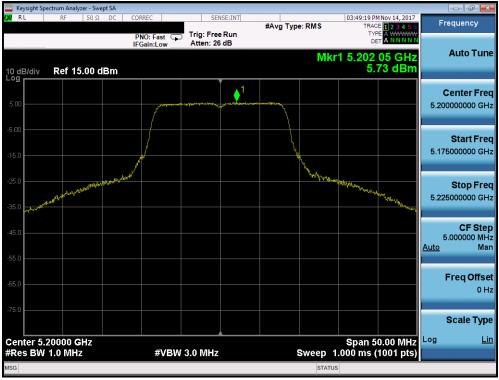


Antenna-2 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density Limit [dBm/MHz]	Power Density Margin [dB]
	5180	36	а	6	5.73	11.0	-5.27
	5200	40	а	6	5.73	11.0	-5.27
	5240	48	а	6	6.05	11.0	-4.95
~	5180	36	n (20MHz)	6.5/7.2 (MCS0)	4.66	11.0	-6.34
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.40	11.0	-5.60
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.65	11.0	-5.35
	5190	38	n (40MHz)	13.5/15 (MCS0)	-2.23	11.0	-13.23
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.41	11.0	-8.59
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.10	11.0	-12.10
	5260	52	а	6	6.29	11.0	-4.72
	5280	56	а	6	6.16	11.0	-4.84
ZA	5320	64	а	6	6.39	11.0	-4.61
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	6.16	11.0	-4.84
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	5.76	11.0	-5.24
Ва	5320	64	n (20MHz)	6.5/7.2 (MCS0)	5.81	11.0	-5.19
	5270	54	n (40MHz)	13.5/15 (MCS0)	2.21	11.0	-8.79
	5310	62	n (40MHz)	13.5/15 (MCS0)	2.11	11.0	-8.89
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-1.08	11.0	-12.08
	5500	100	а	6	6.41	11.0	-4.59
	5580	116	а	6	-5.71	11.0	-16.71
	5720	144	а	6	6.35	11.0	-4.66
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	5.75	11.0	-5.25
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	-6.03	11.0	-17.03
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	6.04	11.0	-4.96
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	2.31	11.0	-8.69
	5550	110	n (40MHz)	13.5/15 (MCS0)	-8.93	11.0	-19.93
	5710	142	n (40MHz)	13.5/15 (MCS0)	2.24	11.0	-8.76
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-0.60	11.0	-11.60
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-3.93	11.0	-14.93

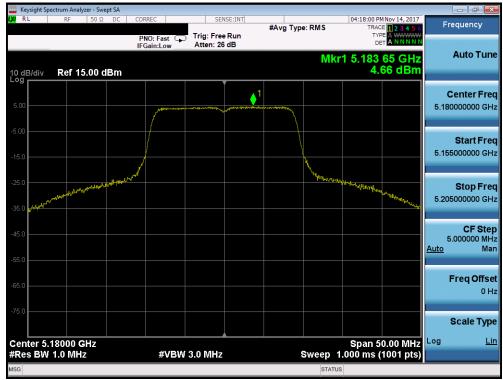
Table 7-21. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]		e.i.r.p. Power Density [dBm/MHz]	Max e.i.r.p Power Density Limit [dBm/MHz]	e.i.r.p Power Density Margin [dB]
	5180	36	а	6	5.73	-7.95	-2.22	10.0	-12.22
	5200	40	а	6	5.73	-7.95	-2.22	10.0	-12.22
	5240	48	а	6	6.05	-7.95	-1.90	10.0	-11.90
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	4.66	-7.95	-3.29	10.0	-13.29
Band	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.40	-7.95	-2.55	10.0	-12.55
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.65	-7.95	-2.30	10.0	-12.30
	5190	38	n (40MHz)	13.5/15 (MCS0)	-2.23	-7.95	-10.18	10.0	-20.18
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.41	-7.95	-5.54	10.0	-15.54
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.10	-7.95	-9.05	10.0	-19.05


Table 7-22. Band 1 e.i.r.p. Power Spectral Density Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N: Test Dates:		EUT Type:		Dege 96 of 200				
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 86 of 200				
© 2017 PCTEST Engineering Labo	2017 PCTEST Engineering Laboratory, Inc.							

	pectrum Analyzer - Swept SA					- ē 론
X/RL	RF 50 Ω DC		Trig: Free Run	#Avg Type: RMS	03:47:31 PM Nov 14, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
	_	PNO: Wide G	Atten: 26 dB		DETANNNN	
10 dB/div Log	Ref 15.00 dBm			Mk	r1 5.183 700 GHz 5.73 dBm	Auto Tun
				▲ 1		Center Fre
5.00		~~~~~ <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	and a star of the second s	frydad gyfel ar yn yn dy felef y fry afferfyn yf ar y ffan a syn defeldig of		5.180000000 GH
-5.00						Start Fre 5,167500000 GH
-15.0	wheel water				Milled Work of the Contraction o	
-35.0						Stop Fre 5.192500000 GH
-45.0						CF Ste
-55.0						2.500000 MH <u>Auto</u> Ma
.65.0						Freq Offse
-75.0						0 H
						Scale Typ
	.18000 GHz / 1.0 MHz	#VBW	(3.0 MHz	Sweep	Span 25.00 MHz 1.000 ms (1001 pts)	Log <u>Li</u>
ISG				STA		


Plot 7-116. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Report S/N: Test Dates: EUT Type:		Dege 97 of 200					
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 87 of 200				
© 2017 PCTEST Engineering Labo	2017 PCTEST Engineering Laboratory, Inc.							

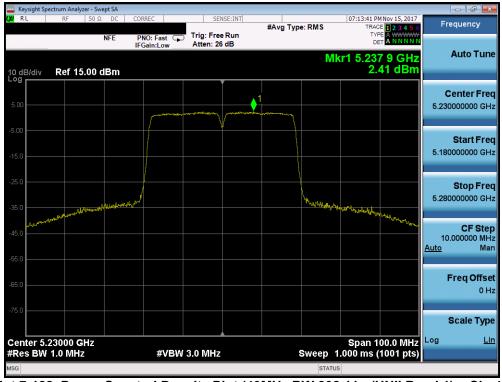
	pectrum Analyzer - Sw										
L <mark>XI</mark> RL	RF 50 Ω	DC COI	RREC	SEN	SE:INT	#Avg Typ	e: RMS	TRAC	Nov 14, 2017	Fi	requency
	-	P IF	NO: Fast 🕞 Gain:Low	Trig: Free Atten: 26				TYP DE			
10 dB/div Log	Ref 15.00 d	dBm					Mkr	1 5.244 6.	75 GHz 05 dBm		Auto Tune
5.00				and a star of the start of the st		1					Center Freq 0000000 GHz
-5.00		٨	¢							5.21	Start Freq 5000000 GHz
-25.0	where a south of the south of t	uples of Departed					how we wanted	and and a start when a start we	had and a start of the start of	5.26	Stop Freq 5000000 GHz
-45.0										Auto	CF Step 5.000000 MH2 Mar
-65.0											Freq Offse 0 Hi
-75.0											Scale Type
	.24000 GHz 1.0 MHz		#VBW	/ 3.0 MHz			Sweep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	Log	Lin
MSG							STATUS	3			

Plot 7-118. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	t Report S/N: Test Dates: EUT Type:			Dage 89 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 88 of 200	
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017				

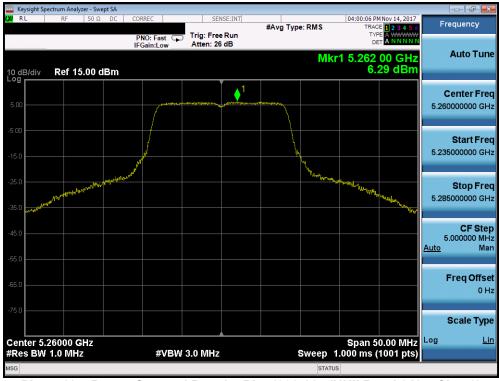
Keysight Spectrum Analyzer - Swept SA				
XX RL RF 50Ω DC		E:INT #Avg Type:		Frequency
10 dB/div Ref 15.00 dBm	PNO: Fast Trig: Free I IFGain:Low Atten: 26 o		Mkr1 5.202 40 GF 5.40 dB	Auto Tune
5.00		1		Center Freq 5.200000000 GHz
-5.00				Start Freq 5.175000000 GHz
-25.0			Monthly Destanting Destanting	Stop Freq 5.225000000 GHz
-45.0				CF Step 5.000000 MH <u>Auto</u> Mar
-65.0				Freq Offse 0 H:
				Scale Type
Center 5.20000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	s	Span 50.00 Mł weep 1.000 ms (1001 pl	lz ^{Log <u>Lin</u> s)}
MSG			STATUS	

Plot 7-119. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)


Plot 7-120. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

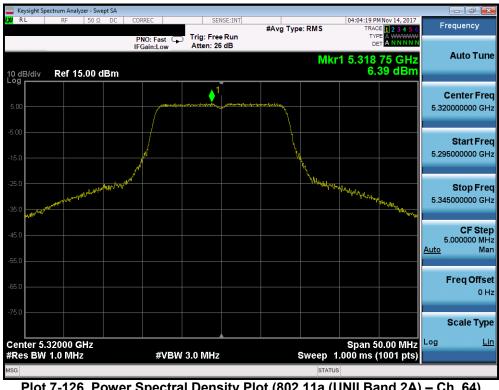
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 89 of 200
© 2017 PCTEST Engineering Labo	V 7 1 10/25/2017			

Keysight Sp R L	RF	r - Swept SA 50 Ω DC	CORREC	SENSE:INT		07:10:47 PM No	v 15. 2017	
	14	NFE	PNO: Fast G		#Avg Type: RMS	TRACE	2 3 4 5 6	Frequency
) dB/div	Ref 15.	00 dBm	IFGain:Low	Allen. 20 dB		Mkr1 5.186 6		Auto Tui
					Ang Jawang indigate au			Center Fr 5.190000000 Gi
5.0								Start Fr 5.140000000 G
5.0		Muriling	Advand .			Martin William and and		Stop Fr 5.240000000 G
5.0 <mark>سيلسونيم</mark> 5.0	or Artal was Now	at work work work and						CF St 10.000000 M <u>ito</u> M
5.0								Freq Offs 0
5.0								Scale Ty
	19000 GH 1.0 MHz	lz	#VBW	/ 3.0 MHz	Swee	Span 100. p 1.000 ms (10	.0 MHz ^{Lo} 01 pts)	og <u>i</u>
G					S	TATUS		


Plot 7-122. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 90 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	table Handset	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

	pectrum Analyz	er - Swept SA					- 6 💌
X/RL	RF	50 Ω DC NFE	CORREC	SENSE:INT	#Avg Type: RMS	07:46:17 PM Nov 15, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div Log	Ref 15.	.00 dBm	IFGain:Low	Atten: 26 dB	Μ	kr1 5.222 8 GHz -1.10 dBm	Auto Tun
5.00			and the second second	1			Center Fre 5.210000000 GH
5.00							Start Fre 5.110000000 G⊦
35.0		لى چې لې چې او د او	And a second sec		handelau		Stop Fre 5.310000000 G⊦
45.0 45.0	and and a second se					and the section of th	CF Ste 20.000000 MH <u>Auto</u> Ma
65.0							Freq Offs 0 I
75.0							Scale Typ
	.2100 GH / 1.0 MHz		#VBW	3.0 MHz	Sweep	Span 200.0 MHz 1.000 ms (1001 pts)	Log <u>L</u>
ISG					STAT	us	


Plot 7-124. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

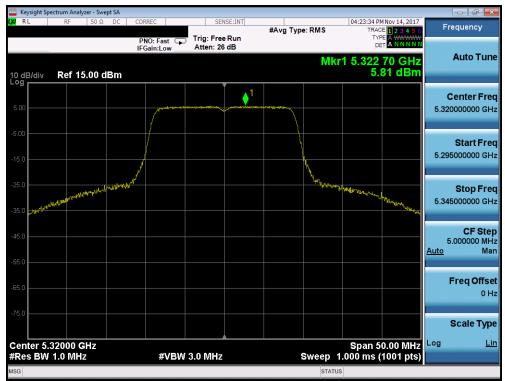
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 01 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 91 of 200
2017 PCTEST Engineering Laboratory Inc				V 7 1 10/25/2017

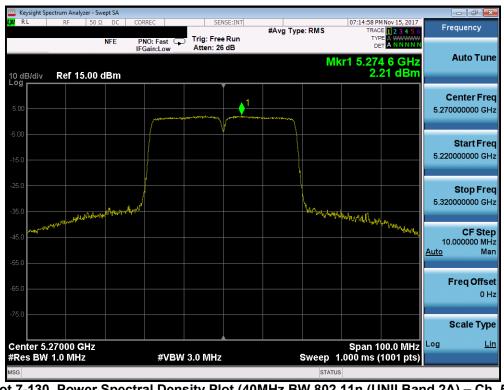
Keysight Spectrum Analyzer - Swept SA				
ΙΧΙ R F 50 Ω DC		MSE:INT #Avg Type	e: RMS TRACE	Nov 14, 2017 1 2 3 4 5 6 Frequency
10 dB/div Ref 15.00 dBm	PNO: Fast Trig: Free IFGain:Low Atten: 26		DE Mkr1 5.281	A MINININ 95 GHz Auto Tune 16 dBm
5.00		↓ ¹		Center Freq 5.280000000 GHz
-5.00				Start Freq 5.255000000 GHz
-25.0 -35.0 -35.0			And the second sec	5.305000000 GHz
-45.0				CF Step 5.000000 MHz <u>Auto</u> Man
-65.0				Freq Offset 0 Hz
-75.0				Scale Type
Center 5.28000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz		Span 50 /) Sweep 1.000 ms	
MSG			STATUS	

Plot 7-125. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

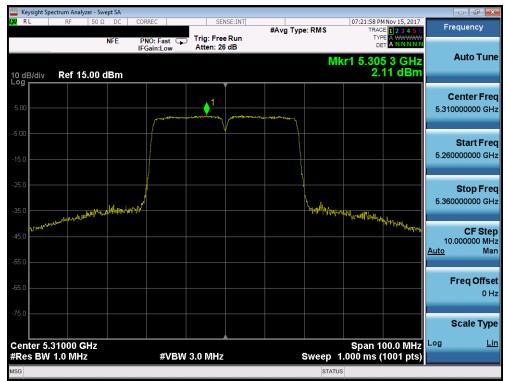
Plot 7-126. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 02 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 92 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017


Plot 7-127. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

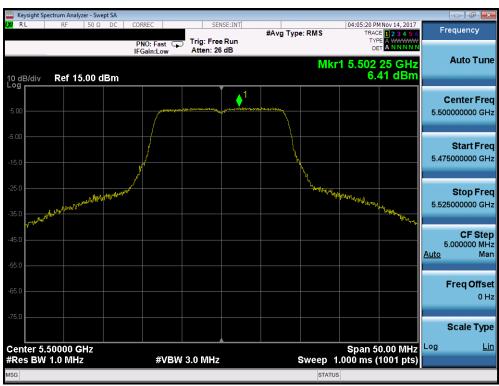

Plot 7-128. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

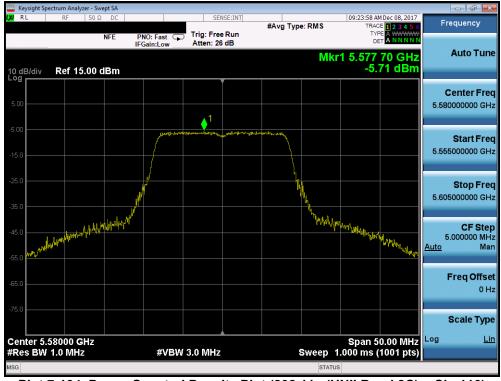
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 93 of 200
© 2017 PCTEST Engineering Laboratory. Inc.				V 7.1 10/25/2017


Plot 7-129. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

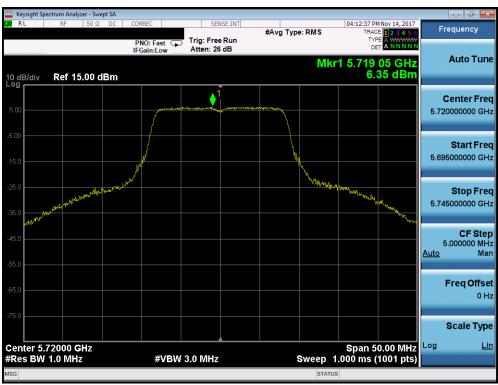
Plot 7-130. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

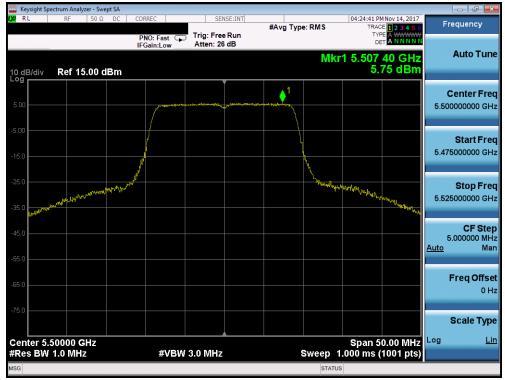
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 04 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 94 of 200
© 2017 PCTEST Engineering Laboratory. Inc.				V 7.1 10/25/2017


Plot 7-131. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

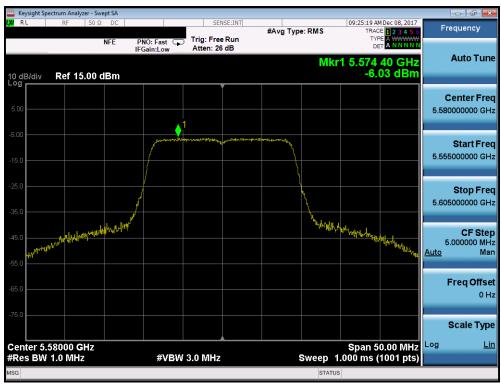

Plot 7-132. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) – Ch. 58)

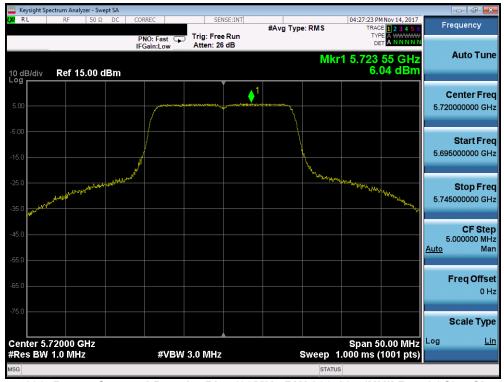
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 05 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 95 of 200
© 2017 PCTEST Engineering Laboratory. Inc.				V 7.1 10/25/2017


Plot 7-133. Power Spe	ectral Density Plot	(802.11a (U	INII Band 2C)	– Ch. 100)
-----------------------	---------------------	-------------	---------------	------------


Plot 7-134. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

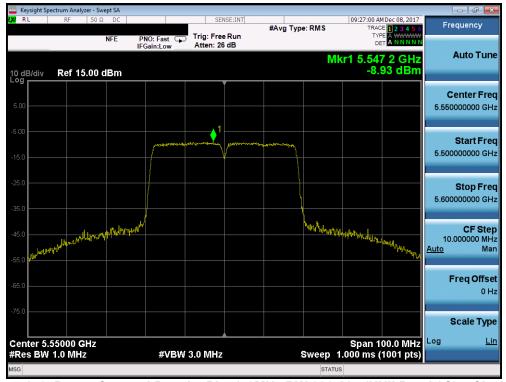
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 06 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 96 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017



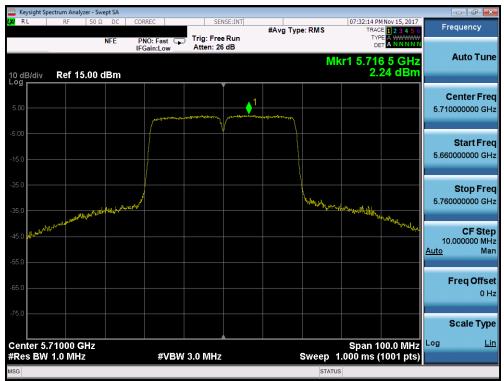

Plot 7-136. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 97 of 200	
© 2017 PCTEST Engineering Lab	2017 PCTEST Engineering Laboratory Inc				

Plot 7-137. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)


Plot 7-138. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 08 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 98 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017


Plot 7-139. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

Plot 7-140. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

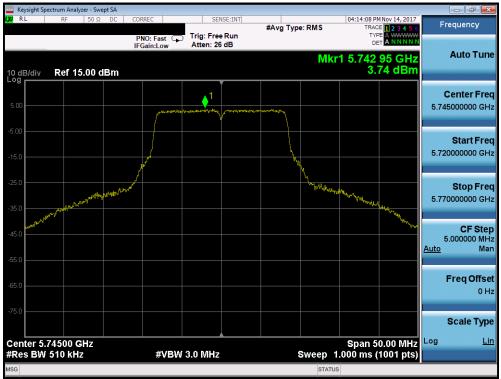
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Baga 00 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 99 of 200
© 2017 PCTEST Engineering Lab	2017 PCTEST Engineering Laboratory Inc			

Plot 7-141. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-142. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

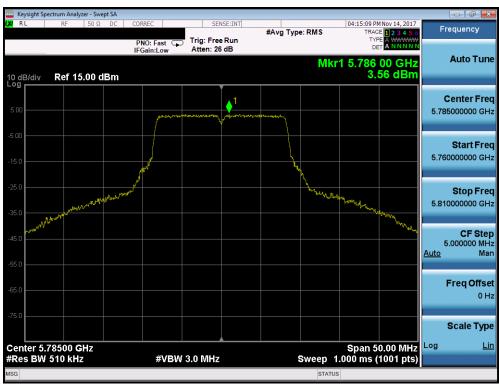
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 100 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

	ectrum Analyzer							
XI RL	RF	50 Ω DC NFE	CORREC	SENSE:INT	#Avg Type: R	MS TRA	PM Nov 15, 2017 CE 1 2 3 4 5 6 (PE A *********	Frequency
10 dB/div	Ref 15.0		IFGain:Low	Atten: 26 dB		Mkr1 5.70	4 8 GHz 93 dBm	Auto Tune
5.00					▲ ¹			Center Fred 5.690000000 GH:
-5.00			Martin					Start Free 5.590000000 GH
-25.0								Stop Fred 5.790000000 GH
-45.0	Manganan	Jewer Warden and Warden			بيكر 	have all all and a second and a s	and the source of	CF Stej 20.000000 MH <u>Auto</u> Ma
65.0								Freq Offse 0 H
-75.0								Scale Type
Center 5. #Res BW	6900 GHz 510 kHz		#VBW	3.0 MHz	Sw	Span 2 eep 1.000 ms	200.0 MHz (1001 pts)	Log <u>Lir</u>
ISG						STATUS		

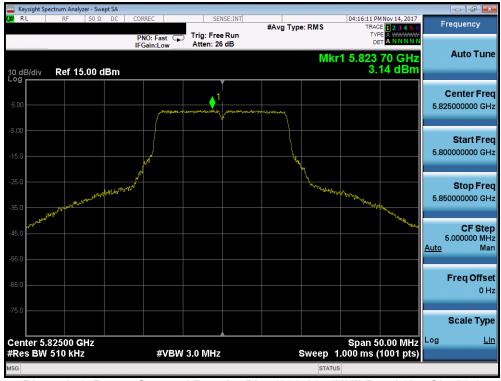

Plot 7-143. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 138)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 101 of 200	
© 2017 PCTEST Engineering Labo	pratory, Inc.	•		V 7.1 10/25/2017	

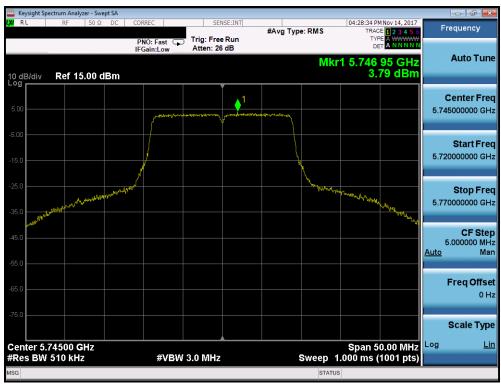
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	3.74	30.0	-26.26
	5785	157	а	6	3.56	30.0	-26.44
ę	5825	165	а	6	3.14	30.0	-26.86
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	3.79	30.0	-26.21
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.03	30.0	-26.97
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	2.64	30.0	-27.36
	5755	151	n (40MHz)	13.5/15 (MCS0)	-0.27	30.0	-30.27
	5795	159	n (40MHz)	13.5/15 (MCS0)	-0.68	30.0	-30.68
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-0.61	30.0	-30.61

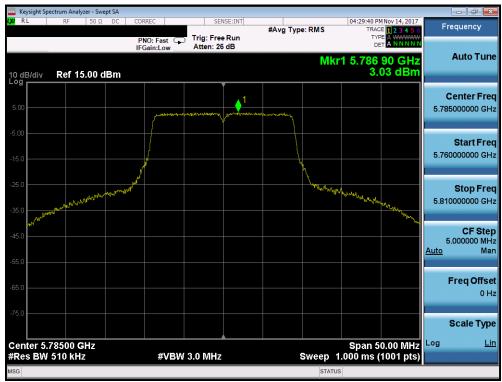

Table 7-23. Band 3 Conducted Power Spectral Density Measurements



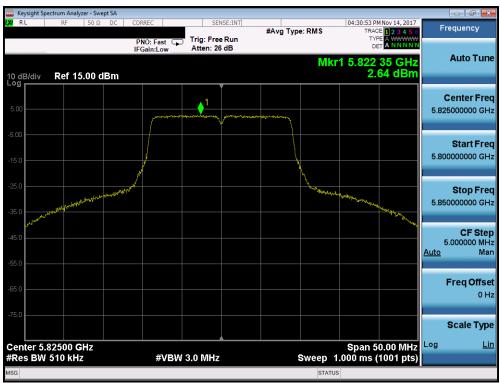

Plot 7-144. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

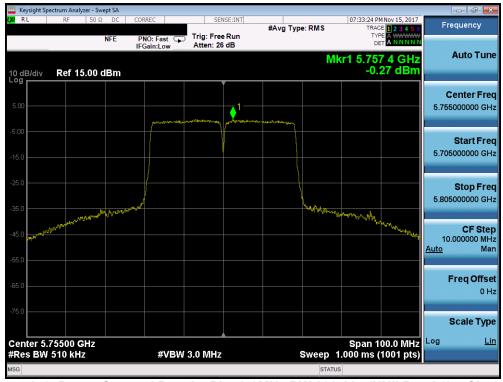
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 200	
1M1711010281-06-R2.A3L 11/1-12/7/2017		Portable Handset		Page 102 of 200	
© 2017 PCTEST Engineering Labo	pratory, Inc.			V 7.1 10/25/2017	




Plot 7-146. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

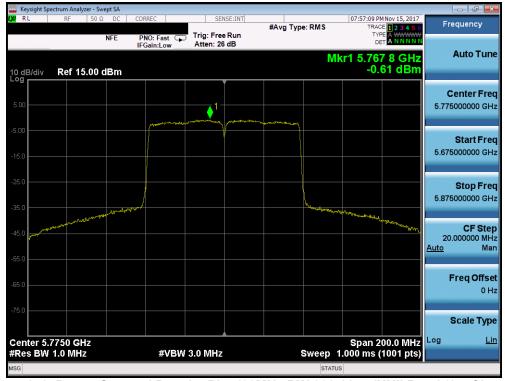
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 200			
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 103 of 200			
© 2017 PCTEST Engineering Lab	2017 PCTEST Engineering Laboratory Inc						


Plot 7-147. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 149)


Plot 7-148. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dage 104 of 200				
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 104 of 200				
© 2017 PCTEST Engineering Lab	2017 PCTEST Engineering Laboratory Inc.							


Plot 7-149. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 165)


Plot 7-150. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Page 105 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017				
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				

Plot 7-151. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 161)

Plot 7-152. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 106 of 200	
© 2017 PCTEST Engineering Lab	oratory Inc			V 7 1 10/25/2017	

Summed MIMO/CDD Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 Power Density [dBm]	Antenna-2 Power Density [dBm]	Summed MIMO/CDD Power Density [dBm]	Max Power Density Limit [dBm/MHz]	Power Density Margin [dB]
	5180	36	а	6.5/7.2 (MCS0)	6.75	5.73	9.28	11.0	-1.72
	5200	40	а	6.5/7.2 (MCS0)	6.12	5.73	8.94	11.0	-2.06
	5240	48	а	6.5/7.2 (MCS0)	6.44	6.05	9.26	11.0	-1.74
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.61	4.66	8.17	11.0	-2.83
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.72	5.40	8.57	11.0	-2.43
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.98	5.65	8.82	11.0	-2.18
	5190	38	n (40MHz)	13.5/15 (MCS0)	2.15	-2.23	3.50	11.0	-7.50
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.06	2.41	5.25	11.0	-5.75
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-0.91	-1.10	2.01	11.0	-8.99
	5260	52	а	6.5/7.2 (MCS0)	6.57	6.29	9.44	11.0	-1.56
	5280	56	а	6.5/7.2 (MCS0)	6.58	6.16	9.39	11.0	-1.61
	5320	64	а	6.5/7.2 (MCS0)	6.50	6.39	9.46	11.0	-1.54
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	6.06	6.16	9.12	11.0	-1.88
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	6.07	5.76	8.93	11.0	-2.07
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	6.05	5.81	8.94	11.0	-2.06
	5270	54	n (40MHz)	13.5/15 (MCS0)	1.90	2.21	5.07	11.0	-5.93
	5310	62	n (40MHz)	13.5/15 (MCS0)	1.99	2.11	5.06	11.0	-5.94
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-0.99	-1.08	1.98	11.0	-9.02
	5500	100	а	6.5/7.2 (MCS0)	6.37	6.41	9.40	11.0	-1.60
	5580	116	а	6.5/7.2 (MCS0)	-6.12	-5.71	-2.90	11.0	-13.90
	5720	144	а	6.5/7.2 (MCS0)	5.90	6.35	9.14	11.0	-1.86
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	6.03	5.75	8.90	11.0	-2.10
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	-6.48	-6.03	-3.24	11.0	-14.24
Band	5720	144	n (20MHz)	6.5/7.2 (MCS0)	5.58	6.04	8.83	11.0	-2.17
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	-9.18	2.31	2.61	11.0	-8.39
	5550	110	n (40MHz)	13.5/15 (MCS0)	-9.10	-8.93	-6.00	11.0	-17.00
	5710	142	n (40MHz)	13.5/15 (MCS0)	1.79	2.24	5.03	11.0	-5.97
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-0.47	-0.60	2.48	11.0	-8.52
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-3.92	-3.93	-0.91	11.0	-11.91

Table 7-24. Bands 1, 2A, 2C MIMO/CDD Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 Power Density [dBm]	Antenna-2 Power Density [dBm]	Summed MIMO/CDD Power Density [dBm]	Directional Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	Max e.i.r.p. Power Density Limit [dBm/MHz]	e.i.r.p. Power Density Margin [dB]
	5180	36	а	6.5/7.2 (MCS0)	6.75	5.73	9.28	-4.50	4.78	10.0	-5.22
	5200	40	а	6.5/7.2 (MCS0)	6.12	5.73	8.94	-4.50	4.44	10.0	-5.56
	5240	48	а	6.5/7.2 (MCS0)	6.44	6.05	9.26	-4.50	4.76	10.0	-5.24
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.61	4.66	8.17	-4.50	3.67	10.0	-6.33
Band	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.72	5.40	8.57	-4.50	4.07	10.0	-5.93
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.98	5.65	8.82	-4.50	4.32	10.0	-5.68
	5190	38	n (40MHz)	13.5/15 (MCS0)	2.15	-2.23	3.50	-4.50	-1.00	10.0	-11.00
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.06	2.41	5.25	-4.50	0.75	10.0	-9.25
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-0.91	-1.10	2.01	-4.50	-2.49	10.0	-12.49

Table 7-25. Band 1 MIMO/CDD e.i.r.p Power Spectral Density Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 107 of 200
© 2017 PCTEST Engineering Labo	pratory. Inc.	•		V 7.1 10/25/2017

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	Antenn-2 Power Density [dBm]	Summed MIMO/CDD Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6.5/7.2 (MCS0)	3.37	3.74	6.57	30.0	-23.43
	5785	157	а	6.5/7.2 (MCS0)	3.69	3.56	6.64	30.0	-23.36
	5825	165	а	6.5/7.2 (MCS0)	2.95	3.14	6.06	30.0	-23.94
m	5745	149	n (20MHz)	6.5/7.2 (MCS0)	3.11	3.79	6.47	30.0	-23.53
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.15	3.03	6.10	30.0	-23.90
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	2.87	2.64	5.77	30.0	-24.23
	5755	151	n (40MHz)	13.5/15 (MCS0)	-0.57	-0.27	2.59	30.0	-27.41
	5795	159	n (40MHz)	13.5/15 (MCS0)	-0.89	-0.68	2.23	30.0	-27.77
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-0.74	-0.61	2.33	30.0	-27.67

Table 7-26. Band 3 MIMO/CDD Conducted Power Spectral Density Measurements

Note:

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where Gn is the gain of the nth antenna and Nant, the total number of antennas used.

Directional gain =
$$10 \log[(10^{G_I/20} + 10^{G_2/20} + ... + 10^{G_N/20})^2 / N_{ANT}] dBi$$

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted power spectral density was measured to be 5.61 dBm for Antenna-1 and 4.66 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(5.61 dBm + 4.66 dBm) = (3.64 mW + 2.92 mW) = 6.57 mW = 8.17 dBm

Sample e.i.r.p. Power Density Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO power density was calculated to be 8.17 dBm with directional gain of -4.5 dBi.

e.i.r.p. Power Spectral Density (dBm) = Power Spectral Density (dBm) + Ant gain (dBi)

= 8.17 dBm + -4.5 dBi

= 3.67 dBm

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degre 108 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 108 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

7.6 Frequency Stability §15.407(g); RSS-Gen [6.11]

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,180,000,000	Hz
CHANNEL:	36	
REFERENCE VOLTAGE:	4.30	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.30	+ 20 (Ref)	5,179,999,558	-442	-0.0000085
100 %		- 30	5,180,000,144	144	0.0000028
100 %		- 20	5,179,999,920	-80	-0.0000015
100 %		- 10	5,179,999,968	-32	-0.0000006
100 %		0	5,179,999,778	-222	-0.0000043
100 %		+ 10	5,180,000,239	239	0.0000046
100 %		+ 20	5,180,000,081	81	0.0000016
100 %		+ 30	5,179,999,978	-22	-0.0000004
100 %		+ 40	5,180,000,049	49	0.0000009
100 %		+ 50	5,180,000,331	331	0.0000064
BATT. ENDPOINT	3.70	+ 20	5,179,999,998	-2	0.0000000

 Table 7-27. Frequency Stability Measurements for UNII Band 1 (Ch. 36)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 109 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,260,000,000	Hz
CHANNEL:	52	
REFERENCE VOLTAGE:	4.30	VDC

POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
4.30	+ 20 (Ref)	5,260,000,083	83	0.0000016
	- 30	5,260,000,079	79	0.0000015
	- 20	5,259,999,733	-267	-0.0000051
	- 10	5,260,000,161	161	0.0000031
	0	5,260,000,110	110	0.0000021
	+ 10	5,259,999,814	-186	-0.0000035
	+ 20	5,259,999,998	-2	0.0000000
	+ 30	5,260,000,012	12	0.0000002
	+ 40	5,259,999,846	-154	-0.0000029
	+ 50	5,260,000,281	281	0.0000053
3.70	+ 20	5,260,000,010	10	0.0000002
	(VDC) 4.30 3.70	(VDC) (°C) 4.30 + 20 (Ref) - 30 - 20 - 10 - 10 0 + 10 + 20 + 30 + 40 + 50 3.70 + 20	(VDC)(°C)(Hz) 4.30 $+ 20 (Ref)$ $5,260,000,083$ $- 30$ $5,260,000,079$ $- 20$ $5,259,999,733$ $- 10$ $5,260,000,161$ 0 $5,260,000,161$ 0 $5,260,000,110$ $+ 10$ $5,259,999,814$ $+ 20$ $5,259,999,814$ $+ 20$ $5,260,000,012$ $+ 40$ $5,259,999,846$ $+ 50$ $5,260,000,281$ 3.70 $+ 20$ $5,260,000,010$	I OWER (VDC)(°C)I REGUENCI (Hz)I req. BeV. (Hz) 4.30 $+ 20$ (Ref) $5,260,000,083$ 83 $- 30$ $5,260,000,079$ 79 $- 20$ $5,259,999,733$ -267 $- 10$ $5,260,000,161$ 161 0 $5,260,000,161$ 110 $+ 10$ $5,259,999,814$ -186 $+ 20$ $5,259,999,814$ -186 $+ 20$ $5,259,999,814$ -186 $+ 20$ $5,260,000,012$ 12 $+ 30$ $5,260,000,012$ 12 $+ 40$ $5,259,999,846$ -154 $+ 50$ $5,260,000,281$ 281

 Table 7-28. Frequency Stability Measurements for UNII Band 2A (Ch. 52)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 110 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 110 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,500,000,000	Hz
CHANNEL:	100	
REFERENCE VOLTAGE:	4.30	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.30	+ 20 (Ref)	5,499,999,939	-61	-0.0000011
100 %		- 30	5,499,999,972	-28	-0.0000005
100 %		- 20	5,499,999,818	-182	-0.0000033
100 %		- 10	5,500,000,001	1	0.0000000
100 %		0	5,499,999,949	-51	-0.0000009
100 %		+ 10	5,499,999,994	-6	-0.0000001
100 %		+ 20	5,500,000,039	39	0.0000007
100 %		+ 30	5,500,000,166	166	0.0000030
100 %		+ 40	5,500,000,420	420	0.0000076
100 %		+ 50	5,500,000,027	27	0.0000005
BATT. ENDPOINT	3.70	+ 20	5,500,000,028	28	0.0000005

 Table 7-29. Frequency Stability Measurements for UNII Band 2C (Ch. 100)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 111 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 111 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,745,000,000	Hz
CHANNEL:	149	
REFERENCE VOLTAGE:	4.30	VDC

(VDC)	(°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
4.30	+ 20 (Ref)	5,745,000,036	36	0.0000006
	- 30	5,744,999,859	-141	-0.0000025
	- 20	5,744,999,967	-33	-0.0000006
	- 10	5,744,999,795	-205	-0.0000036
	0	5,745,000,121	121	0.0000021
	+ 10	5,744,999,924	-76	-0.0000013
	+ 20	5,745,000,043	43	0.0000007
	+ 30	5,744,999,863	-137	-0.0000024
	+ 40	5,744,999,955	-45	-0.0000008
	+ 50	5,745,000,066	66	0.0000011
3.70	+ 20	5,744,999,852	-148	-0.0000026
		$ \begin{array}{r} -20 \\ -10 \\ 0 \\ +10 \\ +20 \\ +30 \\ +40 \\ +50 \\ 3.70 +20 \\ \end{array} $	- 20 5,744,999,967 - 10 5,744,999,795 0 5,745,000,121 + 10 5,744,999,924 + 20 5,745,000,043 + 30 5,744,999,863 + 40 5,744,999,955 + 50 5,745,000,066 3.70 + 20 5,744,999,852	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table 7-30. Frequency Stability Measurements for UNII Band 3 (Ch. 149)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 112 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 112 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

7.7 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-31 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]		
Above 960.0 MHz	500	3		

Table 7-31. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be \geq 2 x span/RBW)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: A3LSMG960U IC: 649E-SMG960U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 112 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 113 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

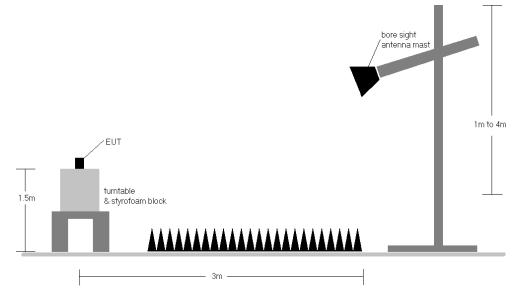


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 114 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 114 of 200	
© 2017 PCTEST Engineering Lab	V 7.1 10/25/2017				

Test Notes

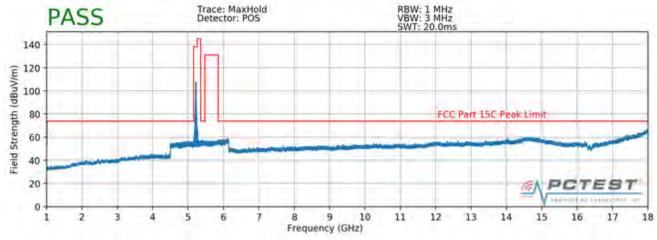
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-31.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-31. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

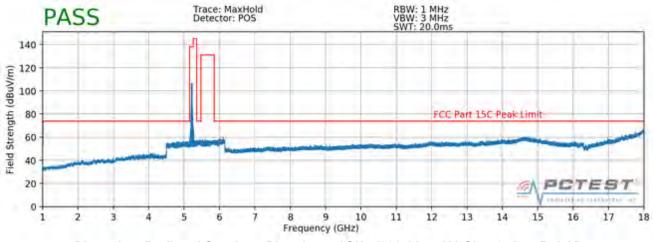
Determining Spurious Emissions Levels

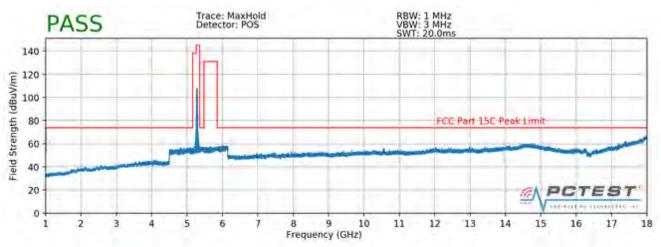
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

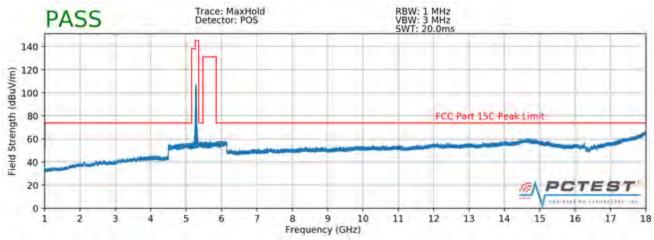
Radiated Band Edge Measurement Offset

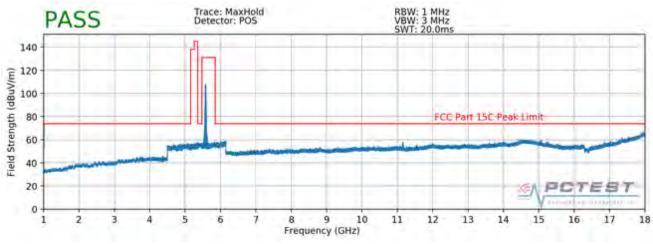

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

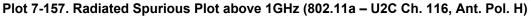
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

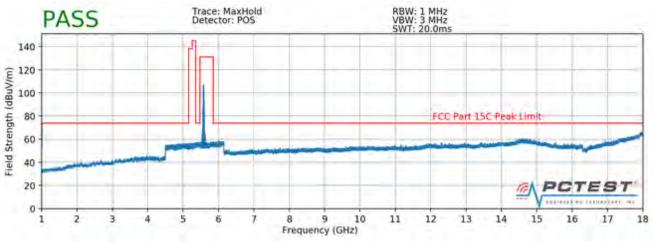

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 115 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 115 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

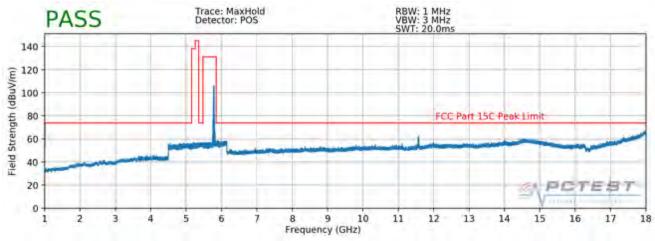

7.7.1 Antenna-1 Radiated Spurious Emission Measurements

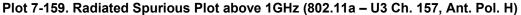


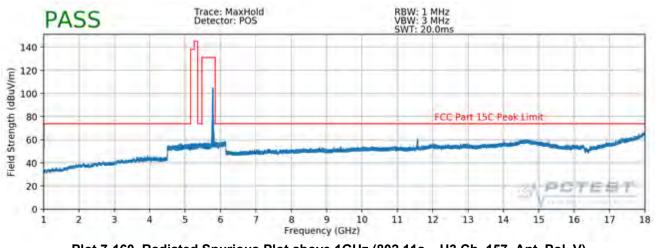

Plot 7-155. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 116 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 116 of 200	
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017				

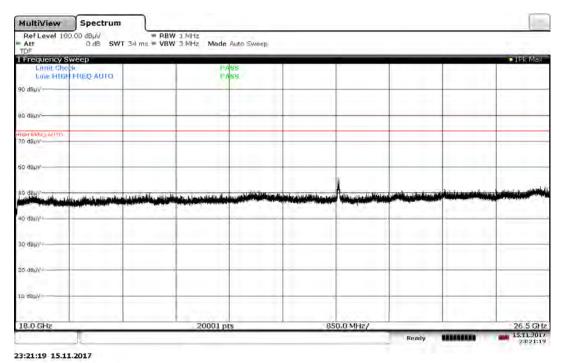




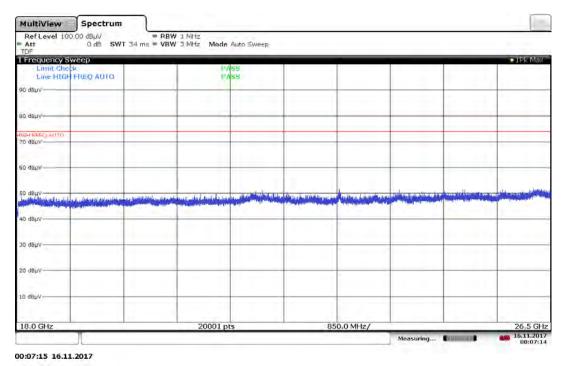


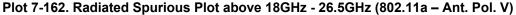

Plot 7-158. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 117 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				

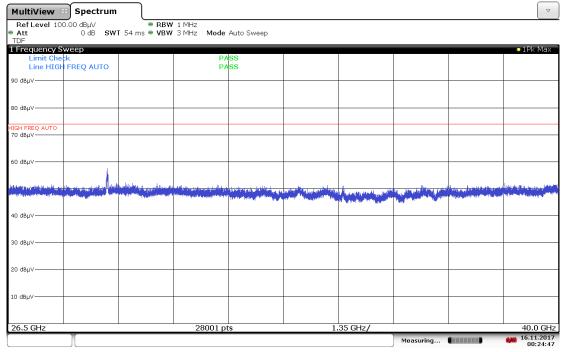


Plot 7-160. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)

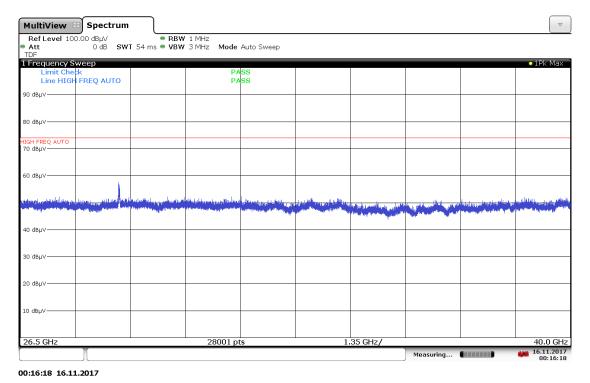

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 119 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 118 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				



Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz)



FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 119 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				



Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz)

00:24:47 16.11.2017

Plot 7-164. Radiated Spurious Plot above 26.5GHz - 40GHz (802.11a - Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 120 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 120 of 200	
© 2017 PCTEST Engineering Lab	V 7.1 10/25/2017				

Antenna-1 Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	Н	100	329	-49.92	12.13	-9.54	59.67	68.20	-8.53
*	15540.00	Average	Н	100	3	-71.16	14.49	-9.54	40.79	53.98	-13.19
*	15540.00	Peak	Н	100	3	-57.93	14.49	-9.54	54.02	73.98	-19.96
*	20720.00	Average	Н	100	3	-69.79	7.94	-9.54	35.61	53.98	-18.37
*	20720.00	Peak	Н	100	3	-59.30	7.94	-9.54	46.10	73.98	-27.88
	25900.00	Peak	Н	100	265	-55.54	8.46	-9.54	50.38	68.20	-17.82

Table 7-32. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 Meter	
5200MHz	
40	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	Н	100	322	-50.91	12.12	-9.54	58.67	68.20	-9.53
*	15600.00	Average	Н	100	357	-69.68	14.31	-9.54	42.09	53.98	-11.89
*	15600.00	Peak	Н	100	357	-57.44	14.31	-9.54	54.33	73.98	-19.65
*	20800.00	Average	Н	100	275	-69.94	7.95	-9.54	35.47	53.98	-18.51
*	20800.00	Peak	Н	100	275	-59.50	7.95	-9.54	45.91	73.98	-28.07
	26000.00	Peak	Н	100	274	-57.13	8.60	-9.54	48.93	68.20	-19.27

Table 7-33. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 121 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 121 01 200	
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017				

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	100	322	-49.50	12.09	-9.54	60.05	68.20	-8.15
*	15720.00	Average	Н	100	359	-68.58	14.02	-9.54	42.90	53.98	-11.08
*	15720.00	Peak	Н	100	359	-54.48	14.02	-9.54	57.00	73.98	-16.98
*	20960.00	Average	Н	100	276	-70.15	7.91	-9.54	35.22	53.98	-18.76
*	20960.00	Peak	Н	100	276	-58.96	7.91	-9.54	46.41	73.98	-27.57
	26200.00	Peak	Н	100	262	-54.49	8.62	-9.54	51.59	68.20	-16.61

Table 7-34. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 Meter 5240MHz 48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	100	234	-58.36	12.09	-9.54	51.19	68.20	-17.01
*	15720.00	Average	Н	100	307	-71.66	14.02	-9.54	39.82	53.98	-14.16
*	15720.00	Peak	Н	100	307	-59.66	14.02	-9.54	51.82	73.98	-22.16
*	20960.00	Average	Н	100	271	-71.19	7.91	-9.54	34.18	53.98	-19.80
*	20960.00	Peak	Н	100	271	-59.79	7.91	-9.54	45.58	73.98	-28.40
	26200.00	Peak	Н	100	266	-55.89	8.62	-9.54	50.19	68.20	-18.01

Table 7-35. Radiated Measurements with WCP

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 122 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 122 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5260MHz
Channel:	52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	100	232	-48.73	12.16	-9.54	60.89	68.20	-7.31
*	15780.00	Average	Н	100	359	-68.31	14.03	-9.54	43.18	53.98	-10.80
*	15780.00	Peak	Н	100	359	-53.94	14.03	-9.54	57.55	73.98	-16.43
*	21040.00	Average	Н	100	281	-70.11	7.92	-9.54	35.27	53.98	-18.71
*	21040.00	Peak	Н	100	281	-59.43	7.92	-9.54	45.95	73.98	-28.03
	26300.00	Peak	Н	100	264	-54.62	8.73	-9.54	51.57	68.20	-16.63

Table 7-36. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

	802.11a
	6Mbps
:	1 Meter
	5280MHz
	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	н	100	326	-48.13	12.04	-9.54	61.37	68.20	-6.83
*	15840.00	Average	Н	100	358	-68.92	14.25	-9.54	42.78	53.98	-11.20
*	15840.00	Peak	н	100	358	-53.86	14.25	-9.54	57.84	73.98	-16.14
*	21120.00	Average	н	100	276	-69.83	7.96	-9.54	35.59	53.98	-18.39
*	21120.00	Peak	н	100	276	-59.42	7.96	-9.54	46.00	73.98	-27.98
	26400.00	Peak	Н	100	265	-55.36	8.94	-9.54	51.04	68.20	-17.16

Table 7-37. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 122 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 123 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

802.11a
6Mbps
1 Meter
5320MHz
64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	100	329	-61.35	12.06	-9.54	48.17	53.98	-5.81
*	10640.00	Peak	н	100	329	-50.03	12.06	-9.54	59.49	73.98	-14.49
*	15960.00	Average	Н	100	3	-67.28	14.55	-9.54	44.73	53.98	-9.25
*	15960.00	Peak	н	100	3	-53.11	14.55	-9.54	58.90	73.98	-15.08
*	21280.00	Average	Н	100	257	-69.57	8.04	-9.54	35.93	53.98	-18.05
*	21280.00	Peak	Н	100	257	-57.96	8.04	-9.54	47.54	73.98	-26.44
	26600.00	Peak	Н	100	256	-42.02	-8.30	-9.54	47.13	68.20	-21.07

Table 7-38. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

8	302.11a
6	6Mbps
-	1 Meter
Ę	5320MHz
6	64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	100	238	-64.97	12.06	-9.54	44.55	53.98	-9.43
*	10640.00	Peak	Н	100	238	-54.89	12.06	-9.54	54.63	73.98	-19.35
*	15960.00	Average	н	100	301	-71.78	14.55	-9.54	40.23	53.98	-13.75
*	15960.00	Peak	Н	100	301	-59.31	14.55	-9.54	52.70	73.98	-21.28
*	21280.00	Average	н	100	272	-69.98	8.04	-9.54	35.52	53.98	-18.46
*	21280.00	Peak	н	100	272	-59.30	8.04	-9.54	46.20	73.98	-27.78
	26600.00	Peak	Н	100	276	-39.51	-8.30	-9.54	49.64	68.20	-18.56

Table 7-39. Radiated Measurements with WCP

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N: Test Dates: 1M1711010281-06-R2.A3L 11/1-12/7/2017		EUT Type:		Page 124 of 200
		Portable Handset		Page 124 01 200
© 2017 PCTEST Engineering Lab	oratory Inc	•		V 7 1 10/25/2017

802.11a
6Mbps
1 Meter
_5500MHz
100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	100	312	-71.56	12.87	-9.54	38.77	53.98	-15.21
*	11000.00	Peak	Н	100	312	-58.06	12.87	-9.54	52.27	73.98	-21.71
	16500.00	Peak	Н	100	5	-53.71	16.61	-9.54	60.36	68.20	-7.84
	22000.00	Peak	Н	100	302	-57.18	8.43	-9.54	48.70	68.20	-19.50
	27500.00	Peak	Н	100	311	-44.74	-8.80	-9.54	43.92	68.20	-24.28

Table -40. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	Н	100	317	-67.08	12.76	-9.54	43.14	53.98	-10.84
*	11160.00	Peak	Н	100	317	-51.81	12.76	-9.54	58.41	73.98	-15.57
	16740.00	Peak	Н	100	55	-56.75	16.64	-9.54	57.35	68.20	-10.85
*	22320.00	Average	Н	100	280	-69.29	8.11	-9.54	36.28	53.98	-17.70
*	22320.00	Peak	Н	100	280	-58.73	8.11	-9.54	46.84	73.98	-27.14
	27900.00	Peak	Н	100	301	-40.44	-9.26	-9.54	47.76	68.20	-20.44

Table -41. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 125 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 125 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	Н	100	222	-64.91	12.57	-9.54	45.12	53.98	-8.86
*	11440.00	Peak	Н	100	222	-50.71	12.57	-9.54	59.32	73.98	-14.66
	17160.00	Peak	Н	100	5	-54.96	18.31	-9.54	60.81	68.20	-7.39
*	22880.00	Average	Н	100	222	-67.79	8.28	-9.54	37.95	53.98	-16.03
*	22880.00	Peak	Н	100	222	-56.17	8.28	-9.54	49.57	73.98	-24.41
	28600.00	Peak	Н	100	256	-39.13	-9.08	-9.54	49.25	68.20	-18.95

 Table -42. Radiated Measurements

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	100	225	-68.67	12.57	-9.54	41.36	53.98	-12.62
*	11440.00	Peak	Н	100	225	-58.03	12.57	-9.54	52.00	73.98	-21.98
	17160.00	Peak	Н	100	287	-55.00	18.31	-9.54	60.77	68.20	-7.43
*	22880.00	Average	Н	100	225	-68.77	8.28	-9.54	36.97	53.98	-17.01
*	22880.00	Peak	Н	100	225	-57.67	8.28	-9.54	48.07	73.98	-25.91
	28600.00	Peak	Н	100	259	-43.42	-9.08	-9.54	44.96	68.20	-23.24

Table 7-43. Radiated Measurements with WCP

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 126 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 126 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5745MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	100	218	-62.11	12.43	-9.54	47.78	53.98	-6.20
*	11490.00	Peak	Н	100	218	-49.93	12.43	-9.54	59.96	73.98	-14.02
	17235.00	Peak	Н	100	54	-54.17	18.61	-9.54	61.90	68.20	-6.30
*	22980.00	Average	Н	100	221	-67.65	8.16	-9.54	37.97	53.98	-16.01
*	22980.00	Peak	Н	100	221	-55.35	8.16	-9.54	50.27	73.98	-23.71
	28725.00	Peak	Н	100	257	-40.03	-9.24	-9.54	48.19	68.20	-20.01

Table -44. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 Meter
5785MHz
157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	100	225	-61.93	12.54	-9.54	48.07	53.98	-5.91
*	11570.00	Peak	Н	100	225	-51.20	12.54	-9.54	58.80	73.98	-15.18
	17355.00	Peak	Н	100	262	-56.11	18.73	-9.54	60.08	68.20	-8.12
	23140.00	Peak	Н	100	247	-55.60	8.37	-9.54	50.23	68.20	-17.97
	28925.00	Peak	Н	100	256	-37.72	-9.65	-9.54	50.09	68.20	-18.11

Table -45. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 127 of 200
© 2017 DCTEST Engineering Lab	V 7 1 10/25/2017			

Worst Case Mode:	_802.11a
Worst Case Transfer Rate:	_6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5825MHz
Channel:	165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	100	46	-62.47	12.99	-9.54	47.97	53.98	-6.01
*	11650.00	Peak	Н	100	46	-51.57	12.99	-9.54	58.87	73.98	-15.11
	17475.00	Peak	Н	100	263	-56.63	19.25	-9.54	60.07	68.20	-8.13
	23300.00	Peak	Н	100	247	-56.57	8.50	-9.54	49.38	68.20	-18.82
	29125.00	Peak	Н	100	254	-35.52	-9.87	-9.54	52.07	68.20	-16.13

Table -46. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 Meter 5785MHz 157

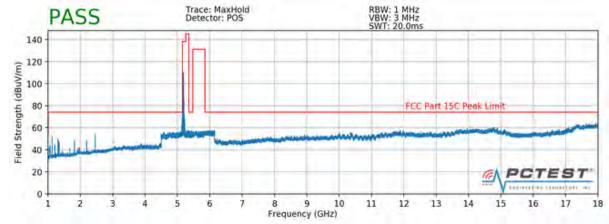
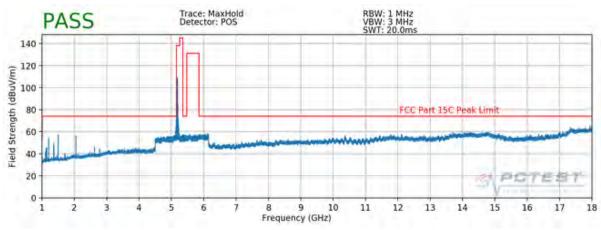
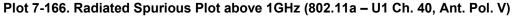
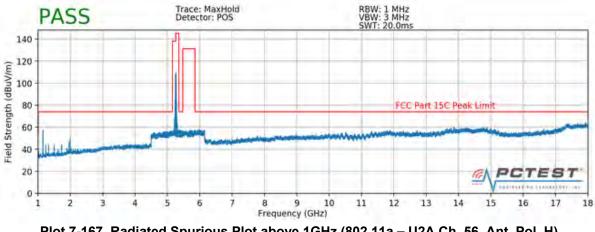
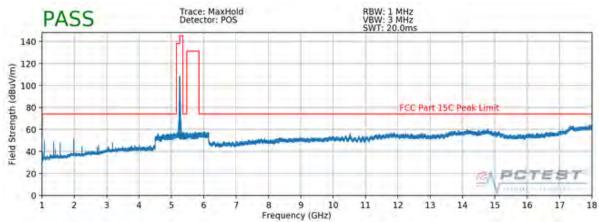

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	100	234	-69.53	12.54	-9.54	40.47	53.98	-13.51
*	11570.00	Peak	Н	100	234	-58.37	12.54	-9.54	51.63	73.98	-22.35
	17355.00	Peak	Н	100	295	-57.57	18.73	-9.54	58.62	68.20	-9.58
	23140.00	Peak	Н	100	265	-59.05	8.37	-9.54	46.78	68.20	-21.42
	28925.00	Peak	Н	100	256	-45.32	-9.65	-9.54	42.49	68.20	-25.71

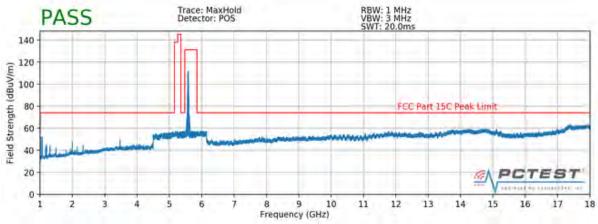
Table 7-47. Radiated Measurements with WCP


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 128 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 128 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

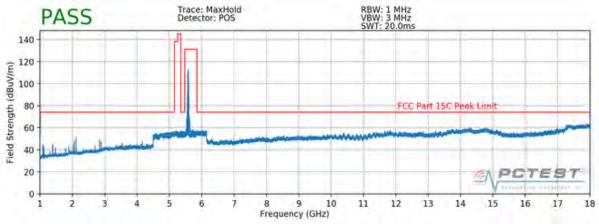


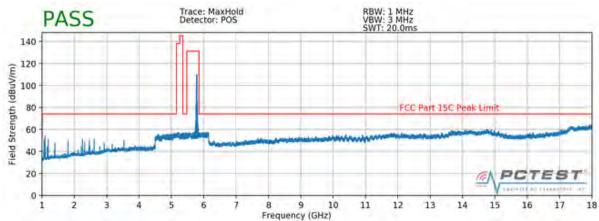

7.7.2 Antenna-2 Radiated Spurious Emission Measurements

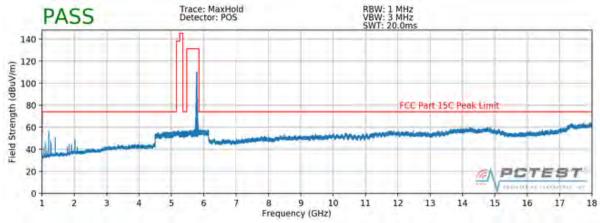



Plot 7-167. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 129 of 200
© 2017 PCTEST Engineering Lab	V 7.1 10/25/2017			

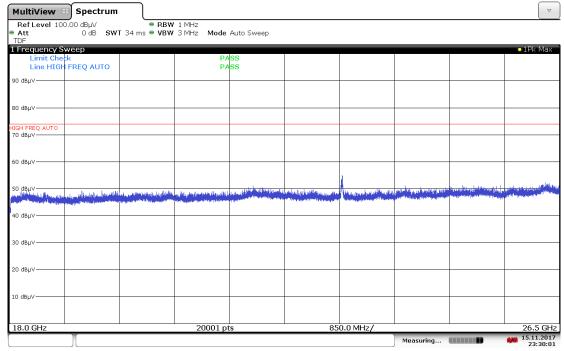



Plot 7-169. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. H)


Plot 7-170. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. V)

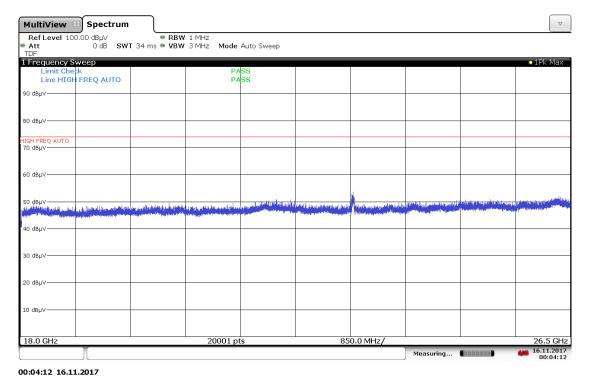
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 130 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

Plot 7-171. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



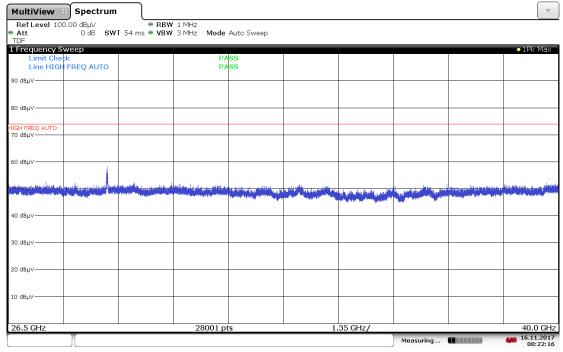
Plot 7-172. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 121 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 131 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			



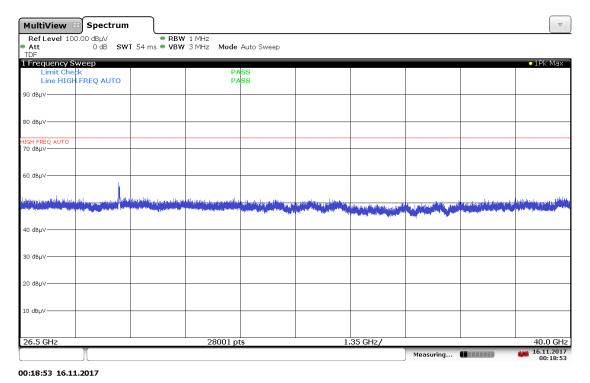
Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz)

23:30:02 15.11.2017



Plot 7-174. Radiated Spurious Plot above 18GHz - 26.5GHz (802.11a - Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 122 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 132 of 200
© 2017 PCTEST Engineering Lab	pratory. Inc.	•		V 7.1 10/25/2017



Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz)

00:22:16 16.11.2017

Plot 7-176. Radiated Spurious Plot above 26.5GHz - 40GHz (802.11a - Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 133 of 200
© 2017 PCTEST Engineering Lab	pratory. Inc.	•		V 7.1 10/25/2017

Antenna-2 Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	_802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	Н	100	224	-50.00	12.13	-9.54	59.59	68.20	-8.61
*	15540.00	Average	Н	100	357	-66.31	14.49	-9.54	45.64	53.98	-8.34
*	15540.00	Peak	Н	100	357	-53.37	14.49	-9.54	58.58	73.98	-15.40
*	20720.00	Average	Н	100	257	-68.84	7.94	-9.54	36.56	53.98	-17.42
*	20720.00	Peak	Н	100	257	-57.59	7.94	-9.54	47.81	73.98	-26.17
	25900.00	Peak	Н	100	247	-52.04	8.46	-9.54	53.88	68.20	-14.32

Table -48. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 Meter	
5200MHz	
40	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	100	225	-51.38	12.12	-9.54	58.20	68.20	-10.00
*	15600.00	Average	Н	100	268	-66.37	14.31	-9.54	45.40	53.98	-8.58
*	15600.00	Peak	Н	100	268	-55.83	14.31	-9.54	55.94	73.98	-18.04
*	20800.00	Average	Н	100	259	-69.07	7.95	-9.54	36.34	53.98	-17.64
*	20800.00	Peak	Н	100	259	-58.97	7.95	-9.54	46.44	73.98	-27.54
	26000.00	Peak	Н	100	264	-51.77	8.60	-9.54	54.29	68.20	-13.91

Table -49. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 124 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 134 of 200
© 2017 PCTEST Engineering Lab	oratory Inc	•		V 7 1 10/25/2017

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	100	226	-52.76	12.09	-9.54	56.79	68.20	-11.41
*	15720.00	Average	Н	100	271	-67.66	14.02	-9.54	43.82	53.98	-10.16
*	15720.00	Peak	Н	100	271	-54.08	14.02	-9.54	57.40	73.98	-16.58
*	20960.00	Average	Н	100	281	-69.10	7.91	-9.54	36.27	53.98	-17.71
*	20960.00	Peak	Н	100	281	-57.25	7.91	-9.54	48.12	73.98	-25.86
	26200.00	Peak	Н	100	267	-55.58	8.62	-9.54	50.50	68.20	-17.70

Table -50. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 Meter
5180MHz
36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	100	240	-52.58	12.13	-9.54	57.01	68.20	-11.19
*	15540.00	Average	Н	100	292	-67.89	14.49	-9.54	44.06	53.98	-9.92
*	15540.00	Peak	Н	100	292	-56.14	14.49	-9.54	55.81	73.98	-18.17
*	20720.00	Average	Н	100	278	-68.99	7.94	-9.54	36.41	53.98	-17.57
*	20720.00	Peak	Н	100	278	-57.95	7.94	-9.54	47.45	73.98	-26.53
	25900.00	Peak	Н	100	265	-54.88	8.46	-9.54	51.04	68.20	-17.16

Table 7-51. Radiated Measurements with WCP

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 125 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 135 of 200
© 2017 PCTEST Engineering Lab	oratory Inc			V 7 1 10/25/2017

W	/orst Case	Mode:		80)2.11a					
Ŵ	orst Case	Transt	fer Rate:	6	Mbps					
D	istance of	Measu	rements:	1	Meter					
0	perating F	requer	icy:	52	260MHz					
С	hannel:			52	2					
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
10520.00	Peak	Н	100	321	-53.56	12.16	-9.54	56.06	68.20	-12.14
15780.00	Average	Н	100	356	-66.10	14.03	-9.54	45.39	53.98	-8.59
15780.00	Peak	Н	100	356	-53.33	14.03	-9.54	58.16	73.98	-15.82
21040.00	Average	Н	100	261	-67.93	7.92	-9.54	37.45	53.98	-16.53
21040.00	Peak	Н	100	261	-56.45	7.92	-9.54	48.93	73.98	-25.05
26300.00	Peak	Н	100	265	-55.27	8.73	-9.54	50.92	68.20	-17.28

Table -52. Radiated M	easurements
-----------------------	-------------

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 Meter	
5280MHz	
56	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	100	256	-54.72	12.04	-9.54	54.78	68.20	-13.42
*	15840.00	Average	Н	100	354	-65.68	14.25	-9.54	46.02	53.98	-7.96
*	15840.00	Peak	Н	100	354	-53.10	14.25	-9.54	58.60	73.98	-15.38
*	21120.00	Average	н	100	282	-67.08	7.96	-9.54	38.34	53.98	-15.64
*	21120.00	Peak	Н	100	282	-55.54	7.96	-9.54	49.88	73.98	-24.10
	26400.00	Peak	Н	100	214	-56.98	8.94	-9.54	49.42	68.20	-18.78

 Table -53. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 126 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 136 of 200
© 2017 PCTEST Engineering Labo	pratory. Inc.	•		V 7.1 10/25/2017

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 Meter
5320MHz
64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	100	257	-69.60	12.06	-9.54	39.92	53.98	-14.06
*	10640.00	Peak	Н	100	257	-57.67	12.06	-9.54	51.85	73.98	-22.13
*	15960.00	Average	Н	100	357	-66.67	14.55	-9.54	45.34	53.98	-8.64
*	15960.00	Peak	Н	100	357	-54.57	14.55	-9.54	57.44	73.98	-16.54
*	21280.00	Average	н	100	280	-66.80	8.04	-9.54	38.70	53.98	-15.28
*	21280.00	Peak	Н	100	280	-56.19	8.04	-9.54	49.31	73.98	-24.67
	26600.00	Peak	Н	100	263	-43.44	-8.30	-9.54	45.71	68.20	-22.49

Table -54. Radiated Measurements4

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	100	243	-52.77	12.04	-9.54	56.73	68.20	-11.47
*	15840.00	Average	Н	100	295	-65.55	14.25	-9.54	46.15	53.98	-7.83
*	15840.00	Peak	Н	100	295	-54.84	14.25	-9.54	56.86	73.98	-17.12
*	21120.00	Average	Н	100	255	-69.31	7.96	-9.54	36.11	53.98	-17.87
*	21120.00	Peak	Н	100	255	-58.81	7.96	-9.54	46.61	73.98	-27.37
	26400.00	Peak	Н	100	287	-56.52	8.94	-9.54	49.88	68.20	-18.32

Table 7-55. Radiated Measurements with WCP

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 127 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 137 of 200
© 2017 PCTEST Engineering Lab	oratory Inc	•		V 7 1 10/25/2017

_802.11a
_6Mbps
1 Meter
5500MHz
100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	100	209	-75.62	12.87	-9.54	34.71	53.98	-19.27
*	11000.00	Peak	Н	100	209	-63.75	12.87	-9.54	46.58	73.98	-27.40
	16500.00	Peak	Н	100	277	-53.91	16.61	-9.54	60.16	68.20	-8.04
	22000.00	Peak	Н	100	282	-56.07	8.43	-9.54	49.81	68.20	-18.39
	27500.00	Peak	Н	100	270	-44.32	-8.80	-9.54	44.34	68.20	-23.86

Table -56. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 Meter
5820MHz
116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11640.00	Average	Н	100	140	-72.92	12.76	-9.54	37.30	53.98	-16.68
*	11640.00	Peak	Н	100	140	-61.37	12.76	-9.54	48.85	73.98	-25.13
	16740.00	Peak	Н	100	50	-54.42	16.64	-9.54	59.68	68.20	-8.52
*	22320.00	Average	Н	100	266	-69.21	8.11	-9.54	36.36	53.98	-17.62
*	22320.00	Peak	Н	100	266	-56.50	8.11	-9.54	49.07	73.98	-24.91
	27900.00	Peak	Н	100	245	-43.23	-9.26	-9.54	44.97	68.20	-23.23

Table -57. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 128 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 138 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

802.11a
6Mbps
1 Meter
5720MHz
144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	Н	100	266	-70.67	12.57	-9.54	39.36	53.98	-14.62
*	11440.00	Peak	Н	100	266	-63.95	12.57	-9.54	46.08	73.98	-27.90
	17160.00	Peak	Н	100	357	-62.37	18.31	-9.54	53.40	68.20	-14.80
*	22880.00	Average	Н	100	304	-69.42	8.28	-9.54	36.32	53.98	-17.66
*	22880.00	Peak	Н	100	304	-58.67	8.28	-9.54	47.07	73.98	-26.91
	28600.00	Peak	Н	100	257	-37.58	-9.08	-9.54	50.80	68.20	-17.40

 Table -58. Radiated Measurements

Worst Case Mode: _____ Worst Case Transfer Rate: ____ Distance of Measurements: _____ Operating Frequency: _____ Channel: _____

802.11a 6Mbps 1 Meter 5500MHz 100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	100	244	-70.63	12.87	-9.54	39.70	53.98	-14.28
*	11000.00	Peak	Н	100	244	-59.89	12.87	-9.54	50.44	73.98	-23.54
	16500.00	Peak	Н	100	285	-56.86	16.61	-9.54	57.21	68.20	-10.99
	22000.00	Peak	Н	100	273	-57.52	8.43	-9.54	48.36	68.20	-19.84
	27500.00	Peak	Н	100	257	-44.79	-8.80	-9.54	43.87	68.20	-24.33

Table 7-59. Radiated Measurements with WCP

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 139 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 Meter
Operating Frequency:	5745MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	100	268	-69.05	12.43	-9.54	40.84	53.98	-13.14
*	11490.00	Peak	Н	100	268	-58.98	12.43	-9.54	50.91	73.98	-23.07
	17235.00	Peak	Н	100	272	-51.11	18.61	-9.54	64.96	68.20	-3.24
*	22980.00	Average	Н	100	302	-68.77	8.16	-9.54	36.85	53.98	-17.13
*	22980.00	Peak	Н	100	302	-57.65	8.16	-9.54	47.97	73.98	-26.01
	28725.00	Peak	Н	100	254	-34.97	-9.24	-9.54	53.25	68.20	-14.95

Table -60. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 Meter	
5785MHz	
157	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	100	266	-70.85	12.54	-9.54	39.15	53.98	-14.83
*	11570.00	Peak	Н	100	266	-60.27	12.54	-9.54	49.73	73.98	-24.25
	17355.00	Peak	Н	100	269	-52.71	18.73	-9.54	63.48	68.20	-4.72
	23140.00	Peak	Н	100	303	-56.52	8.37	-9.54	49.31	68.20	-18.89
	28925.00	Peak	Н	100	256	-35.10	-9.65	-9.54	52.71	68.20	-15.49

Table -61. Radiated Measurements

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 140 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

<u>802.11a</u>	
6Mbps	
1 Meter	
5825MHz	
165	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	100	263	-72.41	12.99	-9.54	38.03	53.98	-15.95
*	11650.00	Peak	Н	100	263	-61.16	12.99	-9.54	49.28	73.98	-24.70
	17475.00	Peak	Н	100	268	-57.92	19.25	-9.54	58.78	68.20	-9.42
	23300.00	Peak	Н	100	303	-56.96	8.50	-9.54	48.99	68.20	-19.21
	29125.00	Peak	Н	100	256	-34.78	-9.87	-9.54	52.81	68.20	-15.39

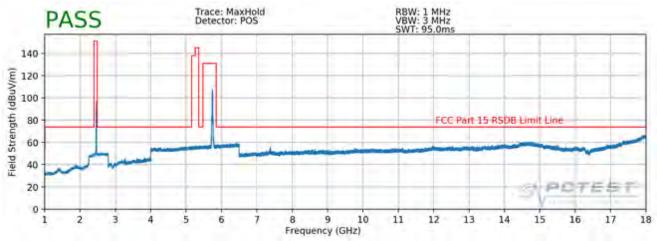
Table -62. Radiated Measurements

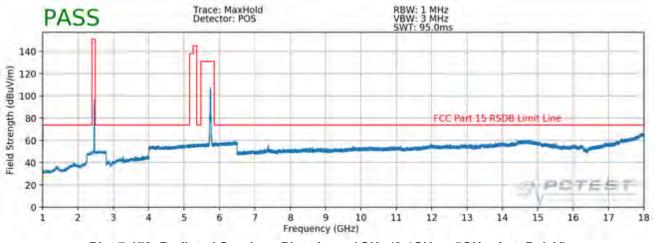
Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	100	278	-73.15	12.43	-9.54	36.74	53.98	-17.24
*	11490.00	Peak	Н	100	278	-63.20	12.43	-9.54	46.69	73.98	-27.29
	17235.00	Peak	Н	100	287	-52.57	18.61	-9.54	63.50	68.20	-4.70
*	22980.00	Average	Н	100	279	-69.43	8.16	-9.54	36.19	53.98	-17.79
*	22980.00	Peak	Н	100	279	-58.71	8.16	-9.54	46.91	73.98	-27.07
	28725.00	Peak	Н	100	254	-43.71	-9.24	-9.54	44.51	68.20	-23.69

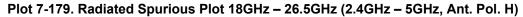
Table 7-63. Radiated Measurements with WCP

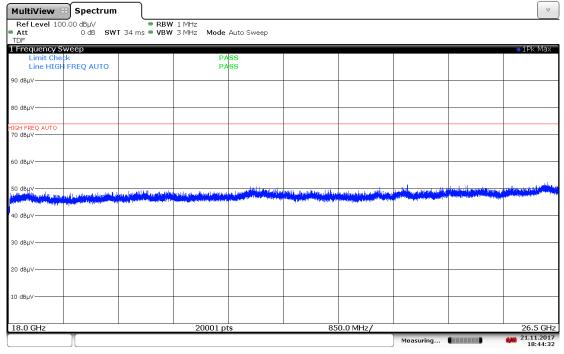

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 111 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 141 of 200
© 2017 PCTEST Engineering Lab	V 7 1 10/25/2017			

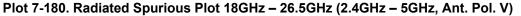

7.7.3 Simultaneous Tx Radiated Spurious Emissions Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1	2
Channel	11	144
Operating Frequency (MHz)	2462	5720
Data Rate (Mbps)	1	6
Mode	b	а

Table 7-64. Simultaneous Transmission Config-1

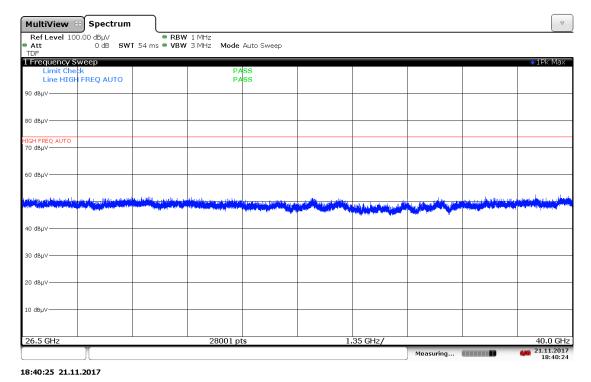

Plot 7-178. Radiated Spurious Plot above 1GHz (2.4GHz – 5GHz, Ant. Pol. V)


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 142 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 142 of 200
© 2017 PCTEST Engineering Lab	V 7.1 10/25/2017			


MultiView 8									
RefLevel 100 Att TDF	00 dBµV 0 dB SW 1		W 1 MHz W 3 MHz Mode	Auto Sweep					
1 Frequency Sv	veep								●1Pk Max
Limit Chec	k			SS					
Line HIGH	FREQ AUTO		PA	ss					
90 dBµV									
80 dBµV									
80 dBpv									
HIGH FREQ AUTO									
60 dBµV									
50 dBuV			dia and a parallal separation of the	a state with to show			nul	a harman to water the	ومالية فالجانان وجماعه الا
And the second	test a september for held filled as	And provided and the second		provide the second s		An and Alaberta and a second se	and the second se	A home plather death fill back was	and the second se
	- Harrison - Constraint - Const								
40 dBµV									
30 dBµV									
20 dBµV			-						
10 dBµV									
to dop?									
18.0 GHz		1	20001 pt	l IS	85	0.0 MHz/		1	26.5 GHz
	Y					_/	Measuring	(21.11.2017
	Л						measuring		18:48:44

18:48:45 21.11.2017

18:44:32 21.11.2017


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 142 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 143 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

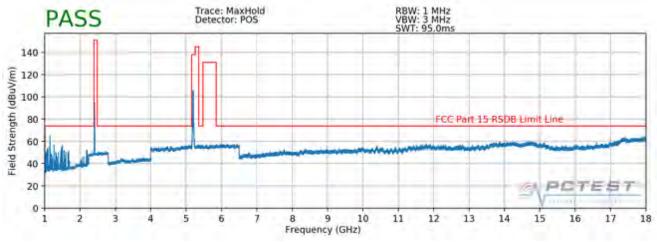
MultiView	Spectrum								
RefLevel 100 Att TDF	0.00 dBµV 0 dB SW 1	● RBW T 54 ms ● VBW	1 MHz 3 MHz Mode	Auto Sweep					
1 Frequency S	weep								●1Pk Max
Limit Che	k		PA	SS					
Line HIGH	FREQ AUTO		PA	SS					
90 dBµV									
an agha									
80 dBµV									
HIGH FREQ AUTO 70 dBµV									
TO GDP V									
60 dBµ∨									
		and the second second							. war
Alexandra and the states of th	Contraction of the second s	And a lot from the second state of the second state	And And Links, and the owner			had a second state of a second	No No.	in the second	and an United States
		1.00		and the second		and day highly day part	And the second second		
10 10 11									
40 dBµV									
30 dBµV									
00 000									
20 dBµV									
·									
10 dBµ∨									
26.5 GHz		1	28001 pt	S	1.	35 GHz/	1	1	40.0 GHz
	T T						Measuring		21.11.2017 18:33:44

18:33:44 21.11.2017

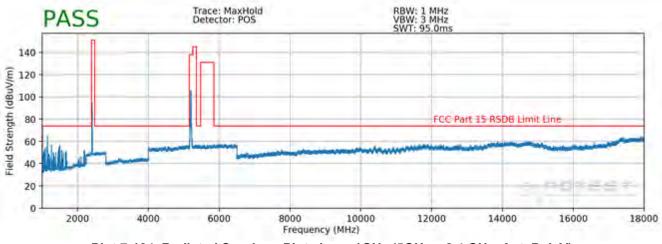
Plot 7-182. Radiated Spurious Plot above 26.5GHz (2.4GHz – 5GHz, Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 144 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 144 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	4054.00	Peak	V	-	-	-63.66	2.75	46.09	53.98	-7.89
*	7312.00	Average	V	-	-	-77.38	9.49	39.11	53.98	-14.87
*	7312.00	Peak	V	-	-	-65.16	9.49	51.33	73.98	-22.65
	8978.00	Average	V	-	-	-77.20	9.82	39.62	53.98	-14.36
	8978.00	Peak	V	-	-	-65.83	9.82	50.99	73.98	-22.99


Table 7-65. Radiated Measurements (ANT1 2.4GHz – ANT2 5GHz)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 145 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 145 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				



Description	2.4 GHz Emission	5 GHz Emission
Antenna	2	1
Channel	1	40
Operating Frequency (MHz)	2412	5200
Data Rate (Mbps)	1	6
Mode	b	а

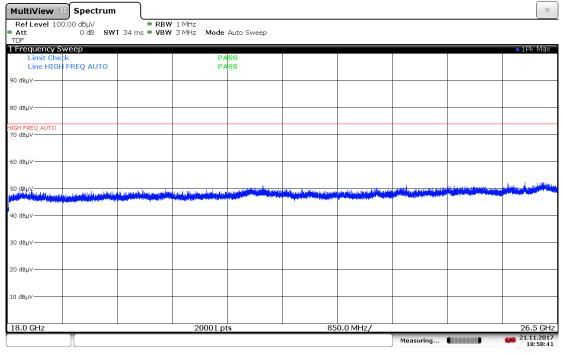
Table 7-66. Simultaneous Transmission Config-2

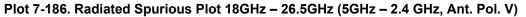
Plot 7-183. Radiated Spurious Plot above 1GHz (5GHz – 2.4 GHz, Ant. Pol. H)

Plot 7-184. Radiated Spurious Plot above 1GHz (5GHz – 2.4 GHz, Ant. Pol. V)

Note:

Emissions below 2GHz were investigated and determined to be ambient noise that does not originate from the EUT.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 146 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 146 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.	•		V 7.1 10/25/2017


MultiView 🙁 Spectr						
Ref Level 100.00 dBµV ● Att 0 dB TDF	● RBW 1 MHz SWT 34 ms ● VBW 3 MHz Mode	Auto Sweep				
1 Frequency Sweep						●1Pk Max
Limit Check Line HIGH FREQ AUT		SS SS				
-	~	55				
90 dBµV						
80 dBµV						
HIGH FREQ AUTO 70 dBµV						
60 dBµV						
50 dBµV	a kauta aka la k	and the second state of the second state of the second			المرجع العصافية والمرجع والمرجع	And the second second second
			and the second se	and the second	May a paint a second de la parte de la	
40 dBuV						
40 UBpV						
30 dBµV						
20 dBµV						
10 dBµV						
18.0 GHz	20001 p	ts	850.0 MHz/		[26.5 GHz
						21.11.2017

18:55:34 21.11.2017

Plot 7-185. Radiated Spurious Plot 18GHz - 26.5GHz (5GHz - 2.4 GHz, Ant. Pol. H)

18:58:42 21.11.2017

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 117 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 147 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

MultiView	Spectrum								
	00 dBµV 0 dB SW 1	• RBW 54 ms • VBW		Auto Sweep					
TDF									
1 Frequency Sw Limit Check			DA	SS					●1Pk Max
Line HIGH F				SS					
90 dBµV									
80 dBµV									
HIGH FREQ AUTO 70 dBµV									
60 dBµ∨									
http://www.itera.uk	6 and the Jacobson of Laboration	and where the second states of the	and the second states of the	Leave in the black	ينفقه معربيه والطواب	and matrix at			م معالم معالية المعالم المعالم المعالم المعالم المعالم المعالية المعالم المعالية المعالية المعالم المعالم المعال
and a first property in the second state of th	and the state of the	and the second	Perfection of the second designation of the	na an tanàna amin'ny saratra dia mampika	and a state of the second second second second			Section of the sectio	
40 dBµV									
io appr									
30 dBµV									
20 dBµV									
10 dBµV									
26.5 GHz			28001 pt	:S	1.	.35 GHz/			40.0 GH:
	Y I						Measuring		21.11.2017 19:04:33

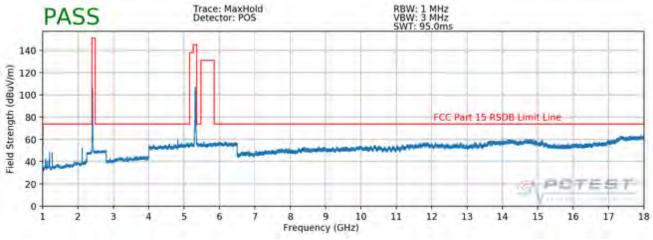
19:04:34 21.11.2017

MultiView	Spectrum								
RefLevel 100 Att TDF		■ RBW T 54 ms ■ VBW	1 MHz 3 MHz Mode	Auto Sweep					
1 Frequency Sy	weep								●1Pk Max
Limit Che Line HIGH	k FREQ AUTO			SS SS					
90 dBµV									
80 dBµV									
HIGH FREQ AUTO 70 dBµV									
60 dBµV									
		industrial a construction of the M	ania, mil.,, in dinamidiana			and the state of the	Colore Land	and a supplementation of the	
40 dBµV									
30 dBµV									
20 dBµV									
10 dBµV									
26.5 GHz		1	28001 pt	is s	1.	.35 GHz/	1	1	40.0 GHz
][]					/	Measuring		21.11.2017 19:02:35

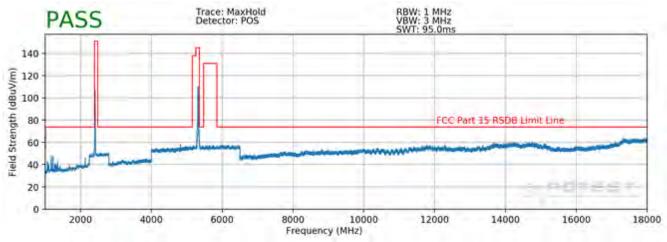
19:02:35 21.11.2017

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 149 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 148 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
5952.00	Peak	Н	-	-	-65.38	5.05	46.67	53.98	-7.31
7988.00	Peak	Н	-	-	-66.48	10.08	50.60	53.98	-3.38
8740.00	Average	Н	-	-	-77.92	10.15	39.23	53.98	-14.75
8740.00	Peak	Н	-	-	-66.08	10.15	51.07	73.98	-22.91


Table 7-67. Radiated Measurements (ANT1 5GHz – ANT2 2.4GHz)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 149 of 200
© 2017 PCTEST Engineering Labo	pratory, Inc.			V 7.1 10/25/2017



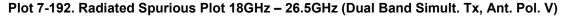
Description	2.4 GHz Emission	5 GHz Emission
Antenna	1, 2	1, 2
Channel	6	56
Operating Frequency (MHz)	2437	5280
Data Rate (Mbps)	1	6
Mode	b	а

Table 7-68. Dual Band Simultaneous Transmission Config-3

Plot 7-189. Radiated Spurious Plot above 1GHz (Dual Band Simult. Tx, Ant. Pol. H)

Plot 7-190. Radiated Spurious Plot above 1GHz (Dual Band Simult. Tx, Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 150 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 150 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017

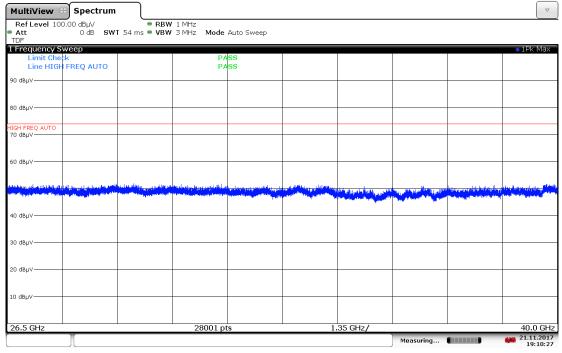

MultiView	Spectrum								
RefLevel 100 Att TDF		● RBW T 34 ms ● VBW		Auto Sweep					
1 Frequency S Limit Che			PA PA	SS SS					●1Pk Max
90 dBµV									
80 dBµV									
HIGH FREQ AUTO 70 dBµV									
60 dBµV									
50 dBµV	L reference	ar a aichear a triach	a		alarati kar tilak ava ora.	en en rann of et e et alabites her :	a, the did	understation of the state	untra diseta del del seg
40 dBµV			na na siya kata kata kata kata kata kata kata ka	an all sea ann an Anna an Anna Anna Anna			y piniste i _{son a p} roma più la que dei	and Harden and Andreas A	Paylor Manual Control of Control
30 dBµV									
20 dBµV									
10 dBµV									
18.0 GHz		1	20001 pt		85	0.0 MHz/		<u> </u>	26.5 GHz
)(Measuring		21.11.2017 19:14:10

19:14:11 21.11.2017

Plot 7-191. Radiated Spurious Plot 18GHz – 26.5GHz (Dual Band Simult. Tx, Ant. Pol. H)

MultiView 8	Spectrum								
RefLevel 100 Att TDF			/ 1 MHz / 3 MHz Mode	Auto Sweep					
1 Frequency Sv									1Pk Max
Limit Chec Line HIGH	k FREQ AUTO			SS SS					
90 dBµV									
80 dBµV									
HIGH FREQ AUTO 70 dBµV									
60 dBµV									
00 000									
50 dBµV		- alternation for the	a al duar concentration for	يرابع والعليمة المحمد ورور	and a discontinue databilitation of the	and the second second	And the second in these strends	the station of the state of the	A CONTRACTOR OF THE OWNER OF THE
A DESCRIPTION OF A DESCRIPTION OF		(and by a provide provide the second	The part of the second s	and the second sec	and the second se	and the second se	A DESCRIPTION OF THE OWNER OWNER	Means we want with the strategies	and the second s
<u>′</u>									
40 dBµV									
30 dBµV									
20 dBµV									
10 dBµV									
10 0001									
18.0 GHz			20001 pt	 	85	0.0 MHz/		I	26.5 GHz
			20001 pt				Measuring		21.11.2017 19:12:35

19:12:35 21.11.2017


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 151 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 151 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				

MultiView 8									
RefLevel 100 Att TDF	0 dB SW	● RBW T 54 ms ● VBW	1 MHz 3 MHz Mode	Auto Sweep					
1 Frequency Sy Limit Cher	weep :k		PA	SS					●1Pk Max
	FREQ AUTO		PA	SS					
90 dBµ∨									
80 dBµV									
HIGH FREQ AUTO									
70 dBµV									
60 dBµ∨									
anntaige and the flesh	ليعقمه والمقتو وسيعمدهم	and developing to she have		ور و و و الالان الالي الالية الم	ويطلحون ومطالعواري	also also a	a	a	and the Ball of the day of the ball
	and and a state of the second seco	a harren harrin da kan barren berren ber	The second s	Sand and the same of the state of					and first the same of the
40 dBµV									
30 dBµV									
20 dBµV									
10 dBµV									
26.5 GHz		1	28001 pt	S	1.	35 GHz/	1	1	40.0 GHz
							Measuring		21.11.2017 19:06:51

19:06:52 21.11.2017

Plot 7-193. Radiated Spurious Plot above 26.5GHz (Dual Band Simult. Tx, Ant. Pol. H)

19:10:28 21.11.2017

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 152 of 200
1M1711010281-06-R2.A3L	711010281-06-R2.A3L 11/1-12/7/2017 Portable Handset		Page 152 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

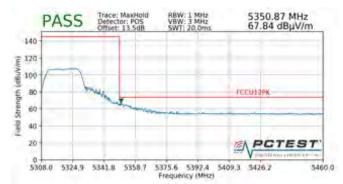
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	3249.00	Peak	Н	-	-	-64.76	0.10	42.34	53.98	-11.64
	6092.00	Peak	Н	-	-	-64.23	6.28	49.05	53.98	-4.93
*	8123.00	Average	Н	-	-	-76.77	9.23	39.46	53.98	-14.52
*	8123.00	Peak	Н	-	-	-64.61	9.23	51.62	73.98	-22.36

Table 7-69. Radiated Measurements (Dual Band Simult. Tx)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 152 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 153 of 200
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

7.7.4 Antenna-1 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]

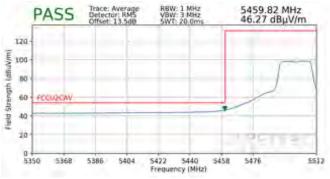
Plot 7-195. Radiated Lower Band Edge Plot (Average – UNII Band 1)



Plot 7-196. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

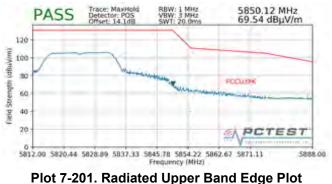
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5320MHz
Channel:	64

Plot 7-197. Radiated Upper Band Edge Plot (Average – UNII Band 2A)



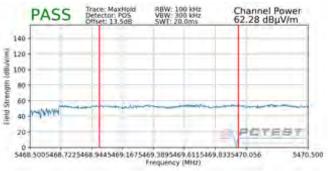

Plot 7-198. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

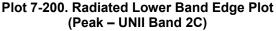
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 154 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 154 of 200
© 2017 PCTEST Engineering Lab	V 7.1 10/25/2017			



Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100

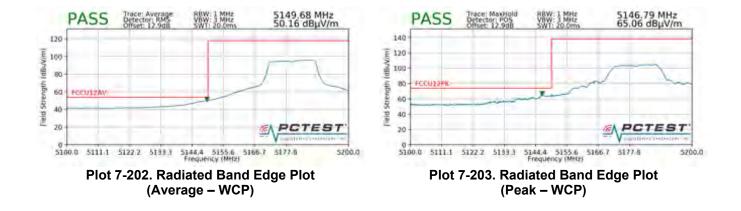
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

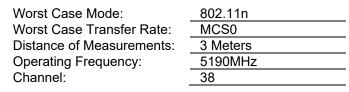


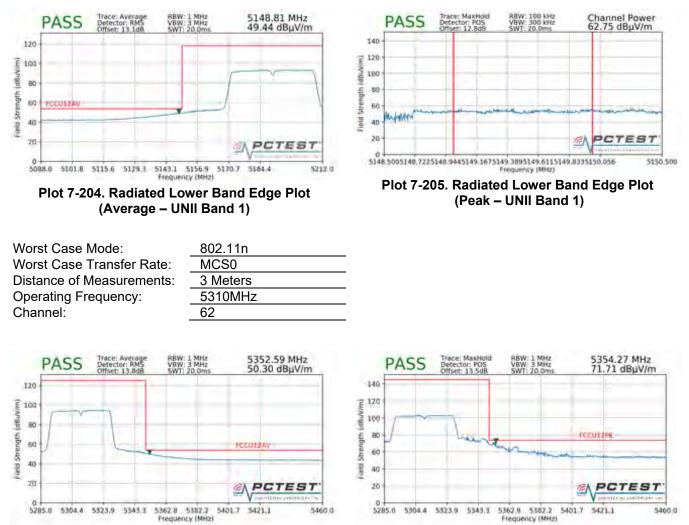

(Peak – UNII Band 3)

Note

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 155 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 155 of 200	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				

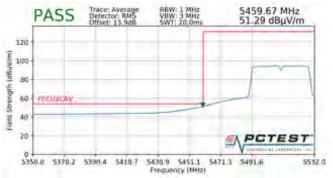

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36



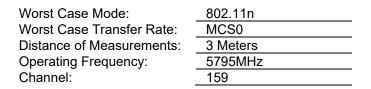
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 450 af 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 156 of 200	
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017	

7.7.5 Antenna-1 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

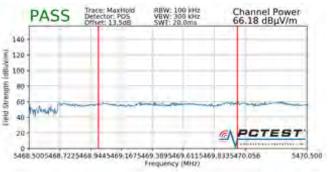
Plot 7-206. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

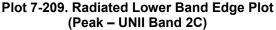

Note:

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		De an 157 of 200	
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 157 of 200	
© 2017 PCTEST Engineering Labo	oratory, Inc.	•		V 7.1 10/25/2017	

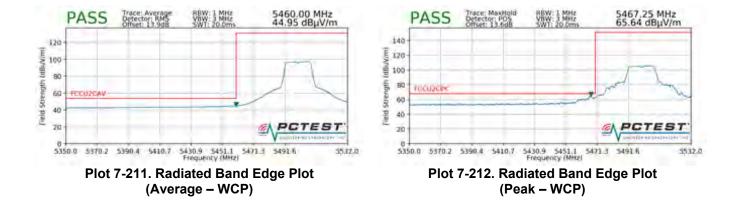
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102

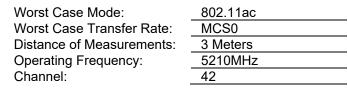


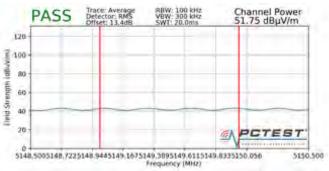

(Peak – UNII Band 3)

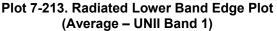
Note

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

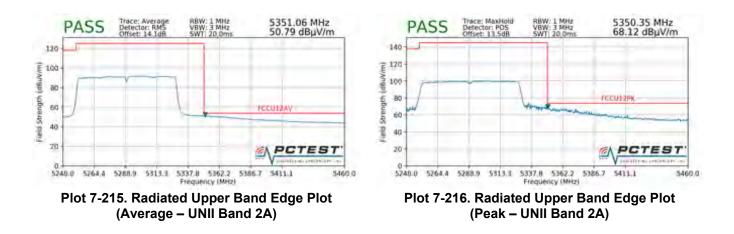

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 159 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 158 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017


Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102




FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 150 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 159 of 200
© 2017 PCTEST Engineering Labo	pratory. Inc.			V 7.1 10/25/2017

7.7.6 Antenna-1 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]



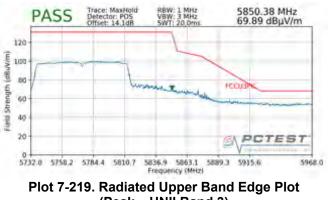
Plot 7-214. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5290MHz
Channel:	58

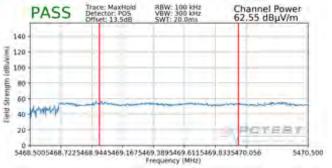
Note

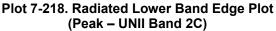
Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 160 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 160 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017



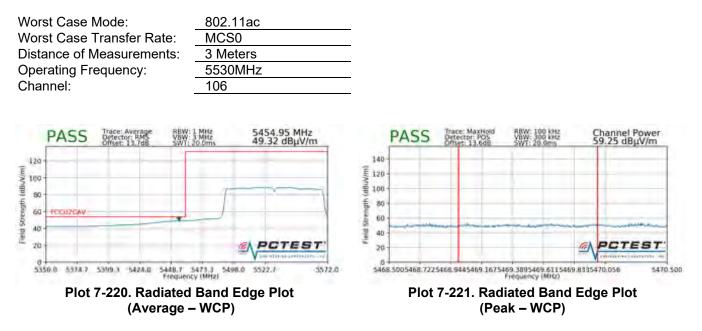
Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106




Plot 7-217. Radiated Lower Band Edge Plot (Average - UNII Band 2C)

802.11ac
MCS0
3 Meters
5775MHz
155

(Peak – UNII Band 3)



Note

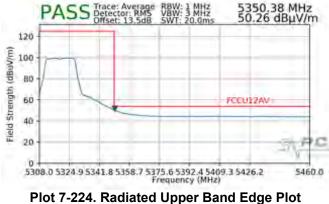
Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		D 101-f 000
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 161 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	

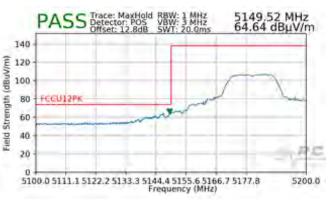
Note

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

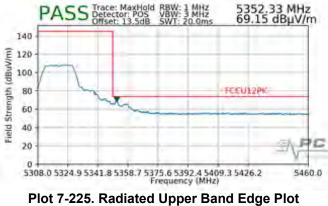
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 162 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 162 of 200
© 2017 PCTEST Engineering Lab	pratory. Inc.			V 7.1 10/25/2017


7.7.7 Antenna-2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

2.11n
CS0
Veters
80MHz



Plot 7-222. Radiated Lower Band Edge Plot (Average – UNII Band 1)


Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5320MHz
Channel:	64

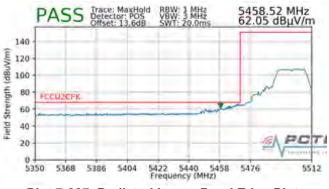
Plot 7-223. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

(Peak – UNII Band 2A)

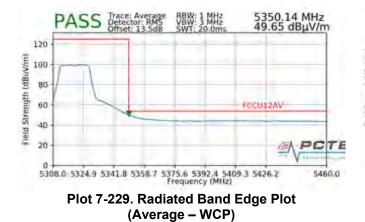
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 162 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 163 of 200
© 2017 PCTEST Engineering Laboratory Inc.				V 7 1 10/25/2017

Worst Case Mode:802.11 nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100




Plot 7-226. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165
Distance of Measurements: Operating Frequency:	3 Meters 5825MHz





Plot 7-227. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

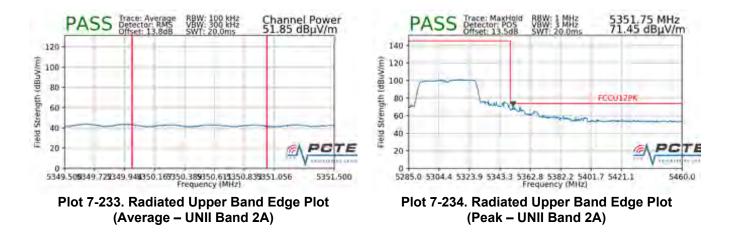
Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5320MHz
Channel:	64

Plot 7-230. Radiated Band Edge Plot (Peak - WCP)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 165 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 165 of 200
© 2017 PCTEST Engineering Laboratory Inc.				V 7 1 10/25/2017

7.7.8 Antenna-2 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38



Plot 7-231. Radiated Lower Band Edge Plot (Average - UNII Band 1)

Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5310MHz
Channel:	62

Plot 7-232. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

Note

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

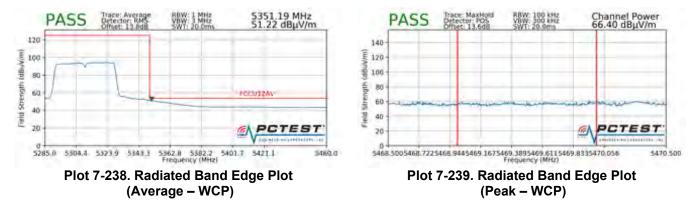
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 166 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 166 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102

Plot 7-235. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

Worst Case Mode:	802.11 n	
Worst Case Transfer Rate:	MCS0	
Distance of Measurements:	3 Meters	
Operating Frequency:	5795MHz	
Channel:	159	

Plot 7-237. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

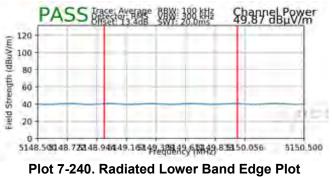


Plot 7-236. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

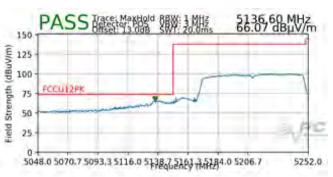
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 167 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 167 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

Worst Case Mode:	802.11 n	
Worst Case Transfer Rate:	MCS0	
Distance of Measurements:	3 Meters	
Operating Frequency:	5310MHz	
Channel:	62	

Note

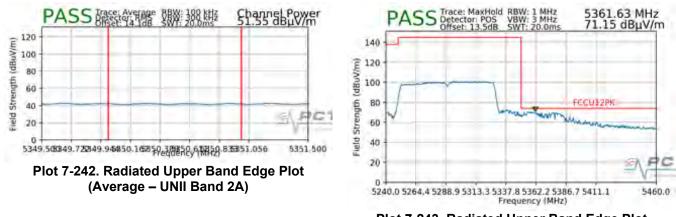

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 169 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 168 of 200
© 2017 PCTEST Engineering Laboratory. Inc.			V 7.1 10/25/2017	



7.7.9 Antenna-2 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11 ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42

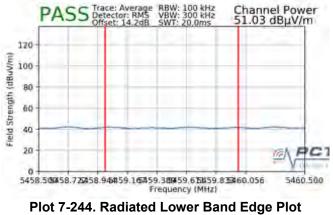


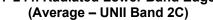
(Average – UNII Band 1)

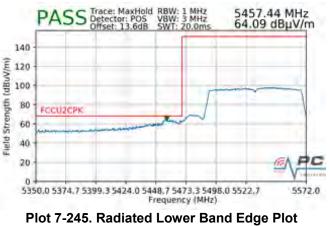
Plot 7-241. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

Worst Case Mode:	802.11 ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5290MHz
Channel:	58

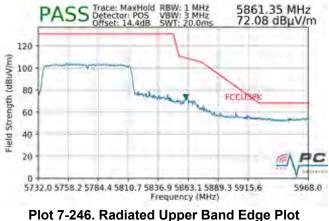
Plot 7-243. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)


Note:


Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 160 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 169 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.	•		V 7.1 10/25/2017

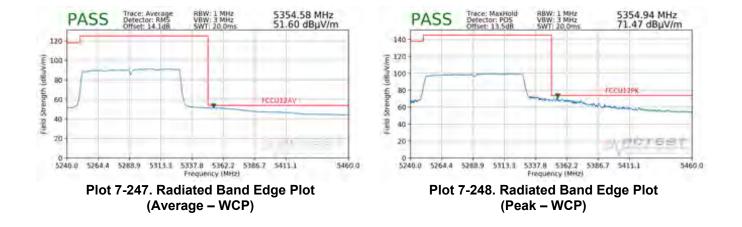
Worst Case Mode:802.11 acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5530MHzChannel:106



(Peak – UNII Band 2C)

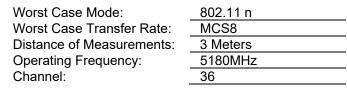
Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

(Peak – UNII Band 3)


Note:

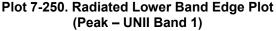
Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

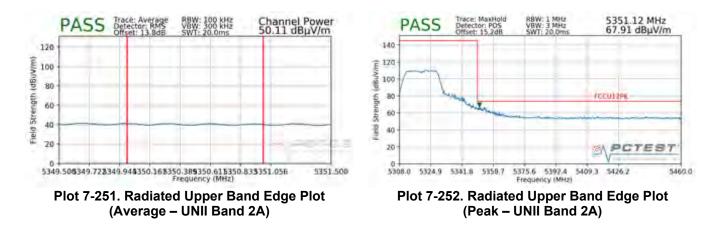
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 170 of 200
© 2017 PCTEST Engineering Lab	oratory. Inc.	•		V 7.1 10/25/2017


Worst Case Mode:	802.11 ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5290MHz
Channel:	58



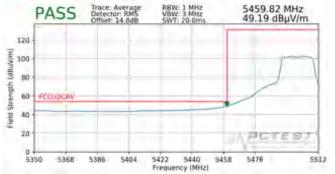
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 171 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 171 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	

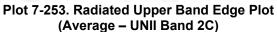

7.7.10 MIMO Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

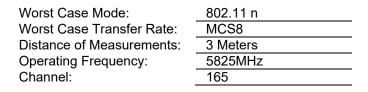


Plot 7-249. Radiated Lower Band Edge Plot (Average – UNII Band 1)

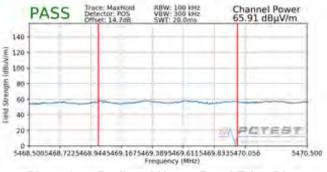
Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5320MHz
Channel:	64


Note:


Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 172 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 172 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017

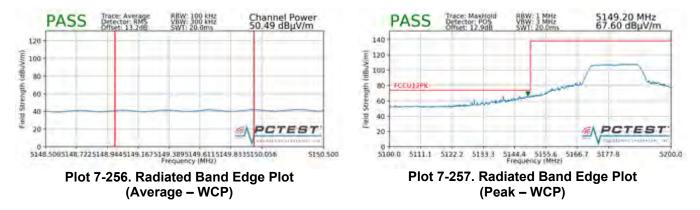
Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100



Plot 7-255. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

Note:

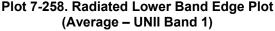
Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

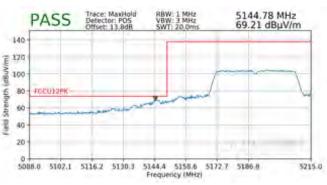

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 172 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 173 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017

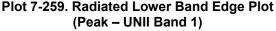
· · · · · · · · · · · · · · · · · · ·	
Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

Note:

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 174 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 174 of 200
© 2017 PCTEST Engineering Laboratory. Inc.			V 7.1 10/25/2017	

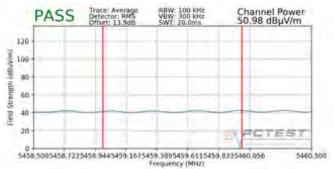


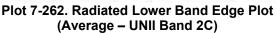

7.7.11 MIMO Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

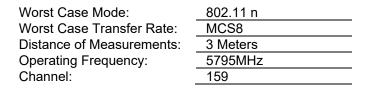
Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38



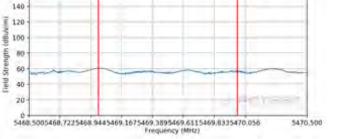
Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5310MHz
Channel:	62


Note:


Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 175 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 175 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102



(Peak – UNII Band 3)

RBW: 100 kHz VBW: 300 kHz SWT: 20.0ms

Channel Power

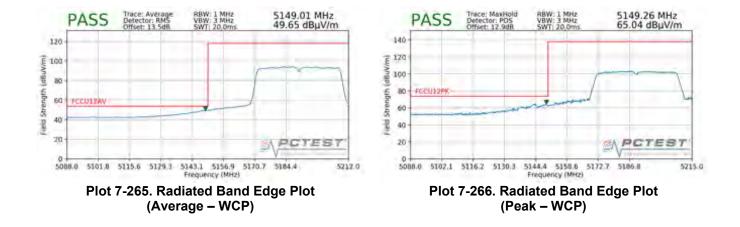
65.93 dBµV/m

MaxE

ector: POS et: 14.7dB

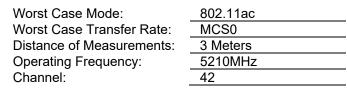
PASS

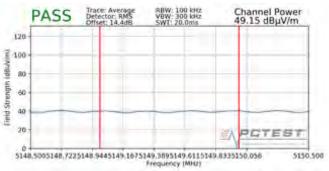
Note:

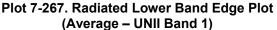

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

-Bb

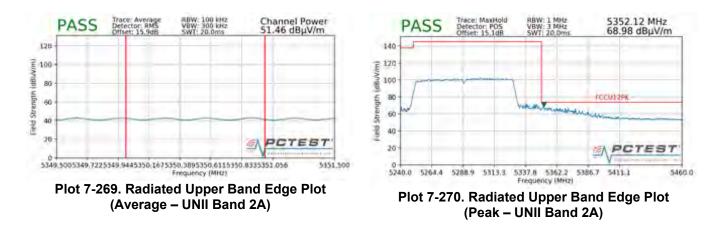
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 176 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 176 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	


Worst Case Mode:	802.11 n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38



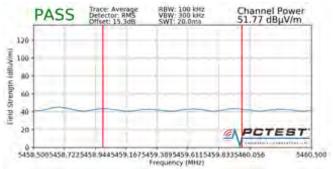

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 177 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 177 of 200
© 2017 PCTEST Engineering Laboratory. Inc.			V 7.1 10/25/2017	

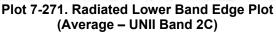
7.7.12 MIMO Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]



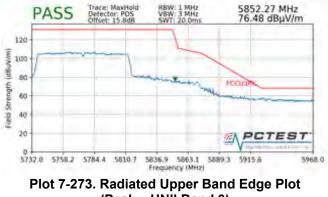
Plot 7-268. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

Worst Case Mode:	802.11 ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5290MHz
Channel:	58

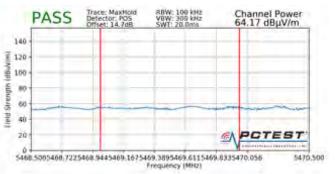

Note:


Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 179 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 178 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	



Worst Case Mode:	802.11 ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106



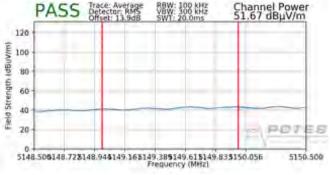
(Peak – UNII Band 3)

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 179 of 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 7.1 10/25/2017

Worst Case Mode:	802.11 ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106

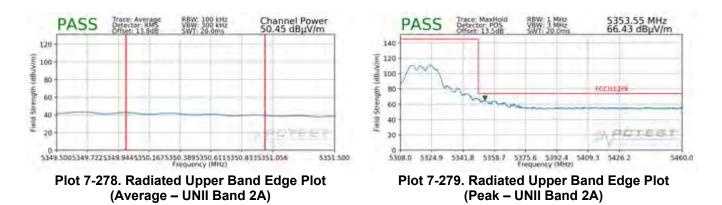
Note:


Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 190 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 180 of 200
© 2017 PCTEST Engineering Labo	pratory. Inc.			V 7.1 10/25/2017


7.7.13 CDD Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

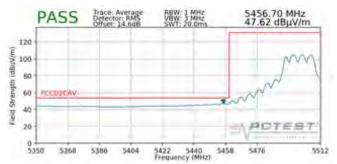
Worst Case Mode:	802.11 a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36



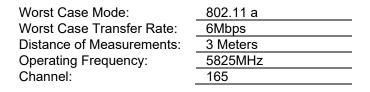
Plot 7-276. Radiated Lower Band Edge Plot (Average – UNII Band 1)

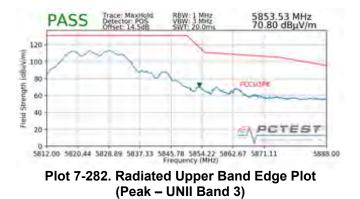
Worst Case Mode:	802.11 a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5320MHz
Channel:	64

Plot 7-277. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

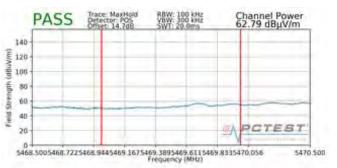

Note:

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 191 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 181 of 200
© 2017 PCTEST Engineering Labo	pratory, Inc.			V 7.1 10/25/2017

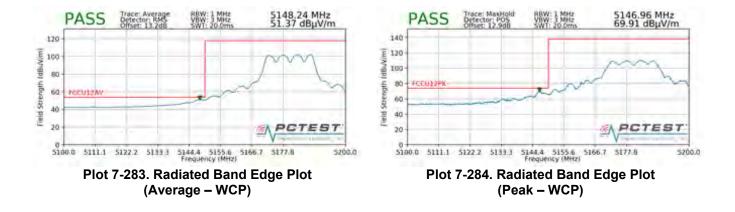


Worst Case Mode:	802.11 a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100



Note:

Per KDB 789033 Section II (G)(3)(d)(ii), integration was used to determine compliance with out-of band emission limits. Integration method was performed across the first 1 MHz band outside the authorized band of operation which was found to be the worst case emission at the band edge.


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 192 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 182 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.	·		V 7.1 10/25/2017

Worst Case Mode:802.11 aWorst Case Transfer Rate:6MbpsDistance of Measurements:3 MetersOperating Frequency:5180MHzChannel:36

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 400 af 000
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 183 of 200
© 2017 PCTEST Engineering Labo	pratory. Inc.	•		V 7.1 10/25/2017

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-70 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-70. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 194 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 184 of 200
© 2017 PCTEST Engineering Lab	oratory. Inc.			V 7.1 10/25/2017

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

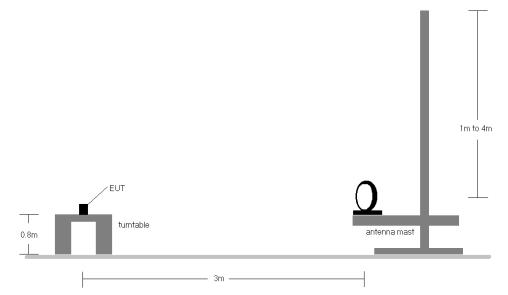
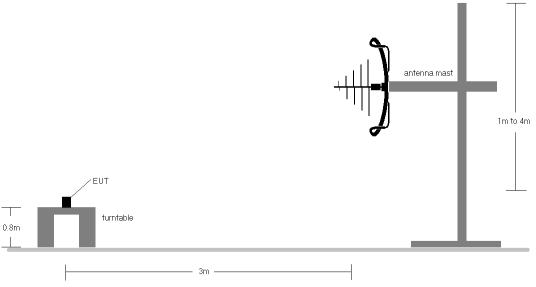
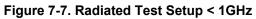
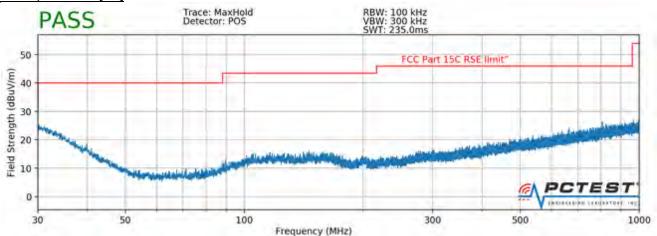
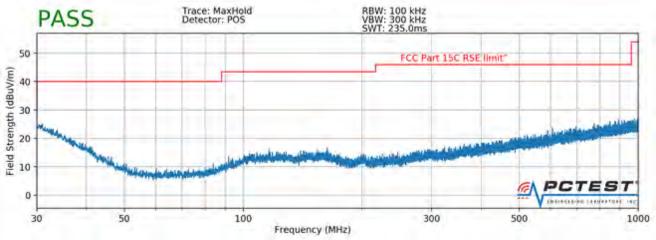




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 195 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 185 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	

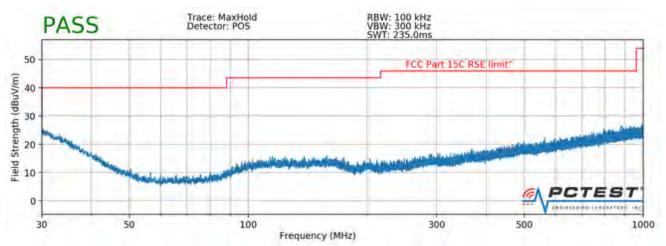


- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-70.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

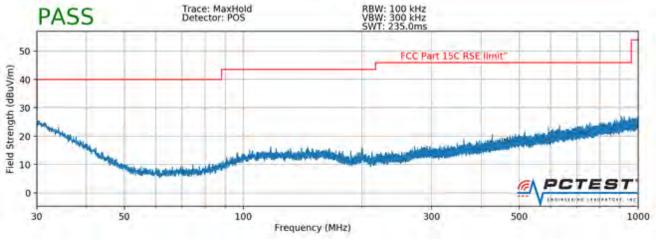

FCC ID: A3LSMG960U IC: 649E-SMG960U	THE HEAT PROPERTY (AL	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 196 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 186 of 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 7.1 10/25/2017	

Antenna-1 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-285. Radiated Spurious Plot below 1GHz (802.11a – U3 Ch. 157, Ant. Pol. H)



Plot 7-286. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)


FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 197 of 200			
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 187 of 200				
© 2017 PCTEST Engineering Labo	© 2017 PCTEST Engineering Laboratory, Inc.						

Antenna-2 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-287. Radiated Spurious Plot below 1GHz (802.11a – U3 Ch. 157, Ant. Pol. H)

Plot 7-288. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 199 of 200			
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 188 of 200				
© 2017 PCTEST Engineering Labo	© 2017 PCTEST Engineering Laboratory, Inc.						

7.9 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-71. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

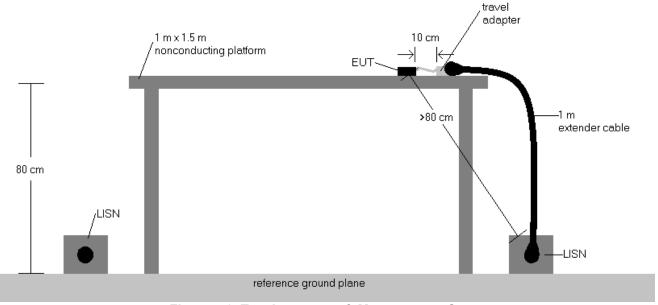
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

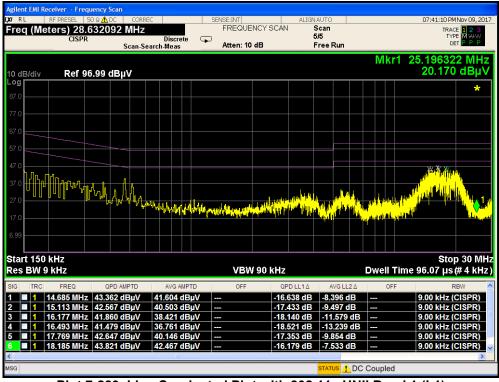
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

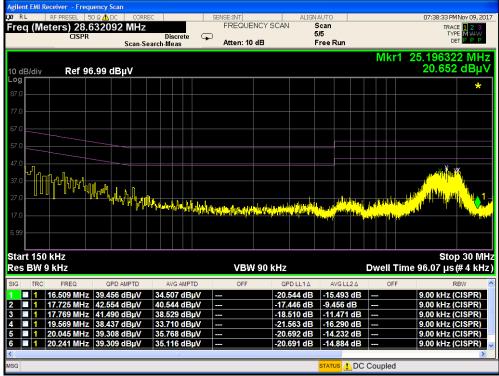
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 180 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 189 of 200	
© 2017 PCTEST Engineering Lab	oratory Inc	•		V 7 1 10/25/2017

Test Setup

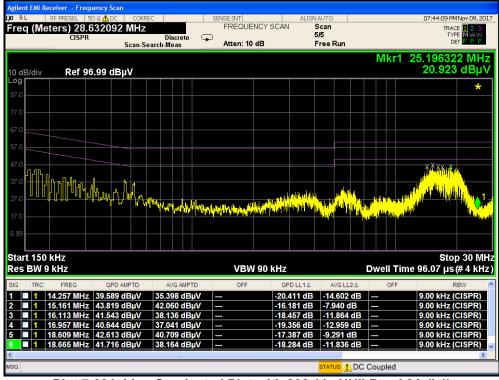
The EUT and measurement equipment were set up as shown in the diagram below.

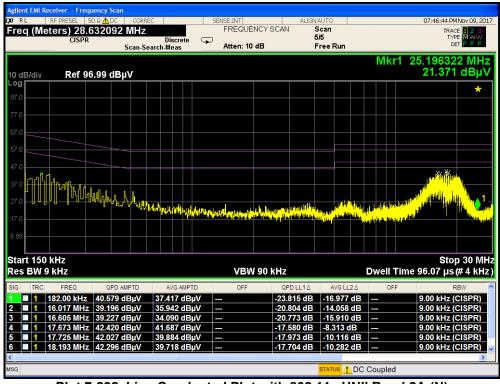


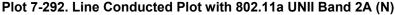
Test Notes

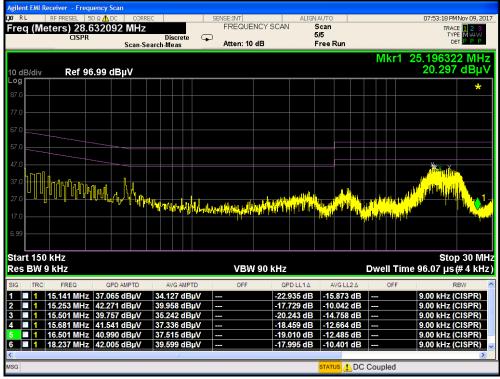

- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

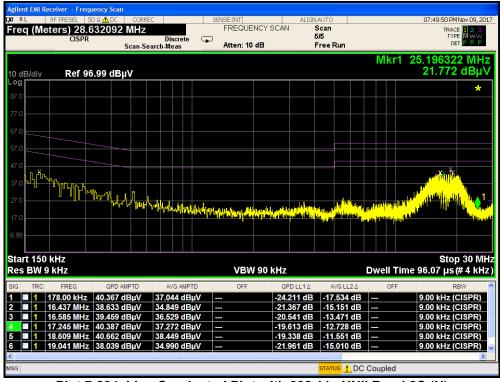
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 100 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 190 of 200	
© 2017 PCTEST Engineering Lab	oratory. Inc.			V 7.1 10/25/2017


Plot 7-289. Line Conducted Plot with 802.11a UNII Band 1 (L1)

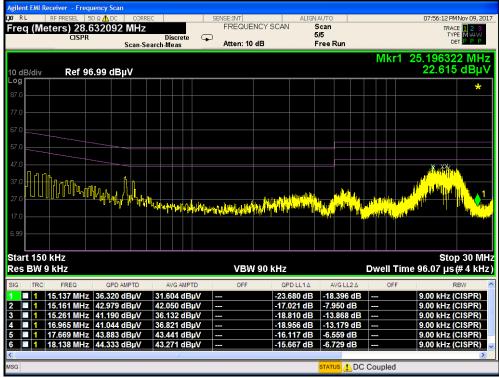


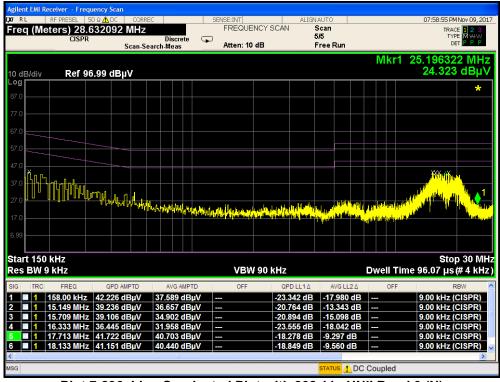

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Baga 101 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 191 of 200	
© 2017 PCTEST Engineering Lab	oratory Inc			V 7 1 10/25/2017


Plot 7-291. Line Conducted Plot with 802.11a UNII Band 2A (L1)




FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 200				
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 192 of 200					
© 2017 PCTEST Engineering Labo	© 2017 PCTEST Engineering Laboratory, Inc.							

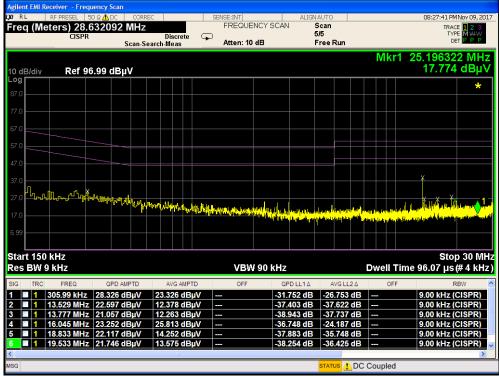

Plot 7-293. Line Conducted Plot with 802.11a UNII Band 2C (L1)



FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 200				
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 193 of 200					
© 2017 PCTEST Engineering Labo	© 2017 PCTEST Engineering Laboratory, Inc.							

Plot 7-295. Line Conducted Plot with 802.11a UNII Band 3 (L1)

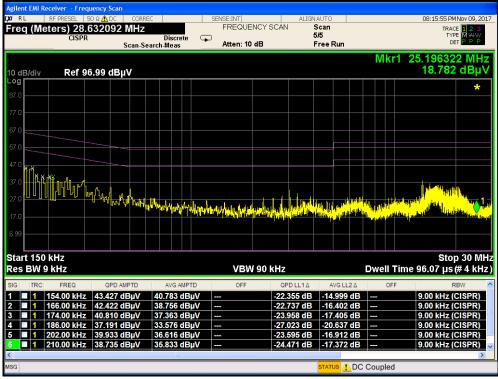
FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 104 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset	Page 194 of 200	
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017



FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 405 af 000
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 195 of 200
© 2017 PCTEST Engineering Lab	oratory. Inc.			V 7.1 10/25/2017

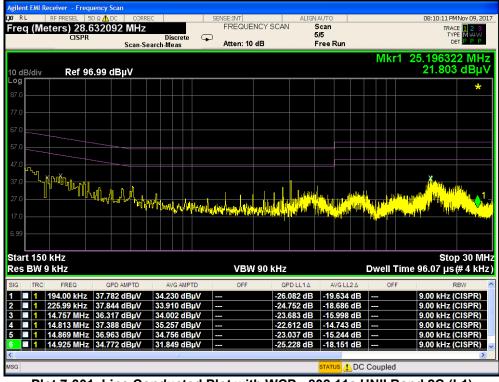
RL	RF PRESEL 5	50 Ω 🧥 DC 🛛	CORREC				SENSE:INT			NAUTO					08:24:55	5 PM Nov 09	9, 20
eq (Me	eters) 28. CISPR		MHz Scan-Sea		crete	Ģ		ENCY SC	ΑN	Scan 5/5 Free R	un				т	RACE 12 TYPE MW DET P P	
			Scan-Sea	ircn-Me	as	_	Atten. I			Freek	un			4 0	E 400		_
dB/div	Ref 9	6.99 dBj	ı۷									I	/lkr	1 2	5.1963 21.20	61 dB	
g																	*
.0										F		\vdash					
.0																	
.0	×																
.0	᠃᠃᠃᠃	^{WY} WILL	<u> </u>				X							Ť		_	
			and the second	h4 Million	rielly	Manna	hander hander	والمتعالمة المتعاد	Lu, Lun, L	الفرواسيان	والمرعم عراز	din	مار	ي العالم	li di strada	<mark>(uluu) aal</mark>	M
								and a state	H. Bakar	<mark>nin), dur</mark> ig	alle talitik	haw pa	N A A	<mark>al lineala</mark>	ن مُنْتُ أَنْ ا لْمُرْكِر	a a security of	de.
39																	
art 150																top 30	
s BW	9 kHz						VBI	N 90 KH	Z			Dw	ell 1	Гime	96.07 µ	ıs (#4 I	đ
TRC	FREQ	QPD A	MPTD	AV	G AMP	TD	OFF		QPD LL1 A	AV	G LL2 Δ	1	OF	F		RBW	_
	293.99 kHz	28.854 d		24.03					1.557 dB		380 dB				9.00 kH		
	489.98 kHz			21.21					7.761 dB		949 dB				9.00 kH		
	1.5699 MHz 12.201 MHz			28.98 13.59					<u>0.752 dB</u> 7.055 dB) <u>20 dB</u> 104 dB				9.00 kH 9.00 kH		
	15.333 MHz			15.87					5.368 dB		124 dB				9.00 kH		
	15.561 MHz			16.73					8.055 dB		265 dB				9.00 kH		
					ш												

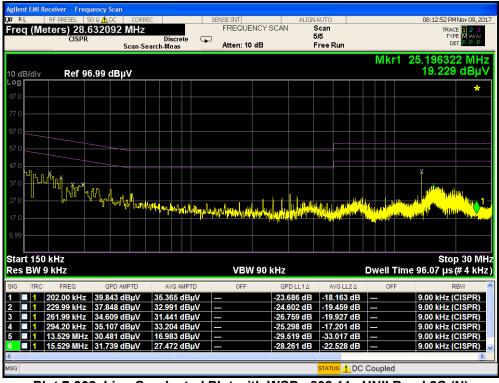
Plot 7-297. Line Conducted Plot with WCP - 802.11a UNII Band 1 (L1)


Plot 7-298. Line Conducted Plot with WCP - 802.11a UNII Band 1 (N)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 196 of 200
© 2017 PCTEST Engineering Lab	oratory Inc	•		V 7 1 10/25/2017

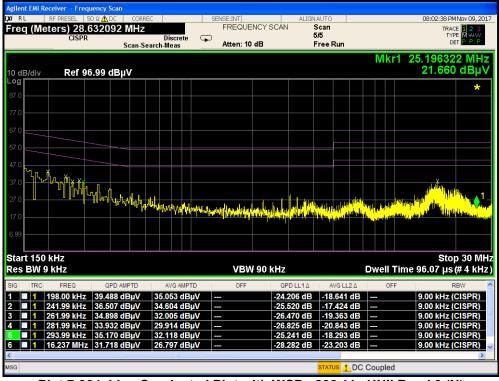
RL	Receiver - Frequer Receiver - Frequers Reference - Reference - Frequencies - Reference - R	i0 Ω <u>Λ</u> DC 📗	CORREC			SENSE:INT FREQUE	NCY SCAN	ALIGN AUT Scal				08:21:48 PM	Nov 09, 201
	CISPR		can-Searc	Discr h-Meas		Atten: 10	dB	5/5 Free	Run			TYPE DE	M₩₩ PPP
0 dB/div	Ref 96	6.99 dBµ'	V							M	kr1 2	5.19632: 20.578	
og 17.0													*
7.0													
i7.0													
i7.0													
7.0 × X													
	XÅ MGKOG I I												
7.0	ŰŊ _{ſſ} IJ	ւԽղլու			l. al .						and the first		^{Iu} u1
7.0			" "	-UN-PA	,han Half	and participation	we have a second se	and a linking	line of the		حرين _ا خاط الأقن	og <mark>an an a</mark>	Hurte day
.99													
	N 1-1 1-												00.84
tart 150 es BW						VBW	90 kHz			Dwel	I Time 🤅	Stop 96.07 µs (30 Mi # 4 kH:
G TRC	FREQ	QPD AM	PTD	AVG A	AMPTD	OFF	QPD L	L1Δ	AVG LL2 Δ	(OFF	R	3W
		29.020 d		3.878			-36.390		1.532 dE			9.00 kHz (C	
	174.00 kHz 190.00 kHz	30.443 de 27.793 de		8.512			-34.32		6.255 dE			9.00 kHz (C 9.00 kHz (C	
	202.00 kHz	28.913 d		4.870			-34.61		8.658 dE			9.00 kHz (C	
	222.00 kHz	26.675 d		1.798			-36.069		0.946 dE			9.00 kHz (C	
	14.813 MHz			0.325			-37.697		9.675 dE			9.00 kHz (C	
	1-1.0 10 10112	22.000 01	- v M C				01.001			· .		3.00 KHZ (C	
	14.01010112	22.000 dt	500 2	Ш			01.001					5.00 KH2 (C	


Plot 7-299. Line Conducted Plot with WCP - 802.11a UNII Band 2A (L1)


Plot 7-300. Line Conducted Plot with WCP - 802.11a UNII Band 2A (N)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 107 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 197 of 200
© 2017 PCTEST Engineering Labo	oratory. Inc.	•		V 7.1 10/25/2017

Plot 7-301. Line Conducted Plot with WCP - 802.11a UNII Band 2C (L1)



FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 198 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.	·		V 7.1 10/25/2017

Mkr1 25.196322 MH	_{кі} req (М			CORRE MHZ Scan-Se	Dis	screte			ENCY SCA	N	NAUTO Scan 5/5 Free Ri	un					PM Nov 09, 20 RACE 1 2 3 TYPE M WW DET P P P
70 70 <td< th=""><th colspan="10">Mkr1 25.196322 MHz 10 dB/div Ref 96.99 dBμV 23.193 dBμV</th></td<>	Mkr1 25.196322 MHz 10 dB/div Ref 96.99 dBμV 23.193 dBμV																
7.0 0	7.0																*
70 0																	
7.0 0																	
Stop 30 M Stop 30 M tart 150 kHz Stop 30 M colspan="2">Stop 30 M colspan="2">Stop 30 M colspan="2">Stop 30 M Stop 30 M Dwell Time 96.07 µs #4 kH G ITC FRE0 OPD AMPTD AVG AMPTD OFF OPD LL1A AVG LL2A OFF RBW I 1 158.00 kHz 43.767 dBµV 41.309 dBµV -21.801 dB -14.259 dB 9.00 kHz (CISPR) I 1 166.00 kHz 42.770 dBµV 39.731 dBµV -22.389 dB 15.427 dB 9.00 kHz (CISPR) I 1 194.00 kHz 38.206 dBµV 35.739 dBµV -25.658 dB -18.125 dB 9.00 kHz (CISPR) I 1 206.00 kHz 39.201 dBµV 39.864 dBµV -24.164 dB 16.875 dB 9.00 kHz (CISPR) I 1 206.00 kHz 39.201 dBµV 28.912 dBµV -26.505 dB -20.131 dB 9.00 kHz (CISPR) I 1 15.493 MHz 34.495 dBµV<																	
BW 9 kHz VBW 90 kHz Dwell Time 96.07 µs # 4 kH G TRC FRE0 OPD AMPTD AVG AMPTD OFF OPD L11A AVG L12A OFF RBW I 1 58.00 kHz 43.767 dBµV 41.309 dBµV 21.801 dB -14.259 dB 9.00 kHz (CISPR) I 1 66.00 kHz 42.770 dBµV 39.731 dBµV -22.389 dB -15.427 dB 9.00 kHz (CISPR) I 1 94.00 kHz 38.206 dBµV 35.739 dBµV -25.658 dB -8.125 dB 9.00 kHz (CISPR) I 1 94.00 kHz 38.201 dBµV 36.490 dBµV -24.164 dB -16.875 dB 9.00 kHz (CISPR) I 1 15.493 MHz 34.495 dBµV 29.890 dBµV -25.505 dB 20.131 dB 9.00 kHz (CISPR) I 1 15.625 MHz 33.687 dBµV 28.912 dBµV -26.313 dB -21.088 dB 9.00 kHz (CISPR)	7.0		\sim w w w w	ր Ի ս ս յչ	Murls	r huh	lake at 1	la satilare bal					lar J. J. a.	l in the	tal <mark>n d</mark> i		ndinda 1
1 158.00 kHz 43.767 dBµV 41.309 dBµV -21.801 dB -14.259 dB 9.00 kHz (CISPR) 1 166.00 kHz 42.770 dBµV 39.731 dBµV -22.389 dB -15.427 dB 9.00 kHz (CISPR) 1 194.00 kHz 38.206 dBµV 35.739 dBµV -25.658 dB -18.125 dB 9.00 kHz (CISPR) 1 206.00 kHz 39.201 dBµV 36.490 dBµV -24.164 dB -16.875 dB 9.00 kHz (CISPR) 1 15.493 MHz 34.495 dBµV 29.899 dBµV -24.505 dB 9.00 kHz (CISPR) 1 15.625 MHz 33.687 dBµV 28.912 dBµV -26.313 dB -21.088 dB 9.00 kHz (CISPR)	7.0			r www.	Muriy	Yuh	her ald	warathaita (thi						n na di Nationalia Nationalia	tal dill ¹ ta _n tri		
■ 1 166.00 kHz 42.770 dBµV 39.731 dBµV -22.389 dB -15.427 dB 9.00 kHz (CISPR) ■ 1 194.00 kHz 38.206 dBµV 35.739 dBµV -25.658 dB -18.125 dB 9.00 kHz (CISPR) ■ 206.00 kHz 39.201 dBµV 36.490 dBµV -24.164 dB -16.875 dB 9.00 kHz (CISPR) ■ 1 15.493 MHz 34.495 dBµV 29.869 dBµV -24.164 dB -16.875 dB 9.00 kHz (CISPR) ■ 1 15.625 MHz 33.687 dBµV 28.912 dBµV -26.313 dB -21.088 dB 9.00 kHz (CISPR) ■ 1 15.625 MHz 33.687 dBµV 28.912 dBµV -26.313 dB -21.088 dB 9.00 kHz (CISPR)	7.0 99 99	0 kHz			Murly	Ч.,	to the second						Dwo	eli T	ime 9		
1 194.00 kHz 38.206 dBµV 35.739 dBµV -25.658 dB -18.125 dB 9.00 kHz (CISPR) 1 206.00 kHz 39.201 dBµV 36.490 dBµV -24.164 dB -16.875 dB 9.00 kHz (CISPR) 1 15.493 MHz 34.495 dBµV 29.869 dBµV -25.505 dB -20.131 dB 9.00 kHz (CISPR) 1 15.625 MHz 33.687 dBµV 28.912 dBµV -26.313 dB -20.088 dB 9.00 kHz (CISPR)	art 15	0 kHz 9 kHz			AV	/G AMF	PTD	VBI	V 90 KH2	Z DPD LL1 A)6.07 μ	s (# 4 kH RBW
■ 1 206.00 kHz 39.201 dBµV 36.490 dBµV24.164 dB -16.875 dB 9.00 kHz (CISPR) ■ 1 15.493 MHz 34.495 dBµV 29.869 dBµV25.505 dB -20.131 dB 9.00 kHz (CISPR) ■ 1 15.625 MHz 33.687 dBµV 28.912 dBµV26.313 dB -21.088 dB 9.00 kHz (CISPR)	art 15	0 kHz 9 kHz FREQ 158.00 kHz	QPD AMI 43.767 dE	BμV	AV 41.30	/G AMF D9 dE	PTD BµV	VB) OFF	N 90 kHz	2 PD LL1 A 1.801 dB	-14.2	259 dB			9	9.00 kHz	RBW C(CISPR)
■ 1 15.493 MHz 34.495 dBµV 29.869 dBµV25.505 dB -20.131 dB 9.00 kHz (CISPR) ■ 1 15.625 MHz 33.687 dBµV 28.912 dBµV26.313 dB -21.088 dB 9.00 kHz (CISPR)	7.0 99 tart 15 es BW	0 kHz 9 kHz 58.00 kHz 158.00 kHz	QPD AMI 43.767 dE 42.770 dE	BμV BμV	AV 41.30 39.73	(G AMF 09 dE 31 dE	^{этр} ЗµV ЗµV	VB) OFF	N 90 kHz -21 -22	2 PD LL1A 1.801 dB 2.389 dB	-14.2 -15.4	259 dB 427 dB			9	06.07 µ 9.00 kHz 9.00 kHz	s (# 4 kH RBW (CISPR) (CISPR)
	7.0 99 tart 15 es BW	0 kHz 9 kHz 158.00 kHz 166.00 kHz 194.00 kHz	QPD AM 43.767 dE 42.770 dE 38.206 dE	ΒμV ΒμV ΒμV	AV 41.30 39.73 35.73	(G AMF 09 dE 31 dE 39 dE	этр ЗрV ЗрV ЗрV	VB) OFF	N 90 kHz -21 -22 -25	Z IPD LL1 A I.801 dB I.389 dB 5.658 dB	-14.2 -15.4 -18.1	259 dB 427 dB 125 dB			9	96.07 µ 9.00 kHz 9.00 kHz 9.00 kHz	CISPR)
	7.0 99 tart 15 es BW	0 KHz 9 KHz 158.00 KHz 166.00 KHz 194.00 KHz 206.00 KHz 15.493 MHz	QPD AM 43.767 dE 42.770 dE 38.206 dE 39.201 dE 39.201 dE	BµV BµV BµV BµV BµV	41.30 39.73 35.73 36.49 29.80	(G AMF 09 dE 31 dE 39 dE 90 dE 59 dE	отр ЗµV ЗµV ЗµV ЗµV ЗµV	VB) OFF	N 90 kHz -21 -22 -25 -24 -25	2 IPD LL1A I.801 dB 2.389 dB 5.658 dB I.164 dB 5.505 dB	-14.2 -15.4 -18.1 -16.8 -20.1	259 dB 427 dB 125 dB 375 dB 131 dB				9.00 kHz 9.00 kHz 9.00 kHz 9.00 kHz 9.00 kHz 9.00 kHz	CISPR) (CISPR) (CISPR) (CISPR) (CISPR) (CISPR) (CISPR)
	7.0 99 tart 15 es BW	0 KHz 9 KHz 158.00 KHz 166.00 KHz 194.00 KHz 206.00 KHz 15.493 MHz	QPD AM 43.767 dE 42.770 dE 38.206 dE 39.201 dE 39.201 dE	BµV BµV BµV BµV BµV	41.30 39.73 35.73 36.49 29.80	(G AMF 09 dE 31 dE 39 dE 90 dE 59 dE	отр ЗµV ЗµV ЗµV ЗµV ЗµV	VB) OFF	N 90 kHz -21 -22 -25 -24 -25	2 IPD LL1A I.801 dB 2.389 dB 5.658 dB I.164 dB 5.505 dB	-14.2 -15.4 -18.1 -16.8 -20.1	259 dB 427 dB 125 dB 375 dB 131 dB				9.00 kHz 9.00 kHz 9.00 kHz 9.00 kHz 9.00 kHz 9.00 kHz	CISPR) (CISPR) (CISPR) (CISPR) (CISPR) (CISPR) (CISPR)

Plot 7-303. Line Conducted Plot with WCP - 802.11a UNII Band 3 (L1)

FCC ID: A3LSMG960U IC: 649E-SMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 199 of 200
© 2017 PCTEST Engineering Labo	oratory, Inc.			V 7.1 10/25/2017

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG960U** is in compliance with Part 15 Subpart E (15.407) of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules.

FCC ID: A3LSMG960U IC: 649E-SMG960U	PCTEST*	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 200 of 200
1M1711010281-06-R2.A3L	11/1-12/7/2017	Portable Handset		Page 200 of 200
© 2017 PCTEST Engineering Lab	pratory. Inc.	•		V 7.1 10/25/2017