

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT

FCC Part 22 & 90

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 11/1-12/7/2017 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1711010281-04-R1.A3L

FCC ID:

A3LSMG960U

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification SM-G960U, SM-G960U1, SM-G960W, SM-G960XU Portable Handset PCS Licensed Transmitter Held to Ear (PCE) §2.1049, §22(H), §90.691, §90.542, §90.543 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: Test Report S/N: 1M1711010281-04-R1.A3L) supersedes and replaces the previously issued test report (S/N: Test Report S/N: 1M1711010281-04.A3L) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 1 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 1 01 05
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017

TABLE OF CONTENTS

1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRC	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEA	SUREMENT UNCERTAINTY	7
5.0	TES	T EQUIPMENT CALIBRATION DATA	8
6.0	SAM	IPLE CALCULATIONS	9
7.0	TES	T RESULTS	10
	7.1	Summary	10
	7.2	Occupied Bandwidth	11
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	24
	7.4	Band Edge Emissions at Antenna Terminal	34
	7.5	Conducted Power Output Data	44
	7.6	Radiated Power (ERP)	
	7.7	Radiated Spurious Emissions Measurements	
	7.8	Frequency Stability / Temperature Variation	56
8.0	CON	ICLUSION	63

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 2 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 2 01 05
© 2017 PCTEST Engineering Labo	ratory. Inc.			V 7.1 10/25/2017

MEASUREMENT REPORT FCC Part 22(H) & 90

Mode	Tx Frequency (MHz)	Emission Designator	Measurement	Max. Power (W)	Max. Power (dBm)	Modulation
CDMA800 (BC10)	817.9 - 823.1	1M27F9W	Conducted	0.308	24.88	CDMA
LTE Band 14	790.5 - 795.5	4M52G7D	ERP	0.100	20.00	QPSK
LTE Band 14	790.5 - 795.5	4M53W7D	ERP	0.089	19.47	16-QAM
LTE Band 14	790.5 - 795.5	4M51W7D	ERP	0.068	18.29	64-QAM
LTE Band 14	793	9M03G7D	ERP	0.093	19.66	QPSK
LTE Band 14	793	9M03W7D	ERP	0.078	18.92	16-QAM
LTE Band 14	793	9M00W7D	ERP	0.062	17.89	64-QAM
LTE Band 26	814.7 - 823.3	1M08G7D	Conducted	0.244	23.87	QPSK
LTE Band 26	814.7 - 823.3	1M08W7D	Conducted	0.210	23.22	16-QAM
LTE Band 26	814.7 - 823.3	1M08W7D	Conducted	0.164	22.15	64-QAM
LTE Band 26	815.5 - 822.5	2M69G7D	Conducted	0.243	23.86	QPSK
LTE Band 26	815.5 - 822.5	2M69W7D	Conducted	0.209	23.21	16-QAM
LTE Band 26	815.5 - 822.5	2M69W7D	Conducted	0.164	22.15	64-QAM
LTE Band 26	816.5 - 821.5	4M50G7D	Conducted	0.243	23.85	QPSK
LTE Band 26	816.5 - 821.5	4M50W7D	Conducted	0.209	23.21	16-QAM
LTE Band 26	816.5 - 821.5	4M50W7D	Conducted	0.164	22.16	64-QAM
LTE Band 26	819	9M00G7D	Conducted	0.245	23.89	QPSK
LTE Band 26	819	8M94W7D	Conducted	0.212	23.27	16-QAM
LTE Band 26	819	8M95W7D	Conducted	0.163	22.13	64-QAM
LTE Band 26	821.5	13M5G7D	ERP	0.109	20.37	QPSK
LTE Band 26	821.5	13M5W7D	ERP	0.096	19.82	16-QAM
LTE Band 26	821.5	13M4W7D	ERP	0.081	19.06	64-QAM

EUT Overview

	PCTEST	MEASUREMENT REPORT		Approved by:
FCC ID: A3LSMG9600		(CERTIFICATION)		Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Handset	
© 2017 DOTEST Engineering Labor	raton. Inc			V 7 1 10/25/2017

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 4 01 65
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMG960U**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 22(H) and 90.691.

Test Device Serial No.: 20EE2, 20EF4

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC, ANT+

This device uses a tuner circuit that dynamically updates the antenna impedance parameters to optimize antenna performance for certain bands and modes of operation. The tuner for this device was set to simulate a "free space" condition where the transmit antenna is matched to the medium into which it is transmitting and, thus, the power is at its maximum level.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-D-2010 and KDB 971168 D01 v03. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT placed on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 5 01 05
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-D-2010) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03) were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions

§2.1053, §90.542, §90.543, §90.691

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03.

Per the guidance of ANSI/TIA-603-D-2010, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]) specified in 90.691.

For fundamental radiated power measurements, the guidance of KDB 971168 D01 v03 is used to record the EUT power level that is subsequently matched via the aforementioned substitution method given in ANSI/TIA-603-D-2010.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 62
M1711010281-04-R1.A3L 11/1-12/7/2017 Portable Handset			Page 6 of 63	
© 2017 PCTEST Engineering Laboratory Inc.				

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		D7f 00
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 7 of 63
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx2	Licensed Transmitter Cable Set	8/10/2017	Annual	8/10/2018	LTx2
Agilent	N9020A	MXA Signal Analyzer	12/28/2016	Annual	12/28/2017	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	3/27/2017	Annual	3/27/2018	MY52350166
COM-Power	AL-130R	Active Loop Antenna	6/5/2017	Annual	6/5/2018	121085
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
Espec	ESX-2CA	Environmental Chamber	4/11/2017	Annual	4/11/2018	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	4/26/2016	Biennial	4/26/2018	128337
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	5/19/2017	Annual	5/19/2018	251425001
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/24/2017	Annual	3/24/2018	11401010036
Mini Circuits	TVA-11-422	RF Power Amp		N/A		
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		
Rohde & Schwarz	CMW500	Radio Communication Tester	10/13/2017	Annual	10/13/2018	102060
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	4/19/2017	Annual	4/19/2018	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102135
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102133
Rohde & Schwarz	TC-TA18	Cross-Pol Antenna 400MHz-18GHz	10/30/2017	Annual	10/30/2018	101058
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	3/30/2016	Biennial	3/30/2018	9105-2404
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol Sciences	JB6	JB6 Antenna	9/27/2016	Biennial	9/27/2018	A082816

Table 5-1. Test Equipment

Note:

Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

	PCTEST	MEASUREMENT REPORT	Approved by:	Approved by:
		(CERTIFICATION)	Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Fage 6 01 03
© 2017 PCTEST Engineering Labo	ratory. Inc.			V 7.1 10/25/2017

6.0 SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission – BC10

Example: Channel 476 CDMA BC10 Mode 3rd Harmonic (2453.70MHz)

The average spectrum analzyer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 2453.70 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm -(-24.80) = 50.3 dBc.

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80).

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 9 01 65
© 2017 PCTEST Engineering Labor	V 7 1 10/25/2017			

TEST RESULTS 7.0

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMG960U
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>CDMA / EvDO / LTE</u>
Band:	<u>Band Class 10 / Band 26 / Band 14</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
2.1051 90.691 90.543	Conducted Band Edge / Spurious Emissions	 > 43 + log₁₀ (P[Watts]) for all out- of-band emissions except > 50 + 10log₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions within 37.5kHz of Block Edge 	CONDUCTED	PASS	Sections 7.3, 7.4
2.1055 90.213	Frequency Stability	< 2.5 ppm		PASS	Section 7.8
2.1046	Conducted Power	N/A		PASS	Section 7.5
90.542 (a.7)	Effective Radiated Power (Band 14)	< 3 Watts max. ERP (Band 14)		PASS	Section 7.6
22.913(a.2)	Effective Radiated Power (Band 26)	< 7 Watts max. ERP (Band 26)	RADIATED	PASS	Section 7.6
2.1053 90.691 90.543	Radiated Spurious Emissions (CDMA/EvDO BC10, LTE B14, LTE B26)	 > 43 + log₁₀ (P[Watts]) for all out- of-band emissions except > 50 + 10log₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions within 37.5kHz of Block Edge 		PASS	Section 7.7

Table 7-1.	Summary	y of Test	Results
------------	---------	-----------	---------

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- The analyzer plots shown in Section 7.0 were taken with a correction table loaded into the analyzer. The correction 2) table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation," Version 3.10.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 10 01 05	
© 2017 DCTEST Engineering Leberston / Inc.					

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 11 01 05
© 2017 PCTEST Engineering Labor	V 7.1 10/25/2017			

Keysight Spectrum Analyzer - Occupied	IBW					- 0
<mark>(X/RL</mark> RF 50ΩDC	CORREC	SENSE:INT	06:09:18 P	MNov 24, 2017	Trace	/Detector
NFE	Trig:	Free Run Avg Hold:	: 100/100	. None		
	#IFGain:Low #Atte	en: 40 dB	Radio Dev	vice: BTS		
10 dB/div Ref 30.00 dl	3m					
20.0						
10.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h.		С	lear Write
0.00						
10.0						
20.0						Average
-20.0	/		www.www	monor		Average
-30.0						
-40.0						
-50.0						Max Hold
-60.0						
Center 817.9 MHz			Sn	an 3 MHz		
Res BW 27 kHz		VBW 270 kHz	Swee	p 3.8 ms		Min Hold
						Millinoid
Occupied Bandwi	dth	Total Power	34.0 dBm			
-	.2749 MHz					Detector
	207.11		00.00.0/		A	Peak►
I ransmit Freq Error	-607 HZ	% of OBW Powe	er 99.00 %		Auto	Ivian
x dB Bandwidth	1.421 MHz	x dB	-26.00 dB			
MSG			STATUS			

Plot 7-2. Occupied Bandwidth Plot (CDMA Ch. 684)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 12 01 05	
@ 2017 DOTECT Engineering Labor	netem (Inc		V 7 4 40/0E/0047	

Keysight Spectrum Analyzer - Occupied BV 07:46:34 PM Nov 16, 2017 RI Trace/Detector Center Freq: 793.000000 MHz Trig: Free Run Avg|Hold:>100/100 #Atten: 36 dB Radio Std: None #IFGain:Low Radio Device: BTS Ref 40.00 dBm l0 dB/div Log **Clear Write** Average Max Hold Center 793 MHz Res BW 120 kHz Span 12.5 MHz #VBW 390 kHz Sweep 1 ms **Min Hold** Total Power 32.8 dBm **Occupied Bandwidth** 4.5179 MHz Detector Peak▶ 1.386 kHz Auto **Transmit Freq Error** % of OBW Power 99.00 % <u>Man</u> x dB Bandwidth 5.033 MHz x dB -26.00 dB STATUS

Plot 7-3. Occupied Bandwidth Plot (LTE B14 - 5MHz QPSK – RB Size 25)

Plot 7-4. Occupied Bandwidth Plot (LTE B14 - 5MHz 16-QAM - RB Size 25)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 15 01 65
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

Keysight Spectrum Analyzer - Occup	ied BW					-	- 6 - X -
LX/ RL RF 50 Ω	AC CORREC	SENSE:INT Center Freg: 793.000	000 MHz	07:46:58 Pt Radio Std:	Nov 16, 2017 None	Trace	Detector
	#FC similar	Trig: Free Run	Avg Hold: 100	0/100 Radio Devi	ice: BTS		
	#IFGaIn:Low	#Atten: 30 dB		Radio Dev	ce. DT3		
10 dB/div Ref 40.00	dBm						
20.0						С	lear Write
10.0	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m				
0.00							
10.0	/						Average
-10.0	Pl Dico						Average
20.0 May soll Werdel	VA AA		V	MAY MILAN MA	እለም ኒምህ		
40.0							
50.0							Max Hold
Center 793 MHz				Span	12.5 MHz		
Res BW 120 kHz		#VBW 390 k	Hz	Swe	ep 1 ms		Min Hold
Occupied Bandw	idth	Total P	ower	30.8 dBm			
	4 5121 MH	7					Detector
	4.0121 1011	2					Peak►
Transmit Freq Erro	r 3.477 kH	Iz % of OE	3W Power	99.00 %		Auto	<u>Man</u>
x dB Bandwidth	4.979 MF	lz xdB		-26.00 dB			
MSG				STATUS			

Plot 7-5. Occupied Bandwidth Plot (LTE B14 - 5MHz 64-QAM - RB Size 25)

Plot 7-6. Occupied Bandwidth Plot (LTE B14 - 10MHz QPSK – RB Size 50)

FCC ID: A3I SMG960U	PCTEST	MEASUREMENT REPORT	SAMSUNG	Approved by:
	TROINTERING LABORATORS, INC.	(CERTIFICATION)		Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 14 01 05
© 2017 PCTEST Engineering Labor	V 7.1 10/25/2017			

Plot 7-7. Occupied Bandwidth Plot (LTE B14 - 10MHz 16-QAM - RB Size 50)

Plot 7-8. Occupied Bandwidth Plot (LTE B14 - 10MHz 64-QAM – RB Size 50)

	1				
	CA PCTEST	MEASUREMENT REPORT		Approved by:	
FCC ID: ASESMIG9000		(CERTIFICATION)	SAMSONO	Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 15 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 15 01 05	
© 2017 PCTEST Engineering Laboratory, Inc.					

Plot 7-9. Occupied Bandwidth Plot (LTE B26 - 1.4MHz QPSK - RB Size 6- Low Channel)

Plot 7-10. Occupied Bandwidth Plot (LTE B26 - 1.4MHz 16-QAM - RB Size 6- Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 16 of 63	
© 2017 PCTEST Engineering Labo	ratory, Inc.	•		V 7.1 10/25/2017	

Plot 7-11. Occupied Bandwidth Plot (LTE B26 - 1.4MHz 64-QAM - RB Size 6- Low Channel)

Plot 7-12. Occupied Bandwidth Plot (LTE B26 - 3MHz QPSK - RB Size 15- Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 47 af 60	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 17 of 63	
© 2017 PCTEST Engineering Labo	ratory, Inc.	·		V 7.1 10/25/2017	

Keysight Spectrum Analyzer - Occupied BV	V						
LXU RE 50Ω AC	CORREC	SENSE:INT Center Freq: 815.500	000 MHz	08:58:51 P Radio Std	MNov 20, 2017 : None	Trace	/Detector
	#IFGain:Low	#Atten: 40 dB	Avginola. 100/10	Radio Dev	rice: BTS		
10 dB/div Ref 30.00 dBr	n						
10.0	mm.	man man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		C	lear Write
0.00				N I			
10.0							
20.0				h			Average
-20.0				hourse and	man		Average
-30.0							
-40.0							
-50.0							Max Hold
-60.0						_	
Center 815.5 MHz			II	Sp	an 5 MHz		
Res BW 47 kHz		VBW 470 kH	Iz	Sweep	2.133 ms		Min Hold
		T-4-1 D					
Occupied Bandwidt	h	lotal P	ower	31.3 dBm			
2.	6920 MH	Ζ					Detector
	5 204 kU	- % of OF		00 00 %		Auto	Peak►
Transmit Freq Error	5.294 KH	2 % 01 06	SW Power	99.00 %		Auto	IVIAII
x dB Bandwidth	2.991 MH	z xdB		-26.00 dB			
MSG			s	TATUS			

Plot 7-13. Occupied Bandwidth Plot (LTE B26 - 3MHz 16-QAM – RB Size 15– Low Channel)

Plot 7-14. Occupied Bandwidth Plot (LTE B26 - 3MHz 64-QAM – RB Size 15– Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 19 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 18 01 03
© 2017 PCTEST Engineering Labo	ratory, Inc.		V 7.1 10/25/2017

Keysight Spectrum Analyzer - Occupied BV	V				
K RL RF 50 Ω AC	CORREC	SENSE:INT	B	09:02:34 PM Nov 20, 2017	Trace/Detector
	+++ Trig	g: Free Run Avg Hol	d:>100/100		
	#IFGain:Low #At	ten: 40 dB	R	adio Device: BTS	
10 dB/div Ref 35.00 dBn	n				
25.0					
15.0		soon man and a soon and a soon and a soon	~~~		Clear Write
5.00					
5.00	/		1		
15.00			X		Average
-15.0			lim		Averuge
-25.0					
-35.0					
-45.0					Max Hold
-55.0					
Center 816.5 MHz				Span 10 MHz	
Res BW 91 kHz		VBW 910 kHz	S	weep 1.133 ms	Min Hold
		T-4-1 D-111-1	22.7	Der	
Occupied Bandwidt	h	Total Power	32.7 d	BM	
4.	4954 MHz				Detector
	2 242 615			0.0/	Peak► Auto Map
Transmit Freq Error	3.313 KHZ		/er 99.0	0 %	Auto <u>Mari</u>
x dB Bandwidth	4.991 MHz	x dB	-26.00	dB	
MSG			STATUS		

Plot 7-15. Occupied Bandwidth Plot (LTE B26 - 5MHz QPSK - RB Size 25- Low Channel)

Plot 7-16. Occupied Bandwidth Plot (LTE B26 - 5MHz 16-QAM – RB Size 25– Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 19 of 63	
© 2017 PCTEST Engineering Labor	ratory, Inc.		V 7.1 10/25/2017	

Keysight Spectrum Analyzer - Occupied BV	V						
KX RL RF 50Ω AC	CORREC C	SENSE:INT enter Freq: 816.500 rig: Free Run	000 MHz AvglHold: 10	09: Radi 0/100	02:56 PM Nov 20, 2017 io Std: None	Trac	e/Detector
	#IFGain:Low #/	Atten: 40 dB		Radi	io Device: BTS		
10 dB/div Ref 35.00 dBn	n ,						
25.0							
15.0		and the second s	O ^{AA} A A MTADA ANTA				Clear Write
5.00	and the second s						
-5.00				\			
15.0							Average
25.0				man			
25.0					Mar Mar Mar		
-43.0							Max Hold
-55.0							
Center 816.5 MHz		·			Span 10 MHz		
Res BW/91 kHz		VBW 910 kH	IZ	Sw	eep 1.133 ms		Min Hold
Occupied Bandwidt	h	Total P	ower	30.8 dB	m		
Δ	4991 MH7						Detector
-							Peak
Transmit Freq Error	2.532 kHz	% of OE	BW Power	99.00	%	Auto	<u>Man</u>
x dB Bandwidth	4.955 MHz	x dB		-26.00 d	В		
MSG				STATUS			

Plot 7-17. Occupied Bandwidth Plot (LTE B26 - 5MHz 64-QAM - RB Size 25- Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 20 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 20 of 63	
© 2017 PCTEST Engineering Labor	ratory, Inc.			V 7.1 10/25/2017	

Plot 7-19. Occupied Bandwidth Plot (LTE B26 - 10MHz 16-QAM – RB Size 50)

Plot 7-20. Occupied Bandwidth Plot (LTE B26 - 10MHz 64-QAM – RB Size 50)

	1				
FCC ID: A3LSMG960U	PCTEST'	MEASUREMENT REPORT	CAMPUNG.	Approved by:	
		(CERTIFICATION)	3711130110	Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 21 01 03	
© 2017 PCTEST Engineering Labor	ratory, Inc.			V 7.1 10/25/2017	

Plot 7-21. Occupied Bandwidth Plot (LTE B26 - 15MHz QPSK - RB Size 75)

Plot 7-22. Occupied Bandwidth Plot (LTE B26 - 15MHz 16-QAM – RB Size 75)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 22 01 03	
© 2017 PCTEST Engineering Labor	ratory, Inc.			V 7.1 10/25/2017	

🔤 Keysight Spectrum Analyzer - Occupied BW 🚽					
LX/ RL RF 50Ω AC 0	CORREC SI Center F	INSE:INT Freq: 821.500000 MHz	09:10:47	MNov 20, 2017	Trace/Detector
#	IFGain:Low #Atten:	40 dB	Radio De	vice: BTS	
10 dB/div Ref 30.00 dBm					
20.0					
10.0	Museland and manager share and	allow and and the second of th			Clear Write
10.0			\mathbf{X}		
20.0					Average
-20.0 man			and a second	washing work	Averuge
-30.0					
-40.0					
-50.0					Max Hold
-60.0					
Center 821.5 MHz			Spa	n 30 MHz	
Res BW 270 kHz	VB	W 2.7 MHz	Sw	eep 1 ms	Min Hold
		Total Bower	20.7 dBm		
Occupied Bandwidth		Total Power	50.7 dBm		
13.	428 MHz				Detector
Transmit Freq Error	30.739 kHz	% of OBW Power	99.00 %		Peak► Auto <u>Man</u>
x dB Bandwidth	14.64 MHz	x dB	-26.00 dB		
MSG			STATUS		
Transmit Freq Error x dB Bandwidth	30.739 kHz 14.64 MHz	% of OBW Power x dB	99.00 % -26.00 dB		Peak ▶ Auto <u>Man</u>

Plot 7-23. Occupied Bandwidth Plot (LTE B26 - 15MHz 64-QAM - RB Size 75)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 23 01 03
© 2017 PCTEST Engineering Labo	ratory Inc		\/ 7 1 10/25/2017

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §90.543 §90.691

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. RBW ≥ 1MHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 24 01 05	
© 2017 PCTEST Engineering Labor	ratory. Inc.			V 7.1 10/25/2017	

Plot 7-24. Conducted Spurious Plot (CDMA Ch. 476)

Plot 7-25. Conducted Spurious Plot (CDMA Ch. 476)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 25 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 25 01 65
© 2017 PCTEST Engineering Labo	ratory, Inc.	·		V 7.1 10/25/2017

V 7.1 10/25/2017

🔤 Key	/sight Spect	trum Analy	yzer - Sw	ept SA								_	
lxi Ri	L	RF	50 Ω	DC	CORREC	SEI	ISE:INT	#Ava Tvp	e: RMS	06:12:12	MNov 24, 2017	Fr	equency
				NFE	PNO: Fast	Atten: 40	Run	• ,.		T			
					IFGain:Low	Atten: 40	ub		ML	r1 3 924	505 CHz		Auto Tune
10 dF	Sidiv	Ref 3	0.00.0	lBm					WIR	-23	.35 dBm		
Log													
												C	enter Freq
20.0												2.51	5000000 GHz
10.0													
10.0													Start Freq
0.00												30	.000000 MHz
-10.0											DI 1 -13 00 dBm		Stop Freq
												5.000	0000000 GHz
-20.0) ¹			
							المعالمين فأرارر	الحاوية والأنام بالرامي		the state of the state			CE Step
-30.0				alphysical is	diterrate the state		والمحامد وطناع	and the second party of th	in the second second			497	.000000 MHz
40.0	anandra na s	area (arear) Interneting	and the lot	The state of the second se								<u>Auto</u>	Man
-40.0													
-50.0												I	Freq Offset
													0 Hz
-60.0													
												:	Scale Type
Star	t 30 MI	H7								Stop	5 000 GHz	Log	Lin
#Res	s BW 1	.0 MH	z		#V	BW 3.0 MHz		s	weep	8.667 ms (10001 pts)		
MSG									ST/	ATUS			

Plot 7-26. Conducted Spurious Plot (CDMA Ch. 684)

Plot 7-27. Conducted Spurious Plot (CDMA Ch. 684)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Fage 20 01 05
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017

🔤 Keys	ight Spe	ctrum Anal	yzer - Swe	pt SA											
L <mark>XI</mark> RL		RF	<u>50 Ω</u>	AC	CORREC		SE	NSE:INT	#Avg Typ	e: RMS		07:53:18 PI TRAC	MNov 16, 2017	F	Frequency
					PNO: F	ast 🖵	Trig: Fre Atten: 3	e Run 0 dB				TYF DE			
					in Gain.	LOW	,				Mkr	1 784.	05 MHz		Auto Tune
10 dB/	/div	Ref 2	0.00 d	Bm								-32.	67 dBm		
Log								Ĭ							Contor From
10.0														40	08.500000 MHz
0.00															Start From
40.0														3	30.000000 MHz
-10.0													DL1 -13.00 dBm		
-20.0															Stop Fred
													1.	78	37.000000 MHz
-30.0													'		
40.0															CF Step
-40.0														Auto	75.700000 MHz
-50.0														Auto	IVIAII
															Freg Offset
-60.0															0 Hz
70.0															
-70.0															Scale Type
	00.0	Dall-										04		log	Lin
start #Res	30.0 BW	IVIHZ 100 kH	z			#VBW	300 kHz		S	weep	93.8	- stop 7 7 ms <u>(1</u>	87.0 MHz 5141 pts)	LUg	
MSG										ST/	ATUS			-	

Plot 7-28. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

🔤 Keysight Spectrum Analyzer - Swept SA														
l xi r	L	RF	50 Ω	AC	CORREC	ast 😱	SEN	ISE:INT	#Avg Typ	e: RMS	07:53:28 PI TRAC TYP	Nov 16, 2017 E 1 2 3 4 5 6 PE A	Fi	requency
10 dE	3/div	Ref	20.00 d	IBm	IFGain:L	ow	Atten: 30	dB		M	ikr1 799. -55.	10 MHz 03 dBm		Auto Tune
10.0													(899	Senter Freq 9.000000 MHz
0.00 -10.0												DL1 -13.00 dBm	798	Start Freq 3.000000 MHz
-20.0 -30.0													1.00	Stop Freq 0000000 GHz
-40.0	.1—												20 <u>Auto</u>	CF Step 0.200000 MHz Man
-60.0		ingly and and and		and a state of the	ala ta da ang ta da ta	يەك ئۇلارلىرىلىرىنى مەركەر يىلىرىلىرىلىرىكى	^{Nana} Mandhidan Jawa	eryna ar o'r feifirgen	and the second second second second	an devenderer		iyyalinataisayayyi		Freq Offset 0 Hz
-70.0	+ 0 700										Stop 1 (Log	Scale Type
#Re	s BW 1	100 GF	z Hz		#	VBW :	300 kHz		:	Sweep 2	5.05 ms (4041 pts)		
MSG				_		_				STATU	s			

Plot 7-29. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dawa 07 of 00
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 27 of 63
© 2017 PCTEST Engineering Labo	ratory Inc		V 7 1 10/25/2017

🔤 Key	sight Spe	ctrum An	alyzer - Sw	ept SA									_	
<mark>l,XI</mark> RL		RF	50 Ω	AC	CORRE	C	SE	NSE:INT	#Avg Typ	e: RMS	07:53:50 TR	PM Nov 16, 2017 ACE 1 2 3 4 5 6	F	requency
					PNO:	:Fast 🖵	Trig: Fre #Atten: 3	e Run 2 dB			т			
					ii Gai	II.LOW		1 4 2			Mkr1 9.33	6 5 GHz		Auto Tune
10 dE	3/div	Ref 2	22.00	dBm							-41	.65 dBm		
Log								Ĭ						0
12.0													5.50	Center Freq
													0.00	0000000 0112
2.00														
													1.00	Start Freq
-8.00												DL1 -13.00 dBm	1.00	0000000 0112
-18.0														Otor English
													10.00	Stop Freq
-28.0													10.00	0000000000112
												. 1		CE Sten
-38.0													90	0.000000 MHz
-48 N			and the second		-		A REAL PROPERTY.						<u>Auto</u>	Man
														-
-58.0														
														0112
-68.0														
														ocure rype
Star	t 1.00	GHz				-40 (1514			-		Stop 1	0.000 GHz	Log	Lin
#Res	SBW	1.0 IVI	ΠZ			#VBW	3.0 WHZ		8	weep	15.60 ms (18001 pts)		
MSG										ST/	ATUS			

Plot 7-30. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-31. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 26 01 65
© 2017 PCTEST Engineering Labor	ratory, Inc.		V 7.1 10/25/2017

🔤 Key	/sight Spe	ctrum An	alyzer - Sw	ept SA									_	
l xi Ri	L	RF	50 Ω	AC	CORREC		SEN	ISE:INT	#Avg T	ype: RMS	07:48:37 TR/	PM Nov 16, 2017	Fi	requency
40.15					PNO: Fa IFGain:L	ast 🖵 .ow	Atten: 30	dB			Mkr1 799	.50 MHz		Auto Tune
10 dE Log 10.0	37019	Rer	20.00 (899	Center Freq 9.000000 MHz
0.00 -10.0												DL1 -13.00 dBm	798	Start Freq 3.000000 MHz
-20.0 -30.0													1.00	Stop Freq 0000000 GHz
-40.0 -50.0	1												20 <u>Auto</u>	CF Step 0.200000 MHz Man
-60.0	A	ant and and	1.489.484499	A Marillin and a Ma	leftaar yf ^{fe} ddig yf yngol yn gyfra	, eta bugelarr	ninda fadi ayan yan is	anter a daparta	an a	flerfe af frænder af storet fo	und yan ali wafaala maraani ah k			Freq Offset 0 Hz
													Log	Scale Type
Star #Res	t 0.793 s BW	80 GH 100 <u>k</u>	z Hz		#	¢VB₩	300 kHz			Sweep	Stop 1 25.05 ms	.0000 GHz (4041 p <u>ts)</u>	LUg	
MSG										STA	TUS			

Plot 7-32. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-33. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 29 01 05
© 2017 PCTEST Engineering Labor	ratory, Inc.	•	V 7.1 10/25/2017

🔤 Key	sight Spe	ctrum An	alyzer - Sv	vept SA										
lxi Rl		RF	50 \$	2 AC	CORRE	C	Tria: E	SENSE:INT	#Avg Typ	e:RMS	07:58:49 P TRAC	MNov 16, 2017	Fi	requency
10 dE	3/div	Ref 2	20.00	dBm	PNO IFGai	:Fast (_ in:Low	Atten:	30 dB		N	lkr1 786 -51.	90 MHz 92 dBm		Auto Tune
10.0 :													(409	Center Freq 9.000000 MHz
0.00 ·												DL1 -13.00 dBm	30	Start Freq 0.000000 MHz
-20.0 + -30.0 +													788	Stop Freq 3.000000 MHz
-40.0 +												1	7ŧ <u>Auto</u>	CF Step 5.800000 MHz Man
-60.0		lin (ingiling)					pa en anti a constante da serie da la constante da la constante da serie da la constante da la constante da la				stadi poseti dana shina fadi bida da ga yi gana an da ta kanga ta kan			Freq Offset 0 Hz
-70.0 -														Scale Type
Start #Res	t 30.0 s BW	MHz 100 ki	-Iz			#VB۱	N 300 kH	z	s	weep 9	Stop 7 3.99 ms (1	88.0 MHz 5161 pts)	Log	Lin
MSG										STATU	JS			

Plot 7-34. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-35. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 30 01 63
© 2017 PCTEST Engineering Labor	ratory. Inc.		V 7.1 10/25/2017

🔤 Keys	ight Spec	trum An	alyzer - Sw	rept SA								_	
LXI RL		RF	50 Ω	AC	CORREC	SEI	ISE:INT	#Avg Tvp	e: RMS	07:59:13 F	MNov 16, 2017	F	requency
					PNO: Fast G	Trig: Free #Atten: 3	e Run 2 dB						Auto Tune
10 dB/	/div	Ref :	22.00	dBm						-41	9 0 GHZ 46 dBm		Auto Fulle
12.0												E E (Center Freq
2.0												5.50	0000000 GH2
2.00												1.00	Start Freq
-8.00											DL1 -13.00 dBm	1.00	
-18.0												10.00	Stop Freq
-28.0													
-38.0 -												90 Auto	CF Step 0.000000 MHz Man
-48.0	and the second			and the second secon		No. of Concession, Name			Hard States				
-58.0													Freq Offset
-68.0													0112
													Scale Type
Start	1.000	GHz								Stop 1	0.000 GHz	Log	Lin
#Res	BW 1	1.0 M	HZ		#VB\	W 3.0 MHz		s	weep	15.60 ms (8001 pts)		
MSG									STA	TUS			

Plot 7-36. Conducted Spurious Plot (LTE B14 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 62	
1M1711010281-04-R1.A3L	1711010281-04-R1.A3L 11/1-12/7/2017 Portable Handset			Page 31 of 63	
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017	

LTE B26

🔤 Keysight Spe	ectrum Analyzer - Sv	vept SA								-	
LXI RL	RF 50 9	AC COI	RREC	SEI	NSE:INT	#Avg Typ	e: RMS	08:54:53 P TRA	M Nov 20, 2017 CE 1 2 3 4 5 6	Fre	quency
		P IF	NO: Fast ↔ Gain:Low	Trig: Free Atten: 40	e Run) dB		Mk	r1 4.730		Ļ	Auto Tune
10 dB/div	Ref 30.00	dBm						-25.	99 dBm		
20.0										Ce 2.5150	e nter Freq 100000 GHz
10.0										30.0	Start Freq
-10.0									DL1 -13.00 dBm		Stop Freq
-20.0					t. du		lu ta		1 dituda	5.0000	CE Stop
-30.0		egy er og vis i sin sligtige stra der and som sit sin sligtige stra		a an				Aldel han gestaan bestaan see dage Aldel han gestaan Disebat meerikaan Aldel han gestaan Disebat meerikaan		497.0 <u>Auto</u>	000000 MHz Man
-50.0										F	r eq Offset 0 Hz
-60.0										S	cale Type
Start 30 M #Res BW	/IHz 1.0 MHz		#VBW	3.0 MHz		s	weep	Stop 5 8.667 ms (/	.000 GHz 0001 pts)	Log	Lin
MSG							STA	TUS			

Plot 7-37. Conducted Spurious Plot (LTE B26 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-38. Conducted Spurious Plot (LTE B26 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	et		
© 2017 PCTEST Engineering Labor	V 7.1 10/25/2017				

🔤 Key	sight Spe	ctrum Ana	lyzer - Sw	ept SA										x
l,XI RI	-	RF	50 Ω	AC	CORREC	C	SEN	ISE:INT	#Avg Typ	e: RMS	08:57:13 F TRA	MNov 20, 2017 CE 1 2 3 4 5 6	Frequency	
		D -6.0		10	PNO: IFGair	Fast ↔ n:Low	Trig: Free Atten: 40	eRun dB		Mkr	1 3.304 2	236 GHz	Auto Tui	ne
10 dE Log 20.0	3/div	Ref 3	0.00	dBm							-20		Center Fr 2.515000000 Gi	eq Hz
10.0 0.00													Start Fre 30.000000 Mi	eq Hz
-10.0									1-			DL1 -13.00 dBm	Stop Fr 5.000000000 GI	eq Hz
-30.0 -40.0		a propriori Para General Distance, o			lanai a linda ning da anai				a stepatolisti Trybu ^{nda} n Tradision	and the provident of the second s	li fan de ferste fer New gester en state state ferste fe	l al version de la statistica de la seconda de la secon	CF Ste 497.000000 MI <u>Auto</u> Mi	ep Hz Ian
-50.0													Freq Offs 01	set Hz
-60.0 Star	t 30 M	IHz									Stop	.000 GHz	Scale Typ	pe Lin
#Res	s BW	1.0 MH	z			#VBW	3.0 MHz		S	weep 8	3.667 ms (0001 pts)		
MSG										STAT	US			

Plot 7-39. Conducted Spurious Plot (LTE B26 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-40. Conducted Spurious Plot (LTE B26 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 33 of 63
© 2017 PCTEST Engineering Labor	ratory. Inc.	·	V 7.1 10/25/2017

7.4 Band Edge Emissions at Antenna Terminal §2.1051 §90.543 §90.691

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by greater than 37.5 kHz is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

The minimum permissible attenuation level of any spurious emission removed from the EA licensee's frequency block by up to and including 37.5 kHz is $50 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03 – Section 6.0

Test Settings

- 1. Span was set large enough so as to capture all out of band emissions near the band edge
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = RMS
- 5. Trace mode = trace average
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

For channel edge emission, the signal analyzer's "ACP" measurement capability is used.

Per 22.917(b) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 24 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 34 of 63
© 2017 PCTEST Engineering Labor	ratory. Inc.	•	V 7.1 10/25/2017

Plot 7-41. Channel Edge Plot (CDMA Ch. 476)

Plot 7-42. Channel Edge Plot (CDMA Ch. 684)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	able Handset	
© 2017 PCTEST Engineering Labo	ratory, Inc.	·		V 7.1 10/25/2017

Plot 7-43. Lower Band Edge Plot (LTE B14 - 5MHz QPSK - RB Size 25)

Plot 7-44. Lower Emission Mask Band Edge Plot (LTE B14 - 5MHz QPSK - RB Size 25)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 30 01 03

V 7.1 10/25/2017

© 2017 PCTEST Engineering Laboratory, Inc.

🔤 Keysight Spectrum An	alyzer - Swept SA									
L <mark>XI</mark> RL RF	50 Ω AC	CORREC	SEN	ISE:INT	#Ava Tvp	e: RMS	08:00:08 PI	MNov 16, 2017	F	requency
		PNO: Wide ↔ IFGain:Low	Trig: Free Atten: 36	Run dB			TYF DE			Auto Tuno
10 dB/div Ref 2	25.00 dBm					Mk	r1 798.0 -21.9	00 MHz 97 dBm		Auto Tune
			,							Center Freq
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~						79	8.000000 MHz
5.00										Start Freq
-5.00			-+						79	5.000000 MHz
-15.0				1				DL1 -13.00 dBm		Stop Freq
-25.0			5						80	0.000000 MHz
-35.0				- Contraction of the second se	·····			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CF Step
45.0									<u>Auto</u>	400.000 KHZ Man
-40.0										Freg Offset
-55.0										0 Hz
-65.0										Scale Type
Center 798.000	MHz						Span 4	.000 MHz	Log	Lin
#Res BW 100 k	Hz	#VBW	300 kHz			Sweep	1.000 ms (	1001 pts)		
MSG						STATU	s			

Plot 7-45. Upper Band Edge Plot (LTE B14 - 5MHz QPSK – RB Size 25)



Plot 7-46. Upper Emission Mask Band Edge Plot (LTE B14 - 5MHz QPSK - RB Size 25)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 37 01 03
© 2017 PCTEST Engineering Labo	ratory. Inc.			V 7.1 10/25/2017



🔤 Keysight Sp	pectrum Analyzer - Swept S	A					
LXI RL	RF 50 Ω A	C CORREC	SENSE:IN	#Avg Typ	e: RMS	08:06:00 PM Nov 16, 2017 TRACE 1 2 3 4 5 6	Frequency
	-	PNO: Wide ↔ IFGain:Low	Trig: Free Run Atten: 36 dB	n Avg Hold:	100/100		
10 dB/div Loa	Ref 25.00 dBr	n			Mkr	1 787.984 MHz -26.062 dBm	Auto Tune
15.0							Center Freq 788.000000 MHz
5.00					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Start Freq
-5.00						DL1 -13.00 dBm	784.000000 MHz
-15.0			1/				Stop Freq 792.000000 MHz
-35.0			~~~~				CF Step 800.000 kHz
-45.0							<u>Auto</u> Man
-55.0							0 Hz
-65.0							Scale Type
Center 7	88.000 MHz	-#\/D\A	200 64-*		Buroon 4	Span 8.000 MHz	Log <u>Lin</u>
#Res BW	TOU KHZ	#4800	300 KHZ"		sweep 1.	000 ms (1001 pts)	
mod					STATUS		

Plot 7-47. Lower Band Edge Plot (LTE B14 - 10MHz QPSK – RB Size 50)



Plot 7-48. Lower Emission Mask Band Edge Plot (LTE B14 - 10MHz QPSK – RB Size 50)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:	Dago 29 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 36 01 63
© 2017 PCTEST Engineering Labor	ratory, Inc.		V 7.1 10/25/2017



🔤 Keysight	Spectrum Analyzer - Swept SA					
(X/RL	RF 50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	08:06:36 PM Nov 16, 2017 TRACE 1 2 3 4 5 6	Frequency
		PNO: Wide ↔ IFGain:Low	Trig: Free Run Atten: 36 dB	Avg Hold: 100/100		
10 dB/div	Ref 25.00 dBm			N	/kr1 798.000 MHz -28.802 dBm	Auto Tune
15.0						Center Freq 798.000000 MHz
5.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\gamma$			Start Freq
-5.00					DL1 -13.00 dBm	794.000000 MHz
-15.0						Stop Freq 802.000000 MHz
-35.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CF Step
-45.0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>Auto</u> Man
-55.0						Freq Offset 0 Hz
-65.0						Scale Type
Center	798.000 MHz		A		Span 8.000 MHz	Log <u>Lin</u>
#Res B	N 100 kHz	#VBW :	300 kHz*	Sweep	) 1.000 ms (1001 pts)	
MSG				ST	ATUS	

Plot 7-49. Upper Band Edge Plot (LTE B14 - 10MHz QPSK - RB Size 50)



Plot 7-50. Upper Emission Mask Band Edge Plot (LTE B14 - 10MHz QPSK - RB Size 50)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 39 01 03
© 2017 PCTEST Engineering Labor	ratory. Inc.		V 7.1 10/25/2017



20 RL RF 50 Ω AC CORREC SENSE:INT 08:55:19 PM Nov 20, 2017	Frequency
Center Freq 814. /00000 MHZ	,
PASS IFGain:Low #Atten: 28 dB Radio Device: BTS	
10 dB/div Ref 40.00 dBm	
300 23.6 dBm	Center Freq
	814.700000 MHz
Center 814.7 MHZ Span 2.1 WHZ Span 2.1 WHZ	CF Step
#Kes BW 100 KHZ #VBW 300 KHZ Sweep 20111S	210.000 kHz
Total Carrier Power 23.586 dBm/ 1.40 MHz ACP-IBW	ito Man
Lower Upper	
Carrier Power Filter Offset Freq Integ BW dBc dBm dBc dBm Filter	Freq Offset
1 23.586 dBm / 1.400 MHz OFF 0.0 Hz 37.50 kHz -54.42 -30.83 -55.24 -31.65 OFF	0 Hz
37.50 kHz 100.0 kHz -55.28 -31.70 -55.51 -31.92 OFF	
MSG	

Plot 7-51. Channel Edge Plot (LTE B26- 1.4MHz QPSK - RB Size 6- Low Channel)



Plot 7-52. Channel Edge Plot (LTE B26 - 1.4MHz QPSK – RB Size 6 – High Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 62
1M1711010281-04-R1.A3L 11/1-12/7/2017		Portable Handset	Page 40 of 63	
© 2017 DOTEST Engineering Labor	ratory Inc			V 7 1 10/2E/2017



Keysight Spectrum Analyzer - ACP										
<b>() RL</b> RF 50 Ω AC	CORREC	Center Fi	NSE:INT req: 815.5000 e Run	000 MHz	· 100/100	08: Rad	59:11 PM N io Std: N	ov 20, 2017 one	F	requency
PASS	IFGain:Low	#Atten: 2	8 dB	, regimera		Rad	io Device	BTS		
10 dB/div Ref 30.00 dBr	n									
20.0		23.7	dBm				•			Center Freq
10.0									81	5.500000 MHz
0.00										
-10.0										
-20.0								RMS AVO		
-30.0							-1			
-40.0										
-50.0										
-60.0										
Center 815.5 MHz							Spar	4 MHz		CE Step
#Res BW 100 kHz		#VE	3W 300 k	Hz			Sweep	20 ms		400.000 kHz
Total Carrier Power 23.71	2 dBm/ 3.00 l	MHz	ACP-I	BW					<u>Auto</u>	Man
				Lov	ver	Up	per			
Carrier Power	Filter	Offset Freq	Integ BW	dBc	dBm	dBc	dBm	Filter		Freq Offset
1 23.712 dBm / 3.000 MHz	OFF	0.0 Hz	37.50 kHz	-48.14	-24.43 -	48.48	-24.77	OFF		0 Hz
		37.50 kHz	100.0 kHz	-48.84	-25.13 -	49.37	-25.66	OFF		
MSG					STAT	TUS				
					and the second se	The second division of				

Plot 7-53. Channel Edge Plot (LTE B26 -3MHz QPSK – RB Size 15– Low Channel)



Plot 7-54. Channel Edge Plot (LTE B26 - 3MHz QPSK - RB Size 15 - High Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:         Test Dates:           1M1711010281-04-R1.A3L         11/1-12/7/2017		EUT Type:	Dame 41 of 62
		Portable Handset	Page 41 01 63
© 2017 PCTEST Engineering Labor	ratory, Inc.	•	V 7.1 10/25/2017



Keysight Spectrum Analyzer - ACP										
LXI RF 50Ω AC	CORREC	Center F	NSE:INT req: 816.5000 e Run	000 MHz AvalHold	: 100/100	09 Rad	:03:10 PMN lio Std: N	lov 20, 2017 Ione	Fr	equency
PASS	IFGain:Low	#Atten: 3	0 dB			Rad	lio Devic	e: BTS		
10 dB/div Ref 30.00 dBm										
							ii ii			
20.0		23.7	dBm				i		(	enter Freq
10.0		·····							816	500000 MHz
0.00							$\mathbf{i}$			
-10.0										
-20.0										
-30.0							N4	RMS AVG		
-40.0										
50.0										
-30.0										
-60.0										
Center 816.5 MHz							Span	6.5 MHz		CE Otop
#Res BW 100 kHz		#VE	300 k	Hz			Sweep	20 ms		650 000 kHz
Total Carrier Power 23.657	dBm/ 5.00 M	Hz	ACP-I	BW					<u>Auto</u>	Man
				Lov	wer	Ur	oper			
Carrier Power	Filter Of	ffset Freq	Integ BW	dBc	dBm	dBc	dBm	Filter		Freq Offset
1 23.657 dBm / 5.000 MHz	OFF	0.0 Hz	37.50 kHz	-52.73	-29.07 -	53.46	-29.81	OFF		0 Hz
	3	7.50 kHz	100.0 kHz	-51.40	-27.74 -	-52.52	-28.86	OFF		
MSG					STA	TUS				
					514					

Plot 7-55. Channel Edge Plot (LTE B26 - 5MHz QPSK - RB Size 25- Low Channel)



Plot 7-56. Channel Edge Plot (LTE B26 - 5MHz QPSK - RB Size 25 - High Channel)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:         Test Dates:           1M1711010281-04-R1.A3L         11/1-12/7/2017		EUT Type:	Page 42 of 63	
		Portable Handset		
© 2017 PCTEST Engineering Labor	ratory, Inc.	•	V 7.1 10/25/2017	



Keysight Spectrum Analyzer - ACP								_	
LXV RL RF 50Ω AC	CORREC	SE Center F	NSE:INT	000 MHz		09:07:37 PMN Radio Std: N	lov 20, 2017	Fr	equency
<b>BA00</b>	↔	, Trig: Fre	e Run	Avg Hold	: 100/100	rtuaro ota. n	lone		
PASS	IFGain:Low	#Atten: 3	0 dB			Radio Devic	e: BTS		
10 dB/div Ref 30.00 dBm									
							İ		
		23.7	dBm				]	C	enter Freq
								819	.000000 MHz
0.00									
-10.0									
-20.0						\	RMS AVG		
-30.0						<u> </u>			
-40.0									
50.0									
-30.0									
-60.0									
Center 819 MHz	1					Span	12 MHz		05.04
#Res BW 100 kHz		#VE	3W 300 k	Hz		Sweep	20 ms	1	200000 MHz
Total Carrier Power 23.727	dBm/ 10.00 MI	Ηz	ACP-I	BW				Auto	Man
					Wer	Unner			
Carrier Power	Filter Offe	set Frea	Integ BW	dBc	dBmd	iBc dBm	Filter		reg Offset
1 23.727 dBm / 10.00 MHz	OFF	0.0 Hz	37.50 kHz	-56.72	-33.00 -57	.19 -33.46	OFF		0 Hz
	37.	50 kHz	100.0 kHz	-53.72	-29.99 -54	.31 -30.58	OFF		
					074710				
MSG					STATUS				





Plot 7-58. Channel Edge Plot (LTE B26 - 15MHz QPSK - RB Size 75)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 45 01 65
© 2017 PCTEST Engineering Labo	ratory. Inc.			V 7.1 10/25/2017



### 7.5 Conducted Power Output Data

Frequency [MHz]	BC10 [Channel]	Battery Type	Cond. PWR [dBm]	Cond. PWR [Watts]	
817.90	476	Standard	24.88	0.308	
823.10	684	Standard	24.82	0.303	

Table 7-2. CDMA BC10 Conducted Power Output Data

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Cond. PWR [dBm]	Cond. PWR [Watts]
793.00	5	QPSK	24.69	0.294
793.00	5	16-QAM	23.81	0.240
793.00	5	64-QAM	22.87	0.194
793.00	10	QPSK	24.75	0.299
793.00	10	16-QAM	23.84	0.242
793.00	10	64-QAM	22.94	0.197

Table 7-3. LTE Band 14 Conducted Power Output Data

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017 Portable Handset			Page 44 01 05
© 2017 DCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Cond. PWR [dBm]	Cond. PWR [Watts]
814.70	1.4	QPSK	23.54	0.226
823.30	1.4	QPSK	23.87	0.244
814.70	1.4	16-QAM	22.87	0.194
823.30	1.4	16-QAM	23.22	0.210
814.70	1.4	64-QAM	21.82	0.152
823.30	1.4	64-QAM	22.15	0.164
815.50	3	QPSK	23.70	0.234
822.50	3	QPSK	23.86	0.243
815.50	3	16-QAM	23.04	0.201
822.50	3	16-QAM	23.21	0.209
815.50	3	64-QAM	21.98	0.158
822.50	3	64-QAM	22.15	0.164
816.50	5	QPSK	23.68	0.233
821.50	5	QPSK	23.85	0.243
816.50	5	16-QAM	22.99	0.199
821.50	5	16-QAM	23.21	0.209
816.50	5	64-QAM	21.93	0.156
821.50	5	64-QAM	22.16	0.164
819.00	10	QPSK	23.89	0.245
819.00	10	16-QAM	23.27	0.212
819.00	10	64-QAM	22.13	0.163
821.50	15	QPSK	24.02	0.252
821.50	15	16-QAM	23.37	0.217
821.50	15	64-QAM	22.34	0.171

Table 7-4. LTE Band 26 Conducted Power Output Data

#### NOTES:

- For CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 2. This unit was tested with its standard battery.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 45 01 05	
© 2017 PCTEST Engineering Labor	ratory, Inc.		V 7.1 10/25/2017	



#### 7.6 Radiated Power (ERP) §22.913(a.2) §90.542

#### Test Overview

Effective Radiated Power (ERP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v03 - Section 5.2.1

ANSI/TIA-603-D-2010 - Section 2.2.17

#### Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points  $\geq$  2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 40 01 03
© 2017 PCTEST Engineering Labo	ratory. Inc.	•		V 7.1 10/25/2017



#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Radiated Test Setup <1GHz

#### **Test Notes**

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Positioner Azimuth [degree]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
790.50	5	QPSK	Н	85	8	1 / 24	19.50	1.36	18.71	0.074	34.77	-16.06
793.00	5	QPSK	Н	77	353	1 / 24	20.17	1.37	19.39	0.087	34.77	-15.38
795.50	5	QPSK	Н	85	354	1 / 24	20.77	1.38	20.00	0.100	34.77	-14.77
795.50	5	16-QAM	Н	85	354	1 / 24	20.24	1.38	19.47	0.089	34.77	-15.30
795.50	5	64-QAM	Н	85	354	1 / 24	19.06	1.38	18.29	0.067	34.77	-16.48
793.00	10	QPSK	Н	94	1	1 / 49	20.44	1.37	19.66	0.093	34.77	-15.11
793.00	10	16-QAM	Н	94	1	1 / 49	19.70	1.37	18.92	0.078	34.77	-15.85
793.00	10	64-QAM	Н	94	1	1 / 49	18.67	1.37	17.89	0.062	34.77	-16.88
795.50	5	QPSK	V	358	345	1 / 0	19.84	1.38	19.07	0.081	34.77	-15.70
795.50	5 (WCP)	QPSK	Н	6	8	1 / 0	19.26	1.38	18.49	0.071	34.77	-16.28

#### Table 7-59. ERP Data (Band 14)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 47 01 65
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017			

© 2017 PCTEST Engineering Laboratory, Inc.



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
821.50	15	QPSK	н	150	265	1 / 74	21.03	1.49	20.37	0.109	38.45	-18.08
821.50	15	16-QAM	н	150	265	1 / 74	20.48	1.49	19.82	0.096	38.45	-18.63
821.50	15	64-QAM	Н	150	265	1 / 74	19.72	1.49	19.06	0.080	38.45	-19.39
821.50	15	QPSK	V	150	15	1 / 0	20.24	1.49	19.58	0.091	38.45	-18.87
821.50	15 (WCP)	QPSK	Н	150	0	1 / 74	17.75	1.49	17.09	0.051	38.45	-21.36

Table 7-60. ERP Data (Band 26)

FCC ID: A3LSMG960U	PCTEST		SAMSUNG	Approved by:	
	•	(CERTIFICATION)		Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 48 of 63	
© 2017 PCTEST Engineering Labor	ratory Inc			V 7 1 10/25/2017	



## 7.7 Radiated Spurious Emissions Measurements §2.1053 §90.691 §90.543

#### **Test Overview**

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

#### Test Procedures Used

KDB 971168 D01 v03 – Section 5.8

ANSI/TIA-603-D-2010 - Section 2.2.12

#### **Test Settings**

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	D 10 -f 62
1M1711010281-04-R1.A3L	1010281-04-R1.A3L 11/1-12/7/2017 Portable Handset		Page 49 of 63
© 2017 PCTEST Engineering Labor	ratory. Inc.		V 7.1 10/25/2017





The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

#### **Test Notes**

- 1. For CDMA mode, this device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.
- 2. For LTE mode, the device was tested under all modulations, RB sizes and offsets, and channel bandwidth configurations and the worst case emissions are reported with 1 RB.
- 3. This unit was tested with its standard battery.
- 4. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 5. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	AMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	1-12/7/2017 Portable Handset		Page 50 of 63	
© 2017 PCTEST Engineering Labo	ratory Inc			V 7 1 10/25/2017	





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1635.80	Н	-	-	-79.31	9.30	-70.01	-57.0
2453.70	Н	139	218	-69.86	8.70	-61.17	-48.2
3271.60	Н	-	-	-70.27	8.12	-62.15	-49.1

Table 7-5. Radiated Spurious Data (CDMA BC10 - Ch. 476)

CDMA

3

823.10

684

meters

MHz

OPERATING FREQUENCY:

CHANNEL: MODULATION SIGNAL:

DISTANCE:

LIMIT: -13.00 dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1646.20	Н	-	-	-79.06	9.36	-69.70	-56.7
2469.30	Н	139	218	-72.38	8.60	-63.78	-50.8
3292.40	Н	-	-	-69.55	8.21	-61.34	-48.3

Table 7-6. Radiated Spurious Data (CDMA BC10 - Ch. 684)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 51 of 65
© 2017 PCTEST Engineering Labor	ratory. Inc.	·	V 7.1 10/25/2017





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1646.20	Н	-	-	-79.16	9.36	-69.80	-56.8
2469.30	Н	150	159	-73.18	8.60	-64.58	-51.6
3292.40	Н	-	-	-69.59	8.21	-61.38	-48.4

Table 7-7. Radiated Spurious Data with WCP (CDMA BC10 - Ch. 684)

7	90.50	MHz
2		
QPSK		
5.0	MHz	
3	meters	
-13	dBm	
	7 2 QPSK 5.0 3 -13	790.50           23305           QPSK           5.0         MHz           3         meters           -13         dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2371.50	Н	-	-	-68.96	4.94	-64.02	-51.0

Table 7-8. Radiated Spurious Data (LTE B14 - Ch. 23305)



Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]		
2379.00	Н	-	-	-68.85	4.95	-63.89	-50.9		
-									

 Table 7-9. Radiated Spurious Data (LTE B14 - Ch. 23330)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	UNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 52 01 05
© 2017 PCTEST Engineering Labor	ratory Inc			V 7 1 10/25/2017





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2386.50	Н	-	-	-68.81	4.97	-63.84	-50.8
3182.00	Н	-	-	-68.66	6.11	-62.55	-49.6

Table 7-10. Radiated Spurious Data (LTE B14 - Ch. 23355)

MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	5.00	MHz
DISTANCE:	3	meters
NARROWBAND EMISSION LIMIT:	-50	dBm
WIDEBAND EMISSION LIMIT:	-40	dBm/MHz
-		=

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1581.00	Н	-	-	-70.08	4.59	-65.48	-25.5
1586.00	Н	-	-	-69.98	4.62	-65.35	-25.4
1591.00	Н	-	-	-70.35	4.65	-65.69	-25.7

Table 7-11. Radiated Spurious Data (Band 14 – 1559-1610MHz Band)

FCC ID: A3I SMG960U	PCTEST	MEASUREMENT REPORT	SAMSUNG	Approved by:
	Y TROBELSING LABORATORS, INC.	(CERTIFICATION)		Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 55 01 65
© 2017 PCTEST Engineering Labor	ratory. Inc.			V 7.1 10/25/2017



OPERATING FREQUENCY: 795.50 MHz CHANNEL: 23355 MODULATION SIGNAL: QPSK BANDWIDTH: 5.0 MHz DISTANCE: 3 meters LIMIT: -13 dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2386.50	Н	-	-	-58.79	4.97	-53.82	-40.8

Table 7-12. Radiated Spurious Data with WCP (LTE B14 - Ch. 23355)

QPSK	<u>.</u>
5.00	MHz
3	meters
-50	dBm
-40	dBm/MHz
	QPSK 5.00 3 -50 -40

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1591.00	Н	-	-	-63.75	4.65	-59.10	-19.1

Table 7-13. Radiated Spurious Data with WCP (Band 14 – 1559-1610MHz Band)

OPERATING FREQUENCY:819.00MHzCHANNEL:26740BANDWIDTH:10.0DISTANCE:3LIMIT:-13.00dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1638.00	Н	-	-	-67.21	9.36	-57.85	-44.9
2457.00	Н	-	-	-59.69	8.60	-51.09	-38.1

Table 7-14. Radiated Spurious Data (LTE B26 - Ch. 26740)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage E4 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 54 of 63	
© 2017 PCTEST Engineering Labor	V 7.1 10/25/2017				





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1638.00	Н	150	293	-71.20	9.36	-61.84	-48.8
2457.00	Н	-	-	-67.06	8.60	-58.47	-45.5

Table 7-15. Radiated Spurious Data with WCP (LTE B26 - Ch. 26740)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	ING	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage EE of 62	
1M1711010281-04-R1.A3L 11/1-12/7/2017		Portable Handset		Page 55 of 63	
© 2017 PCTEST Engineering Labo	V 7 1 10/25/2017				



## 7.8 Frequency Stability / Temperature Variation §2.1055 §90.213 §90.539

#### **Test Overview and Limit**

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

## The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ( $\pm 2.5$ ppm) of the center frequency.

#### Test Procedure Used

ANSI/TIA-603-D-2010

#### **Test Settings**

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

#### Test Notes

None

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	AMSUNG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Dege E6 of 62	
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 50 01 05	
© 2017 PCTEST Engineering Labo	V 7 1 10/25/2017				



# CDMA BC10 Frequency Stability / Temperature Variation §2.1055, §90.213

OPERATING FREQUENCY:	817,900,000	Hz
CHANNEL:	476	_
REFERENCE VOLTAGE:	4.30	_ VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	_

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.30	+ 20 (Ref)	817,900,117	117	0.0000143
100 %		- 30	817,899,782	-218	-0.0000267
100 %		- 20	817,899,768	-232	-0.0000284
100 %		- 10	817,899,626	-374	-0.0000457
100 %		0	817,899,708	-292	-0.0000357
100 %		+ 10	817,899,856	-144	-0.0000176
100 %		+ 20	817,900,087	87	0.0000106
100 %		+ 30	817,899,799	-201	-0.0000246
100 %		+ 40	817,900,167	167	0.0000204
100 %		+ 50	817,900,134	134	0.0000164
BATT. ENDPOINT	3.70	+ 20	817,900,009	9	0.0000011

Table 7-16. CDMA BC10 Frequency Stability Data (Ch. 476)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:	Dama 57 of 60		
1M1711010281-04-R1.A3L	11/1-12/7/2017	ortable Handset		Page 57 of 63	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				



## CDMA BC10 Frequency Stability / Temperature Variation §2.1055, §90.213



Figure 7-6. CDMA BC10 Frequency Stability Graph (Ch. 476)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:			
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 58 of 63	
© 2017 PCTEST Engineering Labo	V 7.1 10/25/2017				



# LTE B14 Frequency Stability / Temperature Variation §2.1055, §90.213

OPERATING FREQUENCY:	793,000,000	Hz
CHANNEL:	23330	
REFERENCE VOLTAGE:	4.30	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.30	+ 20 (Ref)	792,999,708	-292	-0.0000368
100 %		- 30	792,999,965	-35	-0.0000044
100 %		- 20	793,000,255	255	0.0000322
100 %		- 10	793,000,020	20	0.0000025
100 %		0	793,000,011	11	0.0000014
100 %		+ 10	792,999,905	-95	-0.0000120
100 %		+ 20	793,000,081	81	0.0000102
100 %		+ 30	793,000,107	107	0.0000135
100 %		+ 40	792,999,989	-11	-0.0000014
100 %		+ 50	792,999,658	-342	-0.0000431
BATT. ENDPOINT	3.70	+ 20	793,000,051	51	0.0000064

Table 7-17. LTE Band 14 Frequency Stability Data (Ch. 23330)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 59 01 65
© 2017 PCTEST Engineering Labor	ratory. Inc.		V 7.1 10/25/2017



## LTE B14 Frequency Stability / Temperature Variation §2.1055, §90.213



Table 7-18. LTE Band 14 Frequency Stability Data (Ch. 23330)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 60 01 65
© 2017 PCTEST Engineering Labo	ratory, Inc.			V 7.1 10/25/2017



# LTE B26 Frequency Stability / Temperature Variation §2.1055, §90.213

OPERATING FREQUENCY:	819,000,000	Hz
CHANNEL:	26740	_
REFERENCE VOLTAGE:	4.30	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	_

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.30	+ 20 (Ref)	819,000,282	282	0.0000344
100 %		- 30	819,000,074	74	0.0000090
100 %		- 20	818,999,957	-43	-0.0000053
100 %		- 10	818,999,974	-26	-0.0000032
100 %		0	819,000,252	252	0.0000308
100 %		+ 10	818,999,982	-18	-0.0000022
100 %		+ 20	818,999,624	-376	-0.0000459
100 %		+ 30	819,000,069	69	0.0000084
100 %		+ 40	818,999,775	-225	-0.0000275
100 %		+ 50	818,999,977	-23	-0.0000028
BATT. ENDPOINT	3.70	+ 20	818,999,998	-2	-0.0000002

Table 7-19. LTE Band 26 Frequency Stability Data (Ch. 26740)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset	Page 61 of 63
© 2017 PCTEST Engineering Labor	ratory, Inc.		V 7.1 10/25/2017



## LTE B26 Frequency Stability / Temperature Variation §2.1055, §90.213



Table 7-20. LTE Band 26 Frequency Stability Data (Ch. 26740)

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 62 01 65
© 2017 PCTEST Engineering Labor	ratory, Inc.	•		V 7.1 10/25/2017



### 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG960U** complies with all the requirements of Parts 22(H) and 90 of the FCC rules.

FCC ID: A3LSMG960U		MEASUREMENT REPORT (CERTIFICATION)	0	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 62 of 62
1M1711010281-04-R1.A3L	11/1-12/7/2017	Portable Handset		Page 65 01 65
© 2017 PCTEST Engineering Laboratory Inc.				V 7 1 10/25/2017