: Second Sec							0.17		± 9.6 %
10400- AAC IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle) X 4.83 67.07 16.30 0.00 150.0 ± 9.6 % Y 4.84 67.29 16.50 150.0 ± 150.0 ± Image: Constraint of the state of the s			<u>Y</u>				ļ		
AAC 99pc duty cycle) Y 4.84 67.29 16.50 150.0 Image: Constraint of the state of the	101								1000
Z 4.76 67.04 16.26 150.0 10401- AAC IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) X 5.51 67.29 16.49 0.00 150.0 ± 9.6 % Y 5.53 67.49 16.67 150.0 ±							0.00	_	± 9.6 %
10401- AAC IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) X 5.51 67.29 16.49 0.00 150.0 ± 9.6 % Y 5.53 67.49 16.67 150.0 ± 9.6 %									
AAC 99pc duty cycle) Y 5.53 67.49 16.67 150.0	40404						0.00		+060/
							0.00		1 9.0 %
			Z	5.53 5.49	67.49	16.67		150.0	

10402- AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.79	67.69	16.53	0.00	150.0	± 9.6 %
		Y	5.79	67.83	16.67	<u> </u>	150.0	
		Z	5.72	67.60	16.48	<u> </u>	150.0	<u> </u>
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	1.49	68.14	14.07	0.00	115.0	± 9.6 %
		Y	1.71	70.53	15.29	-	115.0	
10101		Z	1.38	67.47	13.43		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.49	68.14	14.07	0.00	115.0	± 9.6 %
		Y	1.71	70.53	15.29		115.0	
10406-	CDM42000 D02 0000 0000 F #	Z	1.38	67.47	13.43		115.0	
AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	122.23	31.08	0.00	100.0	± 9.6 %
		Y	100.00	122.94	31.38		100.0	
10410-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z	21.98	102.39	26.35	<u>_</u>	100.0	
	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.68	31.26	3.23	80.0	± 9.6 %
. <u> </u>		Y	100.00	122.54	31.65		80.0	
10415-	1555 902 11h WIELD & OUE (5000 1	Z	100.00	121.97	31.19		80.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.03	62.73	14.35	0.00	150.0	± 9.6 %
	······································	Y	1.04	63.46	15.05		150.0	
10416-	IEEE 802.11g WiFi 2.4 GHz (ERP-	Z	1.02	62.64	14.23		150.0	
AAA	OFDM, 6 Mbps, 99pc duty cycle)	X	4.64	66.69	16.23	0.00	150.0	± 9.6 %
		Y	4.65	66.89	16.41		150.0	
10417-		Z	4.59	66.68	16.20		150.0	
AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.64	66.69	16.23	0.00	150.0	±9.6 %
· · · · · · · · · · · · · · · · · · ·		Ŷ	4.65	66.89	16.41		150.0	·
10110		Z	4.59	66.68	16.20		150.0	· · · · · · · · · · · · · · · · · · ·
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.63	66.83	16.23	0.00	150.0	±9.6 %
		Y	4.64	67.04	16.42		150.0	
40440		<u>Z</u>	4.58	66.82	16.21		150.0	······································
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.65	66.79	16.24	0.00	150.0	± 9.6 %
		Y	4.66	66.99	16.43		150.0	
10100		Z	4.60	66.78	16.21		150.0	
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.78	66.81	16.27	0.00	150.0	± 9.6 %
<u> </u>		Y	4.78	67.00	16.45		150.0	
40400		Z	4.72	66.79	16.24		150.0	
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	Х	4.96	67.16	16.40	0.00	150.0	±9.6 %
		Y	4.97	67.35	16.58		150.0	
10424-		Ζ	4.89	67.12	16.36		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.88	67.10	16.36	0.00	150.0	±9.6 %
		<u> </u>	4.88	67.30	16.54		150.0	
10425-		Z	4.81	67.07	16.33		150.0	
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.49	67.52	16.59	0.00	150.0	±9.6 %
		Y	5.50	67.70	16.76		150.0	
10400		Z	5.44	67.51	16.58		150.0	
10426- AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.49	67.54	16.59	0.00	150.0	± 9.6 %
<u> </u>		Y	5.50	67.71	16.76		150.0	
	1	Z	5.45	67.53	16.59			

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.50	67.50	16.57	0.00	150.0	± 9.6 %
		Y	5.51	67.67	16.73		150.0	
		Z	5.45	67.48	16.56		150.0	
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.25	70.00	17.85	0.00	150.0	± 9.6 %
		Y	4.23	70.09	17.93		150.0	
		Z	4.19	70.14	17.80		150.0	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.34	67.20	16.23	0.00	150.0	± 9.6 %
		Y	4.36	67.46	16.45		150.0	
		Z	4.27	67.18	16.16		150.0	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.64	67.12	16.31	0.00	150.0	± 9.6 %
		Y	4.65	67.34	16.50		150.0	
40400		Z	4.57	67.09	16.26		150.0	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.89	67.13	16.38	0.00	150.0	± 9.6 %
		Y	4.90	67.33	16.56		150.0	
10404		Z	4.82	67.10	16.34	0.00	150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.31	70.67	17.79	0.00	150.0	± 9.6 %
		Y	4.30	70.79	17.87		150.0	
40405		Z	4.25	70.82	17.71	0.00	150.0	100%
10435- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.51	31.18	3.23	80.0	± 9.6 %
		Y	100.00	122.37	31.57		80.0	
		Z	100.00	121.79	31.11		80.0	
10447- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.63	67.13	15.60	0.00	150.0	± 9.6 %
		Y	3.66	67.50	15.86		150.0	
		Z	3.54	67.07	15.44		150.0	
10448- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.17	66.96	16.08	0.00	150.0	± 9.6 %
		Y	4.19	67.23	16.30		150.0	
		Z	4.10	66.94	16.02		150.0	
10449- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.44	66.92	16.19	0.00	150.0	± 9.6 %
		Y	4.45	67.15	16.39		150.0	
		Z	4.38	66.90	16.14		150.0	
10450- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.63	66.87	16.23	0.00	150.0	± 9.6 %
		Y	4.64	67.08	16.41	ļ	150.0	
			4.58	66.85	16.19		150.0	1004
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.53	67.33	15.28	0.00	150.0	± 9.6 %
		Y	3.57	67.74	15.55		150.0	
		Z	3.43	67.21	15.05	0.00	150.0	100%
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.35	68.11	16.76	0.00	150.0	± 9.6 %
		Y	6.36	68.24	16.90		150.0	
		Z	6.31	68.06	16.74	-	150.0	1000
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.86	65.32	15.94	0.00	150.0	± 9.6 %
		Y	3.86	65.52	16.13	ļ	150.0	<u> </u>
101		Z	3.83	65.31	15.89	-	150.0	+0.0.0/
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.37	66.71	14.79	0.00	150.0	± 9.6 %
		Y	3.41	67.16	15.08	ļ	150.0	
		Z	3.26	66.61	14.51		150.0	1.0.0.01
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.52	65.23	15.77	0.00	150.0	± 9.6 %
	1	Y	4.60	65.75	16.11	<u> </u>	150.0	<u> </u>
		Z	4.38	65.07	15.54		150.0	1

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	0.89	66.92	15.35	0.00	150.0	± 9.6 %
		Y	1.01	69.93	17 40		450.0	ļ
		z	0.86	66.57	17.18 15.06		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.62	33.15	3.29	150.0 80.0	± 9.6 %
		Y	100.00	127.39	33.94		80.0	· · · · · · · · · · · · · · · · · · ·
		Z	100.00	125.16	32.74	<u> </u>	80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.62	25.96	3.23	80.0	± 9.6 %
		Y	100.00	111.65	26.39		80.0	
40400		Z	84.76	108.06	25.05		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.62	24.51	3.23	80.0	± 9.6 %
		Y	100.00	108.53	24.89		80.0	
10464	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	Z	14.33	86.37	18.99		80.0	
10464- AAA	QPSK, UL Subframe=2,3,4,7,8,9)		100.00	123.78	32.14	3.23	80.0	± 9.6 %
		Y	100.00	125.58	32.94		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Z	100.00	123.19	31.67		80.0	
10465- AAA	QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.13	25.71	3.23	80.0	± 9.6 %
				111.18	26.15		80.0	
10466-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-	Z X	35.58 95.39	97.99	22.58		80.0	
AAA	QAM, UL Subframe=2,3,4,7,8,9)	Y	100.00	106.65 108.07	24.18	3.23	80.0	± 9.6 %
		Z	9.21		24.67	······	80.0	
10467-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	<u>X</u>	9.21	81.47	17.50		80.0	
AAB	QPSK, UL Subframe=2,3,4,7,8,9)	Y		123.99	32.23	3.23	80.0	± 9.6 %
			100.00	125.80	33.04	· ,	80.0	
10468- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 100.00	123.41 110.29	31.77 25.79	3.23	80.0 80.0	± 9.6 %
	@ (M, OE Oubliante=2,0,4,7,0,9)		400.00	11101				
		Y	100.00	111.34	26.23		80.0	
10469- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Z X	<u>43.78</u> 99.99	<u>100.42</u> 107.17	23.20 24.29	3.23	80.0 80.0	± 9.6 %
		Y	100.00	108.09	24.67			
		z	9.38	81.68	17.56		80.0	
10470- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	124.02	32.24	3.23	80.0 80.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	100.00	125.83	33.05	<u> </u>	80.0	
		Z	100.00	123.44	31.77		80.0	
10471- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.24	25.76	3.23	80.0	±9.6 %
		Y	100.00	111.29	26.20		80.0	
40470		Z	43.76	100.38	23.18		80.0	
10472- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.12	24.26	3.23	80.0	± 9.6 %
		Y	100.00	108.04	24.64		80.0	
10473-		Z	9.36	81.64	17.53		80.0	
AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.99	32.23	3.23	80.0	±9.6 %
		Y	100.00	125.81	33.03		80.0	
10474- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 100.00	123.41 110.25	31.76 25.76	3.23	80.0 80.0	± 9.6 %
		Y	100.00	111.30	26.20			
		Z	42.90	100.17	26.20 23.13		80.0	
10475- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	99.25	107.05	23.13	3.23	80.0 80.0	± 9.6 %
		Y	100.00	108.06	24.65		00.0	
		Z	9.24	81.52	17.50		80.0	
			0.27	01.02	17.00		80.0	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10477- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	110.09	25.68	3.23	80.0	± 9.6 %
IDE-TOD (SC-FDMA, 1 RB, 20 MHz, 64 X 95.82 106.64 24.15 32.33 80.0 ± 9.6 % AAB CAM, UL Subframe=2,3.4,7.8,9) Y 100.00 108.60 24.62 80.0 ± 9.6 % AAA OPSK, UL Subframe=2,3.4,7.8,9) Y 100.00 108.60 24.62 80.0 ± 9.6 % AAA OPSK, UL Subframe=2,3.4,7.8,9) Y 25.94 104.65 29.40 80.0 ± 9.6 % AAA I6-GAM, UL Subframe=2,3.4,7.8,9) Y 30.64 100.32 22.54 80.0 ± 9.6 % AAA I6-GAM, UL Subframe=2,3.4,7.8,9) Y 30.64 100.32 22.83 30.0 ± 9.6 % AAA I6-GAM, UL Subframe=2,3.4,7.8,9) Y 23.68 95.63 24.59 80.0 ± 9.6 % AAA ETE-TOD (SC-FDMA, 50% RB, 1 MHz, X 10.00 89.85 22.43 80.0 ± 9.6 % AAA 64-GAM, UL Subframe=2,3.4,7.8,9) Y 23.68 95.63 24.59 80.0 ± 9.6 % AAA				100.00					·
AAB QAM, UL Subframe=2,3,4,7,8,9) Y 100.00 108.00 24.62 80.0 LTE-TDD (SC-FDMA, 50%, RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 15.99 96.17 26.79 3.23 80.0 ± 9.6 % AAA CPSK, UL Subframe=2,3,4,7,8,9) Y 25.54 104.65 29.40 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 25.54 100.38 26.28 3.23 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 30.64 100.38 26.28 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 12.85 87.46 22.08 60.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 10.55 84.00 20.64 60.0 ± 9.6 % AAA CFE-TDD (SC-FDMA, 50%, RB, 3 MHz, AAA Y 9.10.77 85.20 19.04 2.23 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.28 21.31 80.			Z	37.23	98.47	22.68		80.0	
Inter-ToD (SC-FDMA, 50%, RB, 14 MHz, QPSK, UL, Subframe=2,3,4,7,8,9) Z 9,13 81.36 17.44 60.0 20.0 Inter-ToD (SC-FDMA, 50%, RB, 14 MHz, QPSK, UL, Subframe=2,3,4,7,8,9) Y 15.69 96.17 26.79 3.23 80.0 1 Inter-ToD (SC-FDMA, 50%, RB, 14 MHz, AAA Y 19.48 93.48 24.25 3.23 80.0 1 9.64 Inter-ToD (SC-FDMA, 50%, RB, 14 MHz, AAA Y 19.64 100.38 26.28 80.0 1 9.6.4 100.38 26.28 80.0 1 9.6.6 1 9.6.7 1 9.6.7 80.0 1 9.6.8 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 80.0 1 9.6.9 1							3.23		± 9.6 %
$ 10479- 17-100 (SC-FDMA, 50% RB, 1.4 MHz, X 15.89 96.17 26.79 3.23 80.0 \pm 9.6 \% AAA OPSK, UL Subframe=2,3,4,7,8,9) Y 25.94 104.66 29.40 80.0 \pm 9.6 \% Z 12.83 92.65 25.34 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 30.64 100.38 28.28 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 30.64 100.38 28.28 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 23.58 95.63 24.59 80.0 \pm 9.6 \% AAA 0PSK, UL Subframe=2,3,4,7,8,9) Y 23.58 95.63 24.59 80.0 \pm 9.6 \% AAA 0PSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 \pm 9.6 \% AAA 0PSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 16-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 6.88 83.28 21.31 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 6.88 77.72 20.08 2.23 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 6.18 77.10 18.60 80.0 \pm 9.6 \% AAA 64-OAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.64 18.21 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.64 18.21 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 5.68 77.52 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 5.68 77.52 80.0 \pm 9.6 \% AAB 64-OAM, UL Subframe=2,3,4,7,8,9) Y 5.68 77.52 80.0 \pm 9.6$				100.00				80.0	
AAA OPSK, UL, Subframe=2,3,4,7,8,9) Y 25.94 104.65 29.40 80.0 10440 LTE-TDD (SC-FDMA, 50%, RB, 1.4 MHz, AAA X 19.48 93.48 24.25 3.23 80.0 1 10440 LTE-TDD (SC-FDMA, 50%, RB, 1.4 MHz, AAA X 19.48 93.48 24.25 3.23 80.0 1 9.6 % 10421 LTE-TDD (SC-FDMA, 50%, RB, 1.4 MHz, AAA K 16.00 89.85 22.83 3.23 80.0 1 9.6 % AAA 64-0AM, UL Subframe=2,3,4,7,8,9) Y 10.55 84.00 20.84 80.0 1 80.0 1 9.6 % 0 0 1 9.6 % 0 1 9.6 % 0 0 1 9.6 % 0 0 1 9.6 % 0 0 1 9.6 % 0 1 0 0 1 9.6 % 0 0 1 0 0 0 1 0 0 0 0 0 0 0 <t< td=""><td></td><td></td><td></td><td>9.13</td><td></td><td></td><td></td><td></td><td></td></t<>				9.13					
Z 12.83 92.51 25.34 60.0 AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 19.46 93.48 24.25 3.23 60.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 30.84 100.88 22.628 80.0 ± 9.6 % 10481- LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, X 10.00 69.85 22.63 3.23 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 23.56 95.63 24.59 80.0 ± 9.6 % AAA QPSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ± 9.6 % AAA QPSK, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.28 20.40 2.23 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,	10479- AAA						3.23		±9.6 %
10480. LTE-TDD (SC-FDMA, 50% RB, 14 MHz, X 19.48 93.48 24.25 3.23 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 30.64 100.38 22.28 80.0 10481- LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, K X 16.00 99.85 22.83 3.23 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 23.58 95.63 24.59 80.0 10482- LTE-TDD (SC-FDMA, 50% RB, 3 MHz, X 5.04 76.94 19.04 2.23 80.0 ± 9.6 % AAA QPSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 60.0 AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 60.0 AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 9.56 83.28 21.31 80.0 AAA 42-AM, UL Subframe=2,3,4,7,8,9) Y 6.52								·	
Y 30.64 100.38 26.28 80.0 10481- AAA LTE-TDD (SC-FDMA, 59% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 23.65 95.63 24.59 80.0 10482- LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA Y 23.65 95.63 24.59 80.0 ± 9.6 % 10482- LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA Y 6.02 79.79 20.13 80.0 ± 9.6 % 10482- LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 9.12 82.82 21.31 80.0 ± 9.6 % AAA 40-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 ± 9.6 % AAA 40-GAM, UL Subframe=2,3,4,7,8,9) Y 6.18 77.12 20.06 2.23 80.0 ± 9.6 % AAA 40-GAM, UL Subfram							3.23		± 9.6 %
Z 12.85 87.46 22.08 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 23.56 95.63 24.59 80.0 ±9.6 % AAA PSK, UL Subframe=2,3,4,7,8,9) Y 23.56 95.63 24.59 80.0 ±9.6 % AAA QSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ±9.6 % AAA QSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ±9.6 % AAA QSK, UL Subframe=2,3,4,7,8,9) Y 10.077 85.20 21.94 80.0 ±9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 80.89 20.40 2.23 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 6.19 80.60 ±2.3 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y </td <td>/</td> <td>10 Qrim, 02 Oubname=2,0,4,7,0,07</td> <td></td> <td>30.64</td> <td>100.38</td> <td>26.28</td> <td></td> <td>80.0</td> <td></td>	/	10 Qrim, 02 Oubname=2,0,4,7,0,07		30.64	100.38	26.28		80.0	
10481- AAA LTE-TDD (SC-FDMA, 50% RB, 14 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 23.58 95.63 24.59 80.0 10482- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 23.58 95.63 24.59 80.0 ± 9.6 % 10482- AAA QPSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ± 9.6 % AAA 16-0AM, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 ± 9.6 % AAA 16-0AM, UL Subframe=2,3,4,7,8,9) Y 10.07 85.20 21.94 80.0 ± 9.6 % AAA 16-0AM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.68 83.28 21.31 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 6.63 77.10 18.60 80.0 ± 2.3 80.0 ± 9.6 % AAA GES-FDMA, 50% RB, 5 MHz, AAB Y 6.13 77.10									
Z 10.55 84.00 20.64 80.0 10482- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe-2,3,4,7,8,9) X 5.04 76.94 19.04 2.23 80.0 ± 9.6 % 10483- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA 16.02 79.79 20.13 80.0 ± 9.6 % 10483- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 9.12 82.48 20.94 2.23 80.0 ± 9.6 % 10484- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 8.29 80.89 20.40 2.23 80.0 ± 9.6 % 10484- AAA G4-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 ± 9.6 % ABA QPSK, UL Subframe=2,3,4,7,8,9) Y 6.58 21.18 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 4.51 72.42 17.68 2.23 80.0 ± 9.6 %							3.23		± 9.6 %
10482- QPSK, UL Subframe=2,3,4,7,8,9) X 5.04 76.94 19.04 2.23 80.0 ± 9.6 % AAA QPSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 10483- LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 9.12 82.40 20.94 2.23 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.56 83.28 21.31 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 21.18 80.0 50.0 10485- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 4.51 72.41 17.68 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.61 182.1 80.0 50.6				23.58	95.63	24.59		80.0	
AAA QPSK, UL Subframe=2,3,4,7,8,9) Y 6.02 79.79 20.13 80.0 10483- LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA 8.12 82.48 20.94 2.23 80.0 ±9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 ±1.8 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 4.81 77.61 19.85 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 4.81 77.61 19.85 80.0 ±9.6 % AAB 16-QAM, UL Subfr					84.00	20.64		80.0	
Z 4.78 76.30 18.55 80.0 10483- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 9.12 82.48 20.94 2.23 80.0 ± 9.6 % AAA G-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 - 10484- AAA ETE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA K 8.29 80.89 20.40 2.23 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.56 83.28 21.31 80.0 - 9.6 % 10485- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 6.19 80.50 21.18 80.0 - - 9.6 % 10486- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 4.51 72.42 17.68 2.23 80.0 ± 9.6 % 10486- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 4.81 73.61 18.21 80.0 - - 64.0A - 80.0 ± 9.6 % 10487- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 4.81 73.61 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.23</td> <td></td> <td>± 9.6 %</td>							2.23		± 9.6 %
10483- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 9.12 62.48 20.94 2.23 80.0 ± 9.6 % AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 - AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 8.29 80.89 20.40 2.23 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 ± 9.6 % AAB CTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 5.28 77.72 20.08 2.23 80.0 ± 9.6 % AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 5.28 77.72 20.08 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 21.18 80.0 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.51 72.42 17.68 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 2.33 80.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
AAA 16-QAM, UL Subframe=2,3,4,7,8,9) Y 10.77 85.20 21.94 80.0 10484 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, AAA X 8.29 80.89 20.40 2.23 80.0 ±9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 19.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 19.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.28 77.72 20.08 2.23 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 21.18 80.0 16.6 % IO486- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AF, A,7,8,9) X 4.51 72.42 17.68 2.23 80.0 ±9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.61 18.21 80.0 16.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>+</td><td></td></t<>			2					+	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							2.23		±9.6 %
10484- AAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 8.29 80.89 20.40 2.23 80.0 ± 9.6 % AAA 64-QAM, UL Subframe=2,3,4,7,8,9) Y 9.58 83.28 21.31 80.0 10485- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 5.28 77.72 20.08 2.23 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 21.18 80.0 19.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 21.18 80.0 19.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.51 72.42 17.68 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.61 18.21 80.0 19.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 19.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.14		-							
Y 9.58 83.28 21.31 80.0 10485- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.28 77.72 20.08 2.23 80.0 ±9.6 % 10485- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 6.19 80.00 21.18 80.0 10486- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 4.51 77.42 17.68 2.23 80.0 ±9.6 % 10486- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 4.51 72.42 17.68 2.23 80.0 ±9.6 % 10487- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 4.47 71.97 17.49 2.23 80.0 ±9.6 % 10487- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.47 71.97 17.49 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3.4,7.8.9) Y 5.88 76.23 20.05 2.23 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3.4,7.8.9) Y 5.88 78.28 20.95							2.23		± 9.6 %
Z 6.43 77.10 18.60 80.0 10485- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.28 77.72 20.08 2.23 80.0 ± 9.6 % 10486- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB Y 6.19 80.50 21.18 80.0 2 30.0 ± 9.6 % AAB ITE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 4.51 72.42 17.68 2.23 80.0 ± 9.6 % IO486- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 4.51 72.13 17.34 80.0 - 10487- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, AAB X 4.47 71.97 17.49 2.23 80.0 ± 9.6 % 10487- LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB QC-FDMA, 50% RB, 10 MHz, QC-FDMA, 50% RB, 10 MHz, X 5.28 76.23 20.05 2.23 80.0 ± 9.6 % 10488- LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB QC-FDMA, 50% RB, 10 MHz, AAB X 4.61 71.60 18.35 2.23 80.0 ± 9.6 %		04-QAM, OE Subiranie-2,0,4,7,0,87	V	9.58	83.28	21.31		80.0	
10485- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.28 77.72 20.08 2.23 80.0 ± 9.6 % 10486- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.19 80.50 21.18 80.0 ± 9.6 % 10486- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 4.51 72.42 17.68 2.23 80.0 ± 9.6 % 10487- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.61 18.21 80.0 ± 9.6 % AAB G4-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ± 9.6 % AAB GPSK, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ± 9.6 % AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 5.28 76.23 20.05 2.23 80.0 ± 9.6 % AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % AAB GPSK, UL Subframe=2,3,4,7,8,9) Y 4.61 71.									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2.3,4,7,8,9)					2.23		± 9.6 %
Z 5.13 77.51 19.85 80.0 10486- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, IG-QAM, UL Subframe=2,3,4,7,8,9) X 4.51 72.42 17.68 2.23 80.0 ±9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.61 18.21 80.0 ±9.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ±9.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ±9.6 % AAB GE-CAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.28 76.23 20.05 2.23 80.0 ±9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.88 78.28 20.95 80.0 ±9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 ±9.6 %			İΥ	6.19	80.50	21.18		80.0	
10486- AAB LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.51 72.42 17.68 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.81 73.61 18.21 80.0 10487- AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.47 71.97 17.49 2.23 80.0 ± 9.6 % 10487- AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.47 71.97 17.49 2.23 80.0 ± 9.6 % 10488- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.28 76.23 20.05 2.23 80.0 ± 9.6 % AAB 1E-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 5.28 78.28 20.95 80.0 10.489- 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 19.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.87 71.52 18.23 80.0				5.13	77.51	19.85		80.0	
Z 4.36 72.13 17.34 80.0 10487- AAB G4-QAM, UL Subframe=2,3,4,7,8,9) X 4.47 71.97 17.49 2.23 80.0 ± 9.6 % AAB G4-QAM, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ± 9.6 % Index Z 4.32 71.65 17.14 80.0 1048 Index Z 4.32 71.65 17.14 80.0 1048 Index LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AR X 5.28 76.23 20.05 2.23 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.88 78.28 20.95 80.0 10489- ITE-TDD (SC-FDMA, 50% RB, 10 MHz, AR X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 10490- ITE-TDD (SC-FDMA, 50% RB, 10 MHz, AR X 4.69 71.33 18.26 2.23 </td <td></td> <td></td> <td>X</td> <td></td> <td></td> <td>17.68</td> <td>2.23</td> <td>80.0</td> <td>± 9.6 %</td>			X			17.68	2.23	80.0	± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4.81					
AAB 64-QAM, ÙL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 10488- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 4.74 73.05 17.98 80.0 ±9.6 % 10488- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.88 78.28 20.95 80.0 ±9.6 % 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB Y 5.88 78.28 20.95 80.0 ±9.6 % 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB Y 4.61 71.60 18.35 2.23 80.0 ±9.6 % 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB Y 4.82 72.56 18.83 80.0 ±9.6 % 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB Y 4.87 72.22 18.72 80.0 ±9.6 % 10490- AAB GPSK, UL Subframe=2,3,4,7,8,9) Y 4.87 72.22 18.72 80.0 ±9.6 % AAB GPSK, UL Subframe=2,3,4,7,8,9) Y 5.57				4.36					
Z 4.32 71.65 17.14 80.0 10488- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.28 76.23 20.05 2.23 80.0 ± 9.6 % 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB Y 5.88 78.28 20.95 80.0 10489- 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB Y 4.82 72.56 18.83 80.0 ± 9.6 % 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.69 71.33 18.26 2.23 80.0 ± 9.6 % 10491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB Y 5.57 75.36 19.96 80.0 ± 9.6 % 10491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB Y 5.57 75.36							2.23		±9.6 %
10488- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.28 76.23 20.05 2.23 80.0 ± 9.6 % 10489- AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.88 78.28 20.95 80.0 10489- 10489- AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.61 71.60 18.35 2.23 80.0 ± 9.6 % 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAB X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 4.69 71.33 18.26 2.23 80.0 ± 9.6 % 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 4.69 71.33 18.26 2.23 80.0 ± 9.6 % 10491- AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.57 75.36 19.96 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.57 75.36 19.96 80.0 ± 9.6 % AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 4.87									
Y 5.88 78.28 20.95 80.0 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % 10489- AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 ± 9.6 % 10490- AAB C Z 4.51 71.52 18.23 80.0 ± 9.6 % 10490- AAB G4-QAM, UL Subframe=2,3,4,7,8,9) Y 4.87 72.22 18.72 80.0 ± 9.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.87 72.22 18.72 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.21 74.00 19.31 2.23 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.57 75.36 19.96 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.57 75.36 19.24 80.0 ± 9.6 % AAB 16-QAM, UL Su							2.23		± 9.6 %
Z 5.13 76.06 19.94 80.0 10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 1 IO490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 4.69 71.33 18.26 2.23 80.0 ± 9.6 % AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.87 72.22 18.72 80.0 ± 9.6 % IO491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB Y 5.21 74.00 19.31 2.23 80.0 ± 9.6 % IO491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % IO491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % IO492- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 4.8	7010		Y	5.88	78.28	20.95	1	80.0	
10489- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 4.61 71.60 18.35 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 4.82 72.56 18.83 80.0 10 IO490- AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.69 71.33 18.26 2.23 80.0 ± 9.6 % IO490- AAB 64-QAM, UL Subframe=2,3,4,7,8,9) Y 4.69 71.33 18.26 2.23 80.0 ± 9.6 % IO491- AAB C V 4.87 72.22 18.72 80.0 ± 9.6 % IO491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % IO491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % IO492- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 4.87 70.59 18.20 2.23 80.0 ± 9.6 % IO492- AAB IG-QAM, UL Subframe=2,3,4,7,8,9) Y 5.02 71.33 18.60							1		
Y 4.82 72.56 18.83 80.0 10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 4.69 71.33 18.26 2.23 80.0 ± 9.6 % 10491- AAB Y 4.87 72.22 18.72 80.0 ± 9.6 % 10491- AAB Z 4.59 71.26 18.14 80.0 ± 9.6 % 10491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.57 75.36 19.96 80.0 ± 9.6 % AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB Y 5.57 75.36 19.96 80.0 ± 9.6 % 10492- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, AAB X 4.87 70.59 18.20 2.23 80.0 ± 9.6 % AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.02 71.33 18.60 80.0 ± 9.6 %							2.23		± 9.6 %
Image: constraint of the constrant of the constraint of the constraint of the constraint of the c			Y	4.82	72.56	18.83		80.0	
10490- AAB LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 4.69 71.33 18.26 2.23 80.0 ± 9.6 % Image: Constraint of the system of the								80.0	
Z 4.59 71.26 18.14 80.0 10491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % Image: Constraint of the state of the			X	4.69	71.33	18.26	2.23		± 9.6 %
10491- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.21 74.00 19.31 2.23 80.0 ± 9.6 % Image: Constraint of the system of the s							<u> </u>	- +	ļ
AAB QPSK, UL Subframe=2,3,4,7,8,9) Y 5.57 75.36 19.96 80.0 Image: Constraint of the system of							<u> </u>		
Z 5.08 73.85 19.24 80.0 10492- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 4.87 70.59 18.20 2.23 80.0 ± 9.6 % V 5.02 71.33 18.60 80.0 10.0							2.23		± 9.6 %
10492- AAB LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 4.87 70.59 18.20 2.23 80.0 ± 9.6 % X 5.02 71.33 18.60 80.0 10.00			Y						
AAB 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.02 71.33 18.60 80.0							-		1
							2.23		± 9.6 %
			Y Z	<u>5.02</u> 4.77	71.33	18.60	1	80.0 80.0	1

10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	4.93	70.41	18.14	2.23	80.0	± 9.6 %
AAB	64-QAM, UL Subframe=2,3,4,7,8,9)	Y	5.07	71.11		2.20	 	1 9.0 %
		Z	4.83	71.11	18.53	i	80.0	
10494-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	X	5.74	75.68	18.06	0.00	80.0	
AAB	QPSK, UL Subframe=2,3,4,7,8,9)				19.79	2.23	80.0	± 9.6 %
		Y	6.23	77.26	20.51		80.0	
10495-		Z	5.57	75.46	19.70		80.0	
AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.94	71.08	18.40	2.23	80.0	± 9.6 %
		Y	5.11	71.86	18.83		80.0	
10496-		Z	4.84	70.96	18.32		80.0	
AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.99	70.71	18.29	2.23	80.0	± 9.6 %
<u> </u>		Y	5.14	71.42	18.69		80.0	
40407		Z	4.89	70.61	18.21		80.0	
10497- LTE-TDD (SC-FDM/ AAA MHz, QPSK, UL Sut	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.95	73.39	16.94	2.23	80.0	± 9.6 %
		Y	4.59	75.63	17.82		80.0	· · · · · · · · · · · · · · · · · · ·
10/00		Z	3.56	72.03	16.04		80.0	1
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	2.99	67.14	13.42	2.23	80.0	± 9.6 %
<u>_</u>		Y	3.17	68.04	13.81		80.0	I
10/05		Ζ	2.58	65.48	12.27		80.0	† <u> </u>
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.90	66.50	13.01	2.23	80.0	± 9.6 %
		Y	3.06	67.30	13.36		80.0	
		Z	2.49	64.82	11.82	·	80.0	<u></u>
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	5.14	76.64	19.91	2.23	80.0	±9.6 %
		Y	5.86	79.02	20.91		80.0	
		Z	5.00	76.51	19.75		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.55	72.03	17.90	2.23	80.0	± 9.6 %
		Y	4.80	73.10	18.41		80.0	
		Z	4.43	71.87	17.67		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.59	71.80	17.77	2.23	80.0	± 9.6 %
		Y	4.83	72.81	18.25		80.0	
		Z	4.47	71.64	17.53		80.0	
10503- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.22	76.03	19.96	2.23	80.0	± 9.6 %
		Y	5.81	78.08	20.86		80.0	
40501		Ζ	5.07	75.86	19.85		80.0	
10504- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.59	71.52	18.30	2.23	80.0	±9.6 %
		Y	4.80	72.48	18.79		80.0	
40505		Z	4.49	71.43	18.18		80.0	
10505- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.66	71.24	18.21	2.23	80.0	±9.6 %
		Y	4.85	72.13	18.67		80.0	
10500		Z	4.56	71.17	18.09		80.0	
10506- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.69	75.54	19.72	2.23	80.0	± 9.6 %
		Ŷ	6.18	77.12	20.44		80.0	
40507		Z	5.52	<u>75</u> .31	19.63		80.0	
4AB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	х	4.93	71.03	18.37	2.23	80.0	± 9.6 %
		Y	5.09	71.81	18.80		80.0	

10508- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.98	70.65	18.25	2.23	80.0	± 9.6 %
		Y	5.12	71.36	18.65		80.0	
		Z	4.87	70.54	18.17		80.0	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.75	73.61	18.99	2.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	6.04	74.62	19.49		80.0	
		Z	5.61	73.42	18.92		80.0	
10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.37	70.52	18.25	2.23	80.0	± 9.6 %
		Y	5.50	71.12	18.60		80.0	
		Z	5.26	70.38	18.18		80.0	
10511- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.39	70.20	18.16	2.23	80.0	± 9.6 %
		Y	5.51	70.76	18.50		80.0	
		Z	5.29	70.08	18.10		80.0	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.17	75.45	19.55	2.23	80.0	± 9.6 %
		Y	6.61	76.77	20.16		80.0	
		Z	5.99	75.18	19.45	• • •	80.0	
10513- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.29	70.93	18.40	2.23	80.0	± 9.6 %
		Y	5.44	71.61	18.78		80.0	
		Z	5.18	70.76	18.31		80.0	
10514- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.26	70.42	18.25	2.23	80.0	± 9.6 %
		Y	5.39	71.03	18.61		80.0	
		Z	5.16	70.27	18.17		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.99	62.88	14.39	0.00	150.0	±9.6 %
		Y	1.01	63.69	15.14		150.0	
		Z	0.98	62.78	14.25	0.00	150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.57	67.90	15.77	0.00	150.0	± 9.6 %
		Y	0.79	74.76	19.51		150.0	
40547	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	Z X	0.54	67.33	15.34	0.00	150.0	+06%
10517- AAA	Mbps, 99pc duty cycle)	Y	0.83	64.48 66.11	14.80 16.05	0.00	150.0 150.0	± 9.6 %
			0.88	64.26	14.59		150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.64	66.76	16.21	0.00	150.0	± 9.6 %
		Y	4.64	66.97	16.39		150.0	
		Z	4.58	66.75	16.17		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.84	67.04	16.35	0.00	150.0	± 9.6 %
		Y	4.85	67.24	16.53		150.0	
		Z	4.77	67.00	16.30		150.0	100%
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.69	67.00	16.26	0.00	150.0	± 9.6 %
		Y	4.70	67.20	16.45		150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	4.62 4.62	66.95 66.99	16.22 16.24	0.00	150.0 150.0	± 9.6 %
		Y	4.63	67.20	16.43		150.0	
		Z	4.55	66.94	16.20		150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.67	67.03	16.31	0.00	150.0	± 9.6 %
		Y	4.69	67.25	16.50		150.0	
		Z	4.61	67.03	16.28		150.0	

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.55	66.89	16.15	0.00	150.0	± 9.6 %
		Y	4.56	67.11	16.34	<u> </u>	150.0	<u> </u>
		Z	4.49	66.88	16.12		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.62	66.97	16.28	0.00	150.0	± 9.6 %
		Y	4.63	67.19	16.48		150.0	
		Z	4.56	66.95	16.25		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.59	65.99	15.86	0.00	150.0	± 9.6 %
		Y	4.60	66.20	16.05		150.0	
10526-		Z	4.54	65.98	15.83		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.77	66.38	16.01	0.00	150.0	± 9.6 %
		Y	4.79	66.60	16.20		150.0	
10527-		Z	4.71	66.35	15.98		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.69	66.34	15.95	0.00	150.0	± 9.6 %
		Y	4.71	66.56	16.15		150.0	
10500		Z	4.63	66.30	15.91		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.71	66.36	15.99	0.00	150.0	± 9.6 %
		Ý	4.72	66.58	16.18		150.0	
40500		Z	4.65	66.32	15.95		150.0	<u> </u>
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	Х	4.71	66.36	15.99	0.00	150.0	± 9.6 %
		Y	4.72	66.58	16.18		150.0	
40504		Z	4.65	66.32	15.95		150.0	·
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duly cycle)	X	4.71	66.48	16.01	0.00	150.0	± 9.6 %
		Y	4.73	66.71	16.20		150.0	
		Z	4.64	66.43	15.96		150.0	<u> </u>
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.56	66.33	15.94	0.00	150.0	± 9.6 %
<u> </u>		Y	4.58	66.56	16.14		150.0	
		Z	4.50	66.27	15.89		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.72	66.39	15.97	0.00	150.0	± 9.6 %
		Y	4.73	66.61	16.16		150.0	
		Z	4.65	66.36	15.93		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.24	66.54	16.07	0.00	150.0	± 9.6 %
		Y	5.25	66.71	16.24		150.0	
1000		Z	5.19	66.49	16.04	<u> </u>	150.0	<u> </u>
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.31	66.70	16.14	0.00	150.0	± 9.6 %
		Y	5.33	66.88	16.31		150.0	
10500		Z	5.26	66.68	16.13		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.18	66.65	16.10	0.00	150.0	±9.6%
		Y	5.19	66.84	16.27		150.0	
0507		Z	5.12	66.60	16.07		150.0	· · · · · ·
10537- \AA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.24	66.63	16.10	0.00	150.0	± 9.6 %
· · ·		Y	5.25	66.81	16.26	-	150.0	
		Z	5.19	66.58	16.06		150.0	
10538- \AA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	Х	5.35	66.69	16.17	0.00	150.0	±9.6 %
		Y	5.36	66.87	16.33		150.0	
		Z	5.28	66.62	16.12		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.26	66.66	16.17	0.00	150.0	± 9.6 %
140								
		Y	5.27	66.85	16.34		150.0	

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.23	66.53	16.10	0.00	150.0	± 9.6 %
		Y	5.24	66.71	16.26		150.0	
		Z	5.18	66.49	16.06		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.39	66.62	16.16	0.00	150.0	±9.6 %
		Y	5.40	66.79	16.32		150.0	
		Z	5.34	66.57	16.12		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.48	66.66	16.19	0.00	150.0	± 9.6 %
		Y	5.49	66.83	16.36		150.0	
		Z	5.42	66.63	16.18		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.54	66.65	16.07	0.00	150.0	±9.6 %
		Y	5.55	66.80	16.22		150.0	
		Z	5.50	66.61	16.04		150.0	
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.76	67.11	16.24	0.00	150.0	±9.6 %
		Y	5.77	67.28	16.40		150.0	
10010		Z	5.71	67.07	16.23		150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.63	66.91	16.16	0.00	150.0	± 9.6 %
		Y	5.64	67.07	16.32		150.0	
		Z	5.57	66.84	16.12		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.72	67.00	16.20	0.00	150.0	±9.6 %
		Y	5.72	67.16	16.35		150.0	
		Z	5.65	66.88	16.14		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.07	68.22	16.78	0.00	150.0	± 9.6 %
		Y	6.08	68.42	16.96		150.0	
		Z	5.98	68.06	16.70		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.65	66.89	16.16	0.00	150.0	± 9.6 %
		Y	5.66	67.05	16.31		150.0	
		Z	5.60	66.86	16.14		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.65	66.93	16.14	0.00	150.0	± 9.6 %
		Y	5.66	67.09	16.29		150.0	
		Z	5.60	66.87	16.11		150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.56	66.71	16.04	0.00	150.0	± 9.6 %
		Y	5.57	66.86	16.19		150.0	
		Z	5.51	66.66	16.01		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.65	66.77	16.10	0.00	150.0	± 9.6 %
		Y	5.66	66.92	16.25		150.0	ļ
		Z	5.60	66.70	16.07	<u> </u>	150.0	
10554- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.95	67.04	16.18	0.00	150.0	±9.6 %
		Y	5.96	67.19	16.31		150.0	
		Z	5.91	66.99	16.15		150.0	
10555- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.09	67.37	16.32	0.00	150.0	± 9.6 %
		Y	6.11	67.53	16.46	l	150.0	Į
		Z	6.05	67.32	16.29		150.0	
10556- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.11	67.40	16.33	0.00	150.0	± 9.6 %
		Y	6.12	67.56	16.47	ļ	150.0	
		Z	6.07	67.36	16.30		150.0	
10557- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.08	67.33	16.31	0.00	150.0	± 9.6 %
		Y	6.09	67.48	16.45		150.0	
		Z	6.03	67.26	16.27		150.0	

10558- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.14	67.52	16.42	0.00	150.0	± 9.6 %
		Y	6.15	67.67	16.56	<u> </u>	150.0	+
		Z	6.09	67.43	16.37		150.0	
10560- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.13	67.34	16.37	0.00	150.0	± 9.6 %
		Y	6.14	67.49	16.51		150.0	
		Z	6.07	67.26	16.33		150.0	
10561- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.05	67.31	16.39	0.00	150.0	± 9.6 %
<u></u>		Y	6.06	67.47	16.54		150.0	1
		Z	6.00	67.24	16.36		150.0	
10562- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.21	67.80	16.64	0.00	150.0	± 9.6 %
<u> </u>		Y	6.22	67.97	16.79		150.0	
1000		Z	6.14	67.67	16.57		150.0	
10563- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.60	68.52	16.95	0.00	150.0	± 9.6 %
		Y	6.61	68.70	17.11		150.0	
40507		Z	6.44	68.18	16.78		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.98	66.92	16.42	0.46	150.0	± 9.6 %
<u> </u>		Y	4.99	67.12	16.60		150.0	
10505		Z	4.93	66.90	16.38		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.22	67.37	16.73	0.46	150.0	± 9.6 %
		Y	5.23	67.55	16.90		150.0	
10500		Z	5.16	67.34	16.69		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	5.06	67.23	16.56	0.46	150.0	± 9.6 %
<u> </u>		Y	5.06	67.43	16.74		150.0	
40500		Z	4.99	67.19	16.51		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.08	67.57	16.87	0.46	150.0	± 9.6 %
		Y	5.08	67.74	17.03		150.0	
40500		Z	5.01	67.53	16.84		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.98	67.03	16.35	0.46	150.0	± 9.6 %
		Y	4.99	67.26	16.56		150.0	
		Z	4.91	67.01	16.31		150.0	· · · · ·
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.02	67.62	16.91	0.46	150.0	± 9.6 %
		Y	5.03	67.78	17.06		150.0	
40570		Z	4.97	67.61	16.89		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.07	67.49	16.86	0.46	150.0	± 9.6 %
		Y	5.07	67.68	17.03		150.0	· · · ·
10574		Z	5.00	67.48	16.83		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.33	65.38	15.85	0.46	130.0	± 9.6 %
		<u>Y</u>	1.37	66.42	16.66		130.0	
10570		Z	1.31	65.23	15.71		130.0	
10572- AAA	IEEE 802.11b WIFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.35	65.94	16.19	0.46	130.0	± 9.6 %
		Y	1.40	67.08	17.03		130.0	
10573-		Z	1.33	65.79	16.04		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	2.45	84.59	22.30	0.46	130.0	±9.6 %
		Y	10.53	109.30	30.18		130.0	
10574-		Z	2.23	83.07	21.66		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	×	1.51	71.42	18.78	0.46	130.0	±9.6 %
		Y	1.69	74.14	20.31		130.0	
	1	Z	1.47	71.09	18.56		130.0	

10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.80	66.79	16.52	0.46	130.0	± 9.6 %
	OFDM, 6 Mbps, 90pc duty cycle)		4.00	00.00	10.70		100.0	
		Y	4.80	66.99	16.70		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.74	66.78	16.48	0.40	130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)	X	4.82	66.93	16.57	0.46	130.0	± 9.6 %
		Y	4.83	67.13	16.75		130.0	
		Z	4.77	66.93	16.54		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	5.04	67.25	16.75	0.46	130.0	± 9.6 %
		Y	5.04	67.43	16.92		130.0	
		Z	4.97	67.22	16.71		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.93	67.39	16.83	0.46	130.0	±9.6 %
		Y	4.93	67.57	17.00		130.0	
		Z	4.87	67.36	16.79		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.71	66.78	16.21	0.46	130.0	±9.6 %
		Y	4.73	67.02	16.43		130.0	
		Z	4.65	66.73	16.16		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.76	66.79	16.23	0.46	130.0	± 9.6 %
		Y	4.77	67.05	16.45		130.0	
		Z	4.69	66.76	16.18		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.83	67.44	16.78	0.46	130.0	±9.6 %
		Y	4.84	67.63	16.95		130.0	
		z	4.77	67.41	16.74		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.66	66.56	16.03	0.46	130.0	±9.6 %
		Y	4.68	66.83	16.26		130.0	
		Z	4.59	66.51	15.97		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.80	66.79	16.52	0.46	130.0	±9.6 %
		Y	4.80	66.99	16.70		130.0	
•		z	4.74	66.78	16.48		130.0	
10584-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9	X	4.82	66.93	16.57	0.46	130.0	± 9.6 %
AAA	Mbps, 90pc duty cycle)		1.00	07.40	40.75		400.0	
		Y	4.83	67.13	16.75		130.0	
10505		Z	4.77	66.93	16.54		130.0	
10585- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.04	67.25	16.75	0.46	130.0	± 9.6 %
		Y	5.04	67.43	16.92		130.0	
		Z	4.97	67.22	16.71		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.93	67.39	16.83	0.46	130.0	±9.6 %
		Y	4.93	67.57	17.00		130.0	
		Z	4.87	67.36	16.79		130.0	1
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.71	66.78	16.21	0.46	130.0	±9.6 %
		Y	4.73	67.02	16.43	1	130.0	
		Z	4.65	66.73	16.16		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.76	66.79	16.23	0.46	130.0	± 9.6 %
		Y	4.77	67.05	16.45		130.0	
		Z	4.69	66.76	16.18		130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.83	67.44	16.78	0.46	130.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	4.84	67.63	16.95	1	130.0	1
		Z	4.77	67.41	16.74		130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.66	66.56	16.03	0.46	130.0	± 9.6 %
AAA		+	1.00	00.00	10.00	1	1	
		Y	4.68	66.83	16.26		130.0	

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.94	66.84	16.61	0.46	130.0	± 9.6 %
		Y	4.95	67.02	16.78	<u> </u>	130.0	1
		Z	4.89	66.83	16.58	<u> </u>	130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.11	67.18	16.74	0.46	130.0	± 9.6 %
		Y	5.11	67.36	16.91		130.0	
		Z	5.05	67.16	16.71		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.04	67.12	16.64	0.46	130.0	± 9.6 %
		Y	5.04	67.31	16.81		130.0	
10594-		Z	4.97	67.08	16.60		130.0	
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.09	67.26	16.77	0.46	130.0	± 9.6 %
		Y	5.09	67.44	16.95		130.0	
10595-	IEEE 802.11n (HT Mixed, 20MHz,	Z	5.02	67.24	16.74		130.0	
	MCS4, 90pc duty cycle)	X	5.06	67.23	16.68	0.46	130.0	± 9.6 %
		Y	5.07	67.42	16.86		130.0	
10596-	IEEE 802.11n (HT Mixed, 20MHz,	Z	4.99	67.20	16.64		130.0	ļ
AAA	MCS5, 90pc duty cycle)	X	5.00	67.23	16.68	0.46	130.0	± 9.6 %
		Y 7	5.01	67.44	16.87		130.0	
10597-	IEEE 802.11n (HT Mixed, 20MHz,	ZX	4.93	67.20	16.65		130.0	
AAA	MCS6, 90pc duty cycle)		4.95	67.15	16.58	0.46	130.0	± 9.6 %
		Y	4.96	67.36	16.77	_	130.0	
10598-	IEEE 802.11n (HT Mixed, 20MHz,	Z	4.88	67.11	16.54		130.0	
AAA	MCS7, 90pc duty cycle)	X	4.92	67.37	16.82	0.46	130.0	±9.6 %
		Y	4.93	67.55	16.99		130.0	
10500		Z	4.86	67.32	16.78		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.62	67.44	16.83	0.46	130.0	± 9.6 %
		Y	5.62	67.59	16.99		130.0	
10000		Z	5.57	67.41	16.81		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.83	68.08	17.13	0.46	130.0	± 9.6 %
		Y	5.83	68,26	17.31		130.0	
40004		Z	5.75	67.98	17.08		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.67	67.70	16.95	0.46	130.0	± 9.6 %
		Y	5.68	67.87	17.12		130.0	· · · · · · · · · · · · · · · · · · ·
40000		Z	5.61	67.65	<u>1</u> 6.92		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.76	67.70	16.88	0.46	130.0	± 9.6 %
		Y	5.77	67.88	17.05		130.0	
10603-	IEEE 802.11n (HT Mixed, 40MHz,	Z	5.71	67.69	16.87		130.0	
AAA	MCS4, 90pc duty cycle)	X	5.83	67.96	17.13	0.46	130.0	±9.6 %
		Y	5.84	68.14	17.30		130.0	
10604-		Z	5.78	67.93	17.11		130.0	
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.62	67.40	16.84	0.46	130.0	±9.6 %
		Y	5.63	67.56	17.00		130.0	
10605-		Z	5.57	67.37	16.81		130.0	1
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.75	67.79	17.04	0.46	130.0	± 9.6 %
<u> </u>		Y	5.76	67.98	17.22		130.0	
10600		Z	5.71	67.80	17.04		130.0	
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.50	67.17	16.59	0.46	130.0	± 9.6 %
		Y	5.51	67.36	16.78		130.0	
		Z	5.45	67.15	16.57		130.0	

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.77	66.11	16.20	0.46	130.0	± 9.6 %
		Y	4.78	66.31	16.38		130.0	
		Z	4.72	66.10	16.17		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.97	66.53	16.37	0.46	130.0	±9.6 %
		Y	4.98	66.73	16.55		130.0	
		Z	4.91	66.51	16.34		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.86	66.39	16.22	0.46	130.0	± 9.6 %
		Y	4.87	66.61	16.41		130.0	
		Z	4.80	66.37	16.19		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.91	66.54	16.37	0.46	130.0	± 9.6 %
		Y	4.92	66.75	16.55		130.0	
		Z	4.85	66.52	16.34		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.83	66.37	16.24	0.46	130.0	± 9.6 %
		Y	4.84	66.58	16.42		130.0	
		Z	4.77	66.34	16.20		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.85	66.53	16.28	0.46	130.0	± 9.6 %
		Y	4.86	66.77	16.48		130.0	
		Z	4.78	66.50	16.25		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.86	66.45	16.19	0.46	130.0	± 9.6 %
		Y	4.87	66.68	16.39		130.0	
		Z	4.79	66.40	16.14		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.79	66.59	16.39	0.46	130.0	± 9.6 %
		Y	4.80	66.80	16.57		130.0	
		Z	4.72	66.55	16.34		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.84	66.22	16.03	0.46	130.0	± 9.6 %
		Y	4.85	66.46	16.24		130.0	
		Z	4.77	66.19	15.99		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.43	66.66	16.42	0.46	130.0	± 9.6 %
		Y	5.44	66.83	16.58		130.0	
		Z	5.38	66.62	16.39		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.49	66.80	16.46	0.46	130.0	± 9.6 %
		Y	5.50	66.99	16.63		130.0	
		Z	5.45	66.83	16.47		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.38	66.84	16.49	0.46	130.0	± 9.6 %
		Y	5.39	67.01	16.65		130.0	
		Z	5.33	66.80	16.47		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.41	66.69	16.36	0.46	130.0	± 9.6 %
		Y	5.42	66.88	16.53		130.0	
		Z	5.36	66.66	16.34		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.51	66.76	16.45	0.46	130.0	± 9.6 %
		Y	5.52	66.94	16.61		130.0	
		Z	5.45	66.69	16.40		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.49	66.80	16.57	0.46	130.0	± 9.6 %
		Y	5.49	66.95	16.72		130.0	
		Z	5.43	66.76	16.55		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.50	66.97	16.65	0.46	130.0	± 9.6 %
		Y	5.51	67.14	16.81		130.0	
		Z	5.46	66.96	16.64	1	130.0	

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.38	66.52	16.31	0.46	130.0	± 9.6 %
		Y	5.39	66.70	16.48	<u>├───</u> ─────	120.0	
·		Z	5.33	66.49	16.48	·	130.0	· · · · ·
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.58	66.73	16.48	0.46	130.0 130.0	± 9.6 %
		Y	5.59	66.90	16.64	·	130.0	
		Z	5.52	66.69	16.46		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.03	67.94	17.14	0.46	130.0	± 9.6 %
		Y	6.04	68.15	17.32	<u> </u>	130.0	<u> -</u>
		Z	5.94	67.84	17.08	[130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.70	66.70	16.37	0.46	130.0	± 9.6 %
		Y	5.71	66.85	16.51		130.0	
		Z	5.66	66.67	16.35		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.98	67.34	16.65	0.46	130.0	± 9.6 %
		Y	5.99	67.51	16.80		130.0	-
		Z	5.93	67.32	16.64		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.76	66.88	16.35	0.46	130.0	± 9.6 %
		Y	5.78	67.04	16.51		130.0	
10000		Z	5.72	66.82	16.32		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.85	66.94	16.38	0.46	130.0	± 9.6 %
		Y	5.86	67.11	16.54		130.0	
40000		Z	5.81	66.93	16.37		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	Х	6.47	68.96	17.39	0.46	130.0	± 9.6 %
		Y	6.50	69.20	17.59		130.0	
		Z	6.37	68.78	17.30		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.25	68.39	17.28	0.46	130.0	± 9.6 %
		Ý	6.25	68.53	17.42		130.0	
		Z	6.15	68.22	17.20		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.93	67.33	16.77	0.46	130.0	± 9.6 %
		Y	5.93	67.47	16.90		130.0	· · · · · · · · · · · · · · · · · · ·
		Z	5.89	67.32	16.77		130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.83	67.02	16.45	0.46	130.0	± 9.6 %
<u>_</u> <u>_</u>		Y	5.83	67.17	16.59		130.0	
		Z	5.76	66.93	16.40		130.0	·
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.80	67.01	16.50	0.46	130.0	±9.6 %
·		Y	5.81	67.15	16.64		130.0	
40005		Z	5.75	66.94	16.47		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.71	66.44	15.97	0.46	130.0	±9.6 %
		Ý	5.72	66.63	16.15		130.0	··
40000		Z	5.64	66.35	15.92		130.0	······································
10636- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.12	67.11	16.48	0.46	130.0	± 9.6 %
		Y	6.13	67.25	16.62		130.0	
10007		Z	6.09	67.07	16.46		130.0	`
10637- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.30	67.52	16.67	0.46	130.0	±9.6 %
		Y	6.31	67.68	16.81		130.0	
10620		Z	6.26	67.49	16.65		130.0	
10638- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.30	67.50	16.63	0.46	130.0	± 9.6 %
<u> </u>		Ŷ	6.31	67.65	16.78		130.0	· · · · · ·
		Z	6.26	67.46	16.61			

February 10, 2017

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.28	67.46	16.65	0.46	130.0	± 9.6 %
		Y	6.28	67.59	16.79		130.0	
		Z	6.23	67.38	16.62		130.0	
10640- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.30	67.54	16.64	0.46	130.0	± 9.6 %
		Y	6.31	67.70	16.79		130.0	
		Z	6.24	67.43	16.59		130.0	
10641- AAA	IEEE 1602.11ac WIFI (160MHz, MCS5, 90pc duly cycle)	X	6.31	67.32	16.55	0.46	130.0	± 9.6 %
		Y	6.32	67.48	16.70		130.0	
		Z	6.28	67.31	16.54		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.36	67.59	16.84	0.46	130.0	± 9.6 %
		Y	6.36	67.71	16.97		130.0	
		Z	6.31	67.52	16.81	1	130.0	
10643- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.20	67.31	16.61	0.46	130.0	± 9.6 %
		Y	6.21	67.47	16.77		130.0	
		Z	6.16	67.26	16.58		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.42	67.97	16.97	0.46	130.0	±9.6 %
		Ŷ	6.43	68.15	17.13		130.0	
		Z	6.34	67.82	16.88		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.93	69.02	17.44	0.46	130.0	± 9.6 %
		Y	6.97	69.27	17.65		130.0	
		Z	6.82	68.81	17.34		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	47.20	124.94	41.34	9.30	60.0	± 9.6 %
		Y	100.00	143.87	46.72		60.0	
		Z	42.87	123.31	40.85		60.0	
10647- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	47.80	126.16	41.84	9.30	60.0	± 9.6 %
		Y	100.00	144.94	47.17	[60.0	
		Z	42.80	124.20	41.27	[60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.75	63.57	11.13	0.00	150.0	± 9.6 %
		Y	0.80	64.99	12.02	1	150.0	
		Z	0.70	63.11	10.54		150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

· · · · ·

Certificate No: ES3-3318_Sep17

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3318		
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes		5LV 10/03/2019
			101021
Calibration date:	September 22, 2017	. n [.]	
This calibration certificate docu The measurements and the un	ments the traceability to national standards, which realize the physical units of me certainties with confidence probability are given on the following pages and are pa	asurements (SI). art of the certificate	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	Iπ house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	gele
Approved by:	Katja Pokovic	Technical Manager	leas
	·· · ·	· ·	Issued: September 22, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL. tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization o φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

; ; ; ;

Probe ES3DV3

SN:3318

Manufactured: Repaired: Calibrated: January 10, 2012 September 18, 2017 September 22, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	1.02	1.12	0.98	± 10.1 %	
DCP (mV) ^B	103.7	104.0	102.5		

Modulation Calibration Parameters

UID	Communication System Name		A	B	с	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	183.4	±3.5 %
		Y	0.0	0.0	1.0		193.5	
		Z	0.0	0.0	1.0		183.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ^{−1}	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	40.36	285.5	34.97	23.53	0.939	5.100	1.568	0.156	1.011
<u>Y</u>	40.15	284.7	34.96	25.8	1.330	5.092	1.283	0.265	1.008
Z	38.32	269.2	34.28	24.09	0.917	5.100	0.995	0.237	1.007

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89 .	6.72	6.72	6.72	0.80	1.15	± 12.0 %
835	41.5	0.90	6.42	6.42	6.42	0.71	1.26	± 12.0 %
1750	40.1	1.37	5.50	5.50	5.50	0.49	1.50	± 12.0 %
1900	40.0	1.40	5.31	5.31	5.31	0.65	1.29	± 12.0 %
2300	39.5	1.67	4.96	4.96	4.96	0.72	1.27	± 12.0 %
2450	39.2	1.80	4.71	4.71	4.71	0.77	1.26	± 12.0 %
2600	39.0	1.96	4.58	4.58	4.58	0.75	1.32	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

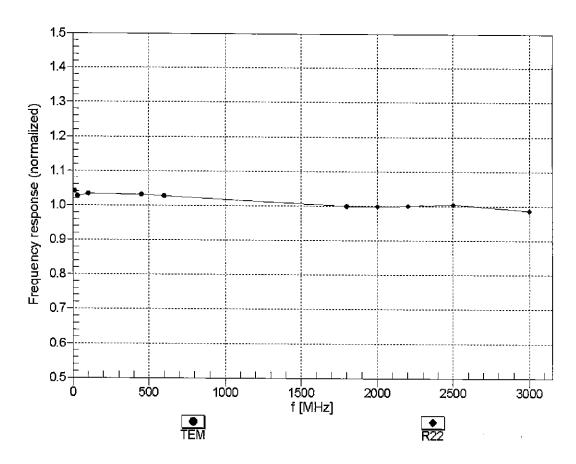
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

.....

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

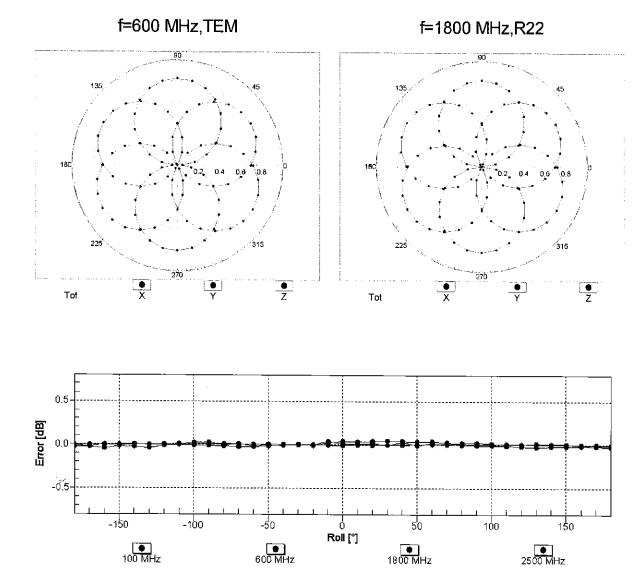

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.46	6.46	6.46	0.80	1.21	± 12.0 %
835	55.2	0.97	6.32	6.32	6.32	0.80	1.20	± 12.0 %
1750	53.4	1.49	5.18	5.18	5.18	0.65	1.36	± 12.0 %
1900	53.3	1.52	4.96	4.96	4.96	0.57	1.49	± 12.0 %
2300	52.9	1.81	4.71	4.71	4.71	0.73	1.33	± 12.0 %
2450	52.7	1.95	4.55	4.55	4.55	0.80	1.12	± 12.0 %
2600	52.5	2.16	4.34	4.34	4.34	0.80	1.13	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

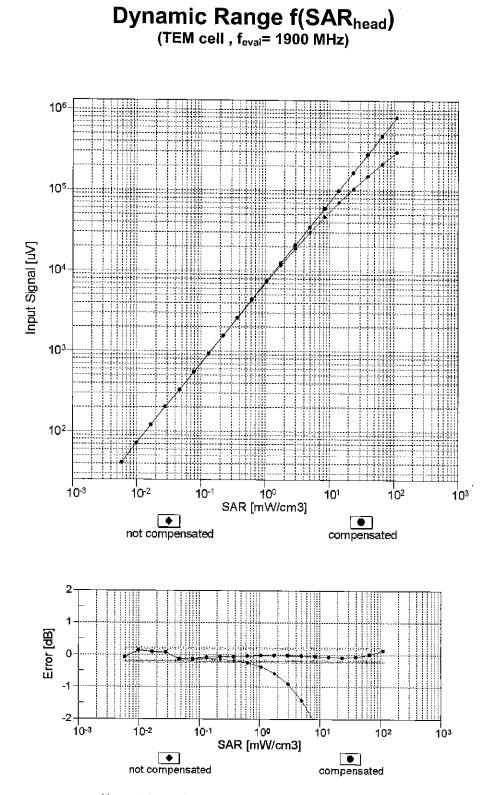
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

; ; ;

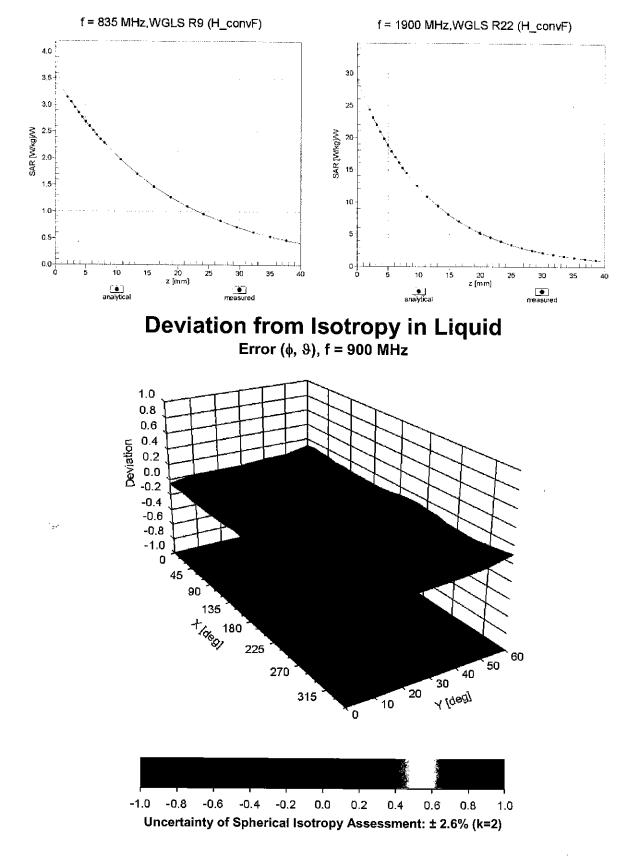
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3318_Sep17

; -; -; -

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3318_Sep17

. مو

Page 9 of 38

s i Fil

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	80.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

يو آ

Ī

ў. 1 г 1

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	183.4	± 3.5 %
		Y	0.00	0.00	1.00		193.5	
10010-		Z	0.00	0.00	1.00		183.0	
CAA	SAR Validation (Square, 100ms, 10ms)	X	100.00	113.13	27.11	10.00	25.0	± 9.6 %
		Y	56.27	106.32	26.04		25.0	
10011-	UMTS-FDD (WCDMA)	Z X	48.42	102.92	24.36		25.0	
CAB			2.66	86.53	24.90	0.00	150.0	± 9.6 %
		Y	1.68	77.14	20.67		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	1.29	72.20 68.78	18.01	0.44	150.0	
CAB	Mbps)				18.94	0.41	150.0	± 9.6 %
		<u>Y</u>	1.42	67.66	17.93		150.0	
10013-		<u>Z</u>	1.34	66.38	16.88		150.0	
CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.02	68.02	18.09	1.46	150.0	± 9.6 %
		Y	5.02	67.88	17.89		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z	4.94	67.70	17.67		150.0	
DAC		X	100.00	121.76	31.97	9.39	50.0	±9.6 %
		Y	100.00	121.57	32.33		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	100.00	120.24	31.25		50.0	
DAC		×	100.00	121.43	31.86	9.57	50.0	± 9.6 %
		<u> Y</u>	100.00	121.34	32.26		50.0	
10024-	GPRS-FDD (TDMA, GMSK, TN 0-1)	Z	100.00	119.95	31.15	0.50	50.0	
DAC	GERG-FDD (TDMA, GMSK, TN 0-T)	X	100.00	120.99	30.63	6.56	60.0	±9.6%
		Y	100.00	119.61	30.34		60.0	
10025-		Z	100.00	118.45	29.44		60.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	×	27.34	129.78	51.29	12.57	50.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y_	16.72	108.51	42.49		50.0	
10026-	EDGE-FDD (TDMA, 8PSK, TN 0-1)		41.36	141.52	54.29		50.0	
DAC		X	51.1 1	136.85	47.83	9.56	60.0	±9.6 %
		<u> </u>	25.23	114.58	40.30		60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z X	34.77	125.06	43.92	4.00	60.0	
DAC			100.00	123.21	30.86	4.80	80.0	±9.6 %
		Y	100.00	120.40	29.90		80.0	
10028-		<u>Z</u>	100.00	119.24	29.05		80.0	
DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	100.00	127.88	32.20	3.55	100.0	±9.6 %
		Y	100.00	123.11	30.36		100.0	
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z	100.00	121.73	29.45		100.0	
DAC	EDGE-FDD (TDIMA, oPSK, TN 0-1-2)	X	16.47	106.41	37.26	7.80	80.0	±9.6 %
		Y	13.16	98.31	33.75		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.79 100.00	100.84 120.38	34.87 29.87	5.30	80.0 70.0	± 9.6 %
CAA								± 0.0 /0
		Y Z	100.00	118.42	29.28		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	<u>117.17</u> 140.58	28.39 36.01	1.88	70.0 100.0	± 9.6 %
		Y	100.00	129.80	31.70		100.0	
		Z	100.00	126.35	29.95		100.0	

з

September 22, 2017

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	400.00	400.44	40.04	4 4 7	400.0	
CAA		^	100.00	168.14	46.04	1.17	100.0	± 9.6 %
		Y	100.00	146.16	37.32		100.0	
		Z	100.00	139.03	34.08		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	100.00	128.00	34.78	5.30	70.0	±9.6 %
		Y	100.00	125.47	33.78		70.0	
		Z	100.00	124.94	33.27		70.0	
10034-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	x	100.00	127.76	32.85	1.88	100.0	± 9.6 %
CAA	DH3)	Y	100.00	124.38	31.40			1 9.0 70
							100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Z X	100.00	122.39 129.00	30.30 32.88	1.17	100.0 100.0	± 9.6 %
		Y-	100.00	125.22	31.24		100.0	
		Z	42.89	111.69	27.45		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	100.00	128.35	34.94	5.30	70.0	± 9.6 %
0.01		Y	100.00	125.78	22.02		70.0	-
		Z	100.00	125.78	33.93 33.42		70.0	
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	100.00	125.27		4.00	70.0	
CAA					32.85	1.88	100.0	± 9.6 %
		Y	100.00	124.40	31.38		100.0	
10038-		Z	100.00	122.41	30.28		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	100.00	129.90	33.29	1.17	100.0	± 9.6 %
		Y	100.00	126.04	31.61		100.0	
		Z	46.73	113.50	28.05		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	100.00	131.54	33.19	0.00	150.0	± 9.6 %
		Y	52.05	119.24	29.67		150.0	
		Z	3.76	82.84	19.15		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	118.03	29.44	7.78	50.0	± 9.6 %
		Y	100.00	117.44	29.54		50.0	
		Ζ	100.00	116.07	28.52		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	Х	0.01	105.46	9.85	0.00	150.0	± 9.6 %
		Y	0.03	60.00	39.49		150.0	
		Z	0.02	60.00	28.89		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	x	100.00	123.25	33.96	13.80	25.0	± 9.6 %
		Y	100.00	123.00	34.45		25.0	
		Ż	100.00	122.08	33.38		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	121.02	31.95	10.79	40.0	±9.6 %
		Y	100.00	121.43	32.63		40.0	
		Z	100.00	119.80	31.36		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	100.00	126.02	35.11	9.03	50.0	± 9.6 %
		Y	69.75	118.57	33.24		50.0	
		Z	100.00	124.37	34.25		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	9.73	93.83	32.07	6.55	100.0	± 9.6 %
		Y	8.94	89.89	29.98		100.0	
10059-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	Z	8.70	90.23	30.24	0.01	100.0	
CAB	Mbps)	X	1.70	72.06	20.55	0.61	110.0	±9.6 %
	<u> </u>	Ϋ́Υ	1.64	70.58	19.34		110.0	
40000		Z	1.50	68.77	18.10		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	148.21	40.90	1.30	110.0	± 9.6 %
		Y	100.00	141.35	37.99	-	110.0	
		Z	100.00					

September 22, 2017

.

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	100.00	146.12	41.94	2.04	110.0	± 9.6 %
		Υ Y	100.00	141.22	39.79	·	110.0	
		Ż	39.08	124.31	35.57		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.78	67.89	17.44	0.49	100.0	±9.6 %
		Y	4.76	67.70	17.22		100.0	
		Z	4.68	67.49	16.96		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.81	68.05	17.58	0.72	100.0	± 9.6 %
		Y	4.79	67.86	17.35		100.0	
		Z	4.71	67.65	17.10		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.07	68.24	17.76	0.86	100.0	± 9.6 %
		Y	5.05	68.06	17.55		100.0	
		Z	4.97	67.86	17.30		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.97	68.22	17.93	1.21	100.0	± 9.6 %
	·	Y	4.96	68.06	17.72		100.0	
		Z	4.87	67.84	17.47		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.00	68.29	18.13	1.46	100.0	± 9.6 %
		Y	5.00	68.14	17.92		100.0	
		Z	4.91	67.92	17.68		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.32	68.56	18.62	2.04	100.0	±9.6 %
		Y	5.32	68.43	18.41		100.0	
		Z	5.23	68.26	18.21		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.38	68.60	18.85	2.55	100.0	± 9.6 %
		ΙY	5.39	68.49	18.65		100.0	
		Z	5.29	68.30	18.45		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.45	68.63	19.05	2.67	100.0	± 9.6 %
		Y	5.47	68.52	18.85		100.0	
		Z	5.37	68.35	18.66		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.14	68.16	18.43	1.99	100.0	±9.6 %
		Y	5.15	68.05	18.24		100.0	
		Ζ	5.06	67.88	18.03		100.0	
10072- CAB	EEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.16	68.64	18.75	2.30	100.0	±9.6 %
		Y	5.17	68.53	18.56		100.0	
		Z	5.08	68.32	18.34		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.27	68.97	19.18	2.83	100.0	± 9.6 %
		Y	5.29	68.88	18.98		100.0	
		Z	5.19	68.68	18.77		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.29	68.99	19.39	3.30	100.0	±9.6 %
		Y	5.33	68.94	19.20		100.0	
		Z	5.23	68.74	19.00		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.36	69.20	19.76	3.82	90.0	± 9.6 %
		Y	5.42	69.18	19.58		90.0	
		Z	5.30	68.95	19.38		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	Х	5.40	69.06	19.93	4.15	90.0	± 9.6 %
		Y	5.47	69.07	19.76		90.0	
		Z	5.35	68.86	19.58		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.44	69.18	20.05	4.30	90.0	± 9.6 %
		Y	5.51	69.19	19.88		90.0	
		Z	5.40	68.99	19.71		90.0	

September 22, 2017

λ.

10081- CAB	CDMA2000 (1xRTT, RC3)	x	100.00	135.94	34.03	0.00	150.0	± 9.6 %
		Y	4.36	89.76	21.79		150.0	
		Z	1.23	72.30	14.98		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	1.46	62.74	7.36	4.77	80.0	± 9.6 %
		Y	1.67	63.13	7.83		80.0	
		Z	1.40	62.09	6.92		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	121.01	30.66	6.56	60.0	±9.6 %
		Y.	100.00	_119.66	30.39		60.0	
		Z	100.00	118.49	29.48		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.68	75.81	20.12	0.00	150.0	± 9.6 %
		Y	2.34	73.02	18.58		150.0	
		Z	2.07	70.78	17.18		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.65	75.95	20.19	0.00	150.0	± 9.6 %
		Y	2.30	73.06	18.61		150.0	
(0000		Z	2.03	70.77	17.19		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	×	51.37	136.92	47.83	9.56	60.0	± 9.6 %
		Y	25.26	114.55	40.28		60.0	
· - ·		Z	34.93	125.12	43.92		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.91	75.35	19.66	0.00	150.0	± 9.6 %
		Y	3.58	73.57	18.67		150.0	
		Z	3.29	72.01	17.75		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.50	69.80	17.58	0.00	150.0	±9.6 %
		Y	3.39	69.08	17.05		150.0	
		Z	3.27	68.42	16.53		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.58	69.60	17.56	0.00	150.0	± 9.6 %
		Y	3.49	68.97	17.09		150.0	
		Z	3.37	68.35	16.58		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	10.46	84.85	24.49	3.98	65.0	± 9.6 %
		Υ	9.76	82.69	23.44		65.0	
		Z	9.49	82.61	23.35		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.62	79.80	23.37	3.98	65.0	± 9.6 %
		Y	8.54	78.80	22.69		65.0	
		Z	8.26	78.63	22.58		65.0	<u> </u>
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.48	79.41	23.51	3.98	65.0	± 9.6 %
		Y	7.84	77.04	22.24		65.0	
		<u>Z</u>	7.95	77.81	22.54		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.42	74.91	19.71	0.00	150.0	± 9.6 %
		Y	3.13	73.04	18.65		150.0	
		Z	2.86	71.41	17.66		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.19	70.21	17.75	0.00	150.0	± 9.6 %
		Y_	3.07	69.34	17.14		150.0	
		Z _	2.93	68.52	16.50		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.94	75.32	19.95	0.00	150.0	± 9.6 %
		Y	2.62	72.92	18.60		150.0	
		Z	2.34	70.98	17.41		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	3.13	72.86	18.80	0.00	150.0	± 9.6 %
		Y	2.95	71.56	17.99		150.0	
		Z	2.72			<u> </u>	1 100.0	L

September 22, 2017

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.29	70.03	17.69	0.00	150.0	± 9.6 %
		Y	3.18	69.26	17.13		150.0	
		Z	_ 3.05	68.50	16.53		150.0	·
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.26	72,71	18.75	0.00	150.0	± 9.6 %
		Y	3.09	71.55	18.02		150.0	
		Z	2.86	70.17	17.07		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.20	68.15	17.23	0.00	150.0	±9.6 %
		Y	5.17	67.92	17.01		150.0	
		Z	5.08	67.68	16.75		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.45	68.16	17.22	0.00	150.0	± 9.6 %
		Y	5.42	67.95	17.02		150.0	
		Z	5.33	67.74	16.77		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.30	68.36	17.26	0.00	150.0	± 9.6 %
		Y	5.26	68.13	17.04		150.0	
		Z	5.17	67.89	16.78		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.18	68.04	17.19	0.00	150.0	± 9.6 %
		Y	5.14	67.83	16.98		150.0	
		Z	5.07	67.63	16.74	-	150.0	<u> </u>
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.54	68.41	17.35	0.00	150.0	± 9.6 %
		Y	5.51	68.19	17,14		150.0	· · · ·
		Z	5.41	67.95	16.89		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.29	68.34	17.26	0.00	150.0	± 9.6 %
		Y	5.25	68.12	17.04		150.0	
		Z	5.16	67.88	16.78		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.61	69.64	17.49	0.00	150.0	± 9.6 %
		Y	3.52	68.99	17.00		150.0	
		Z	3.39	68.38	16.51		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.73	69.64	17.59	0.00	150.0	±9.6 %
		Y	3.64	69.06	17.15		150.0	
		Z	3.51	68.48	16.66		150.0	<u> </u>
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	3.10	78.13	20.64	0.00	150.0	±9.6 %
		Y	2.57	74.51	18.81		150.0	
		Z	2.18	71.67	17.19		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	3.55	76.59	19.53	0.00	150.0	± 9.6 %
		Y	3.13	74.18	18.27		150.0	
		Z	2.68	71.54	16.74		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.79	71.64	16.81	0.00	150.0	± 9.6 %
		Y	2.50	69.67	15.66		150.0	
		Z	2.26	68.10	14.57		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	3.29	79.35	17.65	0.00	150.0	± 9.6 %
		Y	1.58	69.65	_ 13.52		150.0	
		Z	1.10	65.19	10.91		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	10.51	86.51	18.78	0.00	150.0	±9.6 %
		Y	2.34	69.06	12.29		150.0	
		Z	1.46	64.05	9.40		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	100.00	112.53	25.58	0.00	150.0	± 9.6 %
		Y	3.94	74.93	14.77		150.0	
		Z	1.65	65.37	10.17	i —	150.0	

3

September 22, 2017

.

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	3.20	70.28	17.80	0.00	150.0	± 9.6 %
		Y	3.08	69.42	17,19		150.0	
		Ż	2.94	68.59	16.55		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.30	70.10	17.74	0.00	150.0	± 9.6 %
		Y	3.19	69.33	17.18		150.0	
		Z	3.06	68.56	16.57		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	12.94	90.52	26.60	3.98	65.0	± 9.6 %
		Y	11.63	87.44	25.23		65.0	
		Z	11.21	87.22	25.07		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	8.51	80.82	23.41	3.98	65.0	± 9.6 %
		Y	8.31	79.48	22.59		65.0	
		Z	8.01	79.28	22.44		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	9.02	81.90	24.19	3.98	65.0	±9.6 %
		Y	8.86	80.67	23.43		65.0	
		Z	8.54	80.43	23.26		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	3.03	75.93	20.26	0.00	150.0	± 9.6 %
		Y	2.70	73.52	18.93		150.0	
		Z	2.40	71.40	17.66		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	3.14	72.90	18.83	0.00	150.0	± 9.6 %
		Y	2.95	71.60	18.01		150.0	
		Z	2.72	70.14	17.02		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	3.42	81.12	21.46	0.00	150.0	± 9.6 %
		Y	2.60	76.04	19.11		150.0	
		Z	2.06	72.15	17.02		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	3.03	74.63	17.79	0.00	150.0	± 9.6 %
		Y	2.53	71.54	16.20		150.0	
		Z	2.15	69.02	14.66		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.27	72.81	18.82	0.00	150.0	± 9.6 %
		Y	3.10	71.66	18.08		150.0	
		Z	2.87	70.26	17.13		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	3.21	75.21	18.07	0.00	150.0	± 9.6 %
		Y	2.69	72.18	16.53		150.0	
		Z	2.25	69.45	14.90		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.31	73.32	19.12	0.00	150.0	± 9.6 %
		Ý	3.09	71.84	18.22		150.0	
10101		Z	2.86	70.49	17.35		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.21	70.26	17.75	0.00	150.0	± 9.6 %
		Y	3.10	69.43	17.16		150.0	
40402		Z	2.95	68.59	16.50		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.33	70.39	17.83	0.00	150.0	±9.6 %
		Y	3.21	69.59	17.26		150.0	
10100		Z	3.06	68.78	16.62		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.94	73.38	21.77	3.01	150.0	± 9.6 %
	<u> </u>	Y	3.79	72.11	20.84		150.0	
1010-		Z	3.50	70.74	19.96		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	5.65	79.78	23.51	3.01	150.0	±9.6 %
		Y	5.10	77.08	22.03		150.0	
		Z	4.43	74.72	20.82		150.0	

September 22, 2017

.

10168-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	X	6.73	02.70	25 44	0.04	450.0	
CAE	64-QAM)		0.75	83.76	25.44	3.01	150.0	± 9.6 %
		Y	6.02	80.78	23.93	· · ·	150.0	
		Z	5.04	77.58	22.39		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.37	73.36	21.96	3.01	150.0	± 9.6 %
		Y	3.23	71.75	20.78		150.0	
		Z	2.89	69.73	19.58	-	150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	6.39	86.84	27.07	3.01	150.0	± 9.6 %
		Y	5.38	82.06	24.76		150.0	
		Z	4.13	77.19	22.57		150.0	
10171- AA <u>D</u>	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.69	79.68	23.25	3.01	150.0	± 9.6 %
		Y	4.06	75.75	21.17		150.0	
		Z	3.35	72.68	19.64		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	100.00	146.59	45.53	6.02	65.0	± 9.6 %
		Υ	40.14	123.32	38.78		65.0	
		Z	46.23	127.51	39.93		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	100.00	136.26	40.09	6.02	65.0	± 9.6 %
		Y	100.00	132.71	38.54	_	65.0	
		Z	100.00	133.96	38.85		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	100.00	133.98	38.85	6.02	65.0	± 9.6 %
		Y	100.00	130.96	37.56		65.0	
		Z	100.00	131.78	37.67		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.32	73.00	21.69	3.01	150.0	± 9.6 %
		Y	3.19	71.38	20.50		150.0	
		Z	2.86	69.46	19.35		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	6.41	86.88	27.08	3.01	150.0	±9.6 %
		Y	5.39	82.10	24.78		150.0	· · · ·
		Z	4.14	77.22	22.58		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.35	73.17	21.78	3.01	150.0	±9.6 %
		Y	3.21	71.55	20.60		150.0	
		Z	2.88	69.58	19.42		150.0	
10178- CAE	*LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	6.32	86.56	26.94	3.01	150.0	± 9.6 %
		Y	5.33	81.82	24.65		150.0	
		Z	4.11	77.04	22.49		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	5.51	83.28	25.09	3.01	150.0	± 9.6 %
		Y	4.67	78.80	22.85		150.0	
		Z	3.72	74.89	21.01		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	4.68	79.60	23.20	3.01	150.0	± 9.6 %
		Y	4.04	75.67	21.12		150.0	
		Z	3.35	72.63	19.61		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.35	73.15	21.78	3.01	150.0	± 9.6 %
		Y	3.21	71.53	20.59		150.0	
<u> </u>		Z	2.87	69.57	19.42		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	6.31	86.52	26.93	3.01	150.0	± 9.6 %
		Y	5.32	81.78	24.63		150.0	
		Z	4.10	77.02	22.48		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	4.66	79.56	23.19	3.01	150.0	± 9.6 %
		Y	4.04	75.64	21.10		150.0	
		Z						

3

September 22, 2017

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.36	73.20	21.80	3.01	150.0	± 9.6 %
		Y	3.22	71.58	20.61		150.0	
		Z	2.88	69.61	19.44		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	6.35	86.64	26.98	3.01	150.0	± 9.6 %
		Y	5.35	81.89	24.68		150.0	
_		Z	4.12	77.10	22.52		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	x	4.70	79.67	23.24	3.01	150.0	± 9.6 %
		Y	4.06	75.73	21.14		150.0	
		Ζ	3.36	72.68	19.63		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	x	3.37	73.27	21.88	3.01	150.0	± 9.6 %
		Y	3.23	71.66	20.69		150.0	
		Z	2.89	69.68	19.51		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	Х	6.67	87.77	27.49	3.01	150.0	± 9.6 %
		Y	5.59	82.87	25.16		150.0	
		_ Z	4.25	77.76	22.89		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	4.86	80.38	23.61	3.01	150.0	± 9.6 %
		Y	4.18	76.34	21.49		150.0	
		Z	3.43	73.12	19.92		150.0	
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	х	4.60	67.78	17.00	0.00	150.0	± 9.6 %
		Y	4.56	67.53	16.75		150.0	
		Z	4.48	67.31	16.48		150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	х	4.76	68.05	17.13	0.00	150.0	± 9.6 %
		Y	4.72	67.80	16.88		150.0	
		Z	4.63	67.57	16.61		150.0	
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.80	68.07	17.14	0.00	150.0	± 9.6 %
		Y	4.75	67.82	16.90		150.0	
		Ζ	4.67	67.59	16.62		150.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.59	67.81	17.01	0.00	150.0	± 9.6 %
		Y	4.55	67.56	16.76		150.0	
		Z	4.47	67.33	16.48		150.0	
10197- [*] CAB	^{**} IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	Х	4.77	68.06	17.13	0.00	150.0	± 9.6 %
		Y	4.73	67.81	16.89		150.0	
		Z	4.64	67.58	16.62		150.0	
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	Х	4.79	68.08	17.15	0.00	150.0	± 9.6 %
		Y	4.75	67.83	16.90		150.0	
_		Ζ	4.66	67.60	16.63		150.0	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.55	67.87	16.99	0.00	150.0	± 9.6 %
		Y	4.51	67.61	16.74		150.0	
		Z	4.43	67.37	16.45		150.0	
10220- CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.76	68.02	17.12	0.00	150.0	± 9.6 %
		Y	4.72	67.77	16.87		150.0	
1 = = :		_Z_	4.63	67.54	16.60		150.0	
10221- CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.80	67.99	17.12	0.00	150.0	± 9.6 %
		Y	4.76	67.75	16.88		150.0	
		Z	4.68	67.53	16.61		150.0	
10222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	5.15	68.03	17.18	0.00	150.0	± 9.6 %
				<u> </u>	<u> </u>			
		Y	5.11	67.81	16.96		150.0	

September 22, 2017

``

40000		1						
10223- CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.44	68.23	17.28	0.00	150.0	± 9.6 %
		<u>Υ</u>	5.40	68.03	17.07		150.0	
		Z	5.32	67.81	16.83		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.20	68.15	17.16	0.00	150.0	± 9.6 %
		Y	5.16	67.93	16.95		150.0	
		Z	5.08	67.72	16.70		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	3.00	68.59	16.83	0.00	150.0	± 9.6 %
		Y	2.92	67.92	16.31		150.0	
		Z	2.80	67.25	15.70		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	100.00	136.47	40.23	6.02	65.0	± 9.6 %
		Y	100.00	132.93	38.68		65.0	
		Z	100.00	134.18	38.99		65.0	
	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	Х	100.00	133.67	38.75	6.02	65.0	±9.6 %
		Y	100.00	130.47	37.37	<u> </u>	65.0	
		Z	100.00	131.50	37.57		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	100.00	146.91	45.69	6.02	65.0	± 9.6 %
		Y	100.00	142.38	43.59		65.0	
		Z	62.29	133.89	41.59		65.0	
10229- <u>C</u> AB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	100.00	136.23	40.09	6.02	65.0	±9.6 %
		Y	100.00	132.70	38.54		65.0	
		Z	100.00	133.95	38.85		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	100.00	133.55	38.67	6.02	65.0	± 9.6 %
_		Y	100.00	130.33	37.27		65.0	
		Z	100.00	131.37	37.48		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	x	100.00	146.76	45.58	6.02	65.0	± 9.6 %
		Y	98.12	141.81	43.38		65.0	
		Z	54.79	131.03	40.79		65.0	-
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	100.00	136.25	40.10	6.02	65.0	± 9.6 %
		Y	100.00	132.72	38.55		65.0	
		Z	100.00	133.96	38.86		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	100.00	133.57	38.68	6.02	65.0	± 9.6 %
	1	Y	100.00	130.35	37.28		65.0	
		z	100.00	130.33	37.49		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	100.00	146.41	45.37	6.02	65.0 65.0	±9.6 %
		Y	85.73	138.62	42.48		65.0	
		Z	49.48	128.58	40.03		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	100.00	136.27	40.10	6.02	65.0	± 9.6 %
	IO-QAIVI)						65.0	
		Y	100.00	132.73	38.55			
<u> </u>				132.73 133.98				
10236-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	Y Z X	100.00 100.00 100.00	132.73 133.98 133.50	38.55 38.86 38.65	6.02	65.0 65.0	± 9.6 %
10236-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X Y	100.00 100.00 100.00	133.98	38.86	6.02	65.0	± 9.6 %
10236-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	ZX	100.00 100.00	1 <u>33.98</u> 133.50	38.86 38.65 37.26	6.02	65.0 65.0 65.0	± 9.6 %
10236- CAD 10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X Y Z X	100.00 100.00 100.00 100.00 100.00	133.98 133.50 130.29	38.86 38.65	6.02	65.0 65.0	
10236- CAD 10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X Y Z	100.00 100.00 100.00 100.00	133.98 133.50 130.29 131.33	38.86 38.65 37.26 37.46		65.0 65.0 65.0 65.0 65.0	
10236- CAD 10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X Y Z X Y	100.00 100.00 100.00 100.00 100.00 99.93	133.98 133.50 130.29 131.33 146.81 142.23	38.86 38.65 37.26 37.46 45.60 43.48		65.0 65.0 65.0 65.0 65.0 65.0	
10236- CAD 10237- CAD 10238-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X Y Z X	100.00 100.00 100.00 100.00 100.00	133.98 133.50 130.29 131.33 146.81	38.86 38.65 37.26 37.46 45.60		65.0 65.0 65.0 65.0 65.0	± 9.6 %
10236- CAD 10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	Z X Z X Y Z Z	100.00 100.00 100.00 100.00 100.00 99.93 55.78	133.98 133.50 130.29 131.33 146.81 142.23 131.45	38.86 38.65 37.26 37.46 45.60 43.48 40.90	6.02	65.0 65.0 65.0 65.0 65.0 65.0 65.0	± 9.6 % ± 9.6 % ± 9.6 %

1 -1 -2 - 7 4 - September 22, 2017

ŝ

10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	100.00	133.60	38.69	6.02	65.0	± 9.6 %
		Y	100.00	130.37	37.29	· · -	65.0	
		Z	100.00	131.42	37.50		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	100.00	146.82	45.60	6.02	65.0	± 9.6 %
		Y	99.77	142.20	43.47		65.0	
		Z	55.59	131.39	40.89		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	17.87	100.55	33.28	6.98	65.0	± 9.6 %
		Y	15.07	94.94	30.80		65.0	
10040		Z	13.77	93.88	30.45		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	17.67	100.29	33.12	6.98	65.0	± 9.6 %
	·	Y	12.29	90.51	29.15		65.0	
40040		Z	12.81	92.35	29.83		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	11.06	91.58	31.22	6.98	65.0	± 9.6 %
		Y	8.79	84.63	27.92		65.0	
10044		Z	9.16	86.51	28.72		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	15.61	90.37	23.65	3.98	65.0	± 9.6 %
		Y	11.28	84.18	21.28		65.0	
40045		Z	8.72	80.34	19.49		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	13.68	88.02	22.81	3.98	65.0	± 9.6 %
		Y	10.35	82.60	20.65		65.0	
100/0		Z	8.13	79.04	18.94		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	25.39	101.46	27.34	3.98	65.0	± 9.6 %
		Y	15.71	92.64	24.44		65.0	
		Z	12.87	89.62	23.18		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	9.04	82.99	22.10	3.98	65.0	±9.6 %
		Y	8.34	80.70	21.02		65.0	
		<u>Z</u>	7.61	79.49	20.32		65.0	· · ·
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	8.42	81.37	21.47	3.98	65.0 ·	± 9.6 %
		Y	7.88	79.34	20.47		65.0	
		Z	7.23	78.25	19.81		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	33.71	108.55	30.66	3.98	65.0	± 9.6 %
		Y	20.64	98.74	27.50		65.0	
		Z	18.25	96.85	26.70		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	10.08	85.96	25.19	3.98	65.0	± 9.6 %
		Y	9.64	84.09	24.21		65.0	
100-		Z	9.09	83.41	23.82		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	×	8.74	81.98	23.31	3.98	65.0	± 9.6 %
		Y	8.42	80.36	22.40	<u> </u>	65.0	
40052		Z	8.02	79.93	22.11		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	20.41	100.95	29.84	3.98	65.0	±9.6 %
		Y	15.89	94.95	27.60		65.0	
40053		Z	15.09	94.44	27.31		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	8.27	80.12	23.07	3.98	65.0	± 9.6 %
		Y	8.11	78.88	22.29		65.0	
		Z	7.82	78.68	22.13		65.0	-
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	8.73	81.09	23.75	3.98	65.0	± 9.6 %
		Y	8.60	79.94	23.01		65.0	
		Z	8.29	79.69	22.83		_ 00.0	1

`

		10.00	00.50	00.40			
QPSK)					3.98		± 9.6 %
						65.0	
LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)			81.73	19.44	3.98	65.0	± 9.6 %
		7.42	76.93	17.43		65.0	
	Z	5.73	73.50	15.63		65.0	
LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.33	79.13	18.36	3.98	65.0	± 9.6 %
	Y	6.73	75.21	16.63		65.0	
	Z	5.32					
LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	12.04	87.95	22.05	3.98	65.0	± 9.6 %
	Y	8.85	82.44	20.00	·	65.0	
	Z	7.11					· · · · ·
LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	9.53	84.22	23.26	3.98	65.0	± 9.6 %
	Y	8.90	82.06	22.20		65.0	<u> </u>
							<u> </u>
LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	9.20	83.27	22.90	3.98	65.0	± 9.6 %
	Y	8.68	81.32	21.91		65.0	<u> </u>
LTE-TDD (SC-FDMA, 100% RB, 3 MHz, OPSK)	X	23.02	102.54	29.52	3.98	65.0	± 9.6 %
	V	16 54	95.31	26.07		65.0	
LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	10.05	85.86	25.14	3.98	65.0	± 9.6 %
	V	0.60	92.00	24.45		65.0	
LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-OAM)	X	8.72	81.95	23.30	3.98	65.0	± 9.6 %
	v	8.40	90.22	22.40		65.0	<u> </u>
							<u> </u>
					0.00		
QPSK)					3.98		± 9.6 %
LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)					3.98		± 9.6 %
	-	8.31	79.48	22.60		65.0	
	Z	8.01	79.28	22.45		65.0	
LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	9.02	81.88	24.18	3.98	65.0	± 9.6 %
	Ý	8.86	80.66	23.42		65.0	1
	Z	8.53	80.41	23.25		65.0	
LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	12.89	90.43	26.57	3.98	65.0	± 9.6 %
	Y	11.59	87.37	25.20		65.0	
		11.17					1
LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.65	79.35	23.27	3.98	65.0	± 9.6 %
	Y	8.60	78.47	22.65		65.0	1
	Z	8.34	78.33	22.54		65.0	
LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.50	78.69	23.04	3.98	65.0	± 9.6 %
	Y	8.49	77.91	22.46		65.0	1
					· · · ·		
LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	×	9.87	83.32	24.17	3.98	65.0	± 9.6 %
	Y	9 54	81.82	23 34	<u> </u>	65.0	
		0.20	L 01.04	<u></u> 20		0.00	
	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	QPSK) Y Z Z LTE-TDD (SC-FDMA, 100% RB, 1.4 X MHz, 16-QAM) Y Z Z LTE-TDD (SC-FDMA, 100% RB, 1.4 X MHz, 64-QAM) Y Z Z LTE-TDD (SC-FDMA, 100% RB, 1.4 X MHz, QPSK) Y Z Z LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) Y Z Z LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 400% RB, 3 MHz, 16-QAM) Y Z LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 400% RB, 3 MHz, 16-QAM) Y Z LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 100% RB, 5 MHz, 16-QAM) Y Z LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 100% RB, 5 MHz, 100% RB, 5 MHz, 16-QAM) Y Z LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 100% RB, 10 10 100% RB, 10 1000% RB, 10 100% RHz, 1000% RB, 10 100% RB, 10 100% RHz, 1000% RB, 10 100% RB, 10	QPSK) Y 11.00 ITE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 MHz, 16-QAM) Y 7.42 Z 5.73 ITE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 MHz, 64-QAM) Y 6.73 Z 5.32 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 MHz, 64-QAM) Y 6.73 Z 5.32 ITE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 MHz, QPSK) Y 8.85 Z 7.11 ITE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 16-QAM) Y 8.68 Z 8.25 ITE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 4.23.02 QPSK) Y 16.54 Z 8.06 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 23.02 QPSK) Y 16.54 Z 16-QAM) Y 9.60 Z 9.05 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, X 10.05 16-QAM) Y 9.60 Z 8.01 X 19.99	QPSK) Y 11.00 86.69 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 MHz, 16-QAM) Y 7.42 76.93 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 73.13 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 75.21 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 MHz, QPSK) Y 8.85 82.44 Z 7.11 79.43 ITE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) 9.53 84.22 Y 8.85 82.44 2 7.11 GE-GAM) Y 8.90 82.06 80.39 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.27 64.0AM) Y 8.68 81.32 2 8.06 80.39 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, Z 23.02 102.54 95.31 QPSK) Y 8.64 95.31 15.22 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, Z 8.06 83.99 Z 15.22	QPSK) Y 11.00 86.69 25.13 Z 10.61 66.49 24.98 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 Y 7.42 76.93 17.43 TE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 79.13 18.36 MHz, 64-QAM) Y 6.73 75.21 16.63 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 22.05 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 22.05 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, V 9.53 84.22 23.26 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, V 9.53 84.22 23.26 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, V 9.20 83.27 22.90 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, V 9.20 83.27 22.90 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, V 10.05 85.86 25.14 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, V 10.05 85.86 25.14 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, V 10.05 85.86 <td>QPSk) Y 11.00 86.69 25.13 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 3.98 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 76.93 17.43 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 79.13 18.36 3.98 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 79.13 18.36 3.98 MHz, 64-QAM) Y 6.73 77.521 16.63 1.495 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 22.05 3.98 MHz, QPSK) Y 6.85 62.44 20.00 21.63 1.857 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 84.22 23.26 3.98 ME-QAM) Y 8.66 81.32 21.91 1.63 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.27 22.90 3.98 ME-QAM) Y 8.66 80.39 21.63 1.11 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, X 10.05</td> <td>QPSQ Y 11.00 86.69 25.13 66.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.33 79.13 18.38 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.33 79.13 18.36 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 22.05 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 84.22 23.26 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 84.22 23.26 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.27 22.90 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.32 21.91 65.0 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, X 10.05 85.88<</td>	QPSk) Y 11.00 86.69 25.13 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 3.98 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 76.93 17.43 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 79.13 18.36 3.98 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 8.33 79.13 18.36 3.98 MHz, 64-QAM) Y 6.73 77.521 16.63 1.495 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 22.05 3.98 MHz, QPSK) Y 6.85 62.44 20.00 21.63 1.857 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 84.22 23.26 3.98 ME-QAM) Y 8.66 81.32 21.91 1.63 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.27 22.90 3.98 ME-QAM) Y 8.66 80.39 21.63 1.11 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, X 10.05	QPSQ Y 11.00 86.69 25.13 66.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.73 81.73 19.44 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.33 79.13 18.38 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 9.33 79.13 18.36 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 1.4 X 12.04 87.95 22.05 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 84.22 23.26 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.53 84.22 23.26 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.27 22.90 3.98 65.0 LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 9.20 83.32 21.91 65.0 LTE-TDD (SC-FDMA, 100% RB, 5 MHz, X 10.05 85.88<

л

September 22, 2017

`

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.93	69.92	17.28	0.00	150.0	± 9.6 %
		Y	2.80	68.92	16.59		150.0	
		Z	2.67	68.10	15.90		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	2.65	78.26	21.12	0.00	150.0	± 9.6 %
		Y	2.15	74.09	_ 18.99		150.0	_
		Z	1.84	71.24	17.33		150.0	
10277- CAA	PHS (QPSK)	X	3.36	65.20	9.94	9.03	50.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.89	66.16	10.82		50.0	
		_ Z_	3.28	64.75	9.58		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.68	82.05	19.91	9.03	50.0	± 9.6 %
		Y	8.39	79.03	18.95		50.0	
		Z	7.49	77.63	17.92		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	9.79	82.20	20.01	9.03	50.0	±9.6 %
		Y	8.47	79.14	19.03		50.0	
4005-		Z	7.60	77.79	18.03		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	100.00	128.73	31.86	0.00	150.0	± 9.6 %
<u> </u>		Y	5.46	88.02	21.05		150.0	
		Z	1.91	73.76	15.51		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	100.00	135.73	33.92	0.00	150.0	±9.6 %
		Y	3.79	87.86	21.18		150.0	
		Z	1.18	71.73	14.72		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	100.00	142.87	36.94	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	136.51	34.18		150.0	
		Z	5.31	92.64	22.43		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	100.00	147.53	39.13	0.00	150.0	± 9.6 %
<u> </u>		Y	100.00	141.37	36.44		150.0	
		Z	100.00	134.56	33.36		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	51.26	114.86	33.17	9.03	50.0	± 9.6 %
		Y	27.72	102.36	29.45		50.0	
		Z	34.06	106.19	30.27		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.44	75.06	19.80	0.00	150.0	± 9.6 %
		Y	3.15	73.19	18.73		150.0	
		Z	<u>2.87</u>	71.52	17.73		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	4.53	85.32	21.43	0.00	150.0	± 9.6 %
		Y	2.49	75.98	17.66		150.0	
10000		Z	1.68	70.19	14.73		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	35.97	105.52	25.86	0.00	150.0	± 9.6 %
		Y	<u>5.66</u>	80.41	18.09		150.0	
400 0 0		Z	2.55	70.20	13.62		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.08	71.93	14.32	0.00	150.0	± 9.6 %
		Y	2.13	67.03	_ 11.85		150.0	
40001		Z	1.63	64.24	10.02		150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.45	69.13	19.39	4.17	80.0	±9.6 %
		Y	5.47	68.97	19.13		80.0	
		Z	5.25	68.28	18.65		80.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	Х	5.78	69.10	19.80	4.96	80.0	±9.6 %
		Y	5.77	68.75	19.42		80.0	<u></u>

September 22, 2017

.

10303- AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	5.58	68.98	19.73	4.96	80.0	± 9.6 %
		Y	5.58	68.66	19.35		80.0	<u> </u>
		Z	5.46	68.50	19.18		80.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.34	68.67	19.12	4.17	80.0	± 9.6 %
		Y	5.33	68.32	18.76		80.0	
		Ż	5.21	68.15	18.55		80.0	— ——
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	6.61	77.30	24.10	6.02	50.0	± 9.6 %
		Y	7.10	78.07	24.03		50.0	
		Z	6.42	76.34	23.21		50.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.68	70.99	21.21	6.02	50.0	± 9.6 %
		Y	6.11	72.92	22.11		50.0	
40007		Z	5.54	70.33	20.52		50.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	5.65	71.36	21.23	6.02	50.0	±9.6 %
		Υ	6.19	73.69	22.31		50.0	
10000		Z	5.79	72.63	21.74		50.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.01	73.91	22.77	6.02	50.0	± 9.6 %
		İΥ	6.30	74.37	22.65		50.0	
		Z	5.88	73.25	22.07		50.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	Х	5.73	71.20	21.36	6.02	50.0	± 9.6 %
		Y	6.16	73.11	22.25		50.0	
		Z	5.58	70.50	20.65		50.0	
10310- AAA	IEEE 802.16e WiMAX (29.18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.67	71.20	21.24	6.02	50.0	± 9.6 %
		Y	6.15	73.31	22.23		50.0	
		Z	5.52	70.51	20.54		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.80	73.58	19.01	0.00	150.0	± 9.6 %
		Υ.	3.53	72.03	18.12		150.0	
		Z	3.24	70.56	17.24		150.0	
10313- AAA	iDEN 1:3	X	59.05	112.13	29.07	6.99	70.0	± 9.6 %
		Y	21.12	95.82	24.56		70.0	
		Z	18.22	93.85	23.73		70.0	<u>-</u>
10314- AAA	* iDEN 1:6	X	100.00	130.93	37.14	10.00	30.0	±9.6 %
		Ŷ	75.09	122.91	34.76		30.0	
		Z	51.44	117.42	33.31	l	30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.34	68.63	18.94	0.17	150.0	± 9.6 %
		Y	1.29	67.42	17.86		150.0	
		Z	1.21	66.04	16.71		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.67	67.89	17.21	0.17	150.0	± 9.6 %
		Y	4.64	67.66	16.96		150.0	
		Z	4.56	67.44	16.70		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.67	67.89	17.21	0.17	150.0	± 9.6 %
		Y	4.64	67.66	16.96		150.0	
		Z	4.56	<u>6</u> 7.44	16.70		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.74	68.13	17.15	0.00	150.0	± 9.6 %
		Y	4.69	67.85	16.88		150.0	
		Z	4.60	67.62	16.61		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.46	68.11	17.20	0.00	150.0	± 9.6 %
<u>-viv</u>		Y	5.42	67.87	16.96		150.0	

September 22, 2017

``

- --

Y 6.67 68.08 16.83 150.0 10403 CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 ± 9.8 % AAB Y 5.64 88.02 21.05 115.0 ± 9.8 % 10404 CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 115.0 ± 9.6 % AAB Y 5.64 88.02 21.05 115.0 ± 9.6 % AAB Y 5.64 88.02 21.05 115.0 ± 9.6 % AAB X 100.00 122.74 30.83 100.0 ± 9.8 % AAB Rate Y 100.00 122.74 30.83 100.0 ± 9.8 % AAC QPSK, UL Subframe=2.34,7.8.9 X 100.00 125.69 32.11 80.0 ± 9.8 % AAA Mbps, 99pc duty cycle) X 1.18 66.83 17.55 0.00 150.0 ± 9.8 % AAA Mbps, 99pc duty cy	Y 5.67 69.08 16.93 150.0 10403 CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 2.9.6 ABB Y 5.46 89.02 21.05 116.0 116.0 10404 CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 15.0 2.9.6 AAB Y 5.46 88.02 21.05 115.0 4.9.6 AAB Y 5.46 88.02 21.05 115.0 4.9.6 AAB Z 1.91 73.76 15.51 116.0 116.0 104.06 CDMA2000, RC3, SO32, SCH0, Full X 100.00 122.74 30.83 100.0 124.42 49.6 60.0 2 100.0 124.42 30.83 100.0 144.0 49.6 67.9 100.0 150.0 19.6 40.0 124.42 30.81 150.0 19.6 4.44 66.66 16.89 150.0 10.0	10402- AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.70	68.27	17.13	0.00	150.0	± 9.6 %
2 5.59 67.90 16.71 150.0 AAB CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 29.6 % 0404. X 100.00 128.73 31.86 0.00 115.0 29.6 % 0404. Z 1.91 73.76 15.51 115.0 29.6 % AAB Y 5.46 88.02 21.05 115.0 29.6 % 0404. CDMA2000, RC3, SO32, SCH0, Full X 100.00 128.74 30.86 100.00 0406. Y 100.00 127.74 30.83 100.00 21.82 0.00 100.00 10410. LTE-TDD (SC-FDMA, 1 RB, 10 MHz, X 100.00 131.41 34.92 3.23 80.0 21.6 % AAC QPSK, UL Subframe=2,3,4,78,9) Y 100.00 128.46 32.79 80.0 100.0 10415. IEEE 802.119 WiF12.4 GHz (DSSS, 1 X 1.118 66.86 15.83 160.0 24.6 % <tr< td=""><td>10403. AAB CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 29.6 AAB Y 546 86.02 21.06 115.0 29.6 AAB Z 1.91 73.76 15.61 115.0 29.6 AAB CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 115.0 29.6 AAB CDMA2000, RC3, S032, SCH0, Full X 100.00 122.74 30.83 0.00 100.0 49.6 AAB Rate Y 100.00 122.74 30.83 0.00 100.0 123.62 100.0 19.6 AAC QPSK, UL Subfame=2,3.47.8,6) Y 100.00 122.64 32.79 60.0 100.0 126.66 32.71 80.0 19.6 AAA Mps, Spbc duty cyclo) Y 1.13 66.86 16.89 150.0 150.0 19.6 AAA Mps, Spbc duty cyclo) Y 1.13 66.66 16.83<td></td><td></td><td></td><td>5.67</td><td>68 08</td><td>16.03</td><td></td><td>150.0</td><td></td></td></tr<>	10403. AAB CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 29.6 AAB Y 546 86.02 21.06 115.0 29.6 AAB Z 1.91 73.76 15.61 115.0 29.6 AAB CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 115.0 29.6 AAB CDMA2000, RC3, S032, SCH0, Full X 100.00 122.74 30.83 0.00 100.0 49.6 AAB Rate Y 100.00 122.74 30.83 0.00 100.0 123.62 100.0 19.6 AAC QPSK, UL Subfame=2,3.47.8,6) Y 100.00 122.64 32.79 60.0 100.0 126.66 32.71 80.0 19.6 AAA Mps, Spbc duty cyclo) Y 1.13 66.86 16.89 150.0 150.0 19.6 AAA Mps, Spbc duty cyclo) Y 1.13 66.66 16.83 <td></td> <td></td> <td></td> <td>5.67</td> <td>68 08</td> <td>16.03</td> <td></td> <td>150.0</td> <td></td>				5.67	68 08	16.03		150.0	
10403. CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 ± 9.6 % AB Y 5.46 88.02 21.05 1115.0 ± 9.6 % AB Y 5.46 88.02 21.05 1115.0 ± 9.6 % AAB Y 5.46 88.02 21.05 1115.0 ± 9.6 % AAB Y 5.46 88.02 21.05 1115.0 ± 9.6 % AAB Z 1.91 73.76 15.51 115.0 ± 9.6 % AAB Rate Y 100.00 122.74 30.63 1000.0 ± 9.8 % AAC QPSK, UL Subframe=2.34, 7.8, 9) Y 100.00 124.46 32.79 80.0 ± 9.8 % AAC QPSK, UL Subframe=2.34, 7.8, 9) Y 100.00 128.46 32.79 80.0 ± 9.8 % AAA Mbps, 99pc duly cycle) Y 1.13 65.66 16.89 150.0 ± 9.8 % AAA Mbps, 99pc	10403- AAB CDMA2000 (1xEV-DO, Rev. 0) X 100.00 128.73 31.86 0.00 115.0 ± 9.6 AAB Y 5.46 86.02 21.05 115.0 15.0 10404- AAB CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 115.0 ± 9.6 AAB Y 5.46 88.02 21.05 115.0 ± 9.6 AAB Y 5.46 88.02 21.05 115.0 ± 9.6 AAB Z 1.91 73.76 15.51 115.0 ± 9.6 AAB Rate Y 100.00 122.74 30.63 100.0 ± 9.6 AAC QPSK, UL Subframe=2.3,47,8.9 Y 100.00 126.46 32.79 80.0 ± 9.6 AAA Mbps, 99pc duly cycle) Y 1.18 66.83 17.95 0.00 150.0 ± 9.6 AAA Mbps, 99pc duly cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Y 5.46 98.02 21.06 115.0 10404- CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 115.0 ± 9.6 % AAB Y 5.46 88.02 21.05 115.0 ± 9.6 % 10406- CDMA2000, RC3, SO32, SCH0, Full X 100.00 122.74 30.63 100.0 ± 9.6 % AAB Y 100.00 122.74 30.63 100.0 ± 9.6 % AAB Y 100.00 122.74 30.63 100.0 ± 9.6 % AAC DPSK, UL Subframe=2.3,4,7,8,9 Y 100.00 126.46 32.79 80.0 ± 8.8 % AAA OPSK, UL Subframe=2.3,4,7,8,9 Y 100.00 126.46 32.79 80.0 ± 8.6 % AAA Mbps, 9.9pc duty cycle) Y 1.18 66.86 16.89 150.0 ± 9.6 % AAA OPDM, 6 Mbps, 9.9pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 % <t< td=""><td>Y 5.46 86.02 21.05 116.0 Z 1.91 7.376 15.51 116.0 AAB Y 5.46 98.02 21.05 115.0 ± 9.6 AAB Y 5.46 98.02 21.05 115.0 ± 9.6 I0406- CDMA2000, RC3, SO32, SCH0, Full X 100.00 122.52 31.82 0.00 100.0 ± 9.6 AAB Y 100.00 122.74 30.63 100.0 ± 9.6 AAB Y 100.00 122.74 30.63 100.0 ± 9.6 AAC DPSK, UL Subframe=2,3.4,7.8,9) Y 100.00 128.46 32.79 80.0 ± 9.6 AAA DPSK, UL Subframe=2,3.4,7.8,9) Y 100.00 128.68 32.11 80.0 ± 9.6 AAA Mps, 99pc duly cycle) Y 1.18 66.33 17.55 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duly cycle) Y 4.60 67.79 17.0</td><td></td><td>CDMA2000 (1xEV-DO, Rev. 0)</td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td>± 9.6 %</td></t<>	Y 5.46 86.02 21.05 116.0 Z 1.91 7.376 15.51 116.0 AAB Y 5.46 98.02 21.05 115.0 ± 9.6 AAB Y 5.46 98.02 21.05 115.0 ± 9.6 I0406- CDMA2000, RC3, SO32, SCH0, Full X 100.00 122.52 31.82 0.00 100.0 ± 9.6 AAB Y 100.00 122.74 30.63 100.0 ± 9.6 AAB Y 100.00 122.74 30.63 100.0 ± 9.6 AAC DPSK, UL Subframe=2,3.4,7.8,9) Y 100.00 128.46 32.79 80.0 ± 9.6 AAA DPSK, UL Subframe=2,3.4,7.8,9) Y 100.00 128.68 32.11 80.0 ± 9.6 AAA Mps, 99pc duly cycle) Y 1.18 66.33 17.55 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duly cycle) Y 4.60 67.79 17.0		CDMA2000 (1xEV-DO, Rev. 0)					0.00		± 9.6 %
2 1.91 73.76 15.51 115.0 ± 9.6 % AAB Y 100.00 128.73 31.86 0.00 115.0 ± 9.6 % AAB Y 5.46 98.82 21.05 115.0 ± 9.6 % AAB Z 1.91 73.76 15.51 115.0 ± 9.6 % AAB Z 1.91 73.76 15.51 115.0 ± 9.6 % AAB Rate Y 100.00 122.74 30.63 100.0 ± 9.6 % AAC QPSK, UL Subframe=2,3.4,7.8,9) Y 100.00 123.64 29.50 100.0 ± 9.6 % AAA Mpps.95pc dub cycle) Y 100.00 128.66 32.73 80.0 ± 9.6 % AAA Hpps.95pc dub cycle) Y 1.13 65.66 16.83 150.0 ± 9.6 % AAA Hpps.95pc dub cycle) Y 4.13 65.65 150.0 ± 9.6 % AAA Hpps.95pc dub cycle Y 4.60 6	10404 AAB CDMA2000 (1xEV-DO, Rev. A) X 100.00 128.73 31.86 0.00 115.0 ± 9.6 AAB CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.62 0.00 115.0 ± 9.6 10406 CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.62 0.00 100.0 ± 9.6 AB Rate Y 100.00 122.74 30.63 100.0 ± 9.6 AAC QPSK, UL Subframe2,3,4,7,8,9 Y 100.00 122.66 32.11 80.0 ± 9.6 AAA Mps, 99pc duly cycle) Y 1.18 66.68 17.95 0.00 150.0 ± 9.6 AAA Mps, 99pc duly cycle) Y 1.13 65.66 16.83 150.0 ± 9.6 AAA Mps, 99pc duly cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mps, 99pc duly cycle) Y 4.56 67.54 16.83 150.0 ± 9.6			$+$ \mathbf{Y}^{-}	5 46	88.02	21.05		115.0	
10404. AB CDMA2000 (1xEV-D0, Rev. A) AB X 100.00 128.73 31.86 0.00 115.0 ± 9.6 % ± 9.6 % AAB Y 5.46 88.02 21.05 115.0 10406 CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.82 0.00 100.0 ± 9.6 % AAB Rale Y 100.00 122.74 30.83 100.0 ± 9.6 % AAB QPSK, UL Subframe=2.3,4,7.8,9) Y 100.00 126.46 32.79 80.0 ± 9.6 % AAC OPSK, UL Subframe=2.3,4,7.8,9) Y 100.00 126.46 32.79 80.0 ± 9.6 % AAA Mpps, 99pc duty cycle) Y 1.13 65.66 16.83 150.0 ± 9.6 % AAA Mpps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mpps, 99pc duty cycle) Y 4.56 67.74 16.83 150.0 10.00 ± 9.6 % AAA	10404- AAB CDMA2000 (1xEV-DO, Rev. A) AAB X 100.00 128.73 31.86 0.80 115.0 ± 9.6 AAB Y 5.46 88.02 21.05 1115.0 115.0 ± 9.6 AAB Z 1.91 7.376 15.51 1156 100.0 ± 9.6 AAB Rate Y 100.00 122.74 30.63 100.0 ± 9.6 AAB Rate Y 100.00 122.74 30.63 100.0 120.40 AAC QPSK, UL Subtrame=2,34,7,8,9 Y 100.00 126.46 32,79 80.0 ± 9.6 AAC QPSK, UL Subtrame=2,34,7,8,9 Y 100.00 126.46 32,79 80.0 ± 9.6 AAA Mpps, 9.9pc duly cycle) Y 1.18 66.83 17.39 0.00 150.0 ± 9.6 AAA Mpps, 9.9pc duly cycle) Y 4.80 67.39 17.08 0.00 150.0 ± 9.6 AAA Mpps, 9.9pc duly cycle) Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
V 5.46 88.02 21.05 115.0 10406- AAB CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.82 0.00 100.0 ±9.6 % AAB Y 100.00 122.74 30.63 100.0 ±9.6 % AAC QPSK, UL Subframe=2.3,4,7.8.9 Y 100.00 121.04 29.50 100.0 ±9.6 % AAC QPSK, UL Subframe=2.3,4,7.8.9 Y 100.00 126.46 32.79 80.0 ±9.6 % AAC QPSK, UL Subframe=2.3,4,7.8.9 Y 113 468.83 17.95 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 1.18 66.83 17.95 0.00 150.0 ±9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ±9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ±9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long	Y 5.46 88.02 21.05 115.0 104.06- Rate Z 1.91 73.76 15.51 115.0 104.06- Rate Y 100.00 122.52 31.82 0.00 100.0 ±9.6 10410- AAC LTE-TDD (SC-FDMA, 1 RE, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 121.04 29.50 100.0 ±9.6 10410- AAC QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 126.69 32.11 80.0 ±9.6 10415- MAA IEEE 802.116 WIF12.4 GHz (DSSS, 1 X 1.18 66.83 17.95 0.00 150.0 ±9.6 AAA Mbps, 99pc duty cycle) Y 4.13 66.73 165.5 150.0 ±9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ±9.6 AAA Mbps, 99pc duty cycle, Long Y 4.56 67.79 17.08 0.00 150.0 ±9.6 AAA Mbps, 99pc duty cycle, Long Y 4.56		CDMA2000 (1xEV-DO, Rev. A)					0.00		± 9.6 %
CDMA2000, RC3, SO32, SCH0, Full Z 1.91 73.76 15.61 115.0 AAB Rate Y 100.00 125.52 31.82 0.00 100.0 ±9.6 % AAB C V 100.00 125.52 31.82 0.00 100.0 10410- LTE-TDD (SC-FDMA, 1 RB, 10 MHz, X 100.00 131.41 34.92 3.23 80.0 ±9.6 % AAC QPSK, UL Subframe=2,3,4,7.8,9 Y 100.00 126.46 32.79 80.0 ±9.6 % 10415- IEEE 802.11b WiF12.4 GHz (DSSS, 1 X 1.18 66.83 17.95 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 4.13 66.56 16.59 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10417- IEEE 802.11a WiF12.4 GHz (DSSS- Y	CDMA2000, RC3, SO32, SCH0, Full Z 1.91 73.76 15.51 115.0 AAB Rate Y 100.00 122.74 30.63 100.0 129.6 10410- LTE-TDD (SC-FDMA, 1 RB, 10 MHz, AAC QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 131.41 34.92 3.23 80.0 ±9.6 AAC QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 125.69 32.11 80.0 10415- IEEE 802.116 WiF12.4 GHz (DSSS, 1 X 1.18 66.83 17.95 0.00 150.0 ±9.6 AAA Mbps, 99pc duly cycle) Y 1.13 65.86 16.89 150.0 ±9.6 AAA Mbps, 99pc duly cycle) Y 4.60 67.79 17.08 0.00 150.0 ±9.6 AAA Mbps, 99pc duly cycle) Y 4.56 67.54 16.83 150.0 150.0 ±9.6 AAA OFDM, 6 Mbps, 99pc duly cycle, Long Y 4.56 67.77 16.83 150.0 150.0 ±9.6			Y	5.46	88.02	21.05	_	115.0	
10406- AAB CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.82 0.00 100.0 ± 9.6 % AAB Kate Y 100.00 121.04 29.50 100.0 10410- AAC LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe-2, 3,4,7,8,9) Y 100.00 126.46 32.79 80.0 ± 9.6 % AAC QPSK, UL Subframe-2, 3,4,7,8,9) Y 100.00 126.46 32.79 80.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 1.13 65.68 16.89 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 1.13 65.66 16.89 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle, Long Y 4.56 67.77 16.89 150.0 <td< td=""><td>10406- AAB AAB AAB Rate CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.82 0.00 100.0 ± 9.6 AAB AAB AAB AAB AAB AAC LTE-TDD (SC-FDIMA, 1 RB, 10 MHz, QPSK, UL Subframe-2,3,4,7,8,9) Y 100.00 121.04 29.60 100.0 124.04 29.60 100.0 126.46 32.79 80.0 ± 9.6 AAC QPSK, UL Subframe-2,3,4,7,8,9) Y 100.00 126.66 32.79 80.0 ± 9.6 10415- AAA IEEE 802.11b WIF12.4 GHz (DSSS, 1 AAA 1.18 66.68 15.83 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	10406- AAB AAB AAB Rate CDMA2000, RC3, SO32, SCH0, Full X 100.00 125.52 31.82 0.00 100.0 ± 9.6 AAB AAB AAB AAB AAB AAC LTE-TDD (SC-FDIMA, 1 RB, 10 MHz, QPSK, UL Subframe-2,3,4,7,8,9) Y 100.00 121.04 29.60 100.0 124.04 29.60 100.0 126.46 32.79 80.0 ± 9.6 AAC QPSK, UL Subframe-2,3,4,7,8,9) Y 100.00 126.66 32.79 80.0 ± 9.6 10415- AAA IEEE 802.11b WIF12.4 GHz (DSSS, 1 AAA 1.18 66.68 15.83 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6									
International constraints Z 100.00 121.04 29.60 100.0 AAC LTE-TDD (SC-FDMA, 1 RB, 10 MHz, AAC X 100.00 131.41 34.92 3.23 80.0 ± 9.6 % AAC LUSubframe=2,3,4,7,8,9) Y 100.00 126.64 32.79 80.0 ± 9.6 % 10415- LEEE 802.11b WIFI 2.4 GHz (DSSS, 1 X 1.18 66.83 17.95 0.00 150.0 ± 9.6 % AAA Mpp, 99pc duty cycle) Y 1.13 65.66 16.89 150.0 ± 9.6 % 10416- IEEE 802.11g WIFI 2.4 GHz (ERP- X X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mpp, 99pc duty cycle) Y 4.56 67.74 16.83 150.0 ± 9.6 % AAA Mpp, 99pc duty cycle) Y 4.56 67.77 17.08 0.00 150.0 ± 9.6 % AAA Mpp, 99pc duty cycle, Long X 4.60 68.04 17.15 0.00 150.0 ± 9.6 %	International conditional condi							0.00		± 9.6 %
International constraints Z 100.00 121.04 29.50 100.0 AAC QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 132.64 32.23 80.0 ±9.6 % 10415- IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 X 1.18 66.83 17.95 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 1.13 65.66 16.89 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 1.13 65.66 16.89 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ±9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle, Long Y 4.56 67.77 16.58 150.0 10418- AAA	LEE 7DD (SC-FDMA, 1 RB, 10 MHz, AAC Z 100.00 121.04 29.50 100.0 AAC LET-TDD (SC-FDMA, 1 RB, 10 MHz, AAC X 100.00 131.41 34.92 3.23 80.0 ± 9.6 AAC QPSK, UL Subframe=2.3,4,7,8,9) Y 100.00 126.46 32.79 80.0 10415- IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 X 1.18 66.83 17.95 0.00 150.0 ± 9.6 AAA Mpps, 99pc duty cycle) Y 1.13 65.66 16.83 150.0 ± 9.6 I0416- IEEE 802.11g WiFi 2.4 GHz (ERP- Z 1.08 67.79 17.08 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle), Long Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 AAA Mbps, 99pc duty cycle, Long Y 4.56 67.77 16.89 150.0 ± 9.6 <t< td=""><td></td><td></td><td>ΓY</td><td>100.00</td><td>122.74</td><td>30.63</td><td></td><td>100.0</td><td></td></t<>			ΓY	100.00	122.74	30.63		100.0	
10410- AAC LTE-TDQ (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 100.00 131.41 34.92 3.23 80.0 ± 9.6 % 10415- AAA Mbps, 99pc duty cycle) Y 100.00 125.69 32.11 80.0 10415- AAA Mbps, 99pc duty cycle) Y 1.18 66.83 17.95 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 1.13 65.66 16.89 150.0 10416- AAA EEE 802.11g WIF12.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10417- IEEE 802.11a/h WiF15 GHz (OFDM, 6 X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10418- IEEE 802.11g WIF12.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 10418- IEEE 802.11g WIF12.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short Y 4.56 67.79 16.86	10410- AAC LTE-TD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 100.00 131.41 34.92 3.23 80.0 ± 9.6 AAC QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 126.46 32.79 80.0 ± 9.6 10415- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) X 1.18 66.83 17.95 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.13 65.66 16.89 150.0 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle, Long premabule) Y 4.56 67.77 16.89 150.0 ± 9.6 AAA Mbps, 99pc duty cycle, Sport Y 4.56 67.77 16.89 150.			Z						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							3.23		±9.6 %
Z 100.00 125.69 32.11 80.0 AAA Mbps, 99pc duty cycle) Y 1.18 66.83 17.95 0.00 150.0 \pm 9.6 % AAA Mbps, 99pc duty cycle) Y 1.13 65.66 16.89 150.0 10416- IEEE 802.11g WIFI 2.4 GHz (ERP- X 4.60 67.79 17.08 0.00 150.0 \pm 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10417- 10417- IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 X 4.60 67.79 17.08 0.00 150.0 \pm 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 \pm 9.6 % AAA Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.83 150.0 \pm 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.81 150.0 \pm 9.6 % AAA OFDM, 6 Mbps, 99pc duty	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Y	100.00	126.46	32.79		80.0	
10415- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) X 1.18 66.83 17.95 0.00 150.0 ± 9.6 % IO416- AAA IEEE 802.11g WiFi 2.4 GHz (ERP- V Z 1.08 64.56 15.83 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.46 67.32 16.55 150.0 ± 9.6 % 10417- IEEE 802.11g WiFi 2.4 GHz (OFDM, 6 AAA X 4.80 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10417- IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA X 4.60 68.04 17.15 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA Y 4.56 67.64 16.61 150.0 ± 9.6 % AAA	10415- AAA HEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) X 1.18 66.83 17.95 0.00 150.0 ± 9.6 Z 1.08 64.56 15.33 150.0 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10417- IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 10418- IEEE 802.11g WiFi 2.4 GHz (DSSS- X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA DFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 150.0 ± 9.6 10418- IEEE 802.11g WiFi 2.4 GHz (DSS- X 4.60 67.54 16.61 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 I0412- IEEE 802.11n (HT Greenfie									
Z 1.08 64.56 15.83 150.0 10416- IEEE 802.11g WiFi 2.4 GHz (ERP- AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA OPDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10417- IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % 10417- IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % 10418- IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.75 17.12 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.87 150.0 10422- IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA Y 4.68 67.42 <	Z 1.08 64.56 15.83 150.0 10416- AAA DEEB 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA DEDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 10417- AAA IEEE 802.11a/n WiFi 5 GHz (OFDM, 6 X 4.60 67.79 17.08 0.00 150.0 ± 9.6 10417- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.83 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 AAA DFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.61 150.0 ± 9.6 AAA DFSK) Y 4.56 67.42 16.59 150.0		IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.18	66.83	17.95	0.00		± 9.6 %
Z 1.08 64.56 15.83 150.0 10416- AAA IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 % 10417- 10417- 10417- 10417- 10417- 10418- AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % 10417- AAA IEEE 802.11g // WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.54 16.83 150.0 10418- AAA IEEE 802.11g // WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- AAA IEEE 802.11g // WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.87 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.46 16.60 150.0 ± 9.6 % AAA DFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.68 67.46 16.60 150.0 ± 9.6 % AAA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								150.0	
10416- AAA IEEE 802.11g WiF12.4 GHz (ERP- AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.55 150.0 10417- IEEE 802.11a M WiF15 GHz (OFDM, 6 AAA X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.74 16.83 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.74 16.61 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 % AAA DFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.68 67.44 16.86 150.0 ± 9.6 % 50.0 ± 9.6 % <td< td=""><td>10416- AAA IEEE 802.11g WiFI 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 10418- IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10419- IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.64 16.61 150.0 ± 9.6 10419- IEEE 802.11n (HT Greenfield, 7.2 Mbps, X 4.72 67.88 17.10 0.00 150.0 ± 9.6 AAA PFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.68 67.64 16.86 150.0 150.0</br></td><td></td><td></td><td>Z</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	10416- AAA IEEE 802.11g WiFI 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA OFDM, 6 Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.79 17.08 0.00 150.0 ± 9.6 10418- IEEE 802.11g WiFi 2.4 GHz (DSSS- 			Z						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			X		67.79	17.08	0.00		± 9.6 %
10417- AAA IEEE 802.11a/n WiFi 5 GHz (ÖFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.66 68.04 17.15 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 % 10422- geambule IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.60 67.42 16.86 150.0 10422- AAA BPSK) Y 4.57 67.68 17.10 0.00 150.0 ± 9.6 % AAA BPSK) Y 4.68 67.41 16.86 150.0 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA 4.86 68.17 17.2	10417- AAA IEEE 802.11a/t WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.55 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- oFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA Y 4.57 67.69 16.87 150.0 ± 9.6 10422- AAA BPSK) Y 4.68 67.64 16.86 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 68.17 17.20 0.00 150.0 ± 9.6 10423- AAA				4.56	67.54	16.83		150.0	
10417- AAA IEEE 802.11a/n WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA X 4.60 68.04 17.15 0.00 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- Preambule IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA X 4.61 67.95 17.12 0.00 150.0 ± 9.6 % 10422- preambule IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % AAA BPSK) Y 4.68 67.64 16.86 150.0 10423- 150.0 16.94 1	10417- Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) X 4.60 67.79 17.08 0.00 150.0 ± 9.6 AAA Mbps, 99pc duty cycle) Y 4.56 67.54 16.83 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- oFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.54 16.61 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.68 17.10 0.00 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 67.64 16.86 150.0 ± 9.6 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 67.72 16.96 150.0 ± 9.6			Z	4.48	67.32	16.55		150.0	
Z 4.48 67.32 16.55 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- preambule) X 4.60 68.04 17.15 0.00 150.0 ± 9.6 % 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.54 16.61 150.0 ± 9.6 % 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % 10423- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.86 67.64 16.86 150.0 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 67.70 16.69 150.0 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79	Z 4.48 67.32 16.55 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 10419- AAA Y 4.56 67.77 16.89 150.0 ± 9.6 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.95 17.12 0.00 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA Y 4.57 67.69 16.87 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA Y 4.68 67.44 16.86 150.0 ± 9.6 10422- AAA BPSK) Y 4.68 67.42 16.86 150.0 ± 9.6 10423- AAA BPSK, Y 4.68 67.42 16.86 150.0 ± 9.6 10423- AAA Mbps, 16-QAM) Y 4.88 67.70 16.69 150.0 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 </td <td></td> <td>IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)</td> <td>X</td> <td>4.60</td> <td>67.79</td> <td></td> <td>0.00</td> <td></td> <td>±9.6 %</td>		IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.60	67.79		0.00		±9.6 %
Z 4.48 67.32 16.55 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- preambule) X 4.60 68.04 17.15 0.00 150.0 ± 9.6 % Z 4.48 67.54 16.61 150.0 ± 9.6 % AAA Preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.54 16.61 150.0 ± 9.6 % AAA DEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % AAA BPSK) Y 4.68 67.64 16.86 150.0 10422- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 68.17 17.20 0.00 150.0 ± 9.6 % AAA Mbps, 16-QAM) Y 4.86 67.64 16.89 150.0 10423- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79 67.89<	Z 4.48 67.32 16.55 150.0 10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.60 68.04 17.15 0.00 150.0 ± 9.6 2 4.48 67.77 16.89 150.0 ± 9.6 10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.95 17.12 0.00 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.61 67.69 16.87 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.68 67.64 16.66 150.0 ± 9.6 10423- AAA BPSK) Y 4.68 67.64 16.86 150.0 10423- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.73 67.92 16.96 150.0 10423- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79 68.14 17.19 0.00 150.0 ± 9.6 10424- AAA <td></td> <td></td> <td>Y</td> <td>4.56</td> <td>67.54</td> <td>16.83</td> <td>_</td> <td>150.0</td> <td></td>			Y	4.56	67.54	16.83	_	150.0	
10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) Y 4.60 68.04 17.15 0.00 150.0 ± 9.6 % 10419- IO419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 ± 9.6 % AAA OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 % 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % 10423- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 68.17 17.20 0.00 150.0 ± 9.6 % 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79 68.14 17.19 0.00 150.0 ± 9.6 % AAA Mbps, 64-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 % AAA Mbps, 64-QAM) Y 4.82	10418- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule) X 4.60 68.04 17.15 0.00 150.0 ± 9.6 IO419- IO419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.56 67.77 16.89 150.0 150.0 ± 9.6 AAA DFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 V 4.60 67.44 16.60 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 67.64 16.86 150.0 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 68.17 17.20 0.00 150.0 ± 9.6 10423- AAA Mbps, 64-QAM) Y 4.82 67.92 16.96 150.0 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79							·		
Id419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.95 17.12 0.00 150.0 ± 9.6 % 10422- MAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) Y 4.57 67.69 16.87 150.0 ± 9.6 % 10422- MAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) Y 4.68 67.64 16.86 150.0 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) X 4.86 68.17 17.20 0.00 150.0 ± 9.6 % 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 4.86 68.17 17.20 0.00 150.0 ± 9.6 % 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 4.79 68.14 17.19 0.00 150.0 ± 9.6 % 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 5.41 68.25 17.27 0.00 150.0	Id419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.95 17.12 0.00 150.0 ± 9.6 I0422- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- oFDM, 6 Mbps, 99pc duty cycle, Short preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 I0422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA X 4.72 67.88 17.10 0.00 150.0 ± 9.6 I0422- AAA IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) Y 4.68 67.64 16.86 150.0 I0423- AAA IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) X 4.86 68.17 17.20 0.00 150.0 ± 9.6 I0423- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 4.86 68.17 17.20 0.00 150.0 ± 9.6 I0424- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 4.75 67.89 16.94 150.0 ± 9.6 I0424- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, AAA X 5.41 68.25 17.27 0.00 150.0<		OFDM, 6 Mbps, 99pc duty cycle, Long	X				0.00		± 9.6 %
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Id419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.95 17.12 0.00 150.0 ± 9.6 I0422- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 I0422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA Y 4.57 67.69 16.87 150.0 150.0 I0422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, AAA Y 4.68 67.64 16.86 150.0 I0423- AAA IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) X 4.86 68.17 17.20 0.00 150.0 ± 9.6 I0423- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 4.86 68.17 17.20 0.00 150.0 ± 9.6 I0424- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 4.86 67.64 16.69 150.0 150.0 ± 9.6 I0424- AAA IEEE 802.11n (HT Greenfield, 72.2 AAA X 5.41 68.25 17.27 0.00 150.0 ± 9.6 <tr< td=""><td></td><td></td><td>Y</td><td>4.56</td><td>67.77</td><td>16.89</td><td></td><td>150.0</td><td></td></tr<>			Y	4.56	67.77	16.89		150.0	
10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.95 17.12 0.00 150.0 ± 9.6 % 7 Y 4.57 67.69 16.87 150.0	10419- AAA IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule) X 4.61 67.95 17.12 0.00 150.0 ± 9.6 AAA Preambule) Y 4.57 67.69 16.87 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) Y 4.57 67.69 16.80 150.0 ± 9.6 10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) X 4.72 67.88 17.10 0.00 150.0 ± 9.6 10423- AAA IEEE 802.11n (HT Greenfield, 43.3 X 4.86 67.64 16.69 150.0 ± 9.6 10423- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.73 67.70 16.69 150.0 ± 9.6 10424- AAA Mbps, 64-QAM) Y 4.75 67.89 16.94 150.0 ± 9.6 10424- AAA BPSK) Y 4.75 67.89 16.94 150.0 ± 9.6 10424- AAA BPSK) Y 5.41 68.25 17.27 0.			Z	4.48	67.54		_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AAA	OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X				0.00		± 9.6 %
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	2°	Y	4.57	67.69	16.87		150.0	
10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) X 4.72 67.88 17.10 0.00 150.0 ± 9.6 % AAA BPSK) Y 4.68 67.64 16.86 150.0 ± 9.6 % IEEE 802.11n (HT Greenfield, 43.3 X 4.86 68.17 17.20 0.00 150.0 ± 9.6 % AAA Mbps, 16-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 % AAA Mbps, 16-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 % AAA Mbps, 64-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 % 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79 68.14 17.19 0.00 150.0 ± 9.6 % AAA Mbps, 64-QAM) Y 4.75 67.89 16.94 150.0 ± 9.6 % AAA BPSK) Y 5.37 68.04 17.06 150.0 ± 9.6 % AAA BPSK) Y	10422- AAA IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) X 4.72 67.88 17.10 0.00 150.0 ± 9.6 AAA BPSK) Y 4.68 67.64 16.86 150.0 ± 9.6 IEEE 802.11n (HT Greenfield, 43.3 X 4.86 68.17 17.20 0.00 150.0 ± 9.6 AAA Mbps, 16-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 AAA Mbps, 16-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 AAA Mbps, 64-QAM) Y 4.82 67.92 16.96 150.0 ± 9.6 10424- AAA IEEE 802.11n (HT Greenfield, 72.2 X 4.79 68.14 17.19 0.00 150.0 ± 9.6 AAA Mbps, 64-QAM) Y 4.75 67.89 16.94 150.0 ± 9.6 AAA BPSK) Z 4.66 67.66 16.67 150.0 ± 9.6 AAA BPSK) Y 5.37			_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00		± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Υ	4.68	67.64	16.86		150.0	
10423- AAA IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) X 4.86 68.17 17.20 0.00 150.0 ± 9.6 % Y 4.82 67.92 16.96 150.0 100	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00		± 9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4.82	67.92	16.96		150.0	
10424- AAA IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) X 4.79 68.14 17.19 0.00 150.0 ± 9.6 % Y 4.75 67.89 16.94 150.0 ± 9.6 % Z 4.66 67.66 16.67 150.0 ± 9.6 % 10425- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, AAA X 5.41 68.25 17.27 0.00 150.0 ± 9.6 % AAA BPSK) Y 5.37 68.04 17.06 150.0 ± 9.6 % AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.41 68.25 17.27 0.00 150.0 ± 9.6 % I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.44 68.38 17.34 0.00 150.0 ± 9.6 % AAA 16-QAM) Y 5.40 68.16 17.12 150.0 ± 9.6 %	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Z 4.66 67.66 16.67 150.0 10425- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) X 5.41 68.25 17.27 0.00 150.0 ± 9.6 % V 5.37 68.04 17.06 150.0 ± 9.6 % I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.41 68.38 17.34 0.00 150.0 I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.44 68.38 17.34 0.00 150.0 ± 9.6 % V 5.40 68.16 17.12 150.0 ± 9.6 %	Z 4.66 67.66 16.67 150.0 10425- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) X 5.41 68.25 17.27 0.00 150.0 ± 9.6 V 5.37 68.04 17.06 150.0 ± 9.6 I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.41 68.38 17.34 0.00 150.0 I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.44 68.38 17.34 0.00 150.0 ± 9.6 V 5.40 68.16 17.12 150.0 ± 9.6			X	4.79	68.14	17.19	0.00		± 9.6 %
Image: Constraint of the constrated of the constraint of the constraint of the constraint of the	Z 4.66 67.66 16.67 150.0 10425- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) X 5.41 68.25 17.27 0.00 150.0 ± 9.6 AAA BPSK) Y 5.37 68.04 17.06 150.0 ± 9.6 I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.44 68.38 17.34 0.00 150.0 ± 9.6 I0426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.44 68.38 17.34 0.00 150.0 ± 9.6 V 5.40 68.16 17.12 150.0 ± 9.6		· · · · · · · · · · · · · · · · · · ·			67.89	16.94		150.0	
10425- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) X 5.41 68.25 17.27 0.00 150.0 ± 9.6 % V 5.37 68.04 17.06 150.0 ± 9.6 % V 5.37 68.04 17.06 150.0 ± 9.6 % V 5.28 67.83 16.82 150.0 10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 % V 5.40 68.16 17.12 150.0 ± 9.6 %	10425- AAA IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) X 5.41 68.25 17.27 0.00 150.0 ± 9.6 V 5.37 68.04 17.06 150.0 ± 9.6 V 5.28 67.83 16.82 150.0 10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, AAA X 5.44 68.38 17.34 0.00 150.0 ± 9.6 V 5.40 68.16 17.12 150.0 ± 9.6			Z						
Ideal Z 5.28 67.83 16.82 150.0 10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 % Y 5.40 68.16 17.12 150.0	IO426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) Z 5.28 67.83 16.82 150.0 Y 5.40 68.38 17.34 0.00 150.0 ± 9.6			X	5.41	68.25		0.00		± 9.6 %
Ideal Z 5.28 67.83 16.82 150.0 10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 % Y 5.40 68.16 17.12 150.0	Ideal Z 5.28 67.83 16.82 150.0 10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 Y 5.40 68.16 17.12 150.0			Y	5.37	68.04	17.06		150.0	
10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 % Y 5.40 68.16 17.12 150.0 ± 150.0 ± 150.0 ± 150.0 ± 9.6 % 17.12 150.0 ± ± 150.0 <td>10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 Y 5.40 68.16 17.12 150.0 ± 9.6</td> <td></td> <td></td> <td>Z</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	10426- AAA IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) X 5.44 68.38 17.34 0.00 150.0 ± 9.6 Y 5.40 68.16 17.12 150.0 ± 9.6			Z						
		-						0.00		± 9.6 %
				Y	5.40	68 16	17 12		150.0	

s F f

September 22, 2017

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.41	68.20	17.24	0.00	150.0	± 9.6 %
		Y	5.37	67.99	17.02		150.0	
		Ż	5.27	67.73	16.76		150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	x	4.68	74.13	19.83	0.00	150.0	± 9.6 %
		Y	4.66	73.98	19.65		150.0	
		Z	4.33	72.57	18.70		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.30	68.76	17.23	0.00	150.0	± 9.6 %
		Y	4.24	68.39	16.91		<u>1</u> 50.0	
10.100		Z	4.13	68.04			150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.58	68.36	17.21	0.00	150.0	±9.6 %
•		Y	4.53	68.06	16.94		150.0	
10433-		Z	4.43	67.79	16.63		150.0	
AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.81	68.17	17.21	0.00	150.0	± 9.6 %
		Y	4.77	67.92	16.96		150.0	
10434-	W-CDMA (BS Test Model 1, 64 DPCH)	Z	4.68	67.69	16.69		150.0	
<u>A</u> AA		X	5.03	75.87	20.06	0.00	150.0	± 9.6 %
		Y	4.99	75.61	19.83		150.0	
10435-		Z	4.49	73.69	18.66		150.0	
AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	131.13	34.80	3.23	80.0	± 9.6 %
	<u> </u>	Y	100.00	126.21	32.67		80.0	
40447		<u>Z</u>	100.00	125.44	31.99		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.69	69.53	16.77	0.00	150.0	± 9.6 %
		Y	3.58	68.87	16.29		150.0	
		Z	3.42	68.21	15.70		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.15	68.58	17.12	0.00	150.0	±9.6 %
		Y	4.09	68.20	16.80		150.0	
		Z	3.99	67.84	16.42		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.41	68.22	17.14	0.00	150.0	± 9.6 %
		Y	4.36	67.92	16.86		150.0	
		Z	4.27	67.63	16.54		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.60	67.99	17.10	0.00	150.0	±9.6 %
		Y_	4.55	67.72	16.84		150.0	
		Z	4.47	67.48	16.56	_	150.0	
10451- <u>AAA</u>	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.62	69.93	16.40	0.00	150.0	± 9.6 %
		_ <u>Y</u>	3.47	69.09	15.83		150.0	
10/		Z	3.27	68.23	15.13		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.36	68.84	17.42	0.00	150.0	± 9.6 %
		<u> </u>	6.32	68.67	17.24	L	150.0	
40457		Z	6.23	68.46	17.01		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.88	66.43	16.81	0.00	150.0	± 9.6 %
		<u> </u>	3.85	66.20	16.55		150.0	
40450		Z	3.80	66.01	16.28	L	150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	4.65	75.19	19.34	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.52	74.56	18.92		150.0	
40455		Z	4.04	72.55	17.67		_ 150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.15	69.96	18.79	0.00	150.0	±9.6 %
		Y	5,22	70.24	18.85		150.0	
		Z	4.92	69.20	18.07		150.0	

.

3

September 22, 2017

λ.

10460- AAA	UMTS-FDD (WCDMA, AMR)	x	3.37	95.81	29.07	0.00	150.0	± 9.6 %
		Y	1.74	81.67	23.23		150.0	
		Z	1.21	74.42	19.58		150.0	· · · ·
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	143.01	40.15	3.29	80.0	± 9.6 %
		Y	100.00	134.90	36.63		80.0	
		Z	100.00	132.97	35.44		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	119.25	28.85	3.23	80.0	± 9.6 %
		Y	100.00	113.20	26.37		80.0	
		Z	100.00	110.00	24.63		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	×	100.00	113.75	26.28	3.23	80.0	± 9.6 %
		Y	100.00	108.57	24.18		80.0	
		Z	100.00	105.07	22.33		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	141.23	39.11	3.23	80.0	± 9.6 %
<u> </u>		Y	100.00	132.81	35.48		80.0	
		Z	100.00	130.60	34.16	_	80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	118.41	28.46	3.23	80.0	±9.6 %
		Y	100.00	112.48	26.02		80.0	
		Z	100.00	109.28	24.29		80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.90	25.90	3.23	80.0	±9.6 %
		_ Y	100.00	107.89	23.87		80.0	
		Z	100.00	104.43	22.04		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	141.61	39.28	3.23	80.0	±9.6 %
_		Y	_100.00	133.15	35.63		80.0	
		Z	100.00	130.94	34.31		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	118.75	28.61	3.23	80.0	± 9.6 %
		Y	100.00	112.75	26.15		80.0	
		Z	100.00	109.56	24.42		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.98	25.93	3.23	80.0	± 9.6 %
		Y	100.00	107.94	23.89		80.0	
_		Z	100.00	104.47	22.05		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	141.70	39.31	3.23	80.0	± 9.6 %
		Y	100.00	133.21	35.65		80.0	
(Ζ	100.00	130.98	34.32		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	118.69	28.58	3.23	80.0	± 9.6 %
		Y	100.00	112.69	26.12		80.0	-
101=-		_Z_	100.00	109.48	24.38		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.90	25.89	3.23	80.0	±9.6 %
		Y	100.00	107.86	23.85		80.0	
40.470		_ Z_	100.00	104.38	22.01		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	141.67	39.29	3.23	80.0	±9.6 %
		Υ	100.00	133.18	35.63		80.0	
4047		Z	100.00	130.96	34.31		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	118.71	28.58	3.23	80.0	± 9.6 %
		Y	100.00	112,70	26.12		80.0	
40475		Z	100.00	109.49	24.38		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	112.93	25.90	3.23	80.0	± 9.6 %
		Y	100.00	107.88	23.85		80.0	
		Ζ	100.00	104.40	22.02			

.

September 22, 2017

.

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	118.43	28.45	3.23	80.0	± 9.6 %
		Y	100.00	112.46	26.00		80.0	
		Z	100.00	109.24	24.26		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.82	25.85	3.23	80.0	± 9.6 %
		Y _	100.00	107.79	23.82		80.0	
		Z	100.00	104.31	21.98		80.0	<u> </u>
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	132.85	37.00	3.23	80.0	±9.6 %
		Y	100.00	128.47	35.00		80.0	
		Z	100.00	127.00	34.04		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	120.16	30.90	3.23	80.0	± 9.6 %
		Ý	100.00	116.69	29.36		80.0	
		Z	100.00	114.91	28.26		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	117.70	29.67	3.23	80.0	± 9.6 %
		Y	100.00	114.39	28.21		80.0	
		Z	100.00	112.46	27.04		80.0	<u> </u>
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.13	31.51	2.23	80.0	±9.6 %
		Y	54.92	111.25	28.42	-	80.0	
		Ζ	13.32	91.56	22.86		80.0	· · ·
10483- <u>AAA</u>	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	116.38	29.36	2.23	80.0	± 9.6 %
		Y	100.00	113.46	28.01		80.0	
		Ζ	11.26	84.75	19.89		80.0	
10484- <u>AAA</u>	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	115.90	29.19	2.23	80.0	± 9.6 %
		Y	50.77	104.49	25.86		80.0	
		Z	8.43	80.95	18.67		80.0	<u> </u>
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	65.25	120.82	33.02	2.23	80.0	± 9.6 %
		Y	24.29	103.39	28.10		80.0	
		Ζ	11.52	91.94	24.54		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	10.69	87.70	22.97	2.23	80.0	± 9.6 %
		Y	8.09	82.63	21.00		80.0	
		Z	5.71	77.63	18.94		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	9.28	85.21	22.13	2.23	80.0	± 9.6 %
		Y	7.33	80.85	20.36		80.0	
·		Z	5.35	76.37	18.44		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	11.48	93.02	26.74	2.23	80.0	± 9.6 %
		Y	9.12	87.88	24.67	· · ·	80.0	
		Z	6.88	83.40	22.96		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	6.05	78.94	21.72	2.23	80.0	± 9.6 %
		Y	5.74	77.30	20.79		80.0	
		Z	4.98	75.13	19.74		80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.92	78.02	21.35	2.23	80.0	± 9.6 %
		Y	5.66	76.55	20.49		80.0	
1010		Z	4.96	74.57	19.51		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.36	83.03	23.55	2.23	80.0	± 9.6 %
		Ŷ	6.73	80.60	22.34		80.0	
		Ζ	5.73	78.11	21.25		80.0	
_			F 40	74.92	20.52	2.23		1000
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	5.42	74.92	20.02	2.23	80.0	± 9.6 %
		X Y	5.42	74.92	19.90	2.23	80.0	± 9.0 %

1 -1 -1 - 7 1 - 7 September 22, 2017

.

10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	x	5.40	74.45	20.20	2.02	000	
AAC	64-QAM, UL Subframe=2,3,4,7,8,9)				20.32	2.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.32	73.63	19.73		80.0	
40404		Z	4.88	72.39	_ 19.05		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.17	86.80	24.72	2.23	80.0	±9.6 %
		Y	8.03	83.58	23.27	_	80.0	
		Z	6.60	80.52	22.02		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.52	75.46	20.81	2.23	80.0	± 9.6 %
		Y	5.42	74.52	20.17		80.0	
10.100		Z	4.93	73.12	19.44		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.45	74.64	20.50	2.23	80.0	±9.6 %
		Y	5.38	73.84	19.92		80.0	
10.107		Z	4.93	72.57	19.24		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	115.27	27.88	2.23	80.0	± 9.6 %
		Y	25.28	96.48	22.93		80.0	
40400		Z	5.87	78.71	17.31		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	2.96	68.45	12.76	2.23	80.0	± 9.6 %
		Y	2.21	64.78	11.01		80.0	
		Z	1.67	62.18	9.40		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.39	65.91	11.50	2.23	80.0	±9.6 %
		Y	1.96	63.35	10.16		80.0	
		Z	1.55	61.26	8.77		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	21.96	103.85	29.24	2.23	80.0	± 9.6 %
		Y	13.48	94.40	26.05		80.0	
		Z	8.53	87.25	23.57		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	8.02	83.54	22.29	2.23	80.0	±9.6 %
		Y	6.90	80.32	20.86		80.0	
		Ζ	5.43	76.80	19.30		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	7.77	82.58	21.87	2.23	80.0	± 9.6 %
	2*	Y	6.74	79.56	20.50		80.0	
		Z	5.37	76.23	19.00	-	80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	11.17	92.54	26.57	2.23	80.0	±9.6 %
		Y	8.90	87.45	24.51		80.0	
		Z	6.74	83.07	22.83		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.00	78.78	21.64	2.23	80.0	± 9.6 %
-		Y	5.69	77.13	20.71		80.0	
40505		Z	4.94	74.99	19.66		80.0	
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.88	77.87	21.28	2.23	80.0	± 9.6 %
		Ý	5.62	76.40	20.42		80.0	
40500		Z	4.93	74.45	19.44		80.0	
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.03	86.51	24.60	2.23	80.0	±9.6 %
	<u> </u>	<u>Y</u>	7.91	83.32	23.16		80.0	
40507		Z	6.52	80.31	21.93		80.0	
10507- 4AC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.50	75.38	20.77	2.23	80.0	± 9.6 %
	<u></u>							
		Y	5.39	74.44	20.13		80.0	

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.43	74.55	20.45	2.23	80.0	±9.6 %
		Y	5.35	73.74	19.86	— — —	80.0	
		Z	4.91	72.49	19.19		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.27	80.16	22.31	2.23	80.0	± 9.6 %
		Y	6.86	78.46	21.40		80.0	
		Z	6.07	76.60	20.55		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.60	73.37	20.04	2.23	80.0	± 9.6 %
		×	<u>5.56</u>	72.76	19.56		80.0	
40544		Z	<u>5.19</u>	71.77	19.01		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.57	72.82	19.83	2.23	80.0	± 9.6 %
		Y	5.55	72.29	19.39		80.0	
40545		Ζ_	5.21	71.39	18.87		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.90	84.26	23.64	2.23	80.0	± 9.6 %
		Y	8.02	81.72	22.45		80.0	
10540		Z	6.83	79.22	21.40		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.59	74.00	20.32	2.23	80.0	± 9.6 %
		Y	5.54	73.30	19.79		80.0	
40544		Z	5.13	72.20	19.19		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.48	73.14	20.00	2.23	80.0	±9.6 %
_		Y	5.45	72.55	19.53		80.0	
		Z	5.09	71.56	18.98		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.15	67.44	18.30	0.00	150.0	± 9.6 %
		Y	1.10	66.10	17.12		150.0	
10510		Z	1.04	64.87	15.98		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	100.00	185.02	53.92	0.00	150.0	± 9.6 %
			4.08	110.19	34.01		150.0	
10517-		Z	1.21	84.34	24.35		150.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	1.23	74.63	21.82	0.00	150.0	± 9.6 %
		Y	1.06	70.88	19.41		150.0	
10518-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9	Z X	0.94 4.59	68.06 67.92	<u>1</u> 7.43 17.08	0.00	<u>150.0</u> 150.0	± 9.6 %
AAA	Mbps, 99pc duty_cycle)	<u> </u>			<u> </u>		<u> </u>	
·	· · · · · · · · · · · · · · · · · · ·	7	4.55	67.66	16.83		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	Z X	4.47 4.75	67.43 68.08	16.55 17.16	0.00	150.0 150.0	± 9.6 %
		Y	4.71	67.83	16.91		150.0	
	· · · · · · · · · · · · · · · · · · ·	 	4.62	67.60	16.63		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.61	68.08	17.11	0.00	150.0	± 9.6 %
		Y	4.57	67.81	16.85		150.0	
		Z	4.48	<u>6</u> 7.55	16.56		150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Х	4.55	68.08	17.11	0.00	150.0	± 9.6 %
		Ý	4.50	67.80	16.85		150.0	
10500		Z	4.42	67.54	16.55		150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.61	68.22	17.21	0.00	150.0	± 9.6 %
		Y	4.56	67.94	16.95		150.0	
		Z	4.47	67.67	16.65		150.0	

Л

September 22, 2017

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.52	68.18	17.12	0.00	150.0	± 9.6 %
		Y	4.48	67.89	16.85		150.0	
		Z	4.39	67.64	16.56		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.56	68.16	17.20	0.00	150.0	± 9.6 %
		Y	4.51	67.87	16.93		150.0	
		Z	4.42	67.62	16.64		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.58	67.22	16.79	0.00	150.0	± 9.6 %
		Y	4.53	66.96	16.53		150.0	
		Z	4.45	66.71	16.25		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	x _	4.73	67.55	16.92	0.00	150.0	± 9.6 %
		Y	4.68	67.28	16.66		150.0	
		Z	4.58	67.01	16.37		150.0	
10527- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.66	67.55	16.87	0.00	150.0	± 9.6 %
		Y	4.61	67.26	16.61		150.0	
		Z	4.51	66.98	16.31		150.0	
10528- 	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.67	67.56	16.90	0.00	150.0	± 9.6 %
		Y	4.62	67.27	16.64		150.0	
		Z	4.53	67.00	16.34		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.67	67.56	16.90	0.00	150.0	± 9.6 %
		Y	4.62	67.27	16.64		150.0	i
		Z	4.53	67.00	16.34		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.65	67.64	16.91	0.00	150.0	± 9.6 %
		Y	4.60	67.34	16.64		150.0	
		Z	4.50	67.04	16.33		150.0	
10532- <u>AAA</u>	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.52	67.51	16.86	0.00	150.0	± 9.6 %
_		Y	4.47	67.22	16.59		150.0	
		Z	4.37	66.91	16.27		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.68	67.65	16.91	0.00	150.0	± 9.6 %
		Y	4.63	67.36	16.65		150.0	
		Ż	4.53	67.08	16.35		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.20	67.39	16.83	0.00	150.0	± 9.6 %
		Y	5.16	67.18	16.61		150.0	·
		Z	5.07	66.93	16.35	· · · -	150.0	·
10535- AAA	IEEE 802.11ac WIFi (40MHz, MCS1, 99pc duty cycle)	X	5.27	67.58	16.92	0.00	150.0	± 9.6 %
		Y	5.22	67.35	16.70		150.0	
40500		Z	5.12	67.09	16.43		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.15	67.59	16.91	0.00	150.0	± 9.6 %
		Y	5.1 1	67.36	16.68		150.0	
40507		Z	5.02	67.10	16.41		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.20	67.53	16.88	0.00	150.0	± 9.6 %
		Y	5.16	67.30	16.66		150.0	
40500		Z	5.07	67.07	16.40		150.0	
10538- <u>AAA</u>	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.27	67.48	16.89	0.00	150.0	± 9.6 %
	<u> </u>	Y	5.23	67.27	16.67		150.0	· · · ·
10540		· Z	5.14	67.03	16.42		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.20	67.48	16.91	0.00	150.0	± 9.6 %
		Ý	5.16	67.26	16.69		150.0	
		Z	5.07	67.00	16.42		150.0	

; ; ; ; а

September 22, 2017

`

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.18	67.34	16.82	0.00	150.0	± 9.6 %
		Y	5.14	67.12	16.61		150.0	
		Z	5.05	66.89	16.35		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.33	67.42	16.87	0.00	150.0	± 9.6 %
		Y	5.29	67.21	16.66		150.0	
		Z	5.20	66.99	16.41		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.40	67.44	16.90	0.00	150.0	± 9.6 %
		Y	5.36	67.24	16.70		150.0	
405(4		Z	5.27	67.04	16.47		150.0	
10544- <u>A</u> AA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.53	67.39	16.75	0.00	150.0	± 9.6 %
		Y	5.49	67.20	16.56		150.0	
40545		Z	5.41	66.99	16.32		150.0	_
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.74	67.91	16.97	0.00	150.0	± 9.6 %
		Y	5.70	67.70	16.77		150.0	
10510		Z	5.60	67.47	16.52		150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.57	67.55	16.80	0.00	150.0	± 9.6 %
		Y	5.53	67.35	16.60		150.0	
-		Z	5.45	<u>67.13</u>	16.36		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.66	67.65	16.84	0.00	150.0	± 9.6 %
		Y	5.62	67.45	16.64		150.0	
		Z	5.53	67.23	16.41		150.0	
10548- 	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.90	68.59	17.29	0.00	150.0	± 9.6 %
		Y	5.84	68.33	17.06		150.0	
		Z	5.71	67.98	16.76		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.64	67.75	16.92	0.00	150.0	±9.6 %
		Y	5.60	67.54	16.71		150.0	
		Z	5.51	67.32	16.47		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.59	67.58	16.79	0.00	150.0	± 9.6 %
		Y	5.55	67.38	16.59		150.0	
		Z	5.45	67.11	16.33		150.0	
10552- AAA	PIEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.54	67.49	16.75	0.00	150.0	± 9.6 %
		Y	5.50	67.29	16.55		150.0	
		Z	5.42	67.10	16.32		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.60	67.45	16.75	0.00	150.0	± 9.6 %
		Y	5.56	67.25	16.56		150.0	
		Z	5.48	67.05	16.33		150.0	
10554- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.95	67.70	16.80	0.00	150.0	± 9.6 %
		Y	5.91	67.51	16.61		150.0	
		Z	5.83	67.32	16.39		150.0	
10555- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.07	68.00	16.93	0.00	150.0	± 9.6 %
		Y	6.03	67.81	16.74		150.0	
		Z	5.94	67.58	16.50		150.0	
10556- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.11	68.10	16.97	0.00	150.0	±9.6 %
		Y	6.07	67.90	16.78		150.0	
		Z	5.98	67.68	16.55		150.0	
10557- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.05	67.93	16.91	0.00	150.0	± 9.6 %
		Y	6.01	67.74	16.72	<u> </u>	150.0	
		Z	5.92	67.53	16.49	1	150.0	

4 . 1 . 4 . 4 .5

September 22, 2017

λ.

10558- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.09	68.07	16.99	0.00	150.0	± 9.6 %
		Y	6.04	67.87	16.80		150.0	
		Z	5.95	67.63	16.56		150.0	
10560- AAB	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.08	67.92	16.95	0.00	150.0	± 9.6 %
		Y	6.04	67.73	16.77		150.0	
		Z	5.95	67.52	16.54	· · · · · · · · · · · · · · · · · · ·	150.0	
10561- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.02	67.94	17.00	0.00	150.0	± 9.6 %
		Y	5.98	67.74	16.81		150.0	
		Z	5.89	67.52	16.58		150.0	
10562- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.09	68.17	17.12	0.00	150.0	± 9.6 %
		Y	6.05	67.96	16.92		150.0	
		Z	5.95	67.72	16.67		150.0	
10563- AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.19	68.10	17.04	0.00	150.0	± 9.6 %
		Y	6.15	67.90	16.85		150.0	
		<u>Z</u>	6.04	67.65	16.60		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.91	67.89	17.17	0.46	150.0	±9.6 %
10565	<u> </u>	Y	4.87	67.64	16.93		150.0	
		Z	4.80	67.46	16.69		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.11	68.27	17.46	0.46	150.0	±9.6 %
		Y	5.08	68.05	17.23		150.0	
		Z	4.99	67.85	16.98		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.96	68.15	17.30	0.46	150.0	±9.6 %
		Y	4.92	67.91	17.06		150.0	-
		Z	4.83	67.70	16.81		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.99	68.55	17.66	0.46	150.0	± 9.6 %
		Y	4.96	68.34	17.45		150.0	
		Z	4.87	68.08	17.17		150.0	· · ·
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.88	67.99	17.11	0.46	150.0	± 9.6 %
		Y	4.83	67.70	16.84		150.0	
		Z	4.75	67.51	16.61		150.0	
10569- ⁻ AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.98	68.78	17.81	0.46	150.0	± 9.6 %
	·	Y	4.95	68.58	17.60		150.0	
		Z	4.86	68.32	17.31		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.98	68.56	17.69	0.46	150.0	± 9.6 %
		Y	4.95	68.33	17.47		150.0	
40574		<u>Z</u>	4.86	68.09	17.20		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.53	70.26	19.68	0.46	130.0	± 9.6 %
		Y	1.48	68.95	18.55		130.0	
40570		Z	1.37	67.40	17.39		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.59	71.46	20.33	0.46	130.0	± 9.6 %
_		Y	1.53	70.00	19.13		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	Z X	1.41 100.00	<u>68.22</u> 167.17	17.86 47.85	0.46	1 <u>30.0</u> 130.0	± 9.6 %
		+	400.00					
	<u> </u>	Y	100.00	157.87	43.89		130.0	
10574-		Z	100.00	153.13	41.71		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	3.10	89.83	28.24	0.46	130.0	± 9.6 %
		Y	2.51	83.93	25.32		130.0	
		Z	1.87	77.75	22.34		130.0	

1. 1. 1. 1. 1.

10575- 	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	X	4.72	67.77	17.29	0.46	130.0	± 9.6 %
		Y	4 <i>.</i> 68	67.55	17.05		130.0	
(0.0		Z	4.61	67.35	16.79	_	130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.75	67.98	17.37	0.46	130.0	± 9.6 %
		Y	4.72	67.76	17.14		130.0	
		Z	4.64	67.55	16.88		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.92	68.19	17.49	0.46	130.0	±9.6 %
		Y	4.89	67.98	17.27		130.0	
40570		Z	4.80	67.76	17.01		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.83	68.39	17.63	0.46	130.0	±9.6 %
		Y	4.80	68.19	17.41		130.0	
		Z	4.71	67.93	17.12		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.60	67.68	16.96	0.46	130.0	± 9.6 %
		ΓY Τ	4.56	67.40	16.68	_	130.0	
		Z	4.48	67.20	16.44	_	130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.64	67.76	17.00	0.46	130.0	± 9.6 %
		Y	4.60	67.47	16.71	·	130.0	
		Z	4.52	67.27	16.47		130.0	·
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.75	68.54	17.65	0.46	130.0	±9.6 %
		Y	4.72	68.32	17.42		130.0	
		Z	4.63	68.05	17.12		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.53	67.47	16.77	0.46	130.0	± 9.6 %
		Y	4.49	67.15	16.46		130.0	
		Z	4.41	66.99	16.24		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.72	67.77	17.29	0.46	130.0	±9.6 %
		Y	4.68	67.55	17.05		130.0	
	······································	Z	4.61	67.35	16.79		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.75	67.98	17.37	0.46	130.0	± 9.6 %
		Y	4.72	67.76	17.14		130.0	
		Z	4.64	67.55	16.88		130.0	
10585- AAA	HEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.92	68.19	17.49	0.46	130.0	± 9.6 %
· -		Y	4.89	67.98	17.27		130.0	
		Z	4.80	67.76	17.01	<u> </u>	130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	x	4.83	68.39	17.63	0.46	130.0	±9.6 %
		Y	4.80	68.19	17.41		130.0	
		Z	4.71	67.93	17.12		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.60	67.68	16.96	0.46	130.0	± 9.6 %
		Y	4.56	67.40	16.68	— · ·	130.0	
		Z	4.48	67.20	16.44		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.64	67.76	17.00	0.46	130.0	±9.6 %
		Y	4.60	67.47	16.71		130.0	
		Z	4.52	67.27	16.47		130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.75	68.54	17.65	0.46	130.0	±9.6 %
		Y	4.72	68.32	17.42		130.0	
		Z	4.63	68.05	17.12		130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.53	67.47	16.77	0.46	130.0	± 9.6 %
		Y	4.49	67.15	16.46		130.0	
			4.40	07.10	1 10.40		1 130.0	

л

September 22, 2017

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.86	67.77	17.35	0.46	130.0	± 9.6 %
		Y	4.83	67.57	17.13		420.0	<u> </u>
		Z	4.76	67.39	16.89		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.00	68.10	17.48	0.46	130.0 130.0	± 9.6 %
/		- Y	4.97	67.89	17.26		130.0	
		z	4.88					
10593-	IEEE 802.11n (HT Mixed, 20MHz,	$-\frac{2}{X}$		67.69	17.01	0.40	130.0	
<u>AAA</u>	MCS2, 90pc duty cycle)	- ^ - Y	4.92	68.01	17.36	0.46	130.0	±9.6 %
		- T	4.89	67.79	17.13		130.0	
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	- <u>Z</u> X	4.80	67.59 68.18	<u>16.88</u> 17.52	0.46	130.0 130.0	± 9.6 %
		- Y	4.94	67.97	17.30		130.0	
		z	4.86	67.76	17.04		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.95	68.18	17.45	0.46	130.0	± 9.6 %
		Y	4.91	67.96	17.21		130.0	
		- <u> </u>	4.83	67.75	16.96	<u> </u>	130.0	
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.88	68.19	17.46	0.46	130.0	± 9.6 %
			4.85	67.95	17.22	<u> </u>	130.0	
		Z	4.76	67.74	16.97		130.0	
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.83	68.07	17.33	0.46	130.0	± 9.6 %
		Y	4.80	67.83	17.08		130.0	· · · · · · · · · · · · · · · · · · ·
		Z	4.71	67.61	16.83		130.0	
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.82	68.29	17.59	0.46	130.0	± 9.6 %
		Y	4.79	68.08	17.36		130.0	
		Z	4.70	67.83	17.08		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.54	68.17	17.50	0.46	130.0	± 9.6 %
		Y	5.51	67.99	17.30		130.0	
		Z	5.43	67.80	17.08		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.69	68.70	17.74	0.46	130.0	±9.6 %
		Y	5.65	68.47	17.52		130.0	·
		Z	5.55	68.23	17.28		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.56	68.37	17.60	0.46	130.0	± 9.6 %
		Y	5.53	68.17	17.39		130.0	
		Z	5.44	67.97	17.16		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.70	68.54	17.60	0.46	130.0	± 9.6 %
		Y	5.66	68.33	17.38		130.0	
140		Z	5.58	68.16	17.17		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.78	68.87	17.89	0.46	130.0	± 9.6 %
		Y	5.75	68.67	17.69		130.0	
40001		Z	5.64	68.42	17.44		130.0	
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.65	68.51	17.70	0.46	130.0	±9.6 %
		<u> </u>	5.62	68.31	17.49		130.0	
40005		Z	5.52	68.06	17.24		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.67	68.56	17.73	0.46	130.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.64	68.34	17.50		130.0	
100		Z	5.54	68.11	17.26		130.0	
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.41	67.85	17.23	0.46	130.0	± 9.6 %
				·			<u>+</u>	<u> </u>
		Y	5.38	67.63	17.01		130.0	

September 22, 2017

•

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.73	67.22	17.05	0.46	130.0	± 9.6 %
		Y	4.69	66.99	16.81	<u> </u>	130.0	<u> </u>
		Z	4.61	66.77	16.55		130.0	<u> </u>
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.89	67.59	17.21	0.46	130.0	± 9.6 %
		Ý	4.85	67.36	16.97	-	130.0	
10000		Z	4.76	67.12	16.70		130.0	· · · · · · · · · · · · · · · · · · ·
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.79	67.47	17.06	0.46	130.0	± 9.6 %
		Y	4.75	67.21	16.81		130.0	
10610-		Z	4.66	66.98	16.54		130.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.84	67.62	17.21	0.46	130.0	± 9.6 %
	·	Y	4.80	67.38	16.98		130.0	
10611-	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.71	67.13	16.70	0.10	130.0	
	90pc duty cycle)	X	4.75	67.43	17.07	0.46	130.0	± 9.6 %
		- Y	4.71	67.19	16.83		130.0	
10612-	IEEE 802.11ac WiFi (20MHz, MCS5,	Z	4.62	66.94	16.55		130.0	
AAA	90pc duty cycle)	X	4.76	67.63	17.15	0.46	130.0	±9.6 %
		Y	4.72	67.36	16.89		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z X	4.62	67.11	16.61		130.0	
AAA	90pc duty cycle)		4.76	67.45	16.99	0.46	130.0	± 9.6 %
		Y	4.71	67.17	16.73	_	130.0	
10614-	IEEE 802.11ac WiFi (20MHz, MCS7,	Z	4.62	66.92	16.46		130.0	
<u>AAA</u>	90pc duty cycle)	X	4.71	67.65	17.23	0.46	130.0	±9.6 %
	·	Y	4.68	67.41	16.99		130.0	
10615-		Z	4.58	67.13	16.69		130.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.75	67.29	16.86	0.46	130.0	± 9.6 %
		Y	4.71	67.01	16.59		130.0	
10616-		_ <u>Z</u>	4.62	66.80	16.34		130.0	
AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.36	67.41	17.11	0.46	130.0	± 9.6 %
		Y	5.32	67.22	16.91		130.0	
		Z	5.24	67.01	16.67		130.0	
10617- AAA	⊶IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.44	67.66	17.21	0.46	130.0	± 9.6 %
<u> </u>		Y	5.40	67.45	17.00		130.0	
10640		Z	5.30	67.20	16.74		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.34	67.71	17.26	0.46	130.0	± 9.6 %
		Y	5.30	67.51	17.04		130.0	
40040		Z	5.21	67.26	16.79	<u> </u>	130.0	<u> </u>
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	x	5.34	67.48	17.07	0.46	130.0	± 9.6 %
		Y	5.30	67.27	16.86		130.0	
40000		Z	5.22	67.06	16.62		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.41	67.47	17.11	0.46	130.0	± 9.6 %
		Y	5.38	67.26	16.90		130.0	
10004		Z	5.29	67.06	16.67		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.41	67.55	17.27	0.46	130.0	± 9.6 %
		Y	5.38	67.38	17.08		130.0	
40000		<u>Z</u>	5.29	67.14	16.82		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.42	67.70	17.34	0.46	130.0	±9.6 %
		Y	5.38	67.50	17.14		130.0	
		Z	5.29	67.26	16.88		130.0	

з

September 22, 2017

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.29	67.21	16.97	0.46	130.0	±9.6 %
		Y	5.26	67.01	16.75		130.0	
		z	5.17	66.80	16.52		130.0	
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.49	67.44	17.13	0.46	130.0	± 9.6 %
		Y	5.46	67.25	16.93		130.0	
		Z	5.37	67.04	16.70		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.67	67.85	17.40	0.46	130.0	± 9.6 %
		Y	5.63	67.64	17.18		130.0	
		Z	5.49	67.29	16.88		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.67	67.37	17.01	0.46	130.0	± 9.6 %
		Y	5.64	67.20	16.82		130.0	
		Z	5.56	67.01	16.60		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.95	68.11	17.34	0.46	130.0	± 9.6 %
		Y	5.91	67.91	17.14		130.0	
		Z	5.81	67.67	16.90		130.0	
10628- <u>AAA</u>	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.68	67.42	16.93	0.46	130.0	± 9.6 %
		Y	5.65	67.22	16.73		130.0	
		Z	5.56	67.03	16.51		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.78	67.58	17.01	0.46	130.0	± 9.6 %
		Y	5.75	67.38	16.80		130.0	
		Z	5.66	67.19	16.59		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.18	69.00	17.72	0.46	130.0	±9.6%
		Y	6.12	68.72	17.47		130.0	
		Z	5.97	68.32	17.16		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.05	68.69	17.74	0.46	130.0	± 9.6 %
		Y	6.02	68.51	17.56		130.0	
		Z	5.90	68.19	17.27		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.92	68.20	17.52	0.46	130.0	± 9.6 %
		Y	5.89	68.03	17.34		130.0	· · ·
		Z	5.79	67.79	17.09	·	130.0	
10633- AAA	^a IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.75	67.61	17.06	0.46	130.0	± 9.6 %
		Y	5.71	67.43	16.87		130.0	-
		Z	5.61	67.18	16.62		130.0	·
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.73	67.62	17.12	0.46	130.0	± 9.6 %
		Y.	5.70	67.45	16.93		130.0	
		Z	5.61	67.26	16.71		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.59	66.93	16.52	0.46	130.0	± 9.6 %
		Y	5.55	66.70	16.29		130.0	· · ·
1		Z	5.48	66.56	16.11		130.0	
10636- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.10	67.70	17.06	0.46	130.0	±9.6 %
		Y	6.07	67.53	16.88		130.0	
4000-		Z	5.99	67.35	16.67		130.0	
10637- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.26	68.11	17.25	0.46	130.0	± 9.6 %
		Y	6.22	67.93	17.06		130.0	
10000		Z	6.13	67.70	16.83		130.0	
10638- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.27	68.11	17.23	0.46	130.0	±9.6 %
		Y	6.23	67.92	17.04		130.0	
		Z	6.14	67.72	16.82		130.0	

1. 1. 1. 1. 1. September 22, 2017

10639- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.22	67.97	17.20	0.46	130.0	± 9.6 %
		Y	6.18	67.80	17.02		130.0	
		Z	6.10	67.60	16.80		130.0	
10640- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.21	67.98	17.15	0.46	130.0	±9.6 %
		Y	6.17	67.78	16.95		130.0	
		Z	6.08	67.56	16.73		130.0	·
10641- AAB	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.30	68.00	17.18	0.46	130.0	± 9.6 %
		Υ	6.26	67.81	16.98		130.0	_
		Z	6.17	67.61	16.77		130.0	
AAB 90p	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	x_	6.30	68.13	17.40	0.46	130.0	± 9.6 %
		Y	6.27	67.97	17.23		130.0	
		Z –	6.18	67.76	17.01		130.0	
10643- I AAB 9	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.16	67.91	17.20	0.46	130.0	± 9.6 %
_		Y	6.12	67.71	17.00		130.0	
		Z	6.03	67.50	16.78		130.0	
10644- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.24	68.16	17.34	0.46	130.0	± 9.6 %
		Y	6.20	67.95	17.14		130.0	
		Z	6.10	67.72	16.91		130.0	
10645- AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.44	68.39	17.42	0.46	130.0	±9.6%
		Y	6.39	68.17	17.21		130.0	
· · · · · · · · · · · ·		Z	6.27	67.87	16.95		130.0	
10646- <u>AA</u> D	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	100.00	154.07	50.96	9.30	60.0	±9.6 %
		Y	100.00	149.19	48.64		60.0	
		<u>Z</u>	100.00	151.77	49.64		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	100.00	155.63	51.65	9.30	60.0	±9.6 %
		Y	100.00	150.58	49.25		60.0	
<u> </u>		Z	100.00	153.26	50.29		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	7.29	96.44	23.44	0.00	150.0	± 9.6 %
		Y	1.15	71.60	14.63		150.0	
1		Z	0.73	65.79	11.39		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.70	71.99	19.13	2.23	80.0	± 9.6 %
		Y	4.65	71.36	18.64		80.0	
1		Z	4.32	70.31	17.98		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.86	69.58	18.56	2.23	80.0	± 9.6 %
		Y	4.87	69.28	18.24		80.0	
		Z	4.66	68.67	17.81		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.78	68.93	18.47	2.23	80.0	± 9.6 %
		Y	4.81	68.69	18.18		80.0	
		Z	4.62	68.14	17.78		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Х	4.83	68.76	18.45	2.23	80.0	± 9.6 %
		Y	4.86	68.54	18.16		80.0	<u> </u>
		Z	4.67	68.01	17.79		80.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

03-27-2017

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Calibration procedure(s)

Certificate No: ES3-3209_Mar17

(CA	L	B	R	A	T	IC	N	С	E	R	T	IF	IC	A	T	E	Second Second

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

ES3DV3 - SN:3209

Calibration date:

March 14, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Арг-17
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	iD	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Name	Function	Signature	
Jeton Kastrali	그 같은 것 같은 것이 같은 것 같은 것은 것이 가지 않는 것 같은 것 같은 것을 가지 않는 것 같이 없는 것 같이 없다.	N=Q2	
			884888
Katja Pokovic	Technical Manager	' I CILL	
		100007	
		Issued: March 16, 2017	
	Jeton Kastrali Kalja Pokovic	Jeton Kastrati Laboratory Technician	Jeton Kastrali Laboratory Technician Kalja Pokovic Technical Manager

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	& rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3209

Manufactured: Calibrated:

October 14, 2008 March 14, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.31	1.28	1.10	± 10.1 %
DCP (mV) ⁸	98.7	100.9	101.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	185.7	±3.5 %
		Y	0.0	0.0	1.0		188.4	
		Z	0.0	0.0	1.0		174.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ¹	T3 ms	T4 V ⁻²	T5 V⁻¹	Т6
Х	55.02	400.2	36.4	24.81	1.139	5.1	1.332	0.294	1.012
Y	53.76	389.5	36.01	25.47	1.401	5.1	1.486	0.333	1.011
Z	54.22	392	35.92	24.25	1.184	5.1	1.305	0.356	1.012

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.76	6.76	6.76	0.80	1.17	± 12.0 %
835	41.5	0.90	6.36	6.36	6.36	0.63	1.31	± 12.0 %
1750	40.1	1.37	5.50	5.50	5.50	0.74	1.16	± 12.0 %
1900	40.0	1.40	5.31	5.31	5.31	0.63	1.30	± 12.0 %
2300	39.5	1.67	4.92	4.92	4.92	0.80	1.20	± 12.0 %
2450	39.2	1.80	4.72	4.72	4.72	0.71	1.33	± 12.0 %
2600	39.0	1.96	4.53	4.53	4.53	0.69	1.37	± 12.0 %

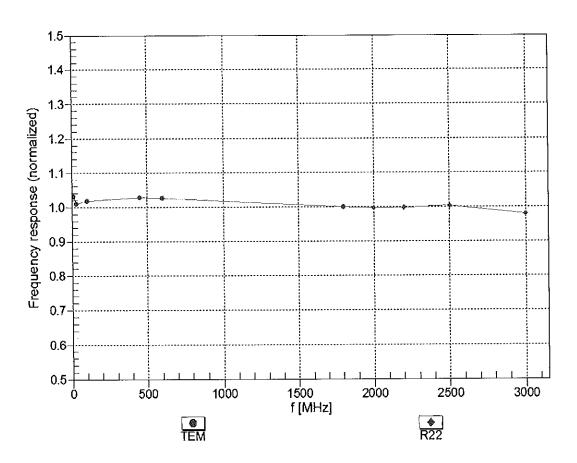
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

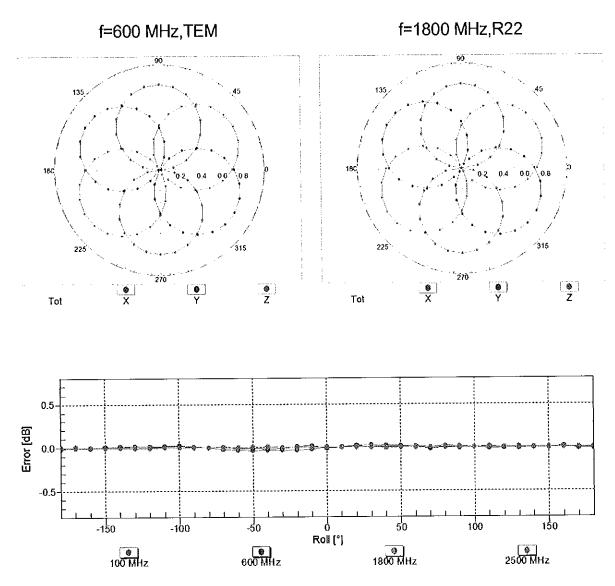
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.44	6.44	6.44	0.80	1.17	± 12.0 %
835	55.2	0.97	6.36	6.36	6.36	0.80	1.20	± 12.0 %
1750	53.4	1.49	5.13	5.13	5.13	0.51	1.53	± 12.0 %
1900	53.3	1.52	4.93	4.93	4.93	0.50	1.59	± 12.0 %
2300	52.9	1.81	4.62	4.62	4.62	0.80	1.24	± 12.0 %
2450	52.7	1.95	4.48	4.48	4.48	0.80	1.24	± 12.0 %
2600	52.5	2.16	4.26	4.26	4.26	0.80	1.20	± 12.0 %

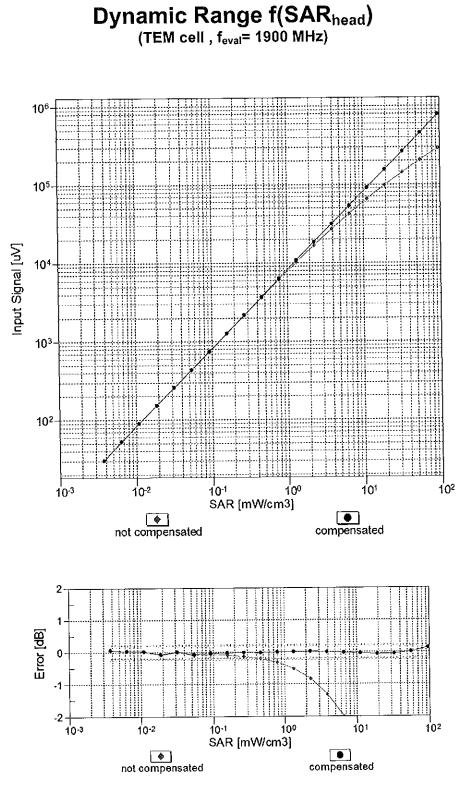
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.


validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

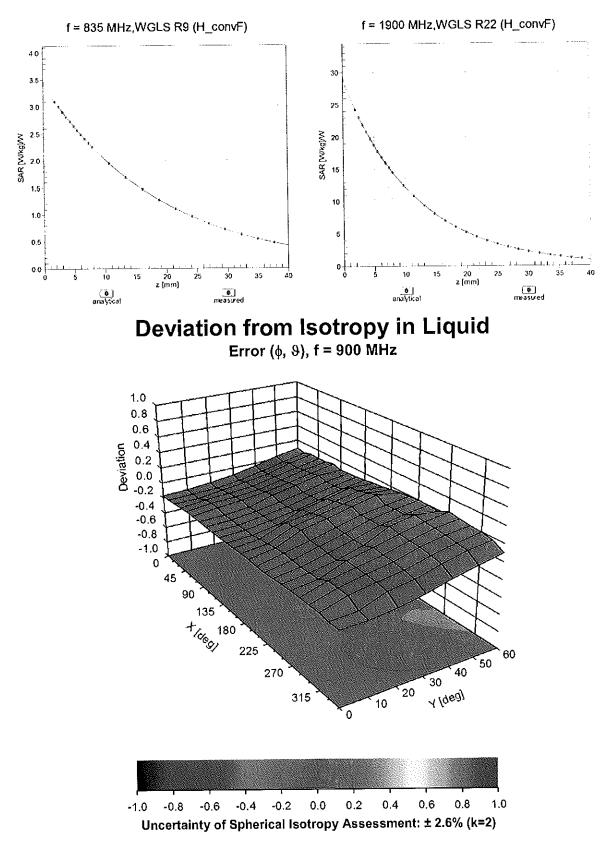
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


March 14, 2017

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3209_Mar17

Page 9 of 38

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-39.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

ŪIĎ	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	185.7	± 3.5 %
		Y	0.00	0.00	1.00		188.4	
10010-	CAD Validation (Causes 400ma 40ma)	ZX	0.00	0.00	1.00	40.00	174.0	1000
CAA	SAR Validation (Square, 100ms, 10ms)		16.56	89.85	21.07	10.00	25.0	± 9.6 %
		Y	14.18	87.91	20.84		25.0	
10041		Z	16.46	89.94	21.19	0.00	25.0	100%
10011- CAB	UMTS-FDD (WCDMA)	Х	1.31	71.34	17.73	0.00	150.0	± 9.6 %
		Y	1.07	67.38	15.30		150.0	
10010		Z	1.14	68.61	16.10	~ 14	150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	1.33	65.77	16.71	0.41	150.0	±9.6 %
		Υ·	1.28	64.69	15.69		150.0	
10010		Z	1.29	65.03	16.02		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	Х	5.11	67.29	17.66	1.46	150.0	± 9.6 %
		Y	5.08	67.12	17.41		150.0	
40004		Z	5.08	67.16	17.48	0.00	150.0	1000
10021- DAC	GSM-FDD (TDMA, GMSK)	X	100.00	120.30	31.44	9.39	50.0	± 9.6 %
		Y	100.00	121.02	32.06		50.0	
10000		Z	100.00	120.74	31.69	0.57	50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	100.00	120.21	31.45	9.57	50.0	± 9.6 %
		Y	100.00	120.94	32.08		50.0	
40004		Z	100.00	120.65	31.69	0.50	50.0	100%
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	118.31	29.49	6.56	60.0	±9.6 %
		Y	100.00	118.38	29.74		60.0	
40005		Z	100.00	118.51	29.61 61.22	40.57	60.0 50.0	± 9.6 %
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	79.79	164.11		12.57		± 9.0 %
		Y	21.03	115.56	45.00 46.74		50.0 50.0	
10026-	EDGE-FDD (TDMA, 8PSK, TN 0-1)	ZX	21.02 56.10	<u>118.33</u> 137.19	46.74	9.56	60.0	± 9.6 %
DAC		1				3.50		1 0.0 /8
		Y Z	22.58 30.67	110.81 120.33	38.90 42.31		60.0 60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.60	28.85	4.80	80.0	± 9.6 %
DAC			400.00	447.00	00.70		00.0	
		Y	100.00	117.96	28.73		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	118.50 120.37	28.81 28.91	3.55	80.0 100.0	± 9.6 %
DAC		Y	100.00	118.79	28.36		100.0	
		Z	100.00	119.82	28.67		100.0	
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	18.11	107.13	37.13	7.80	80.0	± 9.6 %
DAC		Y	12.22	95.66	32.56		80.0	
		Z	13.69	99.54	34.27		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	117.23	28.52	5.30	70.0	± 9.6 %
		TY	100.00	116.90	28.56	+	70.0	
		Z	100.00	117.22	28.54	1	70.0	Ī
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	124.45	29.19	1.88	100.0	± 9.6 %
		Y	100.00	120.00	27.42		100.0	
		Z	100.00	122.22	28.25		100.0	

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	134.81	32.39	1.17	100.0	± 9.6 %
		Y	100.00	125.40	28.63	<u> </u>	100.0	
		Ż	100.00	129.61	30.26	·	100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	100.00	129.27	35.65	5.30	70.0	± 9.6 %
·		Y	49.54	115.99	32.11		70.0	
L		Z	90.11	126.99	34.97		70.0	1
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	16.84	102.10	27.13	1.88	100.0	± 9.6 %
ļ		Y	7.82	89.20	22.87		100.0	
4000		Z	9.48	92.81	24.19		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	6.67	89.65	23.23	1.17	100.0	± 9.6 %
		Y	3.84	80.35	19.62		100.0	
10036-		Z	4.40	82.90	20.73		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	100.00	129.52	35.77	5.30	70.0	± 9.6 %
	· · · · · ·	<u>Y</u>	85.34	125.22	34.45		70.0	
10037-	IFEE 802 15 1 Plustaath (0 DDDU/ DUD		100.00	128.99	35.51		70.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	15.79	101.19	26.84	1.88	100.0	± 9.6 %
		Y	7.32	88.29	22.54		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Z	8.88	91.91	23.88		100.0	
CAA		X	6.96	90.64	23.66	1.17	100.0	±9.6 %
		Y	3.95	81.00	19.95		100.0	
10039-	CDMA2000 (1xRTT, RC1)	Z	4.52	83.60	21.07		100.0	
CAB	CDMA2000 (1XR11, RC1)	X	2.68	77.46	18.66	0.00	150.0	± 9.6 %
. <u>.</u>		Y	1.87	71.76	15.92		150.0	
10042-		Z	2.09	73.47	16.81		150.0	
CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	116.28	28.75	7.78	50.0	± 9.6 %
		Y	100.00	116.68	29.16		50.0	
10044-		Z	100.00	116.58	28.91		50.0	
CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	103.03	6.46	0.00	150.0	± 9.6 %
		Y	0.01	95.61	0.65		150.0	
40040		Z	0.02	122.64	11.17		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	100.00	122.27	33.78	13.80	25.0	± 9.6 %
		Y	88.36	120.80	33.95	_	25.0	
40040		Z	100.00	122.70	34.06		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	120.46	31.88	10.79	40.0	± 9.6 %
<u></u>		Y	100.00	121.38	32.63		40.0	
10056-		Z	100.00	120.92	32.14		40.0	
CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	64.71	119.17	33.88	9.03	50.0	±9.6 %
		Y	<u>31.81</u>	105.88	30.24		50.0	
10058-	EDGE EDD (TDMA ADOV THA 4 0.0)	Z	48.79	114.06	32.52	·	50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	10.31	93.78	31.68	6.55	100.0	± 9.6 %
		Y	8.35	87.44	28.76		100.0	
10059-		Z	8.74	89.37	29.77		100.0	
CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 2 Mbps)	X	1.47	67.98	17.85	0.61	110.0	±9.6 %
		Y	1.41	66.57	16.67		110.0	
10060		Z	1.42	66.96	17.03		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	138.63	36.70	1.30	110.0	± 9.6 %
		Y	100.00	134.16	34.76		110.0	
	1	Z	100.00	136.34	35.67		110.0	·

10061- CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps)	X	21.25	113.68	33.06	2.04	110.0	±9.6 %
		Y	8.67	95.89	27.33		110.0	
		Z	10.38	100.06	28.88		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.87	67.16	16.99	0.49	100.0	± 9.6 %
		Y	4.83	66.94	16.72		100.0	
		Z	4.84	67.02	16.80		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.90	67.29	17.12	0.72	100.0	±9.6 %
		Y	4.86	67.08	16.85		100.0	
		Z	4.87	67.15	16.93		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.22	67.61	17.38	0.86	100.0	±9.6 %
		Y	5.17	67.40	17.11		100.0	
		Z	5.19	67.47	17.19		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.10	67.59	17.53	1.21	100.0	±9.6 %
		Y	5.06	67.39	17.27	-	100.0	
10000		Z	5.07	67.45	17.34		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.14	67.68	17.74	1.46	100.0	±9.6 %
		Y	5.10	67.48	17.48		100.0	
40007		Z	5.11	67.54	17.56		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.44	67.85	18.21	2.04	100.0	± 9.6 %
		Y	5.41	67.66	17.95		100.0	
10000		Z	5.41	67.71	18.02		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.54	68.11	18.56	2.55	100.0	± 9.6 %
		Y	5.51	67.91	18.28		100.0	
		Z	5.51	67.95	18.36		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.62	68.08	18.75	2.67	100.0	±9.6 %
		Y	5.59	67.88	18.46		100.0	
		Z	5.59	67.92	18.55		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.23	67.47	18.03	1.99	100.0	± 9.6 %
		Y	5.20	67.30	17.78		100.0	
		Z	5.20	67.34	17.85		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.25	67.96	18.33	2.30	100.0	± 9.6 %
		Y	5.23	67.77	18.07		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	Z X	5.22 5.35	67.81 68.24	18.14 18.74	2.83	100.0 100.0	± 9.6 %
<i></i>		Y	5.33	68.06	18.47		100.0	
		Ż	5.32	68.08	18.54		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.35	68.21	18.96	3.30	100.0	± 9.6 %
		Y	5.34	68.06	18.69	1	100.0	1
		Z	5.32	68.06	18.76		100.0	1
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.45	68.57	19.42	3.82	90.0	± 9.6 %
		Y	5.44	68.40	19.14		90.0	
		Z	5.42	68.40	19.20		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.44	68.33	19.53	4.15	90.0	± 9.6 %
		Y	5.45	68.18	19.25		90.0	
		Z	5.42	68.16	19.32		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.47	68.40	19.63	4.30	90.0	± 9.6 %
		Y	5.48	68.26	19.35		90.0	-
-		Ż	5.45	68.24	19.42		90.0	1

10081- CAB	CDMA2000 (1xRTT, RC3)	X	1.23	71.08	15.82	0.00	150.0	± 9.6 %
		Y	0.91	66.28	13.04		150.0	
		Z	0.99	67.64	13.91		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	1.44	62.24	7.11	4.77	80.0	± 9.6 %
		Y	1.55	62.44	7.40	1	80.0	
		Z	1.44	62.17	7.10		80.0	· · · · · · · · · · · · · · · · · · ·
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	118.36	29.54	6.56	60.0	± 9.6 %
		Y	100.00	118.45	29.79		60.0	
10097-		Z	100.00	118.56	29.65		60.0	
CAB	UMTS-FDD (HSDPA)	X	2.01	69.10	16.79	0.00	150.0	± 9.6 %
		Y	1.86	67.49	15.67		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	Z	1.91	68.05	16.06		150.0	
CAB	OMTS-FDD (HSOPA, Sublest 2)	X	1.98	69.12	16.80	0.00	150.0	± 9.6 %
		Y	1.82	67.46	15.64		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z	1.87	68.03	16.04		150.0	
DAC	EDGE-FDD (TDMA, 8PSK, IN 0-4)	X	56.10	137.12	47.49	9.56	60.0	± 9.6 %
		Y	22.61	110.79	38.89		60.0	
10100-		Z	30.74	120.33	42.30		60.0	
CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.46	71.82	17.60	0.00	150.0	± 9.6 %
		Y	3.20	70.34	16.69		150.0	
10101-		Z	3.29	70.87	17.01		150.0	
CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.44	68.35	16.55	0.00	150.0	± 9.6 %
		Ŷ	3.33	67.66	16.01		150.0	
10100		Z	3.37	67.92	16.20		150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.53	68.21	16.59	0.00	150.0	±9.6 %
		Y	3.43	67.60	16.09		150.0	
40400		Z	3.46	67.83	16.26		150.0	
10103- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.71	80.18	22.43	3.98	65.0	± 9.6 %
		Y	8.63	79.54	22.01		65.0	
40404		Z	8.72	80.06	22.29		65.0	
10104- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.41	78.26	22.59	3.98	65.0	± 9.6 %
		Y	8.16	77.17	21.90		65.0	
10105-		Z	8.16	77.51	22.15		65.0	
CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.75	76.58	22.19	3.98	65.0	± 9.6 %
. <u> </u>		Y	7.29	74.89	21.22		65.0	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Z X	7.40 3.04	75.53 71.09	21.60 17.48	0.00	65.0 150.0	± 9.6 %
		Y	2.81	60.50	- 10 50		450.0	
		Z	2.89	69.59 70.12	16.53		150.0	
10109-	LTE-FDD (SC-FDMA, 100% RB, 10	X	3.10	68.24	16.86 16.51	0.00	150.0	1000
CAD	MHz, 16-QAM)	Ŷ				0.00	150.0	± 9.6 %
		Z	2.98 3.02	67.47	15.91	·	150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	<u>3.02</u> 2.51	67.76 70.39	<u>16.12</u> 17.27	0.00	150.0 150.0	± 9.6 %
		TY	2.30	68.71	16.17		150.0	
		Z	2.37	69.29	16.55		150.0	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.80	68.98	16.82	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	0.07					
		1 Y I	2.67	68.08	16.14		150.0	

10112- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.21	68.13	16.51	0.00	150.0	± 9.6 %
		Y	3.11	67.44	15.96		150.0	
		Ż	3.14	67.70	16.15		150.0	
10113- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.94	69.00	16.88	0.00	150.0	±9.6 %
		Y	2.83	68.20	16.26		150.0	
		Z	2.87	68.48	16.47		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.29	67.60	16.80	0.00	150.0	±9.6 %
		Y	5.23	67.37	16.54		150.0	
		Z	5.25	67.46	16.62		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.64	67.91	16.97	0.00	150.0	±9.6 %
		Y	5.58	67.65	16.70		150.0	
		Z	5.60	67.75	16.78		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.42	67.88	16.87	0.00	150.0	±9.6 %
_		Y	5.35	67.63	16.60		150.0	
		Z	5.37	67.72	16.68		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.27	67.51	16.78	0.00	150.0	±9.6 %
		Y	5.21	67.27	16.51		150.0	
		Z	5.23	67.37	16.60		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.75	68.18	17.12	0.00	150.0	±9.6 %
		Y	5.68	67.91	16.83		150.0	
		Z	5.70	68.00	16.92		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.39	67.82	16.85	0.00	150.0	±9.6 %
		Y	5.33	67.57	16.58		150.0	
		Z	5.35	67.66	16.66		150.0	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.57	68.23	16.51	0.00	150.0	±9.6 %
		Y	3.47	67.61	16.01		150.0	
		Z	3.51	67.84	16.19		150.0	
10141- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.69	68.24	16.63	0.00	150.0	±9.6 %
		Y	3.59	67.69	16.17		150.0	
		Z	3.63	67.89	16.33		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.30	70.61	17.13	0.00	150.0	±9.6 %
		Y	2.07	68.65	15.88		150.0	
		Z	2.15	69.31	16.31		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.70	69.93	16.73	0.00	150.0	± 9.6 %
		Y	2.53	68.73	15.89		150.0	
		Z	2.59	69.14	16.18		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.50	67.93	15.31	0.00	150.0	± 9.6 %
		Y	2.35	66.79	14.47		150.0	
		Z	2.40	67.20	14.77		150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.61	68.59	14.32	0.00	150.0	± 9.6 %
		Y	1.36	65.99	12.68		150.0	
		Z	1.44	66.83	13.25		150.0	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	4.12	76.15	17.00	0.00	150.0	± 9.6 %
		Y	3.13	71.87	14.86		150.0	
		Z	3.61	74.04	16.00		150.0	
10147- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	5.91	81.17	19.01	0.00	150.0	± 9.6 %
		Y	4.21	75.86	16.64		150.0	
		Ż	5.05	78.62	17.93	1	150.0	T

10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	3.10	68.30	16.55	0.00	150.0	± 9.6 %
		Y	2.99	67.53	15.95	<u> </u>	150.0	
		Ż	3.03	67.81	16.16		150.0	· · · · · · · · · · · · · · · · · · ·
10150- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.22	68.17	16.55	0.00	150.0	± 9.6 %
		Y	3.11	67.49	16.00	· · · · · · · · · · · · · · · · · · ·	150.0	
10/51		Z	3.15	67.74	16.19		150.0	· · · · · · · · · · · · · · · · · · ·
10151- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.92	84.00	24.01	3.98	65.0	± 9.6 %
		Y	9.28	82.23	23.13	_	65.0	
40450		Z	9.42	82.88	23.47		65.0	
10152- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.12	78.81	22.58	3.98	65.0	± 9.6 %
		Y	7.79	77.46	21.77		65.0	
10153-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	Z	7.82	77.90	22.06		65.0	
CAC	64-QAM)	X	8.47	79.51	23.20	3.98	65.0	± 9.6 %
		×	8.19	78.31	22.47		65.0	
10154-		Z	8.19	78.67	22.72		65.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.56	70.77	17.50	0.00	150.0	± 9.6 %
		Y	2.35	69.09	16.42		150.0	
10155-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,		2.42	69.67	16.79		150.0	
CAD	16-QAM)	X	2.80	68.99	16.83	0.00	150.0	± 9.6 %
·······		Y	2.68	68.09	16.15		150.0	
10156-		Z	2.72	68.40	16.38		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.18	71.04	17.14	0.00	150.0	± 9.6 %
<u> </u>		Y	1.92	68.76	15.73		150.0	
10157		Z	2.01	69.52	16.21		150.0	
10157- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.37	68.82	15.55	0.00	150.0	± 9.6 %
		Y	2.18	67.35	14.55		150.0	
10158-		Z	2.25	67.86	14.90		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.95	69.05	16.92	0.00	150.0	± 9.6 %
		Y	2.83	68.25	16.30		150.0	
40450		Z	2.87	68.52	16.51		150.0	
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.48	69.16	15.77	0.00	150.0	± 9.6 %
		Y	2.29	67.76	14.81		150.0	
10160-		Z	2.35	68.25	<u>1</u> 5.15		150.0	
CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.02	70.00	17.21	0.00	150.0	± 9.6 %
		Y	2.84	68.79	16.39		150.0	
10161-	I TE EDD (SO EDMA SON DD 45 M	Z	2.90	69.20	16.66		150.0	
CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.11	68.10	16.49	0.00	150.0	± 9.6 %
		Y	3.01	67.41	15.93		150.0	
10160		Z	3.04	67.66	16.12		150.0	
10162- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.22	68.18	16.56	0.00	150.0	± 9.6 %
		Y	3.11	67.53	16.02		150.0	
10166-		Z	3.15	67.77	16.21		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.01	71.57	20.55	3.01	150.0	±9.6 %
		Y	3.96	70.99	19.97		150.0	
10167		Z	4.00	71.24	20.22		150.0	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.34	76.03	21.61	3.01	150.0	±9.6 %
<u> </u>		Y	5.24	75.14	20.90		150.0	
		Z	5.29	75.43	21.17		150.0	

10168- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.92	78.26	22.84	3.01	150.0	± 9.6 %
0.10		Y	5.88	77.64	22.28		150.0	
		z	5.88	77.74	22.45		150.0	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	x	3.56	72.83	21.25	3.01	150.0	± 9.6 %
		Y	3.54	72.03	20.47		150.0	
		Z	3.57	72.33	20.78		150.0	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	5.89	82.52	24.81	3.01	150.0	± 9.6 %
		Y	5.80	81.18	23.85		150.0	
		Z	5.77	81.27	24.06		150.0	
10171- AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.66	77.30	21.81	3.01	150.0	± 9.6 %
		Y	4.48	75.56	20.63		150.0	
101-0		Z	4.56	76.10	21.06		150.0	
10172- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	100.00	142.02	43.67	6.02	65.0	± 9.6 %
		Y	29.14	113.86	35.69		65.0	
40470		Z	42.14	122.72	38.48	.	65.0	
10173- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	100.00	131.99	38.44	6.02	65.0	± 9.6 %
		Y	100.00	129.98	37.53		65.0	
		Z	100.00	131.24	38.14		65.0	
10174- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	100.00	130.14	37.45	6.02	65.0	± 9.6 %
		Y	100.00	127.86	36.41		65.0	
		Z	91.70	127.77	36.74		65.0	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.52	72.50	21.01	3.01	150.0	± 9.6 %
		Y	3.49	71.66	20.21		150.0	
		Z	3.53	71.99	20.53		150.0	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5.90	82.55	24.82	3.01	150.0	± 9.6 %
		Y	5.81	81.21	23.86		150.0	
		Z	5.78	81.30	24.07		150.0	
10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.55	72.66	21.10	3.01	150.0	± 9.6 %
		Y	3.52	71.84	20.31		150.0	
		Z	3.56	72.16	20.62		150.0	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	5.82	82.23	24.68	3.01	150.0	± 9.6 %
		Y	5.72	80.87	23.70		150.0	
		Z	5.70	80.99	23.93		150.0	
10179- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	5.25	79.82	23.19	3.01	150.0	± 9.6 %
		Y	5.07	78.18	22.08		150.0	
		Z	5.12	78.56	22.43		150.0	
10180- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	4.65	77.21	21.76	3.01	150.0	± 9.6 %
		Y	4.46	75.45	20.57		150.0	
		Z	4.54	76.00	21.00		150.0	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.55	72.65	21.10	3.01	150.0	± 9.6 %
		Y	3.51	71.82	20.30		150.0	
		Z	3.55	72.14	20.62	1	150.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.81	82.20	24.67	3.01	150.0	± 9.6 %
		Υ	5.71	80.84	23.69		150.0	
		Z	5.69	80.96	23.92		150.0	
10183- AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	4.64	77.18	21.74	3.01	150.0	± 9.6 %
·		Y	4.45	75.42	20.56	1	150.0	
· · · · · · · · · · · · · · · · · · ·		Ż	4.53	75.97	20.99	1	150.0	1

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.56	72.69	21.12	3.01	150.0	± 9.6 %
		Y	3.53	71.87	20.33	+ <u> </u>	150.0	┢───
		Ż	3.57	72.19	20.33			┨─────
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	5.84	82.29	20.64	3.01	150.0 150.0	± 9.6 %
		Y	5.74	80.94	23.73		150.0	
		Z	5.72	81.05	23.96		150.0	<u> </u>
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	4.67	77.27	21.78	3.01	150.0	± 9.6 %
		ΤY	4.47	75.51	20.59		150.0	
		Z	4.56	76.06	21.03		150.0	<u> </u>
10187- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	Х	3.57	72.74	21.18	3.01	150.0	± 9.6 %
		Y	3.54	71.92	20.39		150.0	· · · · · · · · · · · · · · · · · · ·
		Z	3.58	72.24	20.70		150.0	+
10188- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	6.08	83.16	25.13	3.01	150.0	±9.6%
		Y	6.00	81.87	24.19		150.0	1
		Z	5.95	81.90	24.38		150.0	
10189- AAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	4.80	77.83	22.09	3.01	150.0	± 9.6 %
		Y	4.61	76.08	20.92		150.0	
40.100		Z	4.69	76.60	21.33		150.0	
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.68	66.98	16.53	0.00	150.0	± 9.6 %
		Y	4.62	66.73	16.24		150.0	
40404		Z	4.64	66.83	16.34		150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.86	67.32	16.65	0.00	150.0	± 9.6 %
		Y	4.81	67.07	16.37		150.0	
		Z	4.83	67.17	16.46		150.0	
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.91	67.35	16.66	0.00	150.0	±9.6 %
		Y	4.85	67.10	16.38		150.0	
		Z	4.87	67.20	16.47		150.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.69	67.06	16.56	0.00	150.0	±9.6 %
		Y	4.63	66.81	16.27		150.0	
10100		Z	4.65	66.91	16.37		150.0	
10197- CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.88	67.35	16.66	0.00	150.0	± 9.6 %
		Y	4.82	67.09	16.38		150.0	
10100		Z	4.84	67.19	16.47		150.0	
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.91	67.37	16.68	0.00	150.0	± 9.6 %
		Y	4.85	67.12	16.39		150.0	
10010		Z	4.87	67.22	16.49		150.0	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.64	67.08	16.52	0.00	150.0	± 9.6 %
		Y	4.58	66.82	16.23		150.0	
10220-		Z	4.60	66.92	16.33		150.0	
CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.88	67.33	16.66	0.00	150.0	± 9.6 %
		Y	4.82	67.07	16.37		150.0	
10221-	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-	Z X	4.84 4.92	67.17 67.29	16.47 16.66	0.00	150.0 150.0	± 9.6 %
CAB	QAM)]	[
		Y	4.86	67.05	16.38		150.0	
40000		Ζ	4.88	67.14	16.47		150.0	
10222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.24	67.52	16.77	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·		E 40	07.00	10.01		· · · · · · · · · · · · · · · · · · ·	
		Y Z	5.18 5.21	67.28	16.51		150.0	

10223- CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.57	67.76	16.92	0.00	150.0	± 9.6 %
		Y	5.51	67.51	16.65		150.0	
		Z	5.53	67.60	16.73		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.29	67.62	16.75	0.00	150.0	± 9.6 %
		Y	5.23	67.38	16.48		150.0	
		Z	5.25	67.47	16.57		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.96	66.72	15.94	0.00	150.0	± 9.6 %
		Y	2.88	66.18	15.44		150.0	
		Z	2.91	66.38	15.61		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	100.00	132.19	38.58	6.02	65.0	± 9.6 %
		Y	100.00	130.20	37.67		65.0	
		Z	100.00	131.44	38.27		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	100.00	129.74	37.30	6.02	65.0	± 9.6 %
		Y	100.00	127.95	36.49		65.0	
		Z	100.00	129.11	37.05		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	100.00	141.90	43.60	6.02	65.0	± 9.6 %
		Y	64.28	130.08	40.04		65.0	
		Z	94.90	139.78	42.86		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	100.00	131.97	38.44	6.02	65.0	± 9.6 %
		Y	100.00	129.97	37.54		65.0	
		Z	100.00	131.22	38.14		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	100.00	129.60	37.20	6.02	65.0	± 9.6 %
		Y	100.00	127.79	36.39		65.0	
		Z	100.00	128.96	36.95		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	100.00	141.75	43.50	6.02	65.0	± 9.6 %
		Y	57.85	127.76	39.37		65.0	
		Z	84.57	137.19	42.14		65.0	
10232- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	100.00	131.99	38.45	6.02	65.0	± 9.6 %
		Y	100.00	129.98	37.54		65.0	
		Z	100.00	131.24	38.14		65.0	
10233- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	100.00	129.61	37.21	6.02	65.0	± 9.6 %
		Y	100.00	127.81	36.39		65.0	1
		Z	100.00	128.97	36.95		65.0	
10234- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	100.00	141.44	43.31	6.02	65.0	± 9.6 %
		Y	52.53	125.50	38.67	ļ	65.0	ļ
		Z	75.93	134.62	41.39		65.0	
10235- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	100.00	132.00	38.45	6.02	65.0	± 9.6 %
		Y	100.00	130.00	37.54	Į	65.0	<u> </u>
		Z	100.00	131.25	38.15		65.0	
10236- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	100.00	129.56	37.18	6.02	65.0	± 9.6 %
		Y	100.00	127.76	36.37		65.0	
		Z	100.00	128.92	36.93		65.0	
10237- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	100.00	141.78	43.50	6.02	65.0	± 9.6 %
		Y	58.86	128.14	39.47		65.0	<u> </u>
		Z	86.67	137.73	42.28		65.0	
10238- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	100.00	132.00	38.45	6.02	65.0	± 9.6 %
		Y	100.00	129.99	37.54		65.0	
		Ż	100.00	131.25	38.14		65.0	1

```
March 14, 2017
```

10239- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	100.00	129.64	37.21	6.02	65.0	± 9.6 %
		Y	100.00	127.83	36.40	1	65.0	1
		Z	100.00	129.00	36.96		65.0	
10240- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	100.00	141.80	43.51	6.02	65.0	± 9.6 %
		Y	58.51	128.03	39,44		65.0	
		Z	86.02	137.59	42.24		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	13.65	92.13	30.26	6.98	65.0	± 9.6 %
		Y	12.73	89.47	28.84		65.0	<u> </u>
		Z	12.83	90.19	29.33	<u> </u>	65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	11.56	88.33	28.75	6.98	65.0	± 9.6 %
		Y	12.17	88.47	28.39		65.0	
10010		Z	10.55	85.79	27.57		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	8.75	83.84	28.04	6.98	65.0	± 9.6 %
		Υ	9.16	83.97	27.64		65.0	
40043		Z	8.20	81.83	26.97		65.0	1
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	11.15	85.22	22.92	3.98	65.0	± 9.6 %
		Υ	10.49	83.51	22.06		65.0	
10015		Z	10.74	84.39	22.53		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	×	10.71	84.28	22.53	3.98	65.0	± 9.6 %
		Y	10.12	82.65	21.69		65.0	
100/0		Z	10.34	83.48	22.15		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	11.99	89.44	24.35	3.98	65.0	± 9.6 %
		Y	10.01	85.73	22.85		65.0	
1001-		Z	10.59	87.16	23.46		65.0	
10247- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	7.78	79.88	21.56	3.98	65.0	± 9.6 %
		Y	7.39		20.77		65.0	
10010		Z	7.42	78.92	21.06		65.0	
10248- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.68	79.17	21.27	3.98	65.0	± 9.6 %
		Y	7.29	77.74	20.47		65.0	
		Z	7.33	78.22	20.77		65.0	
10249- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	13.65	92.24	26.09	3.98	65.0	± 9.6 %
		Y	11.34	88.25	24.50		65.0	
		Z	12.01	89.77	25.14		65.0	
10250- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.65	81.91	23.79	3.98	65.0	± 9.6 %
		Y	8.26	80.45	22.98		65.0	
10054		Z	8.27	80.90	23.26		65.0	
10251- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	×	8.08	79.43	22.51	3.98	65.0	± 9.6 %
		Y	7.71	78.00	21.68		65.0	
0050		Z	7.74	78.46	21.99		65.0	
10252- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	11.90	89.42	25.97	3.98	65.0	±9.6 %
		Y	10.50	86.42	24.67		65.0	
0050		Ζ	10.87	87.52	25.18		65.0	
10253- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	7.84	78.03	22.28	3.98	65.0	± 9.6 %
		Y	7.57	76.80	21.51		65.0	
		Ζ	7.57	77.19	21.79		65.0	
10254- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	х 	8.21	78.77	22.87	3.98	65.0	±9.6 %
		Y	7.97	77.64	22.16		65.0	
		Z	7.95	77.97	22.41		65.0	

10255- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.44	83.41	24.04	3.98	65.0	± 9.6 %
		Y	8.86	81.64	23.14		65.0	
		Z	8.96	82.26	23.48		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	9.33	81.69	20.68	3.98	65.0	± 9.6 %
		Y	8.73	79.97	19.81		65.0	
		Z	9.01	80.96	20.33		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.80	80.36	20.09	3.98	65.0	± 9.6 %
		Y	8.27	78.77	19.26		65.0	
		Z	8.51	79.68	19.75		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	9.10	84.22	21.80	3.98	65.0	± 9.6 %
		Y	7.87	81.28	20.53		65.0	
		Z	8.20	82.41	21.04		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.13	80.62	22.35	3.98	65.0	± 9.6 %
		Y	7.73	79.15	21.54		65.0	
10000		Z	7.76	79.63	21.84		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.07	80.16	22.18	3.98	65.0	± 9.6 %
		Y	7.70	78.77	21.40		65.0	
		Z	7.73	79.22	21.69		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	11.98	89.88	25.68	3.98	65.0	± 9.6 %
		Y	10.32	86.47	24.25		65.0	
		Z	10.77	87.74	24.81		65.0	
10262- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.64	81.87	23.76	3.98	65.0	± 9.6 %
		Y	8.25	80.40	22.94		65.0	
		Z	8.26	80.85	23.23		65.0	
10263- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.06	79.41	22.51	3.98	65.0	± 9.6 %
		Y	7.70	77.98	21.68		65.0	
		Z	7.73	78.44	21.98		65.0	
10264- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	11.79	89.22	25.88	3.98	65.0	± 9.6 %
		Y	10.40	86.22	24.58		65.0	
		Z	10.77	87.33	25.09		65.0	
10265- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.12	78.81	22.58	3.98	65.0	± 9.6 %
		Y	7.79	77.46	21.77		65.0	
		Z	7.81	77.90	22.07		65.0	
10266- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.47	79.50	23.19	3.98	65.0	± 9.6 %
		Y	8.19	78.30	22.46		65.0	
		Z	8.19	78.66	22.72		65.0	
10267- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.89	83.95	23.99	3.98	65.0	± 9.6 %
		Y	9.26	82.18	23.11		65.0	
		Z	9.39	82.83	23.45		65.0	1
10268- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.44	77.80	22.53	3.98	65.0	± 9.6 %
		Y	8.24	76.84	21.89		65.0	
		Z	8.22	77.13	22.11		65.0	
10269- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.33	77.26	22.37	3.98	65.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	8.15	76.36	21.76		65.0	
		Z	8.12	76.62	21.97		65.0	
10270- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.75	79.75	22.52	3.98	65.0	± 9.6 %
		Y	8.49	78.72	21.92		65.0	1
		Ż	8.50	79.07	22.14	t	65.0	1

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.73	67.18	15.92	0.00	150.0	± 9.6 %
		Y	2.64	66.46	15.31		150.0	
		Z	2.68	66.73	15.52	·	150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.87	70.21	17.08	0.00	150.0	± 9.6 %
		Y	1.66	67.87	15.58		150.0	
		Z	1.73	68.66	16.09		150.0	
10277- CAA	PHS (QPSK)	Х	3.84	66.56	11.27	9.03	50.0	±9.6 %
		Y	4.12	66.98	11.68		50.0	
400-0		Z	3.85	66.55	11.29		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	11.65	86.02	22.30	9.03	50.0	± 9.6 %
		Y	10.21	83.31	21.39		50.0	
40070		Z	10.96	84.97	21.93		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	11.92	86.31	22.44	9.03	50.0	± 9.6 %
		Y	10.38	83.50	21.49		50.0	1
40000		Z	11.18	85.20	22.04		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	2.05	73.37	16.75	0.00	150.0	± 9.6 %
		Y	1.54	68.94	14.39		150.0	
10001		Z	1.68	70.29	15.17		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	1.19	70.69	15.63	0.00	150.0	± 9.6 %
		Y	0.89	66.06	12.92		150.0	
		Z	0.97	67.37	13.76		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	1.82	77.98	19.13	0.00	150.0	± 9.6 %
		Ϋ́	1.09	69.78	15.12		150.0	
		Z	1.26	72.00	16.33		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	3.13	86.75	22.80	0.00	150.0	± 9.6 %
		Y	1.53	74.84	17.78		150.0	
		Z	1.85	77.92	19.23		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	16.24	95.47	28.50	9.03	50.0	± 9.6 %
		Y	13.39	90.69	26.64		50.0	
		Z	14.20	92.62	27.44		50.0	
10297- AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.05	71.18	17.54	0.00	150.0	± 9.6 %
		Y	2.82	69.68	16.59		150.0	
40000		Z	2.90	70.21	16.92		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.96	70.66	16.14	0.00	150.0	± 9.6 %
		Y	1.66	67.94	14.50		150.0	
10000		Z	1.76	68.83	15.06		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	4.77	78.24	18.75	0.00	150.0	±9.6 %
		Y	3.92	74.76	16.99		150.0	
40000		Z	4.32	76.42	17.88		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.00	70.52	14.82	0.00	150.0	±9.6 %
· · ·		Y	2.63	68.29	13.44		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	Z X	2.81 5.51	69.37 68.11	14.14 19.09	4.17	150.0 80.0	± 9.6 %
		Y	5.33	67.10	10.00		00.0	
				67.16	18.33	·······	80.0	
10302-	IEEE 802.16e WiMAX (29:18, 5ms,	X	<u>5.40</u> 5.91	67.58	18.66	4.00	80.0	
AAA	10MHz, QPSK, PUSC, 3 CTRL symbols)			68.43	19.68	4.96	80.0	± 9.6 %
u		Y	5.80	67.70	19.02		80.0	
		Z	5.81	67.92	19.25		80.0	

10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	5.70	68.33	19.67	4.96	80.0	± 9.6 %
		Y	5.59	67.57	18.98		80.0	
		Z	5.60	67.78	19.21		80.0	
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.41	67.77	18.89	4.17	80.0	±9.6 %
		Y	5.31	67.11	18.28		80.0	
		Z	5.33	67.30	18.48		80.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	6.16	75.00	23.87	6.02	50.0	±9.6 %
		Y	6.03	73.79	22.78		50.0	
		Z	5.90	73.64	22.94		50.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.76	70.24	21.37	6.02	50.0	± 9.6 %
		Y	5.59	69.03	20.35		50.0	
10000		Z	5.60	69.33	20.68		50.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	5.75	70.76	21.47	6.02	50.0	± 9.6 %
		Y	5.78	71.13	21.51		50.0	
40000		Z	5.57	69.74	20.73		50.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	5.77	71.12	21.68	6.02	50.0	± 9.6 %
		Y	5.80	71.54	21.74		50.0	
40000		Z	5.57	70.05	20.90	0.00	50.0	1000
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	5.87	70.63	21.59	6.02	50.0	± 9.6 %
		Y	5.68	69.33	20.52		50.0	
10010		Z	5.69	69.66	20.87		50.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.74	70.42	21.38	6.02	50.0	± 9.6 %
		Y	5.56	69.17	20.34		50.0	
		Z	5.57	69.47	20.67		50.0	
10311- AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.41	70.28	17.06	0.00	150.0	± 9.6 %
		Y	3.18	68.96	16.24		150.0	
10010		Z	3.26	69.44	16.53	0.00	150.0	1000
10313- AAA	iDEN 1:3	X	11.93	87.85	22.00	6.99	70.0	± 9.6 %
		Y	8.95	83.03	20.34		70.0	
		Z	9.92	85.08	21.06	10.00	70.0	
10314- AAA	iDEN 1:6	X	19.66	101.09	29.03	10.00	30.0	± 9.6 %
		Y	13.64	93.68	26.63		30.0	
40045		Z	14.94	96.21	27.54	0.47	30.0	+0.0.0/
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.20	65.36	16.48	0.17	150.0	± 9.6 %
		Y	1.15	64.26	15.42	ļ	150.0	
		Z	1.17	64.62	15.77	0.47	150.0	1000
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.76	67.14	16.74	0.17	150.0	± 9.6 %
		Y	4.71	66.90	16.45		150.0	
400.47		Z	4.73	66.99	16.55	0.17	150.0	1000
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.76	67.14	16.74	0.17	150.0	± 9.6 %
		Y	4.71	66.90	16.45		150.0	
10.105		Z	4.73	66.99	16.55	0.00	150.0	1000
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.87	67.43	16.68	0.00	150.0	± 9.6 %
		Y	4.81	67.14	16.37	ļ	150.0	
		Z	4.83	67.26	16.47		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.57	67.64	16.85	0.00	150.0	± 9.6 %
		Y	5.51	67.40	16.57	ļ	150.0	
		Z	5.53	67.48	16.66	r c	150.0	1

10402- AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.83	67.94	16.82	0.00	150.0	± 9.6 %
		Y	5.77	67.71	16.58		450.0	<u> </u>
		Z	5.79	67.80			150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.05	73.37	16.65 16.75	0.00	150.0 115.0	± 9.6 %
		TY-	1.54	68.94	14.39	<u> </u>	1150	·
		Ż	1.68	70.29	15.17		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.05	73.37	16.75	0.00	115.0 115.0	±9.6 %
		Y	1.54	68.94	14.39		115.0	1
		Z	1.68	70.29	15.17		115.0	<u> </u>
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	124.58	31.94	0.00	100.0	± 9.6 %
		Y	100.00	121.04	30.37		100.0	
		Z	100.00	123.01	31.32		100.0	<u>-</u>
10410- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.25	32.53	3.23	80.0	± 9.6 %
		Y	100.00	122.76	31.43		80.0	
10:1-		Ζ	100.00	124.49	32.22		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	1.07	64.01	15.66	0.00	150.0	± 9.6 %
		Y	1.03	63.00	14.62		150.0	
		Z	1.05	63.37	14.98		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	4.68	67.03	16.59	0.00	150.0	± 9.6 %
		Y	4.63	66.78	16.30		150.0	
		Z	4.65	66.88	16.40		150.0	<u> </u>
10417- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	Х	4.68	67.03	16.59	0.00	150.0	± 9.6 %
		Y	4.63	66.78	16.30		150.0	
		Z	4.65	66.88	16.40		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.67	67.18	16.60	0.00	150.0	± 9.6 %
		Y	4.61	66.92	16.31	•	150.0	
		Z	4.64	67.02	16.41	-	150.0	· · · · · · · · · · · · · · · · · · ·
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.69	67.13	16.61	0.00	150.0	± 9.6 %
		Ý	4.64	66.87	16.32		150.0	· · · · · · · · · · · · · · · · · · ·
		Z	4.66	66.98	16.42		150.0	
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.82	67.13	16.62	0.00	150.0	± 9.6 %
		Y	4.76	66.89	16.34		150.0	
10.122		Z	4.78	66.98	16.43		150.0	· · · · · · · · ·
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.00	67.48	16.75	0.00	150.0	± 9.6 %
		Y	4.94	67.23	16.47		150.0	
1010		Z	4.96	67.33	16.56	<u> </u>	150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.92	67.43	16.72	0.00	150.0	± 9.6 %
		Y	4.86	67.17	16.43		150.0	
1010-		Z	4.88	67.27	16.53		150.0	
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.54	67.85	16.94	0.00	150.0	± 9.6 %
		Y	5.48	67.60	16.67		150.0	
		Z	5.50	67.69	16.75		150.0	
10426- AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.55	67.86	16.94	0.00	150.0	±9.6%
		Y	5.48	67.61	16.67		150.0	
		Z	5.50	67.70	16.75		150.0	

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	X	5.55	67.81	16.91	0.00	150.0	± 9.6 %
AAA	64-QAM)					0.00		10.0 /0
		Y	5.49	67.57	16.65		150.0	
		Z	5.51	67.66	16.73		150.0	
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.30	70.44	18.21	0.00	150.0	± 9.6 %
		Y	4.27	70.38	18.04		150.0	
		Z	4.27	70.33	18.05		150.0	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.40	67.65	16.65	0.00	150.0	±9.6 %
		Y	4.32	67.31	16.31		150.0	
		Z	4.35	67.44	16.43		150.0	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.69	67.49	16.69	0.00	150.0	± 9.6 %
		Y	4.62	67.20	16.38		150.0	
		Z	4.65	67.32	16.48		150.0	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.93	67.46	16.74	0.00	150.0	±9.6 %
		Y	4.87	67.20	16.45		150.0	
		Z	4.89	67.31	16.55		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.38	71.21	18.18	0.00	150.0	± 9.6 %
		Y	4.35	71.12	17.99		150.0	
		Z	4.34	71.07	18.01		150.0	
10435- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.05	32.43	3.23	80.0	±9.6 %
		Y	100.00	122.57	31.34		80.0	
		Z	100.00	124.29	32.13		80.0	
10447- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.71	67.79	16.12	0.00	150.0	± 9.6 %
		Y	3.61	67.29	15.67		150.0	
		Z	3.65	67.48	15.83		150.0	
10448- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.22	67.42	16.51	0.00	150.0	± 9.6 %
		Y	4.15	67.08	16.17		150.0	
		Z	4.18	67.21	16.28		150.0	
10449- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.49	67.31	16.58	0.00	150.0	± 9.6 %
		Y	4.42	67.02	16.27		150.0	
		Z	4.45	67.13	16.38		150.0	
10450- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.67	67.22	16.59	0.00	150.0	± 9.6 %
		Y	4.62	66.95	16.30		150.0	
		Z	4.64	67.06	16.40		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.63	68.08	15.83	0.00	150.0	± 9.6 %
		Y	3.51	67.49	15.33		150.0	
		Z	3.56	67.71	15.51		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.40	68.36	17.05	0.00	150.0	± 9.6 %
		Y	6.34	68.15	16.82		150.0	
		Z	6.36	68.22	16.89		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.89	65.64	16.31	0.00	150.0	± 9.6 %
		Y	3.85	65.40	16.01	.	150.0	
		Z	3.87	65.50	16.11		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.46	67.50	15.35	0.00	150.0	± 9.6 %
		Y	3.34	66.87	14.80		150.0	
		Z	3.39	67.11	15.01		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.52	65.47	16.05	0.00	150.0	± 9.6 %
		Y	4.52	65.47	15.86		150.0	
		Z	4.43	65.14	15.75	1	150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.17	72.68	18.90	0.00	150.0	± 9.6 %
, , , , , , , , , , , , , , , , , , , ,		Y	0.92	67.87	15.00	ļ	450.0	
		Z	0.92		15.98		150.0	l
10461-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	100.00	69.33 132.17	16.91 35.74	2.00	150.0	100%
<u>A</u> AA	QPSK, UL Subframe=2,3,4,7,8,9)					3.29	80.0	± 9.6 %
		<u>Y</u>	100.00	128.42	34.08		80.0	
10462-		Z	100.00	130.59	35.07		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	113.31	26.72	3.23	80.0	±9.6 %
		Y	100.00	110.59	25.58		80.0	
40.400		Z	100.00	112.57	26.48		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.35	24.86	3.23	80.0	± 9.6 %
		Y	100.00	106.97	23.86		80.0	
10101		Z	100.00	108.85	24.71		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	130.18	34.63	3.23	80.0	± 9.6 %
		Y	100.00	126.36	32.95		80.0	
		Z	100.00	128.62	33.98		80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.71	26.43	3.23	80.0	± 9.6 %
		Y	100.00	110.00	25.29	·	80.0	
		Z	100.00	111.98	26.19		80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.78	24.59	3.23	80.0	± 9.6 %
		Y	100.00	106.43	23.61		80.0	
		Ζ	100.00	108.29	24.45		80.0	······································
10467- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	130.44	34.75	3.23	80.0	± 9.6 %
		Y	100.00	126.60	33.07		80.0	
		Z	100.00	128.86	34.09		80.0	
10468- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	112.91	26.52	3.23	80.0	± 9.6 %
		Y	100.00	110.19	25.38		80.0	a
		Z	100.00	112.17	26.28		80.0	
10469- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.81	24.59	3.23	80.0	± 9.6 %
		Y	100.00	106.45	23.61		80.0	·
		Z	100.00	108.32	24.46		80.0	
10470- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	100.00	130.49	34.76	3.23	80.0	±9.6 %
		Y	100.00	126.64	33.07		80.0	
		Z	100.00	128.91	34.11		80.0	
10471- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	х	100.00	112.85	26.49	3.23	80.0	± 9.6 %
		Y	100.00	110.13	25.35	·	80.0	
		Z	100.00	112.12	26.25		80.0	·
10472- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.74	24.56	3.23	80.0	±9.6 %
		Y	100.00	106.39	23.57		80.0	
		Z	100.00	108.26	24.42		80.0	
10473- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	130.46	34.75	3.23	80.0	± 9.6 %
		Y	100.00	126.61	33.06		80.0	
		Z	100.00	128.88	34.09		80.0	
10474- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	100.00	112.87	26.49	3.23	80.0	±9.6 %
		Y	100.00	110.14	25.35		80.0	
		Ż	100.00	112.13	26.25		80.0	
10475- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.76	24.57	3.23	80.0	±9.6 %
	=	.					1	
		Y	100.00	106.40	23.58		80.0	

10477- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.67	26.40	3.23	80.0	± 9.6 %
		Y	100.00	109.96	25.26		80.0	
		Z	100.00	111.94	26.16		80.0	
10478- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.69	24.54	3.23	80.0	± 9.6 %
		Y	100.00	106.34	23.55		80.0	
		Z	100.00	108.21	24.40		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	40.01	113.99	32.23	3.23	80.0	± 9.6 %
		Y	25.66	104.98	29.34		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Z X	28.59 65.50	107.69 112.78	30.37 29.57	3.23	80.0 80.0	± 9.6 %
7000	10 co (m, OE Oubliante=2,0,4,1,0,0)	Y	38.67	103.69	26.87		80.0	
		Z	45.46	106.90	27.97		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	43.66	105.54	27.32	3.23	80.0	± 9.6 %
		Y	27.51	97.77	24.89		80.0	
		Z	32.53	100.89	25.98		80.0	•
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.07	83.64	21.75	2.23	80.0	± 9.6 %
		Y	5.28	78.63	19.68		80.0	
		Z	5.64	80.01	20.31		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	12.44	88.49	23.12	2.23	80.0	± 9.6 %
		Y	10.70	85.40	21.78		80.0	
10484-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	11.46 10.60	86.94 85.91	22.49 22.30	2.23	80.0 80.0	± 9.6 %
AAA	04-QAM, OL SUDITAME-2,3,4,7,6,9)	Y	9.30	83.19	21.06		80.0	
		Z	9.88	84.56	21.00		80.0	
10485- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.73	83.37	22.54	2.23	80.0	±9.6 %
		Y	5.38	79.13	20.71		80.0	
		Ż	5.62	80.23	21.24		80.0	
10486- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.83	74.76	18.90	2.23	80.0	±9.6 %
		Y	4.43	72.99	17.93		80.0	
		Z	4.49	73.45	18.22		80.0	
10487- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.73	74.06	18.61	2.23	80.0	± 9.6 %
		Y	4.38	72.45	17.70		80.0	
		Z	4.42	72.86	17.97		80.0	
10488- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.94	79.74	21.83	2.23	80.0	± 9.6 %
		Y	5.18	76.93	20.48		80.0	ļ
10489- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Z X	5.31 4.65	77.65 72.93	20.88 19.25	2.23	80.0 80.0	± 9.6 %
-		Y	4.44	71.79	18.53		80.0	
		Z	4.45	72.03	18.73		80.0	
10490- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.70	72.53	19.10	2.23	80.0	± 9.6 %
		Y	4.51	71.49	18.42		80.0	
		Z	4.51	71.71	18.61	1	80.0	
10491- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.47	76.11	20.55	2.23	80.0	± 9.6 %
		Y	5.05	74.35	19.60		80.0	
10.100		Z	5.11	74.80	19.88		80.0	
10492- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.82	71.43	18.89	2.23	80.0	± 9.6 %
		Y	4.68	70.61	18.31	<u> </u>	80.0	ļ
		Z	4.67	70.78	18.47		80.0	<u> </u>

10493- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.87	71.19	18.80	2.23	80.0	± 9.6 %
		Y	4.73	70.41	18.24		80.0	+
		z	4.72	70.41	18.39	··		<u></u>
10494- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.24	78.41	21.24	2.23	80.0 80.0	± 9.6 %
70(0		Y	5.62	76.22	20.16		80.0	
		z	5.73	76.81	20.10			
10495-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	X	4.91			0.00	80.0	
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)			72.01	19.14	2.23	80.0	± 9.6 %
		Y Z	4.75	71.11	18.53		80.0	
10496- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.74 4.93	71.30 71.51	18.69 18.96	2.23	80.0 80.0	± 9.6 %
		Y	4.79	70.71	18.40		80.0	
		Z	4.78	70.87	18.55		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	5.37	79.10	19.27	2.23	80.0	± 9.6 %
		Y	4.01	74.46	17.26		80.0	
		z	4.32	75.84	17.92		80.0	<u> </u>
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.20	69.04	14.31	2.23	80.0	± 9.6 %
••• <u> </u>		Y	2.73	66.72	13.06		80.0	
		Z	2.85	67.49	13.50		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.04	68.09	13.76	2.23	80.0	± 9.6 %
		Y	2.62	65.95	12.57		80.0	
		z	2.73	66.66	12.99		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.09	81.07	21.99	2.23	80.0	± 9.6 %
		Y	5.13	77.67	20.43		80.0	
		Z	5.29	78.55	20.89		80.0	l
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.73	73.89	18.97	2.23	80.0	± 9.6 %
		Y	4.43	72.44	18.13		80.0	
		Z	4.46	72.79	18.37		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.76	73.56	18.78	2.23	80.0	±9.6 %
		Y	4.47	72.19	17.97		80.0	
		Z	4.49	72.52	18.21		80.0	1
10503- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.85	79.51	21.73	2.23	80.0	± 9.6 %
		Y	5.11	76.71	20.38		80.0	
40803		Z	5.24	77.44	20.78		80.0	
10504- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.63	72.85	19.20	2.23	80.0	± 9.6 %
		Y	4.42	71.70	18.48		80.0	
40505		Z	4.43	71.95	18.68		80.0	
10505- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.68	72.44	19.05	2.23	80.0	± 9.6 %
		Y	4.49	71.39	18.37		80.0	
10500		Z	4.49	71.62	18.56		80.0	
10506- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.19	78.25	21.17	2.23	80.0	± 9.6 %
		Y	5.58	76.07	20.08		80.0	
40507		Z	5.68	76.66	20.41		80.0	
10507- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.89	71.95	19.11	2.23	80.0	± 9.6 %
		Y	4.73	71.04	18.50		80.0	

10508- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.92	71.45	18.93	2.23	80.0	± 9.6 %
		Y	4.78	70.64	18.36		80.0	
		Z	4.77	70.80	18.51		80.0	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.95	75.24	19.99	2.23	80.0	±9.6 %
		Y	5.60	73.90	19.24		80.0	
		Z	5.65	74.26	19.47		80.0	
10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.29	71.15	18.83	2.23	80.0	± 9.6 %
		Y	5.16	70.46	18.33		80.0	
		Z	5.15	70.61	18.47		80.0	
10511- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.30	70.75	18.70	2.23	80.0	± 9.6 %
		Y	5.19	70.12	18.23		80.0	
		Z	5.17	70.25	18.36		80.0	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.65	77.81	20.82	2.23	80.0	± 9.6 %
		Y	6.08	75.94	19.88		80.0	
		Z	6.18	76.48	20.17		80.0	
10513- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.24	71.68	19.04	2.23	80.0	± 9.6 %
		Y	5.09	70.89	18.50		80.0	
10514- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	5.08 5.18	71.06 71.04	18.65 18.83	2.23	80.0 80.0	± 9.6 %
····· ··	Cubitanic=2,0,4,7,0,0)	Y	5.06	70.34	18.33		80.0	
		z	5.05	70.49	18.47		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.04	64.30	15.79	0.00	150.0	±9.6 %
		Y	1.00	63.17	14.68		150.0	
		Z	1.01	63.58	15.06		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	1.17	82.68	23.48	0.00	150.0	±9.6 %
		Y	0.61	69.65	16.88		150.0	
40547		Z	0.72	72.79	18.69		150.0	100.00
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.94	67.44	17.14	0.00	150.0	± 9.6 %
		Y Z	0.85	65.01	15.25		150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	0.88 4.68	65.81 67.10	15.88 16.57	0.00	150.0 150.0	± 9.6 %
		Y	4.62	66.85	16.28		150.0	
		Z	4.64	66.95	16.38		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.88	67.37	16.70	0.00	150.0	± 9.6 %
		Y	4.82	67.11	16.42		150.0	
		Z	4.84	67.21	16.51		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.73	67.35	16.63	0.00	150.0	± 9.6 %
		Y	4.67	67.07	16.33	1	150.0	ļ
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	<u>4.69</u> 4.66	67.18 67.35	16.43 16.62	0.00	150.0 150.0	± 9.6 %
		Y	4.60	67.06	16.32		150.0	
		Z	4.62	67.17	16.42		150.0	· · · · · · · · · · · · · · · · · · ·
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.72	67.40	16.69	0.00	150.0	± 9.6 %
		Y	4.66	67.13	16.39		150.0	
		Z	4.68	67.24	16.49		150.0	

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	x	4.59	67.26	16.53	0.00	150.0	± 9.6 %
		Y	4.53	66.98	16.23		150.0	
		Z	4.55	67.09	16.33		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.66	67.34	16.66	0.00	150.0	± 9.6 %
		Y	4.60	67.06	16.36		150.0	
		Z	4.63	67.17	16.46		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.64	66.35	16.23	0.00	150.0	± 9.6 %
		Y	4.58	66.08	15.94		150.0	
10526-		Z	4.60	66.19	16.04		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.82	66.75	16.38	0.00	150.0	± 9.6 %
		Y	4.76	66.47	16.09	l	150.0	
10527-		Z	4.78	66.58	16.19		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.74	66.71	16.33	0.00	150.0	± 9.6 %
		Y	4.68	66.42	16.03		150.0	
10528-		Z	4.70	66.54	16.13		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.76	66.73	16.36	0.00	150.0	± 9.6 %
		Y	4.69	66.44	16.07		150.0	
10529-	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.72	66.56	16.17		150.0	
AAA	99pc duty cycle)	X	4.76	66.73	16.36	0.00	150.0	± 9.6 %
		Y	4.69	66.44	16.07		150.0	
10531-		Z	4.72	66.56	16.17		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.76	66.87	16.39	0.00	150.0	± 9.6 %
		Ŷ	4.69	66.56	16.08		150.0	
10520		Z	4.72	66.68	16.19		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.62	66.72	16.33	0.00	150.0	±9.6 %
		Y	4.55	66.41	16.02		150.0	
10533-		Z	4.57	66.53	16.12		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.77	66.77	16.35	0.00	150.0	± 9.6 %
		Y	4.70	66.48	16.05		150.0	
40504		Z	4.73	66.60	16.15		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.29	66.84	16.41	0.00	150.0	± 9.6 %
		Y	5.23	66.60	16.14		150.0	
40505		Z	5.25	66.69	16.23		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.37	67.02	16.49	0.00	150.0	± 9.6 %
		Y	5.30	66.78	16.22		150.0	
10520		Z	5.32	66.87	16.31		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.23	66.97	16.44	0.00	150.0	± 9.6 %
		Y	5.17	66.72	16.17		150.0	
10507		Z	5.19	66.82	16.26		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.29	66.95	16.43	0.00	150.0	± 9.6 %
		Y	5.23	66.69	16.17		150.0	
40500		Z	5.25	66.79	16.25		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.39	66.99	16.50	0.00	150.0	± 9.6 %
		Y	5.33	66.74	16.23		150.0	
40540		Z	5.35	66.84	16.31		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.32	66.99	16.51	0.00	150.0	± 9.6 %
		Y	5.25	66.74	16.24		150.0	
		Z	5.27	66.83	16.33		150.0	

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7,	X	5.28	66.83	16.43	0.00	150.0	± 9.6 %
~~~	99pc duty cycle)	Y	5.22	66.59	16.16		450.0	
		Z	5.22	66.69			150.0	
10542- AAA	IEEE 802.11ac WIFI (40MHz, MCS8, 99pc duty cycle)	X	5.44	66.91	16.25 16.48	0.00	150.0 150.0	±9.6 %
////		Y	5.38	66.68	16.22		150.0	
		z	5.40	66.77	16.30		150.0	
10543-	IEEE 802.11ac WiFi (40MHz, MCS9,	X	5.53	66.97	16.53	0.00	150.0	± 9.6 %
AAA	99pc duty cycle)	Y	5.47	66.73	16.27		150.0	
		Z	<u> </u>	66.82	16.35		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.59	66.91	16.37	0.00	150.0	± 9.6 %
		Y	5.53	66.70	16.13		150.0	
		Z	5.55	66.79	16.21		150.0	
10545- AAA	IEEE 802.11ac WIFI (80MHz, MCS1, 99pc duty cycle)	X	5.82	67.42	16.57	0.00	150.0	± 9.6 %
		Y	5.75	67.17	16.32		150.0	
		Z	5.77	67.26	16.40		150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.68	67.19	16.48	0.00	150.0	±9.6 %
		Y	5.61	66.95	16.22		150.0	
		Z	5.64	67.05	16.30		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.77	67.28	16.51	0.00	150.0	± 9.6 %
		Y	5.70	67.03	16.25		150.0	
		Z	5.72	67.12	16.33		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.16	68.66	17.18	0.00	150.0	± 9.6 %
		Y	6.05	68.25	16.83		150.0	
		Z	6.07	68.36	16.93		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.70	67.18	16.48	0.00	150.0	± 9.6 %
		Y	5.64	66.95	16.23		150.0	
		Z	5.66	67.04	16.31		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.70	67.20	16.45	0.00	150.0	± 9.6 %
		Y	5.64	66.98	16.21		150.0	
		Z	5.66	67.07	16.28		150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.60	66.97	16.34	0.00	150.0	± 9.6 %
		Y	5.55	66.76	16.11		150.0	
		Z	5.57	66.85	16.18		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.69	67.02	16.40	0.00	150.0	±9.6 %
		Y	5.64	66.81	16.16	<u> </u>	150.0	
		Z	5.66	66.90	16.24	L	150.0	
10554- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	6.00	67.29	16.47	0.00	150.0	±9.6 %
		Υ	5.95	67.09	16.23		150.0	
		Z	5.96	67.17	16.31		150.0	
10555- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.15	67.65	16.62	0.00	150.0	± 9.6 %
		Y	6.09	67.42	16.38		150.0	
10556-	IEEE 1602.11ac WiFi (160MHz, MCS2,	Z X	6.11 6.17	67.51 67.68	16.45 16.63	0.00	150.0 150.0	± 9.6 %
AAA	99pc duty cycle)	Y	6 4 4	67 45	16.20		150.0	
		Z	6.11	67.45	16.39		150.0 150.0	
10557		$\frac{z}{x}$	6.13	67.54	16.46	0.00	150.0	± 9.6 %
10557- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)		6.14	67.59	16.60	0.00		1 9.0 %
		Y	6.07	67.36	16.36	-	150.0	<b> </b>
		Z	6.09	67.45	16.44	<u> </u>	150.0	I

10558- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.20	67.79	16.72	0.00	150.0	± 9.6 %
		Y	6.13	67.55	16.47		150.0	
		Z	6.15	67.64	16.55	<u> </u>	150.0	- · ·
10560- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.18	67.59	16.66	0.00	150.0	± 9.6 %
		Y	6.11	67.37	16.42		150.0	
		Z	6.14	67.46	16.49		150.0	
10561- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.10	67.58	16.69	0.00	150.0	± 9.6 %
······································		Y	6.04	67.35	16.45		150.0	
40500		Z	6.06	67.44	16.52		150.0	
10562- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.27	68.10	16.96	0.00	150.0	± 9.6 %
		Y	6.19	67.81	16.68		150.0	
10563-		Z	6.21	67.92	16.77		150.0	
AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.68	68.88	17.30	0.00	150.0	± 9.6 %
		Y	6.56	68.48	16.97		150.0	
40501		Z	6.59	68.61	17.07		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	5.02	67.23	16.76	0.46	150.0	± 9.6 %
		Y.	4.96	66.98	16.48		150.0	
10-0-		Z	4.98	67.08	16.57		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.26	67.67	17.06	0.46	150.0	± 9.6 %
		Y	5.20	67.43	16.79	·	150.0	
		Z	5.22	67.52	16.88		150.0	· · · ·
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	5.09	67.55	16.90	0.46	150.0	± 9.6 %
		Y	5.03	67.29	16.62		150.0	
		Z	5.05	67.39	16.71		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.11	67.86	17.20	0.46	150.0	± 9.6 %
		Y	5.05	67.64	16.94		150.0	
		Z	5.07	67.72	17.02		150.0	
10568- AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	5.02	67.38	16.73	0.46	150.0	±9.6 %
		Y	4.95	67.09	16.41		150.0	
		Z	4.98	67.21	16.52		150.0	
10569- AAA	IEEE 802.11g WiFt 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.05	67.90	17.23	0.46	150.0	± 9.6 %
		Y	5.00	67.70	16.99		150.0	· · · · · ·
		Z	5.02	67.78	17.06		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.10	67.80	17.20	0.46	150.0	± 9.6 %
		Y	5.05	67.57	16.93		150.0	
		Z	5.07	67.66	17.02		150.0	········
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.35	66.69	17.17	0.46	130.0	± 9.6 %
		Y	1.30	65.45	16.06		130.0	·
		Z	1.31	65.81	16.41		130.0	·
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.38	67.41	17.59	0.46	130.0	± 9.6 %
		Y	1.32	66.05	16.42		130.0	
		Z	1.33	66.44	16.78	·	130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	151.66	41.18	0.46	130.0	± 9.6 %
		Y	3.17	90.18	24.53	<u> </u>	130.0	
		Z	5.56	100.47	28.08		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	1.74	75.66	21.49	0.46	130.0	± 9.6 %
AAA	Mbps, 90pc duty cycle)							
AAA	Mbps, 90pc duty cycle)	Y	1.50	72.10	19.33		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.81	67.07	16.85	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)			07.07	10.00	0.10	100.0	10.0 /0
		Y	4.77	66.83	16.57	·	130.0	
		Z	4.78	66.92	16.66		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.84	67.21	16.90	0.46	130.0	± 9.6 %
		Y	4.79	66.98	16.63		130.0	
40533		Z	4.81	67.07	16.71		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	5.05	67.51	17.07	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.00	67.28	16.80		130.0	
40570		Z	5.02	67.37	16.88	0.40	130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.95	67.65	17.15	0.46	130.0	± 9.6 %
		Y Z	<u>4.90</u> 4.91	67.43	16.89		130.0	
10579-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.91	67.51 67.10	16.97 16.58	0.46	130.0 130.0	1060
AAA	OFDM, 24 Mbps, 90pc duty cycle)					0.46		± 9.6 %
		Y	4.67	66.80	16.26		130.0	
10580-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z X	4.70 4.79	66.92 67.13	16.37 16.61	0.46	130.0 130.0	1069/
AAA	OFDM, 36 Mbps, 90pc duty cycle)					0.46		±9.6 %
		Y	4.72	66.82	16.27		130.0	
10581-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.74	66.95	16.39	0.40	130.0	10.00
AAA	OFDM, 48 Mbps, 90pc duty cycle)	X	4.85	67.72	17.11	0.46	130.0	± 9.6 %
		Y	4.80	67.49	16.84		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	Z X	4.81 4.69	67.57 66.92	16.92 16.42	0.46	130.0 130.0	± 9.6 %
		Y	4.62	66.58	16.06		130.0	
		z	4.65	66.72	16.19		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.81	67.07	16.85	0.46	130.0	± 9.6 %
		Y	4.77	66.83	16.57		130.0	
		z	4.78	66.92	16.66		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.84	67.21	16.90	0.46	130.0	± 9.6 %
		Y	4.79	66.98	16.63		130.0	
		Z	4.81	67.07	16.71		130.0	
10585- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.05	67.51	17.07	0.46	130.0	± 9.6 %
		Y	5.00	67.28	16.80		130.0	
		Z	5.02	67.37	16.88		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.95	67.65	17.15	0.46	130.0	± 9.6 %
		Y	4.90	67.43	16.89		130.0	
		Z	4.91	67.51	16.97		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	67.10	16.58	0.46	130.0	± 9.6 %
		Y	4.67	66.80	16.26		130.0	
		Z	4.70	66.92	16.37		130.0	
10588- AAA	IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.79	67.13	16.61	0.46	130.0	± 9.6 %
		Y	4.72	66.82	16.27		130.0	
		Z	4.74	66.95	16.39		130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.85	67.72	17.11	0.46	130.0	±9.6 %
		Y	4.80	67.49	16.84		130.0	<b> </b>
		Z	4.81	67.57	16.92		130.0	
10590- AAA								
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.69	66.92	16.42	0.46	130.0	± 9.6 %
		X Y Z	4.69 4.62 4.65	66.92 66.58 66.72	16.42 16.06 16.19	0.46	130.0 130.0 130.0	± 9.6 %

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.96	67.09	16.93	0.46	130.0	± 9.6 %
		Y	4.92	66.88	16.66	<u> </u>	130.0	1
		Z	4.93	66.96	16.75		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	Х	5.13	67.44	17.05	0.46	130.0	± 9.6 %
		Y	5.08	67.22	16.79		130.0	
		Z	5.09	67.30	16.87		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.05	67.38	16.96	0.46	130.0	± 9.6 %
		<u> </u>	5.00	67.15	16.69		130.0	
10594-		Z	5.02	67.24	16.77		130.0	
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.10	67.52	17.09	0.46	130.0	± 9.6 %
		Y	5.05	67.30	16.83		130.0	l
10595-	IEEE 802.11n (HT Mixed, 20MHz,	Z	5.07	67.38	16.91		130.0	
AAA	MCS4, 90pc duty cycle)	X	5.08	67.50	17.01	0.46	130.0	± 9.6 %
		Y	5.02	67.26	16.73		130.0	
10596-	IEEE 802.11n (HT Mixed, 20MHz,	Z	5.04	67.35	16.82		130.0	
AAA	MCS5, 90pc duty cycle)	X	5.02	67.52	17.02	0.46	130.0	± 9.6 %
		Y	4.96	67.27	16.74		130.0	L
10597-	IEEE 802.11n (HT Mixed, 20MHz,	Z	4.98	67.36	16.83		130.0	
	MCS6, 90pc duty cycle)	X	4.97	67.44	16.92	0.46	130.0	± 9.6 %
		Y	4.91	67.18	16.63		130.0	
10598-		Z	4.93	67.28	16.72		130.0	
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.94	67.63	17.14	0.46	130.0	± 9.6 %
		Y	4.89	67.40	16.88		130.0	
40500		Z	4.91	67.48	16.96		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.64	67.68	17.14	0.46	130.0	± 9.6 %
		Y	5.59	67.47	16.88		130.0	
40000		Z	5.61	67.54	16.96		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.87	68.41	17.49	0.46	130.0	± 9.6 %
		Y	5.79	68.09	17.17		130.0	
		Z	5.81	68.18	17.26		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	×	5.71	67.98	17.28	0.46	130.0	± 9.6 %
		Y	5.65	67.72	17.00		130.0	
		Z	5.66	67.81	17.08		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.79	67.98	17.21	0.46	130.0	± 9.6 %
		Y	5.73	67.73	16.93		130.0	
10000		Z	5.75	67.82	17.01		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.87	68.25	17.46	0.46	130.0	± 9.6 %
		Y	5.81	68.01	17.19		130.0	
10001		Z	5.83	68.09	17.27		130.0	
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.65	67.64	17.14	0.46	130.0	±9.6 %
		Y	5.60	67.42	16.89		130.0	
1000-		Z	5.61	67.50	16.96		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.80	68.11	17.39	0.46	130.0	±9.6 %
		Y	5.73	67.85	17.10		130.0	· · · ·
		Z	5.75	67.93	17.19		130.0	· · · · ·
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.53	67.43	16.92	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · ·	Y	5.48	67.20	16.64			
	1		0.40	1 07.20	10 04 1		130.0	

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.80	66.40	16.54	0.46	130.0	± 9.6 %
		Y	4.75	66.17	16.27		130.0	
		Z	4.76	66.26	16.35		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.00	66.83	16.71	0.46	130.0	± 9.6 %
		Y	4.94	66.59	16.44		130.0	
		Z	4.96	66.68	16.52		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.89	66.71	16.57	0.46	130.0	± 9.6 %
		Y	4.83	66.45	16.28		130.0	
		Z	4.85	66.55	16.38		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.94	66.85	16.71	0.46	130.0	± 9.6 %
		Y	4.88	66.60	16.44		130.0	
40044		Z	4.90	66.69	16.53		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.86	66.68	16.58	0.46	130.0	± 9.6 %
		Y Y	4.80	66.42	16.30		130.0	
10610		Z	4.82	66.52	16.39		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.88	66.87	16.65	0.46	130.0	± 9.6 %
		Y	4.82	66.59	16.35		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z	4.84	66.69	16.44	0.40	130.0	1000
10613- AAA	90pc duty cycle)	X	4.89	66.78	16.55	0.46	130.0	± 9.6 %
		Y	4.82	66.49	16.24		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	Z X	4.85 4.81	66.60 66.89	16.34 16.73	0.46	130.0 130.0	± 9.6 %
		Y	4.75	66.64	16.45		130.0	
		Z	4.77	66.73	16.54		130.0	•••••
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.87	66.56	16.40	0.46	130.0	± 9.6 %
		Ι Y	4.81	66.27	16.09		130.0	
		Z	4.83	66.38	16.19		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.46	66.92	16.73	0.46	130.0	± 9.6 %
		Y	5.41	66.70	16.48		130.0	
		Z	5.43	66.79	16.56		130.0	i
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.54	67.11	16.80	0.46	130.0	± 9.6 %
		Y	5.48	66.88	16.54		130.0	
		Z	5.50	66.96	16.62		130.0	1
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.42	67.11	16.81	0.46	130.0	± 9.6 %
		Y	5.36	66.88	16.56	L	130.0	
(00/2		Z	5.38	66.97	16.63		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.45	66.98	16.69	0.46	130.0	± 9.6 %
		Y	5.39	66.74	16.43		130.0	
40000		Z	5.41	66.83	16.51	0.10	130.0	1000
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.55	67.03	16.77	0.46	130.0	± 9.6 %
		Y	5.49	66.78	16.50		130.0	
40004		Z	5.51	66.88	16.58	0.40	130.0	100%
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.51	67.03	16.86	0.46	130.0	± 9.6 %
		Y 7	5.46	66.84	16.63		130.0	
40000		Z	5.48	66.91	16.70	0.40	130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.54	67.25	16.97	0.46	130.0	± 9.6 %
		Y	5.49	67.04	16.73		130.0	
		Z	5.50	67.11	16.80		130.0	L

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.41	66.79	16.63	0.46	130.0	± 9.6 %
		Y	5.36	66.56	16.37		130.0	
		Z	5.38	66.65	16.45	· · ·	130.0	ł
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	Х	5.62	67.00	16.79	0.46	130.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.56	66.77	16.54		130.0	
		Z	5.58	66.86	16.62		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.10	68.33	17.51	0.46	130.0	± 9.6 %
		Y	6.00	67.98	17.19		130.0	
40000		Z	6.02	68.08	17.28		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.74	66.93	16.65	0.46	130.0	± 9.6 %
		Y	5.69	66.74	16.43		130.0	
40007		Z	5.71	66.82	16.50		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	6.03	67.63	16.96	0.46	130.0	± 9.6 %
		Y	5.97	67.40	16.71		130.0	
40000		Z	5.98	67.48	16.79		130.0	
	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.81	67.14	16.66	0.46	130.0	± 9.6 %
		Y	5.75	66.90	16.41		130.0	
10000		Z	5.77	67.00	16.49		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.89	67.21	16.69	0.46	130.0	± 9.6 %
		Y	5.84	67.00	16.45		130.0	
40000		Z	5.85	67.08	16.52		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	Х	6.58	69.47	17.83	0.46	130.0	± 9.6 %
		Y	6.44	68.97	17.43		130.0	
40004		Z	6.47	69.10	17.53		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.29	68.65	17.58	0.46	130.0	± 9.6 %
		Y	6.21	68.38	17.32		130.0	
40000		Z	6.23	68.46	17.39		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.97	67.59	17.06	0.46	130.0	± 9.6 %
		Ŷ	5.92	67.40	16.84		130.0	
40000		Z	5.93	67.46	16.90		130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.86	67.25	16.74	0.46	130.0	± 9.6 %
		Y	5.80	67.03	16.49		130.0	
40004		Z	5.82	67.11	<u>16.57</u>		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.83	67.23	16.78	0.46	130.0	± 9.6 %
		Y	5.78	67.04	16.55		130.0	
10005		Z	5.80	67.11	16.62		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.74	66.71	16.29	0.46	130.0	±9.6 %
		Y	5.68	66.44	16.01		130.0	
40000		Z	5.70	66.56	16.11		130.0	
10636- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.17	67.34	16.76	0.46	130.0	± 9.6 %
		Y	6.11	67.15	16.53		130.0	
40007		Z	6.13	67.22	16.60		130.0	
10637- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.35	67.79	16.97	0.46	130.0	± 9.6 %
		Y	6.29	67.57	16.73		130.0	_
10000		Z	6.30	67.65	16.80		130.0	
10638- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.35	67.77	16.94	0.46	130.0	± 9.6 %
		Y	6.29	67.54	16.69		130.0	
		Z	6.30	67.62	16.76		130.0	

March 14, 2017

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.32	67.69	16.93	0.46	130.0	±9.6 %
		Y	6.26	67.48	16.70		130.0	
		Z	6.28	67.56	16.77		130.0	
10640- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.35	67.80	16.94	0.46	130.0	±9.6 %
		Y	6.28	67.54	16.68		130.0	
		Z	6.30	67.64	16.76		130.0	
10641- AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.36	67.58	16.85	0.46	130.0	± 9.6 %
		Y	6.30	67.37	16.61		130.0	
		Z	6.32	67.45	16.69		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.40	67.80	17.11	0.46	130.0	±9.6 %
		Y	6.34	67.61	16.89		130.0	· · · · · ·
		Z	6.36	67.68	16.96		130.0	
10643- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.25	67.58	16.92	0.46	130.0	± 9.6 %
		Y	6.19	67.34	16.66		130.0	
		Z	6.21	67.43	16.74		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.47	68,26	17.28	0.46	130.0	±9.6 %
		Y	6.39	67.96	16.99		130.0	
		Z	6.42	68.06	17.08		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	7.06	69.52	17.87	0.46	130.0	± 9.6 %
		Y	6.93	69.10	17.52		130.0	
		Z	6.96	69.22	17.62		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	100.00	148.85	48.77	9.30	60.0	±9.6 %
		Y	80.54	141.06	46.17		60.0	
		Z	100.00	148.08	48.38		60.0	
10647- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	100.00	150.12	49.32	9.30	60.0	± 9.6 %
		Y	73.97	140.10	46.12		60.0	
		Z	100.00	149.31	48.92		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.92	66.97	13.32	0.00	150.0	± 9.6 %
		Y	0.75	63.96	11.29		150.0	
		Z	0.80	64.80	11.93		150.0	1

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Hac-MRA



SSchweizerischer KallbrierdienstCService suisse d'étalonnageSServizio svizzero di taraturaSwiss Calibration Service

Issued: April 18, 2017

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-7406_Apr17

CALIBRATION CERTIFICATE										
Object	EX3DV4 - SN:7406	<b>3</b>								
Calibration procedure(s)		CAL-12.v9, QA CAL-23.v5, QA ure for dosimetric E-field probes	CAL-25.V6 BNN 5-3-2017							
	· · · · · · · · · · · · · · · · · · ·		5-3-2017							
Calibration date:	April 18, 2017									
		al standards, which realize the physical units bability are given on the following pages and a								
The measurements and the did	entaintico min confidence proc	submity are given on the following pages and t								
All calibrations have been condu	ucted in the closed laboratory f	facility: environment temperature (22 ± 3)°C a	nd humidity < 70%.							
Calibration Equipment used (M&	TE critical for calibration)									
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration							
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18							
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18							
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18							
Reference 20 dB Attenualor	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18							
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17							
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17							
			Deheduled Cheek							
Secondary Standards		Check Date (in house)	Scheduled Check							
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18							
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18							
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18							
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18							
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17							
	Name	Function	Signature							
Calibrated by:	Michael Weber	Laboratory Technician	Milles 1							
Approved by:	Katja Pokovic	Technical Manager	12MI							

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of** Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Accreditation No.: SCS 0108

- Servizio svizzero di taratura S
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\phi$	φ rotation around probe axis
Polarization 9	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
  b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c) used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx.v.z: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe EX3DV4

## SN:7406

Manufactured: November 24, 2015 Calibrated: April 18, 2017 April 18, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

#### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.42	0.45	± 10.1 %
DCP (mV) ^B	99.5	98.3	95.1	

#### **Modulation Calibration Parameters**

UID	Communication System Name		Α	В	C	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	138.9	±2.5 %
		Y	0.0	0.0	1.0		129.6	
		Z	0.0	0.0	1.0		128.2	

Note: For details on UID parameters see Appendix.

#### Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ^{−1}	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V-1	
Х	48.83	366.9	<b>3</b> 6.13	15.06	1.101	4.968	0.251	0.437	1.003
Y	19.57	145.7	35.6	3.888	0.704	4.934	0	0.021	1.004
Z	45.42	343.9	36.58	10.69	0.846	4.98	0	0.36	1.004

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## **DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406**

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	42.7	0.88	10.42	10.42	10.42	0.10	1.20	± 13.3 %
750	41.9	0.89	10.26	10.26	10.26	0.52	0.80	± 12.0 %
835	41.5	0.90	9.97	9.97	9.97	0.53	0.81	± 12.0_%
1750	40.1	1.37	8.88	8.88	8.88	0.42	0.80	± 12.0 %
1900	40.0	1.40	8.40	8.40	8.40	0.26	0.87	± 12.0 %
2300	39.5	1.67	8.04	8.04	8.04	0.25	0.80	± 12.0 %
2450	39.2	1.80	7.68	7.68	7.68	0.38	0.80	± 12.0 %
2600	39.0	1.96	7.44	7.44	7.44	0.40	0.83	± 12.0 %

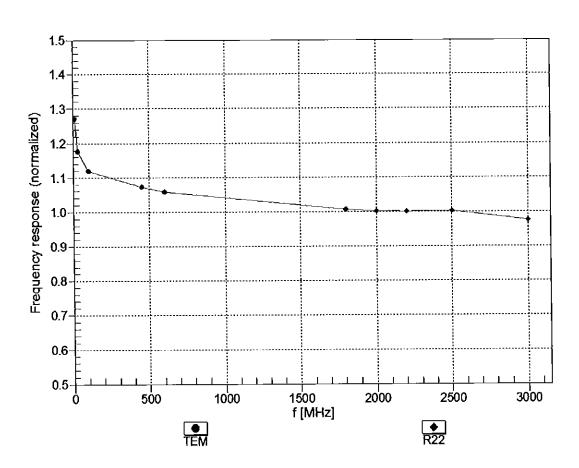
#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

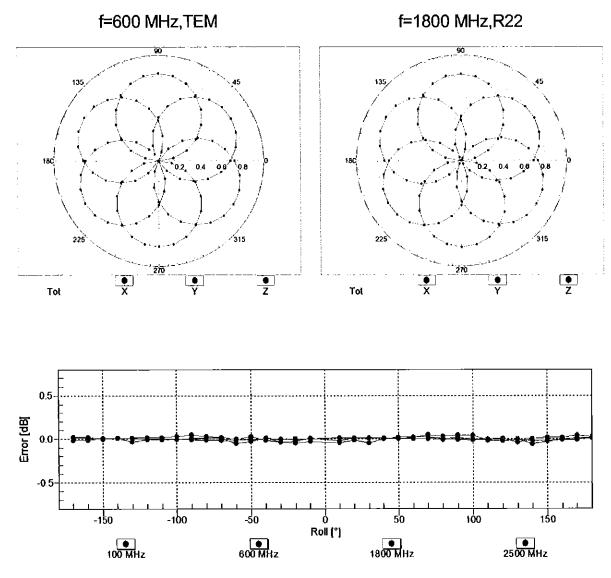
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

## **DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406**


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	56.1	0.95	10.82	10.82	10.82	0.10	1.20	± 13.3 %
750	55.5	0.96	9,90	9.90	9.90	0.51	0.83	± 12.0 %
835	55.2	0.97	9.77	9.77	9.77	0.46	0.80	± 12.0 %
1750	53.4	1.49	8.08	8.08	8.08	0.41	0.85	± 12.0 %
1900	53.3	1.52	7.81	7.81	7.81	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.65	7.65	7.65	0.38	0.84	± 12.0 %
2450	52.7	1.95	7.60	7.60	7.60	0.33	0.89	± 12.0 %
2600	52.5	2.16	7.31	7.31	7.31	0.31	0.94	± 12.0 %

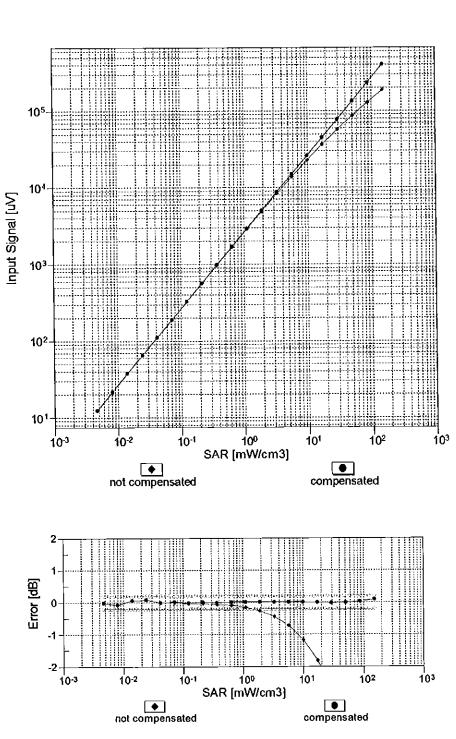
#### **Calibration Parameter Determined in Body Tissue Simulating Media**

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

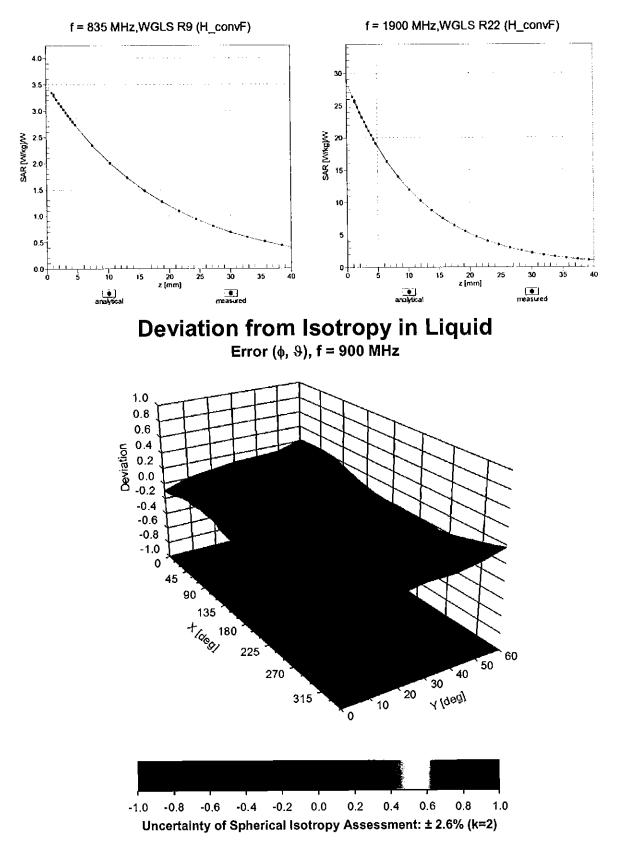
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	0
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

#### April 18, 2017

#### EX3DV4-SN:7406

## **Appendix: Modulation Calibration Parameters**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	138.9	± 2.5 %
		Y	0.00	0.00	1.00		129.6	
		Z	0.00	0.00	1.00		128.2	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.73	66.22	10.89	10.00	20.0	± 9.6 %
		Y	2.50	65.91	10.39		20.0	
		Z	2.53	65.90	10.54		20.0	
10011- CAB	UMTS-FDD (WCDMA)	х	1.16	69.53	16.71	0.00	150.0	± 9.6 %
		Y	1.55	76.79	19.47		150.0	
10010		Z	1.09	68.24	15.96	0.44	150.0	
10012- CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 1 Mbps)	X	1.21	64.38	15.70	0.41	150.0	±9.6 %
		Y	1.20	65.37	16.13		150.0	
40040		Z	1.18	63.82	15.33 16.98	1.46	150.0 150.0	± 9.6 %
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	4.87	66.56		1.40		±9.0 %
		Y	4.34	67.27	16.96		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	Z X	4,83 9.99	66.50 82.36	16.95 18.50	9.39	150.0 50.0	± 9.6 %
		Y	13.63	85.86	18.88		50.0	
		z	18.22	90.00	20.60		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	8.49	80.16	17.78	9.57	50.0	±9.6 %
		Y	7.32	78.16	16.31		50.0	
		Ζ	12.47	85.19	19.17		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	18.19	89.55	19.31	6.56	60.0	±9.6 %
		Y	100.00	107.67	23.01		60.0	
		Z	100.00	108.36	23.76		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	Х	5.54	75.78	27.74	12.57	50.0	± 9.6 %
		Y	8.76	92.32	36.08		50.0	
		Z	4.44	70.37	25.26	0.50	50.0 60.0	1069/
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	9.90	90.96	31.21	9.56	60.0	± 9.6 %
		Y Z	5.70 7.85	81.99 86.95	30.11		60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	106.69	22.59	4.80	80.0	± 9.6 %
DAC		Y	100.00	110.45	23.34	<u> </u>	80.0	<u> </u>
	· · · · · · · · · · · · · · · ·	z	100.00	108.23	22.93		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	107.01	22.11	3.55	100.0	± 9.6 %
		Y	100.00	117.41	25.54	1	100.0	
		Z	100.00	109.42	22.79		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	6.41	81.80	26.70	7.80	80.0	± 9.6 %
		Y	3.86	73.74	24.21		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	5.17 13.75	78.18 86.21	25.56 17.68	5.30	80.0 70.0	± 9.6 %
CAA			0.11	00.70	45.00	—	70.0	<u> </u>
		Y	8.41	82.76	15.88		70.0	
10031-	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Z X	100.00 100.00	106.60 106.42	22.49 20.68	1.88	100.0	± 9.6 %
		Y	100.00	120.98	25.51	1	100.0	1
		z	100.00	108.89	21.35	+	100.0	1

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	113.18	22.62	1.17	100.0	± 9.6 %
		<u> </u>	ļ					
<u> </u>		Y	100.00	160.14	39.75		100.0	
10033-	IEEE 802 15 1 Plustoath (Pl/4 DODCK	Z	100.00	117.70	24.05	l	100.0	
	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	6.02	81.27	20.17	5.30	70.0	± 9.6 %
		Y	2.18	67.67	12.00		70.0	
10034-		Z	5.24	80.63	20.08		70.0	
CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	2.82	75.11	17.10	1.88	100.0	± 9.6 %
	+	Y	0.75	61.82	7.32		100.0	
10035-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	Z	2.29	73.13	16.28		100.0	
CAA	DH5)	X X	2.17	73.18	16.32	1.17	100.0	± 9.6 %
		Y	0.59	61.24	6.75		100.0	
10036-	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Z	1.79	71.19	15.39		100.0	
CAA		X	7.12	83.90	21.15	5.30	70.0	± 9.6 %
	<u> </u>	Y	2.26	68.25	12.32		70.0	
10037-		Z	6.24	83.43	21.13		70.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	2.66	74.41	16.79	1.88	100.0	± 9.6 %
		<u>Y</u>	0.71	61.41	7.10		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Z	2.15	72.41	15.96	l	100.0	
CAA		X	2.20	73.62	16.61	1.17	100.0	± 9.6 %
		<u>Y</u>	0.60	61.36	6.93		100.0	
10039-		Z	1.80	71.51	15.64		100.0	
CAB	CDMA2000 (1xRTT, RC1)	X	2.76	78.09	18.48	0.00	150.0	± 9.6 %
		Y	0.37	60.00	5.64		150.0	
40040		Ζ	2.22	74.97	16.93		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	7.43	78.80	16.12	7.78	50.0	± 9.6 %
		Y	8.26	80.71	16.15		50.0	
100(1		Z	12.01	84.59	17.75		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	100.49	0.10	0.00	150.0	± 9.6 %
		Y	0.04	60.00	50.13		150.0	
		Z	0.00	96.59	0.05		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	6.27	73.35	16.78	13.80	25.0	± 9.6 %
		Y	5.47	69.78	14.42		25.0	
40040		Z	7.09	74.59	16.89		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	6.62	76.07	16.59	10.79	40.0	± 9.6 %
	+	Y	5.50	73.13	14.63		40.0	
40050		Z	7.47	77.74	16.92		40.0	<u> </u>
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	8.73	81.97	20.70	9.03	50.0	± 9.6 %
		Y	5.30	74.02	15.71		50.0	<b>—</b> — –
40050		Z	9.70	84.35	21.49		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	4.93	77.02	24.10	6.55	100.0	±9.6 %
		Y	3.18	70.36	21.96		100.0	
40050		Z	4.10	73.99	23.08		100.0	·
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	х	1.26	65.49	16.19	0.61	110.0	± 9.6 %
		Y	1.20	65.95	16.36		110.0	<u> </u>
40000		Z	1.20	64.67	15.74		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	13.21	104.87	27.26	1.30	110.0	± 9.6 %
		Y	4.90	96.93	26.57		110.0	<b>├───</b> ── <b> </b>
		Z	4.52	91.43	23.95		110.0	

10061-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	2.92	78.86	20.97	2.04	110.0	±9.6 %
CAB	Mbps)							
		Y	1.70	73.25	19.05		110.0	
10062-		<u>Z</u>	2.19	75.27	19.88	0.10	110.0	
CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.70	66.68	16.55	0.49	100.0	± 9.6 %
		<u> </u>	4.18	67.42	16.56		100.0	
		_ Z ]	4.65	66.61	16.51		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.70	66.73	16.62	0.72	100.0	± 9.6 %
_		Y	4.18	67.49	16.63		100.0	
		Ζ	4.66	66.66	16.57		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.99	66.98	16.82	0.86	100.0	± 9.6 %
		Y	4.36	67.60	16.75		100.0	
		Z	4.94	66.90	16.78		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.85	66.84	16.87	1.21	100.0	±9.6 %
		Y	4.23	67.25	16.71		100.0	
		Z	4.80	66.75	16.83		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.86	66.83	16.99	1.46	100.0	± 9.6 %
		Y	4.21	67.08	16.71		100.0	
		Z	4.80	66.72	_ 16.95		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.14	66.93	17.36	2.04	100.0	±9.6 %
		Ý	4.40	67.10	16.99		100.0	
		Z	5.08	66.86	17.34		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.19	66.98	17.55	2.55	100.0	±9.6 %
		Υ	4.52	67.37	17.35		100.0	
		Z	5.12	66.84	17.50		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.27	66.95	17.72	2.67	100.0	±9.6 %
		Y	4.52	67.17	17.38	ĺ	100.0	
		Z	5.20	66.85	17.69		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.96	66.60	17.22	1.99	100.0	± 9.6 %
	······································	TT	4.44	67.29	17.20		100.0	
		Z	4.91	66.53	17.19		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.94	66.90	17.40	2.30	100.0	± 9.6 %
		Υ	4.35	67.27	17.25		100.0	
		Z	4.87	66.79	17.36	l i	100.0	1
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.99	67.03	17.67	2.83	100.0	± 9.6 %
		Y	4.41	67.49	17.58		100.0	
		Z	4.92	66.90	17.63		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.97	66.91	17.78	3.30	100.0	± 9.6 %
		Y	4.49	67.70	17.84		100.0	
		Z	4.90	66.77	17.74		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.02	67.05	18.08	3.82	90.0	± 9.6 %
		Y	4.55	67.83	18.12		90.0	
		Z	4.94	66.85	18.01		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.03	66.84	18.17	4.15	90.0	± 9.6 %
		Y	4.61	67.72	18.28		90.0	
		Z	4.95	66.65	18.12		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.06	66.90	18.26	4.30	90.0	± 9.6 %
		Y	4.65	67.85	18.42		90.0	
		Ż	4.98	66.71	18.21		90.0	1

10081- CAB	CDMA2000 (1xRTT, RC3)	x	1.05	69.26	14.55	0.00	150.0	±9.6%
		Y	0.28	60.00	5.33		150.0	
		z	0.92	67.44	13.36	· · ·	150.0	<u> </u>
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	х	0.52	58.22	3.69	4.77	80.0	± 9.6 %
		Y	0.41	56.78	1.87		80.0	
		Z	0.54	57.53	2.88		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	17.35	89.03	19.19	6.56	60.0	± 9.6 %
		Y	100.00	107.61	23.00		60.0	
40007		Z	100.00	108.37	23.77		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.96	68.94	16.57	0.00	150.0	±9.6 %
		Y	2.57	76.20	18.23		150.0	
10098-		Z	1.90	68.41	16.17	0.00	150.0	
CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1,92	68.91	16.54	0.00	150.0	± 9.6 %
		Y	2.54	76.26	18.30		150.0	
10099-		Z	1.86	68.36	16.14		150.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	9.94	91.01	31.21	9.56	60.0	± 9.6 %
		Y	5.73	82.09	28.86		60.0	
10100-		Z	7.90	87.03	30.13	0.0	60.0	
CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.32	71.40	17.37	0.00	150.0	± 9.6 %
		Y	2.95	71.83	18.07		150.0	
40404		Z	3.20	70.72	17.06		150.0	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	x	3.33	67.99	16.32	0.00	150.0	± 9.6 %
		Y	3.00	68.42	16.63	_	<u>15</u> 0.0	
		Z	3.27	67.68			150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.43	67.94	16.40	0.00	150.0	± 9.6 %
		Y	3.10	68.46	16.71		150.0	
		z	3.37	67.66	16.24		150.0	
10103- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.02	73.90	19.30	3.98	65.0	±9.6 %
		Y	4.68	73.18	19.41		65.0	
		Z	5.62	73.49	19.33		65.0	
10104- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	6.42	73.34	19.91	3.98	65.0	± 9.6 %
		Y	4.72	70.79	18.81		65.0	
		Z	5.88	72.35	19.63		65.0	
10105- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	6.34	73.01	20.09	3.98	65.0	± 9.6 %
		Y	4.65	70.25	18.83		65.0	
		Z	<u>5.51</u>	70.92	19.28		65.0	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	2.90	70.63	17.22	0.00	150.0	± 9.6 %
		Ý	2.58	72.09	18.15		150.0	
		Z	2.79	69.99	16.90		150.0	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.99	67.94	16.29	0.00	150.0	± 9.6 %
		Y	2.69	69.27	16.60		150.0	
		Z	2.93	67.61	16.08		150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	2.37	69.82	16.91	0.00	150.0	± 9.6 %
		Y	2.17	72.66	17.66		150.0	
		Z	2.27	69.17	16.53		150.0	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	х	2.75	69.14	16.80	0.00	150.0	± 9.6 %
		Y	2.72	72.65	17.00		150.0	
		Z	2.68	68.77	16.52	İ	150.0	

April 18, 2017

10112- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.11	67.90	16.33	0.00	150.0	±9.6 %
		Y	2.81	69.41	16.67		150.0	<u> </u>
10113- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	Z X	3.05 2.91	<u>67.61</u> 69.24	1 <u>6.14</u> 16.90	0.00	150.0 150.0	±9.6 %
		τ _γ Ι	2.80	72.45	16.91		150.0	
		Z	2.83	68.91	16.64		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.18	67.36	16.63	0.00	150.0	±9.6 %
		Y	4.69	67.54	16.80		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	5.15	67.30	16.59		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.48	67.50	16.70	0.00	150.0	± 9.6 %
·		Y	4.94	67.76	16.85		150.0	
		Z	5.42	67.37	16.64		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.28	67.57	16.65	0.00	150.0	±9.6 %
		Y T	4.76	67.79	16.84		150.0	
		Z	5.24	67.47	16.61		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.14	67.22	16.57	0.00	150.0	± 9.6 %
		Y	4.68	67.44	16.77		150.0	
		Z	5.11	67.13	16.53		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.56	67.71	16.81	0.00	150.0	± 9.6 %
		Y	4.92	67.65	16.80		150.0	
-		Z	5.51	67.59	16.75		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.26	67.51	16.64	0.00	150.0	± 9.6 %
-		Y	4.75	67.71	16.81		150.0	
		Z	5.23	67.43	16.60		150.0	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.47	67.94	16.32	0.00	150.0	± 9.6 %
		Y	3.08	68.53	16.60		150.0	
		Z	3.41	67.65	16.15		150.0	
10141- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.59	68.02	16.48	0.00	150.0	± 9.6 %
		İΥ	3.23	68.87	16.85		150.0	
		Z	3.53	67.77	16.33		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.17	70.14	16.75	0.00	150.0	± 9.6 %
		Y	1.93	72.39	15.85		150.0	
		Z	2.06	69.38	16.26		150.0	· · · · · · · · · · · · · · · · · · ·
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.69	70.39	16.77	0.00	150.0	± 9.6 %
		Y	1.77	67.88	12.65		150.0	
		Z	2.58	69.83	16.31		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.37	67.50	14.86	0.00	150.0	± 9.6 %
		Y	1.24	63.02	9.52		150.0	
		Z	2.27	66.99	14.42		150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.43	67.32	13.24	0.00	150.0	± 9.6 %
		Y	0.41	60.00	4.04		150.0	
		Z	1.25	65.61	11.99		150.0	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	1.83	65.71	11.47	0.00	150.0	± 9.6 %
		Y	19.01	355.37	40.53		150.0	
		Z	1.52	64.01	10.27		150.0	
10147- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	2.14	67.65	12.55	0.00	150.0	± 9.6 %
		Y	123.11	63.95	2.67		150.0	
		Z	1.70	65.34	11.08		150.0	

Certificate No: EX3-7406_Apr17

10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.00	68.01	16.34	0.00	150.0	± 9.6 %
		Y	2.71	69.38	16.67		150.0	·
		Z	2.94	67.68	16.14	t	150.0	-
10150- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.12	67.96	16.38	0.00	150.0	± 9.6 %
		Y	2.83	69.51	16.73		150.0	
40454			3.06	67.68	16.19		150.0	
10151- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	6.55	76.73	20.51	3.98	65.0	± 9.6 %
		Y	4.65	75.11	19.92		65.0	
10152-		Z	5.91	75.87	20.37		65.0	
CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	5.92	73.14	19.51	3.98	65.0	± 9.6 %
		Y	4.14	70.22	17.64		65.0	
10153-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	Z	5.38	72.11	19.20		65.0	
CAC	64-QAM)	X	6.32	74.15	20.32	3.98	65.0	± 9.6 %
		Y	4.49	71.52	18.62		65.0	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z X	5.75	73.14	20.03	- <u>-</u>	65.0	L
CAD	QPSK)	Y	2.44	70.37	17.23	0.00	150.0	± 9.6 %
			2.24	73.24	17.96		150.0	<u> </u>
10155-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z X	2.32	69.67	16.83		150.0	
CAD	16-QAM)	Y	2.75	69.15	16.81	0.00	150.0	± 9.6 %
	<u> </u>	Z	2.68	72.83	17.10		150.0	
10156-	LTE-FDD (SC-FDMA, 50% RB, 5 MHz,	X	2.05	70.60	16.53	- 0.00	150.0	
CAD	QPSK)	Y	1.46			0.00	150.0	± 9.6 %
_		Z	1.92	69.42 69.63	13.50		150.0	<u> </u>
10157- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.25	69.63	<u>16.11</u> 15.12	0.00	<u>150.0</u> 150.0	± 9.6 %
		ΤΥ	0.93	61.53	7.91	_	150.0	
		Z	2.13	67.76	14.53		150.0	
10158- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.91	69.31	16.96	0.00	150.0	± 9.6 %
		ΓY	2.84	72.68	17.03		150.0	
		Z	2.84	68.99	16.70	_	150.0	
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.39	69.07	15.47	0.00	150.0	± 9.6 %
		Y	0.94	61.44	7.84		150.0	
10400		Z	2.25	68.30	14.85	_	150.0	
10160- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.87	69.48	16.90	0.00	150.0	± 9.6 %
		<u> </u>	2.53	71.06	17.44		150.0	
10161-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z	2.80	69.08	16.66		150.0	
CAC	16-QAM)	X	3.02	67.94	16.33	0.00	150.0	± 9.6 %
	<u>+</u>	Y	2.72	69.68	16.46		150.0	
10162-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z	2.96	<u>67.65</u>	16.13		150.0	
CAC	64-QAM)	X	3.13	68.07	16.43	0.00	150.0	± 9.6 %
	<u> </u>		2.84	70.03	16.63	_	150.0	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Z X	<u>3.07</u> 3.48	67.8 <u>1</u> 69.00	<u>16.24</u> 18.84	3.01	150.0 150.0	± 9.6 %
		Y	2.37	66.02	18.17		150.0	<b>_</b>
		z	3.30	68.39	18.62		150.0	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	4.17	71.58	19.19	3.01	150.0 150.0	± 9.6 %
		Y	2.29	67.15	18.12		150.0	
		Ż	3.79	70.56	18.83		150.0	
			0.10	10.00	10.03		150.0	

April 18, 2017

10168- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	4.66	74.00	20.63	3.01	150.0	± 9.6 %
· · P		Y	2.48	69.25	19.67		150.0	
		z	4.22	72.96	20.30		150.0	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.83	68.21	18.52	3.01	150.0	± 9.6 %
		Y	1.98	64.24	17.28		150.0	
		Z	2.57	66.84	17.97		150.0	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.78	73.87	20.84	3.01	150.0	±9.6 %
		Y	1.95	66.56	18.68		150.0	
		Z	3.16	71.49	20.02		150.0	-
10171- AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.08	69.63	17.94	3.01	150.0	±9.6 %
		Y	1.72	64.21	_16.34		150.0	
		Z	2.64	67.80	17.26		150.0	
10172- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.42	80.62	23.60	6.02	65.0	±9.6 %
		Y	2.15	69.85	20.42		65.0	
		Z	4.45	78.76	23.36		65.0	
10173- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	8.97	86.28	23.79	6.02	65.0	± 9.6 %
		Y	2.26	72.00	19.72		65.0	
		Z	6.61	83.59	23.38		65.0	
10174- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	7.82	83.09	22.18	6.02	65.0	± 9.6 %
		Y	1.97	69.58	18.06		65.0	
		Z	5.22	78.89	21.15		65.0	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.79	67.90	18.26	3.01	150.0	±9.6 %
		Y	1.97	64.07	17.08		150.0	
		Z	2.54	66.56	17.72	_	150.0	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	3.78	73.89	20.85	3.01	150.0	± 9.6 %
		Y	1.95	66.57	18.69		150.0	
		Z	3.16	71.52	20.03		150.0	
10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.82	68.06	18.36	3.01	150.0	± 9.6 %
		Y	1.98	64.12	17.12		150.0	
		Z	2.56	66.70	17.81		150.0	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	3.74	73.65	20.71	3.01	150.0	± 9.6 %
		Y	1.95	66.53	18.65		150.0	
		Z	3.13	71.32	19.91		150.0	
10179- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	3.39	71.59	19.23	3.01	150.0	±9.6 %
		Y	1.82	65.39	17.45		150.0	
		Z	2.87	69.52	18.50		150.0	
10180- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.08	69.55	17.88	3.01	150.0	± 9.6 %
		Y	1.72	64.21	16.33		150.0	
		Z	2.64	67.75	17.21		150.0	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.81	68.04	18.35	3.01	150.0	± 9.6 %
		Y	1.97	64.11	17.12		150.0	
		Z	2.56	66.68	17.80	<u> </u>	150.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	3.73	73.62	20.70	3.01	150.0	±9.6 %
		Y	1.95	66.51	18.64		150.0	
		Z	3.13	71.29	19.90		150.0	L
10183- AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.07	69.53	17.87	3.01	150.0	± 9.6 %
		Y	1.72	64.19	16.32		150.0	
		Z	2.64	67.72	17.20		150.0	

Certificate No: EX3-7406_Apr17

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	2.82	68.08	18.37	3.01	150.0	± 9.6 %
		Y	1.98	64.13	17.13	<u> </u>	150.0	
		Z	2.56	66.72	17.83		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	3.75	73.70	20.74	3.01	150.0	± 9.6 %
		Y	1.96	66.56	18.67		150.0	
		Z	3.14	71.36	19.94		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	3.09	69.60	17.91	3.01	150.0	± 9.6 %
		Y	1.73	64.23	16.35		150.0	
10187-		Z	2.65	67.78	17.23		150.0	
CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	2.83	68.13	18.43	3.01	150.0	± 9.6 %
		Y	1.99	64.22	17.23		150.0	
10188-		Z	2.57	66.77	17.89		150.0	
CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	3.88	74.41	21.15	3.01	150.0	± 9.6 %
		Y	1.98	66.86	18.93		150.0	
10189-		<u>Z</u>	3.23	71.97	20.32		150.0	
AAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	3.15	70.02	18.19	3.01	150.0	± 9.6 %
		Y	1.74	64.44	16.55		150.0	
10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps,	Z	2.70	68.15	17.50		150.0	
CAB	BPSK)	X	4.57	66.79	16.35	0.00	150.0	± 9.6 %
		Y	4.14	67.99	16.59		150.0	
10194-	IEEE 802.11n (HT Greenfield, 39 Mbps,	Z	4.54	66.72	16.28		150.0	
<u>CAB</u>	16-QAM)	X	4.75	67.11	16.47	0.00	150.0	±9.6 %
		Y	4.22	68.00	16.68		150.0	
10195-		Z	4.70	67.02	16.41		150.0	
CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.79	67.14	16.49	0.00	150.0	± 9.6 %
	<u>+                                    </u>	Y	4.23	67.92	16.65		150.0	
10196-		Z	4.74	67.05	16.43		150.0	
CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.58	66.86	16.37	0.00	150.0	± 9.6 %
		Y	4.11	67.92	16.54		150.0	
10197-		Z	4.54	66.78	<u>16.3</u> 0		150.0	
CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	×	4.76	67.13	16.48	0.00	150.0	±9.6 %
		Y	4.23	68.00	16. <u>6</u> 9		150.0	
10100		Z	4.71	67.04	16.42		150.0	
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.79	67.15	16.50	0.00	150.0	± 9.6 %
		Y	4.22	67.91	16.64		150.0	
10219-		Z	4.74	67.07	16.44		150.0	
CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.53	66.88	16.34	0.00	150.0	± 9.6 %
		Y	4.08	68.06	16.58		150.0	
10220-		Z	4.49	66.80	16.27		150.0	
CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.76	67.10	16.47	0.00	150.0	± 9.6 %
		Y	4.22	67.96	16.67	-	150.0	
10221-	IEEE 902 11p (IIT Mixed 70.0 Mixed 04	Z	4.71	67.01	16.41		150.0	
CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.80	67.08	16.48	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.25	67.92	16.65		150.0	
10222-	IFEE 802 11p /UT Minod 45 Minor	Z	4.75	67.00	16.42		150.0	
<u>CAB</u>	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.12	67.23	16.57	0.00	150.0	± 9.6 %
	<u>+</u>	Y	4.67	67.48	16.77		150.0	
		Ζ	5.09	<u>67.</u> 14	16.52		150.0	

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	X	5.42	67.42	16.68	0.00	150.0	± 9.6 %
CAB	QAM)	Y	4.05	07.57	40.77		450.0	
	+		4.85	67.57	16.77		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	Z X	<u>5.40</u> 5.17	67.40 67.35	16.67 16.56	0.00	<u>150.0</u> 150.0	± 9.6 %
		T	4.71	67.68	16.79		150.0	
		z	5.13	67.25	16.51		150.0	
10225- CAB	UMTS-FDD (HSPA+)	×	2.87	66.58	15.73	0.00	150.0	± 9.6 %
		Y	2.38	67.09	13.98		150.0	
		Z	2.82	66.38	15.50		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	9.50	87.34	24.24	6.02	65.0	± 9.6 %
		_ Y _	2.34	72.67	20.10		65.0	
		Z	6.98	84.60	23.83		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	8.72	84.77	22.80	6.02	65.0	± 9.6 %
		Y	2.21	71.55	18.95		65.0	
		Z	6.78	83.00	22.65		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	7.70	87.24	26.02	6.02	65.0	± 9.6 %
		Y	2.35	71.63	21.26		65.0	
		Z	5.43	82.72	24.92		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	9.03	86.38	23.83	6.02	65.0	± 9.6 %
		Y	2.27	72.06	19.75		65.0	
		Z	6.67	83.69	_23.42		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	8.29	83.90	22.43	6.02	65.0	± 9.6 %
		Y	2.13	70.90	18.60		65.0	
		Z	6.44	82.12	22.26		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	7.38	86.38	25.64	6.02	65.0	± 9.6 %
		Y	2.30	71.12	20.95		65.0	
		Z	5.24	81.97	24.56		65.0	
10232- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	9.02	86.36	23.83	6.02	65.0	± 9.6 %
		Y	2.27	72.05	19.75		65.0	
		Z	6.65	83.67	23.41		65.0	
10233- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	8.28	83.89	22.42	6.02	65.0	± 9.6 %
		Y	2.13	70.87	18.59		65.0	
		Z	6.43	82.09	22.25		65.0	
10234- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	7.10	85.54	25.23	6.02	65.0	± 9.6 %
		Y	2.26	70.79	20.68		65.0	
		Z	5.08	81.30	24.19		65.0	
10235- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	9.02	86.38	23.84	6.02	65.0	± 9.6 %
		Υ	2.27	72.05	19.76		65.0	ļ
		Z	6.65	83.69	23.42		65.0	
10236- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	8.34	83.99	22.45	6.02	65.0	± 9.6 %
		Y	2.15	70.97	18.63		65.0	ļ
		Z	6.48	82.21	22.28		65.0	 
10237- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	7.38	86.43	25.66	6.02	65.0	± 9.6 %
		Y	2.30	71.11	20.95		65.0	L
		Z	5.24	82.00	24.57		65.0	
10238- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	9.00	86.33	23.82	6.02	65.0	± 9.6 %
		Y	2.26	72.03	19.74		65.0	
		Z	6.63	83.64	23.40		65.0	

10239- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	8.25	83.86	22.41	6.02	65.0	± 9.6 %
		Y	2.13	70.85	18.59		65.0	1
		Ż	6.41	82.06	22.24		65.0	
10240- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	7.36	86.38	25.64	6.02	65.0	± 9.6 %
		Y	2.30	71.11	20.95		65.0	
	·	Ζ	5.22	81.96	24.56		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	×	7.65	78.90	23.86	6.98	65.0	± 9.6 %
		Y	4.15	74.63	23.03		65.0	
		Ζ	6.65	77.23	23.41		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	х	7.40	78.25	23.51	6.98	65.0	± 9.6 %
		Y	3.84	73.21	22.33		65.0	
		Z	6.07	75.38	22.52		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	6.13	75.50	23.22	6.98	65.0	± 9.6 %
·		Y	3.68	71.24	22.18		65.0	
		Z	5.17	72.72	22.17		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	×	4.96	71.78	16.23	3.98	65.0	± 9.6 %
		Y	1.47	60.59	6.86		65.0	
1001		<u>Z</u>	4.27	70.57	15.63		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	×	4.90	71.39	16.01	3.98	65.0	± 9.6 %
		Y	1.47	60.48	6.73		65.0	
		Z	4.22	70.14	15.39		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	×	4.94	75.03	17.94	3.98	65.0	± 9.6 %
		Y	1.46	62.04	8.51		65.0	
		Z	4.23	73.72	17.40		65.0	
10247- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	4.94	72.43	17.57	3.98	65.0	± 9.6 %
		Y	2.10	63.24	9.90		65.0	
		Z	4.38	71.34	17.07		65.0	
10248- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	4.96	72.03	17.39	3.98	65.0	± 9.6 %
		Y	2.10	62.93	9.72		65.0	
		Z	4.40	70.92	16.87		65.0	
10249- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	6.07	78.35	20.13	3.98	65.0	± 9.6 %
		Y	2.33	67.19	12.94		65.0	
		Z	5.28	77.21	19.80		65.0	
10250- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	5.95	75.24	20.37	3.98	65.0	±9.6%
		Y	3.82	70.93	16.95		65.0	
		Z	5.33	74.14	20.02		65.0	
10251- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	5.69	73.28	19.20	3.98	65.0	± 9.6 %
		Y	3.45	68.36	15.25		65.0	
		Z	5.13	72.25	18.83		65.0	
10252- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	6.58	78.88	21.28	3.98	65.0	± 9.6 %
		Y	4.11	75.12	18.99		65.0	
		Z	5.80	77.80	21.07		65.0	
10253- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	×	5.80	72.65	19.29	3.98	65.0	± 9.6 %
		Y	4.01	69.64	16.98		65.0	•
		Z	5.29	71.67	18.98		65.0	
10254- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	6.17	73.58	20.02	3.98	65.0	± 9.6 %
		Y	4.31	70.68	17.76		65.0	1
		Z	5.63	72.60	19.71		65.0	1

10255-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	6.29	76.23	20.52	3.98	65.0	± 9.6 %
CAC	QPSK)	Y	- 4 44	74.07	40.40			
			4.41	74.27	19.43		65.0	
10256-	LTE-TDD (SC-FDMA, 100% RB, 1.4	Z	5.67	75.30	20.34		65.0	
CAA	MHz, 16-QAM)	X	3.88	68.28	13.63	3.98	65.0	± 9.6 %
		Y	1.05	58.86	4.54		65.0	
40057		Z	3.28	66.95	12.85		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	3.85	67.85	13.35	3.98	65.0	±9.6 %
		Y	1.05	58.75	4.36		65.0	
40050		Z	3.25	66.51	12.54		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	3.78	70.85	15.35	3.98	65.0	± 9.6 %
		Y	1.11	60.00	5.99		65.0	
		Z	3.18	69.35	14.58		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	5.33	73.49	18.59	3.98	65.0	± 9.6 %
		Y	2.60	65.55	12,14		65.0	
		Z	4.76	72.43	18.16		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	5.38	73.29	18.52	3.98	65.0	±9.6 %
		Y	2.62	65.36	12.01		65.0	
		Z	4.80	72.23	18.08		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	6.02	77.89	20.37	3.98	65.0	± 9.6 %
		Y	2.87	69.70	14.96		65.0	
		Z	5.26	76.76	20.06		65.0	
10262- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	5.94	75.19	20.32	3.98	65.0	± 9.6 %
		Y	3.80	70.83	16.88		65.0	
		Ż	5.32	74.09	19.98		65.0	
10263- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	5.68	73.26	19.19	3.98	65.0	± 9.6 %
0/10		Y	3.45	68.35	15.24		65.0	
		z	5.12	72.23	18.82		65.0	
10264- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	6.52	78.70	21.19	3.98	65.0	± 9.6 %
		Ι γ Ι	4.06	74.89	18.86		65.0	
		Ż	5.75	77.62	20.97		65.0	
10265- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	5.92	73.14	19.52	3.98	65.0	± 9.6 %
0/10		Y	4.14	70.23	17.64		65.0	
		Z	5.38	72.12	19.20		65.0	
10266- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	6.31	74.13	20.31	3.98	65.0	± 9.6 %
		Y	4.49	71.50	18.60	-	65.0	
	1	Ż	5.75	73.12	20.02	İ	65.0	
10267- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.54	76.70	20.49	3.98	65.0	±9.6 %
		Y	4.64	75.05	19.89		65.0	
		Ż	5.90	75.83	20.35		65.0	1
10268- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	6.58	73,24	19.99	3.98	65.0	± 9.6 %
		Y	4.89	71.06	18.92		65.0	
40000		Z	6.05	72.29	19.72	0.00	65.0	1000
10269- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	6.56	72.88	19.90	3.98	65.0	± 9.6 %
		Y	4.96	70.94	18.86		65.0	
		Z	6.05	71.95	19.63		65.0	
10270-	LTE-TDD (SC-FDMA, 100% RB, 15	X	6.52	74.64	19.85	3.98	65.0	± 9.6 %
CAC	MHz, QPSK)	1 1		1				
		Y	4.97 5.98	73.67	19.72		65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.66	67.03	15.70	0.00	150.0	± 9.6 %
-		Y	2.34	68.55	14.63		150.0	
		Ż	2.62	66.83	15.48		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.75	69.41	16.56	0.00	150.0	± 9.6 %
		Y	2.02	74.91	18.12		150.0	
		Ζ	1.67	68.59	16.06		150.0	
10277- CAA	PHS (QPSK)	X	2.57	62.13	7.82	9.03	50.0	± 9.6 %
		Y	1.60	59.68	4.94		50.0	
		Z	2.26	61.44	7.11		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	4.26	69.41	14.02	9.03	50.0	± 9.6 %
		Y	2.29	61.84	7.55		50.0	
		Ζ	3.87	68.64	13.41		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	4.37	69.66	14.18	9.03	50.0	± 9.6 %
		Y	2.31	61.88	7.61		_50.0	
		Ζ	3.97	68.90	13.58		<u>5</u> 0.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.85	72.31	15.88	0.00	150.0	± 9.6 %
		Y	0.36	60.00	5.29		150.0	
		Z	1.58	70.17	14.63		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	1.02	68.88	14.36	0.00	150.0	± 9.6 %
		Y	0.28	60.00	5.31		150.0	
		Ζ	0.90	67.15	13.20		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	1.80	77.95	18.61	0.00	150.0	± 9.6 %
		. Y	0.38	62.69	7.21		150.0	
		Z	1.39	74.03	16.69		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	5.83	95.82	25.10	0.00	150.0	± 9.6 %
		Y	100.00	107.50	20.43		150.0	
		Z	3.54	87.74	22.15		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	7.34	78.85	20.80	9.03	50.0	± 9.6 %
		Y	17.07	85.10	19.02		50.0	
		Z	7.80	80.40	21.29		50.0	
10297- AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.92	70.76	17.30	0.00	150.0	± 9.6 %
		Ý	2.60	72.27	18.25		150.0	
		Z	2.80	70.10	16.98		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.81	69.98	15.49	0.00	150.0	± 9.6 %
	·	Y	0.52	60.00	6.04		150.0	
		Z	1.63	68.52	14.51		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	2.47	68.97	14.03	0.00	150.0	± 9.6 %
		Y	0.58	60.00	4.73		150.0	
		Z	2.10	67.38	13.05		150.0	
10300- 	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	1.87	64.64	11.20	0.00	150.0	± 9.6 %
		Y	0.56	60.00	_ 4.04 _		150.0	
		Z	1.64	63.62	10.41		150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	4.64	64.99	17.32	4.17	50.0	± 9.6 %
		Y	3.97	66.09	16.87		50.0	
		Z	4.63	65.19	17.38		50.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.19	65.93	18.20	4.96	50.0	± 9.6 %
		Y	4.41	66.55	17.60		50.0	
		Z	5.08	65.68	18.02	1	50.0	1 ·

10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	4.95	65.59	18.05	4.96	50.0	± 9.6 %
		T Y	4.26	66.62	17.49		50.0	
		Ż	4.83	65.30	17.84		50.0	·
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.75	65.47	17.56	4.17	50.0	± 9.6 %
		Y	4.05	66.34	16.93		50.0	
		Z	4.65	65.23	17.38		50.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	4.49	67.73	19.78	6.02	35.0	± 9.6 %
		Y	3.71	67.28	16.67		35.0	
		Z	4.28	66.94	19.23		35.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	4.75	66.48	19.22	6.02	35.0	± 9.6 %
		Y	4.04	67.06	17.49		35.0	
40007		Z	4.60	65.99	18.86		35.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.67	66.74	19.24	6.02	35.0	±9.6 %
		<u>Y</u>	3.93	66.99	17.33		35.0	
10000		Z	4.50	66.15	18.83		35.0	<u> </u>
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	4.65	66.96	19.39	6.02	35.0	± 9.6 %
	·	Y	3.96	67.42	17.62		35.0	
10309-		Z	4.47	66.34	18.96	0.00	35.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	4.80	66.69	19.36	6.02	35.0	± 9.6 %
		Y	4.07	67.23	17.68		35.0	
40040		Z	4.64	66.17	18.98		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	4.70	66.58	19.22	6.02	35.0	± 9.6 %
		<u>Y</u>	4.03	67.27	17.61		35.0	
40044		Z	4.55	66.06	18.84		35.0	
10311- AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.29	69.98	16.90	0.00	150.0	± 9.6 %
		Y	2.90	70.63	17.62		150.0	
10010		Z	3.17	69.35	16.60		150.0	
10313- AAA	iDEN 1:3	X	3.28	70.39	14.65	6.99	70.0	± 9.6 %
	·	Y	2.53	71.17	15.80		70.0	
40044		Z	2.85	70.12	14.78	40.00	70.0	
10314- AAA	iDEN 1:6	X	4.28	75.46	19.37	10.00	30.0	± 9.6 %
	· · · ·	Y	4.79	80.62	22.06		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	4.09 1.12	76.26 64.41	<u>19.99</u> 15.77	0.17	30.0 150.0	± 9.6 %
1770	Mbps, 96pc duty cycle)	Y	1.15	65.92	16.47		150.0	
		Z	1.10	63.89	15.39		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.61	66.72	16.37	0.17	150.0	± 9.6 %
		Y	4.09	67.47	16.39		150.0	
		z	4.56	66.65	16.32		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.61	66.72	16.37	0.17	150.0	± 9.6 %
		Y	4.09	67.47	16.39		150.0	
		Z	4.56	66.65	16.32		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.74	67.15	16.46	0.00	150.0	± 9.6 %
		Y	4.09	67.65	16.48		150.0	
		Z	4.69	67.06	16.40		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.44	67.31	16.60	0.00	150.0	± 9.6 %
		Y	4.84	67.31	16.60		150.0	-

10402-	IEEE 802.11ac WIFi (80MHz, 64-QAM,	X	5.69	67.61	16.60	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)	+					ļ	<u> </u>
		Ϋ́	5.24	67.76	16.80		150.0	
10403-		Z	5.65	67.50	16.56		150.0	
AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	1.85	72.31	15.88	0.00	115.0	± 9.6 %
		Y	0.36	60.00	5.29		115.0	
		Z	1.58	70.17	14.63		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.85	72.31	15.88	0.00	115.0	± 9.6 %
		Y	0.36	60.00	5.29		115.0	
		Z	1.58	70.17	14.63		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	53.12	115.17	29.24	0.00	100.0	± 9.6 %
		Y	100.00	124.65	27.76		100.0	
		Z	28.83	109.13	27.97		100.0	
10410- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.68	83.50	19.17	3.23	80.0	± 9.6 %
		Y	1.37	73.33	16.57		80.0	
		Z	5.13	82.70	19.33		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.04	63.68	15.36	0.00	150.0	± 9.6 %
		Y	1.11	65.66	16.32		150.0	
		Z	1.04	63.32	15.03		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.58	66.83	16.42	0.00	150.0	± 9.6 %
		Y	4.11	67.78	16.58		150.0	
		Z	4.54	66.76	16.35		150.0	
10417- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.58	66.83	16.42	0.00	150.0	± 9.6 %
		Y	4.11	67.78	16.58		150.0	·
		Z	4.54	66.76	16.35		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.57	67.00	16.44	0.00	150.0	± 9.6 %
		Y	4.09	68.01	16.69		150.0	
		Z	4.53	66.93	16.39		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.59	66.94	16.44	0.00	150.0	± 9.6 %
		Y	4.11	67.93	16.65		150.0	
		Z	4.55	66.87	16.38	_	150.0	
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.71	66.93	16.45	0.00	150.0	± 9.6 %
		Y	4.19	67.82	16.64		150.0	
		Z	4.66	66.86	16.39		150.0	
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	Х	4.87	67.25	16.56	0.00	150.0	± 9.6 %
		Y	4.27	68.04	16.70	_	150.0	
		Z	4.82	67.16	16.50		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.79	67.20	16.54	0.00	150.0	± 9.6 %
		Y	4.21	67.94	16.67		150.0	
		Z	4.74	67.12	16.47		150.0	· · · · ·
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.39	67.48	16.69	0.00	150.0	± 9.6 %
		Y	4.86	67.72	16.85		150.0	
		Z	5.35	67.38	16.64		150.0	
10426-	IEEE 802.11n (HT Greenfield, 90 Mbps,	X	5.40	67.51	16.70	0.00	150.0	±9.6 %
AAA	16-QAM)						1	
	16-QAM)	Y	4.89	67.85	16.91		150.0	

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.41	67.49	16.68	0.00	150.0	± 9.6 %
		Y	4.87	67.71	16.83		150.0	
		Ż	5.37	67.41	16.64		150.0	
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.48	71.93	18.89	0.00	150.0	± 9.6 %
		Y	5.16	77.88	19.19		150.0	
		Z	4.43	71.96	18.79		150.0	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.27	67.46	16.46	0.00	150.0	± 9.6 %
		Y	3.63	68.54	16.11		150.0	
		Z	4.21	67.36	16.35		150.0	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.56	67.28	16.50	0.00	150.0	± 9.6 %
		Y I	3.98	68.25	16.55		150.0	
40400		Z	4.51	67.19	16.43		150.0	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.81	67.24	16.56	0.00	150.0	± 9.6 %
		Y	4.24	68.00	16.70		150.0	
10434-		Z	4.76	67.15	16.49	0.00	150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.67	73.09	18.99	0.00	150.0	± 9.6 %
·	·	Y	4.20	74.62	16.81		150.0	
10435-		Z	4.61	73.09	18.84	0.00	150.0	10.00
AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.37	82.80	18.90	3.23	80.0	± 9.6 %
		Y	1.33	72.76	16.26		80.0	
40447		Z	4.91	82.00	19.05		80.0	
10447- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.58	67.63	15.88	0.00	150.0	± 9.6 %
		Y	2.52	66.35	12.95		150.0	
		Z	3.50	67.43	15.64		150.0	
10448- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.11	67.25	16.33	0.00	150.0	± 9.6 %
		Y	3.54	68.41	16.05		150.0	
40440		Z	4.05	67.14	16.22		150.0	
10449- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.38	67.12	16.41	0.00	150.0	±9.6 %
		Y	3.87	68.13	16.50		150.0	
40450		Z	4.33	67.03	16.33		150.0	
10450- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X Y	4.57	67.02	16.42 16.59	0.00	150.0	± 9.6 %
				66.93	16.35		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	Z X	4.53 3.49	67.88	15.53	0.00	150.0	± 9.6 %
		Y	2.00	64.08	10.79		150.0	
		Z	3.38	67.58	15.21		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.26	68.00	16.81	0.00	150.0	± 9.6 %
		Y	6.16	68.95	17.43		150.0	
		Z	6.24	67.94	16.79		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.82	65.46	16.13	0.00	150.0	± 9.6 %
		Y	3.61	66.92	16.42		150.0	
		Z	3.81	65.40	16.06	-	150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.29	67.12	14.89	0.00	150.0	± 9.6 %
		<u>Y</u>	1.44	60.53	7.42		150.0	
		Z	3.18	66.78	14.49		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.43	65.51	15.86	0.00	150.0	±9.6 %
		Y	2.62	61.35	10.29		150.0	
		Z	4.37	65.53	15.72		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	X	1.04	71.02	17.96	0.00	150.0	± 9.6 %
		Y	1.96	84.00	22.92		150.0	
10461-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z X	0.97 3.48	69.34 77.15	<u>16.98</u> 17.91	3.29	150.0 80.0	± 9.6 %
AAA	QPSK, UL Subframe=2,3,4,7,8,9)		0.40	11.10	17.31	5.25	00.0	19.0 %
		Y	0.97	69.25	15.91		80.0	
		Ζ	2.58	75.48	17.77		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	1.03	60.33	8.14	3.23	80.0	± 9.6 %
		Y	0.21	55.42	3.53		80.0	
		Ż	0.84	60.00	7.93		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	х	1.01	60.00	7.51	3.23	80.0	± 9.6 %
		Y	28.36	203.22	3.05		80.0	
		Z	0.86	60.00	7.39		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.64	73.32	15.98	3.23	80.0	± 9.6 %
		Y	0.75	66.12	13.77		80.0	
		Ζ	2.03	72.11	15.91		80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	х	0.99	60.00	7.91	3.23	80.0	± 9.6 %
		. Y	29.96	194.97	5.15		80.0	
10100		_Z	0.84	60.00	7.86		80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	×	1.01	60.00	7.46	3.23	80.0	± 9.6 %
		Y	30.98	196.96	1.83		80.0	
10467		Z	0.86	60.00	7.34	0.00	80.0	
10467- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.77	73.96	16.25	3.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	0.77	66.65	14.10		80.0	
10468-		Z X	2.12	72.73	16.19	0.00	80.0	
AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)		0.99	60.08	7.96	3.23	80.0	±9.6 %
		Y	0.21	55.39	3.50		80.0	
10469-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-	Z X	0.84	60.00 60.00	7.88 7.46	2.00	80.0	
AAB	QAM, UL Subframe=2,3,4,7,8,9)					3.23	80.0	± 9.6 %
		Y	30.66	197.41	1.31		80.0	
10470		Z	0.86	60.00	7.34	0.00	80.0	
10470- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.76	73.94	16.23	3.23	80.0	± 9.6 %
		Y	0.77	66.67	14.10		80.0	
10471- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	2,11 0.99	72.72 60.05	<u>16.18</u> 7.93	3.23	80.0 80.0	±9.6 %
		Y	29.34	196.18	6.49		80.0	· ·'
	· · · · · · · · · · · · · · · · · · ·	z	0.84	60.00	7.87		80.0	
10472- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	x	1.01	60.00	7.45	3.23	80.0	± 9.6 %
		Y	30.49	197.73	1.27		80.0	
		Z	0.86	60.00	7.33		80.0	
10473- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.76	73.90	16.22	3.23	80.0	± 9.6 %
		Y	0.77	66.63	14.08		80.0	
10.17		Z	2.11	72.69	16.16		80.0	
10474- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.99	60.03	7.93	3.23	80.0	± 9.6 %
		Y	29.25	196.25	6.42		80.0	
10475		Z	0.84	60.00	7.87	0.00	80.0	
10475- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	×	1.01	60.00	7.45	3.23	80.0	± 9.6 %
		Y	30.47	197.62	1.42		80.0	
		Z	0.86	60.00	7.33		80.0	

10477- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.98	60.00	7.89	3.23	80.0	± 9.6 %
		Y	29.49	195.72	5.56		80.0	· · · ·
		Z	0.84	60.00	7.84		80.0	
10478- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.01	60.00	7.44	3.23	80.0	± 9.6 %
_		Y	30.62	197.39	1.80		80.0	
		Z	0.86	60.00	7.32		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	3.88	74.90	18.39	3.23	80.0	±9.6%
		Y	2.49	77.92	19.26		80.0	
		Z	3.49	74.59	18.40		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.37	69.78	14.78	3.23	80.0	± 9.6 %
		Y	0.68	60.27	8.31		80.0	- ·
40404		Z	2.92	69.11	14.47		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.92	67.65	13.55	3.23	80.0	± 9.6 %
		Y	0.66	60.00	7.51		80.0	
40400		Z	2.50	66.84	13.14		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.52	68.86	15.13	2.23	80.0	± 9.6 %
		Y_	0.83	60.00	6.91		80.0	
10483-		Z	2.14	67.39	14.41		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.86	67.07	13.71	2,23	80.0	± 9.6 %
		Y	1.05	60.00	5.62		80.0	
10404		Z	2.44	65.81	13.01	0.00	80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.80	66.60	13.51	2.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.07	60.00	5.60		80.0	
10108		Z	2.40	65.34	12.79		80.0	
10485- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.96	70.85	16.91	2.23	80.0	± 9.6 %
		Y	1.17	62.58	10.56		80.0	
		Z	2.58	69.54	16.39		80.0	
10486- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.96	67.72	15.13	2.23	80.0	± 9.6 %
		Y.	1.13	60.00	7.87		80.0	
		Z	2.66	66.76	14.61		80.0	
10487- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.97	67.43	14.99	2.23	80.0	± 9.6 %
		Y	1.16	60.00	7.81		80.0	
10488- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Z X	2.67 3.38	66.49 70.90	<u>14.47</u> 17.67	2.23	80.0 80.0	± 9.6 %
		Y	2.25	69.00	16.17		80.0	1
	1	z	3.02	69.76	17.29		80.0	†·
10489- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.39	68.12	16.57	2.23	80.0	± 9.6 %
		Y	2.32	66.16	14.18		80.0	
		Z	3.13	67.37	16.26		80.0	
10490- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.49	68.02	16.54	2.23	80.0	± 9.6 %
		Y	2.33	65.79	13.96	1	80.0	
		Z	3.23	67.30	16.25		80.0	
10491- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.68	69.90	17.42	2.23	80.0	± 9.6 %
		Y	2.62	68.57	16.67		80.0	
		Z	3.36	68.97	17.13		80.0	
10492- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.77	67.68	16.72	2.23	80.0	± 9.6 %
		Y	2.84	66.78	15.53		80.0	
		Z	3.53	67.02	16.47		80.0	1

10493- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.84	67.59	16.70	2.23	80.0	±9.6 %
		Y	2.87	66.60	15.40		80.0	
		Z	3.60	66.95	16.45		80.0	
10494- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.93	71.14	17.78	2.23	80.0	±9.6 %
		Y	2.77	69.47	17.23		80.0	
		Z	3.56	70.11	17.48		80.0	
10495- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.80	68.03	16.89	2.23	80.0	± 9.6 %
		Y	2.91	67.12	16.06		80.0	
		Z	3.55	67.32	16.64		80.0	
10496- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.89	67.83	16.85	2.23	80.0	± 9.6 %
		Y	2.99	66.99	16.00		80.0	
		Z	3.64	67.16	16.61		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.81	64.83	12.37	2.23	80.0	± 9.6 %
		Y	0.97	60.00	4.80		80.0	
		Z	1.52	63.38	11.47		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.56	60.98	9.46	2.23	80.0	± 9.6 %
		Y	19.60	209.65	15.97		80.0	
		Z	1.35	60.00	8.64		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.53	60.58	9.11	2.23	80.0	± 9.6 %
		Y	17.31	229.94	5.52		80.0	
		Z	1.37	60.00	8.51		80.0	1
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.10	70.67	17.16	2.23	80.0	± 9.6 %
		Y	1.60	65.48	12.91		80.0	
		Z	2.73	69.49	16.71		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.16	67.97	15.73	2.23	80.0	± 9.6 %
		Y	1.34	60.72	9.33		80.0	
		Z	2.88	67.15	15.31		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.22	67.87	15.63	2.23	80.0	± 9.6 %
		Y	1.33	60.43	9.07		80.0	-
		Z	2.93	67.06	15.21		80.0	
10503- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.34	70.72	17.57	2.23	80.0	± 9.6 %
		1. I						
		Y	2.22	68.78	16.06		80.0	
		YZ	2.22 2.98	<u>68.78</u> 69.59	16.06 17.20			
10504- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Z X	2.98 3.37	69.59 68.03	17.20 16.51	2.23	80.0 80.0	± 9.6 %
10504-		Z X Y	2.98 3.37 2.30	69.59 68.03 66.01	17.20 16.51 14.09	2.23	80.0	± 9.6 %
10504-	16-QAM, UL Subframe=2,3,4,7,8,9)	Z X	2.98 3.37	69.59 68.03	17.20 16.51	2.23	80.0 80.0	± 9.6 %
10504-		Z X Y Z X	2.98 3.37 2.30 3.11 3.47	69.59 68.03 66.01 67.28 67.93	17.20 16.51 14.09 16.20 16.49	2.23	80.0 80.0 80.0	± 9.6 %
10504- AAB 	16-QAM, UL Subframe=2,3,4,7,8,9)	Z X Y Z X Y	2.98 3.37 2.30 3.11 3.47 2.31	69.59 68.03 66.01 67.28 67.93 65.66	17.20 16.51 14.09 16.20 16.49 13.87		80.0 80.0 80.0 80.0 80.0 80.0 80.0	
10504- AAB 10505- AAB	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X Y Z X Y Z	2.98 3.37 2.30 3.11 3.47 2.31 2.31	69.59 68.03 66.01 67.28 67.93 65.66 67.21	17.20 16.51 14.09 16.20 16.49 13.87 16.19	2.23	80.0 80.0 80.0 80.0 80.0	
10504- AAB 	16-QAM, UL Subframe=2,3,4,7,8,9)	Z X Y Z X Y Z X	2.98 3.37 2.30 3.11 3.47 2.31 3.21 3.90	69.59 68.03 66.01 67.28 67.93 65.66 67.21 71.01	17.20 16.51 14.09 16.20 16.49 13.87 16.19 17.71		80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	
10504- AAB 10505- AAB 10506-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	Z X Y Z X Y Z X Y	2.98 3.37 2.30 3.11 3.47 2.31 3.21 3.90 2.75	69.59 68.03 66.01 67.28 67.93 65.66 67.21 71.01 69.34	17.20 16.51 14.09 16.20 16.49 13.87 16.19 17.71 17.15	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
10504- AAB 10505- AAB 10506- AAB	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Z X Y Z X Y Z X Y Z	2.98 3.37 2.30 3.11 3.47 2.31 3.21 3.90 2.75 3.53	69.59 68.03 66.01 67.28 67.93 65.66 67.21 71.01	17.20 16.51 14.09 16.20 16.49 13.87 16.19 17.71 17.15 17.41	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
10504- AAB 10505- AAB 10506-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	Z X Y Z X Y Z X Y	2.98 3.37 2.30 3.11 3.47 2.31 3.21 3.90 2.75	69.59 68.03 66.01 67.28 67.93 65.66 67.21 71.01 69.34	17.20 16.51 14.09 16.20 16.49 13.87 16.19 17.71 17.15	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
10504- AAB 10505- AAB 10506- AAB 10507-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	Z X Y Z X Y Z X Y Z	2.98 3.37 2.30 3.11 3.47 2.31 3.21 3.90 2.75 3.53	69.59 68.03 66.01 67.28 67.93 65.66 67.21 71.01 69.34 69.98	17.20 16.51 14.09 16.20 16.49 13.87 16.19 17.71 17.15 17.41	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %

10508- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.87	67.76	16.81	2.23	80.0	± 9.6 %
		Y	2.97	66.90	15.95		80.0	
		Z	3.63	67.09	16.57		80.0	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.29	70.13	17.39	2.23	80.0	±9.6 %
		Ý	3.19	68.68	17.10		80.0	
		Z	3.96	69.31	17.16		80.0	
10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	4.29	67.87	16.94	2.23	80.0	± 9.6 %
		Y	3.35	66.74	16.37		80.0	
		Z	4.04	67.22	16.73		80.0	
10511- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.35	67.67	16.90	2.23	80.0	± 9.6 %
		Y	3.43	66.67	16.35		80.0	
		Z	4.11	67.05	16.70		80.0	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.41	71.37	17.74	2.23	80.0	± 9.6 %
		Y	3.20	69.31	17.29		80.0	
		Z	4.03	70.41	17.47		80.0	
10513- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	4.17	68.08	17.01	2.23	80.0	± 9.6 %
		Y	3.27	66.70	16.44		80.0	
10514- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	3.92 4.20	67.38 67.73	16.78 16.93	2.23	80.0 80.0	± 9.6 %
	Subirame=2,3,4,7,6,9)	Y	3.34	66.53	16.38		80.0	
		Z	<u> </u>	67.07	16.71		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.01	63.92	15.46	0.00	150.0	± 9.6 %
7001		Y	1.07	66.05	16.52		150.0	
		Ż	1.00	63.52	15.11		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.80	76.03	20.57	0.00	150.0	± 9.6 %
		Y	1.63	90.26	26.95		150.0	
		Z	0.67	72.14	18.59		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.88	66.52	16.52	0.00	150.0	± 9.6 %
		Y	0.99	69.72	18.29		150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	0.86 4.57	65.67 66.91	15.91 16.40	0.00	<u>150.0</u> 150.0	± 9.6 %
		Y	4.10	67.98	16.63		150.0	
	··· · · · · · · · · · · · · · · · · ·	Ż	4.53	66.84	16.34		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.75	67.14	16.51	0.00	150.0	± 9.6 %
		Y	4.20	68.09	16.69		150.0	
		Z	4.70	67.05	16.44		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.61	67.11	16.44	0.00	150.0	± 9.6 %
		Y	4.07	67.97	16.60		150.0	<b> </b>
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	4.56 4.54	67.01 67.11	16.37 16.43	0.00	150.0 150.0	± 9.6 %
1111		Y	4.00	67.83	16.53		150.0	
		z	4.49	67.00	16.36	<u>+-</u>	150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.60	67.20	16.52	0.00	150.0	± 9.6 %
		Y	4.00	67.82	16.53	I	150.0	
		Z	4.55	67.12	16.45		150.0	

								•
10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.49	67.08	16.37	0.00	150.0	± 9.6 %
		Y	4.01	68.16	16.68		150.0	1
		Z	4.44	67.01	16.31		150.0	
10524- AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.54	67.12	16.48	0.00	150.0	± 9.6 %
		Y	3.97	67.92	16.63		150.0	
		Z	4.49	67.03	16.42		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.54	66.18	16.08	0.00	150.0	± 9.6 %
	·	Y	4.09	67.26	16.38		150.0	
48-00		Z	4.50	66.10	16.02		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.71	66.55	16.22	0.00	150.0	± 9.6 %
		Y	4.14	67.37	16.43		150.0	
40507		Z	4.65	66.45	16.16		150.0	
10527- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duly cycle)	X	4.63	66.51	16.17	0.00	150.0	± 9.6 %
		Y.	4.11	67.44	16.42		150.0	
		Z	4.58	66.41	16.10		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.64	66.53	16.20	0.00	150.0	± 9.6 %
	·	Y	<u>    4.10    </u>	67.35	16.39		150.0	
		Z	4.59	66.42	16.13		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.64	66.53	16.20	0.00	150.0	± 9.6 %
		Y	4.10	67.35	16.39		150.0	
		Z	4.59	66.42	16.13		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.64	66.64	16.22	0.00	150.0	± 9.6 %
		Y	4.06	67.36	16.37		150.0	
		Z	4.58	66.51	16.14		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.50	66.50	16.16	0.00	150.0	± 9.6 %
		Y.	3.98	67.28	16.33		150.0	
		Z	4.44	66.37	16.07		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.65	66.58	16.19	0.00	150.0	± 9.6 %
		Y	4.11	67.58	16.46		150.0	
		Z	4.60	66.49	16.13		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.17	66.59	16.23	0.00	150.0	± 9.6 %
		Y	4.70	66.96	16.45		150.0	
		Z	5.13	66.48	16.18		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.24	66.77	16.31	0.00	150.0	± 9.6 %
		Y	4.70	67.00	16.48		150.0	
		Z	5.20	66.68	16.26		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.11	66.73	16.27	0.00	150.0	± 9.6 %
		Y	4.62	67.02	16.47		150.0	
		Z	5.07	66.63	16.22		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.17	66.69	16.25	0.00	150.0	± 9.6 %
		Y	4.71	67.16	16.55		150.0	
10520		Z	5.13	66.59	16.20		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.26	66.70	16.30	0.00	150.0	± 9.6 %
	+	Y	4.72	66.92	16.45		150.0	
40546		Z	5.21	66.59	16.24		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.19	66.73	16.33	0.00	150.0	± 9.6 %
<u> </u>		Ϋ́	4.66	66.87	16.46		150.0	
		Z	5.14	66.60	16.27		150.0	

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.16	66.59	16.25	0.00	150.0	± 9.6 %
7991		Y	4.67	66.90	16.44	<u> </u>	150.0	
		z	5.12	66.48	16.19		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.31	66.65	16.29	0.00	150.0	±9.6%
		Y	4.80	66.97	16.49		150.0	
		Z	5.27	66.55	16.25		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.39	66.68	16.33	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.85	67.01	16.54		150.0	
40544		Z	5.34	66.57	16.28		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duly cycle)	X	5.48	66.68	16.21	0.00	150.0	± 9.6 %
· · -		Υ Υ	5.09	66.77	16.36		150.0	
10545	IEEE 802.11ac WiFi (80MHz, MCS1,	Z	5.46	66.59	16.17		150.0	
10545- AAA	99pc duty cycle)	X	5.68	67.10	16.37	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.20	67.11	16.51		150.0	
10546-		Z	5.65	67.02	16.33	0.00	150.0	
AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.55	66.89	16.28	0.00	150.0	± 9.6 %
		Y	5.10	66.84	16.37		150.0	
10547-	IEEE 802.11ac WiFi (80MHz, MCS3,	Z	5.51	66.77	16.22	0.00	150.0	1000
AAA	99pc duty cycle)	X	5.62	66.93	16.29	0.00	150.0	±9.6%
		Y	5.22	67.15	16.53		150.0	
10548-		Z	5.58	66.82	16.24	0.00	150.0	
AAA	IEEE 802.11ac WIFi (80MHz, MCS4, 99pc duty cycle)	X	5.87	67.85	16.72	0.00	150.0	± 9.6 %
		Y	5.13	67.04	16.46		150.0	
40550		Z	5.82	67.71	16.65		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.58	66.91	16.30	0.00	150.0	±9.6 %
		Y	5.24	67.42	16.68		150.0	
10551-			5.55	66.83	16.27	0.00	150.0	
AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.58	66.96	16.28	0.00	150.0	± 9.6 %
		Y -	5.07	66.77	16.33		150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	Z X	5.54 5.50	66.84 66.76	16.2 <u>3</u> 16.19	0.00	150.0 150.0	± 9.6 %
1001		Y	5.09	66.99	16.43		150.0	
		z	5.47	66.66	16.15		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.58	66.78	16.23	0.00	150.0	± 9.6 %
		Y	5.11	66.82	16.35		150.0	
		Z	5.54	66.67	16.18		150.0	
10554- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.89	67.03	16.29	0.00	150.0	± 9.6 %
		Y	5.55	66.98	16.39		150.0	
		Z	5.87	66.94	16.25		150.0	
10555- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.02	67.33	16.41	0.00	150.0	± 9.6 %
		Y	5.61	67.17	16.48		150.0	
		Z	5.99	67.24	16.37		150.0	
10556- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duly cycle)	X	6.04	67.38	16.43	0.00	150.0	± 9.6 %
		Y	5.65	67.28	16.52		150.0	
		Z	6.02	67.29	16.39		150.0	
10557- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duly cycle)	X	6.01	67.28	16.40	0.00	150.0	± 9.6 %
		Y	5.60	67.14	16.47		150.0	
		Z	5.97	67.17	16.35		150.0	

April 18, 2017

10558- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.05	67.44	16.50	0.00	150.0	± 9.6 %
		Y	5.55	67.02	16.43		150.0	
		Z	6.02	67.33	16.43		150.0	
10560- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.05	67.29	16.46	0.00	150.0	± 9.6 %
		Y	5.59	67.02	16.46		150.0	
		Z	6.01	67.17	16.41		150.0	
10561- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.97	67.26	16.48	0.00	150.0	± 9.6 %
		Y	5.53	66.98	16.46		150.0	
		Z	5.94	67.16	16.44		150.0	
10562- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.09	67.63	16.67	0.00	150.0	± 9.6 %
		Y	5.59	67.19	16.57		150.0	
40500		Z	6.05	67.48	16.60		150.0	
10563- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duly cycle)	X	6.29	67.85	16.73	0.00	150.0	±9.6 %
· · ·		Y	5.86	67.78	16.84		150.0	
40501		Z	6.16	67.47	16.55		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.89	66.92	16.50	0.46	150.0	±9.6 %
		Y	4.37	67.73	16.65		150.0	
40505		Z	4.84	66.85	16.44		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.12	67.38	16.83	0.46	150.0	±9.6 %
		Y	4.53	68.17	16.98		150.0	
		Ž	5.07	67.30	16.78		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.95	67.23	16.64	0.46	150.0	± 9.6 %
<u> </u>		Y	4.37	67.89	16.75		150.0	
		Z	4.90	67.13	16.58		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.98	67.65	17.02	0.46	150.0	± 9.6 %
		Y	4.44	68.37	17.19		150.0	
		Z	4.94	67.56	16.97		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.85	66.96	16.38	0.46	150.0	±9.6 %
		Y	4.20	67.26	16.25		150.0	
		Z	4.80	66.87	16.32		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.94	67.75	17.08	0.46	150.0	± 9.6 %
		Y	4.45	68.76	17.43		150.0	
		Z	4.90	67.68	17.04		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.98	67.59	17.02	0.46	150.0	± 9.6 %
		<u> Y</u>	4.39	68.33	17.21		150.0	l
40554		Z	4.93	67.52	16.97		150.0	L
10571- 	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.19	64.81	15.85	0.46	130.0	± 9.6 %
		Y	1.17	65.59	16.16		130.0	L
10575		Z	1.15	64.12	15.44		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.21	65.43	16.24	0.46	130.0	± 9.6 %
		Ý	1.18	66.27	16.61		130.0	
105-5		Z	1.17	64.67	15.80		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	2.73	90.43	24.99	0.46	130.0	± 9.6 %
		Υ	2.86	95.55	28.03		130.0	
		Z	1.51	81.07	21.85		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duly cycle)	X	1.39	72.10	19.60	0.46	130.0	± 9.6 %
		Y	1.35	73.36	20.46		130.0	
		Z	1.26	70.26	18.73	1	130.0	t

.

April 18, 2017

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.65	66.62	16.45	0.46	130.0	± 9.6 %
	OFDM, 6 Mbps, 90pc duty cycle)					0.40	100.0	± 0.0 %
		Y	4.13	67.33	16.45		130.0	
10576-		Z	4.61	66.55	16.40		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.68	66.80	16.53	0.46	130.0	± 9.6 %
		Y	4.17	67.68	16.63		130.0	
10577-		Z	4.64	66.73	16.48		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.88	67.09	16.70	0.46	130.0	± 9.6 %
		Y	4.28	67.86	16.75		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	Z X	4.83	67.01 67.27	16.65 16.82	0.46	130.0 130.0	± 9.6 %
	or bin, to hipps, sope duty cycle)	Y	4.22	68.05	16.92		130.0	
		z	4.73	67.18	16.92		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.53	66.48	16.08	0.46	130.0	± 9.6 %
		Y	3.91	66.80	15.89		130.0	
		Z	4.48	66.37	16.01	-	130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.58	66.51	16.09	0.46	130.0	± 9.6 %
		Y	3.89	66.66	15.78		130.0	
		Z	4.53	66.42	16.03		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.68	67.30	16.76	0.46	130.0	±9.6 %
		Y	4.14	68.18	16.94		130.0	
10500		Z	4.63	67.21	16.71		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duly cycle)	X	4.47	66.23	15.85	0.46	130.0	±9.6 %
		Y	3.80	66.45	15.61		130.0	
10500		Z	4.42	66.12	15.78		130.0	
10583- AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.65	66.62	16.45	0.46	130.0	± 9.6 %
		Y	4.13	67.33	16.45		<u>130.</u> 0	
40504		Z	4.61	66.55	16.40		130.0	
10584- AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.68	66.80	16.53	0.46	130.0	±9.6 %
		Y	4.17	67.68	16.63		130.0	
40505		Z	4.64	66.73	16.48		130.0	
10585- AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.88	67.09	16.70	0.46	130.0	± 9.6 %
		Y	4.28	67.86	16.75		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	Z X	<u>4.83</u> 4.78	67.01 67.27	16.65 16.82	0.46	130.0 130.0	± 9.6 %
		Y	4.22	68.05	16.92		130.0	
		z	4.73	67.18	16.77		130.0	· · · ·
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.53	66.48	16.08	0.46	130.0	±9.6 %
		Y	3.91	66.80	15.89		130.0	
		Z	4.48	66.37	16.01		130.0	
10588- AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.58	66.51	16.09	0.46	130.0	± 9.6 %
· · ·		Y	3.89	66.66	15.78		130.0	
40500		Z	4.53	66.42	16.03		130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.68	67.30	16.76	0.46	130.0	±9.6 %
		<u>Y</u>	4.14	68.18	16.94		130.0	
10500		Z	4.63	67.21	16.71	-	130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	×	4.47	66.23	15.85	0.46	130.0	± 9.6 %
		Y	3.80	66.45	15.61		130.0	
_		Z	4.42	66.12	15.78		130.0	

Certificate No: EX3-7406_Apr17

10591-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.80	66.69	16.56	0.46	130.0	± 9.6 %
AAA	MCS0, 90pc duly cycle)	-	1.00	0= 15				
		Y	4.29	67.48	16.65		130.0	
40500		Z	4.76	66.62	16.52		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duly cycle)	X	4.96	67.02	16.69	0.46	130.0	± 9.6 %
		Y	4.35	67.66	16.74		130.0	
		Z	4.91	66.95	16.65		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.87	66.92	16.57	0.46	130.0	± 9.6 %
		Y	4.28	67.58	16.60		130.0	
		Z	4.82	66.84	16.52		130.0	
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.93	67.10	16.73	0.46	130.0	± 9.6 %
		Y	4.32	67.69	16.75		130.0	
		Z	4.88	67.02	16.68		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.90	67.04	16.62	0.46	130.0	±9.6 %
		Y	4.28	67.67	16.66		130.0	
		Z	4.85	66.97	16.57		130.0	
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.83	67.04	16.62	0.46	130.0	± 9.6 %
		Y	4.19	67.48	16.58		130.0	
		Z	4.78	66.95	16.57		130.0	
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.78	66.93	16.50	0.46	130.0	± 9.6 %
		Y	4.17	67.42	16.44		130.0	
		Z	4.73	66.84	16.44		130.0	
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.77	67.20	16.78	0.46	130.0	± 9.6 %
		Y	4.23	67.87	16.85		130.0	<u> </u>
		Z	4.72	67.09	16.72		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.48	67.23	16.77	0.46	130.0	±9.6 %
		Y	5.11	68.05	17.18		130.0	
		Z	5.44	67.15	16.74		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.60	67.61	16.93	0.46	130.0	± 9.6 %
		Y	5.02	67.79	17.02		130.0	
		Z	5.57	67.57	16.91		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.49	67.38	16.83	0.46	130.0	± 9.6 %
		Y	4.99	67.77	17.04		130.0	
		Ż	5.46	67.31	16.81		130.0	· · · ·
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duly cycle)	X	5.59	67.40	16.75	0.46	130.0	±9.6 %
		Y	5.00	67.54	16.84		130.0	
		Ż	5.57	67.40	16.76		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.67	67.72	17.05	0.46	130.0	± 9.6 %
		Y	5.02	67.69	17.07		130.0	1
	· · · · ·	Ż	5.64	67.68	17.04		130.0	· ·
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duly cycle)	X	5.49	67.21	16.78	0.46	130.0	± 9.6 %
· · ·		Y	5.00	67.56	16.96		130.0	1
		Ż	5.49	67.27	16.82		130.0	1
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.59	67.50	16.92	0.46	130.0	± 9.6 %
		Y	4.95	67.41	16.89		130.0	<b> </b>
	·	Ż	5.56	67.47	16.92	1	130.0	
						+ - <del></del>		1
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duly cycle)	X	5.33	66.83	16.44	0.46	130.0	± 9.6 %
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duly cycle)		5.33 4.96	66.83 67.58	16.44 16.81	0.46	130.0	± 9.6 %

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	ТхТ	4.64	66.02	16.19	0.46	130.0	± 9.6 %
AAA	90pc duty cycle)			CONDE	10.10	0.40	100.0	10.070
		Y	4.16	66.91	16.36		130.0	
		Z	4.60	65.95	16.15		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.83	66.42	16.36	0.46	130.0	± 9.6 %
		Y	4.22	67.08	16.44		130.0	
		Z	4.78	66.34	16.31		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.71	66.26	16.19	0.46	130.0	± 9.6 %
		Y Y	4.14	66.94	<u>16.27</u>		130.0	
40040		Z	4.67	66.17	16.14		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.77	66.42	16.36	0.46	130.0	± 9.6 %
		Y	4.18	67.09	16.43		130.0	
		Z	4.72	66.34	16.31		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	×	4.68	66.22	16.20	0.46	130.0	± 9.6 %
		Y	4.10	<u>66.8</u> 7	16.26		130.0	
4004-		Z	4.63	66.13	16.14		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	×	4.69	66.36	16.23	0.46	130.0	± 9.6 %
		Y	4.03	66.77	16.18		130.0	
		Z	4.63	66.26	16.18		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.69	66.24	16.12	0.46	130.0	± 9.6 %
		Y	4.05	66.68	16.06		130.0	
		Z	4.63	66.13	16.05		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.64	66.46	16.37	0.46	130.0	± 9.6 %
		Y	4.09	67.10	16.44		130.0	
		Z	4.59	66.36	16.31		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.68	66.02	15.96	0.46	130.0	± 9.6 %
		Y	4.06	66.66	15.97		130.0	
		Z	4.62	65.94	15.90	-	130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.29	66.48	16.38	0.46	130.0	± 9.6 %
		Y	4.78	66.74	16.52		130.0	
		Z	5.26	66.40	16.35		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.36	66.65	16.44	0.46	130.0	± 9.6 %
		Y	4.78	66.75	16.51		130.0	
		Z	5.33	66.60	16.42		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.25	66.67	16.46	0.46	130.0	± 9.6 %
		Y	4.72	66.85	16.58	1	130.0	
		Z	5.21	66.61	16.44		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.26	66.46	16.29	0.46	130.0	± 9.6 %
		Y	4.77	66.81	16.49		130.0	
		Z	5.22	66.38	16.26		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.35	66.50	16.36	0.46	130.0	± 9.6 %
		Y	4.78	66.60	16.41		130.0	
		Z	5.31	66.41	16.33		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.35	66.65	16.56	0.46	130.0	± 9.6 %
		Y	4.83	66.85	16.68		130.0	
		_ Z	5.32	66.59	16.54		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duly cycle)	X	5.37	66.81	16.63	0.46	130.0	± 9.6 %
		Y	4.79	66.84	16.68		130.0	
		Z	5.33	66.74	16.61	l	130.0	

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	x	5.24	66.32	16.25	0.46	130.0	± 9.6 %
		Y	4.72	66.50	16.34		130.0	
		z	5.20	66.24	16.22		130.0	
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.43	66.52	16.42	0.46	130.0	± 9.6 %
		Y	4.88	66.72	16.52		130.0	
		Z	5.40	66.45	16.39		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.79	67.47	16.94	0.46	130.0	± 9.6 %
		Y	5.00	67.06	16.76		130.0	
		Z	5.70	67.26	16.85		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.59	66.53	16.33	0.46	130.0	± 9.6 %
		Y	5.18	66.57	16.44		130.0	
40007		Z	5.56	66.46	16.31		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duly cycle)	X	5.83	67.09	16.57	0.46	130.0	± 9.6 %
		Y	5.32	67.03	16.66		130.0	
40000		Z	5.81	67.05	16.57		130.0	<u> </u>
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.62	66.61	16.26	0.46	130.0	± 9.6 %
		Y	5.14	66.45	16.28		130.0	
40600		Z	5.58	66.50	16.22		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.69	66.66	16.28	0.46	130.0	± 9.6 %
		Y	5.30	66.90	16.51		130.0	
40000		Z	5.66	66.57	16.25		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.12	68.14	17.02	0.46	130.0	± 9.6 %
		Ý	5.23	66.85	16.50		130.0	
		Z	6.06	67.97	16.95		130.0	
10631- AAA	IEEE 802.11ac WIFi (80MHz, MCS5, 90pc duty cycle)	X	6.03	67.99	17.15	0.46	130.0	±9.6 %
		Y	5.35	67.44	17.00		130.0	
	· · · · · · · · · · · · · · · · · · ·	Z	5.98	67.84	17.09		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.80	67.18	16.76	0.46	130.0	± 9.6 %
		Y	5.50	67.84	17.20		130.0	
		Z	<u>5.</u> 78	67.15	16.76		130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duly cycle)	X	5.68	66.78	16.38	0.46	130.0	±9.6 %
		Y	<u>5.16</u>	66.59	16.40		130.0	
		Z	5.65	66.69	16.35		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.67	66.82	16.47	0.46	130.0	±9.6 %
		Y	5.24	66.99	16.65		130.0	
		Z	5.63	66.72	16.43		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.54	66.10	15.82	0.46	130.0	± 9.6 %
		Y	5.01	65.92	15.79		130.0	
		Ζ	5.50	65.99	15.78		130.0	
10636- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.00	66.89	16.41	0.46	130.0	± 9.6 %
		Y	5.65	66.81	16.48		130.0	
1000-		Z	5.98	66.82	16.39	<u> </u>	130.0	
10637- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.16	67.27	16.58	0.46	130.0	±9.6 %
		Y	5.75	67.13	16.64		<u>1</u> 30.0	
		Z	6.14	67.21	16.57		130.0	
10638- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duly cycle)	X	6.15	67.24	16.55	0.46	130.0	± 9.6 %
		Ý	<u>5.76</u>	67.17	16.64		130.0	
		Z	6.13	67.17	16.53		130.0	

April 18, 2017

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.13	67.20	16.57	0.46	130.0	± 9.6 %
		Y	5.71	67.01	16.60		130.0	·
		Z	6.11	67.11	16.54	<u> </u>	130.0	
10640- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.13	67.19	16.51	0.46	130.0	± 9.6 %
		Y	5.60	66.69	16.38		130.0	
		Z	6.11	67.10	16.47		130.0	· · · ·
10641- AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duly cycle)	X	6.18	67.10	16.48	0.46	130.0	± 9.6 %
		Y	5.73	66.87	16.49		130.0	
		Z	6.17	67.05	16.47		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.23	67.38	16.79	0.46	130.0	± 9.6 %
		Y	5.75	67.07	16.76		130.0	
		Z	6.20	67.30	16.77		130.0	
10643- 	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	Х	6.06	67.04	16.51	0.46	130.0	± 9.6 %
		Y	5.58	66.67	16.43		130.0	
·		Z	6.04	66.97	16.50		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.22	67.52	16.78	0.46	130.0	± 9.6 %
		Y	5.68	67.01	16.62		130.0	
		Z	6.17	67.37	16.71		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.52	68.03	16.98	0.46	130.0	± 9.6 %
		Y	6.07	67.95	17.07		130.0	
		Z	6.34	67.53	16.76		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	13.12	97.57	31.83	9.30	60.0	± 9.6 %
··		Y	3.90	78.39	26.30		60.0	
		Z	9.88	93.63	31.05		60.0	
10647- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	12.04	96.40	31.56	9.30	60.0	±9.6 %
		Y	3.54	76.66	25.68		60.0	
		Z	8.93	92.04	30.63		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.77	65.21	11.99	0.00	150.0	± 9.6 %
		Y	0.27	60.00	4.67		150.0	
		Z	0.71	64.17	11.12		150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION	CERTIFICAT	Ε	
Object	D2300V2 - SN:	1073	
Calibration procedure(s)	QA CAL-05.v9 Calibration proc	edure for dipole validation kits al	γPN bove 700 MHz 8/9/16
Calibration date:	July 25, 2016		bove 700 MHz 8/9/16 Extended 1/2917
This calibration certificate docun The measurements and the unc	nents the traceability to na ertainties with confidence	ational standards, which realize the physical L probability are given on the following pages a	units of measurements (SI).
		ory facility: environment temperature (22 $\pm$ 3)	
Calibration Equipment used (M&			
Primary Standards	ID #	Cal Date (Certificate No.)	
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16
Secondary Standards	ID #	Check Date (in house)	
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature

Approved by:

Technical Manager

Issued: July 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D2300V2-1073_Jul16

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## **Glossarv:**

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.69 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

## SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

## **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

## SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	48.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

## Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 4.9 jΩ
Return Loss	- 25.8 dB

## Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 4.1 jΩ
Return Loss	- 23.9 dB

## General Antenna Parameters and Design

Electrical Delay (one direction)	1.171 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

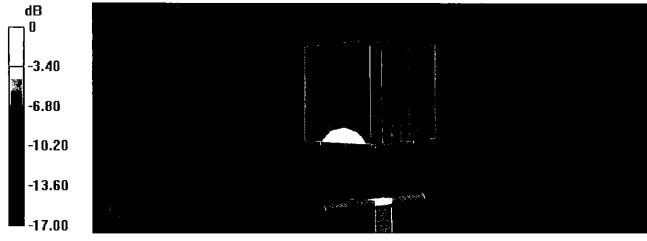
Manufactured by	SPEAG
Manufactured on	November 16, 2015

## **DASY5 Validation Report for Head TSL**

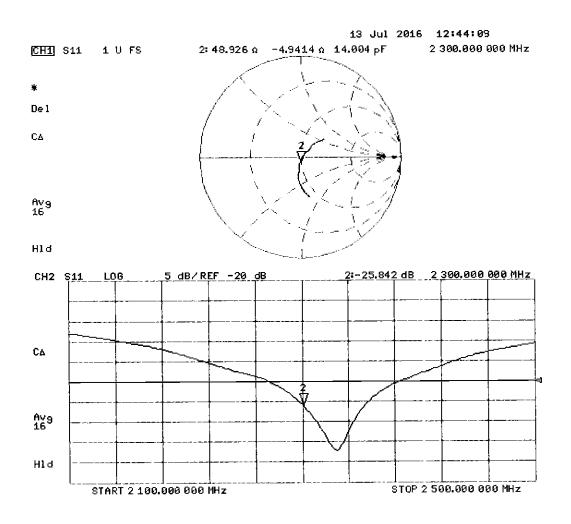
Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz;  $\sigma = 1.69$  S/m;  $\varepsilon_r = 38.6$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.9 W/kg Maximum value of SAR (measured) = 19.8 W/kg



0 dB = 19.8 W/kg = 12.97 dBW/kg

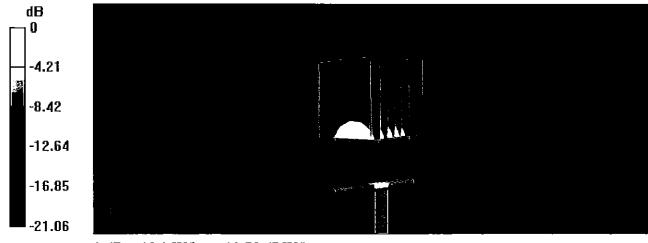


## **DASY5 Validation Report for Body TSL**

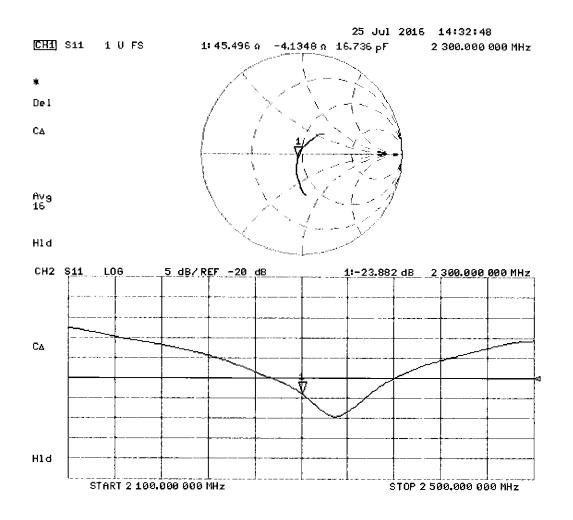
Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz;  $\sigma = 1.85$  S/m;  $\epsilon_r = 52.2$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.85 W/kg Maximum value of SAR (measured) = 19.0 W/kg



0 dB = 19.0 W/kg = 12.79 dBW/kg





PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object

D2300V2 - SN: 1073

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

July 24, 2017

Description:

SAR Validation Dipole at 2300 MHz.

## Calibration Equipment used:

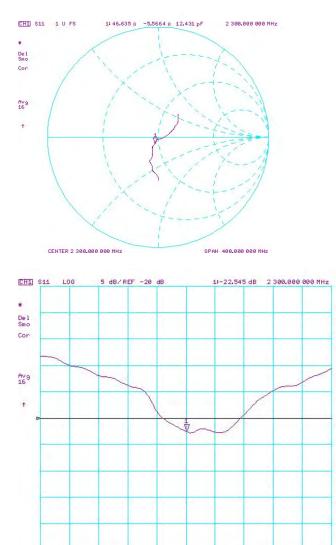
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/14/2016	Annual	9/14/2017	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	9/19/2016	Annual	9/19/2017	3287
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty =  $\pm 23\%$  (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK-

Object:	Date Issued:	Page 1 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 1 01 4

# **DIPOLE CALIBRATION EXTENSION**

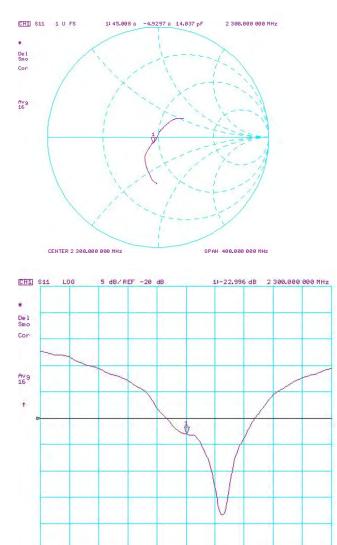

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/кg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/25/2016	7/24/2017	1.171	4.86	5.06	4.12%	2.34	2.40	2.56%	48.9	46.6	2.3	-4.9	-5.6	0.7	-25.8	-22.5	12.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.171	4.81	4.63	-3.74%	2.32	2.18	-6.03%	45.5	45.0	0.5	-4.1	-4.9	0.8	-23.9	-23.0	3.80%	PASS

Object:	Date Issued:	Page 2 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 2 01 4




CENTER 2 300.000 000 MHz

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2300V2 – SN: 1073	07/24/2017	Page 3 of 4

SPAN 400.000 000 MHz



CENTER 2 300.000 000 MHz

## Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2300V2 – SN: 1073	07/24/2017	Page 4 01 4

SPAN 400.000 000 MHz

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D2600V2-1126_Jul17

# CALIBRATION CERTIFICATE

Object	D2600V2 - SN:1	126	BN
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	BNV 8 3 2017 ove 700 MHz
Calibration date:	July 10, 2017		
This calibration certificate docume The measurements and the uncer	nts the traceability to nati tainties with confidence p	ional standards, which realize the physical ur robability are given on the following pages ar	nits of measurements (SI). nd are part of the certificate.
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastratl	Laboratory Technician	Tela 1
Approved by:	Kalja Pokovic	Technical Manager	belly
This calibration certificate shall not	t be reproduced except in	full without written approval of the laboratory	lssued: July 11, 2017 7.

## **Calibration Laboratory of**

Gloceary

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 0108

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Multilateral Agreement for the recognition of calibration certificates

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

## Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

## SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	<u> </u>
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
		· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	6.40 W/kg

## **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

## SAR result with Body TSL

SAR averaged over 1 $cm^3$ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

## Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8 Ω - 7.7 jΩ		
Return Loss	- 21.8 dB		

## Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 5.8 jΩ
Return Loss	- 21.7 dB

## **General Antenna Parameters and Design**

Electrical Delay (one direction)	1.154 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	October 22, 2015		

## **DASY5 Validation Report for Head TSL**

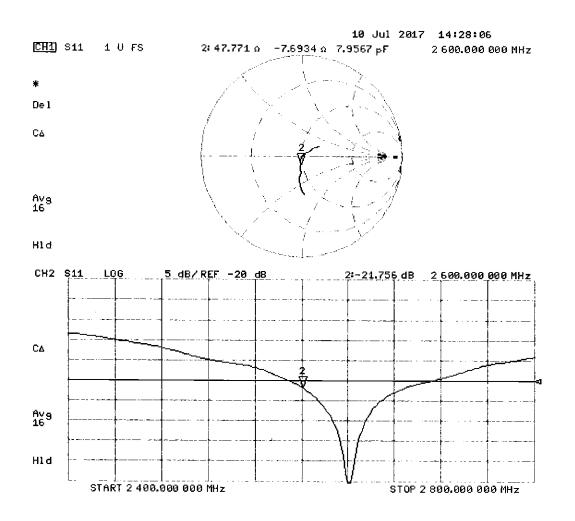
Date: 10.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma = 2.04$  S/m;  $\varepsilon_r = 37.2$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.2 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 24.0 W/kg



0 dB = 24.0 W/kg = 13.80 dBW/kg

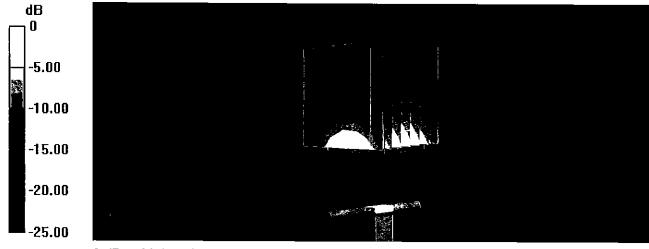


## **DASY5 Validation Report for Body TSL**

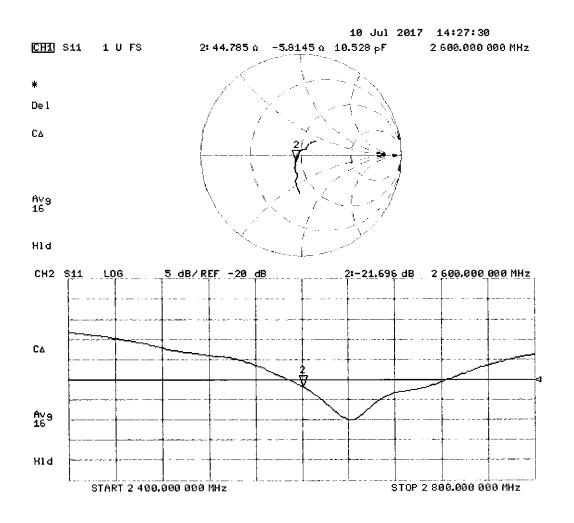
Date: 10.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma = 2.22$  S/m;  $\epsilon_r = 51.6$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.8 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 22.2 W/kg



0 dB = 22.2 W/kg = 13.46 dBW/kg



## APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
- Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}^{'}\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively,  $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$ ,  $\omega$  is the angular frequency, and  $j = \sqrt{-1}$ .

	-quivaient	Matter
Frequency (MHz)	2450	2450
Tissue	Head	Body
Ingredients (% by weight)		
DGBE		26.7
NaCl	See page 2	0.1
Water		73.2

Table D-I Composition of the Tissue Equivalent Matter

	FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	12/20/17 – 01/09/18	Portable Handset			Page 1 of 2
© 201	8 PCTEST Engineering Laboratory,	Inc.			REV 20.04 M 11/01/2017

Water	50 - 73 %	
Non-ionic detergents	25 - 50 %	polyoxyethylenesorbitan monolaurate
NaCl	0-2%	
Preservative	0.05 - 0.1%	Preventol-D7
Safety relevant ingredients	8:	
CAS-No. 55965-84-9	< 0.1 %	aqueous preparation, containing 5-chloro-2-methyl-3(2H)- isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5	<50 %	polyoxyethylenesorbitan monolaurate
According to international marked by symbols.	guidelines, the pro	duct is not a dangerous mixture and therefore not required to be

#### Figure D-1 Composition of 2.4 GHz Head Tissue Equivalent Matter

**Note:** 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Item N	lame		Head	d Tiss	ue Sir	nulating	Liquid (	HBBL1900-3800V3)
Produ							160330-1	
Manuf	acture	ſ	SPE		0.03355	and sold	2002222200	10
Measu	ureme	nt Me	thod					
				's mea	sured	using c	alibrated [	DAK probe.
Setup	Valida	ation						
			vere w	ithin ±	2.5%	towards	s the targe	t values of Methanol.
Targe	t Para	meter	s					
				fined i	n the	IEEE 15	28 and IE	C 62209 compliance standards.
Test C	onditi	on						
Ambie				onmer	nt tem	peratur	(22 ± 3)°C	and humidity < 70%.
	emper	ature	22°C					
Test D Operat			30-M WM	ar-16				
	onal In	form			-			
TSL D		nanit-		g/cm				
SL M	Measu		3.385	Targe		Diff to T	arget [%]	
[MHz]	6'	8 ¹⁴	sigma		sigma	Δ-eps	A-sigma	10.0
1900	40.7	12.3	1.3	40.0	1.4	1.7	-6.9	¥ 7.5
1950	40.5	12.5	1.4	40.0	1.4	1,2	-3.3	ĝ 5.0
2000	40.3	12.6	1.4	40.0	1.4	0.8	0.1	50 25 00
2050 2100	40,1	12.7	1.5	39.9 39.8	1.4	0.6	0.5	
2100	39.9	12.9	1.5	39.8	1.5	0.3	1.2	25
2200	39.6	13.1	1.6	39.6	1.6	-0.2	1.7	-5.0
2250	39.4	13.2	1.7	39.6	1.6	-0.3	2.0	-10.0
2300	39.2	13.3	1.7	39,5	1.7	-0.6	2.4	1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 390
2350	39.1	13.5	1.8	39.4	1.7	-0.8	2.9	Frequency MHz
2400	38.9	13.6	1.8	39.3 39.2	1.8	-1.0	3.4	
2450	38.7	13.7	1.9	39.2	1.8	-1.2	3.9	
2550	38.3	13.9	2.0	39.1	1.9	-1.9	3.9	
2600	38.2	14.1	2.0	39.0	2.0	-2.2	3.9	10.0
2650	37.9	14.2	21	38.9	2.0	-2.6	3.8	2
2700	37.8	14.3	2.2	38.9	2.1	-2.8	3.9	25
2750 2800	37.5 37.4	14.4 14.5	22	38.8 38.8	2.1	-3.3	3.6 3.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2850	37.2	14.5	23	38.5	2.2	-3.0	3.0	
2900	37.0	14,7	2.4	38.6	2.3	-4.1	3.8	3 -5.0
2950	36.8	14.8	2.4	38.6	2.3	-4.5	3.7	-7.5
3000	36.6	14.9	25	38.5	2.4	-4.8	3.6	-10.0 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
3050 3100	36.4	15.0	2.5	38.4	2.5	-5.2 -5.6	3.8	
3150	36.1	15.2	2.7	38.3	2.6	-0.0	4.0	Frequency MHz
3200	35.9	15.2	2.7	38.3	2.6	-6.2	3.9	
3250	35.7	15.3	2.8	38.2	2.7	-6.6	4.1	
3300 3350	35.5	15.3	2.8	38.2	2.7	-6.9	4.0	
3350 3400	35.4	15.4 15.5	2.9	38.1 38.0	2.8 2.8	-7.2	4.2	
3450	35.0	15.5	3.0	38.0	2.9	-7.8	4.1	
3500	34.9	15.6	3.0	37.9	2.9	-8.1	4.2	
3550	34.7	15.6	3.1	37.9	3.0	-8.4	4.2	
3600	34.5	15.7	3.1	37.8	3.0	-8.7	4.4	
3650	34,4	15.8	3.2	37.8	3.1	-9.0	4.3	
3700 3750	34.2	15.8	3.3	37.7	3.1	-9.3	4.5	
	34,1	15.9	3.3	37.6	3.2	-9.5	4.4	
	33.0	15.0	34	37.6	3.3	0.0	4.7	
3800 3850	33.9 33.7	15.9 16.0	3.4	37.6	3.2	-9.9	4.7	

Figure D-2 2.4 GHz Head Tissue Equivalent Matter

	FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	12/20/17 – 01/09/18	Portable Handset			Page 2 of 2
© 201	8 PCTEST Engineering Laboratory,	Inc.			REV 20.04 M 11/01/2017

## APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR							COND.	PERM.	C	W VALIDATION		1	MOD. VALIDATION	1	
SYSTEM	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	PROBE CAL. POINT		(ɛr)	SENSITIVITY	PROBE	PROBE	MOD.	DUTY FACTOR	PAR	
#								(13)	SENSITIVITT	LINEARITY	ISOTROPY	TYPE	DUTTFACTOR	FAN	
1	2300	6/1/2017	3213	ES3DV3	2300	Head	1.698	40.843	PASS	PASS	PASS	N/A	N/A	N/A	
D	2600	12/19/2017	3318	ES3DV3	2600	Head	2.006	37.882	PASS	PASS	PASS	TDD	PASS	N/A	
J	2300	9/27/2017	3209	ES3DV3	2300	Body	1.835	51.774	PASS	PASS	PASS	N/A	N/A	N/A	
К	2600	5/3/2017	7406	EX3DV4	2600	Body	2.203	49.895	PASS	PASS	PASS	TDD	PASS	N/A	

Table E-1SAR System Validation Summary

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX E:
	12/20/17 – 01/09/18	Portable Handset			Page 1 of 1
201	8 PCTEST Engineering Laboratory,	Inc.			REV 20.04 M 11/01/2017

©

## APPENDIX G: POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

Note: Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M1711010281-01-R1.A3L for the power reduction verification for modes and bands not evaluated for this permissive change.

#### **1.1** Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

#### 1.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for all relevant frequency bands.
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/20/17 - 01/09/18	Portable Handset			Page 1 of 2
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

## 1.3 Main Antenna Verification Summary

		Conducted	Power (dBm)
Mechanism(s)	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)
Hotspot On	LTE FDD B30 Ant B	24.11	21.23
Hotspot On	LTE FDD B30 Ant A	23.59	21.07
Hotspot On	LTE FDD B7 Ant B	23.13	21.13
Hotspot On	LTE FDD B7 Ant A	22.84	20.44

# Table G-1Power Measurement Verification for Main Antenna

FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/20/17 - 01/09/18	Portable Handset			Page 2 of 2
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

## APPENDIX H: DOWNLINK LTE CA TEST EXCLUSION

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per FCC Guidance, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 – Example of Exclusion Table for SISO Configurations



Table 2 – Example of Exclusion Table for 4x4 Downlink MIMO Configurations

			Completely Covered				Completely Covered				Completely Covered
Index	2CC	Restriction	by Measurement	Index	3CC	Restriction	by Measurement	Index	4CC	Restriction	by Measurement
			Superset				Superset				Superset
2CC #M1			3CC #M8		CA_[2A]-2A-4A		No		CA_[2A]-58-66A		No
	CA_[2A]-2A		3CC #M1		CA_[2A]-2A-5A		No				No
			No		CA [2A]-2A-12A		No	4CC #M3	CA [2A]-5A-66B		No
	CA_[2A]-4A (2)		3CC #M1		CA_[2A]-2A-13A		No				No
	CA_[2A]-[4A] (2)		No		CA [2A]-2A-30A		No		CA [2A]-5A-66C		No
2CC #M6	CA_[2A]-5A		4CC #M3		CA_[2C]-66A		No	4CC #M6	CA_2A-5A-[66C]		No
	CA_[2A]-12A(1)		3CC #M3		CA_2C-[66A]		No				
	CA_[2A]-13A		3CC #M4		CA_[2C]-[66A]		No				
	CA_[2A]-17A		No		CA_[2A]-2A-66A		No				
2CC #M10	CA_[2A]-29A (2)	B29 SCC Only	3CC #M12		CA_2A-2A-[66A]		No				
2CC #M11	CA_[2A]-30A		3CC #M5		CA_[2A]-2A-71A		No				
2CC #M12	CA_[2A]-66A		4CC #M1		CA_[2A]-4A-29A	B29 SCC Only	No				
	CA_2A-[66A]		4CC #M2	3CC #M13	CA_[2A]-4A-71A		No				
	CA_[2A]-[66A]		No		CA_[2A]-5B		4CC #M1				
2CC #M15	CA_[2A]-71A		3CC #M11		CA_[2A]-5A-66A		No				
2CC #M16	CA_5A-[66A]		3CC #M16	3CC #M16	CA_2A-5A-[66A]		No				
2CC #M17	CA_12A-[66A] (1)		3CC #M17		CA_2A-12A-[66A]		No				
2CC #M18	CA_13A-[66A]		3CC #M19	3CC #M18	CA_[2A]-13A-66A		No				
	CA_30A-[66A]		3CC #M20	3CC #M19	CA_2A-13A-[66A]		No				
2CC #M20	CA_[66B]		4CC #M4	3CC #M20	CA_2A-30A-[66A]		No				
2CC #M21	CA_[66C]		4CC #M6	3CC #M21	CA_[2A]-66B		4CC #M3				
2CC #M22	CA_[66A]-66A		3CC #M28	3CC #M22	CA_2A-[66B]		4CC #M4				
2CC #M23	CA [66A]-[66A]		No	3CC #M23	CA [2A]-[66B]		No				
				3CC #M24	CA_[2A]-66C		4CC #M5				
					CA_2A-[66C]		4CC #M6				
					CA_[2A]-[66C]		No				
					CA_[2A]-66A-66A		No				
				3CC #M28	CA_2A-[66A]-66A		No				
				3CC #M29	CA [2A]-66A-71A		No				

Note: [CC] indicates component carrier with 4x4 DL MIMO antenna configuration

FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H
12/20/17 – 01/09/18	Portable Handset			Page 1 of 1
© 2018 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M

## APPENDIX I: CONDUCTED POWERS FOR 4X4 DL MIMO

This device supports downlink 4x4 MIMO operations for LTE Bands 2, 4, 25, 7, 30, 41and 66 only. Uplink transmission is limited to a single output stream. Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M1711010281-01-R1.A3L for the 4x4 DL MIMO modes and bands not evaluated for this permissive change. Power measurements were performed with downlink 4x4 MIMO active for the configuration with highest measured maximum conducted power with 4x4 downlink MIMO inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per May 2017 TCB Workshop Notes, SAR for downlink 4x4 MIMO was not needed since the maximum average output power in 4x4 downlink MIMO mode was not > 0.25 dB higher than the maximum output power with downlink 4x4 MIMO inactive. When carrier aggregation is applicable, power measurements were performed with the downlink carrier aggregation and 4x4 DL MIMO active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

For the hotspot active reduced power scenarios, the maximum allowed output power did not change, therefore, no additional downlink CA measurements are required per KDB 941225 D05A v01r02 .Please see original evaluation in RF Exposure Technical Report S/N 1M1711010281-01-R1.A3L for downlink CA measurements for hotspot active conditions.

## I.1 Single Carrier 4x4 Downlink MIMO

 Table I-1

 Additional Maximum Output Powers

LTE Band	Bandwidth [MHz]	Channel	<b>Frequency</b> [MHz] 2560 2310	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power [dBm]	Single Antenna Tx. Power [dBm]
7 Ant B	20	21350	2560	QPSK	1	0	23.32	23.31
30 Ant B	10	27710	2310	QPSK	1	0	24.20	24.18

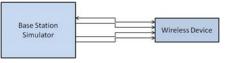



Figure I-1 Power Measurement Setup

FCC ID: A3LSMG960U	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX I:
12/20/17 – 01/09/18	Portable Handset	Page 1 of 4

## I.2 Carrier Aggregation Scenarios with 2 Component Carriers with 4x4 Downlink MIMO

#### 1.2.1 LTE Band 30 Antenna A

	Table I-2																	
,	Additional Maximum Output Powers – 2 Component Carriers																	
						PCC	1						9	CC				Power
	Combination         PCC Band         PCC (UL) [MHz]         PCC (UL) Frequency [MHz]         PCC (UL) Frequency [MHz]         PCC (UL) RB PCC (UL) RB         PCC (UL) Offset         PCC (UL) Channel         PCC (UL) [MHz]         SCC Band         SCC (DL) Bandwidth         SCC (DL) Channel         DL Ant. Config.													LTE Tx.Power with DL CA Enabled (dBm)	LTE Ant. A Tx Power (dBm)			
- [	CA 2A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B2	20	900	1960	4x4 MIMO	23.63	23.82

1.2.2

## LTE Band 7 Antenna B

Table I-3 Additional Maximum Output Powers – 2 Component Carriers PCC (UL) Frequency [MHz] PCC (DL) Frequency [MHz] SCC (DL) Frequency [MHz] PCC UL RB Offset sco PCC (UL) Channel PCC (DL) Channel DL Ant. Config. SCC (DL) Channel PCC Band DL Ant. Config. PCC UL# RB SCC Band LTE B7 LTE B7

## I.3 Carrier Aggregation Scenarios with 3 Component Carriers with 4x4 Downlink MIMO

#### 1.3.1

## LTE Band 30 Antenna A

Table I-4 Additional Maximum Output Powers – 3 Component Carriers

					•••••		~		Jack		~			•r				•				
		PCC										s	CC 1				SCC 2				Po	ower
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MH2]	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MH2]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Ant. A Tx Power (dBm)
CA_2A-2A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	LTE B2	20	700	1940	2x2 MIMO	23.62	23.82
CA 2A-2A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE B2	20	700	1940	2x2 MIMO	23.60	23.82
CA_2A-4A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	23.59	23.82
CA_2A-5A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B2	20	900	1950	4x4 MIMO	LTE BS	10	2525	881.5	2x2 MIMO	23.65	23.82
CA_2A-5A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE BS	10	2525	881.5	2x2 MIMO	23.62	23.82
CA_2A-12A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	23.61	23.82
CA 2A-12A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	23.64	23.82
CA_2A-29A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	LTE B29	10	9715	722.5	2x2 MIMO	23.60	23.82
CA_2A-29A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B2	20	900	1950	2x2 MIMO	LTE B29	10	9715	722.5	2x2 MIMO	23.60	23.82
CA_2A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	LTE B66	20	66786	2145	2x2 MIMO	23.62	23.82
CA_2A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B2	20	900	1950	2x2 MIMO	LTE B66	20	66786	2145	4x4 MIMO	23.61	23.82
CA 4A-5A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	LTE BS	10	2525	881.5	2x2 MIMO	23.63	23.82
CA_4A-12A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	23.55	23.82
CA_4A-29A-30A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	LTE B29	10	9715	722.5	2x2 MIMO	23.67	23.82
CA_5A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE BS	10	2525	881.5	2x2 MIMO	LTE B66	20	66786	2145	2x2 MIMO	23.64	23.82
CA_5A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B5	10	2525	881.5	2x2 MIMO	LTE B66	20	66786	2145	4x4 MIMO	23.59	23.82
CA 12A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	LTE B66	20	66786	2145	2x2 MIMO	23.65	23.82
CA_12A-30A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	LTE B66	20	66786	2145	4x4 MIMO	23.63	23.82
CA_30A-66A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	4x4 MIMO	LTE B66	20	66786	2145	2x2 MIMO	LTE B66	20	67236	2190	2x2 MIMO	23.62	23.82
CA_30A-66A-66A	LTE B30 AntA	10	27710	2310	QPSK	1	0	9820	2355	2x2 MIMO	LTE B66	20	66786	2145	4x4 MIMO	LTE B66	20	67236	2190	2x2 MIMO	23.63	23.82

## 1.3.2 LTE Band 7 Antenna A

Table I-5

Additional Maximum Output Powers – 3 Component Carriers

					PCC							S	CC 1				SCC	2			Po	wer
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Ant. A Tx Power (dBm)
CA 2A-4A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	22.75	23.00
CA_2A-4A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE B4	20	2175	2132.5	4x4 MIMO	22.77	23.00
CA 2A-4A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	22.81	23.00
CA_2A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B7	20	2850	2630	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	22.77	23.00
CA_2A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B7	20	2850	2630	2x2 MIMO	LTE B2	20	900	1960	2x2 MIMO	22.82	23.00
CA_2A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B7	20	2850	2630	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	22.78	23.00
CA_2A-7A-12A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B2	20	900	1960	4x4 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	22.79	23.00
CA 2A-7A-12A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	22.78	23.00
CA_4A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B7	20	2850	2630	2x2 MIMO	LTE B4	20	2175	2132.5	4x4 MIMO	22.80	23.00
CA 4A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B7	20	2850	2630	2x2 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	22.84	23.00
CA_4A-7A-7A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B7	20	2850	2630	4x4 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	22.79	23.00
CA_4A-7A-12A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	2x2 MIMO	LTE B4	20	2175	2132.5	4x4 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	22.80	23.00
CA_4A-7A-12A	LTE B7 AntA	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B4	20	2175	2132.5	2x2 MIMO	LTE B12	10	5095	737.5	2x2 MIMO	22.83	23.00

FCC ID: A3LSMG960U	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX I:
12/20/17 - 01/09/18	Portable Handset	Page 2 of 4

#### I.4 Carrier Aggregation Scenarios with 4 Component Carriers with 4x4 Downlink MIMO





					~~~~		~				~~~		• • • •							~							
					PCC								SCC 1					SCC 2					SCC 3			Po	wer
Combination	PCC Band	PCC BW (MHz)	PCC (UL) Ch.	PCC (UL) Freq. [MBlz]	Med.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW (MHe)	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW (MHz)	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]		LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_25A-410	LTE 0.25	20	26140	1850	16QAM	1	0	\$140	2940	2x2 MIMO	LTE B41	20	40422	2573.2	4x4 MIMO	LTE 841	20	40620	2593	4x4 MM0	LTE 841	20	40818	2612.8	2x2 MIMO	20.45	20.50

1.4.2

LTE Band 7 Antenna A

Table I-8

Additional Maximum Output Powers – 4 Component Carriers

					PCC								SCC 1					SCC 2					SCC 3			Pav	Ner
Combination	PCC Band	PCC BW (MHz)	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MBtz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW (MHz)	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant.		LTE Ant. A Tx Power (dBm)
CA_2A-4A-7C	LTE B7 AntA	20	21350	2560	QP5X	1	0	3350	2680	4x4 MIMO	LTE B7	20	3152	2660.2	4x4 MIMO	LTE B2	20	900	1960	2x2 MIMD	LTE B4	20	2175	2132.5	2x2 MIMO	22.82	23.00

I.5 Downlink 4X4 MIMO LAA Additional Conducted Powers

Table I-9
Additional Maximum Output Powers- 2 Component Carriers

					FLL								SUC			Fower	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation		PCC UL RB Offset			DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	23.37	23.31
CA_7A-46 _B A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 ₈	20	48290	5300	2x2 MIMO	23.36	23.31
CA_7A-46 _c A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _c	20	51290	5600	2x2 MIMO	23.35	23.31
CA_7A-46 _D A	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _D	20	53140	5785	2x2 MIMO	23.38	23.31

Table I-10

Additional Maximum Output Powers- 3 Component Carriers

	Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]		SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
	CA_7A-46 _A C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	LTE B46 _A	20	47488	5219.8	2x2 MIMO	23.38	23.31
1	CA_7A-46gC	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _p	20	48290	5300	2x2 MIMO	LTE B46 ₈	20	48488	5319.8	2x2 MIMO	23.35	23.31
	CA_7A-46cC	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46c	20	51290	5600	2x2 MIMO	LTE B46c	20	51488	5619.8	2x2 MIMO	23.38	23.31
	CA_7A-46 _p C	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _D	20	53140	5785	2x2 MIMO	LTE B46 _D	20	53338	5804.8	2x2 MIMO	23.37	23.31

Table I-11

Additional Maximum Output Powers- 4 Component Carriers

Combination			PCC (UL) Channel		Modulation			PCC (DL) Channel	PCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Channel		DL Ant. Config.	SCC Band	SCC BW (MHz)	SCC (DL) Channel		DL Ant. Config.		SCC BW (MHz)	SCC (DL) Channel	SCC (DL) Freq. [MHz]		LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A D	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	LTE B46A	20	47488	5219.8	2x2 MIMO	LTE B46 _A	20	47092	5180.2	2x2 MIMO	23.40	23.31
CA_7A-46 ₈ D	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46g	20	48290	5300	2x2 MIMO	LTE B46a	20	48488	5319.8	2x2 MIMO	LTE B46g	20	48092	5280.2	2x2 MIMO	23.38	23.31
CA_7A-46cD	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _C	20	51290	5600	2x2 MIMO	LTE B46 _C	20	51488	5619.8	2x2 MIMO	LTE B46 _c	20	51092	5580.2	2x2 MIMO	23.37	23.31
CA 7A-46, D	LTE B7	20	21350	2560	QPSK	1	0	3350	2680	4x4 MIMO	LTE B46 _n	20	53140	5785	2x2 MIMO	LTE B46 _b	20	53338	5804.8	2x2 MIMO	LTE B46 ₀	20	52942	5765.2	2x2 MIMO	23.39	23.31

This device supports LAA with downlink carrier aggregation only. All uplink communications and acknowledgements on the PCC remain identical to specifications when downlink carrier aggregation is inactive.

For those combinations required by FCC Guidance, power measurements were performed with downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

FCC ID: A3LSMG960U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX I:
12/20/17 - 01/09/18	Portable Handset			Page 3 of 4
© 2019 DCTEST Engineering Laboratory Inc.				

The PCC uplink channel was selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation per 3GPP requirements. The SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band carriers, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For LAA operations, each Band 46 sub-band was evaluated independently due to the wide downlink bandwidth.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

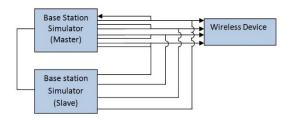


Figure I-2 Power Measurement Setup for 4x4 MIMO Carrier Aggregation

FCC ID: A3LSMG960U	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX I:
12/20/17 - 01/09/18	Portable Handset	Page 4 of 4