

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 01/06/15 - 01/24/15 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1501080032.A3L

FCC ID:

A3LSMG920KOR

APPLICANT:

SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Application Type: FCC Rule Part(s): Model(s):

Portable Handset Certification CFR §2.1093 SM-G920S, SM-G920K, SM-G920L

Equipment	Band & Mode	Tx Frequency	SAR			
Class			1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	
PCE	UMTS 850	826.40 - 846.60 MHz	0.12	0.19	0.19	
PCE	GSM/GPRS 1900	1850.20 - 1909.80 MHz	0.11	0.48	0.78	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.18	0.90	1.06	
PCE	LTE Band 17	706.5 - 713.5 MHz	< 0.1	0.24	0.24	
PCE	LTE Band 26	814.7 - 848.3 MHz	0.15	0.30	0.30	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.16	1.10	1.10	
PCE	LTE Band 41	2498.5 - 2687.5 MHz	< 0.1	0.24	0.24	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	1.07	< 0.1	0.12	
NII	U-NII-1	5180 - 5240 MHz	N/A			
NII	U-NII-2A	5260 - 5320 MHz	0.63	< 0.1		
NII	U-NII-2C < 5.65 GHz	5500 - 5580 MHz	0.89	< 0.1		
NII	U-NII-2C > 5.65 GHz + U-NII-3	5660 - 5825 MHz	0.90	< 0.1	0.10	
DSS/DTS	Bluetooth	2402 - 2480 MHz	N/A			
Simultaneous	SAR per KDB 690783 D01v01r0	3:	1.57	1.33	1.33	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: A3LSMG920KOR	····· V	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 1 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 1 of 67

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	9
3	INTROD	JCTION	10
4	DOSIME	TRIC ASSESSMENT	11
5	DEFINIT	ON OF REFERENCE POINTS	12
6	TEST CO	ONFIGURATION POSITIONS FOR HANDSETS	13
7	RF EXPO	DSURE LIMITS	16
8	FCC ME	ASUREMENT PROCEDURES	17
9	RF CON	DUCTED POWERS	23
10	SYSTEM	VERIFICATION	42
11	SAR DAT	TA SUMMARY	44
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	53
13	SAR ME	ASUREMENT VARIABILITY	61
14	EQUIPM	ENT LIST	62
15	MEASUF	REMENT UNCERTAINTIES	63
16	CONCLU	ISION	65
17	REFERE	NCES	66
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 2 of 67
© 2015 PCTEST Engineering Laboratory	, Inc.	-		REV 14.0 M

DEVICE UNDER TEST 1

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Voice/Data	826.40 - 846.60 MHz
GSM/GPRS 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 26	Data	814.7 - 848.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
LTE Band 41	Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
U-NII-1	Data	5180 - 5240 MHz
U-NII-2A	Data	5260 - 5320 MHz
U-NII-2C < 5.65 GHz	Data	5500 - 5580 MHz
U-NII-2C > 5.65 GHz + U-NII-3	Data	5660 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
ANT+	Data	2402 - 2480 MHz
MST	Data	1 - 8.3 kHz

Nominal and Maximum Output Power Specifications 1.2

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

		Voice	Burst A	verage	
	(dBm)		(dBm)		
Mode / Band	1 TX	1 TX	2 TX		
	Slot	Slots	Slots		
Maximum		29.5	29.5	28.0	
GSM/GPRS 1900	Nominal	29.0	29.0	27.5	
		Modulat	ed Avera	ge (dBm)	
Mode / Band		Modulat 3GPP	ed Avera _e <i>3GPP</i>	ge (dBm) <i>3GPP</i>	
Mode / Band				í í í	
	Maximum	3GPP	3GPP	3GPP	
Mode / Band UMTS Band 5 (850 MHz)	Maximum Nominal	3GPP RMC	3GPP HSDPA	3GPP HSUPA	
		3GPP RMC 23.5	3GPP HSDPA 23.5	3GPP HSUPA 22.5	

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 3 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Fage 5 01 07
© 2015 PCTEST Engineering Laboratory,	Inc.	•	REV 14.0 M

Mode / Band	Modulated Average (dBm)	
LTE Dand 17	Maximum	23.5
LTE Band 17	Nominal	23.0
LTE Dand 26 /E (Call)	Maximum	23.5
LTE Band 26/5 (Cell)	Nominal	23.0
LTE Dand 2 (DCE)	Maximum	23.0
LTE Band 2 (PCS)	Nominal	22.5
LTE Dand 41	Maximum	24.0
LTE Band 41	Nominal	23.5

Mode / Band		Modulated Average
	Maximatina	(dBm) 17.5
IEEE 802.11b (2.4 GHz) - SISO	Maximum	-
	Nominal	17.0
IEEE 802.11g (2.4 GHz) - SISO	Maximum	14.5
	Nominal	14.0
IEEE 802.11n (2.4 GHz) - SISO	Maximum	12.5
· · · ·	Nominal	12.0
IEEE 802.11n (2.4 GHz) - MIMO	Maximum	15.5
	Nominal	15.0
IEEE 802.11a (5 GHz) - SISO	Maximum	14.5
122 002.110 (3 012) 5150	Nominal	14.0
IEEE 802.11n 20 MHz (5 GHz) - SISO	Maximum	12.5
TEEL 802.1111 20 WINZ (3 GHZ) - 3130	Nominal	12.0
	Maximum	12.5
IEEE 802.11ac 20 MHz (5 GHz) - SISO	Nominal	12.0
IEEE 802.11n 20 MHz (5 GHz) - MIMO	Maximum	15.5
	Nominal	15.0
	Maximum	15.5
IEEE 802.11ac 20 MHz (5 GHz) - MIMO	Nominal	15.0
	Maximum	10.5
IEEE 802.11n 40 MHz (5 GHz) - SISO	Nominal	10.0
	Maximum	10.5
IEEE 802.11ac 40 MHz (5 GHz) - SISO	Nominal	10.0
	Maximum	13.5
IEEE 802.11n/ac 40 MHz (5 GHz) - MIMO	Nominal	13.0
	Maximum	10.5
IEEE 802.11ac 80 MHz (5 GHz) - SISO	Nominal	10.0
	Maximum	13.5
IEEE 802.11ac 80 MHz (5 GHz) - MIMO	Nominal	13.0
	Maximum	10.5
Bluetooth	Nominal	10.0
	Maximum	7.0
Bluetooth LE	Nominal	6.5
	Nominai	0.5

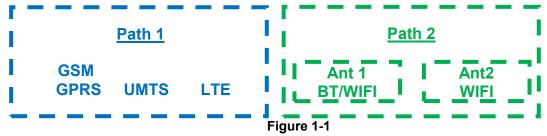
FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 4 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 4 of 67
© 2015 PCTEST Engineering Laboratory	, Inc.	•		REV 14.0 M

1.3 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in Appendix F. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing. The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is <160 mm and the diagonal display is <150 mm.

					<u> </u>	
Mobile Hotspot Sides for SAR Testing						
Mode	Back	Front	Тор	Bottom	Right	Left
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 17	Yes	Yes	No	Yes	Yes	Yes
LTE Band 26	Yes	Yes	No	Yes	Yes	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 41	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN - Ant1	Yes	Yes	Yes	No	No	Yes
2.4 GHz WLAN - Ant2	Yes	Yes	Yes	No	Yes	No
U-NII-3 - Ant1	Yes	Yes	Yes	No	No	Yes
U-NII-3 - Ant2	Yes	Yes	Yes	No	Yes	No

Table 1-1 Mobile Hotspot Sides for SAR Testing


Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-1, U-NII-2A & U-NII-2C WLAN operations are disabled. Therefore U-NII-1, U-NII-2A & U-NII-2C WLAN operations.

1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 5 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 5 of 67

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes			
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A				
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A				
3	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A				
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes				
5	UMTS + 5 GHz WI-FI	Yes	Yes	Yes				
6	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A				
7	LTE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
8	LTE + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
9	LTE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.			
10	GPRS + 2.4 GHz WI-FI	N/A	N/A	Yes				
11	GPRS + 5 GHz WI-FI	N/A	N/A	Yes				

Table 1-2Simultaneous Transmission Scenarios

1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.

2. All licensed modes share the same antenna path and cannot transmit simultaneously.

- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-3 Band by S/W, therefore U-NII1, U-NII-2A, & U-NII-2C Bands were not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN 802.11n/ac. Each WLAN antenna can transmit independently or together when operating with MIMO.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 6 of 67
© 2015 DOTECT Engineering Leherotery	lee		

1.6 SAR Test Exclusions Applied

(A) Miscellaneous SAR Test Considerations

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A & U-NII-2C WIFI, only 2.4 GHz and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v01.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB 248227 D01 DR02-41929.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 2 Tx antenna output
- d) 256 QAM is supported
- e) Band gap channels are not supported

Per FCC KDB 447498 D01v05, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; $[(11/10)^* \sqrt{2.480}] = 1.7 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02.

This device supports both LTE Band 5 (Cell) and LTE Band 26 (Cell). Since the supported frequency span for LTE Band 5 (Cell) falls completely within the supported frequency span for LTE Band 26 (Cell), both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE Band 26 (Cell).

1.7 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	ent S/N: Test Dates: DUT Type:		Daga Z af 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 7 of 67

Guidance Applied 1.8

- IEEE 1528-2003 •
- FCC KDB Publication 941225 D01, D05, D06 (2G/3G/4G and Hotspot) ٠
- FCC KDB Publication 248227 D01 DR02-41929 (SAR Considerations for 802.11 Devices) •
- FCC KDB Publication 447498 D01v05r02 (General SAR Guidance) ٠
- FCC KDB Publication 865664 D01v01r03, D02v01r01 (SAR Measurements up to 6 GHz) •
- October 2013 TCB Workshop Notes (GPRS Testing Considerations) •

1.9 **Device Serial Numbers**

Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
UMTS 850	077AF	077AF	077AF
GSM 1900	077AF	077AF	077AF
UMTS 1900	077AF	077AF	077AF
LTE Band 17	074FF	074FF	074FF
LTE Band 26	077AF	074FF	074FF
LTE Band 2 (PCS)	077C5	077C5	077C5
LTE Band 41	074FF	077AF	077AF
2.4 GHz WLAN	074FF	074FF	074FF
5 GHz WLAN	074FF	074FF	074FF

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 9 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 8 of 67
© 2015 PCTEST Engineering Laboratory	REV 14.0 M		

2 LTE INFORMATION

	LTE In	formation			
FCC ID			A3LSMG920KOR		
Form Factor			Portable Handset		
	LTE Band 17 (706.5 - 713.5 MHz)				
	LTE Band 5 (824.7 - 848.3 MHz)				
Frequency Range of each LTE transmission band		LTE Ba	and 26 (814.7 - 848	.3 MHz)	
		LTE Band 2	2 (PCS) (1850.7 - 1	909.3 MHz)	
		LTE Ban	nd 41 (2498.5 - 268	7.5 MHz)	
			Band 17: 5 MHz, 10		
			1.4 MHz, 3 MHz, 5		
Channel Bandwidths			MHz, 3 MHz, 5 MHz		
	LTE B			10 MHz, 15 MHz, 2	0 MHz
			5 MHz, 10 MHz, 15		
Channel Numbers and Frequencies (MHz)	Low Low-Mid		Mid	High-Mid	High
LTE Band 17: 5 MHz		(23755)	710 (23790)	713.5 (. ,
LTE Band 17: 10 MHz	709 (2		710 (23790)	711 (2	/
LTE Band 5: 1.4 MHz	824.7 (. ,	836.5 (20525)	848.3 (. /
LTE Band 5: 3 MHz	825.5 (20415)		836.5 (20525)	847.5 (
LTE Band 5: 5 MHz	826.5 (20425)		836.5 (20525)	846.5 (20625)	
LTE Band 5: 10 MHz	829 (20450)		836.5 (20525)	844 (2	,
LTE Band 26: 1.4 MHz	814.7 (26697)		831.5 (26865)	848.3 (27033)	
LTE Band 26: 3 MHz	815.5 (831.5 (26865)	847.5 (27025)	
LTE Band 26: 5 MHz	816.5 (. ,	831.5 (26865)	846.5 (27015)	
LTE Band 26: 10 MHz	· · · · · · · · · · · · · · · · · · ·	26740)	831.5 (26865)	844 (26990)	
LTE Band 26: 15 MHz	831.5 (836.5 (26915)	841.5 (26865)	
LTE Band 2 (PCS): 1.4 MHz		(18607)	1880 (18900)	1909.3	
LTE Band 2 (PCS): 3 MHz		(18615)	1880 (18900)	1908.5	. /
LTE Band 2 (PCS): 5 MHz		(18625)	1880 (18900)	1907.5	· /
LTE Band 2 (PCS): 10 MHz		18650)	1880 (18900)	1905 (
LTE Band 2 (PCS): 15 MHz		(18675)	1880 (18900)	1902.5	· /
LTE Band 2 (PCS): 20 MHz	1860 (/	1880 (18900)	`	19100)
LTE Band 41: 5 MHz	2498.5 (39675)	2545.8 (40148)	2593 (40620)	2640.25 (41093)	
LTE Band 41: 10 MHz	2501 (39700)	2547 (40160)	2593 (40620)	2639 (41080)	2685 (41540)
LTE Band 41: 15 MHz	2503.5 (39725)	2548.3 (40173)	2593 (40620)	2637.75 (41068)	
LTE Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
UE Category			9 QPSK, 16QAM		
Modulations Supported in UL			QPSK, IOQAIVI		
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation			YES		
to be provided)					
A-MPR (Additional MPR) disabled for SAR Testing?	YES				
LTE Carrier Aggregation Possible Combinations		No	-	US	
LTE Carrier Aggregation Additional Information	Not Supported in the US This device does not support full LTE Release 10 operations in the US. The following LTE Release 10 Features are not supported in the US: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, eICI, WFI Offloading, MDH, eMBMA, Cross-Carrier Scheduling, Enhanced SC-FDMA.				

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:		Dage 0 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 9 of 67
© 2015 PCTEST Engineering Laborator	REV 14.0 M			

3 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

SAR =	d	$\left(dU \right)$	d	$\left(dU \right)$
SAK =	\overline{dt}	$\left(\frac{1}{dm}\right)$	$=\overline{dt}$	$\left(\overline{\rho dv} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates: DUT Type:		Page 10 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Fage 10 01 07
© 2015 PCTEST Engineering Laboratory,	REV 14.0 M		

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

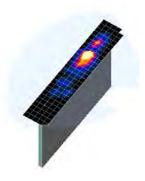


Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

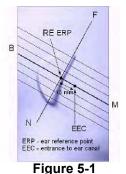
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

 The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

_	Maximum Area Scan Resolution (mm) Resolution (mm)		Max	Minimum Zoom Scan		
Frequency	$(\Delta x_{area}, \Delta y_{area})$	Resolution (mm) (Δx _{zoom} , Δy _{zoom}) Uniform Grid Graded Grid		Volume (mm) (x,y,z)		
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤2 GHz	≤ 15	≤8	≤5	≤4	≤1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	≤ 1.5*∆z _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	≤1.5*Δz _{zoom} (n-1)	≥22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01*

*Also compliant to IEEE 1528-2013 Table 6


FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 11 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 11 of 67
© 2015 PCTEST Engineering Laboratory	REV 14.0 M		

07/21/2014

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Close-Up Side view

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

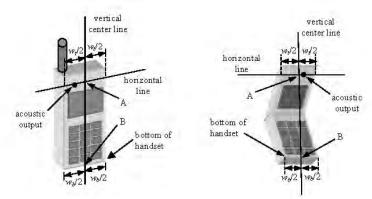


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates: DUT Type:		Page 12 of 67	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 12 01 67
© 2015 PCTEST Engineering Laboratory	REV 14.0 M			

6 TEST CONFIGURATION POSITIONS FOR HANDSETS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 **Positioning for Ear / 15° Tilt**

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 12 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 13 of 67
© 2015 DCTEST Engineering Laborator	Ino		DEV/14.0 M

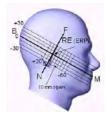
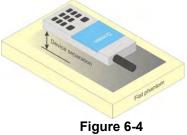



Figure 6-3 Side view w/ relevant markings

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

6.4 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater

Sample Body-Worn Diagram

than or equal to that required for hotspot mode, when applicable. When the reported SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that bodyworn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Document S/N: Test Dates: DUT Type: Page 14 of 67	FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 14 of 67
01/06/15 - 01/24/15 Portable HandSet	0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 14 01 67

© 2015 PCTEST Engineering Laboratory, Inc.

6.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 44798 D01v05 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v05, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 15 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Fage 15 01 07
© 2015 PCTEST Engineering Laboratory,	REV 14.0 M		

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

1.00	MAN EXPOSURE LIMITS	
	UNCONTROLLED EN√IRONMENT General Population (W/kg) or (mW/g)	CONTROLLED EN√IRONMENT Occupational (W/kg) or (mW/g)
Y eak Spatial Average SAR Jead	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 46 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 16 of 67
© 2015 PCTEST Engineering Laborator	REV 14.0 M			

8 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

8.3 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC

FCC ID: A3LSMG920KOR	CC ID: A3LSMG920KOR SAR EVALUATION REPOR		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dava 47 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 17 of 67

© 2015 PCTEST Engineering Laboratory, Inc.

(transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.4.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

8.4.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK =5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

Sub- Test	βε	βa	β _d (SF)	β_c/β_d	β _{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 1: Note 2:	For the HS-I Magnitude (DPCCH pow EVM) with I y in clause 5.	er mask requ HS-DPCCH 13.1AA, Δ _{AC}	$\beta_c = 30/15 \Leftrightarrow \beta_c$ irrement test in c test in clause 5.1 K and $\Delta_{NACK} = 8$ 15 * β_c .	lause 5.2C, 5. 3.1A, and HS	7A, and the Erro DPA EVM with	phase
Note 3:				5. For all other c	mbinations	EDDOCH DD	All has U.Y.

DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Figure 8-1 Table C.10.1.4 of TS 234.121-1

	iewed by: Ility Manager
	- 40 - 407
0Y1501080032.A3L 01/06/15 - 01/24/15 Portable Handset	e 18 of 67

© 2015 PCTEST Engineering Laboratory, Inc.

8.4.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βε	βa	β _d (SF)	Bc/Bd	β _{hs} ⁽¹⁾	Bec	Bed	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15(3)	15/15(3)	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	. 1 -	3.0	2.0	17	71
5	15/15(4)	15/15(4)	64	15/15(4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_b/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

8.5 SAR Measurement Conditions for LTE

LTE modes were tested according to FCC KDB 941225 D05v02 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: A3LSMG920KOR	A3LSMG920KOR SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 10 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 19 of 67

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r01:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 TDD

LTE TDD testing is performed using guidance from FCC KDB 941225 D05v02r03 and the SAR test guidance provided in April 2013 TCB workshop notes. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r03. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.6 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n/ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v DR02-41929 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 20 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 20 of 67

highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz are grouped with the 5.8 GHz channels in U-NII-3 band or §15.247 5.8 GHz band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 21 of 67
0Y1501080032.A3L		Portable Handset	Page 21 of 67

8.6.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6)

8.6.8 Subsequent Test Configuration Procedures

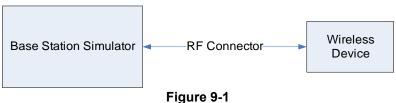
For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power, is ≤ 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required.

8.6.9 MIMO SAR considerations

Per KDB 248227 D01 DR02-41929, the simultaneous SAR provisions in KDB Publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 22 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 22 of 67

9 RF CONDUCTED POWERS


9.1 GSM Conducted Powers

			n Burst-Av tput Powe	•
		Voice	GPRS (GM	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot
	512	28.95	28.92	27.93
GSM 1900	661	28.84	28.87	27.78
	810	28.82	29.17	28.00
		Calculated		
		Average	d Output	Power
		Voice	GPRS (GM	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS GPRS [dBm] [dBm] 1 Tx 2 Tx Slot Slot	
	512	19.92	19.89	21.91
GSM 1900	661	19.81	19.84	21.76
	810	19.79	20.14	21.98
GSM 1900	Frame Avg.Targets:	19.97	19.97	21.48

Note:

- 1.Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. The source-based frame-averaged output power was evaluated for all GPRS slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. GPRS (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

GSM Class: B GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: N/A DTM Multislot Class: N/A

Power Measurement Setup

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 22 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 23 of 67

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band	[dBm]	PCS	3GPP MPR [dB]		
Version		oublest	4132	4183	4233	9262	9400	9538	
99	WCDMA	12.2 kbps RMC	23.15	23.10	23.03	22.24	22.29	22.27	-
99	VVCDIVIA	12.2 kbps AMR	23.09	23.06	23.00	22.18	22.21	22.20	-
6		Subtest 1	23.22	23.18	23.23	22.15	22.16	22.16	0
6	HSDPA	Subtest 2	23.13	23.08	23.10	22.15	22.34	22.18	0
6	ISDPA	Subtest 3	22.36	22.35	22.44	21.89	21.88	22.15	0.5
6		Subtest 4	22.40	21.76	22.41	21.86	21.58	20.95	0.5
6		Subtest 1	22.24	22.14	22.28	21.62	21.51	21.87	0
6		Subtest 2	19.61	19.53	19.80	19.56	19.37	19.17	2
6	HSUPA	Subtest 3	22.20	22.21	22.28	22.18	22.15	22.18	1
6		Subtest 4	19.59	19.50	19.75	19.61	19.47	19.25	2
6		Subtest 5	22.18	22.11	22.33	21.64	21.50	21.68	0

9.2 UMTS Conducted Powers

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

This device does not support DC-HSDPA.

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Power Measurement Setup

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:			Page 24 of 67
0Y1501080032.A3L			Fage 24 01 07
© 2015 PCTEST Engineering Laboratory,	Inc.		REV 14.0 M

9.3 LTE Conducted Powers

9.3.1 LTE Band 17

Table 9-1

LTE Band 17 Conducted Powers - 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	710.0	23790	10	QPSK	1	0	23.29	0	0
	710.0	23790	10	QPSK	1	25	23.20	0	0
	710.0	23790	10	QPSK	1	49	23.20	0	0
	710.0	23790	10	QPSK	25	0	21.82	0-1	1
	710.0	23790	10	QPSK	25	12	21.85	0-1	1
	710.0	23790	10	QPSK	25	25	21.71	0-1	1
Mid	710.0	23790	10	QPSK	50	0	21.74	0-1	1
Σ	710.0	23790	10	16QAM	1	0	22.24	0-1	1
	710.0	23790	10	16QAM	1	25	22.13	0-1	1
	710.0	23790	10	16QAM	1	49	22.04	0-1	1
	710.0	23790	10	16QAM	25	0	20.88	0-2	2
	710.0	23790	10	16QAM	25	12	20.92	0-2	2
	710.0	23790	10	16QAM	25	25	20.81	0-2	2
	710.0	23790	10	16QAM	50	0	20.71	0-2	2

Note: LTE Band 17 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2	
LTE Band 17 Conducted Powers - 5 MHz Bandwidth	h

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	710.0	23790	5	QPSK	1	0	23.29	0	0
	710.0	23790	5	QPSK	1	12	23.31	0	0
	710.0	23790	5	QPSK	1	24	23.28	0	0
	710.0	23790	5	QPSK	12	0	21.95	0-1	1
	710.0	23790	5	QPSK	12	6	21.93	0-1	1
	710.0	23790	5	QPSK	12	13	21.83	0-1	1
Mid	710.0	23790	5	QPSK	25	0	21.79	0-1	1
Σ	710.0	23790	5	16-QAM	1	0	21.91	0-1	1
	710.0	23790	5	16-QAM	1	12	21.87	0-1	1
	710.0	23790	5	16-QAM	1	24	21.96	0-1	1
	710.0	23790	5	16-QAM	12	0	20.95	0-2	2
	710.0	23790	5	16-QAM	12	6	20.88	0-2	2
	710.0	23790	5	16-QAM	12	13	21.00	0-2	2
	710.0	23790	5	16-QAM	25	0	20.87	0-2	2

Note: LTE Band 17 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates: DUT Type:		Dage 25 of 67
0Y1501080032.A3L		Portable Handset	Page 25 of 67

© 2015 PCTEST Engineering Laboratory, Inc.

LTE Band 26 (Cell)

Table 9-3

9.3.2

LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	836.5	26915	15	QPSK	1	0	23.24	0	0
	836.5	26915	15	QPSK	1	36	23.15	0	0
	836.5	26915	15	QPSK	1	74	23.07	0	0
	836.5	26915	15	QPSK	36	0	21.75	0-1	1
	836.5	26915	15	QPSK	36	18	21.78	0-1	1
	836.5	26915	15	QPSK	36	37	21.71	0-1	1
<u>q</u>	836.5	26915	15	QPSK	75	0	21.77	0-1	1
Ξ	836.5	26915	15	16QAM	1	0	22.34	0-1	1
	836.5	26915	15	16QAM	1	36	22.22	0-1	1
	836.5	26915	15	16QAM	1	74	22.10	0-1	1
	836.5	26915	15	16QAM	36	0	20.57	0-2	2
	836.5	26915	15	16QAM	36	18	20.58	0-2	2
	836.5	26915	15	16QAM	36	37	20.50	0-2	2
	836.5	26915	15	16QAM	75	0	20.80	0-2	2

Note: LTE Band 26 at 15 MHz bandwidth is only supported for FCC Rule Part 22H. There are not three non-overlapping channels within FCC Rule Part 22H. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

				eii) con	uucieu	I Owers			
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	819	26740	10	QPSK	1	0	23.23	0	0
	819	26740	10	QPSK	1	25	23.22	0	0
	819	26740	10	QPSK	1	49	23.26	0	0
	819	26740	10	QPSK	25	0	22.03	0-1	1
	819	26740	10	QPSK	25	12	21.96	0-1	1
	819	26740	10	QPSK	25	25	21.97	0-1	1
Low	819	26740	10	QPSK	50	0	21.98	0-1	1
LC	819	26740	10	16QAM	1	0	22.46	0-1	1
	819	26740	10	16QAM	1	25	22.49	0-1	1
	819	26740	10	16QAM	1	49	22.40	0-1	1
	819	26740	10	16QAM	25	0	20.95	0-2	2
	819	26740	10	16QAM	25	12	20.96	0-2	2
	819	26740	10	16QAM	25	25	21.07	0-2	2
	819	26740	10	16QAM	50	0	20.90	0-2	2
	831.5	26865	10	QPSK	1	0	23.28	0	0
	831.5	26865	10	QPSK	1	25	23.29	0	0
	831.5	26865	10	QPSK	1	49	23.32	0	0
	831.5	26865	10	QPSK	25	0	21.97	0-1	1
	831.5	26865	10	QPSK	25	12	21.92	0-1	1
	831.5	26865	10	QPSK	25	25	21.91	0-1	1
Mid	831.5	26865	10	QPSK	50	0	21.85	0-1	1
Σ	831.5	26865	10	16QAM	1	0	22.25	0-1	1
	831.5	26865	10	16QAM	1	25	22.26	0-1	1
	831.5	26865	10	16QAM	1	49	21.73	0-1	1
	831.5	26865	10	16QAM	25	0	20.97	0-2	2
	831.5	26865	10	16QAM	25	12	20.91	0-2	2
	831.5	26865	10	16QAM	25	25	20.98	0-2	2
	831.5	26865	10	16QAM	50	0	20.90	0-2	2
	844	26990	10	QPSK	1	0	23.45	0	0
	844	26990	10	QPSK	1	25	23.44	0	0
	844	26990	10	QPSK	1	49	23.32	0	0
	844	26990	10	QPSK	25	0	22.08	0-1	1
	844	26990	10	QPSK	25	12	22.00	0-1	1
	844	26990	10	QPSK	25	25	21.97	0-1	1
High	844	26990	10	QPSK	50	0	21.91	0-1	1
Η	844	26990	10	16QAM	1	0	22.37	0-1	1
	844	26990	10	16QAM	1	25	22.38	0-1	1
	844	26990	10	16QAM	1	49	22.03	0-1	1
	844	26990	10	16QAM	25	0	21.05	0-2	2
	844	26990	10	16QAM	25	12	20.96	0-2	2
	844	26990	10	16QAM	25	25	20.94	0-2	2
	844	26990	10	16QAM	50	0	21.03	0-2	2

Table 9-4
LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 26 of 67	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 26 of 67	
© 2015 DOTECT Engineering Laboratory	ma			

	LTE Band 26 (Cell) Conducted Powers								
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	816.5	26715	5	QPSK	1	0	23.00	0	0
	816.5	26715	5	QPSK	1	12	23.01	0	0
	816.5	26715	5	QPSK	1	24	23.06	0	0
	816.5	26715	5	QPSK	12	0	22.07	0-1	1
	816.5	26715	5	QPSK	12	6	22.06	0-1	1
	816.5	26715	5	QPSK	12	13	22.05	0-1	1
Low	816.5	26715	5	QPSK	25	0	22.02	0-1	1
P	816.5	26715	5	16-QAM	1	0	22.43	0-1	1
	816.5	26715	5	16-QAM	1	12	22.44	0-1	1
	816.5	26715	5	16-QAM	1	24	22.35	0-1	1
	816.5	26715	5	16-QAM	12	0	20.89	0-2	2
	816.5	26715	5	16-QAM	12	6	20.88	0-2	2
	816.5	26715	5	16-QAM	12	13	20.87	0-2	2
	816.5	26715	5	16-QAM	25	0	20.89	0-2	2
	831.5	26865	5	QPSK	1	0	23.26	0	0
	831.5	26865	5	QPSK	1	12	23.02	0	0
	831.5	26865	5	QPSK	1	24	23.27	0	0
	831.5	26865	5	QPSK	12	0	21.92	0-1	1
	831.5	26865	5	QPSK	12	6	21.94	0-1	1
	831.5	26865	5	QPSK	12	13	21.97	0-1	1
Mid	831.5	26865	5	QPSK	25	0	21.94	0-1	1
Σ	831.5	26865	5	16-QAM	1	0	21.97	0-1	1
	831.5	26865	5	16-QAM	1	12	21.93	0-1	1
	831.5	26865	5	16-QAM	1	24	22.03	0-1	1
	831.5	26865	5	16-QAM	12	0	20.87	0-2	2
	831.5	26865	5	16-QAM	12	6	20.81	0-2	2
	831.5	26865	5	16-QAM	12	13	20.80	0-2	2
	831.5	26865	5	16-QAM	25	0	20.88	0-2	2
	846.5	27015	5	QPSK	1	0	22.62	0	0
	846.5	27015	5	QPSK	1	12	22.53	0	0
	846.5	27015	5	QPSK	1	24	23.17	0	0
	846.5	27015	5	QPSK	12	0	22.17	0-1	1
	846.5	27015	5	QPSK	12	6	22.06	0-1	1
	846.5	27015	5	QPSK	12	13	22.00	0-1	1
눈	846.5	27015	5	QPSK	25	0	21.97	0-1	1
High	846.5	27015	5	16-QAM	1	0	22.38	0-1	1
	846.5	27015	5	16-QAM	1	12	22.21	0-1	1
	846.5	27015	5	16-QAM	1	24	22.43	0-1	1
	846.5	27015	5	16-QAM	12	0	21.08	0-2	2
	846.5	27015	5	16-QAM	12	6	21.06	0-2	2
	846.5	27015	5	16-QAM	12	13	21.00	0-2	2
	846.5	27015	5	16-QAM	25	0	20.96	0-2	2

Table 9-5 LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

FCC ID: A3LSMG920KOR	PCTEST	SAR EVALUATION REPORT	Reviewed by:
FCCID: A3LSING920ROR	····· V *KEUNTEREND LAKEKATORY, IM	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 27 of 67
© 2015 DOTEST Engineering Loboratory	Inc		DEV/14.0 M

© 2015 PCTEST Engineering Laboratory, Inc.

Г

	LTE Band 26 (Cell) Conducted Powers				Powers -				
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	815.5	26705	3	QPSK	1	0	23.37	0	0
	815.5	26705	3	QPSK	1	7	23.39	0	0
	815.5	26705	3	QPSK	1	14	23.46	0	0
	815.5	26705	3	QPSK	8	0	22.11	0-1	1
	815.5	26705	3	QPSK	8	4	22.03	0-1	1
	815.5	26705	3	QPSK	8	7	22.06	0-1	1
Low	815.5	26705	3	QPSK	15	0	22.14	0-1	1
Lo	815.5	26705	3	16-QAM	1	0	22.43	0-1	1
	815.5	26705	3	16-QAM	1	7	22.06	0-1	1
	815.5	26705	3	16-QAM	1	14	22.21	0-1	1
	815.5	26705	3	16-QAM	8	0	21.24	0-2	2
	815.5	26705	3	16-QAM	8	4	21.24	0-2	2
	815.5	26705	3	16-QAM	8	7	21.16	0-2	2
	815.5	26705	3	16-QAM	15	0	21.00	0-2	2
	831.5	26865	3	QPSK	1	0	23.40	0	0
	831.5	26865	3	QPSK	1	7	23.34	0	0
	831.5	26865	3	QPSK	1	14	23.33	0	0
	831.5	26865	3	QPSK	8	0	21.94	0-1	1
	831.5	26865	3	QPSK	8	4	21.96	0-1	1
	831.5	26865	3	QPSK	8	7	21.98	0-1	1
Mid	831.5	26865	3	QPSK	15	0	21.96	0-1	1
Σ	831.5	26865	3	16-QAM	1	0	22.44	0-1	1
	831.5	26865	3	16-QAM	1	7	22.40	0-1	1
	831.5	26865	3	16-QAM	1	14	22.39	0-1	1
	831.5	26865	3	16-QAM	8	0	20.82	0-2	2
	831.5	26865	3	16-QAM	8	4	20.90	0-2	2
	831.5	26865	3	16-QAM	8	7	20.92	0-2	2
	831.5	26865	3	16-QAM	15	0	20.73	0-2	2
	847.5	27025	3	QPSK	1	0	23.41	0	0
	847.5	27025	3	QPSK	1	7	23.32	0	0
	847.5	27025	3	QPSK	1	14	23.35	0	0
	847.5	27025	3	QPSK	8	0	22.14	0-1	1
	847.5	27025	3	QPSK	8	4	22.09	0-1	1
	847.5	27025	3	QPSK	8	7	22.07	0-1	1
High	847.5	27025	3	QPSK	15	0	22.02	0-1	1
ΞĨ	847.5	27025	3	16-QAM	1	0	22.29	0-1	1
	847.5	27025	3	16-QAM	1	7	22.16	0-1	1
	847.5	27025	3	16-QAM	1	14	22.13	0-1	1
	847.5	27025	3	16-QAM	8	0	21.02	0-2	2
	847.5	27025	3	16-QAM	8	4	20.99	0-2	2
	847.5	27025	3	16-QAM	8	7	20.97	0-2	2
	847.5	27025	3	16-QAM	15	0	21.04	0-2	2

Table 9-6 LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by:
FCCID: A3LSMG920KOR		SAR EVALUATION REPORT	Contraction	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 28 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 28 of 67
© 2015 PCTEST Engineering Laboratory	Inc			DEV/14.0 M

Г

_	LIE Ballu 26 (Cell) Colluucie				muucieu	Powers -1.4 MHZ Bandwidth				
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	814.7	26697	1.4	QPSK	1	0	23.36	0	0	
	814.7	26697	1.4	QPSK	1	2	23.27	0	0	
	814.7	26697	1.4	QPSK	1	5	23.37	0	0	
	814.7	26697	1.4	QPSK	3	0	23.27	0	0	
	814.7	26697	1.4	QPSK	3	2	23.38	0	0	
	814.7	26697	1.4	QPSK	3	3	23.32	0	0	
Low	814.7	26697	1.4	QPSK	6	0	22.18	0-1	1	
P	814.7	26697	1.4	16-QAM	1	0	22.50	0-1	1	
	814.7	26697	1.4	16-QAM	1	2	22.46	0-1	1	
	814.7	26697	1.4	16-QAM	1	5	22.22	0-1	1	
	814.7	26697	1.4	16-QAM	3	0	22.38	0-1	1	
	814.7	26697	1.4	16-QAM	3	2	22.31	0-1	1	
	814.7	26697	1.4	16-QAM	3	3	22.24	0-1	1	
	814.7	26697	1.4	16-QAM	6	0	20.65	0-2	2	
	831.5	26865	1.4	QPSK	1	0	23.29	0	0	
	831.5	26865	1.4	QPSK	1	2	23.14	0	0	
	831.5	26865	1.4	QPSK	1	5	23.36	0	0	
	831.5	26865	1.4	QPSK	3	0	23.11	0	0	
	831.5	26865	1.4	QPSK	3	2	23.14	0	0	
	831.5	26865	1.4	QPSK	3	3	23.08	0	0	
id	831.5	26865	1.4	QPSK	6	0	21.92	0-1	1	
Mid	831.5	26865	1.4	16-QAM	1	0	22.13	0-1	1	
	831.5	26865	1.4	16-QAM	1	2	22.30	0-1	1	
	831.5	26865	1.4	16-QAM	1	5	22.06	0-1	1	
	831.5	26865	1.4	16-QAM	3	0	21.94	0-1	1	
	831.5	26865	1.4	16-QAM	3	2	21.80	0-1	1	
	831.5	26865	1.4	16-QAM	3	3	21.86	0-1	1	
	831.5	26865	1.4	16-QAM	6	0	20.85	0-2	2	
	848.3	27033	1.4	QPSK	1	0	23.46	0	0	
	848.3	27033	1.4	QPSK	1	2	23.47	0	0	
	848.3	27033	1.4	QPSK	1	5	23.46	0	0	
	848.3	27033	1.4	QPSK	3	0	23.20	0	0	
	848.3	27033	1.4	QPSK	3	2	23.12	0	0	
	848.3	27033	1.4	QPSK	3	3	23.18	0	0	
÷	848.3	27033	1.4	QPSK	6	0	22.00	0-1	1	
High	848.3	27033	1.4	16-QAM	1	0	22.05	0-1	1	
	848.3	27033	1.4	16-QAM	1	2	21.99	0-1	1	
	848.3	27033	1.4	16-QAM	1	5	21.99	0-1	1	
	848.3	27033	1.4	16-QAM	3	0	22.34	0-1	1	
	848.3	27033	1.4	16-QAM	3	2	22.21	0-1	1	
	848.3	27033	1.4	16-QAM	3	3	22.24	0-1	1	
	848.3	27033	1.4	16-QAM	6	0	20.95	0-2	2	

 Table 9-7

 LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dama 00 af 07	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 29 of 67	
© 2015 DOTEST Engineering Loberstony	Inc		DEV/14.0 M	

9.3.3

LTE Band 2 (PCS)

 Table 9-8

 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

				(laaotoa i					
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	1860	18700	20	QPSK	1	0	22.55	0	0	
	1860	18700	20	QPSK	1	50	22.31	0	0	
	1860	18700	20	QPSK	1	99	22.38	0	0	
	1860	18700	20	QPSK	50	0	21.26	0-1	1	
	1860	18700	20	QPSK	50	25	21.25	0-1	1	
	1860	18700	20	QPSK	50	50	21.31	0-1	1	
Low	1860	18700	20	QPSK	100	0	21.28	0-1	1	
P	1860	18700	20	16QAM	1	0	21.60	0-1	1	
	1860	18700	20	16QAM	1	50	21.61	0-1	1	
	1860	18700	20	16QAM	1	99	21.55	0-1	1	
	1860	18700	20	16QAM	50	0	20.36	0-2	2	
	1860	18700	20	16QAM	50	25	20.59	0-2	2	
	1860	18700	20	16QAM	50	50	20.28	0-2	2	
	1860	18700	20	16QAM	100	0	20.27	0-2	2	
	1880.0	18900	20	QPSK	1	0	22.40	0	0	
	1880.0	18900	20	QPSK	1	50	22.60	0	0	
	1880.0	18900	20	QPSK	1	99	22.65	0	0	
	1880.0	18900	20	QPSK	50	0	21.36	0-1	1	
	1880.0	18900	20	QPSK	50	25	21.40	0-1	1	
	1880.0	18900	20	QPSK	50	50	21.32	0-1	1	
Mid	1880.0	18900	20	QPSK	100	0	21.30	0-1	1	
Σ	1880.0	18900	20	16QAM	1	0	21.41	0-1	1	
	1880.0	18900	20	16QAM	1	50	21.40	0-1	1	
	1880.0	18900	20	16QAM	1	99	21.48	0-1	1	
	1880.0	18900	20	16QAM	50	0	20.38	0-2	2	
	1880.0	18900	20	16QAM	50	25	20.26	0-2	2	
	1880.0	18900	20	16QAM	50	50	20.24	0-2	2	
	1880.0	18900	20	16QAM	100	0	20.38	0-2	2	
	1900	19100	20	QPSK	1	0	22.50	0	0	
	1900	19100	20	QPSK	1	50	22.52	0	0	
	1900	19100	20	QPSK	1	99	22.53	0	0	
	1900	19100	20	QPSK	50	0	21.38	0-1	1	
	1900	19100	20	QPSK	50	25	21.39	0-1	1	
	1900	19100	20	QPSK	50	50	21.36	0-1	1	
High	1900	19100	20	QPSK	100	0	21.38	0-1	1	
Ξ	1900	19100	20	16QAM	1	0	21.81	0-1	1	
	1900	19100	20	16QAM	1	50	21.73	0-1	1	
	1900	19100	20	16QAM	1	99	21.70	0-1	1	
	1900	19100	20	16QAM	50	0	20.52	0-2	2	
	1900	19100	20	16QAM	50	25	20.46	0-2	2	
	1900	19100	20	16QAM	50	50	20.46	0-2	2	
	1900	19100	20	16QAM	100	0	20.42	0-2	2	

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 30 of 67	
© 2015 PCTEST Engineering Laborate	bry, Inc.	·		REV 14.0 M

	LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1857.5	18675	15	QPSK	1	0	22.97	0	0		
	1857.5	18675	15	QPSK	1	36	22.98	0	0		
	1857.5	18675	15	QPSK	1	74	22.95	0	0		
	1857.5	18675	15	QPSK	36	0	21.65	0-1	1		
	1857.5	18675	15	QPSK	36	18	21.62	0-1	1		
	1857.5	18675	15	QPSK	36	37	21.67	0-1	1		
≥	1857.5	18675	15	QPSK	75	0	21.66	0-1	1		
Low	1857.5	18675	15	16QAM	1	0	21.97	0-1	1		
	1857.5	18675	15	16QAM	1	36	21.95	0-1	1		
	1857.5	18675	15	16QAM	1	74	21.99	0-1	1		
	1857.5	18675	15	16QAM	36	0	20.46	0-2	2		
	1857.5	18675	15	16QAM	36	18	20.52	0-2	2		
	1857.5	18675	15	16QAM	36	37	20.59	0-2	2		
	1857.5	18675	15	16QAM	75	0	20.52	0-2	2		
	1880.0	18900	15	QPSK	1	0	22.81	0	0		
	1880.0	18900	15	QPSK	1	36	22.67	0	0		
	1880.0	18900	15	QPSK	1	74	22.63	0	0		
	1880.0	18900	15	QPSK	36	0	21.46	0-1	1		
	1880.0	18900	15	QPSK	36	18	21.53	0-1	1		
	1880.0	18900	15	QPSK	36	37	21.54	0-1	1		
р	1880.0	18900	15	QPSK	75	0	21.47	0-1	1		
Mid	1880.0	18900	15	16QAM	1	0	21.96	0-1	1		
	1880.0	18900	15	16QAM	1	36	21.88	0-1	1		
	1880.0	18900	15	16QAM	1	74	21.99	0-1	1		
	1880.0	18900	15	16QAM	36	0	20.31	0-2	2		
	1880.0	18900	15	16QAM	36	18	20.35	0-2	2		
	1880.0	18900	15	16QAM	36	37	20.36	0-2	2		
	1880.0	18900	15	16QAM	75	0	20.35	0-2	2		
	1902.5	19125	15	QPSK	1	0	22.98	0	0		
	1902.5	19125	15	QPSK	1	36	22.96	0	0		
	1902.5	19125	15	QPSK	1	74	22.99	0	0		
	1902.5	19125	15	QPSK	36	0	21.75	0-1	1		
	1902.5	19125	15	QPSK	36	18	21.71	0-1	1		
	1902.5	19125	15	QPSK	36	37	21.70	0-1	1		
Ë	1902.5	19125	15	QPSK	75	0	21.73	0-1	1		
High	1902.5	19125	15	16QAM	1	0	21.86	0-1	1		
	1902.5	19125	15	16QAM	1	36	21.92	0-1	1		
	1902.5	19125	15	16QAM	1	74	21.98	0-1	1		
	1902.5	19125	15	16QAM	36	0	20.71	0-2	2		
	1902.5	19125	15	16QAM	36	18	20.67	0-2	2		
	1902.5	19125	15	16QAM	36	37	20.72	0-2	2		
	1902.5	19125	15	16QAM	75	0	20.75	0-2	2		

 Table 9-9

 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 31 of 67	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		
© 2015 DOTECT Engine aning Laboratory	no			

	LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1855	18650	10	QPSK	1	0	22.98	0	0		
	1855	18650	10	QPSK	1	25	22.99	0	0		
	1855	18650	10	QPSK	1	49	22.94	0	0		
	1855	18650	10	QPSK	25	0	21.71	0-1	1		
	1855	18650	10	QPSK	25	12	21.74	0-1	1		
	1855	18650	10	QPSK	25	25	21.72	0-1	1		
Low	1855	18650	10	QPSK	50	0	21.67	0-1	1		
P	1855	18650	10	16QAM	1	0	21.90	0-1	1		
	1855	18650	10	16QAM	1	25	21.88	0-1	1		
	1855	18650	10	16QAM	1	49	21.99	0-1	1		
	1855	18650	10	16QAM	25	0	20.73	0-2	2		
	1855	18650	10	16QAM	25	12	20.74	0-2	2		
	1855	18650	10	16QAM	25	25	20.71	0-2	2		
	1855	18650	10	16QAM	50	0	20.64	0-2	2		
	1880.0	18900	10	QPSK	1	0	22.85	0	0		
	1880.0	18900	10	QPSK	1	25	22.87	0	0		
	1880.0	18900	10	QPSK	1	49	22.95	0	0		
	1880.0	18900	10	QPSK	25	0	21.48	0-1	1		
	1880.0	18900	10	QPSK	25	12	21.43	0-1	1		
	1880.0	18900	10	QPSK	25	25	21.48	0-1	1		
p	1880.0	18900	10	QPSK	50	0	21.45	0-1	1		
Mid	1880.0	18900	10	16QAM	1	0	21.82	0-1	1		
	1880.0	18900	10	16QAM	1	25	21.86	0-1	1		
	1880.0	18900	10	16QAM	1	49	21.87	0-1	1		
	1880.0	18900	10	16QAM	25	0	20.33	0-2	2		
	1880.0	18900	10	16QAM	25	12	20.41	0-2	2		
	1880.0	18900	10	16QAM	25	25	20.33	0-2	2		
	1880.0	18900	10	16QAM	50	0	20.43	0-2	2		
	1905	19150	10	QPSK	1	0	22.94	0	0		
	1905	19150	10	QPSK	1	25	22.99	0	0		
	1905	19150	10	QPSK	1	49	22.96	0	0		
	1905	19150	10	QPSK	25	0	21.79	0-1	1		
	1905	19150	10	QPSK	25	12	21.76	0-1	1		
	1905	19150	10	QPSK	25	25	21.75	0-1	1		
h	1905	19150	10	QPSK	50	0	21.71	0-1	1		
High	1905	19150	10	16QAM	1	0	21.85	0-1	1		
	1905	19150	10	16QAM	1	25	21.76	0-1	1		
	1905	19150	10	16QAM	1	49	21.90	0-1	1		
	1905	19150	10	16QAM	25	0	20.78	0-2	2		
	1905	19150	10	16QAM	25	12	20.74	0-2	2		
	1905	19150	10	16QAM	25	25	20.73	0-2	2		
	1905	19150	10	16QAM	50	0	20.70	0-2	2		

Table 9-10 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 32 of 67
© 2015 PCTEST Engineering Laboratory	Inc		DEV/14.0 M

© 2015 PCTEST Engineering Laboratory, Inc.

	LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1852.5	18625	5	QPSK	1	0	22.92	0	0		
	1852.5	18625	5	QPSK	1	12	22.95	0	0		
	1852.5	18625	5	QPSK	1	24	22.96	0	0		
	1852.5	18625	5	QPSK	12	0	21.55	0-1	1		
	1852.5	18625	5	QPSK	12	6	21.58	0-1	1		
	1852.5	18625	5	QPSK	12	13	21.56	0-1	1		
Low	1852.5	18625	5	QPSK	25	0	21.53	0-1	1		
P	1852.5	18625	5	16-QAM	1	0	21.91	0-1	1		
	1852.5	18625	5	16-QAM	1	12	21.95	0-1	1		
	1852.5	18625	5	16-QAM	1	24	21.96	0-1	1		
	1852.5	18625	5	16-QAM	12	0	20.45	0-2	2		
	1852.5	18625	5	16-QAM	12	6	20.48	0-2	2		
	1852.5	18625	5	16-QAM	12	13	20.42	0-2	2		
	1852.5	18625	5	16-QAM	25	0	20.50	0-2	2		
	1880.0	18900	5	QPSK	1	0	22.92	0	0		
	1880.0	18900	5	QPSK	1	12	22.89	0	0		
	1880.0	18900	5	QPSK	1	24	22.93	0	0		
	1880.0	18900	5	QPSK	12	0	21.47	0-1	1		
	1880.0	18900	5	QPSK	12	6	21.45	0-1	1		
	1880.0	18900	5	QPSK	12	13	21.53	0-1	1		
Mid	1880.0	18900	5	QPSK	25	0	21.42	0-1	1		
Σ	1880.0	18900	5	16-QAM	1	0	21.96	0-1	1		
	1880.0	18900	5	16-QAM	1	12	21.89	0-1	1		
	1880.0	18900	5	16-QAM	1	24	21.99	0-1	1		
	1880.0	18900	5	16-QAM	12	0	20.46	0-2	2		
	1880.0	18900	5	16-QAM	12	6	20.45	0-2	2		
	1880.0	18900	5	16-QAM	12	13	20.51	0-2	2		
	1880.0	18900	5	16-QAM	25	0	20.45	0-2	2		
	1907.5	19175	5	QPSK	1	0	22.96	0	0		
	1907.5	19175	5	QPSK	1	12	22.91	0	0		
	1907.5	19175	5	QPSK	1	24	22.99	0	0		
	1907.5	19175	5	QPSK	12	0	21.87	0-1	1		
	1907.5	19175	5	QPSK	12	6	21.89	0-1	1		
	1907.5	19175	5	QPSK	12	13	21.90	0-1	1		
High	1907.5	19175	5	QPSK	25	0	21.88	0-1	1		
Ξ	1907.5	19175	5	16-QAM	1	0	21.91	0-1	1		
	1907.5	19175	5	16-QAM	1	12	21.93	0-1	1		
	1907.5	19175	5	16-QAM	1	24	21.84	0-1	1		
	1907.5	19175	5	16-QAM	12	0	20.77	0-2	2		
	1907.5	19175	5	16-QAM	12	6	20.81	0-2	2		
	1907.5	19175	5	16-QAM	12	13	20.85	0-2	2		
	1907.5	19175	5	16-QAM	25	0	20.82	0-2	2		

 Table 9-11

 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 22 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 33 of 67
© 2015 DOTEST Engineering Loboratory	Inc		DEV/14.0 M

	LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1851.5	18615	3	QPSK	1	0	22.97	0	0		
	1851.5	18615	3	QPSK	1	7	22.88	0	0		
	1851.5	18615	3	QPSK	1	14	22.91	0	0		
	1851.5	18615	3	QPSK	8	0	21.61	0-1	1		
	1851.5	18615	3	QPSK	8	4	21.59	0-1	1		
	1851.5	18615	3	QPSK	8	7	21.65	0-1	1		
Low	1851.5	18615	3	QPSK	15	0	21.55	0-1	1		
Lo	1851.5	18615	3	16-QAM	1	0	21.97	0-1	1		
	1851.5	18615	3	16-QAM	1	7	21.88	0-1	1		
	1851.5	18615	3	16-QAM	1	14	21.94	0-1	1		
	1851.5	18615	3	16-QAM	8	0	20.48	0-2	2		
	1851.5	18615	3	16-QAM	8	4	20.55	0-2	2		
	1851.5	18615	3	16-QAM	8	7	20.52	0-2	2		
	1851.5	18615	3	16-QAM	15	0	20.43	0-2	2		
	1880.0	18900	3	QPSK	1	0	22.79	0	0		
	1880.0	18900	3	QPSK	1	7	22.85	0	0		
	1880.0	18900	3	QPSK	1	14	22.83	0	0		
	1880.0	18900	3	QPSK	8	0	21.42	0-1	1		
	1880.0	18900	3	QPSK	8	4	21.46	0-1	1		
	1880.0	18900	3	QPSK	8	7	21.51	0-1	1		
Mid	1880.0	18900	3	QPSK	15	0	21.43	0-1	1		
Σ	1880.0	18900	3	16-QAM	1	0	21.69	0-1	1		
	1880.0	18900	3	16-QAM	1	7	21.65	0-1	1		
	1880.0	18900	3	16-QAM	1	14	21.68	0-1	1		
	1880.0	18900	3	16-QAM	8	0	20.45	0-2	2		
	1880.0	18900	3	16-QAM	8	4	20.42	0-2	2		
	1880.0	18900	3	16-QAM	8	7	20.44	0-2	2		
	1880.0	18900	3	16-QAM	15	0	20.34	0-2	2		
	1908.5	19185	3	QPSK	1	0	22.85	0	0		
	1908.5	19185	3	QPSK	1	7	22.93	0	0		
	1908.5	19185	3	QPSK	1	14	22.89	0	0		
	1908.5	19185	3	QPSK	8	0	21.93	0-1	1		
	1908.5	19185	3	QPSK	8	4	21.88	0-1	1		
	1908.5	19185	3	QPSK	8	7	21.92	0-1	1		
High	1908.5	19185	3	QPSK	15	0	21.95	0-1	1		
Ξ	1908.5	19185	3	16-QAM	1	0	21.91	0-1	1		
	1908.5	19185	3	16-QAM	1	7	21.82	0-1	1		
	1908.5	19185	3	16-QAM	1	14	21.90	0-1	1		
	1908.5	19185	3	16-QAM	8	0	20.85	0-2	2		
	1908.5	19185	3	16-QAM	8	4	20.86	0-2	2		
	1908.5	19185	3	16-QAM	8	7	20.87	0-2	2		
	1908.5	19185	3	16-QAM	15	0	20.89	0-2	2		

 Table 9-12

 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 34 of 67
© 2015 DOTEST Engineering Loboratory	Ino		DEV/14.0 M

	LTE Band 2 (PCS) Conducted Powers -1.4 MHZ Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1850.7	18607	1.4	QPSK	1	0	22.77	0	0		
	1850.7	18607	1.4	QPSK	1	2	22.75	0	0		
	1850.7	18607	1.4	QPSK	1	5	22.81	0	0		
	1850.7	18607	1.4	QPSK	3	0	22.68	0	0		
	1850.7	18607	1.4	QPSK	3	2	22.76	0	0		
	1850.7	18607	1.4	QPSK	3	3	22.72	0	0		
≥	1850.7	18607	1.4	QPSK	6	0	21.45	0-1	1		
Low	1850.7	18607	1.4	16-QAM	1	0	21.89	0-1	1		
	1850.7	18607	1.4	16-QAM	1	2	21.94	0-1	1		
	1850.7	18607	1.4	16-QAM	1	5	21.78	0-1	1		
	1850.7	18607	1.4	16-QAM	3	0	21.63	0-1	1		
	1850.7	18607	1.4	16-QAM	3	2	21.68	0-1	1		
	1850.7	18607	1.4	16-QAM	3	3	21.67	0-1	1		
	1850.7	18607	1.4	16-QAM	6	0	20.31	0-2	2		
	1880.0	18900	1.4	QPSK	1	0	22.61	0	0		
	1880.0	18900	1.4	QPSK	1	2	22.70	0	0		
	1880.0	18900	1.4	QPSK	1	5	22.68	0	0		
	1880.0	18900	1.4	QPSK	3	0	22.61	0	0		
	1880.0	18900	1.4	QPSK	3	2	22.57	0	0		
	1880.0	18900	1.4	QPSK	3	3	22.63	0	0		
g	1880.0	18900	1.4	QPSK	6	0	21.42	0-1	1		
Mid	1880.0	18900	1.4	16-QAM	1	0	21.51	0-1	1		
	1880.0	18900	1.4	16-QAM	1	2	21.47	0-1	1		
	1880.0	18900	1.4	16-QAM	1	5	21.59	0-1	1		
	1880.0	18900	1.4	16-QAM	3	0	21.53	0-1	1		
	1880.0	18900	1.4	16-QAM	3	2	21.54	0-1	1		
	1880.0	18900	1.4	16-QAM	3	3	21.49	0-1	1		
	1880.0	18900	1.4	16-QAM	6	0	20.25	0-2	2		
	1909.3	19193	1.4	QPSK	1	0	23.00	0	0		
	1909.3	19193	1.4	QPSK	1	2	22.86	0	0		
	1909.3	19193	1.4	QPSK	1	5	22.91	0	0		
	1909.3	19193	1.4	QPSK	3	0	22.78	0	0		
	1909.3	19193	1.4	QPSK	3	2	22.84	0	0		
	1909.3	19193	1.4	QPSK	3	3	22.82	0	0		
High	1909.3	19193	1.4	QPSK	6	0	21.83	0-1	1		
Ξ	1909.3	19193	1.4	16-QAM	1	0	21.95	0-1	1		
	1909.3	19193	1.4	16-QAM	1	2	21.97	0-1	1		
	1909.3	19193	1.4	16-QAM	1	5	21.92	0-1	1		
	1909.3	19193	1.4	16-QAM	3	0	21.96	0-1	1		
	1909.3	19193	1.4	16-QAM	3	2	21.91	0-1	1		
	1909.3	19193	1.4	16-QAM	3	3	21.95	0-1	1		
	1909.3	19193	1.4	16-QAM	6	0	20.61	0-2	2		

 Table 9-13

 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 25 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 35 of 67
© 2015 DOTEST Engineering Loboratory	lao		DEV/14.0 M

LTE Band 41

9.3.4

Table 9-14

	LTE Band 41 Conducted Powers – 20 MHz Bandwidth									
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	2506	39750	20	QPSK	1	0	23.88	0	0	
	2506	39750	20	QPSK	1	50	23.90	0	0	
	2506	39750	20	QPSK	1	99	23.82	0	0	
	2506	39750	20	QPSK	50	0	22.57	0-1	1	
	2506	39750	20	QPSK	50	25	22.66	0-1	1	
	2506	39750	20	QPSK	50	50	22.61	0-1	1	
Low	2506	39750	20	QPSK	100	0	22.55	0-1	1	
Ľ	2506	39750	20	16QAM	1	0	22.68	0-1	1	
ŀ	2506	39750	20	16QAM	1	50	22.38	0-1	1	
ŀ	2506	39750	20	16QAM	1	99	22.89	0-1	1	
H	2506	39750	20	16QAM	50	0	21.68	0-2	2	
ŀ	2506	39750	20	16QAM	50	25	21.63	0-2	2	
ŀ	2506	39750	20	16QAM	50	50	21.56	0-2	2	
_	2506	39750	20	16QAM	100	0	21.50	0-2	2	
ł	2549.5	40185	20	QPSK	1	0	23.88	0	0	
- H	2549.5	40185	20	QPSK	1	50	23.75	0	0	
ł	2549.5	40185	20	QPSK	1	99	23.61	0	0	
-	2549.5	40185	20	QPSK	50	0	22.44	0-1	1	
ł	2549.5	40185	20	QPSK	50	25	22.39	-	1	
Mid	2549.5	40185	20	QPSK	50	50	22.36	0-1	1	
≥	2549.5	40185	20 20	QPSK	100	0	22.35	0-1 0-1	1	
Γow	2549.5	40185		16-QAM	1		22.60		1	
ł	2549.5 2549.5	40185 40185	20 20	16-QAM	1	50 99	22.68 22.60	0-1 0-1	1	
ł		40185		16-QAM	1				1	
ł	2549.5 2549.5	40185	20 20	16-QAM 16-QAM	50 50	0 25	21.51 21.46	0-2	2	
ł		40185								
ł	2549.5		20	16-QAM	50	50	21.40	0-2	2	
_	2549.5	40185	20	16-QAM	100	0	21.37	0-2	2	
ŀ	2593	40620	20	QPSK	1	0	23.11	0	0	
ŀ	2593	40620	20	QPSK	1	50	23.03	0	0	
ŀ	2593	40620	20	QPSK	1	99	23.01	0	0	
ŀ	2593	40620	20	QPSK QPSK	50	0	22.18	0-1	1	
ŀ	2593	40620	20		50	25	22.03	0-1	1	
ŀ	2593	40620	20	QPSK	50	50	22.10	0-1 0-1	1	
Mid	2593	40620	20	QPSK	100	0	22.01	-	1	
~	2593	40620	20	16-QAM	1	0	22.00	0-1	1	
ŀ	2593	40620	20 20	16-QAM	1	50 99	22.01 22.04	0-1	1	
ŀ	2593	40620	-	16-QAM	1			0-1	1	
ł	2593	40620 40620	20 20	16-QAM	50 50	0 25	21.09	0-2	2	
ŀ	2593 2593	40620	20	16-QAM 16-QAM	50	25 50	21.00	0-2	2	
ŀ	2593	40620	20	16-QAM 16-QAM	100	0	21.02	0-2	2	
-	2636.5	40620	20	QPSK	100	0	21.00		2	
ł	2636.5							0	0	
ł	2636.5	410EE					23.20	0	0	
ł		41055	20	QPSK	1	50	23.52	0	0	
		41055	20 20	QPSK QPSK	1 1	50 99	23.52 23.36	0	0	
1	2636.5	41055 41055	20 20 20	QPSK QPSK QPSK	1 1 50	50 99 0	23.52 23.36 22.50	0 0 0-1	0 0 1	
	2636.5 2636.5	41055 41055 41055	20 20 20 20	QPSK QPSK QPSK QPSK	1 1 50 50	50 99 0 25	23.52 23.36 22.50 22.57	0 0 0-1 0-1	0 0 1 1	
igh	2636.5 2636.5 2636.5	41055 41055 41055 41055	20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK	1 1 50 50 50	50 99 0 25 50	23.52 23.36 22.50 22.57 22.57	0 0 0-1 0-1 0-1	0 0 1 1 1	
id High	2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055	20 20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK QPSK	1 50 50 50 100	50 99 0 25 50 0	23.52 23.36 22.50 22.57 22.57 22.42	0 0-1 0-1 0-1 0-1 0-1	0 0 1 1 1 1	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM	1 50 50 50 100 1	50 99 0 25 50 0 0	23.52 23.36 22.50 22.57 22.57 22.42 22.20	0 0-1 0-1 0-1 0-1 0-1 0-1	0 0 1 1 1 1 1 1	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM	1 50 50 50 100 1 1	50 99 0 25 50 0 0 50	23.52 23.36 22.50 22.57 22.57 22.42 22.20 22.68	0 0 0-1 0-1 0-1 0-1 0-1 0-1	0 0 1 1 1 1 1 1 1	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM	1 50 50 50 100 1 1 1	50 99 0 25 50 0 0 50 99	23.52 23.36 22.50 22.57 22.57 22.42 22.20 22.68 22.75	0 0 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	0 0 1 1 1 1 1 1 1 1	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM	1 50 50 100 1 1 1 50	50 99 0 25 50 0 0 50 99 0	23.52 23.36 22.50 22.57 22.42 22.42 22.20 22.68 22.75 21.47	0 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-2	0 0 1 1 1 1 1 1 1 2	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20 20 20	QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	1 50 50 100 1 1 1 50 50	50 99 0 25 50 0 0 50 99 0 25 50	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55	0 01 01 01 01 01 01 01 01 01 02 02	0 0 1 1 1 1 1 1 1 2 2 2	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	1 50 50 100 1 1 1 50 50 50	50 99 0 25 50 0 50 99 0 25 50	23.52 23.36 22.50 22.57 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40	0 01 01 01 01 01 01 01 01 01 02 02 02 02 02	0 0 1 1 1 1 1 1 1 2 2 2 2	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	1 50 50 50 100 1 1 1 50 50 50 50 100	50 99 0 25 50 0 0 50 99 0 25 50 0	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55	0 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 1 2 2 2 2 2 2	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK	1 50 50 100 1 1 1 50 50 50 50 100 1	50 99 0 25 50 0 0 50 99 0 25 50 0 0 0	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56	0 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0	0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 0	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 205K QPSK	1 1 50 50 100 1 1 1 50 50 50 50 100 1 1 1 1	50 99 0 25 50 0 50 99 0 25 50 0 0 0 50	23.52 23.36 22.50 22.57 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44	0 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 0	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 0 0 0	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM	1 50 50 50 100 1 1 1 50 50 50 100 1 1 1 1 1 1 1 1 1 1 1 1 1	50 99 0 25 50 0 50 99 0 25 50 0 0 0 0 50 99	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19	0 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 0 0 0 0	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41045	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 9-SK QPSK QPSK	1 1 50 50 100 1 1 1 50 50 100 1 1 1 50 50 50 50 50 50 50 50 50 50	50 99 0 25 50 0 50 99 0 25 50 0 0 50 99 0 0	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57	0 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1 1 2 2 2 0 0 0 1	
Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41045 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK	1 1 50 50 100 1 1 1 50 50 50 100 1 1 1 50 50 50 50 50 50 50 50 50 50	50 99 0 25 50 0 50 99 0 25 50 0 0 50 99 0 0 25	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51	0 0 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1	
	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41490 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK	1 1 50 50 50 100 1 1 1 50 50 100 1 1 1 50 50 50 50 50 50 50 50 50 50	50 99 0 25 50 0 50 99 0 25 50 0 0 0 50 99 0 0 25 50 99 0 25 50	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.51 22.62	0 0 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41490 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAK 10-QSK	1 50 50 50 100 1 1 1 50 50 100 1 1 1 50 50 100 1 1 1 50 50 100 10	50 99 0 25 50 0 50 99 0 25 50 0 0 50 99 0 0 25 50 0 0 0 25 50 0 0	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.51 22.51 22.62 22.51	0 0 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 1 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
High Mid High	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41045 41040 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 0PSK QPSK QPSK QPSK QPSK 16-QAM	1 1 50 50 50 100 1 1 1 50 50 100 1 1 50 50 50 50 100 1 1 1 50 50 100 1 1 1 1 50 50 50 50 50 50 50 50 50 50	50 99 0 25 50 0 50 99 0 25 50 0 0 50 99 0 0 25 50 0 0 25 50 0 0 0 0 0 0 0 0	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.62 22.51 22.62 22.51 22.62	0 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02	0 0 1 1 1 1 1 1 1 2 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41040 41490 41490 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 50 50 100 1 1 1 50 50 50 100 1 1 1 1 1 1 1 1 1 1 1 1 1	50 99 0 25 50 0 50 99 0 25 50 99 0 25 50 0 0 25 50 0 25 50 0 25 50 0 0 50	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.65 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.251 22.251 22.251 22.218 22.14	0 0 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41040 41490 41490 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 50 50 50 100 1 1 1 50 50 50 100 1 1 1 50 50 100 1 1 1 1 1 1 1 1 1 1 1 1 1	50 99 0 25 50 0 50 99 0 25 50 99 0 25 50 99 0 50 99 0 25 50 99 0 25 50 99 0 25 50 99 0 25 50 99 0 25 50 99	23.52 23.36 22.50 22.57 22.42 22.00 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.51 22.62 22.51 22.62 22.51 22.18 22.14 22.18	0 0 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41490 41490 41490 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 20PSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM	1 50 50 50 100 1 1 1 50 50 100 1 1 50 50 50 100 1 1 1 50 50 50 100 1 1 1 50 50 50 50 50 50 50 50 50 50	50 99 0 25 50 0 50 99 0 25 50 99 0 25 50 99 0 50 99 0 50 99 0 50 99 0 50 99 0 50 99 0	23.52 23.36 22.50 22.57 22.42 22.20 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.57 22.55 21.47 22.55 21.47 22.55 21.47 22.55 21.47 22.55 21.47 22.55 22.44 22.55 22.57 22.55 22.44 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.57 22.51 22.57 22.51 22.57 22.51	0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0 0 1 1 1 1 1 1 1 2 2 2 2 0 0 0 1 1 1 1 1 1 2 2 2 0 0 0 1 1 1 1 1 2 2 2 2 0 0 0 1 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2636.5 2680 2680 2680 2680 2680 2680 2680 2680	41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41055 41040 41490 41490 41490 41490	20 20 20 20 20 20 20 20 20 20 20 20 20 2	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 50 50 50 100 1 1 1 50 50 50 100 1 1 1 50 50 100 1 1 1 1 1 1 1 1 1 1 1 1 1	50 99 0 25 50 0 50 99 0 25 50 99 0 25 50 99 0 50 99 0 25 50 99 0 25 50 99 0 25 50 99 0 25 50 99 0 25 50 99	23.52 23.36 22.50 22.57 22.42 22.00 22.68 22.75 21.47 21.55 21.40 21.39 23.56 23.44 23.19 22.57 22.51 22.51 22.62 22.51 22.62 22.51 22.18 22.14 22.18	0 0 0-1 0-1 0-1 0-1 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	

LTE Band 41 Conducted Powers – 20 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1501080032.A3L		Portable Handset	Page 36 of 67	

		LTE Band 41 Conducted Powers – 15 MHz Bandwidth								
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	2503.5	39725	15	QPSK	1	0	23.79	0	0	
	2503.5	39725	15	QPSK	1	36	23.99	0	0	
	2503.5	39725	15	QPSK	1	74	23.95	0	0	
	2503.5	39725	15	QPSK	36	0	22.50	0-1	1	
	2503.5	39725	15	QPSK	36	18	22.68	0-1	1	
	2503.5	39725	15	QPSK	36	37	22.45	0-1	1	
Low	2503.5	39725	15	QPSK	75	0	22.66	0-1	1	
2	2503.5	39725	15	16QAM	1	0	22.57	0-1	1	
	2503.5	39725	15	16QAM	1	36	22.55	0-1	1	
	2503.5	39725	15	16QAM	1	74	22.89	0-1	1	
	2503.5 2503.5	39725	15 15	16QAM 16QAM	36 36	0 18	21.76 21.74	0-2	2	
	2503.5	39725	15	16QAM 16QAM	36		21.74	0-2	2	
	2503.5	39725 39725	15	16QAM	75	37 0	21.52	0-2	2	
⊢	2503.5	40173	15	QPSK	1	0	23.93	0-2	2	
	2548.25	40173	15	QPSK QPSK	1	36	23.93	0	0	
	2548.25	40173	15	QPSK	1	74	23.60	0	0	
	2548.25	40173	15	QPSK	36	0	22.31	0-1	1	
	2548.25	40173	15	QPSK	36	18	22.52	0-1	1	
	2548.25	40173	15	QPSK	36	37	22.32	0-1	1	
Mid	2548.25	40173	15	QPSK	75	0	22.53	0-1	1	
Low N	2548.25	40173	15	16-QAM	1	0	22.47	0-1	1	
2	2548.25	40173	15	16-QAM	1	36	22.84	0-1	1	
	2548.25	40173	15	16-QAM	1	74	22.58	0-1	1	
	2548.25	40173	15	16-QAM	36	0	21.35	0-2	2	
	2548.25	40173	15	16-QAM	36	18	21.57	0-2	2	
	2548.25	40173	15	16-QAM	36	37	21.53	0-2	2	
	2548.25	40173	15	16-QAM	75	0	21.17	0-2	2	
	2593	40620	15	QPSK	1	0	23.20	0	0	
	2593	40620	15	QPSK	1	36	23.29	0	0	
	2593	40620	15	QPSK	1	74	23.30	0	0	
	2593	40620	15	QPSK	36	0	22.21	0-1	1	
	2593	40620	15	QPSK	36	18	22.05	0-1	1	
	2593	40620	15	QPSK	36	37	22.39	0-1	1	
<u>o</u>	2593	40620	15	QPSK	75	0	22.28	0-1	1	
Mid	2593	40620	15	16-QAM	1	0	22.21	0-1	1	
	2593	40620	15	16-QAM	1	36	22.30	0-1	1	
	2593	40620	15	16-QAM	1	74	22.32	0-1	1	
	2593	40620	15	16-QAM	36	0	21.16	0-2	2	
	2593	40620	15	16-QAM	36	18	21.03	0-2	2	
	2593	40620	15	16-QAM	36	37	21.21	0-2	2	
	2593	40620	15	16-QAM	75	0	21.19	0-2	2	
	2637.75	41068	15	QPSK	1	0	23.20	0	0	
	2637.75	41068	15	QPSK	1	36	23.40	0	0	
	2637.75	41068	15	QPSK	1	74	23.31	0	0	
1	2637.75	41068	15	QPSK	36	0	22.43	0-1	1	
1	2637.75	41068	15	QPSK	36	18	22.67	0-1	1	
ء	2637.75	41068	15	QPSK	36	37	22.66	0-1	1	
Mid High	2637.75	41068	15	QPSK	75	0	22.61	0-1	1	
٨id	2637.75	41068	15	16-QAM	1	0	22.32	0-1	1	
ſ	2637.75	41068	15	16-QAM	1	36	22.55	0-1	1	
1	2637.75	41068	15	16-QAM	1	74	22.72	0-1	1	
1	2637.75	41068	15	16-QAM	36	0	21.31	0-2	2	
1	2637.75	41068	15	16-QAM	36	18	21.43	0-2	2	
1	2637.75	41068	15	16-QAM	36	37	21.52	0-2	2	
⊢	2637.75	41068	15	16-QAM	75	0	21.25	0-2	2	
1	2682.5	41515	15	QPSK	1	0	23.71	0	0	
1	2682.5	41515	15	QPSK	1	36	23.63	0	0	
1	2682.5 2682.5	41515	15	QPSK	1	74	23.06	0	0	
1		41515	15	QPSK	36	0	22.53	0-1	1	
1	2682.5 2682.5	41515	15 15	QPSK	36	18 37	22.50	0-1	1	
1_		41515		QPSK	36		22.65	0-1	1	
High	2682.5	41515 41515	15 15	QPSK 16-OAM	75 1	0	22.45 22.23	0-1 0-1	1	
1 [±]	2682.5	41515 41515	15	16-QAM 16-QAM	1		22.23	0-1	1	
1	2682.5 2682.5	41515	15	16-QAM 16-QAM	1	36 74	22.33	0-1	1	
1	2682.5	41515	15	16-QAM 16-QAM	36	0	22.50	0-1	2	
1	2682.5	41515	15	16-QAM 16-QAM	36	18	21.43	0-2	2	
1	2682.5	41515	15	16-QAM 16-QAM	36	37	21.30	0-2	2	
1	2682.5	41515	15	16-QAM 16-QAM	75	0	21.37	0-2	2	
L	2002.0	41010	10	INAM-01	15	U	21.29	0-2	2	

Table 9-15 LTE Band 41 Conducted Powers – 15 MHz Bandwidth

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dage 27 of 67		
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 37 of 67		
© 2015 PCTEST Engineering Laboratory Inc.						

F	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dE
	2501	39700	10	QPSK	1	0	23.88	0	0
	2501	39700	10	QPSK	1	25	23.93	0	0
	2501	39700	10	QPSK	1	49	23.94	0	0
	2501	39700	10	QPSK	25	0	22.30	0-1	1
	2501	39700	10	QPSK	25	12	22.50	0-1	1
	2501	39700	10	QPSK	25	25	22.39	0-1	1
	2501	39700	10	QPSK	50	0	22.58	0-1	1
1	2501	39700	10	16QAM	1	0	22.54	0-1	1
	2501	39700	10	16QAM	1	25	22.55	0-1	1
	2501	39700	10	16QAM	1	49	23.00	0-1	1
	2501	39700	10	16QAM	25	0	21.59	0-2	2
	2501	39700	10	16QAM	25	12	21.63	0-2	2
	2501	39700	10	16QAM	25	25	21.64	0-2	2
	2501	39700	10	16QAM	50	0	21.81	0-2	2
	2547	40160	10	QPSK	1	0	24.00	0	0
	2547	40160	10	QPSK	1	25	23.79	0	0
	2547	40160	10	QPSK	1	49	23.44	0	0
	2547	40160	10	QPSK	25	0	22.39	0-1	1
	2547	40160	10	QPSK	25	12	22.39	0-1	1
	2547	40160	10	QPSK	25	25	22.39	0-1	1
	2547	40160	10	QPSK	50	0	22.30	0-1	1
	2547	40160	10	16-QAM	1	0	22.66	0-1	1
	2547	40160	10	16-QAM 16-QAM	1	25	22.66	0-1	1
			10		1	49		0-1	1
-	2547	40160		16-QAM			22.55		
	2547 2547	40160 40160	10 10	16-QAM 16-QAM	25 25	0	21.23 21.75	0-2	2
	2547	40160	10	16-QAM	25	25	21.54	0-2	2
_	2547	40160	10	16-QAM	50	0	21.02	0-2	2
	2593	40620	10	QPSK	1	0	23.29	0	0
	2593	40620	10	QPSK	1	25	23.16	0	0
	2593	40620	10	QPSK	1	49	23.10	0	0
	2593	40620	10	QPSK	25	0	22.04	0-1	1
	2593	40620	10	QPSK	25	12	22.04	0-1	1
	2593	40620	10	QPSK	25	25	22.59	0-1	1
	2593	40620	10	QPSK	50	0	22.17	0-1	1
:	2593	40620	10	16-QAM	1	0	22.17	0-1	1
	2593	40620	10	16-QAM	1	25	22.13	0-1	1
	2593	40620	10	16-QAM	1	49	22.12	0-1	1
	2593	40620	10	16-QAM	25	0	21.22	0-2	2
	2593	40620	10	16-QAM	25	12	21.15	0-2	2
	2593	40620	10	16-QAM	25	25	21.01	0-2	2
	2593	40620	10	16-QAM	50	0	21.38	0-2	2
	2639	41080	10	QPSK	1	0	23.05	0	0
	2639	41080	10	QPSK	1	25	23.46	0	0
	2639	41080	10	QPSK	1	49	23.50	0	0
	2639	41080	10	QPSK	25	0	22.58	0-1	1
	2639	41080	10	QPSK	25	12	22.75	0-1	1
	2639	41080	10	QPSK	25	25	22.78	0-1	1
	2639	41080	10	QPSK	50	0	22.66	0-1	1
	2639	41080	10	16-QAM	1	0	22.26	0-1	1
	2639	41080	10	16-QAM	1	25	22.70	0-1	1
	2639	41080	10	16-QAM 16-QAM	1	49	22.89	0-1	1
	2639	41080	10	16-QAM 16-QAM	25	49	22.89	0-1	2
	2639	41080	10	16-QAM 16-QAM	25	12	21.36	0-2	2
	2639	41080	10	16-QAM 16-QAM	25	25	21.36	0-2	2
-									
	2639	41080	10	16-QAM	50	0	21.07	0-2	2
-	2685	41540	10	QPSK	1	0	23.68	0	0
-	2685	41540	10	QPSK	1	25	23.81	0	0
-	2685	41540	10	QPSK	1	49	23.25	0	0
	2685	41540	10	QPSK	25	0	22.73	0-1	1
	2685	41540	10	QPSK	25	12	22.42	0-1	1
	2685	41540	10	QPSK	25	25	22.69	0-1	1
•	2685	41540	10	QPSK	50	0	22.54	0-1	1
-	2685	41540	10	16-QAM	1	0	22.32	0-1	1
	2685	41540	10	16-QAM	1	25	22.51	0-1	1
	2685	41540	10	16-QAM	1	49	22.60	0-1	1
	2685	41540	10	16-QAM	25	0	21.38	0-2	2
	2685	41540	10	16-QAM	25	12	21.76	0-2	2
	2685	41540	10	16-QAM	25	25	21.24	0-2	2
	2685	41540	10	16-QAM	50	0	21.35	0-2	2

Table 9-16 LTE Band 41 Conducted Powers – 10 MHz Bandwidth

·	· · ·			
FCC ID: A3LSMG920KOR	CA PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by:
	····· V skatestika LAKOKATONI, INI			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 38 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 38 01 67

	LINIT	iz]	Modulation	RB Size	RB Offset	Power [dBm]	3GPP [dB]	MPR [dl
8.5 39	675 5		QPSK	1	0	23.72	0	0
8.5 39	675 5		QPSK	1	12	23.99	0	0
8.5 39	675 5		QPSK	1	24	23.74	0	0
	675 5		QPSK	12	0	22.23	0-1	1
			QPSK	12	6		0-1	1
						22.62		
	675 5		QPSK	12	13	22.35	0-1	1
8.5 39	675 5		QPSK	25	0	22.43	0-1	1
8.5 39	675 5		16-QAM	1	0	22.64	0-1	1
8.5 39	675 5		16-QAM	1	12	22.73	0-1	1
	675 5		16-QAM	1	24	22.75	0-1	1
	675 5		16-QAM	12	0	21.57	0-2	2
	675 5		16-QAM	12	6	21.43	0-2	2
8.5 39	675 5		16-QAM	12	13	21.45	0-2	2
8.5 39	675 5		16-QAM	25	0	21.79	0-2	2
5.75 40	148 5		QPSK	1	0	23.98	0	0
	148 5		QPSK	1	12	23.59	0	0
5.75 40	148 5		QPSK	1	24	23.42	0	0
5.75 40	148 5		QPSK	12	0	22.49	0-1	1
5.75 40	148 5		QPSK	12	6	22.35	0-1	1
	148 5		QPSK	12	13	22.41	0-1	1
	148 5		QPSK	25	0	22.43	0-1	. 1
	148 5		16-QAM	1	0	22.68	0-1	1
	148 5		16-QAM	1	12	22.92	0-1	1
5.75 40	148 5		16-QAM	1	24	22.37	0-1	1
5.75 40	148 5		16-QAM	12	0	21.09	0-2	2
	148 5		16-QAM	12	6	21.73	0-2	2
	148 5		16-QAM	12	13	21.34	0-2	2
	148 5		16-QAM	25	0	21.12	0-2	2
93 40	620 5		QPSK	1	0	23.48	0	0
93 40	620 5		QPSK	1	12	23.07	0	0
	620 5		QPSK	1	24	23.18	0	0
			QPSK	12	0	22.19	0-1	1
	620 5		QPSK	12	6	22.09	0-1	1
93 40	620 5		QPSK	12	13	22.42	0-1	1
93 40	620 5	T	QPSK	25	0	22.14	0-1	1
93 40	620 5		16-QAM	1	0	22.21	0-1	1
	620 5		16-QAM	1	12	22.29	0-1	1
	620 5		16-QAM	1	24	22.30	0-1	1
	620 5		16-QAM	12	0	21.15	0-2	2
93 40	620 5		16-QAM	12	6	21.13	0-2	2
93 40	620 5		16-QAM	12	13	21.19	0-2	2
93 40	620 5		16-QAM	25	0	21.20	0-2	2
	093 5	_	QPSK	1	0	23.01	0	0
	093 5		QPSK	1	12	23.44	0	0
0.25 41	093 5		QPSK	1	24	23.54	0	0
0.25 41	093 5		QPSK	12	0	22.63	0-1	1
	093 5		QPSK	12	6	22.61	0-1	1
	093 5		QPSK	12	13	22.96	0-1	1
	093 5		QPSK	25	0	22.47	0-1	1
	093 5		16-QAM	1	0	22.11	0-1	1
0.25 41	093 5		16-QAM	1	12	22.63	0-1	1
0.25 41	093 5		16-QAM	1	24	22.75	0-1	1
	093 5		16-QAM	. 12	0	21.51	0-2	2
	093 5		16-QAM	12	6	21.50	0-2	2
0.25 41	093 5		16-QAM	12	13	21.42	0-2	2
0.25 41	093 5		16-QAM	25	0	21.19	0-2	2
	565 5		QPSK	1	0	23.64	0	0
	565 5		QPSK	1	12	23.64	0	0
	565 5		QPSK	1	24	23.15	0	0
	565 5		QPSK	12	0	22.58	0-1	1
7.5 41	565 5	_ T	QPSK	12	6	22.59	0-1	1
7.5 41	565 5		QPSK	12	13	22.62	0-1	1
	565 5		QPSK	25	0	22.42	0-1	1
	565 5		16-QAM	1	0	22.25	0-1	1
7.5 41	565 5		16-QAM	1	12	22.68	0-1	1
7.5 41	565 5	T	16-QAM	1	24	22.65	0-1	1
	565 5		16-QAM	12	0	21.39	0-2	2
								2
								2
7.5 41	565 5		16-QAM	25	0	21.31	0-2	2
7.5 41		5 5	5 5 5	5 16-QAM	5 16-QAM 12 5 16-QAM 25	5 16-QAM 12 13 5 16-QAM 25 0	5 16-QAM 12 13 21.34 5 16-QAM 25 0 21.31	5 16-QAM 12 13 21.34 0-2 5 16-QAM 25 0 21.31 0-2

Table 9-17 LTE Band 41 Conducted Powers – 5 MHz Bandwidth

200110	1000 0 10 Q	20 0	21101	02	-		
FCC ID: A3LSMG920KOR	PCTEST	SAR EVALUATION F	PEPORT	SAMSUNG		Reviewed by:	
NOLOWICSZOKOK	*** V FREGREEFING LANSENTON, INC	CAREVALOANON				Quality Manager	
Document S/N:	Test Dates:	DUT Type:				Dage 20 of 67	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset				Page 39 of 67	

WLAN Conducted Powers 9.4

2.4 GHz Average RF Power – Antenna 1						
		2.4GHz Conducted Power [dBm]				
Freq [MHz]	Channel	IEEE Transmission Mode				
		802.11b				
2412	1	16.22				
2437	6	16.71				
2462	11	16.60				

Table 9-18

Table 9-19 2.4 GHz Average RF Power – Antenna 2

		2.4GHz Conducted Power [dBm]			
Freq [MHz]	Channel	IEEE Transmission Mode			
		802.11b			
2412	1	17.21			
2437	6	16.95			
2462	11	17.23			

Table 9-20 5 GHz (20 MHz Bandwidth) Average RF Power - Antenna 1

		5GHz (20MHz) Conducted Power [dBm]		
Freq [MHz]	Channel	IEEE Transmission Mode		
		802.11a		
5180	36	14.23		
5200	40	14.14		
5220	44	13.95		
5240	48	13.77		
5260	52	13.88		
5280	56	13.64		
5300	60	13.48		
5320	64	13.49		
5500	100	14.32		
5540	108	13.58		
5580	116	13.84		
5660	132	13.47		
5745	149	13.95		
5825	165	13.75		

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 40 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 40 of 6	
© 2015 PCTEST Engineering Laboratory	REV 14.0 M			

		5GHz (20MHz) Conducted Power [dBm]
Freq [MHz]	Channel	IEEE Transmission Mode
		802.11a
5180	36	13.52
5200	40	13.52
5220	44	13.39
5240	48	13.39
5260	52	14.28
5280	56	14.07
5300	60	14.16
5320	64	14.01
5500	100	14.39
5540	108	13.95
5580	116	14.00
5660	132	13.9
5745	149	13.59
5825	165	13.51

Table 9-21 5 GHz (20 MHz Bandwidth) Average RF Power – Antenna 2

Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

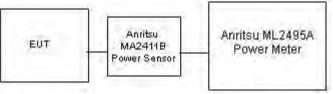


Figure 9-3 Power Measurement Setup for Bandwidths < 50 MHz

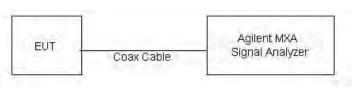


Figure 9-4 Power Measurement Setup for Bandwidths > 50 MHz

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 41 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 41 of 67

10 SYSTEM VERIFICATION

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties										
Calibrated for Fests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	ed lissue Measured Conductivity, σ (S/m)	Properti Measured Dielectric Constant, ε	ES TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε	
			710	0.864	41.073	0.890	42.149	-2.92%	-2.55%	
			725	0.877	40.865	0.891	42.071	-1.57%	-2.87%	
1/9/2015	750H	21.4	740	0.890	40.639	0.893	41.994	-0.34%	-3.23%	
			755	0.902	40.451	0.894	41.916	0.89%	-3.50%	
			820	0.894	41.627	0.899	41.578	-0.56%	0.12%	
1/6/2015	835H	22.2	835	0.909	41.434	0.900	41.500	1.00%	-0.16%	
			850	0.921	41.261	0.916	41.500	0.55%	-0.58%	
			1850	1.373	39.014	1.400	40.000	-1.93%	-2.46%	
1/9/2015	1900H	23.0	1880	1.408	38.913	1.400	40.000	0.57%	-2.72%	
			1910	1.444	38.782	1.400	40.000	3.14%	-3.05%	
			1850	1.391	40.515	1.400	40.000	-0.64%	1.29%	
1/13/2015	1900H	22.6	1880	1.424	40.437	1.400	40.000	1.71%	1.09%	
			1910	1.455	40.300	1.400	40.000	3.93%	0.75%	
			2401	1.801	38.324	1.756	39.287	2.56%	-2.45%	
			2450	1.856	38.105	1.800	39.200	3.11%	-2.79%	
			2499	1.909	37.944	1.853	39.138	3.02%	-3.05%	
1/12/2015	2450H	23.0	2500	1.910	37.931	1.855	39.136	2.96%	-3.08%	
			2550	1.970	37.724	1,909	39.073	3.20%	-3.45%	
			2600	2.025	37.526	1.964	39.009	3.11%	-3.80%	
			5260	4.866	37.219	4.717	35.917	3.16%	3.63%	
			5300	4.912	37.146	4.758	35.871	3.24%	3.55%	
			5500	5.124	36.806	4.963	35.643	3.24%	3.26%	
4/40/0045	5200H-	10.7	5580	5.225	36.686	5.045	35.551	3.57%	3.19%	
1/12/2015	5800H	18.7	5600	5.246	36.687	5.065	35.529	3.57%	3.26%	
			5660	5.302	36.530	5.127	35.460	3.41%	3.02%	
			5745	5.398	36.426	5.214	35.363	3.53%	3.01%	
			5800	5.458	36.337	5.270	35.300	3.57%	2.94%	
			710	0.930	55.021	0.960	55.687	-3.12%	-1.20%	
1/9/2015	750B	22.2	725 740	0.944 0.958	54.895	0.961	55.629	-1.77%	-1.32%	
			740	0.958	54.719 54.598	0.963 0.964	55.570 55.512	-0.52% 0.62%	-1.53% -1.65%	
			820	0.970	53.302	0.969	55.258	0.83%	-3.54%	
1/8/2015	835B	20.5	835	0.992	53.127	0.970	55.200	2.27%	-3.76%	
			850	1.008	52.964	0.988	55.154	2.02%	-3.97%	
			1850	1.454	52.809	1.520	53.300	-4.34%	-0.92%	
1/8/2015	1900B	22.5	1880	1.490	52.726	1.520	53.300	-1.97%	-1.08%	
			1910	1.528	52.675	1.520	53.300	0.53%	-1.17%	
1/19/2015	1900B	21.8	1850 1880	1.518 1.548	51.842 51.717	1.520 1.520	53.300 53.300	-0.13% 1.84%	-2.74% -2.97%	
1/19/2015	13000	21.0	1910	1.583	51.570	1.520	53.300	4.14%	-2.97%	
			2401	1.922	52.122	1.903	52.765	1.00%	-1.22%	
			2450	1.990	51.901	1.950	52.700	2.05%	-1.52%	
1/12/2015	2450B	23.0	2499	2.058	51.716	2.019	52.638	1.93%	-1.75%	
1/12/2010	24300	23.0	2500	2.059	51.706	2.021	52.636	1.88%	-1.77%	
			2550	2.132	51.490	2.092	52.573	1.91%	-2.06%	
			2600 5260	2.198 5.532	51.261 47.218	2.163 5.369	52.509 48.933	1.62% 3.04%	-2.38% -3.50%	
			5260	5.532	47.218	5.369	48.933 48.879	3.04%	-3.50%	
			5500	5.847	46.781	5.650	48.607	3.49%	-3.76%	
1/12/2015	5200B-	23.1	5600	5.996	46.661	5.766	48.471	3.99%	-3.73%	
	5800B		5660	6.065	46.504	5.837	48.390	3.91%	-3.90%	
			5745	6.175	46.360	5.936	48.275	4.03%	-3.97%	
			5800	6.263	46.274	6.000	48.200	4.38%	-4.00%	
1/24/2015	5200B-	22.2	5745	5.767	46.287	5.936	48.275	-2.85%	-4.12%	

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 42 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 42 of 67

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

System Verification TARGET & MEASURED														
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR1g (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)		
J	750	HEAD	01/09/2015	23.6	21.4	0.100	1054	3022	0.801	8.330	8.010	-3.84%		
J	835	HEAD	01/06/2015	23.9	22.4	0.100	4d119	3022	0.896	9.220	8.960	-2.82%		
G	1900	HEAD	01/09/2015	23.9	23.0	0.100	5d149	3258	4.210	40.200	42.100	4.73%		
G 1900 HEAD 01/13/2015 23.9 23.0 0.100 5d149 3258 4.250 40.200 42.500 5.72%														
D														
Е	E 5300 HEAD 01/12/2015 23.7 20.6 0.100 1120 7308 7.710 83.400 77.100 -7.55%													
Е	5500	HEAD	01/12/2015	24.0	20.6	0.100	1120	7308	8.050	84.900	80.500	-5.18%		
E	5600	HEAD	01/12/2015	23.8	20.6	0.100	1120	7308	8.090	82.200	80.900	-1.58%		
Е	5800	HEAD	01/12/2015	23.8	20.6	0.100	1120	7308	7.290	79.100	72.900	-7.84%		
J	750	BODY	01/09/2015	23.6	22.2	0.100	1054	3022	0.842	8.640	8.420	-2.55%		
к	835	BODY	01/08/2015	21.6	20.9	0.100	4d133	3288	1.010	9.350	10.100	8.02%		
G	1900	BODY	01/08/2015	23.5	22.5	0.100	5d141	3258	4.050	40.600	40.500	-0.25%		
G	1900	BODY	01/19/2015	24.4	21.8	0.100	5d149	3258	3.950	40.400	39.500	-2.23%		
G	2450	BODY	01/12/2015	23.1	23.0	0.100	719	3258	5.540	51.800	55.400	6.95%		
Н	5300	BODY	01/12/2015	24.8	22.5	0.100	1191	3920	7.360	79.900	73.600	-7.88%		
Н	5500	BODY	01/12/2015	24.8	22.5	0.100	1191	3920	7.500	83.100	75.000	-9.75%		
Н	5600	BODY	01/12/2015	24.8	22.5	0.100	1191	3920	7.740	84.100	77.400	-7.97%		
Н	5800	BODY	01/12/2015	24.8	22.5	0.100	1191	3920	7.040	78.000	70.400	-9.74%		
E	5800	BODY	01/24/2015	22.6	21.3	0.100	1120	7308	7.050	74.400	70.500	-5.24%		

Table 10-2 **System Verification Results**

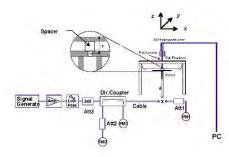


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager						
Document S/N:	Test Dates:	DUT Type:	Page 43 of 67						
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Fage 45 01 07						
© 2015 PCTEST Engineering Laboratory, Inc.									

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 UMTS 850 Head SAR

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	Factor	(W/kg)		
836.60	4183	UMTS 850	RMC	23.5	23.10	-0.02	Right	Cheek	077AF	1:1	0.097	1.096	0.106		
836.60	4183	UMTS 850	RMC	23.5	23.10	0.16	Right	Tilt	077AF	1:1	0.050	1.096	0.055		
836.60	4183	UMTS 850	RMC	23.5	23.10	0.09	Left	Cheek	077AF	1:1	0.105	1.096	0.115	A1	
836.60	4183	UMTS 850	RMC	23.5	23.10	0.11	Left	Tilt	077AF	1:1	0.054	1.096	0.059		
	4	ANSI / IEEE C95	.1 1992 - SAFE	FY LIMIT		Head									
		Sp	atial Peak			1.6 W/kg (mW/g)									
	Une	controlled Expo	osure/General	Population						averaged ov	ver 1 gram				

Table 11-2 GSM 1900 Head SAR

MEASUREMENT RESULTS															
FREQUE	NCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power Drift	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)		
1880.00	661	GSM 1900	GSM	29.5	28.84	0.15	Right	Cheek	077AF	1:8.3	0.090	1.164	0.105	A2	
1880.00	661	GSM 1900	GSM	29.5	28.84	0.12	2 Right Tilt 077AF 1:8.3 0.030 1.164 0.035								
1880.00	661	GSM 1900	GSM	29.5	28.84	0.16	Left	Cheek	077AF	1:8.3	0.082	1.164	0.095		
1880.00	661	GSM 1900	GSM	29.5	28.84	-0.17	Left Tilt 077AF 1:8.3 0.027 1.164 0.031								
		ANSI / IEE	E C95.1 199	2 - SAFETY L	IMIT		Head								
			Spatial P	eak			1.6 W/kg (mW/g)								
		Uncontrolle	d Exposure/	General Popu	ulation		averaged over 1 gram								

Table 11-3 UMTS 1900 Head SAR

	MEASUREMENT RESULTS															
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #		
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)			
1880.00	9400	UMTS 1900	RMC	22.5	22.29	0.01	Right	Cheek	077AF	1:1	0.167	1.050	0.175	A3		
1880.00 9400 UMTS 1900 RMC 22.5 22.29							Right	Tilt	077AF	1:1	0.052	1.050	0.055			
1880.00				22.5	22.29	0.14	Left	Cheek	077AF	1:1	0.139	1.050	0.146			
1880.00	9400	UMTS 1900	RMC	22.5	22.29	0.09	Left Tilt 077AF 1:1 0.031 1.050 0.033									
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head								
				1.6 W/kg (mW/g)												
	<u> </u>	Uncontrolled E	xposure/Gene	eral Popula	tion					average	d over 1 gram	ı				

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 44 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Fage 44 01 07
© 2015 PCTEST Engineering Laboratory	, Inc.	·		REV 14.0 M

Table 11-4 LTE Band 17 Head SAR

	MEASUREMENT RESULTS																		
								MEASUR	EMENT	RESULT	S								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RBOffset	Device Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	[dBm]	Drift [dB]			Position				Number		(W/kg)	Factor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.13	0	Right	Cheek	QPSK	1	0	074FF	1:1	0.016	1.050	0.017	
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	0.13	1	Right	Cheek	QPSK	25	12	074FF	1:1	0.012	1.161	0.014	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.13	0	Right Tilt QPSK 1 0 074FF 1:1 0.013 1.050 0.014										
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	0.09	1	Right	Tilt	QPSK	25	12	074FF	1:1	0.009	1.161	0.010	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.10	0	Left	Cheek	QPSK	1	0	074FF	1:1	0.055	1.050	0.058	A4
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	0.14	1	Left	Cheek	QPSK	25	12	074FF	1:1	0.039	1.161	0.045	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.13	0	Left	Tilt	QPSK	1	0	074FF	1:1	0.019	1.050	0.020	
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	0.13	1	Left	Tilt	QPSK	25	12	074FF	1:1	0.036	1.161	0.042	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Head										
				patial Peak										(mW/g)					
			Uncontrolled Ex	posure/Gene	eral Popula	tion							averaged	over 1 gram					

Table 11-5 LTE Band 26 (Cell) Head SAR

	MEASUREMENT RESULTS																		
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed Power	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	CI	ı.		[MHz]	[dBm]	[dBm]	υτιπ (αΒ)			Position				Number		(W/kg)	Factor	(W/kg)	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	-0.07	0	Right	Cheek	QPSK	1	0	077AF	1:1	0.138	1.062	0.147	A5
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	0.07	1	Right	Cheek	QPSK	36	18	077AF	1:1	0.104	1.180	0.123	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	0.08	0	Right	Tilt	QPSK	1	0	077AF	1:1	0.070	1.062	0.074	
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	0.09	1	Right	Tilt	QPSK	36	18	077AF	1:1	0.054	1.180	0.064	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	0.03	0	Left	Cheek	QPSK	1	0	077AF	1:1	0.107	1.062	0.114	
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	0.13	1	Left	Cheek	QPSK	36	18	077AF	1:1	0.080	1.180	0.094	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	-0.03	0	Left	Tilt	QPSK	1	0	077AF	1:1	0.066	1.062	0.070	
836.50	26915 Mid LTE Band 26 15 22.5 21.78 0.15								Left	Tilt	QPSK	36	18	077AF	1:1	0.051	1.180	0.060	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram											

Table 11-6 LTE Band 2 (PCS) Head SAR

	MEASUREMENT RESULTS																		
FR	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	С	h.		[MH2]	[dBm]	[dBm]	Drift [UB]			Position				Number		(W/kg)	Factor	(W/kg)	1
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	0.13	0	Right	Cheek	QPSK	1	99	077C5	1:1	0.147	1.084	0.159	A6
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	0.09	1	Right	Cheek	QPSK	50	25	077C5	1:1	0.115	1.148	0.132	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	0.11	0	Right	Tilt	QPSK	1	99	077C5	1:1	0.047	1.084	0.051	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.05	1	Right	Tilt	QPSK	50	25	077C5	1:1	0.045	1.148	0.052	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	-0.05	0	Left	Cheek	QPSK	1	99	077C5	1:1	0.136	1.084	0.147	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	0.01	1	Left	Cheek	QPSK	50	25	077C5	1:1	0.101	1.148	0.116	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	0.17	0	Left	Tilt	QPSK	1	99	077C5	1:1	0.066	1.084	0.072	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.04	1	Left	Tilt	QPSK	50	25	077C5	1:1	0.058	1.148	0.067	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak								Head 1.6 W/kg (mW/g)										
		Uncontrolled Exposure/General Population											averaged	over 1 gram					

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 45 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15		Page 45 of 67	
© 2015 PCTEST Engineering Laborator	/, Inc.			REV 14.0 M

	Tab	le	11-7	
LTE	Band	41	Head	SAR

								MEASU	REMEN	IT RESU	ILTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted Power	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)		Scaled SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	[dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.11	0	Right	Cheek	QPSK	1	50	074FF	1:1.58	0.062	1.023	0.063	A7
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	0.04	1	Right	Cheek	QPSK	50	25	074FF	1:1.58	0.047	1.081	0.051	
2506.00	39750 Low LTE Band 41 20 24.0 23.90 0.15 0 Right Tilt QPSK 1 50 074FF 1.1.58 0.012 1.023 0.012																		
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	-0.11	1	Right	Tilt	QPSK	50	25	074FF	1:1.58	0.010	1.081	0.011	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.08	0	Left	Cheek	QPSK	1	50	074FF	1:1.58	0.018	1.023	0.018	
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	0.01	1	Left	Cheek	QPSK	50	25	074FF	1:1.58	0.014	1.081	0.015	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.11	0	Left	Tilt	QPSK	1	50	074FF	1:1.58	0.018	1.023	0.018	
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	0.18	1	Left	Tilt	QPSK	50	25	074FF	1:1.58	0.014	1.081	0.015	
			ANSI / IEEE C9 S	5.1 1992 - : patial Peak		MIT								ead :g (mW/g)					
			Uncontrolled Exp	oosure/Ger	eral Popu	lation							averaged	over 1 gran	n				

Table 11-8 DTS Head SAR

								MEAS	UREME	NT RESU	ILTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maxim um Allow ed	Conducted	Power	Side	Test	Antenna	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Config.	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.5	16.71	-0.02	Right	Cheek	1	074FF	1	99.5	0.347	0.263	1.199	1.005	0.317	
2437	6	802.11b	DSSS	22	17.5	16.71	-	Right	Tilt	1	074FF	1	99.5	0.320	-	1.199	1.005	-	
2437	6	802.11b	DSSS	22	17.5	16.71	-	Left	Cheek	1	074FF	1	99.5	0.153	-	1.199	1.005	-	
2437	6	802.11b	DSSS	22	17.5	16.71	-	Left	Tilt	1	074FF	1	99.5	0.139	-	1.199	1.005	-	
2462	11	802.11b	DSSS	22	17.5	17.23	0.13	Right	Cheek	2	074FF	1	99.5	0.448	0.317	1.064	1.005	0.339	
2462	11	802.11b	DSSS	22	17.5	17.23	-	Right	Tilt	2	074FF	1	99.5	0.140	-	1.064	1.005	-	
2412	1	802.11b	DSSS	22	17.5	17.21	-0.19	Left	Cheek	2	074FF	1	99.5	1.296	1.000	1.069	1.005	1.074	Aß
2462	11	802.11b	DSSS	22	17.5	17.23	-0.02	Left	Cheek	2	074FF	1	99.5	1.269	0.960	1.064	1.005	1.026	
2462	11	802.11b	DSSS	22	17.5	17.23	•	Left	Tilt	2	074FF	1	99.5	0.313	-	1.064	1.005	-	
2412	1	802.11b	DSSS	22	17.5	17.21	0.17	Left	Cheek	2	074FF	1	99.5	1.334	0.986	1.069	1.005	1.059	
		ANSI / IEEE	C95.1 1992 - Spatial Pea	ik									1.6	Head W/kg (mW/g)				

Blue entry represents variability measurement.

Table 11-9 NII Head SAR

									Teat	. 0/									
								MEASU	REMENT	RESU	LTS								
FREQUE	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted Power	Power Drift	Side	Test	Antenna	Device Serial	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot#
MHz	Ch.	mode	Service	[MHz]	Power [dBm]	[dBm]	[dB]	3100	Position	Config.	Number	(Mbps)	Daty Cycle	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	FIOLW
5260	52	802.11a	OFDM	20	14.5	13.88	0.00	Right	Cheek	1	074FF	6	99.6	0.970	0.547	1.153	1.004	0.634	
5260	52	802.11a	OFDM	20	14.5	13.88	0.13	Right	Tilt	1	074FF	6	99.6	1.010	0.416	1.153	1.004	0.482	
5260	52	802.11a	OFDM	20	14.5	13.88	-	Left	Cheek	1	074FF	6	99.6	0.512	-	1.153	1.004	-	
5260	52	802.11a	OFDM	20	14.5	13.88	-	Left	Tilt	1	074FF	6	99.6	0.465	-	1.153	1.004		
5260	52	802.11a	OFDM	20	14.5	14.28	-	Right	Cheek	2	074FF	6	99.0	0.012	-	1.052	1.010		
5260	52	802.11a	OFDM	20	14.5	14.28	-	Right	Tilt	2	074FF	6	99.0	0.008	-	1.052	1.010	-	
5260	52	802.11a	OFDM	20	14.5	14.28	0.05	Left	Cheek	2	074FF	6	99.0	0.013	0.007	1.052	1.010	0.007	
5260	52	802.11a	OFDM	20	14.5	14.28	-	Left	Tilt	2	074FF	6	99.0	0.013	-	1.052	1.010		
5500	100	802.11a	OFDM	20	14.5	14.32	0.13	Right	Cheek	1	074FF	6	99.6	1.733	0.795	1.042	1.004	0.831	A9
5580	116	802.11a	OFDM	20	14.5	13.84	0.10	Right	Cheek	1	074FF	6	99.6	1.487	0.763	1.164	1.004	0.892	
5500	100	802.11a	OFDM	20	14.5	14.32	0.01	Right	Tilt	1	074FF	6	99.6	1.237	0.634	1.042	1.004	0.664	
5500	100	802.11a	OFDM	20	14.5	14.32	-	Left	Cheek	1	074FF	6	99.6	0.917	-	1.042	1.004	-	
5500	100	802.11a	OFDM	20	14.5	14.32	-	Left	Tilt	1	074FF	6	99.6	0.881	-	1.042	1.004	-	
5500	100	802.11a	OFDM	20	14.5	14.39	-	Right	Cheek	2	074FF	6	99.0	0.019	-	1.026	1.010	-	
5500	100	802.11a	OFDM	20	14.5	14.39	-	Right	Tilt	2	074FF	6	99.0	0.012	-	1.026	1.010	-	
5500	100	802.11a	OFDM	20	14.5	14.39	0.13	Left	Cheek	2	074FF	6	99.0	0.038	0.019	1.026	1.010	0.019	
5500	100	802.11a	OFDM	20	14.5	14.39	-	Left	Tilt	2	074FF	6	99.0	0.016	-	1.026	1.010	-	
5745	149	802.11a	OFDM	20	14.5	13.95	0.13	Right	Cheek	1	074FF	6	99.6	1.289	0.720	1.135	1.004	0.820	
5825	165	802.11a	OFDM	20	14.5	13.75	0.14	Right	Cheek	1	074FF	6	99.6	1.461	0.750	1.189	1.004	0.896	
5745	149	802.11a	OFDM	20	14.5	13.95	-0.02	Right	Tilt	1	074FF	6	99.6	0.795	0.514	1.135	1.004	0.585	
5745	149	802.11a	OFDM	20	14.5	13.95	-	Left	Cheek	1	074FF	6	99.6	0.606	-	1.135	1.004	-	
5745	149	802.11a	OFDM	20	14.5	13.95	-	Left	Tilt	1	074FF	6	99.6	0.514	-	1.135	1.004	-	
5660	132	802.11a	OFDM	20	14.5	13.90	-	Right	Cheek	2	074FF	6	99.0	0.037	-	1.148	1.010	-	
5660	132	802.11a	OFDM	20	14.5	13.90	-	Right	Tilt	2	074FF	6	99.0	0.020		1.148	1.010	-	
5660	132	802.11a	OFDM	20	14.5	13.90	0.11	Left	Cheek	2	074FF	6	99.0	0.097	0.013	1.148	1.010	0.015	
5660	132	802.11a	OFDM	20	14.5	13.90	-	Left	Tilt	2	074FF	6	99.0	0.029	-	1.148	1.010	-	
		ANSI /	IEEE C95.1	1992 - SAF	ETY LIMIT									Head					
				tial Peak										W/kg (mW/					
		Uncontr	olled Expos	ure/Genera	I Population								avera	ged over 1 g	am				

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 40 af 07
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 46 of 67
© 2015 PCTEST Engineering Laboratory,	Inc.		REV 14.0 M 07/21/2014

11.2 Standalone Body-Worn SAR Data

Table 11-10 **GSM/UMTS Body-Worn SAR Data**

					MEASU	REMEN	T RESU	LTS							
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial		Duty	Side	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	23.5	23.10	0.06	10 mm	077AF	N/A	1:1	back	0.174	1.096	0.191	A10
1880.00	661	GSM 1900	GSM	29.5	28.84	-0.02	10 mm	077AF	1	1:8.3	back	0.413	1.164	0.481	A12
1852.40	9262	UMTS 1900	RMC	22.5	22.24	-0.01	10 mm	077AF	N/A	1:1	back	0.806	1.062	0.856	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	-0.05	10 mm	077AF	N/A	1:1	back	0.860	1.050	0.903	A14
1907.60	9538	UMTS 1900	RMC	22.5	22.27	-0.02	10 mm	077AF	N/A	1:1	back	0.841	1.054	0.886	
		ANSI / IEE	EE C95.1 1992 - SA	AFETY LIMIT							Body				
			Spatial Peak							1.6	W/kg (mV	N/g)			
		Uncontrolle	d Exposure/Gene	ral Population	1					averaç	ged over 1	gram			

Table 11-11 LTE Body-Worn SAR

							MEA	SUREM	ENT RESU	LTS									
FF	REQUENCY	, Ch.	Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power[dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Scaled SAR (1g) (W/kg)	Plot #
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.15	0	074FF	QPSK	1	0	10 mm	back	1:1	0.229	1.050	0.240	A16
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	-0.01	1	074FF	QPSK	25	12	10 mm	back	1:1	0.172	1.161	0.200	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	-0.10	0	074FF	QPSK	1	0	10 mm	back	1:1	0.281	1.062	0.298	A17
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	-0.13	1	074FF	QPSK	36	18	10 mm	back	1:1	0.201	1.180	0.237	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.55	-0.04	0	077C5	QPSK	1	0	10 mm	back	1:1	0.986	1.109	1.093	A18
1880.00 18900 Mid LTE Band 2 (PCS) 20 23.0 22.65 -0.04 0 077C5 QPSK 1 99 10 mm back 1:1 0.97												0.977	1.084	1.059					
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.53	-0.01	0	077C5	QPSK	1	99	10 mm	back	1:1	0.984	1.114	1.096	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.0	21.31	0.07	1	077C5	QPSK	50	50	10 mm	back	1:1	0.705	1.172	0.826	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.09	1	077C5	QPSK	50	25	10 mm	back	1:1	0.714	1.148	0.820	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.0	21.39	-0.06	1	077C5	QPSK	50	25	10 mm	back	1:1	0.753	1.151	0.867	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.0	21.38	-0.01	1	077C5	QPSK	100	0	10 mm	back	1:1	0.758	1.153	0.874	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.02	0	077AF	QPSK	1	50	10 mm	back	1:1.58	0.234	1.023	0.239	A19
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	-0.07	1	077AF	QPSK	50	25	10 mm	back	1:1.58	0.191	1.081	0.206	
			ANSI / IEEE	Spatial Per									1.6 W/	Body kg (mW/ dover 1 g					

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 47 of 67
© 2015 PCTEST Engineering Laborate	ory, Inc.			REV 14.0 M

Table 11-12 DTS Body-Worn SAR

									· · · · ·			-							
								MEASU	REMENT	RESUL	.TS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Serial	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot #
MHz	Ch.			[minz]	Fower [abin]	[dBm]	[ub]		coning.	Number	(mops)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.5	16.71	0.02	10 mm	1	074FF	1	back	99.5	0.043	0.040	1.199	1.005	0.048	A20
2462	11	802.11b	DSSS	22	17.5	17.23	0.13	10 mm	2	074FF	1	back	99.5	0.035	0.034	1.064	1.005	0.036	
		ANS	/ IEEE C9	5.1 1992 - S	AFETY LIMIT									Body					
			S	patial Peak										1.6 W/kg (mW/	g)				
		Uncont	rolled Exr	osure/Gene	eral Population								a	eraned over 1 n	ram				

Table 11-13 NII Body-Worn SAR

									MEASU	REMENT R	ESULTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum	Conducted	Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Scaled SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Config.	Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5260	52	802.11a	OFDM	20	14.5	13.88	0.12	10 mm	1	074FF	6	back	99.6	0.050	0.021	1.153	1.004	0.024	
5260	52	802.11a	OFDM	20	14.5	14.28	0.11	10 mm	2	074FF	6	back	99.0	0.134	0.048	1.052	1.010	0.050	
5500	100	802.11a	OFDM	20	14.5	14.32	0.15	10 mm	1	074FF	6	back	99.6	0.107	0.042	1.042	1.004	0.044	
5500	100	802.11a	OFDM	20	14.5	14.39	0.11	10 mm	2	074FF	6	back	99.0	0.085	0.032	1.026	1.010	0.033	
5745	149	802.11a	OFDM	20	14.5	13.95	0.12	10 mm	1	074FF	6	back	99.6	0.100	0.034	1.135	1.004	0.039	
5660	132	802.11a	OFDM	20	14.5	13.90	0.15	10 mm	2	074FF	6	back	99.6	0.140	0.065	1.148	1.004	0.075	A22
		ANSI	/ IEEE C	95.1 1992 -	SAFETY LIM	π							Bo	dy					
		Uncont		Spatial Peak posure/Ger	c neral Populat	tion							1.6 W/kg averaged o	y (mW/g) wer 1 gram					

11.3 Standalone Wireless Router SAR Data

Table 11-14 GPRS/UMTS Hotspot SAR Data

					MEAS	UREME	NT RES	JLTS							
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	Dinit [ub]			0.010	0,0.0		(W/kg)	1 40101	(W/kg)	
836.60	4183	UMTS 850	RMC	23.5	23.10	0.06	10 mm	077AF	N/A	1:1	back	0.174	1.096	0.191	
836.60	4183	UMTS 850	RMC	23.5	23.10	0.02	10 mm	077AF	N/A	1:1	front	0.170	1.096	0.186	
836.60	4183	UMTS 850	RMC	23.5	23.10	-0.02	10 mm	077AF	N/A	1:1	bottom	0.041	1.096	0.045	
836.60	4183	UMTS 850	RMC	23.5	23.10	0.09	10 mm	077AF	N/A	1:1	right	0.120	1.096	0.132	
836.60	4183	UMTS 850	RMC	23.5	23.10	-0.07	10 mm	077AF	N/A	1:1	left	0.176	1.096	0.193	A11
1880.00	661	GSM 1900	GPRS	28.0	27.78	-0.05	10 mm	077AF	2	1:4.15	back	0.555	1.052	0.584	
1880.00	661	GSM 1900	GPRS	28.0	27.78	-0.07	10 mm	077AF	2	1:4.15	front	0.467	1.052	0.491	
1880.00	661	GSM 1900	GPRS	28.0	27.78	0.01	10 mm	077AF	2	1:4.15	bottom	0.744	1.052	0.783	A13
1880.00	661	GSM 1900	GPRS	28.0	27.78	10 mm	077AF	2	1:4.15	right	0.057	1.052	0.060		
1880.00	661	GSM 1900	GPRS	28.0	27.78	-0.07	10 mm	077AF	2	1:4.15	left	0.221	1.052	0.232	
1852.40	9262	UMTS 1900	RMC	22.5	22.24	-0.01	10 mm	077AF	N/A	1:1	back	0.806	1.062	0.856	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	-0.05	10 mm	077AF	N/A	1:1	back	0.860	1.050	0.903	
1907.60	9538	UMTS 1900	RMC	22.5	22.27	-0.02	10 mm	077AF	N/A	1:1	back	0.841	1.054	0.886	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	0.00	10 mm	077AF	N/A	1:1	front	0.613	1.050	0.644	
1852.40	9262	UMTS 1900	RMC	22.5	22.24	-0.03	10 mm	077AF	N/A	1:1	bottom	0.953	1.062	1.012	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	-0.03	10 mm	077AF	N/A	1:1	bottom	1.010	1.050	1.061	A15
1907.60	9538	UMTS 1900	RMC	22.5	22.27	0.01	10 mm	077AF	N/A	1:1	bottom	0.980	1.054	1.033	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	-0.03	10 mm	077AF	N/A	1:1	right	0.065	1.050	0.068	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	-0.06	10 mm	077AF	N/A	1:1	left	0.313	1.050	0.329	
1880.00	9400	UMTS 1900	RMC	22.5	22.29	-0.13	10 mm	077AF	N/A	1:1	bottom	1.000	1.050	1.050	
		ANSI / IEEE	C95.1 1992 - SAF	ETY LIMIT							Body				
			Spatial Peak							1.6 V	V/kg (mW	//g)			
		Uncontrolled E	Exposure/Genera	I Population						averag	ed over 1	gram			

Blue entry represents variability measurement.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 49 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 48 of 67

Table 11-15 LTE Band 17 Hotspot SAR

								MEASUR	EMENT I	RESULTS									
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	С	h.		[int iz]	Power [dBm]	[dBm]	Dint [0D]		Number							(W/kg)	ractor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.15	0	074FF	QPSK	1	0	10 mm	back	1:1	0.229	1.050	0.240	A16
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	-0.01	1	074FF	QPSK	25	12	10 mm	back	1:1	0.172	1.161	0.200	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	-0.15	0	074FF	QPSK	1	0	10 mm	front	1:1	0.189	1.050	0.198	
710.00	710.00 23790 Mid LTE Band 17 10 22.5 21.85 0						0.13	1	074FF	QPSK	25	12	10 mm	front	1:1	0.160	1.161	0.186	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	-0.13	0	074FF	QPSK	1	0	10 mm	bottom	1:1	0.062	1.050	0.065	
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	0.03	1	074FF	QPSK	25	12	10 mm	bottom	1:1	0.047	1.161	0.055	
710.00	23790	Mid	LTE Band 17	10	23.5	23.29	0.13	0	074FF	QPSK	1	0	10 mm	right	1:1	0.021	1.050	0.022	
710.00	23790	Mid	LTE Band 17	10	22.5	21.85	-0.06	1	074FF	QPSK	25	12	10 mm	right	1:1	0.019	1.161	0.022	
710.00	710.00 23790 Mid LTE Band 17 10 23.5 23.29 0.00					0.00	0	074FF	QPSK	1	0	10 mm	left	1:1	0.032	1.050	0.034		
710.00	.00 23790 Mid LTE Band 17 10 22.5 21.85 0.03					0.03	1	074FF	QPSK	25	12	10 mm	left	1:1	0.029	1.161	0.034		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population					Body 1.6 W/kg (mW/g) averaged over 1 gram													

Table 11-16LTE Band 26 (Cell) Hotspot SAR

								MEASUF	REMENTR	ESULTS									
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	CI	ı.			[dBm]			-								(W/kg)		(W/kg)	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	-0.10	0	074FF	QPSK	1	0	10 mm	back	1:1	0.281	1.062	0.298	A17
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	-0.13	1	074FF	QPSK	36	18	10 mm	back	1:1	0.201	1.180	0.237	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	0.00	0	074FF	QPSK	1	0	10 mm	front	1:1	0.261	1.062	0.277	
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	-0.01	1	074FF	QPSK	36	18	10 mm	front	1:1	0.187	1.180	0.221	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	0.01	0	074FF	QPSK	1	0	10 mm	bottom	1:1	0.131	1.062	0.139	
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	-0.03	1	074FF	QPSK	36	18	10 mm	bottom	1:1	0.098	1.180	0.116	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	0.15	0	074FF	QPSK	1	0	10 mm	right	1:1	0.026	1.062	0.028	
836.50	26915	Mid	LTE Band 26	15	22.5	21.78	0.12	1	074FF	QPSK	36	18	10 mm	right	1:1	0.014	1.180	0.017	
836.50	26915	Mid	LTE Band 26	15	23.5	23.24	0.13	0	074FF	QPSK	1	0	10 mm	left	1:1	0.059	1.062	0.063	
836.50	836.50 26915 Mid LTE Band 26 15 22.5 21.78 0.06					0.06	1	074FF	QPSK	36	18	10 mm	left	1:1	0.057	1.180	0.067		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body												
	Spatial Peak Uncontrolled Exposure/General Population										1.6 W/kg veraged ov								

Table 11-17 LTE Band 2 (PCS) Hotspot SAR

							r	MEASUR	EMENT RE	SULTS									
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed Power	Conducted Power	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	C	h.		[MHz]	[dBm]	[dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.55	-0.04	0	077C5	QPSK	1	0	10 mm	back	1:1	0.986	1.109	1.093	A18
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	-0.04	0	077C5	QPSK	1	99	10 mm	back	1:1	0.977	1.084	1.059	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.53	-0.01	0	077C5	QPSK	1	99	10 mm	back	1:1	0.984	1.114	1.096	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.0	21.31	0.07	1	077C5	QPSK	50	50	10 mm	back	1:1	0.705	1.172	0.826	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.09	1	077C5	QPSK	50	25	10 mm	back	1:1	0.714	1.148	0.820	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.0	21.39	-0.06	1	077C5	QPSK	50	25	10 mm	back	1:1	0.753	1.151	0.867	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.0	21.38	-0.01	1	077C5	QPSK	100	0	10 mm	back	1:1	0.758	1.153	0.874	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	-0.09	0	077C5	QPSK	1	99	10 mm	front	1:1	0.712	1.084	0.772	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.12	1	077C5	QPSK	50	25	10 mm	front	1:1	0.526	1.148	0.604	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.55	0.03	0	077C5	QPSK	1	0	10 mm	bottom	1:1	0.914	1.109	1.014	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	-0.08	0	077C5	QPSK	1	99	10 mm	bottom	1:1	0.979	1.084	1.061	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	22.53	-0.06	0	077C5	QPSK	1	99	10 mm	bottom	1:1	0.965	1.114	1.075	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.0	21.31	0.12	1	077C5	QPSK	50	50	10 mm	bottom	1:1	0.664	1.172	0.778	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.05	1	077C5	QPSK	50	25	10 mm	bottom	1:1	0.718	1.148	0.824	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.0	21.39	0.05	1	077C5	QPSK	50	25	10 mm	bottom	1:1	0.741	1.151	0.853	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.0	21.38	0.04	1	077C5	QPSK	100	0	10 mm	bottom	1:1	0.691	1.153	0.797	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	22.65	-0.04	0	077C5	QPSK	1	99	10 mm	right	1:1	0.072	1.084	0.078	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.0	21.40	-0.03	1	077C5	QPSK	50	25	10 mm	right	1:1	0.055	1.148	0.063	
1880.00	10.00 18900 Mid LTE Band 2 (PCS) 20 23.0 22.65 0.11						0.11	0	077C5	QPSK	1	99	10 mm	left	1:1	0.375	1.084	0.407	
1880.00						0.05	1	077C5	QPSK	50	25	10 mm	left	1:1	0.297	1.148	0.341		
			ANSI / IEEE C95.		ETY LIMIT								Bo						
				itial Peak			1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population										a	veraged or	ver 1 gran	1					

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 40 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 49 of 67
© 2015 DOTECT Engine aning Laboratory	laa		

Table 11-18 LTE Band 41 Hotspot SAR

								MEASUREMENT RESULTS											
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed Power	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	C	ı.		[MHz]	[dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.02	0	077AF	QPSK	1	50	10 mm	back	1:1.58	0.234	1.023	0.239	A19
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	-0.07	1	077AF	QPSK	50	25	10 mm	back	1:1.58	0.191	1.081	0.206	
2506.00	06.00 39750 Low LTE Band 41 20 24.0 23.90 0.0						0.09	0	077AF	QPSK	1	50	10 mm	front	1:1.58	0.159	1.023	0.163	
2506.00	6.00 39750 Low LTE Band 41 20 23.0 22.66 0.0						0.07	1	077AF	QPSK	50	25	10 mm	front	1:1.58	0.126	1.081	0.136	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.13	0	077AF	QPSK	1	50	10 mm	bottom	1:1.58	0.069	1.023	0.071	
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	0.12	1	077AF	QPSK	50	25	10 mm	bottom	1:1.58	0.055	1.081	0.059	
2506.00	39750	Low	LTE Band 41	20	24.0	23.90	0.10	0	077AF	QPSK	1	50	10 mm	right	1:1.58	0.104	1.023	0.106	
2506.00	39750	Low	LTE Band 41	20	23.0	22.66	0.12	1	077AF	QPSK	50	25	10 mm	right	1:1.58	0.083	1.081	0.090	
2506.00	6.00 39750 Low LTE Band 41 20 24.0 23.90 0.07					0.07	0	077AF	QPSK	1	50	10 mm	left	1:1.58	0.012	1.023	0.012		
2506.00	6.00 39750 Low LTE Band 41 20 23.0 22.66 0.17					0.17	1	077AF	QPSK	50	25	10 mm	left	1:1.58	0.007	1.081	0.008		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Body 1.6 W/kg (mW/g) averaged over 1 gram												

Table 11-19 WLAN Hotspot SAR

								MEA	SUREMI	ENT RE	SULTS	5							
FREQU	ENCY	Mode	Service	Bandwidt	Maximum Allowed	Conducted Power	Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor		Scaled SAR (1g)	Plot #
MHz	Ch.			h (MHz)	Power [dBm]	[dBm]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.5	16.71	•	10 mm	1	074FF	1	back	99.5	0.043	-	1.199	1.005	-	
2437	6	802.11b	DSSS	22	17.5	16.71	•	10 mm	1	074FF	1	front	99.5	0.042	-	1.199	1.005	-	
2437	6	802.11b	DSSS	22	17.5	16.71	0.13	10 mm	1	074FF	1	top	99.5	0.117	0.095	1.199	1.005	0.115	
2437	6	802.11b	DSSS	22	17.5	16.71		10 mm	1	074FF	1	left	99.5	0.011	-	1.199	1.005	-	
2462	11	802.11b	DSSS	22	17.5	17.23	•	10 mm	2	074FF	1	back	99.5	0.035		1.199	1.005		
2462	11	802.11b	DSSS	22	17.5	17.23	0.11	10 mm	2	074FF	1	front	99.5	0.129	0.106	1.064	1.005	0.114	A21
2462	11	802.11b	DSSS	22	17.5	17.23	•	10 mm	2	074FF	1	top	99.5	0.025		1.064	1.005		
2462	11	802.11b	DSSS	22	17.5	17.23		10 mm	2	074FF	1	right	99.5	0.013		1.064	1.005		
5745	149	802.11a	OFDM	20	14.5	13.95		10 mm	1	074FF	6	back	99.6	0.100		1.135	1.004		
5745	149	802.11a	OFDM	20	14.5	13.95	0.14	10 mm	1	074FF	6	front	99.6	0.236	0.092	1.135	1.004	0.104	A23
5745	149	802.11a	OFDM	20	14.5	13.95		10 mm	1	074FF	6	top	99.6	0.078		1.135	1.004		
5745	149	802.11a	OFDM	20	14.5	13.95		10 mm	1	074FF	6	left	99.6	0.029		1.135	1.004		
5745	149	802.11a	OFDM	20	14.5	13.59	0.00	10 mm	2	074FF	6	back	99.0	0.076	0.031	1.233	1.010	0.039	
5745	149	802.11a	OFDM	20	14.5	13.59		10 mm	2	074FF	6	front	99.0	0.013		1.233	1.010		
5745	149	802.11a	OFDM	20	14.5	13.59		10 mm	2	074FF	6	top	99.0	0.022		1.233	1.010		
5745	149	802.11a	OFDM	20	14.5	13.59		10 mm 2 074FF 6 right 99.0 0.026 - 1.233 1.010 -											
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body												
	Spatial Peak Uncontrolled Exposure/General Population											a	1.6 W/kg (m) veraged over						

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 50 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	age 50 01 07
© 2015 PCTEST Engineering Laboratory,	Inc.		REV 14.0 M

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.6 for more details).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D03v01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 51 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 51 of 67
© 2015 PCTEST Engineering Laboratory	Inc		DEV/14.0 M

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r01. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. TDD LTE was tested per FCC KDB 941225 D05v02r03 and using the guidance provided in April 2013 TCB workshop notes. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test
 position with the highest extrapolated peak SAR will be used as the initial test position. When
 reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test
 positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR
 positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 8.6.6 for more information.
- 4. Per KDB Publication 248227 D01DR02-41929, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498. Please see Section 12 for complete analysis.
- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 7. Only channels in the U-NII-2C (> 5.65 GHz WIFI) & U-NII-3 aggregate band that support wireless router were considered for hotspot SAR tests

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 52 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 52 of 67
© 2015 DOTECT Engineering Leheroter	Inc		

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	10.50	10	0.231

Note:

- Held-to-ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.
- Since the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, MIMO SAR is determined by the sum of 1g single transmission chain SAR values because the summation represents higher output power and yields more conservative result per KDB 248227 D01 DR02-41929.
- The highest Reported SAR for each exposure condition is used for SAR summation purpose.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 52 at 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 53 of 67
© 2015 PCTEST Engineering Laborator	/ Inc			PEV/14.0 M

12.3 Head SAR Simultaneous Transmission Analysis

imultaneous '	Transmission Scenario	o with 2.4 GHz	z WLAN – Ant	1 (Held to Ear)
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.115	0.317	0.432
	GSM/GPRS 1900	0.105	0.317	0.422
	UMTS 1900	0.175	0.317	0.492
Head SAR	LTE Band 17	0.058	0.317	0.375
	LTE Band 26	0.147	0.317	0.464
	LTE Band 2 (PCS)	0.159	0.317	0.476
	LTE Band 41	0.063	0.317	0.380

 Table 12-2

 Simultaneous Transmission Scenario with 2.4 GHz WLAN – Ant 1 (Held to Ear)

 Table 12-3

 Simultaneous Transmission Scenario with 2.4 GHz WLAN – Ant 2 (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.115	1.074	1.189
	GSM/GPRS 1900	0.105	1.074	1.179
	UMTS 1900	0.175	1.074	1.249
Head SAR	LTE Band 17	0.058	1.074	1.132
	LTE Band 26	0.147	1.074	1.221
	LTE Band 2 (PCS)	0.159	1.074	1.233
	LTE Band 41	0.063	1.074	1.137

 Table 12-4

 Simultaneous Transmission Scenario with 2.4 GHz WLAN – MIMO (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.115	0.317	1.074	1.506
	GSM/GPRS 1900	0.105	0.317	1.074	1.496
	UMTS 1900	0.175	0.317	1.074	1.566
Head SAR	LTE Band 17	0.058	0.317	1.074	1.449
	LTE Band 26	0.147	0.317	1.074	1.538
	LTE Band 2 (PCS)	0.159	0.317	1.074	1.550
	LTE Band 41	0.063	0.317	1.074	1.454

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by:
FCCID. ASLSMG920KOK	*** V SNG(HEFE(R)) LAEDEATORY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 54 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 54 of 67
© 2015 DOTECT Engineering Laboratory	laa		

© 2015 PCTEST Engineering Laboratory, Inc.

Table 12-5 Simultaneous Transmission Scenario with 5 GHz WLAN – Ant 1 (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.115	0.896	1.011
	GSM/GPRS 1900	0.105	0.896	1.001
	UMTS 1900	0.175	0.896	1.071
Head SAR	LTE Band 17	0.058	0.896	0.954
	LTE Band 26	0.147	0.896	1.043
	LTE Band 2 (PCS)	0.159	0.896	1.055
	LTE Band 41	0.063	0.896	0.959

Table 12-6

Simultaneous Transmission Scenario with 5 GHz WLAN - Ant 2 (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.115	0.019	0.134
	GSM/GPRS 1900	0.105	0.019	0.124
	UMTS 1900	0.175	0.019	0.194
Head SAR	LTE Band 17	0.058	0.019	0.077
	LTE Band 26	0.147	0.019	0.166
	LTE Band 2 (PCS)	0.159	0.019	0.178
	LTE Band 41	0.063	0.019	0.082

Table 12-7

Simultaneous Transmission Scenario with 5 GHz WLAN – MIMO (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.115	0.896	0.019	1.030
	GSM/GPRS 1900	0.105	0.896	0.019	1.020
	UMTS 1900	0.175	0.896	0.019	1.090
Head SAR	LTE Band 17	0.058	0.896	0.019	0.973
	LTE Band 26	0.147	0.896	0.019	1.062
	LTE Band 2 (PCS)	0.159	0.896	0.019	1.074
	LTE Band 41	0.063	0.896	0.019	0.978

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 55 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Fage 55 01 07
© 2015 PCTEST Engineering Laborator	y, Inc.			REV 14.0 M

12.4 Body-Worn Simultaneous Transmission Analysis

u	taneous Trans	smission Scenario with	1 2.4 GHz WLA	AN - Ant 1 (Bo	dy-Worn at 1.	0
	Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)	
		UMTS 850	0.191	0.048	0.239	l
		GSM 1900	0.481	0.048	0.529	l
		UMTS 1900	0.903	0.048	0.951	
	Body-Worn	LTE Band 17	0.240	0.048	0.288	l
		LTE Band 26	0.298	0.048	0.346	l
	LTE Band 2 (PCS)	1.096	0.048	1.144	l	
		LTE Band 41	0.239	0.048	0.287	L

Table 12-8 with 2 4 GHz WLAN - Ant 1 (Body-Worn at <u>1.</u>0 cm) Simultaneous

Table 12-9 Simultaneous Transmission Scenario with 2.4 GHz WLAN - Ant 2 (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.191	0.036	0.227
	GSM 1900	0.481	0.036	0.517
	UMTS 1900	0.903	0.036	0.939
Body-Worn	LTE Band 17	0.240	0.036	0.276
	LTE Band 26	0.298	0.036	0.334
	LTE Band 2 (PCS)	1.096	0.036	1.132
	LTE Band 41	0.239	0.036	0.275

Table 12-10

Simultaneous Transmission Scenario with 2.4 GHz WLAN - MIMO (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.191	0.048	0.036	0.275
	GSM 1900	0.481	0.048	0.036	0.565
	UMTS 1900	0.903	0.048	0.036	0.987
Body-Worn	LTE Band 17	0.240	0.048	0.036	0.324
	LTE Band 26	0.298	0.048	0.036	0.382
	LTE Band 2 (PCS)	1.096	0.048	0.036	1.180
	LTE Band 41	0.239	0.048	0.036	0.323

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 56 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Fage 50 01 07
© 2015 PCTEST Engineering Laboratory	, Inc.			REV 14.0 M

Table 12-11 Simultaneous Transmission Scenario with 5 GHz WLAN - Ant 1 (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.191	0.044	0.235
	GSM 1900	0.481	0.044	0.525
	UMTS 1900	0.903	0.044	0.947
Body-Worn	LTE Band 17	0.240	0.044	0.284
	LTE Band 26	0.298	0.044	0.342
	LTE Band 2 (PCS)	1.096	0.044	1.140
	LTE Band 41	0.239	0.044	0.283

Table 12-12

Simultaneous Transmission Scenario with 5 GHz WLAN - Ant 2 (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.191	0.075	0.266
	GSM 1900	0.481	0.075	0.556
	UMTS 1900	0.903	0.075	0.978
Body-Worn	LTE Band 17	0.240	0.075	0.315
	LTE Band 26	0.298	0.075	0.373
	LTE Band 2 (PCS)	1.096	0.075	1.171
	LTE Band 41	0.239	0.075	0.314

Table 12-13

Simultaneous Transmission Scenario with 5 GHz WLAN - MIMO (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.191	0.044	0.075	0.310
	GSM 1900	0.481	0.044	0.075	0.600
	UMTS 1900	0.903	0.044	0.075	1.022
Body-Worn	LTE Band 17	0.240	0.044	0.075	0.359
	LTE Band 26	0.298	0.044	0.075	0.417
	LTE Band 2 (PCS)	1.096	0.044	0.075	1.215
	LTE Band 41	0.239	0.044	0.075	0.358

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1501080032.A3L	01/06/15 - 01/24/15 Portable Handset			Page 57 of 67
© 2015 PCTEST Engineering Laborato	ry, Inc.	÷		REV 14.0 M

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.191	0.231	0.422
	GSM 1900	0.481	0.231	0.712
	UMTS 1900	0.903	0.231	1.134
Body-Worn	LTE Band 17	0.240	0.231	0.471
	LTE Band 26	0.298	0.231	0.529
	LTE Band 2 (PCS)	1.096	0.231	1.327
	LTE Band 41	0.239	0.231	0.470

Table 12-14 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

12.5 Hotspot SAR Simultaneous Transmission Analysis

Table 12-15						
nu <u>ltaneous Tra</u>	nsmission Scenario	2.4 GHz WL	<u> AN – Ant 1 (I</u>	Hotspot at 1.	0 cm	
Exposure	Mada	2G/3G/4G	2.4 GHz WLAN Ant	ΣSAR		
Condition	Mode	SAR (W/kg)	1 SAR (W/kg)	(W/kg)		
	UMTS 850	0.193	0.115	0.308		
	GPRS 1900	0.783	0.115	0.898		
	UMTS 1900	1.061	0.115	1.176		
Hotspot SAR	LTE Band 17	0.240	0.115	0.355		
	LTE Band 26	0.298	0.115	0.413		
	LTE Band 2 (PCS)	1.096	0.115	1.211		
	LTE Band 41	0.239	0.115	0.354		
Condition	GPRS 1900 UMTS 1900 LTE Band 17 LTE Band 26 LTE Band 2 (PCS)	SAR (W/kg) 0.193 0.783 1.061 0.240 0.298 1.096	1 SAR (W/kg) 0.115 0.115 0.115 0.115 0.115 0.115	(W/kg) 0.308 0.898 1.176 0.355 0.413 1.211		

Table 12-15 Sim m)

Table 12-16

Simultaneous Transmission Scenario 2.4 GHz WLAN – Ant 2 (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.193	0.114	0.307
	GPRS 1900	0.783	0.114	0.897
	UMTS 1900	1.061	0.114	1.175
Hotspot SAR	LTE Band 17	0.240	0.114	0.354
	LTE Band 26	0.298	0.114	0.412
	LTE Band 2 (PCS)	1.096	0.114	1.210
	LTE Band 41	0.239	0.114	0.353

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by:
	Y PROVIDENCE LARGEATORY, IN		Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 58 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Fage 56 01 07
© 2015 DOTECT Engineering Laboratory	100		

Omnancou	Sinditaleous maisinission scenario 2.4 Griz WEAN – Minio (notspot at 1.0 cm)					
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	
	UMTS 850	0.193	0.115	0.114	0.422	
	GPRS 1900	0.783	0.115	0.114	1.012	
	UMTS 1900	1.061	0.115	0.114	1.290	
Hotspot SAR	LTE Band 17	0.240	0.115	0.114	0.469	
	LTE Band 26	0.298	0.115	0.114	0.527	
	LTE Band 2 (PCS)	1.096	0.115	0.114	1.325	
	LTE Band 41	0.239	0.115	0.114	0.468	

Table 12-17 Simultaneous Transmission Scenario 2.4 GHz WLAN – MIMO (Hotspot at 1.0 cm)

Table 12-18

Simultaneous Transmission Scenario 5 GHz WLAN – Ant 1 (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.193	0.104	0.297
	GPRS 1900	0.783	0.104	0.887
	UMTS 1900	1.061	0.104	1.165
Hotspot SAR	LTE Band 17	0.240	0.104	0.344
	LTE Band 26	0.298	0.104	0.402
	LTE Band 2 (PCS)	1.096	0.104	1.200
	LTE Band 41	0.239	0.104	0.343

Table 12-19

Simultaneous Transmission Scenario 5 GHz WLAN - Ant 2 (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.193	0.039	0.232
	GPRS 1900	0.783	0.039	0.822
	UMTS 1900	1.061	0.039	1.100
Hotspot SAR	LTE Band 17	0.240	0.039	0.279
	LTE Band 26	0.298	0.039	0.337
	LTE Band 2 (PCS)	1.096	0.039	1.135
	LTE Band 41	0.239	0.039	0.278

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dawa 50 at 07
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset		Page 59 of 67
© 2015 PCTEST Engineering Laboratory	, Inc.			REV 14.0 M

Omulatio	Simultaneous manshission Scenario 5 GHZ WEAN - MIMO (Hotspot at 1.0 Chi)					
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	
	UMTS 850	0.193	0.104	0.039	0.336	
	GPRS 1900	0.783	0.104	0.039	0.926	
	UMTS 1900	1.061	0.104	0.039	1.204	
Hotspot SAR	LTE Band 17	0.240	0.104	0.039	0.383	
	LTE Band 26	0.298	0.104	0.039	0.441	
	LTE Band 2 (PCS)	1.096	0.104	0.039	1.239	
	LTE Band 41	0.239	0.104	0.039	0.382	

 Table 12-20

 Simultaneous Transmission Scenario 5 GHz WLAN – MIMO (Hotspot at 1.0 cm)

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 60 of 67	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 60 of 67	
© 2015 PCTEST Engineering Laboratory,	Inc.	·	REV 14.0 M	

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

	Head SAN measurement variability results													
	HEAD VARIABILITY RESULTS													
Band	FREQUE	NCY	Mode/Band	Service				Measured SAR (1g) (W/kg)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.			Position	(W/kg)			(W/kg)		(W/kg)			
2450	2412.00	1	802.11b 22 MHz Bandwidth	DSSS , ANT 2	Left	Cheek	1	1.000	0.986	1.0	N/A	N/A	N/A	N/A
	AN	ISI / IEE	E C95.1 1992 - SAFE	TY LIMIT	Head									
	Spatial Peak			1.6 W/kg (mW/g)										
	Unco	ontrolled	d Exposure/General	Population	averaged over 1 gram									

 Table 13-1

 Head SAR Measurement Variability Results

Table 13-2
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS														
Band	FREQUE	NCY	Mode	Service			Side Spacing		Measured SAR (1g)		Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)			
1900	1880.00	9400	UMTS 1900	RMC	bottom	10 mm	1.010	1.000	1.01	N/A	N/A	N/A	N/A		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Bo	dy						
Spatial Peak				1.6 W/kg (mW/g)											
	Uncon	trolled I	Exposure/General	Population				а	veraged c	ver 1 gram					

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dage 61 of 67	
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 61 of 67	

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Numb
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/26/2014	Annual	2/26/2015	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/14/2014	Annual	5/14/2015	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/12/2014	Annual	8/12/2015	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2014	Annual	9/17/2015	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/18/2014	Annual	9/18/2015	1364
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2014	Annual	4/11/2015	1368
SPEAG	D1900V2	1900 MHz SAR Dipole	4/9/2014	Annual	4/9/2015	5d141
SPEAG	D1900V2	1900 MHz SAR Dipole	7/23/2014	Annual	7/23/2015	5d149
SPEAG	D2450V2	2450 MHz SAR Dipole	8/11/2014	Annual	8/11/2015	719
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/26/2014	Annual	2/26/2015	1120
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/25/2014	Annual	9/25/2015	1191
SPEAG	D750V3	750 MHz Dipole	3/17/2014	Annual	3/17/2015	1054
SPEAG	D835V2	835 MHz SAR Dipole	4/7/2014	Annual	4/7/2015	4d119
SPEAG	D835V2	835 MHz SAR Dipole	7/24/2014	Annual	7/24/2015	4d133
SPEAG	ES3DV2	SAR Probe	8/19/2014	Annual	8/19/2015	3022
SPEAG	ES3DV3	SAB Probe	2/25/2014	Annual	2/25/2015	3258
SPEAG	ES3DV3	SAR Probe	5/15/2014	Annual	5/15/2015	3263
SPEAG	ES3DV3	SAR Probe	9/24/2014	Annual	9/24/2015	3288
SPEAG	EX3DV3	SAR Probe	12/12/2014	Annual	12/12/2015	3200
SPEAG	EX3DV4	SAR Probe	7/16/2014	Annual	7/16/2015	7308
	F8257D		4/15/2014	Annual	4/15/2015	7308 MY4547019
Agilent		(250kHz-20GHz) Signal Generator	1 - 1 -		1 4 5 5	
Agilent	8753E 8594A	(30kHz-6GHz) Network Analyzer	12/30/2014 N/A	Annual N/A	12/30/2015 N/A	JP38020182 3051A0018
Agilent		(9kHz-2.9GHz) Spectrum Analyzer				
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/15/2014	Annual	4/15/2015	3629U0068
Agilent	E4438C	ESG Vector Signal Generator	4/25/2014	Annual	4/25/2015	MY4208238
Agilent	E4438C	ESG Vector Signal Generator	3/31/2014	Annual	3/31/2015	MY4208265
Agilent	N9020A	MXA Signal Analyzer	10/27/2014	Annual	10/27/2015	US4647056
Agilent	N5182A	MXG Vector Signal Generator	4/15/2014	Annual	4/15/2015	MY4742065
Agilent	N5182A	MXG Vector Signal Generator	4/15/2014	Annual	4/15/2015	MY4742080
Agilent	8753ES	S-Parameter Network Analyzer	5/22/2014	Annual	5/22/2015	US3917011
Agilent	E5515C	Wireless Communications Test Set	11/20/2014	Biennial	11/20/2016	GB4316344
Agilent	E5515C	Wireless Communications Test Set	3/18/2014	Annual	3/18/2015	GB4611087
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433978
Anritsu	ML2495A	Power Meter	7/12/2013	Biennial	7/12/2015	1328004
Anritsu	ML2469A	Power Meter	3/14/2014	Annual	3/14/2015	1306009
Anritsu	MA2411B	Pulse Power Sensor	11/17/2014	Annual	11/17/2015	1126066
Anritsu	MA2411B	Pulse Power Sensor	11/13/2014	Annual	11/13/2015	1339018
Anritsu	MT8820C	Radio Communication Analyzer	5/6/2014	Annual	5/6/2015	620114441
Anritsu	MT8820C	Radio Communication Analyzer	11/18/2014	Annual	11/18/2015	620130073
Anritsu	MA24106A	USB Power Sensor	5/14/2014	Annual	5/14/2015	1231538
Anritsu	MA24106A	USB Power Sensor	5/15/2014	Annual	5/15/2015	1244512
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-0
Control Company	61220-416	Long-Stem Thermometer	4/29/2014	Biennial	4/29/2016	11133132
Control Company	36934-158	Wall-Mounted Thermometer	4/29/2014	Biennial	4/29/2016	12201448
Fisher Scientific	15-077-960	Digital Thermometer	12/4/2013	Biennial	12/4/2015	13076455
Fisher Scientific	15-077-960	Digital Thermometer	12/4/2013	Biennial	12/4/2015	13076455
Fisher Scientific	S407993	Long Stem Thermometer	11/4/2013	Biennial	11/4/2015	13067182
Fisher Scientific	\$97611	Thermometer	4/12/2013	Biennial	4/12/2015	13021930
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/30/2014	Annual	10/30/2015	1833460
Gigatronics	8651A	Universal Power Meter	10/30/2014	Annual	10/30/2015	8650319
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A N/A	CBT	R897950090
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A N/A
Mini-Circuits	NIP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A N/A
Mini-Circuits	NLP-1200+ NLP-2950+	Low Pass Filter DC to 1000 MHz Low Pass Filter DC to 2700 MHz	CBT	N/A N/A	CBT	N/A N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A N/A	CBT	1226
			-			
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264162
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	6/6/2014	Annual	6/6/2015	109892
Rohde & Schwarz	CMU200	Base Station Simulator	4/24/2014	Annual	4/24/2015	836371/007
Rohde & Schwarz	CMW500	Radio Communication Tester	10/4/2013	Biennial	10/4/2015	108798
Rohde & Schwarz	CMW500	Radio Communication Tester	2/20/2014	Annual	2/20/2015	128633
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	22313
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/6/2014	Annual	5/6/2015	1070
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/16/2014	Annual	4/16/2015	B010177
VWR	36934-158	Wall-Mounted Thermometer	4/29/2014	Biennial	4/29/2016	111859332

Note:

- CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Each equipment item was used solely within its respective calibration period.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 62 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 62 of 67	
© 2015 PCTEST Engineering Laborator				DEV/14.0 M

© 2015 PCTEST Engineering Laboratory, Inc.

15 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

a	b	с	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		с _і	c _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						Ū	(± %)	(±%)	
Measurement System									
Probe Calibration	E.2.1	6.0	Ν	1	1.0	1.0	6.0	6.0	8
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	8
Boundary E ffect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	8
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	8
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	8
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	8
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	8
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	8
Extrapolation, Interpolation & Integration algorithms for Max. S AR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	x
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	x
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	x
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to $\mathsf{IEEE}\$ Std. 1528-2003

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 62 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 63 of 67

Applicable for frequencies up to 6 GHz.

a	b	с	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		c _i	c _i	1gm	10gms	
Component	1528 Sec.	(±%)	Dist.	Div.	1gm	10 gms	u _i	u _i	vi
	360.	<u> </u>			.0		(±%)	(±%)	
Meas urement System									
Probe Calibration	E.2.1	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. S AR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	x
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									1

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 64 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 64 of 67

© 2015 PCTEST Engineering Laboratory, Inc.

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager			
Document S/N: Test Dates: DUT		DUT Type:	Dogo 65 of 67				
0Y1501080032.A3L	01/06/15 - 01/24/15	5 Portable Handset		Page 65 of 67			
© 2015 PCTEST Engineering Laboratory, Inc.							

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

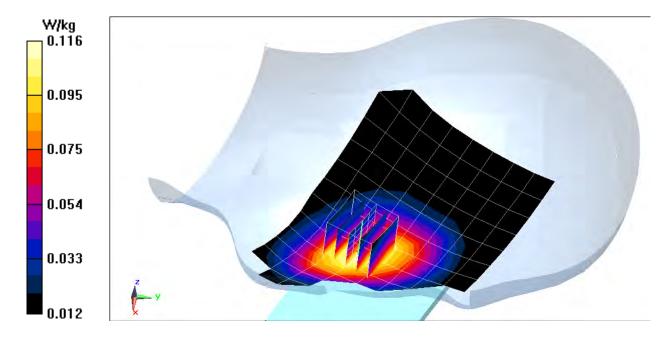
FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage CC of CZ
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 66 of 67

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 67 of 67
0Y1501080032.A3L	01/06/15 - 01/24/15	Portable Handset	Page 67 of 67
© 2015 DOTEST Engineering Laboratory Inc.			

APPENDIX A: SAR TEST DATA

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.416$; $\rho = 1000$ kg/m³ Phantom section: Left Section

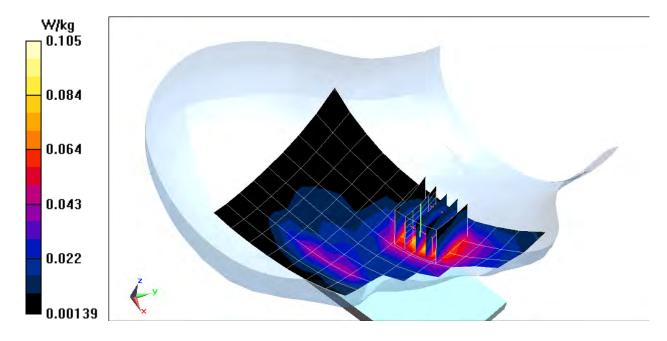
Test Date: 01-06-2015; Ambient Temp: 23.9°C; Tissue Temp: 22.4°C

Probe: ES3DV2 - SN3022; ConvF(6.18, 6.18, 6.18); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.18 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.135 W/kg SAR(1 g) = 0.105 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.408$ S/m; $\epsilon_r = 38.913$; $\rho = 1000$ kg/m³ Phantom section: Right Section

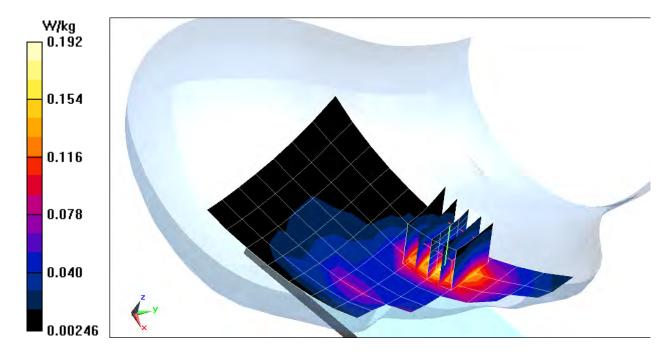
Test Date: 01-09-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 1900, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.830 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.139 W/kg SAR(1 g) = 0.090 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.424$ S/m; $\epsilon_r = 40.437$; $\rho = 1000$ kg/m³ Phantom section: Right Section

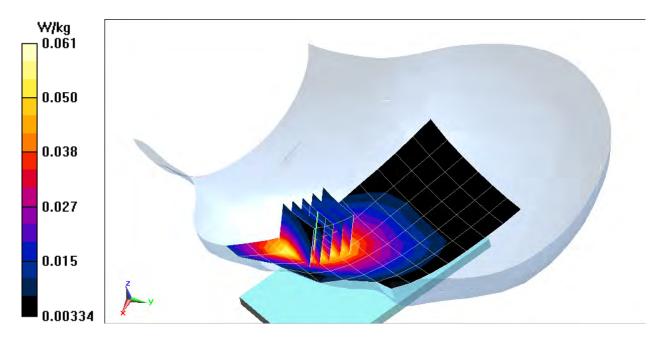
Test Date: 01-13-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.74 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.258 W/kg SAR(1 g) = 0.167 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, LTE Band 17; Frequency: 710 MHz;Duty Cycle: 1:1 Medium: 740 Head Medium parameters used: f = 710 MHz; $\sigma = 0.864$ S/m; $\epsilon_r = 41.073$; $\rho = 1000$ kg/m³ Phantom section: Left Section

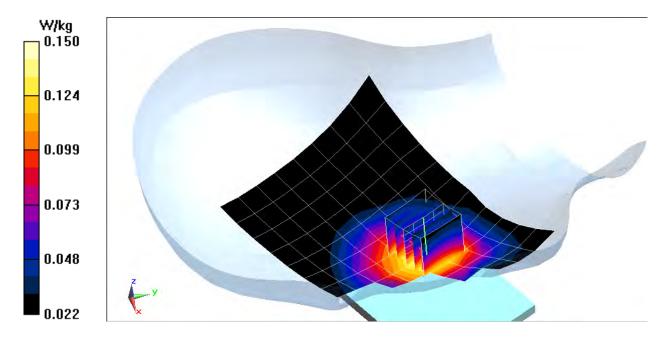
Test Date: 01-09-2015; Ambient Temp: 23.6°C; Tissue Temp: 21.4°C

Probe: ES3DV2 - SN3022; ConvF(6.39, 6.39, 6.39); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 17, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.609 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.0720 W/kg SAR(1 g) = 0.055 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, LTE Band 26; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.417$; $\rho = 1000$ kg/m³ Phantom section: Right Section

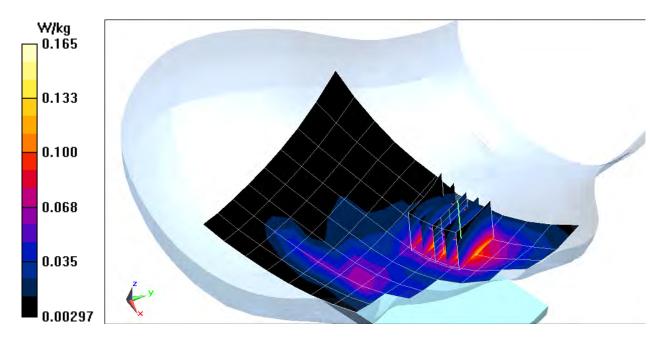
Test Date: 01-06-2015; Ambient Temp: 23.9°C; Tissue Temp: 22.4°C

Probe: ES3DV2 - SN3022; ConvF(6.18, 6.18, 6.18); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.25 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.172 W/kg SAR(1 g) = 0.138 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077C5


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.408$ S/m; $\epsilon_r = 38.913$; $\rho = 1000$ kg/m³ Phantom section: Right Section

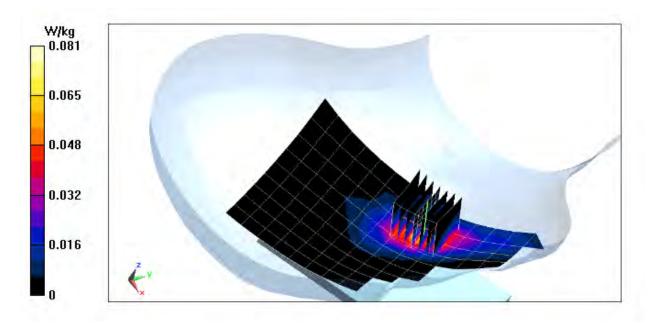
Test Date: 01-09-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Right Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.14 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.229 W/kg SAR(1 g) = 0.147 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, LTE Band 41; Frequency: 2506 MHz;Duty Cycle: 1:1.58 Medium: 2450 Head Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 1.917$ S/m; $\epsilon_r = 37.906$; $\rho = 1000$ kg/m³ Phantom section: Right Section

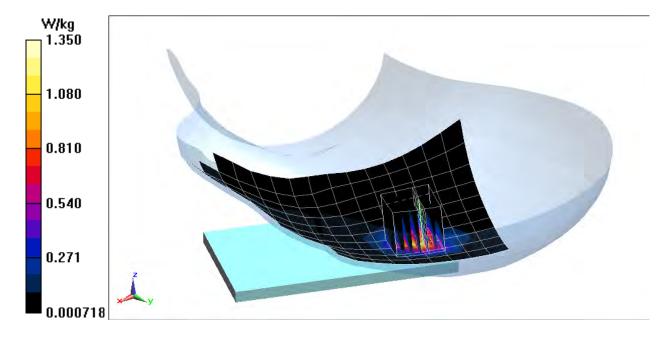
Test Date: 01-12-2015; Ambient Temp: 20.1°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3263; ConvF(4.47, 4.47, 4.47); Calibrated: 5/15/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/14/2014 Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Right Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 6.666 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.123 W/kg SAR(1 g) = 0.062 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.813$ S/m; $\epsilon_r = 38.275$; $\rho = 1000$ kg/m³ Phantom section: Left Section

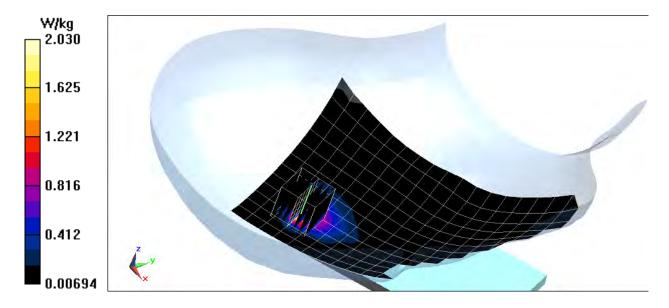
Test Date: 01-12-2015; Ambient Temp: 20.1°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3263; ConvF(4.47, 4.47, 4.47); Calibrated: 5/15/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/14/2014 Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, Left Head, Cheek, Ch 1, 1 Mbps, Antenna 2

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.17 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 2.14 W/kg SAR(1 g) = 1 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5500 MHz; $\sigma = 5.124$ S/m; $\epsilon_r = 36.806$; $\rho = 1000$ kg/m³ Phantom section: Right Section

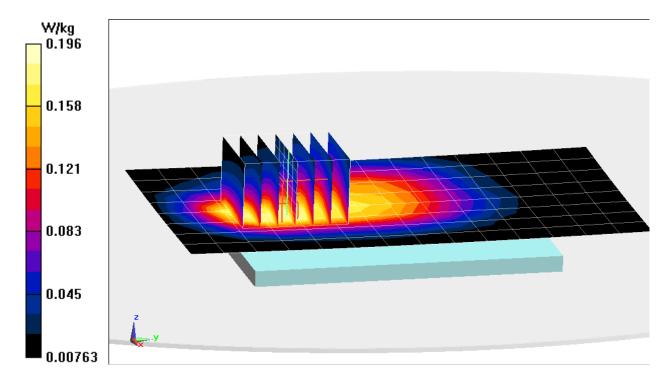
Test Date: 01-12-2015; Ambient Temp: 24.0°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.64, 4.64, 4.64); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Antenna 1 Right Head, Cheek, Ch 100, 6 Mbps

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Reference Value = 11.99 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 3.50 W/kg SAR(1 g) = 0.795 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.994$ S/m; $\epsilon_r = 53.11$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2015; Ambient Temp: 21.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.27 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.238 W/kg SAR(1 g) = 0.174 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF

Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.994$ S/m; $\epsilon_r = 53.11$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

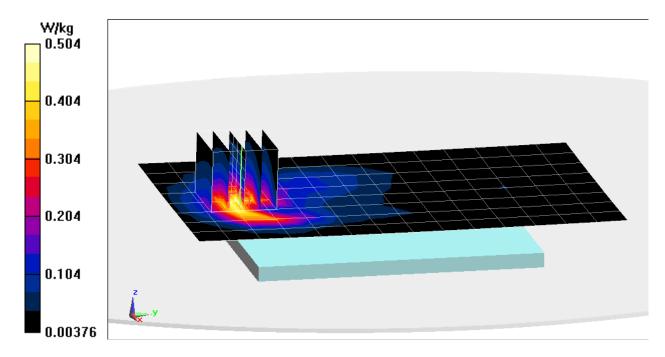
Test Date: 01-08-2015; Ambient Temp: 21.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Left Edge, Mid.ch

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.97 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.254 W/kg SAR(1 g) = 0.176 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.548$ S/m; $\epsilon_r = 51.717$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

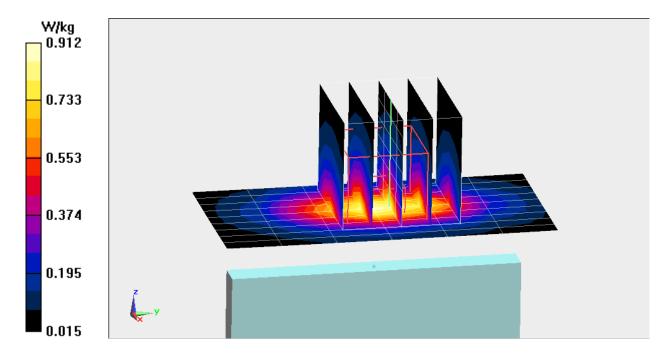
Test Date: 01-19-2015; Ambient Temp: 24.4°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 1900, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.65 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.697 W/kg SAR(1 g) = 0.413 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 52.726$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

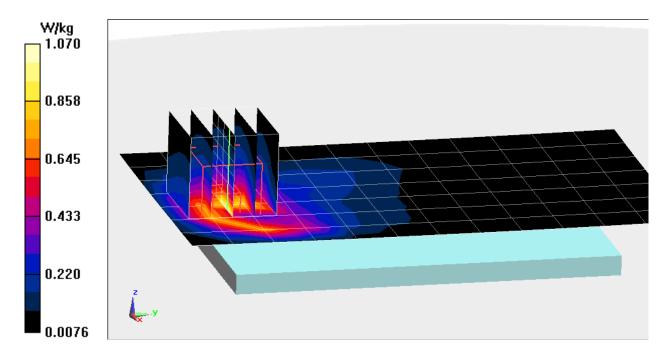
Test Date: 01-08-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Bottom Edge, Mid.ch, 2 Tx Slots

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.06 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.744 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 52.726$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

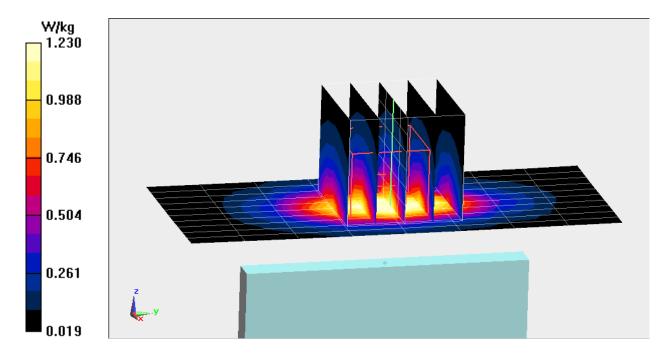
Test Date: 01-08-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.40 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.860 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 52.726$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

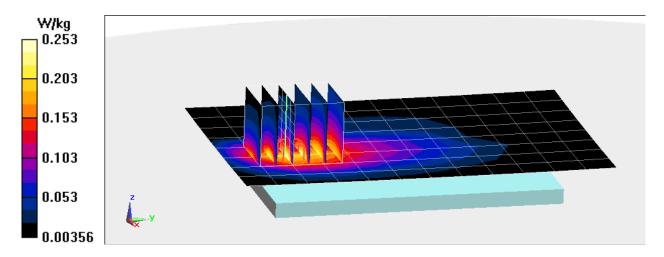
Test Date: 01-08-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Bottom Edge, Mid.ch

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.03 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 1.01 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, LTE Band 17; Frequency: 710 MHz;Duty Cycle: 1:1 Medium: 740 Body Medium parameters used: f = 710 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 55.021$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

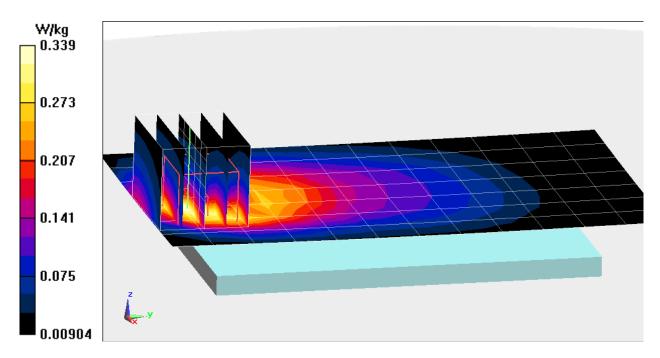
Test Date: 01-09-2015; Ambient Temp: 23.6°C; Tissue Temp: 22.2°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 17, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.826 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.399 W/kg SAR(1 g) = 0.229 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, LTE Band 26; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 53.111$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

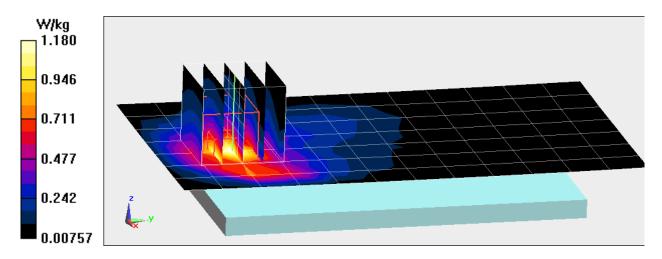
Test Date: 01-08-2015; Ambient Temp: 21.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26, Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.62 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.516 W/kg SAR(1 g) = 0.281 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077C5


Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.466$ S/m; $\epsilon_r = 52.781$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

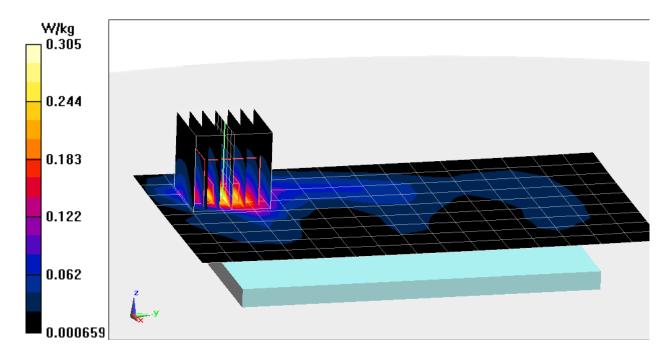
Test Date: 01-08-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.72 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 0.986 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 077AF


Communication System: UID 0, LTE Band 41; Frequency: 2506 MHz;Duty Cycle: 1:1.58 Medium: 2450 Body Medium parameters used (interpolated): f = 2506 MHz; $\sigma = 2.068$ S/m; $\epsilon_r = 51.685$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

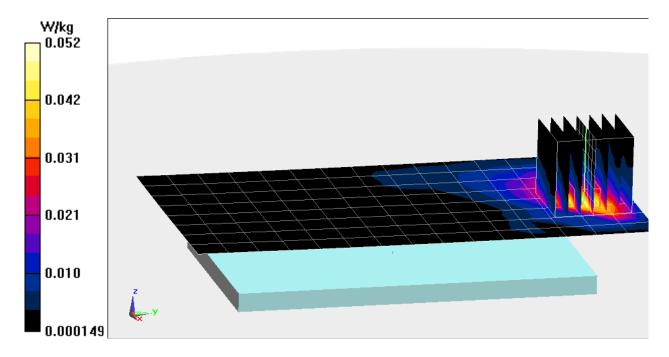
Test Date: 01-12-2015; Ambient Temp: 23.1°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.51 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.486 W/kg SAR(1 g) = 0.234 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.972$ S/m; $\epsilon_r = 51.96$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; ; Space: 1.0 cm

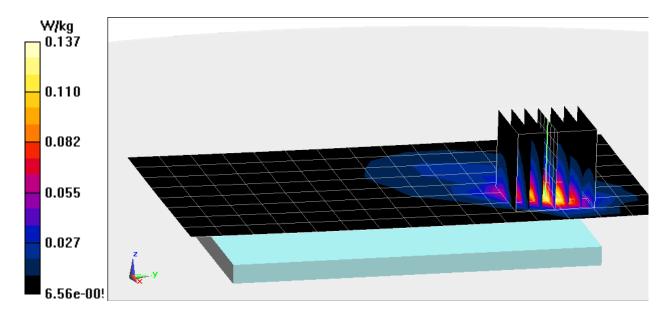
Test Date: 01-12-2015; Ambient Temp: 23.1°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, Body SAR, Ch 6, 1 Mbps, Back Side, Antenna 1

Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.453 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.0860 W/kg SAR(1 g) = 0.040 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, IEEE 802.11b (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.007$ S/m; $\epsilon_r = 51.856$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

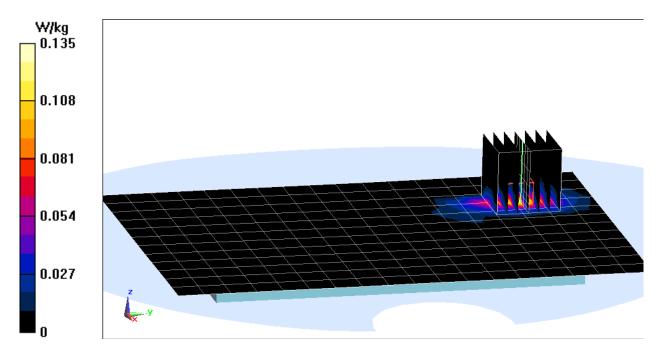
Test Date: 01-12-2015; Ambient Temp: 23.1°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Front Side, Antenna 2

Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.478 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.212 W/kg SAR(1 g) = 0.106 W/kg

DUT: A3LSMG920KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5660 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5660 MHz; $\sigma = 6.065$ S/m; $\epsilon_r = 46.504$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

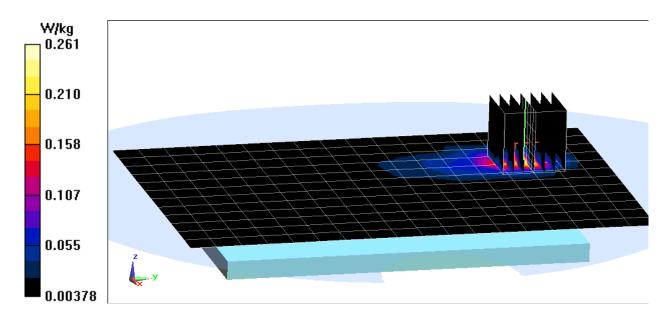
Test Date: 01-12-2015; Ambient Temp: 24.8°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(3.66, 3.66, 3.66); Calibrated: 12/12/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/11/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Antenna 2 Body SAR, Ch 132, 6 Mbps, Back Side

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4Reference Value = 3.435 V/m; Power Drift = 0.15 dBPeak SAR (extrapolated) = 0.259 W/kgSAR(1 g) = 0.065 W/kg

DUT: A3LSHVE540KOR; Type: Portable Handset; Serial: 074FF


Communication System: UID 0, IEEE 802.11a; Frequency: 5745 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5745 MHz; $\sigma = 5.767$ S/m; $\varepsilon_r = 46.287$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-24-2015; Ambient Temp: 22.6°C; Tissue Temp: 21.3°C

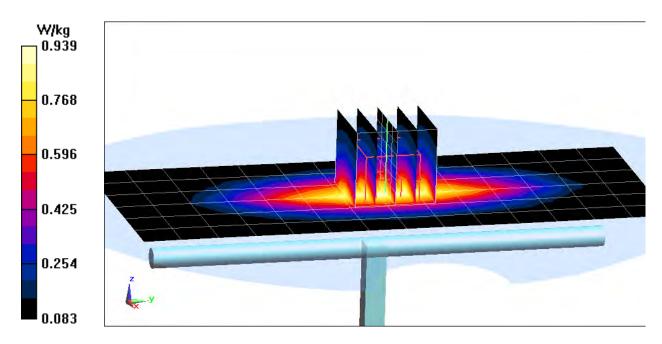
Probe: EX3DV4 - SN7308; ConvF(4.22, 4.22, 4.22); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Body SAR, Ch 149, 6 Mbps, Front Side

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Reference Value = 2.706 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.443 W/kg SAR(1 g) = 0.092 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


Communication System: UID 0, CW; Frequency: 750 MHz;Duty Cycle: 1:1 Medium: 740 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.898$ S/m; $\epsilon_r = 40.514$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Space: 1.5 cm

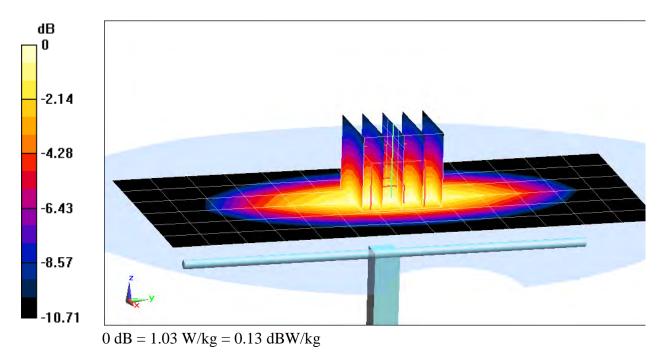
Test Date: 01-09-2015; Ambient Temp: 23.6°C; Tissue Temp: 21.4°C

Probe: ES3DV2 - SN3022; ConvF(6.39, 6.39, 6.39); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.801 W/kg Deviation = -3.84 %

DUT: 835MHz SAR Dipole; Type: D835V2; Serial: 4d119


Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 41.434$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

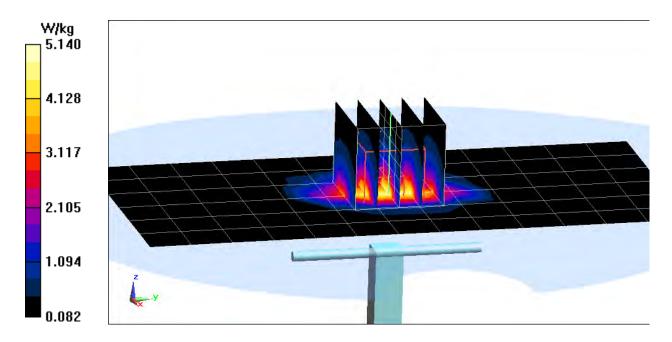
Test Date: 01-06-2015; Ambient Temp: 23.9°C; Tissue Temp: 22.4°C

Probe: ES3DV2 - SN3022; ConvF(6.18, 6.18, 6.18); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.896 W/kg Deviation = -2.82 %

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.445$ S/m; $\epsilon_r = 40.346$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

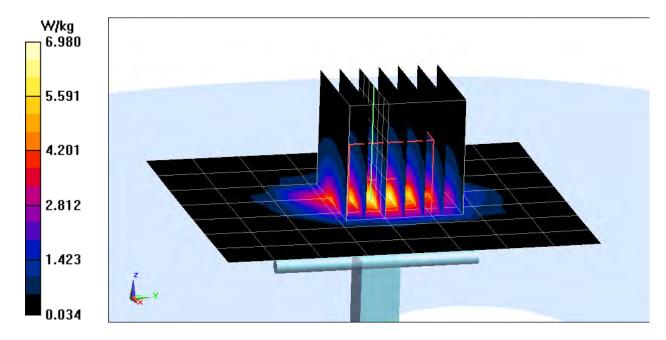
Test Date: 01-13-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Validation

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 7.78 W/kg SAR(1 g) = 4.25 W/kg Deviation = 5.72 %

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.856$ S/m; $\epsilon_r = 38.105$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

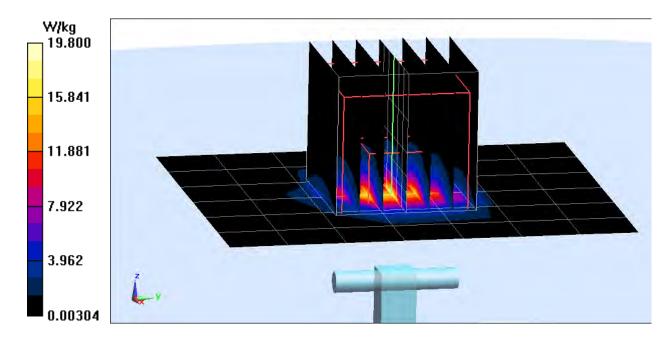
Test Date: 01-12-2015; Ambient Temp: 20.1°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3263; ConvF(4.47, 4.47, 4.47); Calibrated: 5/15/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/14/2014 Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 11.4 W/kg SAR(1 g) = 5.32 W/kg Deviation = 2.11 %

DUT: SAR Dipole 5300 MHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW (0); Frequency: 5300 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5300 MHz; $\sigma = 4.912$ S/m; $\epsilon_r = 37.146$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

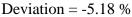
Test Date: 01-12-2015; Ambient Temp: 23.7°C; Tissue Temp: 20.6°C

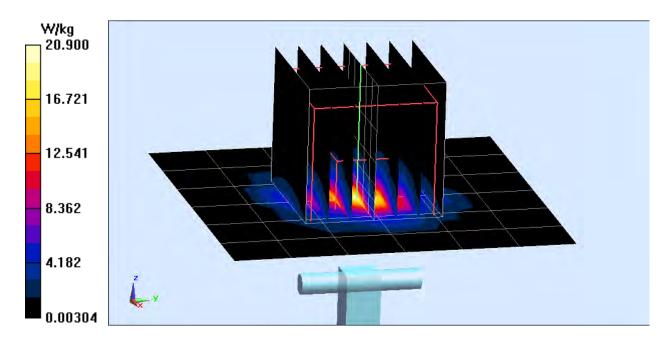
Probe: EX3DV4 - SN7308; ConvF(5.37, 5.37, 5.37); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5300 MHz System Verification

Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.71 W/kg Deviation = -7.55 %

DUT: SAR Dipole 5500 MHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW (0); Frequency: 5500 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5500 MHz; $\sigma = 5.124$ S/m; $\epsilon_r = 36.806$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

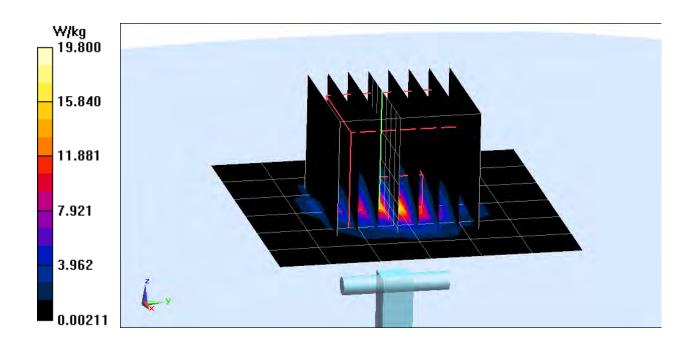

Test Date: 01-12-2015; Ambient Temp: 24.0°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.64, 4.64, 4.64); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5500 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 34.9 W/kg SAR(1 g) = 8.05 W/kg

DUT: SAR Dipole 5600 MHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5600 MHz; $\sigma = 5.246$ S/m; $\epsilon_r = 36.687$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

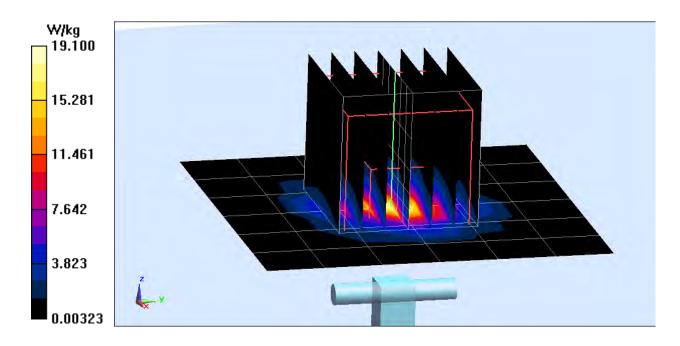
Test Date: 01-12-2015; Ambient Temp: 23.8°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.64, 4.64, 4.64); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 35.6 W/kg SAR(1 g) = 8.09 W/kg Deviation = -1.58 %

DUT: SAR Dipole 5800 MHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW (0); Frequency: 5800 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5800 MHz; $\sigma = 5.458$ S/m; $\epsilon_r = 36.337$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

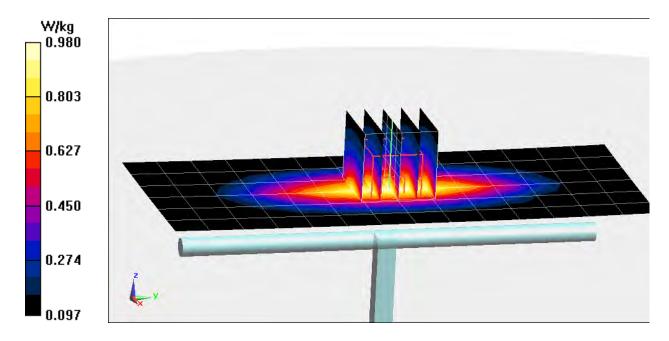
Test Date: 01-12-2015; Ambient Temp: 23.8°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(4.81, 4.81, 4.81); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 7.29 W/kg Deviation = -7.84 %

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


Communication System: UID 0, CW; Frequency: 750 MHz;Duty Cycle: 1:1 Medium: 740 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.966$ S/m; $\epsilon_r = 54.638$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

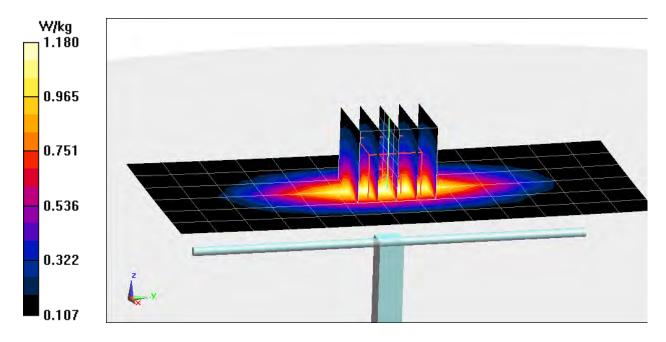
Test Date: 01-09-2015; Ambient Temp: 23.6°C; Tissue Temp: 22.2°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/19/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/12/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.842 W/kg Deviation = -2.55 %

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133


Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 53.127$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

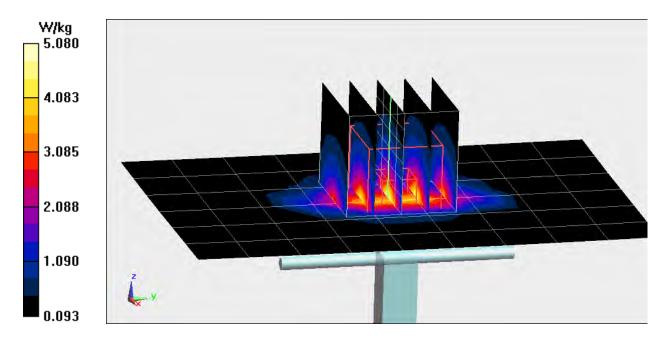
Test Date: 01-08-2015; Ambient Temp: 21.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 1.01 W/kg Deviation = 8.02 %

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141


Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.515$ S/m; $\epsilon_r = 52.692$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

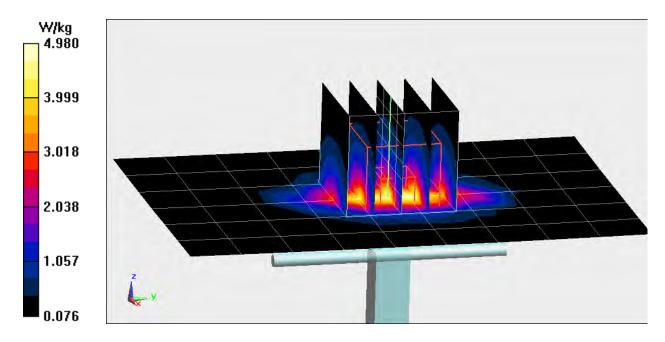
Test Date: 01-08-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 6.99 W/kg SAR(1 g) = 4.05 W/kg Deviation = -0.25 %

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.571$ S/m; $\epsilon_r = 51.619$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Space: 1.0 cm

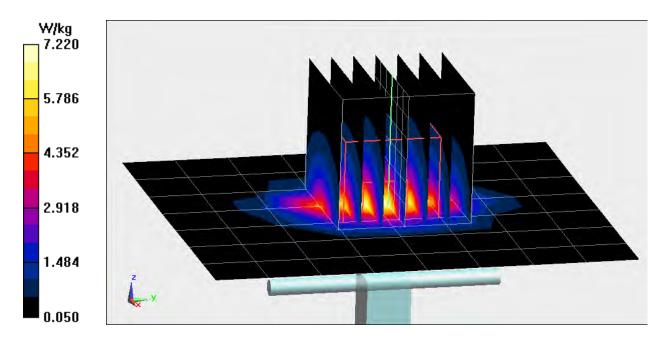
Test Date: 01-19-2015; Ambient Temp: 24.4°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3258; ConvF(4.61, 4.61, 4.61); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 6.98 W/kg SAR(1 g) = 3.95 W/kg Deviation = -2.23 %

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 51.901$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

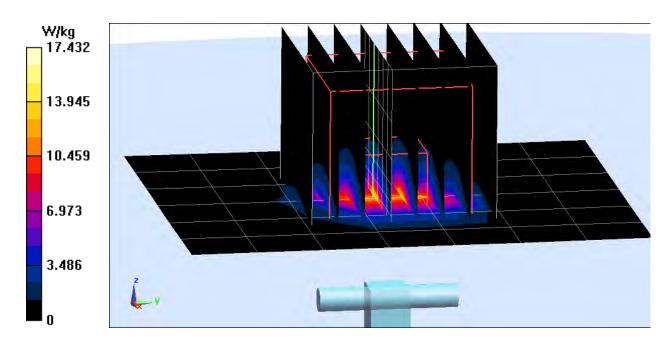
Test Date: 01-12-2015; Ambient Temp: 23.1°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.54 W/kg Deviation = 6.95 %

DUT: SAR Dipole 5300 MHz; Type: D5GHzV2; Serial: 1191


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5 GHz Body Medium parameters used:} \\ f = 5300 \mbox{ MHz; } \sigma = 5.589 \mbox{ S/m; } \epsilon_r = 47.162; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

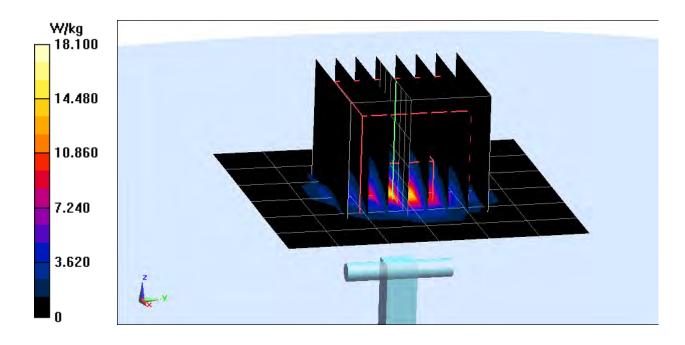
Test Date: 01-12-2015; Ambient Temp: 24.8°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(4.16, 4.16, 4.16); Calibrated: 12/12/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/11/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5300 MHz System Verification

Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.36 W/kg Deviation = -7.88 %

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5500 MHz; $\sigma = 5.847$ S/m; $\epsilon_r = 46.781$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

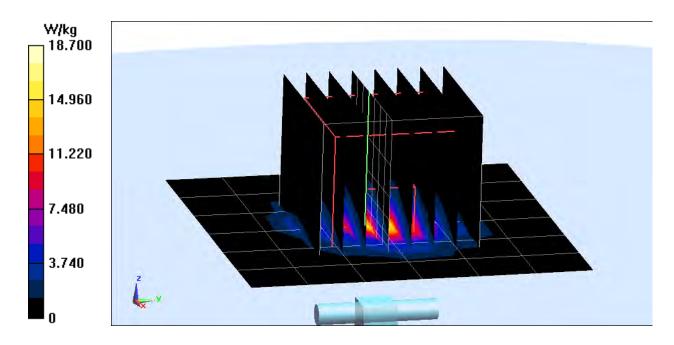
Test Date: 01-12-2015; Ambient Temp: 24.8°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(3.79, 3.79, 3.79); Calibrated: 12/12/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/11/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5500 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.5 W/kg Deviation = -9.75 %

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5600 MHz; $\sigma = 5.996$ S/m; $\epsilon_r = 46.661$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2015; Ambient Temp: 24.8°C; Tissue Temp: 22.5°C

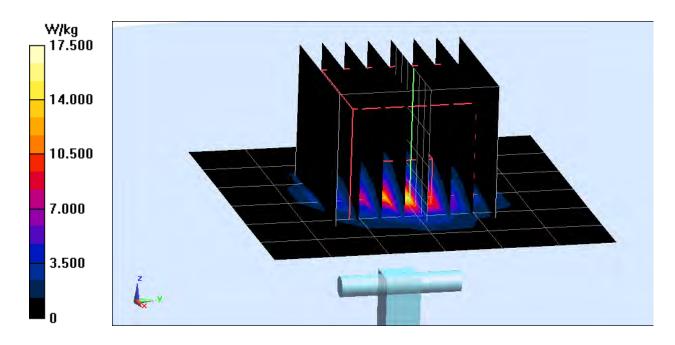
Probe: EX3DV4 - SN3920; ConvF(3.66, 3.66, 3.66); Calibrated: 12/12/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/11/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.74 W/kg Deviation = -7.97 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5800 MHz; $\sigma = 6.263$ S/m; $\epsilon_r = 46.274$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2015; Ambient Temp: 24.8°C; Tissue Temp: 22.5°C

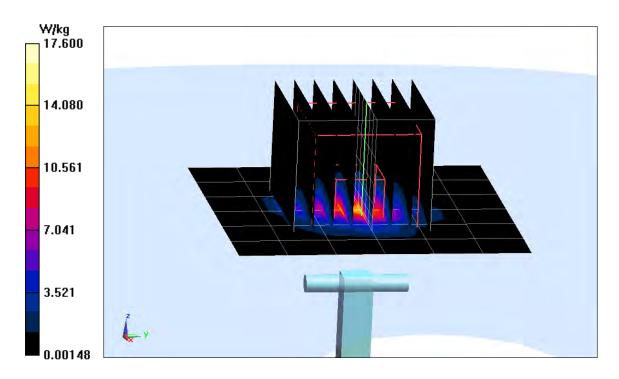
Probe: EX3DV4 - SN3920; ConvF(3.93, 3.93, 3.93); Calibrated: 12/12/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/11/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm, Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.04 W/kg Deviation = -9.74 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1120


Communication System: UID 0, CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5800 MHz; $\sigma = 5.83$ S/m; $\epsilon_r = 46.134$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-24-2015; Ambient Temp: 22.6°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7308; ConvF(4.22, 4.22, 4.22); Calibrated: 7/16/2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.05 W/kg Deviation = -5.24 %

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D5GHzV2-1191_Sep14

CALIBRATION CERTIFICATE				
Object	D5GHzV2 - SN:1	191		
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits betwo	een 3-6 GHz କାର୍ଜ୍ୟା	
Calibration date:	September 25, 20	014		
The measurements and the uncer	rtainties with confidence pr	onal standards, which realize the physical units robability are given on the following pages and a ry facility: environment temperature (22 ± 3)°C a	are part of the certificate.	
b to see Ora-stanla	L 155 II		Colordulard Calibration	
Primary Standards Power meter EPM-442A	ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14	
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14	
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15	
Type-N mismatch combination	SN: 5047.2 / 05327	03-Apr-14 (No. 217-01921)	Apr-15	
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14	
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15	
Secondary Standards	1D#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14	
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	signature	
Approved by:	Katja Pokovic	Technical Manager	Jolly-	
			Issued: September 25, 2014	
This calibration cartificate shall no	at be reproduced except in	full without written approval of the laboratory.		

Asset #81751

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischor Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normatized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.64 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.8 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

· · ·	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0,5 °C		****

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

and an and a second	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2,49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k≕2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5,53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

<u></u>	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.79 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	83.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.1 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	ad at the sad	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.0 W/kg ± 19.9 % (k=2)
······································		
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.17 W/kg

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.8 Ω - 9.9]Ω
Return Loss	- 20.1 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	54.5 Ω - 1.5 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.6 Ω - 2.0 Ω
Return Loss	- 33,9 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.5 Ω - 4.4 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.6 Ω + 4.4 jΩ
Return Loss	- 22.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.9 Ω - 8.1 jΩ	
Return Loss	- 21.8 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	54.5 Ω + 0.1 jΩ		
Return Loss	- 27.3 dB		

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.2 Ω - 0.6 jΩ	
Return Loss	- 43.8 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.5 Ω - 3.2 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.2 Ω + 5.2 jΩ		
Return Loss	- 21.7 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	April 01, 2014		

DASY5 Validation Report for Head TSL

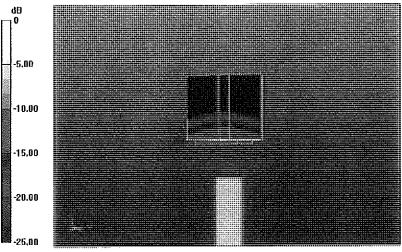
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.54$ S/m; $\varepsilon_r = 34.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 4.64$ S/m; $\varepsilon_r = 34.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 4.83$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\varepsilon_r = 34.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.14$ S/m; $\varepsilon_r = 34.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

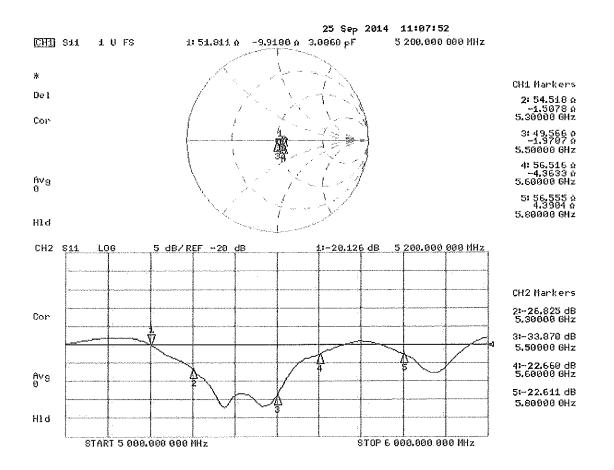
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.20 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.90 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.64 W/kg; SAR(10 g) = 2.47 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.91 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 35.3 W/kg SAR(1 g) = 8.93 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 20.9 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.29 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 34.8 W/kg SAR(1 g) = 8.76 W/kg; SAR(10 g) = 2.49 W/kg Maximum value of SAR (measured) = 20.7 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.74 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 34.4 W/kg SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.35 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 5.53$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 5.79$ S/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.93$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.1$; $\rho = 1000$ kg/m³

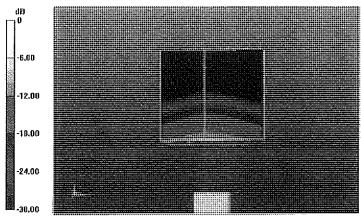
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

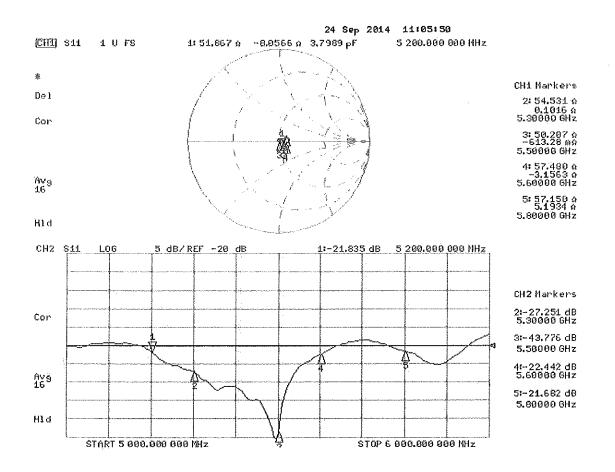
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.46 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.42 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 35.8 W/kg SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 20.4 W/kg


Certificate No: D5GHzV2-1191_Sep14

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.44 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 37.0 W/kg SAR(1 g) = 8.48 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 20.9 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.69 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 36.4 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-7308_Jul14

JALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:73	08	
Calibration procedure(s)		A CAL-14.v4, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v6 \\\\\\
Calibration date:	July 16, 2014		
This calibration certificate docur The meesurements and the unc	ments the traceability to national contrainties with confidence providence pr	onal standards, which realize the physical units robability are given on the following pages and a	of measurements (SI). are part of the certificate.
All calibrations have been cond Calibration Equipment used (M		y facility: environment temperature (22 \pm 3)°C a	nd humidily < 70%.
Calibration Equipment used (M	&TE critical for calibration)		
Calibration Equipment used (M Primary Standards	&TE critical for calibration)	Cal Date (Certilicate No.)	Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter E4419B	&TE critical for calibration) ID GB41293874	Cel Date (Certilicate No.) 03-Apr-14 (No. 217-01911)	Scheduled Calibration Apr-15
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration)	Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911)	Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915)	Scheduled Calibration Apr-15 Apr-15
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	Cal Date (Certilicate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919)	Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b)	Cal Date (Certilicate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920)	Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	Cal Date (Certilicate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919)	Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013	Cal Date (Certilicate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920) 03-Apr-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13)	Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID GB41293874 MY41490087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 SN: 660	Cal Date (Certilicate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920) 03-Apr-13 (No. ES3-3013_Dec13)	Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID GB41293874 MY41490087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID	Cel Date (Certilicate No.) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check

Issued: July 21, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Approved by:

Technical Manager

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnago Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary	
----------	--

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization o	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $9 = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7308

Manufactured: Calibrated:

March 11, 2014 July 16, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Page 3 of 12

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.50	0.60	0.45	± 10.1 %
DCP (mV) ⁸	100.8	98.6	99.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	* D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	160.9	±2.5 %
·		Y	0.0	0.0	1.0		132.5	
		Z	0.0	0,0	1.0		154.1	
10012- CAA	IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	2.79	68.0	18.3	1.87	125.2	±0.5 %
		Y	2.74	67.3	17.9		142.6	
	· · · · · · · · · · · · · · · · · · ·	Z	2.74	67.2	17.7		119,7	
10062- CAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mops)	X	10.26	68.8	21.6	8.68	124.2	±2.5 %
		Υ.	10.73	69.7	22.0		144.6	
		Z	9,98	68.3	21.3		116,1	
10114- CAA	IEEE 802,11n (HT Greenfield, 13.5 Mbps, BPSK)	X	10.24	68.6	21.0	8.10	125.1	±2.2 %
		Y	9.68	67.1	20.1		99.7	
•		Z	10.17	68.5	21.0		122.8	
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10,27	68.7	21.0	8,07	126.1	±2.2 %
		Y	9.67	67.0	20.1		100.6	
		Z	10.12	68,4	20,9	·	123.9	
10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	х	9,83	68.2	20.9	8.09	120.3	±2.5 %
		Y.	10.37	69.4	21.5		147.5	
		Z	9,71	68.2	20.9		116.9	
10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9,80	68.2	20.9	8,10	120.4	±1.9 %
		Y	9.54	67.2	20.3		102.9	
		Z	9.65	68.0	20.8	·	116.5	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	9.67	68.0	20.8	8.03	119.1	±1.9 %
		Y	9.41	67.1	20.2		102.5	
		Z	9.54	68.0	20,8		116.0	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	10.21	68.6	21.0	8,06	125.9	±2.2 %
		Y	9.84	67,5	20.4		106.4	
		Z	10.09	68.4	20,9	ļ	122.3	
10315- AAA	IEEE 802.11b WiFI 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	2.92	69.3	18.9	1.71	123.4	±0.5 %
		Y	2.80	68.0	18.2	. 	107.9	ļ
		Z	2.85	68.3	18.3	L	122.3	
10317- AAA	IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc duly cycle)	X	9.98	68.4	21.2	8.36	119.4	±1.9 %
	· · · · · · · · · · · · · · · · · · ·	Y	9.66	67.3	20.5		101.7	<u> </u>
		Z	9,79	68.1	21.0		115.6	

Certificate No: EX3-7308_Jul14

.

EX3DV4-SN:7308

July 16, 2014

10400- AAA	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	10.10	68.5	21.2	8.37	121.3	±2.2 %
		Y	9.82	67.5	20.6		103.5	-1
		Z	9.90	68.2	21.1		116.6	
	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	11,17	69.7	21.7	8.53	131.0	±2.2 %
		Y	10.57	68.2	20.8		110.9	
		Z	11.01	69.4	21.5		128.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
5250	35.9	4.71	5.37	5.37	5.37	0,30	1.80	± 13.1 %
5600	35,5	5.07	4.64	4.64	4.64	0.35	1,80	± 13.1 %
5750	35.4	5.22	4.81	4.81	4.81	0,40	1.80	± 13.1 %

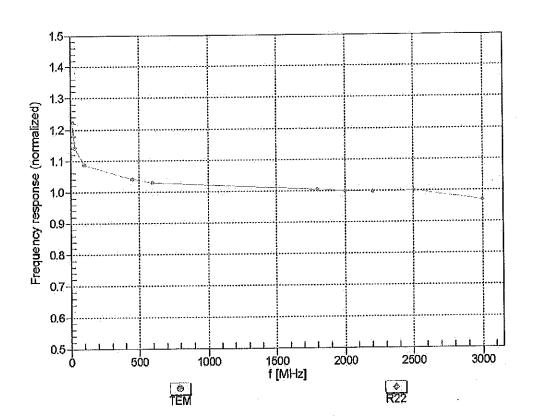
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 end 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
 ^r At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target lissue parameters.
 ^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect efter compensation is elways less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe lip diameter from the boundary.

diameter from the boundary.

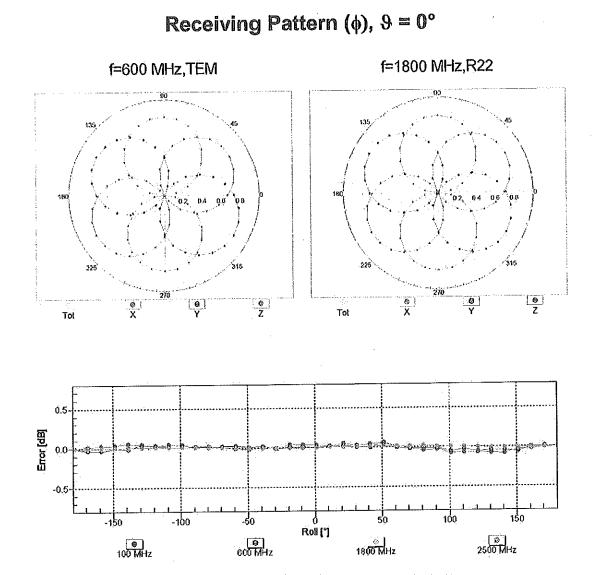
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k≓2)
5250	48.9	5.36	4.60	4.60	4.60	0.35	1.90	± 13.1 %
5600	48.5	5.77	4.09	4.09	4.09	0.40	1.90	± 13.1 %
5750	48.3	5.94	4.22	4.22	4.22	0.50	1.90	± 13.1 %

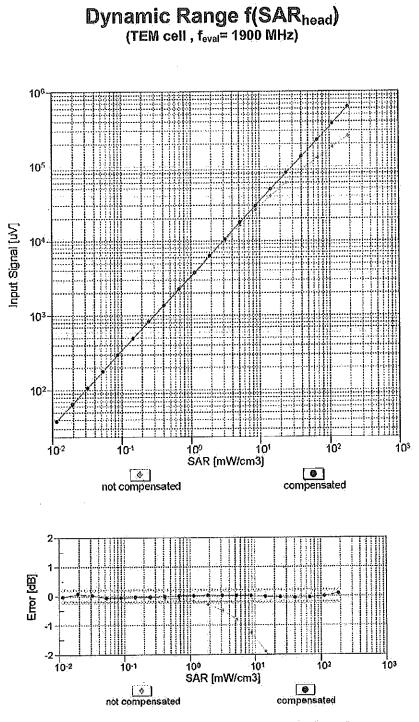

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
 ^c At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty is the ConvF uncertainty is the RSS of the ConvF uncertainty is the RSS of the ConvF uncertainty is th

The ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

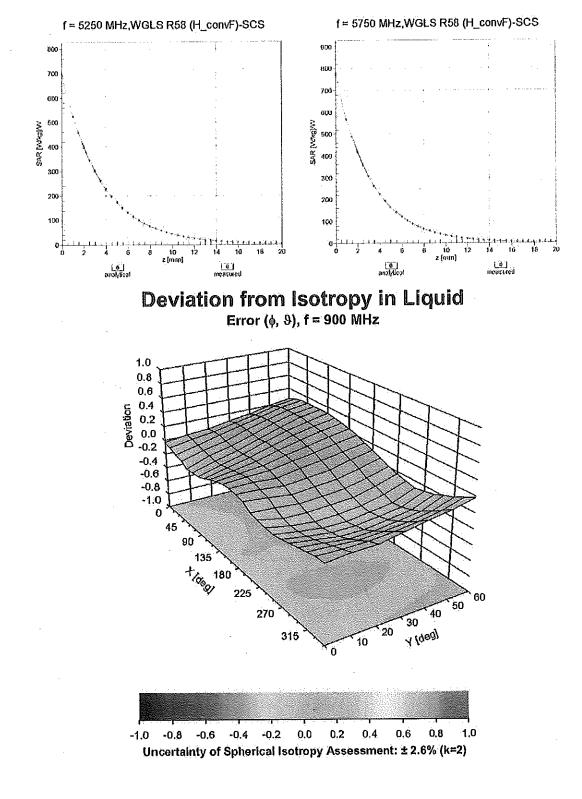

EX3DV4- SN:7308

July 16, 2014



Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 10 of 12

EX3DV4-- SN:7308

Conversion Factor Assessment

Certificate No: EX3-7308_Jul14

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

Sensor Arrangement	Triangular
Connector Angle (°)	-68.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Other Probe Parameters

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étaionnage

- C Service suisse d'etatolitage Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swise Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D1900V2-5d141_Apr14

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	D1900V2 - SN: 5	d141	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	April 09, 2014	n ang sa sa pang ang ang sa	10t 11M
The measurements and the unce	riainties with confidence p	onat standards, which realize the physical un robability are given on the following pages ar y facility: environment temperature (22 ± 3)%	nd are part of the certificate.
	l mu	Oct Date (CertWeste No.)	Scheduled Calibration
Primary Standards	ID #	Cal Date (Certificate No.)	Oct-14
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	U\$37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Apr-15
Reference 20 dB Altenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047,2 / 06327	03-Apr-14 (No. 217-01921)	Dec-14
Reference Probe ES3DV3	SN: 3205 SN: 801	30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
DAE4	1 214. 001	South in the purchase Tubulat	710 T-
Secondary Standards	1D.#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8763E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Elle
		an market to succeed the second	Issued: April 9, 2014
This calibration certificate shall n	ot be reproduced except in	full without written approval of the laborator	y

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40,0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω + 5.5 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω + 6.3 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

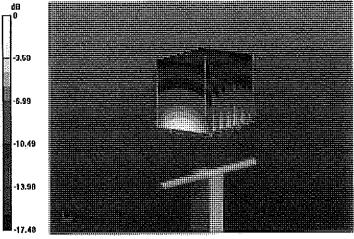
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 09.04.2014

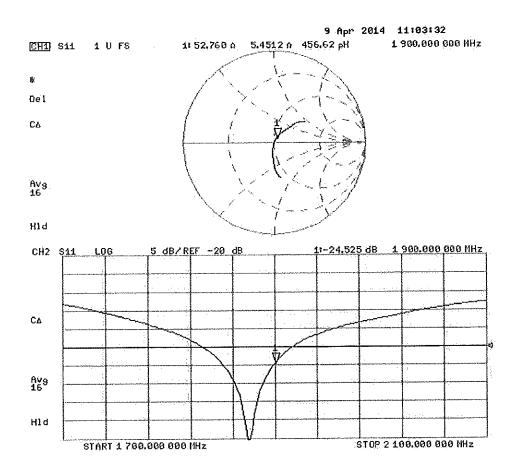
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d141


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.080 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

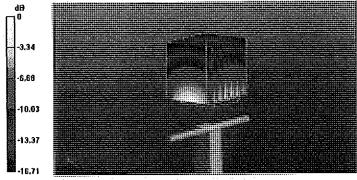
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.04.2014

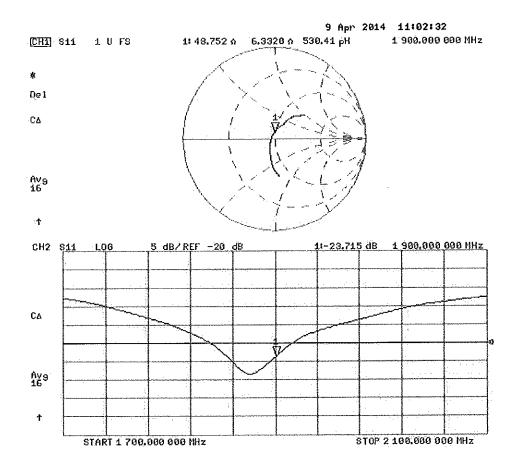
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d141


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ S/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.820 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.41 W/kg Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D1900V2-5d149_Jul14

CALIBRATION CERTIFICATE			
Object	D1900V2 - SN: 5	d149	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz ርር ነሃይ/ነዛ
Celibration date:	July 23, 2014	en en en forgefelden af de begen ei e	an a
The measurements and the unce	riainties with confidence p led in the closed laborator	onal standards, which realize the physical un obability are given on the following pages an y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Dutana di Otana la arta	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	pilly
This calibration certificate shall n	ot be reproduced except in	full without written approval of the laboratory	Issued; July 23, 2014 /.
in the second			

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerlscher Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10.mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22,0 ± 0.2) °C	39.5 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW Input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)
		·····
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW Input power	5.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 5.5 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω + 6.1 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.197 ns		
	Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

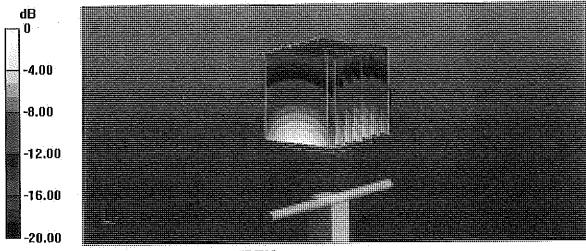
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

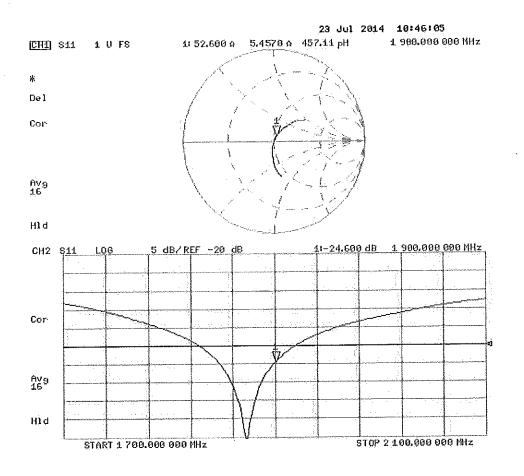
Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52,8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 98.92 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

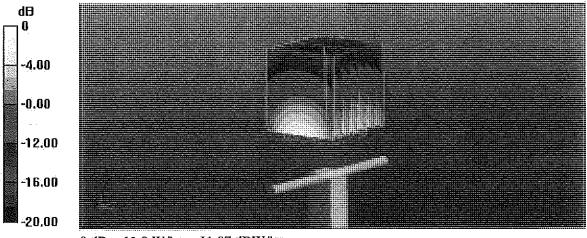
Certificate No: D1900V2-5d149_Jul14

DASY5 Validation Report for Body TSL

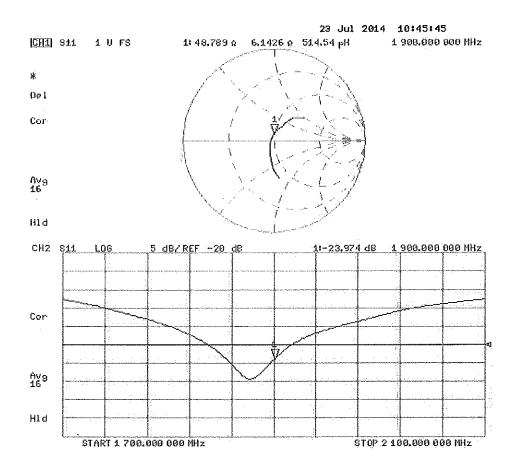
Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52,8.8(1222); SEMCAD X 14.6,10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.83 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.33 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-719_Aug14

CALIBRATION C			
Object	D2450V2 - SN: 71	19 - E. M. (1999), 2000 (1999), 1999 (1999) 19	
Calibration procedure(s)	QA CAL-05.v9 Calibration procee	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 11, 2014	g an ad each président a l'arreal d'Arrea	118/14 418/14
The measurements and the uncer	rtainties with confidence protected in the closed laboratory	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
Januration Equipment used (M&⊤			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15
Coondon Otendorda	1D #	Check Date (in house)	Scheduled Check
Secondary Standards	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
RF generator R&S SMT-06 Network Analyzer HP 8753E	100005 US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
Calibrated by	Name Michael Weber	Function Laboratory Technician	Signature
Calibrated by:	Michael Weber		M.Nebes
Approved by:	Katja Pokovic	Technical Manager	Jol My-
			Issued: August 12, 2014
This polibration costilizate aball of	at he reproduced except in	n full without written approval of the laborate	•

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ۵ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the 0 nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω + 3.0 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9 Ω + 5.8 jΩ
Return Loss	- 24.7 dB

General Antenna Parameters and Design

	1.149 ns
Electrical Delay (one direction)	1.145115
Eloothour Bondy (one anothony)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

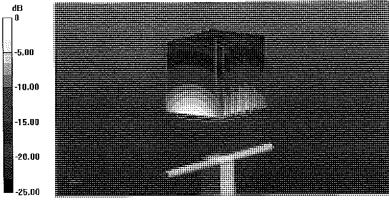
Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

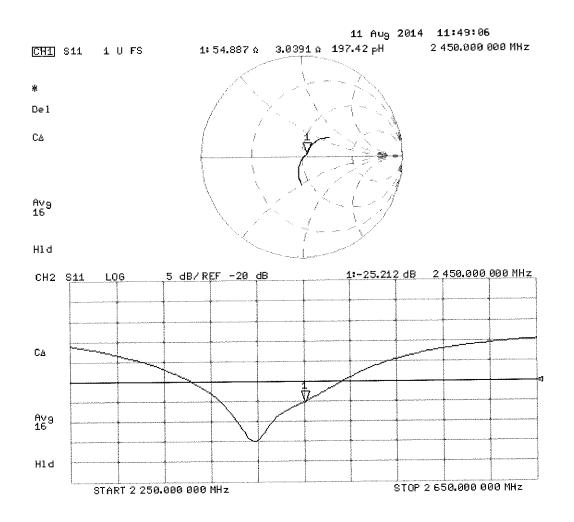
Date: 11.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.82 S/m; ϵ_r = 38; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.6 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.09 W/kg Maximum value of SAR (measured) = 17.4 W/kg

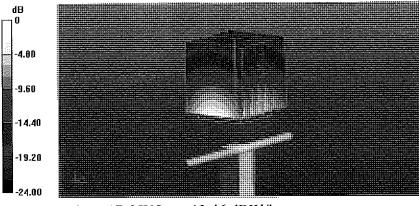
0 dB = 17.4 W/kg = 12.41 dBW/kg

DASY5 Validation Report for Body TSL

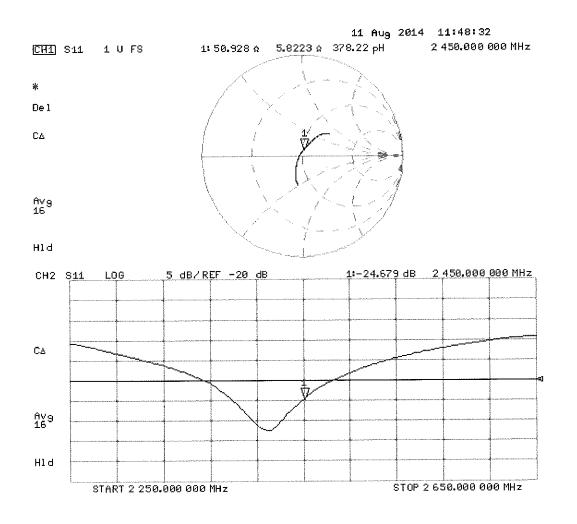
Date: 11.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 50.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.08 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG

PC Test

Client

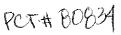
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1120_Feb14

CALIBRATION C	EKTIFICATE		
Object	D5GHzV2 - SN: 1	120	OCV
Calibration procedure(s)	QA CAL-22.v2 Calibration proced	dure for dipole validation kits bet	ფორი ween 3-6 GHz
Calibration date:	February 26, 2014	4	
The measurements and the uncer	rtainties with confidence pr	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	nd are part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Name Claudio Leubler	Laboratory Technician	UD
Approved by:	Katja Pokovic	Technical Manager	T REALE
			Josual: Eabruar 97, 9014
			Issued: February 27, 2014

rland


S

С

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service subset of claiminge Servizio svizzero di taratura S Swiss Calibration Service
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.9 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.6 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.33 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$36.3 \pm 6 \%$	5.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.08 W/kg

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

······································	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/ m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.07 W/kg

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	54.0 Ω - 5.6 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	51.1 Ω + 1.6 jΩ
Return Loss	- 34.6 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.1 Ω - 2.3 jΩ
Return Loss	- 31.9 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.4 Ω - 0.2 jΩ
Return Loss	- 22.2 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.9 Ω + 2.8 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.3 Ω - 5.9 jΩ
Return Loss	- 24.2 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	51.1 Ω + 1.2 jΩ
Return Loss	- 35.8 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.5 Ω - 2.6 jΩ
Return Loss	- 31.6 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.5 Ω - 2.9 jΩ
Return Loss	- 20.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.2 Ω + 1.1 jΩ
Return Loss	- 27.7 dB

General Antenna Parameters and Design

EI	ectrical Delay (one direction)	1.206 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

DASY5 Validation Report for Head TSL

Date: 26.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 37.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.63$ S/m; $\varepsilon_r = 36.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.84$ S/m; $\varepsilon_r = 36.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 36.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.16$ S/m; $\varepsilon_r = 36.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

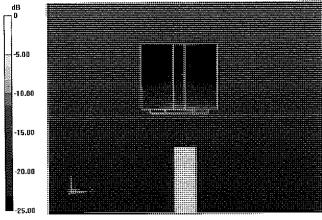
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

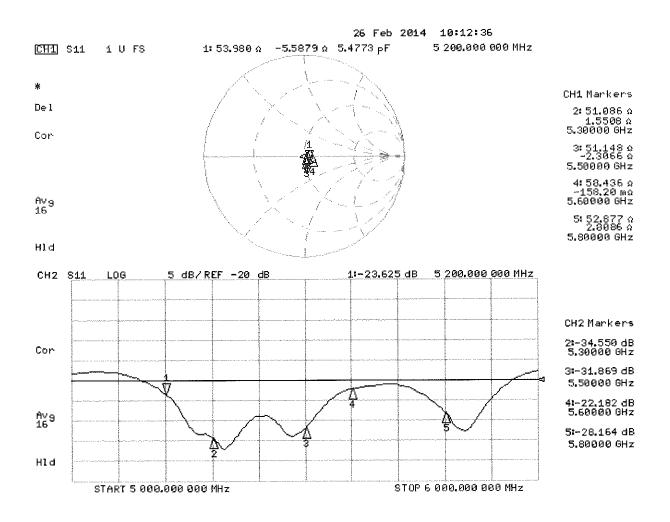
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.794 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.390 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.321 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.007 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.4 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.638 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg

DASY5 Validation Report for Body TSL

Date: 25.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.4 S/m; ϵ_r = 47.8; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 5.53 S/m; ϵ_r = 47.6; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.8 S/m; ϵ_r = 47.3; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.94 S/m; ϵ_r = 47.1; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.21 S/m; ϵ_r = 46.8; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 6.21 S/m; ϵ_r = 46.8; ρ = 1000 kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Crrbs 0x M

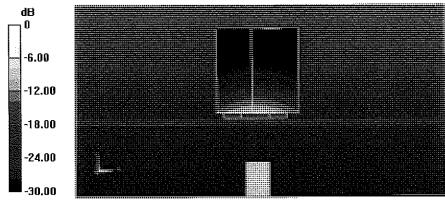
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.562 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.903 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.4 W/kg

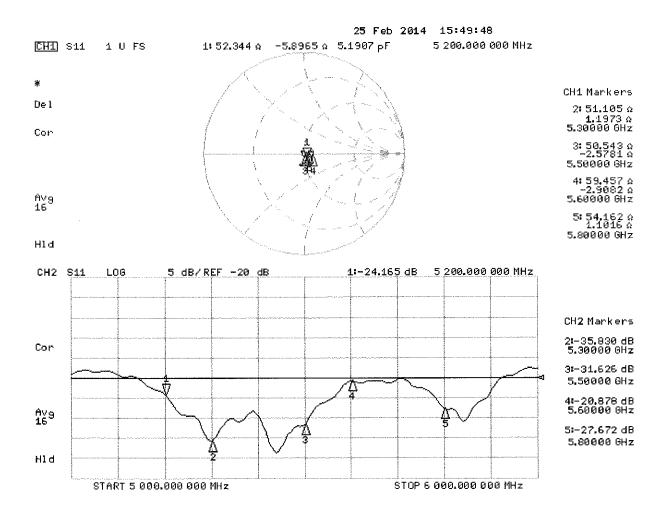
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.015 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.626 V/m; Power Drift = -0.02 dBPeak SAR (extrapolated) = 35.6 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 19.8 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 55.428 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1054_Mar14

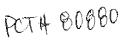
GNIS.

S

С

S

Accreditation No.: SCS 108


Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Object			a second a second second
	D750V3 - SN: 10	54 menter et «Anteret en trata d'Eller	nC.
Calibration procedure(s)	QA CAL-05.v9 Calibration proced	dure for dipole validation kits abo	ive 700 MHz
Calibration date:	March 17, 2014	den de la serie de la serie La serie de la s	
This calibration cortificate decur-	ints the traceability to poly	onal standards, which realize the physical uni	its of measurements (SI).
The measurements and the uncer	tainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an	id are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	ry facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
	ID #	O-I Data (O-difficato No.)	
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
		09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14
Power meter EPM-442A Power sensor HP 8481A	GB37480704	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Oct-14
Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14 Oct-14 Apr-14
Power sensor HP 8481A	GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13)	Oct-14 Oct-14 Oct-14 Apr-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 <u>Secondary Standards</u> RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14 Signature

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end 6 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed . point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.33 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.39 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.64 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.69 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.1 Ω + 0.7 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω - 2.8 jΩ
Return Loss	- 29.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.035 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

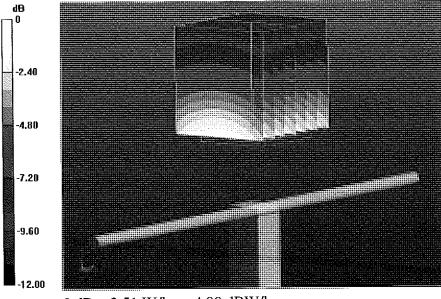
Manufactured by	SPEAG
Manufactured on	November 08, 2011

DASY5 Validation Report for Head TSL

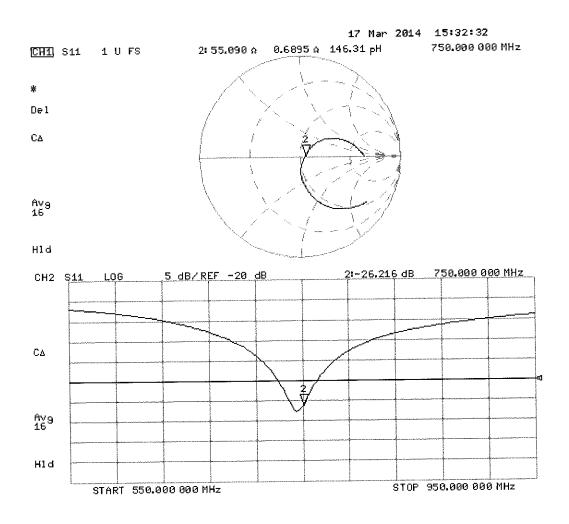
Date: 17.03.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 53.851 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.51 W/kg

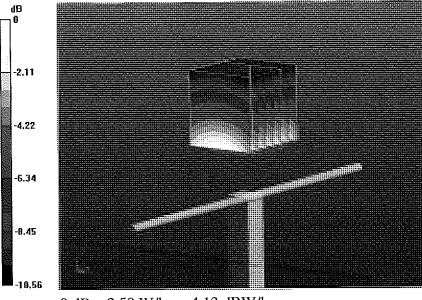
0 dB = 2.51 W/kg = 4.00 dBW/kg

DASY5 Validation Report for Body TSL

Date: 14.03.2014

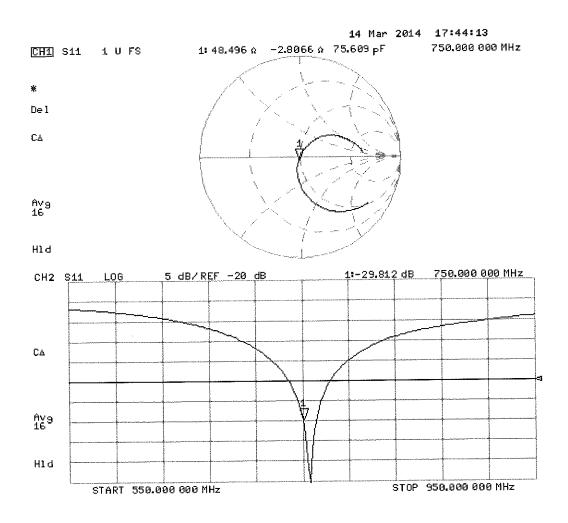
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 1 S/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.13, 6.13, 6.13); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.788 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.27 W/kg SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.46 W/kg Maximum value of SAR (measured) = 2.59 W/kg

0 dB = 2.59 W/kg = 4.13 dBW/kg

Impedance Measurement Plot for Body TSL

PC Test

Client

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d119_Apr14

Accreditation No.: SCS 108

S

С

S

CALIBRATION CERTIFICATE D835V2 - SN: 4d119 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz 4/25/14 April 07, 2014 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID # Cal Date (Certificate No.) GB37480704 09-Oct-13 (No. 217-01827) Oct-14 Power meter EPM-442A 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Power sensor HP 8481A Apr-15 SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Reference 20 dB Altenuator Apr-16 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Type-N mismatch combination 30-Dec-13 (No. ES3-3205_Dec13) Dec-14 **Reference Probe ES3DV3** SN: 3205 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 DAE4 Secondary Standards ID # Check Date (in house) Scheduled Check 04-Aug-99 (in house check Oct-13) In house check: Oct-16 **RF generator R&S SMT-06** 100005 In house check: Oct-14 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-13) Signature Function Name Lelf Klysner Laboratory Technician Calibrated by: **Technical Manager** Approved by: Kalja Pokovio Issued: April 9, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service sulsse d'étaionnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatorios to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d119_Apr14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.97 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.15 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 1.6 jΩ
Return Loss	- 34.0 dB

Antenna Parameters with Body TSL

impedance, transformed to feed point	46.3 Ω - 4.5 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

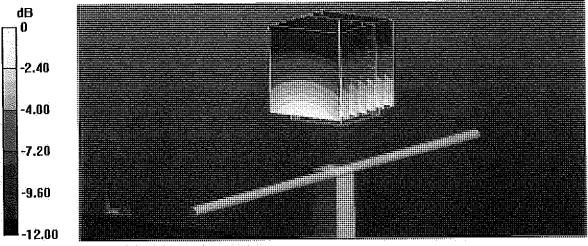
Manufactured by	SPEAG
Manufactured on	June 29, 2010

DASY5 Validation Report for Head TSL

Date: 07.04.2014

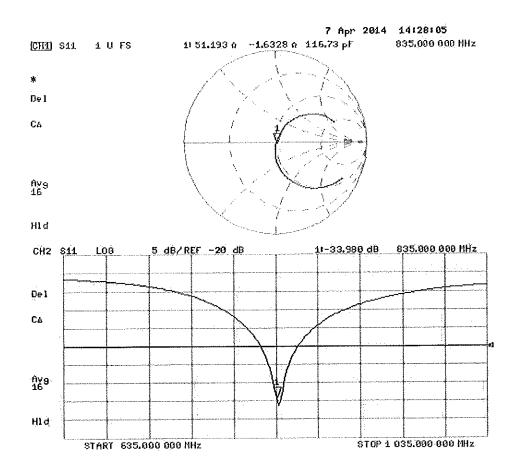
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.289 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

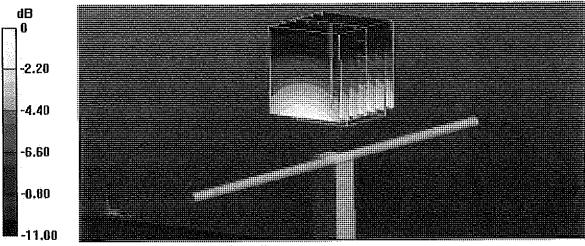
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

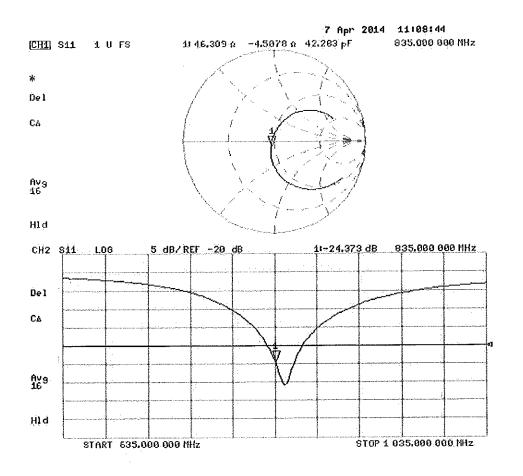
Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 54.594 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swise Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

PC Test

Client

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d133_Jul14

Dbject	D835V2 - SN: 4d1	33 menter di den biblice di serie de la serie de la Internet de la serie de la s	
Calibration procedure(s)		ure for dipole validation kits abov	
alibration date:	July 24, 2014	an a	ngaa sey of Nilseanji. L
The measurements and the unce	artainties with confidence pro	nal standards, which realize the physical unit obability are given on the following pages and y facility: environment temperature (22 ± 3)°C	
		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration
rimary Standards Power meter EPM-442A	GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14
rimary Standards Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783	09-Ocl-13 (No. 217-01827)	Oct-14 Oct-14 Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14 Oct-14 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8763E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Jeton Kastrati	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8763E Calibrated by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Jeton Kastrati	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function Laboratory Technician	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerlscher Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions DASY system configuration, as far as not given on page 1. DASY

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	······
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22,0 °C	41.5	0.90 mho/m
(22.0 ± 0.2) °C	41.1±6%	0.94 mho/m ± 6 %
< 0.5 °C		
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 41.5 (22.0 ± 0.2) °C 41.1 ± 6 %

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.20 W/kg ± 17.0 % (k=2)

condition	
250 mW input power	1.53 W/kg
normalized to 1W	5.96 W/kg ± 16.5 % (k=2)
	250 mW input power

Body TSL parameters The following parameters and calculations were applied.

ne following parametere and outparametere	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.35 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	·
SAR measured	250 mW input power	1.59 W/kg
	normalized to 1W	6.15 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω - 1.0 jΩ
	- 34,7 dB
Return Loss	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω - 3.3 jΩ
Return Loss	- 27.8 dB

General Antenna Parameters and Design

I		1,395 ns	
	Electrical Delay (one direction)		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

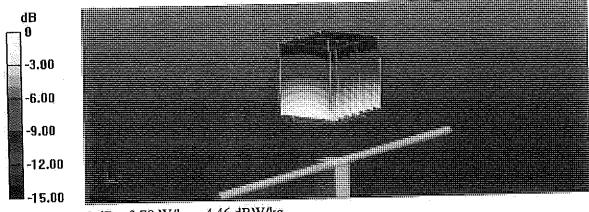
Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

Date: 24.07.2014

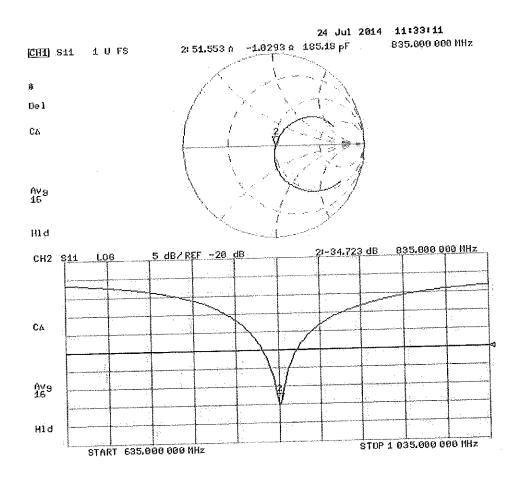
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56,07 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.79 W/kg

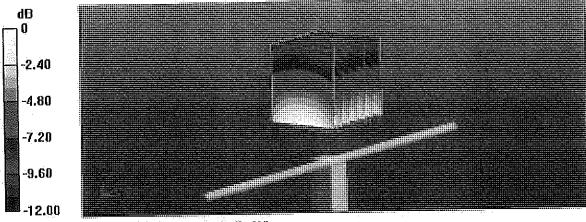
0 dB = 2.79 W/kg = 4.46 dBW/kg

DASY5 Validation Report for Body TSL

Date: 17.07.2014

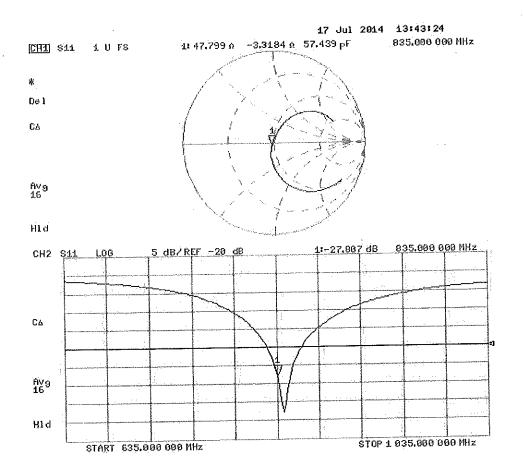
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANS1 C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 54.61 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.84 W/kg

0 dB = 2.84 W/kg = 4.53 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3022_Aug14/2

CALIBRATION CERTIFICATE (Replacement of No: ES3-3022_Aug14) Object ES3DV2 - SN:3022 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes CC Disct August 19, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.</td>

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	lD	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Altenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Allenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Altenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	p = p = 1 p
		¢	=
Approved by:	Katja Pokovio	Technical Manager	elle
	flaffinderskander og som en anderskander.	e gi negi ne en station di nevel (nevel), individuale di nevel i per en el	
			Issued: November 3, 2014
This calibration certificate	e shall not be reproduced except in ful	I without written approval of the lat	boratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 0004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivitý in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required), DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

August 19, 2014

Probe ES3DV2

SN:3022

Manufactured: Calibrated:

April 15, 2003 August 19, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.00	1.04	0.96	± 10.1 %
DCP (mV) ^B	103.0	96.3	101.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Unc [≞] (k≈2)
.0	CW	X	0.0	0.0	1.0	0.00	181.8	±2.7 %
		Y	0.0	0.0	1.0		183.0	
	e una a militar	Z	0.0	0.0	1.0		192.3	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.51	63.1	12,7	10,00	42,6	±1.9 %
		Y	2.62	63.1	12.9		42.7	
		Z	3.12	65.7	13.6		40.4	
10011- CAB	UMTS-FDD (WCDMA)	X	3.33	67.8	19,2	2.91	145.9	±0.9 %
		Y	3.13	64,9	16.9		147.4	
		Z	3.20	66.4	18.2		139.6	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	3.05	70.1	19.8	1.87	147.2	±0.9 %
		Y	2.62	65.1	16.2		147.4	
40040		Z	2.85	68.2	18.4		141.7	
10013- CAA	IEEE 802.11g WIFI 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	11.10	70,9	23.6	9.46	143.9	±3.0 %
		Y	11.04	70.2	22.9		144.2	
		Z	10.77	70.2	23.1		134.7	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	19.66	99.7	28.6	9.39	126.0	±1.9 %
		Y	11.04	89.6	25.5		138.9	
10000		Z	10.45	88.8	24.9		137.5	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	×	20,19	99.6	28.5	9,57	142.0	±2.5 %
		Y.	10.53	88.4	25.0		145.5	
(000 i		Z	15.52	96.5	27.8		147.6	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	31.93	99.6	25.2	6.56	149.5	±1.9 %
		Y	12.70	87.9	22.2		148.0	
		Z	27.00	99.8	25.7		135.3	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	38.32	99.8	23.8	4.80	148.1	±2.2 %
		Y	9.80	83.2	19.3		138.8	
		Z	31.96	99.9	24.2		128.9	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	40.03	99.5	22.8	3,55	130.5	±2.2 %
		Y	40.27	99.6	23.0	ļ	148.1	
40000		Z	43.09	99.7	22,5		140.1	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	38.93	99.4	20.4	1.16	146.7	±1.9 %
	· · · · · · · · · · · · · · · · · · ·	Y	32.83	92.5	17.9		139.2	
		Z	31.94	99.5	20.8	L	133.1	
10039- CAB	CDMA2000 (1xRTT, RC1)	×	4.66	66.8	19.3	4.57	144.5	±1.2 %
		Y	4.56	65.3	17.9	L	137.2	
		Z	4.52	66.1	18.7		131.7	

Certificate No: ES3-3022_Aug14/2

ES3DV2-- SN;3022

August 19, 2014

10081- CAB	CDMA2000 (1xRTT, RC3)	х	3.82	66.0	18.7	3.97	140.3	±0.9 %
		Y	3.77	64.5	17.3		133.6	
		Z	3.79	65.7	18.4		128.2	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	х	4.40	66.2	18.5	3.98	130.9	±1.2 %
		Y	4.39	65.0	17.4		131.1	
		Z	4.47	66.3	18.4		140.0	
	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	х	6.30	67.3	19.8	5.67	137.4	±1.7 %
	· · · · · · ·	Y	6.25	66.3	18.9	· .	135.9	
		Z	6.36	67.4	19.7		147.5	
	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.14	66.8	19.6	5.80	134.6 133.9	±1.7 %
		Y	6.17	66.1	18.9			
40440		Z	6.24	67.0	19,7	E 7E	144.5	14 7 0/
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 6 MHz, QPSK)	X	5.82	66.3	19.4	5.75	131.2	±1.7 %
		Y	5.82	65.4	18.6		140.4	
10114-	IEEE 802.11n (HT Greenfield, 13.5	Z X	5.91	66.5	19.4 21.2	8.10	124.3	±2.5 %
CAA	Mbps, BPSK)	^	10.00	68.5	21.2	0.10	12.4.0	J.G. () /()
		Y	9.89	67.9	20.6		124.0	
		Z	10.05	68.6	21.2		133.2	
	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	х	10.01	68.6	21.2	8.07	125.8	±2.5 %
		Y	9.91	67.9	20.7		125.8	
		Z	10.09	68.8	21.3		134.7	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.69	75.5	26.4	9.28	144.7	±3.3 %
		Y	9.09	72.7	24.6		143.2	·····
		Z	8.54	72.0	24.5		124.8	1100
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	5.82	66.2	19.4	5.75	131.3	±1.9 %
		Y	6.06	66.3	19.1		149.2	
10100		Z	5.91	66.5	19.4	6 00	140.7 136.5	±1.4 %
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.27	66.9	19.7	5.82	136.5	11.4 %
		Y	6.19	65.8	18.7		145.4	
40400	LITE FOD (00 FDMA 4 DB 00 MUS	Z	6.33	67.0	19.6	5.73	134.8	±1.7 %
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X Y	4.81	66.4 66.1	19.7 19.1	0.75	149.9	
		r Z	4.92 4.78	66.4	19.1		141.2	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	7.83	76.6	27.2	9.21	131.4	±3.5 %
		Y	7.54	74.5	25.8	1	147,8	
		z	7,71	76.7	27.4	İ	145.3	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	x	4.90	66.9	20.0	5.72	147.6	±1.4 %
		Y	4.90	66.0	19,1		148.0	
		Z	4.78	66.4	19,6		141.6	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.90	66.9	20.0	5,72	148.1	±1.4 %
		Y	4.89	65.9	19.0		146.9	<u> </u>
		Z	4.80	66.5	19.7		142.1	
10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	×	9.80	68.7	21,4	8.09	135.1	±2.7 %
		Y	9.78	68.2	20,9		135.5	
		Z	9.70	68.5	21.2		130.2	L

Certificate No: ES3-3022_Aug14/2

ES3DV2-SN:3022

August 19, 2014

10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.79	68.7	21.4	8.10	136.4	±2.7 %
5151		Y	9.81	68,3	20.9		138.0	
		Z	9.72	68.6	21.3		132.8	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	9.68	68.6	21.3	8.03	136.0	±2.7 %
		Y	9.74	68.3	21.0		137.4	
		Z	9.62	68.5	21.2		132.6	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	10.20	69.1	21.5	8.06	143.4	±2.5 %
		Y	9.91	68.0	20.7		125.8	
		Z	10.27	69.4	21.6		148.4	
10225- CAB	UMTS-FDD (HSPA+)	×	6.87	66.9	19.6	5.97	139.5	±1.9 %
	· · · · · · · · · · · · · · · · · · ·	Y	7.04	66,9	19.3		149.3	
4000		Z	6.89	67.0	19.5		143.5	10.0.01
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	7.66	75.9	26.9	9.21	126.1	±3.0 %
		Y	7.17	73.1	25.1		132.1	
10252		Z	7.18	74.6	26.3	9.24	128.0 127.6	±3.3 %
	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	8.58	73.1	25,3	9.24	· ·	10.0 %
		Y	8.22	71.0	23.7		126.9	
10007	LITE TOD (00 COMA 400% DB 40	Z	8.83	74,3	26.0	0.20	149.8 143.8	±3.3 %
	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.69	75.5	26.5	9.30	143.8	±3.3 %
		Y	8.88	72.0	24.2	ļ	135.2	
10274-	UMTS-FDD (HSUPA, Subtest 5, 3GPP	Z	8.83	72.9	25.1	4.87	141.2	±1.4 %
CAB	Rel8.10)	X	5.87	67.0	19.2	4.07	136.0	
		Y	5.77	65.8	18.1		130.0	
10275-	UMTS-FDD (HSUPA, Sublest 5, 3GPP	Z	5.71	66.3	18.6	3.96	147.3	±0.9 %
CAB	Rel8.4)	X	4.44	67.2 65.3	19.2 17.6	0,50	139,2	10.0 70
		Z	4.29	66,3	18.5		139.6	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	3.60	67.1	19.1	3.46	137.8	±0.7 %
10.00		Y	3.44	64.8	17.2		129.6	
		Z	3.48	66.2	18.4		130.5	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	×	3.50	66.9	18.9	3.39	139.5	±0.7 %
	······································	Y	3.38	64.8	17.2		132.0	
	· · · · · · · · · · · · · · · · · · ·	Z	3.48	66.5	18,5		133.1	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.12	66.7	19.6	5.81	133.3	±1.9 %
		Y	6.35	66.7	19.3		149.3	ļ
		Z	6.17	66.8	19.5		132.7	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	×	6.72	67.4	20,0	6.06	138.7	±1.7 %
<u></u>		Y.	6.63	66.3	19.1		131,4	
		Z	6.72	67.3	19.9		138.7	105.00
10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duly cycle)	X	2.90	69.9	19.8	1.71	146.4	±0.5 %
		Y	2.54	65.2	16.5	ļ	139.3	
1001-		Z	2.75	68.1	18.5	0.00	146.4	120.0/
10316- AAA	IEEE 802.11g WIFI 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	10.12	69,3	21.9	8.36	142.9	±3.0 %
		Y	10.01	68.5	21.3		135.2	<u> </u>
		Z	10.11	69.3	21.9		141.7	<u> </u>

Certificate No: ES3-3022_Aug14/2

ES3DV2-SN:3022

August 19, 2014

10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.59	68.2	19,0	3.76	126.7	±0.7 %
		Y	4.59	67.2	18.0	·	142.4	
		Z	4.64	68.5	19.0		143.0	
10404- AAB		X	4.64	68.8	19.3	3.77	147.1	±0.9 %
		Y	4,47	67.1	17.9		139.6	
		Z	4.54	68.4	18,9		147.2	
10415- AAA	IEEE 802.11b WiFI 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	2.66	69.0	19.4	1.54	145.8	±0.5 %
		Y.	2.40	64.8	16.2		140.0	
		Z	2.62	67.8	18.4		147.2	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	9,97	69.1	21.7	8.23	142.0	±3.0 %
		Y	10.08	68.9	21.4		145.8	
		Z	10.01	69.2	21.8		143.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).
 ^P Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^{.g} (mm)	Unct. (k=2)
750	41.9	0.89	6.39	6,39	6.39	0.20	2.24	± 12.0 %
835	41.5	0.90	6.18	6.18	6.18	0.23	1.98	± 12.0 %
1750	40.1	1.37	5.04	5.04	5.04	0.51	1.35	± 12.0 %
1900	40.0	1.40	4.85	4.85	4.85	0.38	1.66	± 12.0 %
2450	39.2	1.80	4.31	4.31	4.31	0.66	1.28	± 12.0 %
2600	39.0	1.96	4.13	4.13	4.13	0.76	1.28	± 12.0 %

Calibration Parameter Determined In Head Tissue Simulating Media

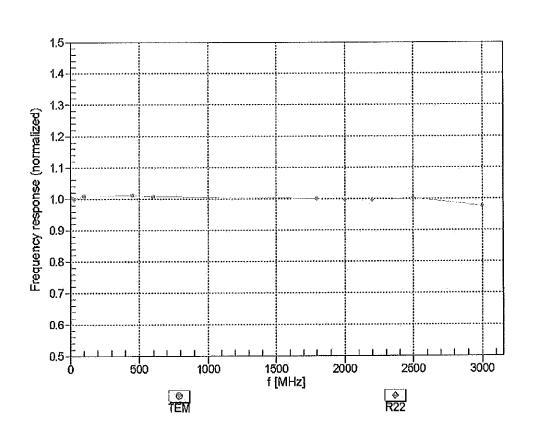
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 end 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

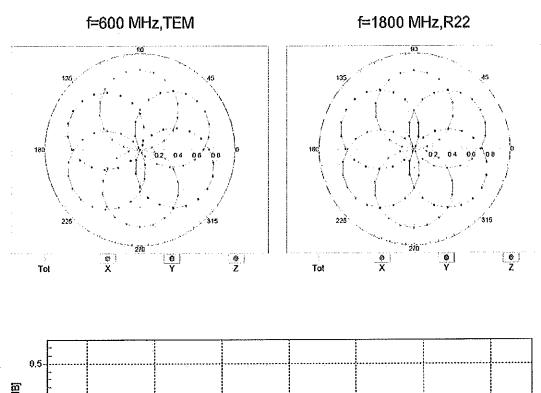
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁹	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	6,78	6.78	6.78	0.12	1.30	± 13.3 %
600	56,1	0.95	6,72	6.72	6.72	0.05	1.20	± 13.3 %
750	55.5	0.96	6.02	6.02	6,02	0.23	2.05	± 12.0 %
835	55.2	0.97	5,98	5,98	5.98	0.29	1.85	± 12.0 %
1750	53.4	1.49	4.70	4.70	4.70	0.66	1.25	± 12.0 %
1900	53,3	1.52	4.49	4.49	4.49	0.33	2.02	± 12.0 %
2450	52.7	1.95	4.05	4.05	4.05	0.80	1.01	± 12.0 %
2600	52.5	2,16	3,94	3.94	3.94	0.68	1.03	± 12.0 9

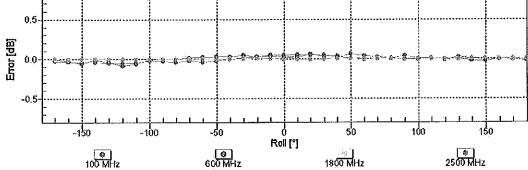

Calibration	Parameter	Determined	in Bod	v Tissue	Simulating Media	
Sound Indiana	I MIMINOLOI					

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the respectively. Above 5 GHz frequency is the RSS of the convF assessment at 50 gHz (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the respectively.

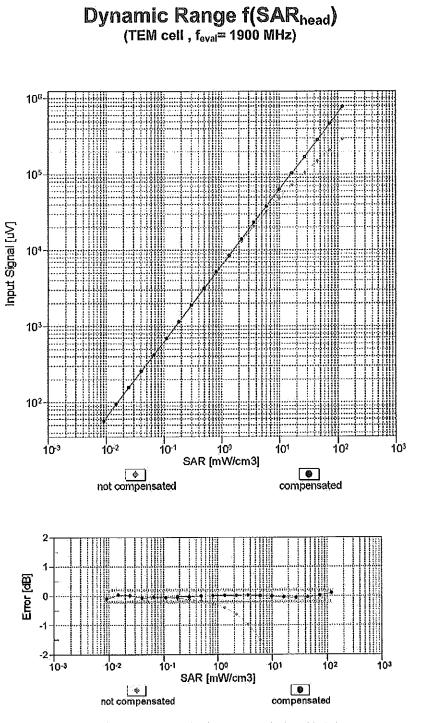
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and r) is restricted to ± 5%. The uncertainty is the RSS of

The ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always tess than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

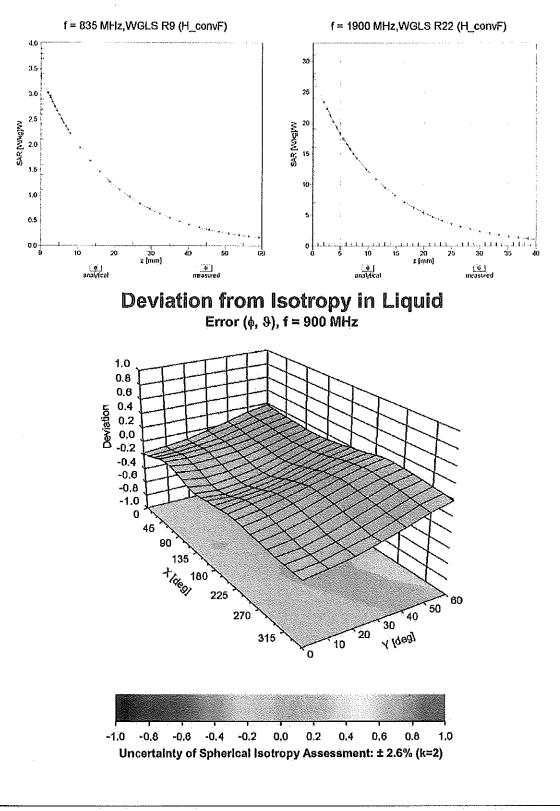

August 19, 2014


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


August 19, 2014

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 12 of 14

August 19, 2014

Conversion Factor Assessment

Certificate No: ES3-3022_Aug14/2

Page 13 of 14

and a management of the

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-80.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Page 14 of 14

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

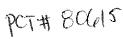
PC Test Client

BC MRA

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 S Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: ES3-3258_Feb14


CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3258							
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes							
Calibration date:	February 25, 2014							
	This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.							
All calibrations have been conduct	ed in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.							

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: \$5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-1 4
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Mar Anacua
Approved by:	Katja Pokovic	Technical Manager	KEIL
			Issued: February 27, 2014
This calibration certificate	e shall not be reproduced except in full	without written approval of the lab	poratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service suisse d'etaionnage Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters φ rotation around probe axis Polarization φ 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3258

Calibrated:

Manufactured: January 25, 2010 February 25, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.29	1.19	1.23	± 10.1 %
DCP (mV) ^B	104.5	107.0	103.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	Β dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	x	0.0	0.0	1.0	0.00	222.4	±3.8 %
-		Y	0.0	0.0	1.0		202.2	
		Z	0.0	0.0	1.0		207.1	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	х	5.09	65.6	14.1	10.00	44.8	±1.9 %
		Y	1.68	57.4	9.3		40.7	
		Z	4.01	62.4	13.0		51.1	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.34	67.5	18.9	2.91	131.2	±0.5 %
		Y	3.43	67.9	18.7		137.1	
		Z	3.42	67.8	19.0		146.0	
10012- CAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps)	X	3.40	70.9	19.8	1.87	134.2	±0.7 %
		Y	3.19	70.2	19.2		137.9	
		Z	3.46	70.8	19.6		149.6	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	30.24	99.7	28.7	9.39	131.2	±1.4 %
		Y	12.91	88.5	23.9		147.5	
		Z	30.37	99.5	28.9		128.0	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	X	29.88	100.0	29.0	9.57	123.0	±1.9 %
		Y	16.02	92.5	25.4		140.7	
		Z	30.01	100.0	29.4		125.8	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	44.57	99.7	25.9	6.56	119.6	±1.7 %
		Y	28.97	95.3	23.2		127.6	
		Z	43.72	99.8	26.3		120.1	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	53.52	99.7	24.4	4.80	129.4	±2.2 %
		Y	54.55	99.9	22.9		143.3	
		Z	51.63	99.7	24.8		127.5	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	58.93	99.8	23.4	3.55	133.4	±2.2 %
		Y	77.54	99.7	21.3	l	125.3	
		Z	56.64	99.8	23.8	L.,	130.8	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	47.03	99.5	21.3	1.16	136.3	±1.7 %
		Υ	95.86	95.2	17.1		138.2	
		Z	39.68	100.0	22.2	1	132.3	10.0 %
10039- CAB	CDMA2000 (1xRTT, RC1)	X	4.84	66.8	19.1	4.57	131.3	±0.9 %
		Y	4.75	67.0	18.9		135.2	
		Z	4.86	66.7	19.0		127.2	

February 25, 2014

10081- CAB	CDMA2000 (1xRTT, RC3)	X	4.06	66.8	19.0	3.97	148.4	±0.7 %
5,10		Y	3.96	66.6	18.6	·	134.7	
		Z	4,13	66.9	19.1		143.4	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	x	4.63	66.8	18.7	3.98	137.3	±0.7 %
		Y	4.75	67.5	18.8		148.4	
		Z	4.65	66.7	18.7		133.2	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.66	68.5	20.3	5.67	144.0	±1.2 %
		Y	6.27	67.1	19.3		130.6	
		Z	6.62	68.2	20.1		140.5	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.53	68.0	20.2	5.80	142.6	±1.4 %
		Y	6.17	66.8	19.3		129.2	
		Z	6.52	67.8	20.1		139.0	
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	6.19	67.3	19.9	5.75	137.9	±1.4 %
		Y	6.12	67.3	19.6		149.5	
		Ζ	6.19	67.1	19.8		136.1	
10114- CAA	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	10.49	69.5	21.7	8.10	132.4	±2.5 %
		Y	10.23	69.1	21.3		144.3	
		Z	10.45	69.3	21.6		129.5	
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.46	69.5	21.7	8.07	133.9	±2.5 %
		Y	10.26	69.2	21.3		147.4	
		Z	10.47	69.4	21.7		130.5	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	11.61	77.4	26.8	9.28	118.8	±3.0 %
		Y	9.89	75.2	25.7		144.9	
		Z	12.01	77.8	26.9		119.6	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.20	67.3	19.9	5.75	139.2	±1.2 %
		Y	5.86	66.2	19.0		128.5	
		Z	6.22	67.3	19.9		136.3	. 4 . 4 . 6/
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.63	67.8	20.1	5.82	144.1	±1.4 %
		Y	6.31	66.8	19.3		133.1	
10100		Z	6.66	67.7	20.0	F 70	140.9	14.0.00
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.25	67.5	20.2	5.73	143.6	±1.2 %
		Y	4.92	66.7	19.5		131.0	
10172-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z X	5.29 13.49	67.4 87.5	20.2 31.6	9.21	140.7 139.0	±2.7 %
CAB	QPSK)	Y Y	7.83	75.5	26.0		124.9	
		Z	13.47	86.5	31.1		137.8	1
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.22	67.4	20.1	5.72	144.3	±1.4 %
		Y	5.08	67.5	19.9		147.9	
		Z	5.26	67.2	20.0		139.6	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	5.24	67.5	20.1	5.72	144.5	±1.2 %
		Y	5.06	67.4	19.8		147.0	
		Z	5.29	67.3	20.1		139.2	

February 25, 2014

10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps,	x	10.12	69.1	21.6	8.09	128.8	±2.2 %
CAA	BPSK)							
		Y	9.76	68.4	21.0		132.8	
		Z	10.08	68.9	21.5		123.4	
10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	10.15	69.2	21.7	8.10	130.2	±2.2 %
		Y	9.77	68.5	21.0		134.1	
		Z	10.10	69.0	21.5		124.0	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	10.02	69.0	21.5	8.03	128.7	±2.2 %
	· · ·	Y	9.67	68.5	21.0		133.3	
		Z	10.02	68.9	21.5		123.9	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	10.46	69.6	21.7	8.06	134.0	±2.2 %
		Υ	10.09	68.8	21.1		139.7	
		Z	10.40	69.3	21.6		128.7	
10225- CAB	UMTS-FDD (HSPA+)	X	7.09	67.1	19.6	5.97	131.2	±1.4 %
		Y	6.98	67.2	19.4		138.0	
		Z	7.06	66.8	19.4		127.2	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	13.63	87.8	31.7	9.21	141.6	±3.0 %
		Y	7.85	75.5	26.0		126.5	
		Z	13.99	87.7	31.6		141.4	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	12.86	81.4	28.9	9.24	142.1	±3.0 %
		Y	8.91	73.4	24.8		129.9	
		Z	13.15	81.4	28.8		142.0	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	11.63	77.5	26.8	9.30	118.7	±3.0 %
		Y	9.62	74.3	25.2		138.4	
		Z	11.96	77.7	26.9		119.3	
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	6.14	67.4	19.3	4.87	149.9	±0.9 %
		Y	5.90	66.9	18.7		132.8	
		Z	6.20	67.5	19.3		146.6	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	4,45	66.9	18.9	3.96	130.1	±0.7 %
		Y	4.50	67.2	18.8		137.9	
		Z	4.64	67.6	19.3		149.2	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	×	3.79	67.5	19.2	3.46	145.3	±0.7 %
		Y	3.74	67.5	18.9		128.2	
		Z	3.78	67.3	19.1		139.1	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	×	3.77	67.8	19.3	3.39	147.0	±0.5 %
		Y	3.69	67.7	18.9		130.1	
		Z	3.73	67.3	19.0		141.3	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.52	67.9	20.1	5.81	141.4	±1.4 %
		Y	6.41	67.6	19.7	Ļ	147.4	
		Z	6.51	67.7	20.1		135.4	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.17	68.7	20.7	6.06	147.7	±1.4 %
		Y	6.69	67.2	19.6		128.6	
		Z	7.12	68.4	20.5		142.0	

February 25, 2014

10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	3.04	70.0	19.6	1.71	129.8	±0.5 %
		Y	3.25	71.3	19.7		136.9	
		Z	3.09	69.9	19.5		148.7	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	×	4.73	67.3	18,6	3.76	135.7	±0.5 %
		Y	4.93	69.1	19.0		141.5	
		Z	4.73	67.1	18.4		132.7	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	×	4.67	67.5	18.6	3.77	134.0	±0.5 %
		Y	4.92	69.4	19.1		139.8	
		Z	4.65	67.1	18.5		130.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9). ^B Numerical linearization parameter: uncertainty not required. ^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

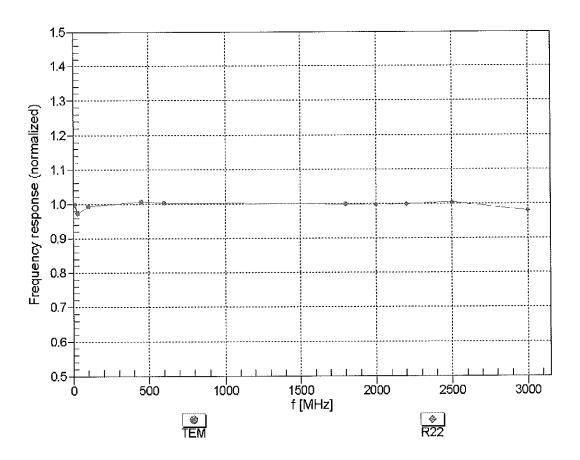
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.53	6.53	6.53	0.40	1.60	± 12.0 %
835	41.5	0.90	6.27	6.27	6.27	0.80	1.17	± 12.0 %
1750	40.1	1.37	5.19	5.19	5.19	0.80	1.10	± 12.0 %
1900	40.0	1.40	5.04	5.04	5.04	0.68	1.27	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.78	1.23	± 12.0 %
2600	39.0	1.96	4.34	4.34	4.34	0.76	1.33	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

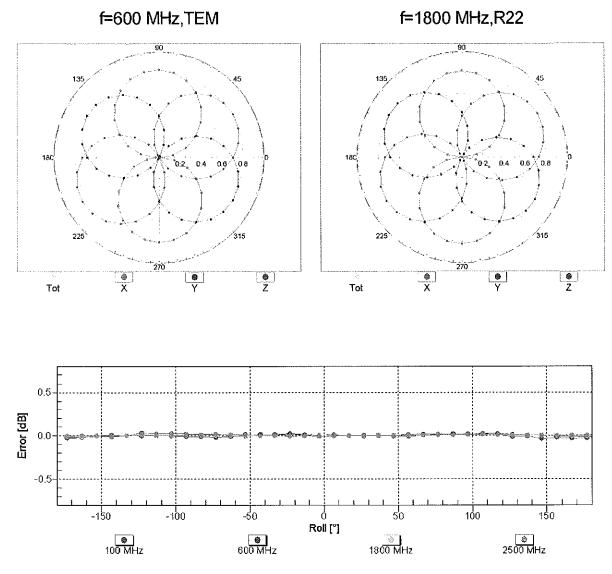
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

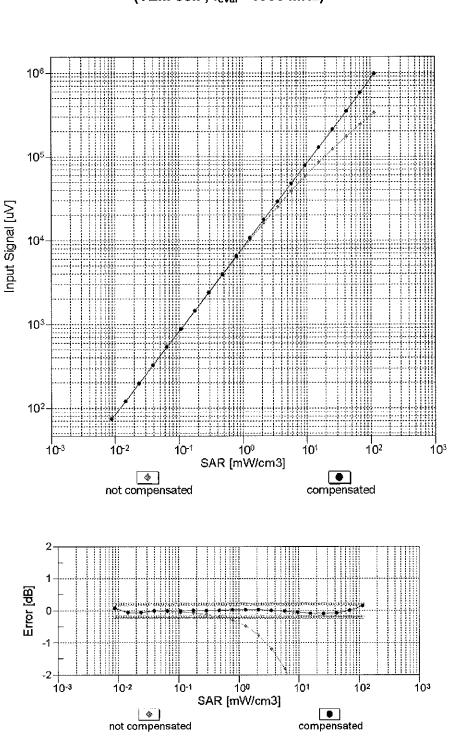

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.15	6.15	6.15	0.61	1.32	± 12.0 %
835	55.2	0.97	6.11	6.11	6.11	0.80	1.15	± 12.0 %
1750	53.4	1.49	4.83	4.83	4.83	0.47	1.74	± 12.0 %
1900	53.3	1.52	4.61	4.61	4.61	0.55	1.59	± 12.0 %
2450	52.7	1.95	4.14	4.14	4.14	0.80	1.11	± 12.0 %
2600	52.5	2.16	3.91	3.91	3.91	0.80	1.00	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

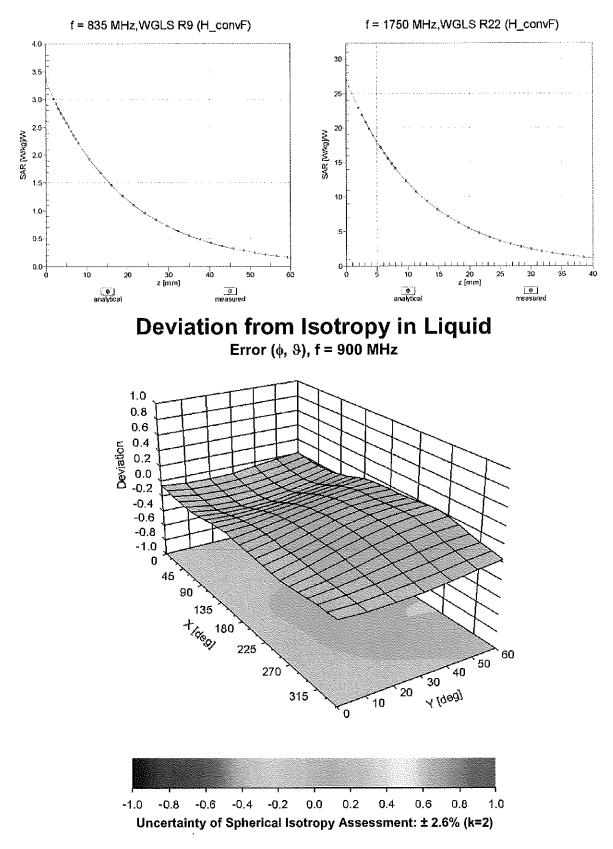
^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and α) can be relaxed to \pm 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

The ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-123.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: ES3-3263_May14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3263
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	May 15, 2014
	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conc	lucted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	C = 10
			The second
Approved by:	Katja Pokovic	Technical Manager	LEIS
			Issued: May 15, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3263

Calibrated:

Manufactured: January 25, 2010 May 15, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	$V/(V/m)^{2})^{A}$ 1.21		1.13	± 10.1 %
DCP (mV) ^B	103.8	102.3	104.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	156.3	±3.5 %
		Y	0.0	0.0	1.0		203.1	
		Z	0.0	0.0	1.0		197.2	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.33	59.4	10.8	10.00	46.4	±1.4 %
		Y	4.39	63.4	13.6		50.8	
		Z	1.35	55.5	7.8		39.6	
10011- CAB	UMTS-FDD (WCDMA)	X	3.49	68.2	19.1	2.91	126.7	±0.7 %
		Y	3.28	66.9	18.5		120.7	
		Z	2.74	63.1	15.1		113.5	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	3.51	72.0	20.3	1.87	127.9	±0.7 %
		Y	3.21	69.4	18.8		124.1	
		Z	1.93	60.6	12.6		113.3	
10013- CAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	11.30	70.8	23.3	9.46	125.2	±2.5 %
		Y	12.42	72.7	24.4		129.4	
		Z	10.03	67.8	21.1		105.5	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	24.45	99.1	27.6	9.39	141.4	±1.4 %
		Y	29.93	99.5	29.0		124.5	
		Z	4.53	73.0	18.1		111.6	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	X	25.10	99.7	27.9	9.57	134.2	±1.9 %
		Y	24.85	96.1	28.0		120.2	
		Z	5.99	76.5	19.1		142.5	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	24.34	93.0	23.0	6.56	117.1	±1.4 %
		Y	26.49	92.6	24.2		148.7	
		Z	4.00	69.6	13.8		136.6	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	51.24	99.9	23.5	4.80	131.1	±1.9 %
		Y	56.83	99.5	24.3	ļ	101.8	
	0.1 1.1 I JUNI 1010 1	Z	1.70	61.4	9.1		107.7	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	60.12	99.6	22.2	3.55	138.7	±1.9 %
		Y	64.73	99.9	23.4	l	105.5	ļ
		Z	1.13	58.4	6.0		116.0	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	×	77.27	99.6	19.6	1.16	149.5	±2.5 %
		Y	60.44	99.7	21.0		109.4	L
		Z	0.34	55.9	2.9		131.4	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	4.79	66.8	19.0	4.57	124.5	±0.9 %
		Y	4.85	66.4	18.8		125.6	
		Z	4.06	63.4	16.1		108.1	

May 15, 2014

10081- CAB	CDMA2000 (1xRTT, RC3)	x	3.93	66.1	18.5	3.97	119.8	±0.7 %
		Y	3.90	65.5	18.2		120.1	
		Z	3.29	62.4	15.3		108.5	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	х	4.68	66.9	18.7	3.98	131.2	±0.7 %
		Y	4.64	66.6	18.6		130.5	
		z	4.15	64.5	16.5		118.8	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	x	6.61	68.1	20.0	5.67	137.5	±1.7 %
		Y	6.70	68.4	20.2		137.7	
		Z	5.90	65.6	17.9		124.0	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	х	6.44	67.5	19.8	5.80	135.1	±1.7 %
		Y	6.60	68.0	20.1		135.4	
		Z	5.75	64.9	17.6		121.8	
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	x	6.14	67.1	19.7	5.75	131.6	±1.2 %
		Y	6.28	67.4	19.9		132.7	
40444		Z	5.62	65.5	18.2	0.40	118.4	14.0.0/
10114- CAA	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	10.18	68.8	21.2	8.10	124.3	±1.9 %
		Y	10.60	69.7	21.8		126.2	
		Z	9.38	67.0	19.8	0.07	108.4	14.0.0/
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.23	68.9	21.3	8.07	125.0	±1.9 %
		Y	10.56	69.6	21.7		127.1	
		Z	9.37	67.1	19.8	0.00	109.1	107.0/
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.23	75.7	26.0	9.28	125.0	±2.7 %
		Y	14.60	83.3	29.5		147.3	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Z X	8.05 6.12	69.7 67.0	22.3 19.6	5.75	131.6	±1.4 %
UAD		Y	6.28	67.4	19.9		132.4	
		z	5.49	64.7	17.4		117.9	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.57	67.5	19.8	5.82	136.0	±1.4 %
		Y	6.71	67.9	20.1		137.1	
		Z	5.89	65.2	17.8		122.4	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	4.82	66.0	19.3	5.73	113.5	±1.4 %
		Y	5.12	66.3	19.4		116.6	
		Z	4.75	65.9	18.3		142.7	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	x	9.53	80.6	28.6	9.21	136.5	±2.2 %
		Y	11.32	81.6	28.8		109.2	
	1	Z	6.84	72.0	23.8	<u> </u>	117.3	14.0.04
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.86	66.2	19.4	5.72	112.9	±1.2 %
		Y	5.10	66.2	19.4		115.9	
		Z	4.55	64.9	17.8	E 70	137.7	14.0.0/
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.81	66.0	19.2	5.72	111.6	±1.2 %
		<u>Y</u>	5.13	66.4	19.5			
10.000		Z	4.70	65.7	18.3	0.00	137.1	+2.2.0/
10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	9.80	68.3	21.0	8.09	117.2	±2.2 %
		Y	10.23	69.1	21.6	ļ	121.5	
		Z	9.85	68.9	20.8		148.4	L

May 15, 2014

10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.81	68.4	21.1	8.10	117.7	±2.2 %
	· · · · · · · · · · · · · · · · · · ·	Y	10.23	69.2	21.6		121.7	
		Z	9.87	69.0	20.9		149.9	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	9.71	68.3	21.0	8.03	117.8	±2.2 %
		Y	10.12	69.1	21.6		121.0	
		Z	8.90	66.6	19.6		104.1	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	10.14	68.7	21.2	8.06	122.3	±1.9 %
		Y	10.52	69.5	21.7		125.4	
		Z	9.28	66.8	19.6		108.5	
10225- CAB	UMTS-FDD (HSPA+)	X	7.25	67.8	19.9	5.97	146.3	±1.7 %
		Y	7.32	67.5	19.8		149.3	
		Z	6.52	65.7	18.0		130.7	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	9.55	80.7	28.7	9.21	137.2	±2.5 %
		Y	11.34	81.7	28.9		109.9	
		Z	6.98	72.5	24.0		119.5	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.26	74.1	25.3	9.24	115.6	±3.3 %
		Y	13.72	82.5	29.3		137.9	
		Z	8.83	73.3	24.4		144.1	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	10.06	75.2	25.8	9.30	122.9	±2.7 %
		Y	14.69	83.4	29.6		147.6	
		Z	8.02	69.6	22.3		103.4	
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	Х	6.08	67.2	19.0	4.87	140.2	±1.2 %
		Y	6.23	67.5	19.2		143.5	
		Z	5.52	65.4	17.4		125.1	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	4.44	66.7	18.7	3.96	122.1	±0.7 %
		Y	4.39	66.3	18.5		124.4	
		Z	3.83	63,7	16.0		114.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	3.64	66.7	18.6	3.46	115.7	±0.7 %
		Y	3.60	66.0	18.2		118.0	
		Z	3.17	64.2	16.3		108.4	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	3.62	67.0	18.8	3.39	116.9	±0.9 %
		Y	3.54	66.1	18.2		119.1	
		Z	3.24	64.2	15.8		145.6	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	x	6.43	67.5	19.8	5.81	132.0	±1.4 %
		Y	6.60	68.0	20.1	ļ	134.9	
		Z	5.81	65.4	18.0		115.0	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	×	7.04	68.1	20.2	6.06	137.5	±1.4 %
		Y	7.19	68.6	20.5		140.3	
		Z	6.26	65.7	18.2	\downarrow	119.6	
10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	3.05	70.0	19.4	1.71	121.7	±0.7 %
		Y	2.91	68.7	18.7	<u> </u>	123.4	
		Z	1.83	60.2	12.3		108.4	
10316- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	×	10.05	68.7	21.4	8.36	117.3	±1.9 %
		Y	10.57	69.7	22.0		122.8	
		Z	9.11	66.5	19.7		103.1	

May 15, 2014

10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.81	68.3	18.8	3.76	125.8	±0.7 %
		Y	4.65	66.5	18.1		130.8	
		Z	3.98	64.7	16.0		114.7	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.91	69.1	19.2	3.77	123.3	±0.7 %
		Y	4.60	66.6	18.1		128.5	
		Z	3.73	64.0	15.4		112.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	х	2.78	69.0	19.0	1.54	121.9	±0.7 %
7001		Y	2.46	66.8	17.9		122.5	
		Z	1.83	60.9	13.0		112.4	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	х	9.88	68.4	21.2	8.23	116.6	±1.7 %
1001		Y	10.29	69.2	21.7		121.5	
		z	9.25	67.3	20.2		103.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

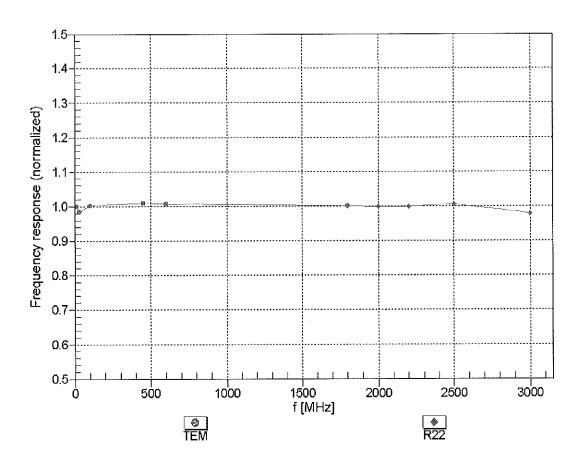
					•			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.42	6.42	6.42	0.72	1.18	± 12.0 %
835	41.5	0.90	6.23	6.23	6.23	0.27	2.02	± 12.0 %
1750	40.1	1.37	5.41	5.41	5.41	0.74	1.23	± 12.0 %
1900	40.0	1.40	5.08	5.08	5.08	0.80	1.16	± 12.0 %
2450	39.2	1.80	4.47	4.47	4.47	0.80	1.22	± 12.0 %
2600	39.0	1.96	4.33	4.33	4.33	0.66	1.41	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^c At frequencies below 3 GHz, the validity of tissue parameters (s and s) can be relayed to \pm 10% if liquid compensation formula is applied to

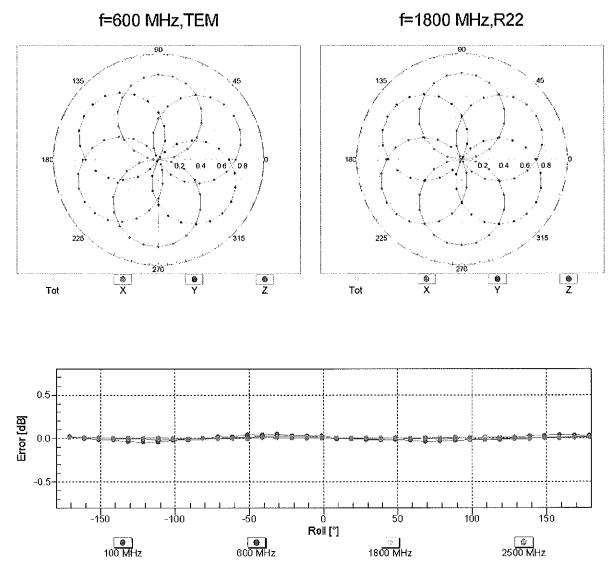
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

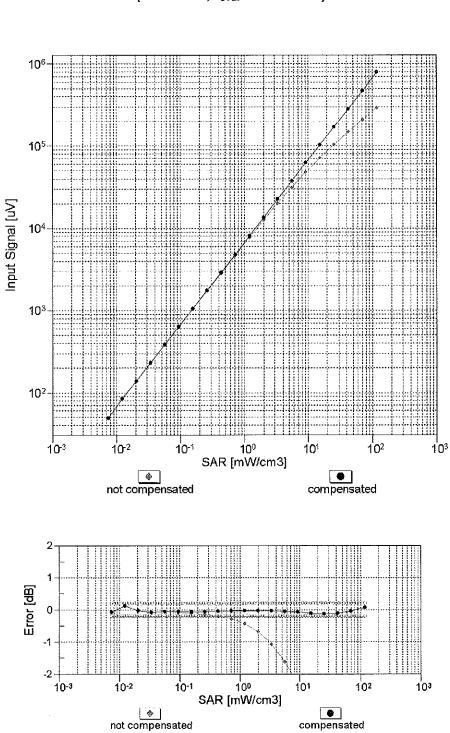

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.19	6.19	6.19	0.52	1.41	± 12.0 %
835	55.2	0.97	6.16	6.16	6.16	0.68	1.28	± 12.0 %
1750	53.4	1.49	4.98	4.98	4.98	0.38	1.91	± 12.0 %
1900	53.3	1.52	4.78	4.78	4.78	0.66	1.35	± 12.0 %
2450	52.7	1.95	4.27	4.27	4.27	0.72	1.13	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.74	1.07	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

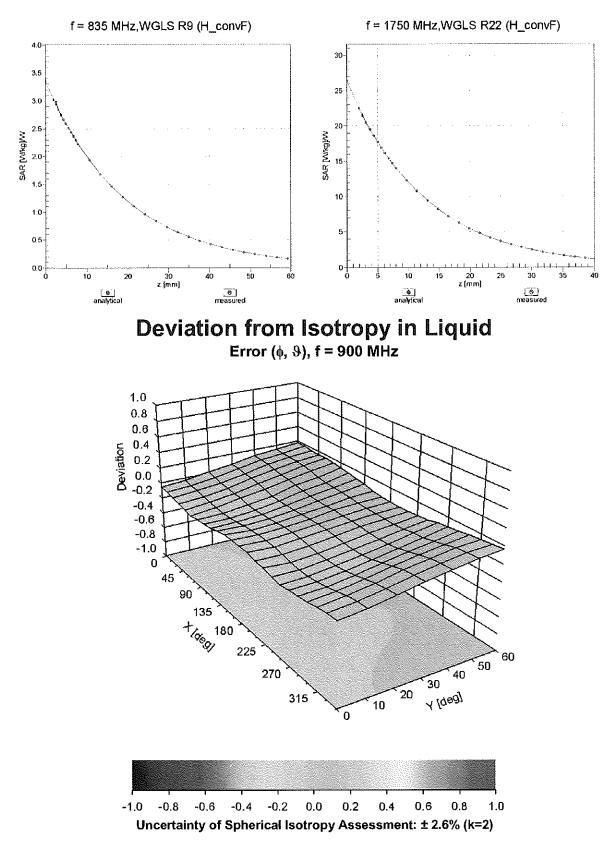
^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-111.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura

Scheduled Check

Signature

In house check: Apr-16

In house check: Oct-14

S Swiss Calibration Service

Accreditation No.: SCS 108

S

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3288_Sep14/2

PC Test

ALIBRATION C	ERTIFICATE	(Replacement of No:I	ES3-3288_Sep14)
Dbject	ES3DV3 - SN:328	38	
Calibration procedure(s)	QA CAL-01.v9, Q Calibration procee	A CAL-23.v5, QA CAL-25.v6 dure for dosimetric E-field probes	CC MAIM
Calibration date:	September 24, 20	014	
	ucted in the closed laborator	robability are given on the following pages and a ry facility: environment temperature $(22 \pm 3)^{\circ}$ C a	
Drimon, Standorda	ID	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power meter E44198 Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 3 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Арг-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14

Technical Manager Katja Pokovic Approved by: Issued: November 3, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ID

US3642U01700

Leif Klysner

US37390585

Name

Secondary Standards

Calibrated by:

RF generator HP 8648C

Network Analyzer HP 8753E

Check Date (in house)

Function

4-Aug-99 (in house check Apr-13)

18-Oct-01 (in house check Oct-13)

Laboratory Technician

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., $\vartheta = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

September 24, 2014

Probe ES3DV3

SN:3288

Manufactured: Repaired: Calibrated: July 6, 2010 September 18, 2014 September 24, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.05	1.16	0.92	± 10.1 %
DCP $(mV)^{B}$	105.1	104.6	106.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc [⊨] (k=2)
<u>с</u>	CW	X	0.0	0.0	1.0	0.00	195.8	±3.5 %
		Y	0.0	0.0	1.0		175.9	
		Z	0.0	0.0	1.0		177.1	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.71	61.9	11.4	10.00	40.3	±2.2 %
<u></u>		Y	2.37	60.2	11.2		42.6	
		Z	1.54	56.6	8.9		41.2	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.29	67.1	18.4	2.91	133.8	±0.5 %
		Y	3.43	67.9	18.9		139.5	
199.8		Ζ	3.45	68.1	18.9		141.3	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	х	2.99	68.9	18.6	1.87	135.1	±0.7 %
		Y	3.59	72.4	20.4		140.7	
		Z	3.54	72.4	20.3		143.0	
10013- CAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	Х	11.15	70.8	23.3	9.46	132.3	±3.5 %
		Y	11.29	70.8	23.2		141.1	<u></u>
		Z	11.07	70.7	23.2		139.2	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	14.71	90.5	24.5	9.39	149.0	±1.9 %
		Y	16.40	92.8	26.0		131.3	
		Z	11.34	87.2	23.6		126.1	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	X	15.91	92.2	25.3	9.57	138.9	±2.5 %
		Y	21.25	96.9	27.2		142.0	
		Z	11.68	87.2	23.5		145.9	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	38.62	99.8	24.7	6.56	123.8	±2.2 %
		Y	36.71	99.7	25.2		128.1	
		Z	36.56	99.4	24.5		129.5	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	56.60	99.6	22.6	4.80	138.8	±1.9 %
		Y	46.94	99.9	23.7		149.9	
		Z	51.17	99.8	22.9		144.9	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	70.88	100.0	21.6	3.55	147.5	±1.9 %
		Y	52.58	99.8	22.6		129.4	
		Z	76.98	99.8	21.2		128.7	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	×	98.89	99.5	18.9	1.16	135.8	±1.4 %
	· · · · · · · · · · · · · · · · · · ·	Y	78.39	99.6	19.5		141.7	
~		Z	95.21	95.5	17.1		143.4	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	4.72	66.7	18.9	4.57	133.7	±0.9 %
		Y	4.85	67.1	19.1	_	137.7	
<u> </u>		Z	4.81	67.4	19.2	<u> </u>	141.9	

0081-	CDMA2000 (1xRTT, RC3)	X	3.91	66.3	18.6	3.97	129.5	±0.7 %
CAB		Y	4.00	66.6	18.7		133.7	
	10	Z	3.99	66.8	18.8		137.5	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	×	4.63	66.9	18.7	3.98	141.4	±0.7 %
		Y	4.78	67.5	19.0		147.7	
		Z	4.57	66.8	18.6		127.8	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.59	68.2	20.1	5.67	149.2	±1.4 %
		Y	6.36	67.3	19.6		130.7	
		Z	6.36	67.5	19.6		133.6	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	6.44	67.8	20.0	5.80	146.6 128.8	±1.4 %
		Y	6.23	66.8	19.4			
		Z	6.24	67.1	19.6	E 75	131.4	+1 1 0/
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	6.08	67.1	19.6	5.75	143.2 148.0	±1.4 %
		Y	6.20	67.4	19.8		148.5	
		Z	5.92	66.6	19.3	8.10	128.5	±2.2 %
10114- CAA	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	10.32	69.3	21.5	0.10	143.5	
		Y	10.31	69.1	21.4		145.5	
10117-	IEEE 802.11n (HT Mixed, 13.5 Mbps,	Z X	10.37 10.35	69.5 69.4	21.6 21.6	8.07	138.3	±2.2 %
CAA	BPSK)	Y	10.36	69.3	21.4		146.4	
		Z	10.42	69.6	21.6		149.0	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.95	75.7	26.2	9.28	134.9	±3.3 %
		Y	10.37	76.0	26.1		146.6	
		Z	9.77	75.4	26.0		142.5	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.12	67.2	19.7	5.75	144.9	±1.4 %
		Y	6.21	67.4	19.8		148.8	
		Z	5.91	66.5	19.3		128.7	14.0.00
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	×	6.28	66.7	19.4	5.82	125.5	±1.2 %
		Y	6.37	66.8	19.4		129.7	
		Z	6.36	67.1	19.6	E 70		±1.2 %
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.08	67.6	20.2	5.73	147.0	±1.2 70
		Y Z	4.95 4.91	66.6 66.9	19.6		131.2	
10172-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	X	8.18	77.2	27.2	9.21	123.4	±2.7 %
CAB	QPSK)	Y	8.37	76.6	26.6		129.5	
			7.97	76.7	26.9		128.7	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.05	67.4	20.1	5.72	146.2	±1.4 %
		Y	5.10	67.3	20.0		142.8	
		Z	4.87	66.7	19.6		129.6	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	×		67.4	20.0	5.72	145.5	±1.2 %
		Y	5.12	67.4	20.0		143.4	
		Z	4.87	66.7	19.6		129.9	
10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)			68.9	21.4	8.09	131.0	±2.2 %
		Y	9.84	68.5	21.1		130.0	
		Z	9.94	69.0	21.4		138.6	

10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.90	68.9	21.4	8.10	130.8	±2.2 %
		Y	9.81	68.4	21.0		131.4	
		Z	9.95	69.1	21.5		140.5	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	Х	9.81	68.8	21.3	8.03	130.0	±2.2 %
0701		Υ	9.89	68.9	21.3		138.1	
		Z	9.89	69.1	21.5		140.5	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	×	10.25	69.2	21.4	8.06	137.1	±2.2 %
		Y	10.30	69.2	21.4		144.4	
		Z	10.38	69.6	21.6		148.4	
10225- CAB	UMTS-FDD (HSPA+)	X	6.90	66.8	19.3	5.97	132.8	±1.4 %
		Y	7.09	67.3	19.6	ļ	142.0	
		Z	7.04	67.4	19.6		143.5	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	9.61	81.9	29.6	9.21	149.3	±2.7 %
		Y	8.66	77.6	27.1		133.7	
		Z	8.20	77.5	27.3	0.01	132.2	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	9.16	74.5	25.8	9.24	126.3	±3.0 %
		<u>Y</u>	9.62	75.0	25.8		137.4 135.2	
10267-	LTE-TDD (SC-FDMA, 100% RB, 10	Z X	9.16 9.97	74.8 75.7	25.9 26.3	9.30	135.2	±3.3 %
CAB	MHz, QPSK)	Y	10.38	75.9	26.1		146.1	
		Z	9.91	75.7	26.3		143.8	
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	5.86	66.6	18.7	4.87	129.9	±0.9 %
		Y	6.01	67.1	19.0		135.7	
•••• ,		Z	5.95	67.1	19.0		139.4	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	4.40	66.7	18.6	3.96	136.4	±0.7 %
*****		Y	4.55	67.3	19.0		138.3	
		Z	4.56	67.6	19.1		144.3	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	3.64	66.9	18.7	3.46	127.4	±0.5 %
		Y	3.77	67.6	19.1		130.2	
		Z	3.72	67.5	19.0		134.4	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	3.58	67.0	18.7	3.39	128.4	±0.5 %
		<u>Y</u>	3.73	67.7	19.1		132.7	
		Z	3.69	67.8	19.1	E 04	136.1	14.4.0/
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.43	67.7	19.9	5.81	145.5	±1.4 %
		Y	6.49	67.7	19.9		149.5 129.5	
40044		Z	6.23	67.0	19.6	6.06	129.3	±1.4 %
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.74	67.3	19.8 19.8	0.00	132.9	1.4 %
		Y Z	6.83	67.5	19.8		135.8	
10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	6.81 3.00	67.6 69.9	19.9	1.71	133.9	±0.5 %
		Y	3.30	71.5	20.1		141.0	
		Z	3.22	71.4	20.0		142.9	
10316- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	10.17	69.2	21.8	8.36	130.5	±2.5 %
h <u>, , , , , , , , , , , , , , , , , , , </u>		Y	10.20	69.1	21.6		138.4	
		Z	10.20	69.4	21.8		140.7	

September 24, 2014

10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.75	68.3	18.8	3.76	138.5	±0.7 %
		Y	5.00	69.1	19.2		146.7	
		Z	4.92	69.2	19.1		148.5	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	4.73	68.6	18.9	3.77	136.3	±0.7 %
		Y	4.97	69.4	19.4		143.7	
		Z	4.91	69.6	19.3		146.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	2.65	68.1	18.5	1.54	135.2	±0.5 %
7000		Y	3.05	70.8	19.9		140.7	
		Z	2.87	69.8	19.3	1	144.8	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	10.00	69.0	21.5	8.23	130.8	±2.2 %
/ / / /		Y	10.06	68.9	21.4		138.6	
		Z	10.08	69.3	21.7		141.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)	
750	41.9	0.89	6.81	6.81	6.81	0.37	1.70	± 12.0 %	
835	41.5	0.90	6.51	6.51	6.51	0.45	1.52	± 12.0 %	
1750	40.1	1.37	5.38	5.38	5.38	0.44	1.58	± 12.0 %	
1900	40.0	1.40	5.17	5.17	5.17	0.80	1.18	± 12.0 %	
2450	39.2	1.80	4.56	4.56	4.56	0.80	1.21	± 12.0 %	
2600	39.0	1.96	4.44	4.44	4.44	0.80	1.22	± 12.0 %	

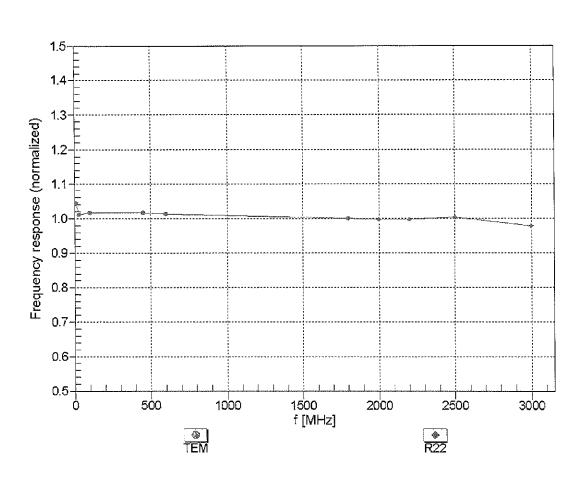
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

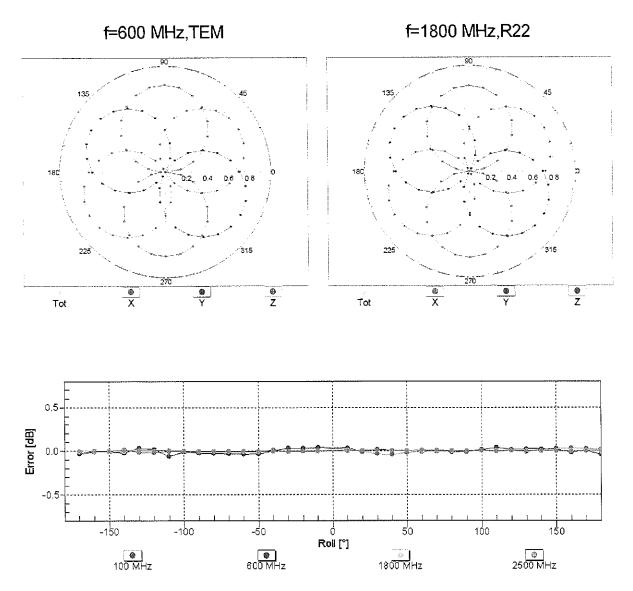
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.38	6.38	6.38	0.31	1.89	± 12.0 %
835	55.2	0.97	6.32	6.32	6.32	0.55	1.39	± 12.0 %
1750	53.4	1.49	5.03	5.03	5.03	0.57	1.44	± 12.0 %
1900	53.3	1.52	4.82	4.82	4.82	0.51	1.54	± 12.0 %
2450	52.7	1.95	4.36	4.36	4.36	0.71	1.07	± 12.0 %
2600	52.5	2.16	4.22	4.22	4.22	0.80	1.07	± 12.0 %

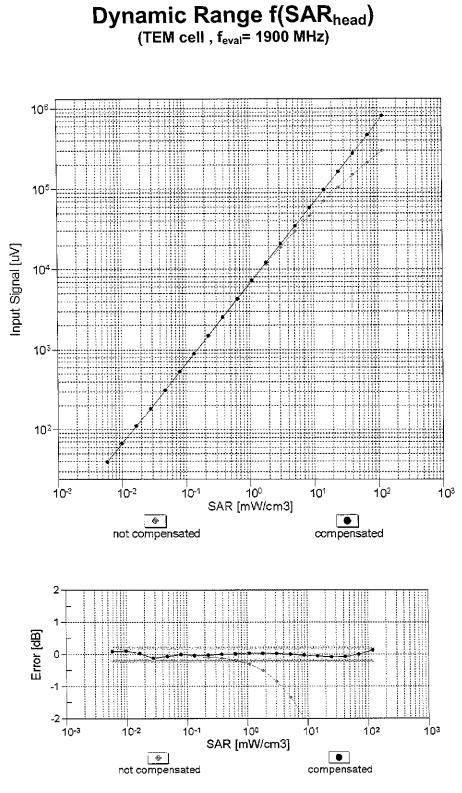
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

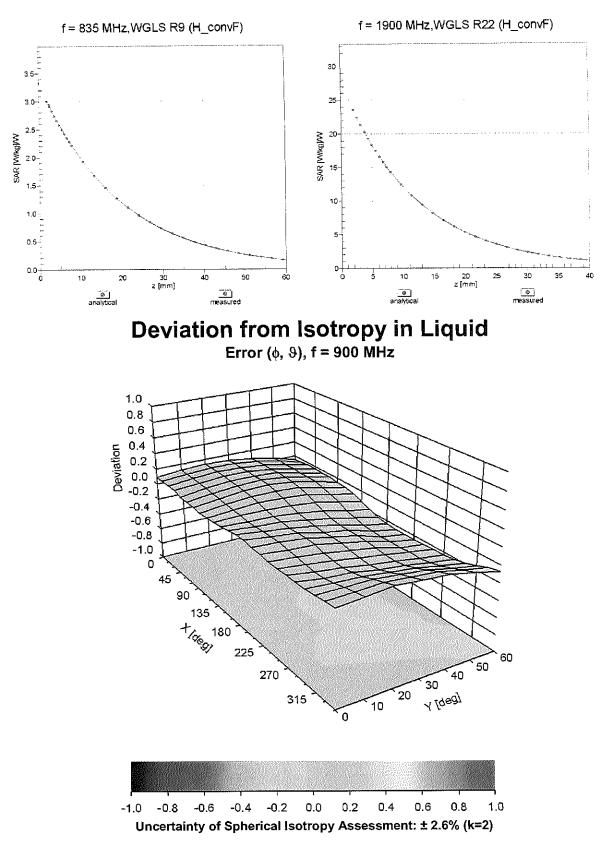
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

September 24, 2014



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-110
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 m m
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-3920_Dec14

CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:392	20	
Calibration procedure(s)		A CAL-14.v4, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v6 CC
Calibration date:	December 12, 20	14	
		onal standards, which realize the physical units	
The measurements and the unc	enamiles with confidence pr	robability are given on the following pages and a	are part of the certificate.
All calibrations have been condu	ucted in the closed laborator	y facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Israe El-Naoug	Laboratory Technician	Isreen Chlacuog
Approved by:	Katja Pokovic	Technical Manager	2011L

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: December 13, 2014

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3920

Manufactured: Calibrated:

December 18, 2012 December 12, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3920

Basic Calibration Parameters

Basic Calibration Para	Sensor X 0.35	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A		0.50	0.50	± 10.1 %
DCP (mV) ^B	104.2	98.5	97.7	i

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc [⊭] (k=2)
0	CW	x	0.0	0.0	1.0	0.00	131.7	±3.5 %
		Y	0.0	0.0	1.0		140.3	
		z	0.0	0.0	1.0		136.8	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	×	0.94	56.5	8.3	10.00	38.1	±0.7 %
		Y	2.14	63.7	12.2		41.6	
		z	3.89	70.9	15.1		40.9	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	2.91	68.2	18.0	1.87	142.7	±0.7 %
		Y	2.48	64.3	15.8		132.6	
		Z	2.61	65.8	16.8		129.2	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	10.41	69.4	22.2	9.46	149.3	±3.5 %
<u> </u>		Y	10.78	69.4	22.2		146.4	
		Z	10.76	69.7	22.6	L	141.9	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	0.29	58.3	5.2	1.16	136.2	±0.7 %
		Y	0.52	61.5	7.4		149.5	
		Z	0.99	66.7	9.6		146.5	
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	9.78	68.2	21.1	8.68	126.2	±3.3 %
		Y	10.40	68.9	21.4		145.8	
		Z	10.43	69.3	21.9		146.6	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	7.49	68.0	21.7	9.29	145.0	±2.2 %
CAD		Y	7.76	68.0	21.7		137.3	
		Z	8.12	69.7	22.9		139.5	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.08	68.6	20.8	8.07	140.7	±3.0 %
		Y	10.01	67.8	20.3		129.1	<u></u> .
		Z	10.13	68.3	20.8		130.9	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	7.12	67.7	21.7	9.28	140.0	±2.2 %
		Y	7.42	67.6	21.5		133.0	
		Z	7.70	69.2	22.8		135.2	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.55	68.8	22.5	9.21	129.9	±2.7 %
		Y	6.01	69.1	22.6		144.5	
·		Z	6.16	70.6	23.9		146.7	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.56	68.2	20.7	8.10	132.3	±3.0 %
		Y	10.09	68.7	20.9		149.9	
		Z	10.08	69.0	21.3		147.9	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	5.60	69.2	22.8	9.21	133.6	±2.7 %
CAB		Y	6.05	69.3	22.7		145.6	
		Z	6.15	70.5	23.9		147.8	

Certificate No: EX3-3920_Dec14

10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.68	67.3	21.6	9.24	133.4	±2.7 %
		Y	7.19	68.0	21.9		147.8	
		Z	7.38	69.3	23.0		147.7	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	7.14	67.7	21.8	9.30	139.9	±2.2 %
		Y	7.44	67.6	21.5		133.0	
		Z	7.68	69.1	22.7		131.5	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	9.72	68.3	21.0	8.36	132.1	±3.3 %
		Y	10.25	68.8	21.2		148.1	
		Z	10.27	69.2	21.6		148.7	
	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	9.78	68.3	20.9	8.37	131.9	±3.3 %
		Y	9.97	67.9	20.7		125.1	
		Z	10.36	69.3	21.7		148.4	
	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	10.63	68.9	21.2	8.60	142.5	±3.0 %
		Y	10.72	68.6	21.0		133.5	
	······································	Z	10.74	68.8	21.4		133.0	
10402- AAB	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	10.89	69.3	21.2	8.53	145.0	±3.3 %
		Y	10.70	68.4	20.8		133.2	
		Z	10.95	69.2	21.4		134.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	2.84	68.2	17.9	1.54	141.1	±0.5 %
		Y	2.39	64.2	15.6		130.2	<u> </u>
		Z	2.63	66.6	17.2		128.6	<u> </u>
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	9.67	68.3	20.9	8.23	131.6	±3.3 %
		Y	10.14	68.6	21.0		147.9	
		Z	10.17	69.1	21.5		148.5	
10417- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	9.67	68.3	20.9	8.23	133.0	±3.3 %
		Y	9.78	67.7	20.5		124.4	
		Z	10.21	69.1	21.5		149.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3920

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	39.2	1.80	7.12	7.12	7.12	0.62	0.65	± 12.0 %
2600	39.0	1.96			6.85	0.36	0.86	± 12.0 %
5200	36.0	4.66	4.87	4.87	4.87	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.69	4.69	4.69	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.44	4.44	4.44	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.35	4.35	4.35	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.27	4.27	4.27	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

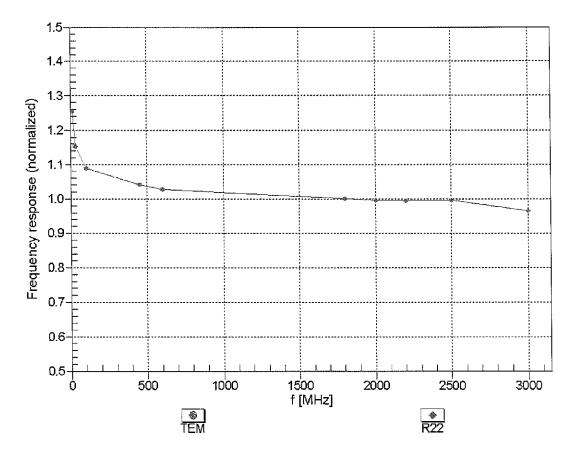
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

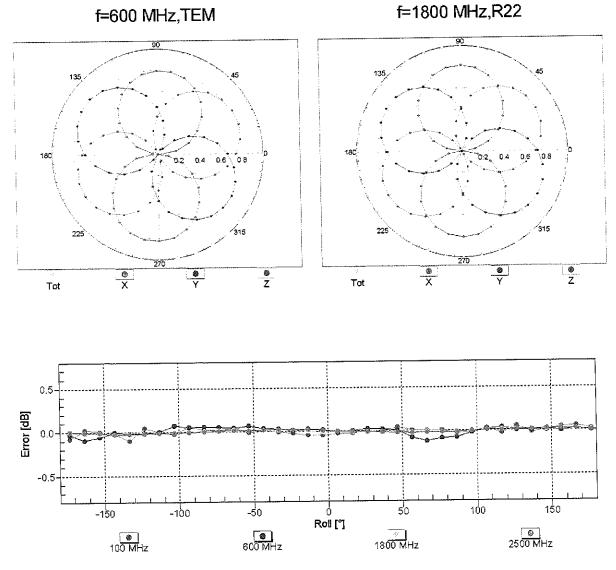
the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3920

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)	
2450	52.7	1.95	7.02	7.02	7.02	0.80	0.50	± 12.0 %	
2600	52.5	2.16	6.78	6.78	6.78	0.80	0.50	<u>± 12.0 %</u>	
5200	49.0	5.30	4.33	4.33	4.33	0.45	1.90	± 13.1 %	
5300	48.9	5.42	4.16	4.16	4.16	0.45	1.90	± 13.1 %	
5500	48.6	5.65	3.79	3.79	3.79	0.50	1.90	± 13.1 %	
5600	48.5	5.77	3.66	3.66	3.66	0.50	1.90	± 13.1 %	
5800	48.2	6.00	3.93	3.93	3.93	0.50	1.90	± 13.1 %	

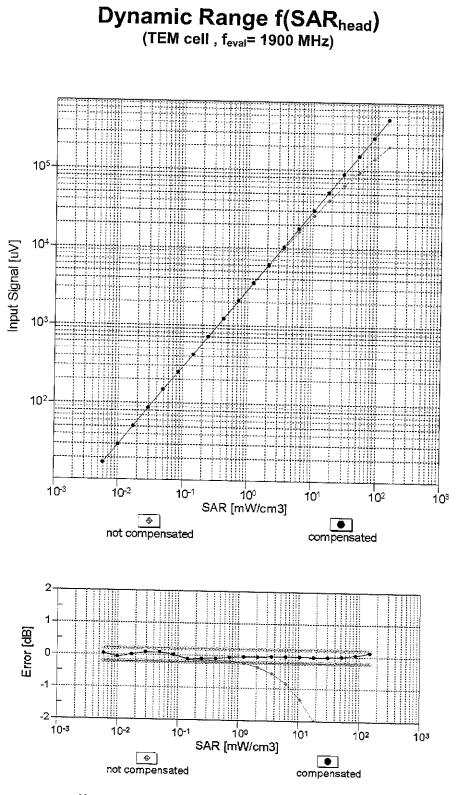

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

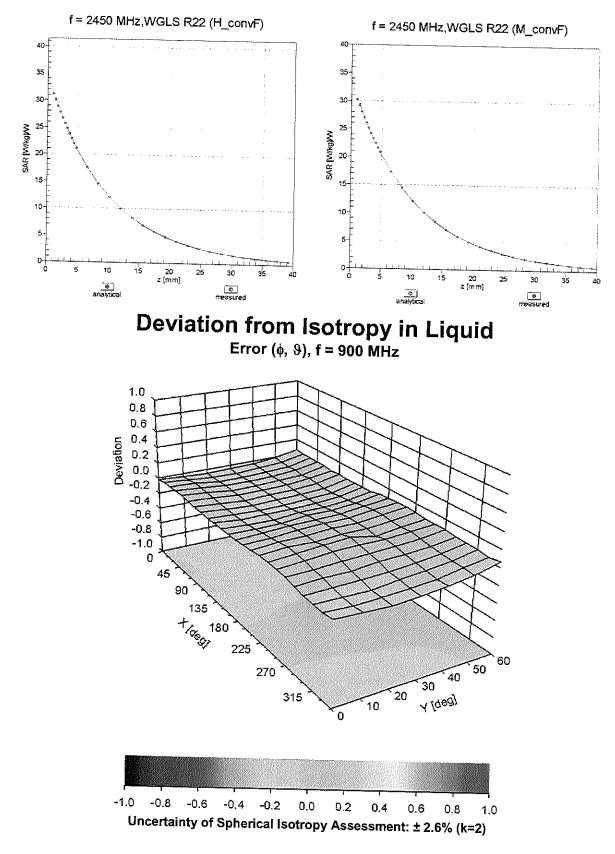

⁶ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3920

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-23.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 3) The network analyzer and probe system was configured and calibrated.
- 4) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 5) The complex admittance with respect to the probe aperture was measured
- 6) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

	Con	npositio	on of the	e Tissue	<u>Equiva</u>	lent Mai	ter		-	-
Frequency (MHz)	750	750	835	835	1900	1900	2450	2450	5200-5800	5200-5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)										
Bactericide			0.1	0.1						
DGBE					44.92	29.44		26.7]	
HEC	S		1	1						
NaCl	See page 2-3	See page 2	1.45	0.94	0.18	0.39	See page 4	0.1	See page 5	
Sucrose			57	44.9						
Polysorbate (Tween) 80										20
Water			40.45	53.06	54.9	70.17		73.2		80

Table D-I Composition of the Tissue Equivalent Matter

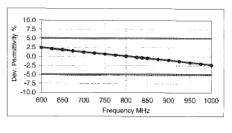
FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
01/06/15 - 01/24/15	Portable Handset			Page 1 of 5
© 2015 PCTEST Engineering Labor	atory, Inc.			REV 14.0 M

2 Composition / Information on ingredients

Figure D-1

Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.


Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MSL750V2)	
Product No.	SL AAM 075 AA (Charge: 130313-1)	
Manufacturer	SPEAG	
Measurement Met	thod	
	meters measured using calibrated OCP probe.	
Colum Validation		
Setup Validation		_
	vere within $\pm 2.5\%$ towards the target values of Methanol.	
	vere within $\pm 2.5\%$ towards the target values of Methanol.	
		_
Validation results w Target Parameter	8	
Validation results w Target Parameter		
Validation results w Target Parameter	8	
Validation results w Target Parameter Target parameters	s as defined in the IEEE 1528 and IEC 62209 compliance standards.	
Validation results w Target Parameter Target parameters Test Condition	s as defined in the IEEE 1528 and IEC 62209 compliance standards. Environment temperatur (22 ± 3)°C and humidity < 70%.	
Validation results w Target Parameter Target parameters Test Condition Ambient	s as defined in the IEEE 1528 and IEC 62209 compliance standards. Environment temperatur (22 ± 3)°C and humidity < 70%.	

Additional Information

TSL Density 1.212 g/cm³ TSL Heat-capacity 3.006 kJ/(kg*K)

	Measured Target		ŧ	Diff.to Target [%]			
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-eps	∆-sigma
600	57.5	24.64	0.82	56.1	0.95	2.5	-13.6
625	57.2	24.31	0.84	56.0	0.95	2.1	-11.4
650	57.0	23.99	0.87	55.9	0.96	1.8	-9.2
675	56.7	23.69	0.89	55.8	0.96	1.5	-7.1
700	56.4	23.39	0.91	55.7	0.96	1.2	-5.1
725	56.2	23.18	0.93	55.6	0.96	1.0	-2.8
750	55,9	22.97	0.96	55.5	0.96	0.7	-0.5
775	55.7	22.78	0.98	55.4	0.97	0.4	1.7
800	55.4	22.60	1.01	55.3	0.97	0.1	4.0
825	55.2	22,44	1.03	55.2	0.98	-0.2	5.3
838	55.0	22.36	1.04	65.2	0.98	-0.3	5.9
850	54.9	22.28	1.05	55.2	0.99	-0.4	6.6
875	54.7	22.16	1.08	55.1	1.02	-0.7	5.8
900	54.5	22.03	1.10	55.0	1.05	-1.0	5.1
925	54.2	21.93	1.13	55.0	1.06	-1.3	6.2
950	54.0	21.82	1.15	54.9	1.08	-1.7	7.2
975	53.8	21,74	1.18	54.9	1.09	-2.0	8.5
1000	53.6	21.66	1.21	54.8	1.10	-2.3	9.7

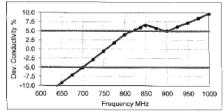


Figure D-2 750MHz Body Tissue Equivalent Matter

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
01/06/15 - 01/24/15	Portable Handset			Page 2 of 5
© 2015 PCTEST Engineering Laboratory, Inc.				REV 14.0 M

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HSL750V2)	
Product No.	SL AAH 075 AA (Charge: 130312-4)	
Manufacturer	SPEAG	

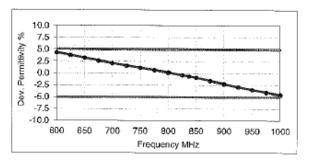
Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.


Test Condition

Ambient	Environment temperatur (22 ± 3)°C and humidity < 70%.
TSL Temperature	22°C
Test Date	13-Mar-13
Operator	IEN

Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

	Measu	ired		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e ⁴	sigma	eps	sigma		∆-sigma
600	44.6	23.25	0.78	42.7	0.88	4.3	-12.0
625	44.2	23.00	0.80	42.6	0.88	3.8	-9.5
650	43.8	22.76	0.82	42.5	0.89	3.2	-7.1
675	43.4	22.50	0.84	42.3	0.89	2.6	-4.9
700	43.1	22,24	0.87	42.2	0.89	2.1	-2.6
725	42.7	22.06	0.89	42.1	0.89	1.6	-0.2
750	42.4	21.88	0.91	41.9	0.89	1.1	2.2
775	42,1	21.72	0.94	41.8	0.90	0.6	4.6
800	41.7	21.55	0.96	41.7	0.90	0.1	6.9
825	41.4	21.40	0.98	41.6	0.91	-0.4	8.3
838	41.3	21.32	0.99	41.5	0.91	-0.6	9.0
850	41.1	21.24	1.00	41.5	0.92	-0.9	9.6
875	40.8	21.11	1.03	41.5	0.94	-1.6	9.0
900	40.6	20.99	1.05	41.5	0.97	-2.3	8.3
925	40.3	20.87	1.07	41.5	0.98	-2.9	9.4
950	40.0	20.76	1.10	41,4	0.99	-3.5	10.3
975	39.7	20.66	1.12	41.4	1.00	-4.0	11.5
1000	39.5	20.57	1.14	41.3	1.01	-4.5	12.7

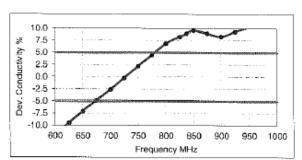


Figure D-3 750MHz Head Tissue Equivalent Matter

FCC ID: A3LSMG920KOR	CAPCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
01/06/15 - 01/24/15	Portable Handset			Page 3 of 5
© 2015 PCTEST Engineering Laboration	tory, Inc.			REV 14.0 M

2 Composition / Information on ingredients

The Item is co	omposed of the following ingredients:
H2O	Water, 52 – 75%
C8H18O3	Diethylene glycol monobutyl ether (DGBE), 25 – 48%
	(CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)
	Relevant for safety; Refer to the respective Safety Data Sheet*.
NaCl	Sodium Chloride, <1.0%
	Figure D-4

Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	uren	ent (Certif	ficate	e / Ma	terial	Test	
Item N	ame	_	Head	Tissu	ie Sim	ulating	Liquid (F	HSL2450V2)
Produc	ct No.		SL A	AH 24	5 BA (Charge	130212-	-2)
Manufa	acture	·	SPEA	\G	e		. TOOLIE	-,
						ć		
Measu TSL di				s mea	sured	using c	alibrated C	OCP probe.
Setup				14 Tax	0.50/			
vandat	uon res	suits w	ere w	ithin ±	2.5%	towards	the targe	et values of Methanol.
Target	Para	neters	5					
Target	param	neters	as def	fined i	n the I	EEE 15	28 and IE	C 62209 compliance standards.
Test C	onditi	00						
Ambie		on	Envir	onmer	nt term	eratur	(22 + 3)°C	C and humidity < 70%.
TSL Te		ature	23°C				(22 2 0) 0	and hormany s ron.
Test D			13-Fe	sb-13				
Operat	lor		DI					
Additi	onal F	form	ation					
TSL D		aorna		a/cm	3			
TSL H		pacity						
	Measu			Targe	t		arget [%]	10.0
f (MHz)	HP-e'	HP-e*		eps	sigma	∆-eps	∆-sigma	10.0
1900	40.4	11.94	1.26	40.0	1.40	1.0	-9.9	
1925	40.3	12.02	1.29	40.0	1.40	0.7	-8.0	50 25 00 0, 27
1950 1975	40.2	12.11	1.31	40.0	1.40	0.5	-6.2	E 0.0
1975	40.1	12.20	1.34 1.37	40.0	1.40	0.2	-4.2	
2000	39.9	12.39	1.37	40.0	1.40	-0.1	-2.3	8 -5.0 -7.5
2050	39.8	12.39	1.40	39.9	1.44	-0.2	-1.9	-10.0
2075	39.6	12.57	1.45	39.9	1,44	-0.4	-1.1	1900 2000 2100 2200 2300 2400 2500 2600 2700
2100	39.5	12.65	1.48	39.8	1.49	-0.7	-0.7	Frequency MHz
2125	39.4	12.74	1.51	39.8	1.51	-0.9	-0.4	
2150	39.3	12.82	1.53	39.7	1.53	-1.0	0.0	
2175	39.2	12.89	1,56	1				
				39.7	1.56	-1.2	0.3	10.0
2200	39.1	12.97	1.59	39.7 39.6	1.56 1.58	-1.2 -1.3	0.3 0.6	2. 7.5
2225	39.0	13.04	1.59 1.61	39.6 39.6	1.58 1.60	-1.3 -1.5		2. 7.5
2225 2250	39.0 38.9	13.04 13.11	1.59 1.61 1.64	39.6 39.6 39.6	1.58 1.60 1.62	-1.3 -1.5 -1.7	0.8 0.9 1.2	2. 7.5
2225 2250 2275	39.0 38.9 38.8	13.04 13.11 13.20	1.59 1.61 1.64 1.67	39.6 39.6 39.6 39.5	1.58 1.60 1.62 1.64	-1.3 -1.5 -1.7 -1.8	0.6 0.9 1.2 1.6	2. 7.5
2225 2250 2275 2300	39.0 38.9 38.8 38.7	13.04 13.11 13.20 13.28	1.59 1.61 1.64 1.67 1.70	39.6 39.6 39.6 39.5 39.5	1.58 1.60 1.62 1.64 1.67	-1.3 -1.5 -1.7 -1.8 -2.0	0.6 0.9 1.2 1.6 2.0	2* 75 50 50 50 25 00 25 50
2225 2250 2275 2300 2325	39.0 38.9 38.8 38.7 38.6	13.04 13.11 13.20 13.28 13.35	1.59 1.61 1.64 1.67 1.70 1.73	39.6 39.6 39.6 39.5 39.5 39.5	1.58 1.60 1.62 1.64 1.64 1.67	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1	0.6 0.9 1.2 1.6 2.0 2.3	2 75 4 75 4 75 4 75 6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2225 2250 2275 2300 2325 2350	39.0 38.9 38.8 38.7 38.6 38.5	13.04 13.11 13.20 13.28 13.35 13.42	1.59 1.61 1.64 1.67 1.70 1.73 1.75	39.6 39.6 39.5 39.5 39.5 39.4 39.4	1.58 1.60 1.62 1.64 1.67 1.69 1.71	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3	0.8 0.9 1.2 1.6 2.0 2.3 2.6	* 75 50 00 -25 -100
2225 2250 2275 2300 2325 2350 2375	39.0 38.9 38.8 38.7 38.6 38.5 38.5 38.4	13.04 13.11 13.20 13.28 13.35 13.42 13.50	1.59 1.61 1.64 1.67 1.70 1.73 1.75 1.78	39.6 39.6 39.5 39.5 39.5 39.4 39.4 39.4 39.3	1.58 1.60 1.62 1.64 1.67 1.69 1.71 1.73	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4	0.6 0.9 1.2 1.6 2.0 2.3 2.6 2.9	2 75 4 75 4 75 4 75 6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2225 2250 2275 2300 2325 2350	39.0 38.9 38.8 38.7 38.6 38.5	13.04 13.11 13.20 13.28 13.35 13.42	1.59 1.61 1.64 1.67 1.70 1.73 1.75	39.6 39.6 39.5 39.5 39.5 39.4 39.4	1.58 1.60 1.62 1.64 1.67 1.69 1.71	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3	0.8 0.9 1.2 1.6 2.0 2.3 2.6	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2350 2375 2400	39.0 38.9 38.8 38.7 38.6 38.5 38.5 38.4 38.3	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58	1.59 1.61 1.64 1.67 1.70 1.73 1.75 1.78 1.81	39.6 39.6 39.5 39.5 39.5 39.4 39.4 39.4 39.3	1.58 1.60 1.62 1.64 1.67 1.69 1.71 1.73 1.76	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6	0.6 0.9 1.2 1.6 2.0 2.3 2.6 2.9 3.3	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2350 2375 2400 2425	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.2 38.1 38.0	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79	1.59 1.61 1.64 1.67 1.70 1.73 1.75 1.78 1.81 1.84 1.84 1.90	39.6 39.6 39.5 39.5 39.4 39.4 39.4 39.3 39.3 39.3 39.3	1.58 1.60 1.62 1.64 1.67 1.09 1.71 1.73 1.76 1.78	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6 -2.7	0.6 0.9 1.2 1.6 2.0 2.3 2.6 2.9 3.3 3.6	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2350 2375 2400 2425 2400 2425 2450 2475 2500	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85	1.59 1.61 1.64 1.67 1.70 1.73 1.75 1.78 1.81 1.84 1.84 1.90 1.93	39.6 39.6 39.5 39.5 39.4 39.4 39.4 39.3 39.3 39.2 39.2 39.2 39.2 39.2	1.58 1.60 1.62 1.64 1.67 1.79 1.71 1.73 1.76 1.78 1.80 1.83 1.85	-1.3 -1.5 -1.7 -1.8 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.3	0.8 0.9 1.2 1.6 2.0 2.3 2.6 2.9 3.3 3.6 4.0 3.9 3.9 3.9	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2350 2375 2400 2425 2400 2425 2450 2475 2500 2525	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9 37.8	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85 13.94	1.59 1.61 1.64 1.67 1.73 1.75 1.75 1.78 1.81 1.84 1.90 1.93 1.96	39.6 39.6 39.5 39.5 39.4 39.4 39.4 39.3 39.2 39.2 39.2 39.2 39.2 39.1 39.1	1.58 1.60 1.62 1.64 1.67 1.09 1.71 1.73 1.76 1.78 1.80 1.83 1.85 1.88	-1.3 -1.5 -1.7 -1.8 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.3 -3.4	0.6 0.9 1.2 2.0 2.3 2.6 2.9 3.3 3.6 4.0 3.9 3.9 4.0	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2350 2375 2400 2425 2400 2425 2450 2550	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9 37.8 37.7	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85 13.94 14.02	1.59 1.61 1.64 1.67 1.73 1.75 1.78 1.81 1.84 1.84 1.90 1.93 1.96 1.99	39.6 39.6 39.5 39.5 39.4 39.4 39.4 39.3 39.3 39.2 39.2 39.2 39.2 39.1 39.1 39.1	1.58 1.60 1.62 1.64 1.64 1.69 1.71 1.73 1.76 1.78 1.80 1.83 1.85 1.88 1.91	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.8 -3.6	0.8 0.9 1.2 1.6 2.0 2.3 2.6 2.9 3.3 3.6 4.0 3.9 3.9 4.0 4.2	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2350 2375 2400 2425 2400 2425 2500 2525 2550 2555	39.0 38.9 38.8 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9 37.8 37.7 37.6	13.04 13.11 13.20 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85 13.94 14.02 14.09	1.59 1.61 1.64 1.67 1.73 1.75 1.78 1.81 1.84 1.84 1.90 1.93 1.96 1.99 2.02	39.6 39.6 39.5 39.5 39.4 39.4 39.3 39.3 39.2 39.2 39.2 39.2 39.2 39.2	1.58 1.60 1.62 1.64 1.67 1.69 1.71 1.73 1.76 1.78 1.80 1.83 1.85 1.88 1.91 1.94	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.3 -3.4 -3.8 -3.8	0.6 0.9 1.2 1.6 2.3 2.6 2.9 3.3 3.6 4.0 3.9 3.9 3.9 4.0 4.2 4.3	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2400 2425 2400 2425 2450 2475 2500 2525 2550 2575 2600	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9 37.8 37.7 37.6 37.5	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85 13.94 14.02 14.09 14.17	1.59 1.61 1.64 1.67 1.73 1.75 1.78 1.81 1.84 1.90 1.93 1.96 1.99 2.02 2.05	39.6 39.6 39.5 39.5 39.4 39.4 39.3 39.3 39.2 39.2 39.2 39.2 39.2 39.1 39.1 39.1 39.1 39.0 39.0 39.0	1.58 1.60 1.62 1.64 1.67 1.79 1.71 1.73 1.76 1.78 1.80 1.83 1.85 1.88 1.91 1.94 1.96	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.8 -3.8 -3.8 -3.8 -4.0	0.6 0.9 1.2 1.6 2.0 2.3 2.6 2.9 3.3 3.6 4.0 3.9 3.9 3.9 4.0 4.2 4.3 4.4	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2400 2425 2400 2425 2450 2555 2550 2555 2550 2575 2800 2625	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9 37.8 37.7 37.6 37.5 37.4	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85 13.94 14.02 14.09 14.17 14.23	1.59 1.61 1.84 1.87 1.75 1.75 1.78 1.81 1.84 1.90 1.93 1.96 1.99 2.02 2.05 2.08	39.6 39.8 39.5 39.5 39.5 39.4 39.4 39.3 39.2 39.2 39.2 39.2 39.2 39.1 39.1 39.1 39.1 39.0 39.0 39.0	1.58 1.60 1.62 1.64 1.67 1.79 1.71 1.73 1.76 1.78 1.80 1.83 1.85 1.88 1.91 1.94 1.94	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.3 -3.8 -3.8 -3.8 -3.8 -4.0 -4.2	0.6 0.9 1.2 2.3 2.6 2.9 3.3 3.6 4.0 4.0 4.2 4.3 4.4 4.4	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700
2225 2250 2275 2300 2325 2400 2425 2400 2425 2450 2475 2500 2525 2550 2575 2600	39.0 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 38.0 37.9 37.8 37.7 37.6 37.5	13.04 13.11 13.20 13.28 13.35 13.42 13.50 13.58 13.65 13.73 13.79 13.85 13.94 14.02 14.09 14.17	1.59 1.61 1.64 1.67 1.73 1.75 1.78 1.81 1.84 1.90 1.93 1.96 1.99 2.02 2.05	39.6 39.6 39.5 39.5 39.4 39.4 39.3 39.3 39.2 39.2 39.2 39.2 39.2 39.1 39.1 39.1 39.1 39.0 39.0 39.0	1.58 1.60 1.62 1.64 1.67 1.79 1.71 1.73 1.76 1.78 1.80 1.83 1.85 1.88 1.91 1.94 1.96	-1.3 -1.5 -1.7 -1.8 -2.0 -2.1 -2.3 -2.4 -2.6 -2.7 -2.9 -3.1 -3.8 -3.8 -3.8 -3.8 -4.0	0.6 0.9 1.2 1.6 2.0 2.3 2.6 2.9 3.3 3.6 4.0 3.9 3.9 3.9 4.0 4.2 4.3 4.4	2* 75 5.0 0.0 2.5 0.0 0.2.5 10.0 1900 2000 2100 2200 2900 2400 2500 2800 2700

Figure D-5 2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
01/06/15 - 01/24/15	Portable Handset			Page 4 of 5
© 2015 PCTEST Engineering Labo	oratory, Inc.			REV 14.0 M

2 Composition / Information on ingredients The Item is composed of the following ingredients:

Water

Water	50 – 65%
Mineral oil	10 – 30%
Emulsifiers	8 – 25%
Sodium salt	0 – 1.5%
	Figure D-6

Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

em Na	me	- 1	fead	Tissu	e Simi	ulating	Liquid (H	BBL3500-5800V	5)			
roduct	No.		SL AAH 502 AC (Charge: 130903-1)									
lanufa	cturer		SPEA			-	-					
	emen											
				meas	inedia	sinn na	librated O	CP orohe				-
174. 14-0	1-21-11-10	peter di 1	million a	10045	areu o	can gi ca	interained O	or proce				
	Validat				-	-						
alidati	on res	ults w	ere wit	hin ±	2,5% !	owards	the target	values of Methan	ial.			_
areast.	Paran											
				net in	the Is	EE 15	28 and IF(62209 compliant	ce stand	ards.		
tar great	prise car to	sinia i	10 1001	o mina in	101214	The ball in the	the terms tary	Carator Carrighter	a praire			
	onditi	no							_		-	_
Ambier				nmen	it temp	eratur (22 = 3)°C	and humidity < 70	196			
SL 10	mpera	iture	22°C 4-Sep	12								
Operat			IEN	-13								
	-											
	onal In	forma		_	_							_
ISL D			0.985									
ISL H	eat-ca	pacity	3.383	K.J/(K)	<u>а-к)</u>	_	_					_
	Measu	red		Target		Diff.to T	arget (%)				_	-
(MHz)		HP-e"	sigma	epis	sigma		∆-sigma	10.0				-
3400	38.7	15.01	2.84	38.0	2.81	1.7	1.4	A 75			-	_
3500	38.5	14.98	2.92	37.9	2.01	1.5	0.3	25				_
3000	38.3	14.98	3.00	37.8	3.02	1.6	-0.5	25		************		
3800	38.2	14.95	3.16	37.6	3.22	1.6	-1.0	25				1
3900	38.1	14.96	3.25	375	3.32	17	-22	- sa				-
4000	37.9	14.58	3,33	37,4	3.43	15	-2.6	-7.5				
4100	37.B	15.00	3.42	37.2	3.53	15	33	10.0	3900	4400 4900	5400	590
4200 4300	37.6	15,04	3.61	37.0	3.63	1.6	-3.3			Frequency MHz		
4400	37.4	15.10	3.71	36.0	3.84	1.4	3.5					
4500	37.3	15.22	3,81	35.8	3.94	1.4	3.2					_
4600	37.2	15,29	3,91	36.7	4 04	14	3.2	10.0				_
4700	37.0	15.34	4.01 4.11	36.6	4.14	12	32	7.5				
4800	36.8	15.43	4.16	36.4	4.30	11	-32	\$ 50	_		-	-
4900	36.8	15.47	4.22	36,3	4.35	13	-2.9	2 25				-
4950	36.7	15 49	4.26	36.3	4.40	12	-3.2	Conductively	-			
5000	36.6	10,52	4.32	36.2	4.45	7.1	-2.9		-	*******************		
5050	36.5	15.55	4.37	36.2	4.50	1.1	-2.9	-7.5				
5150	36.4	15.62	4.47	36.0	4.60	1.0	-2.9	-10,0	3900	4400 4900	5400	
5200	36.3	15.65	4.53	36.0	4.65	0.9	-2.7	3400	3800	Frequency MHz	5400	590
5250	36,2	15.67	4.58	35.9	4.71	0.8	-2.7		_		_	
5300	36.2	15.71	4.63	35.9	4.76	0.9	-27					
5350 5400	36.1	15.73	4.68	35.8 35.8	4.85	0.8	-2.7					
5450	35.9	15.78	4.78	35.7	4,91	86	-27					
5500	35.9	15.79	4.83	35.6	4.95	0.7	-2.7					
5550	35.8	15.83	4,89	35.6	5.01	0.6	-25					
5600	35.7	15.86	4.94	35.5	5.07	0.5	-25					
5650 5700	35.7	15.89	5.00	35.5	5.12	0.6	23					
5750	35.5	15.96	5.11	35.4	5.22	0.4	-2,1					
5800	35.5	15.97	5.15	35.3	5.27	0.6	-2.3					
		1	I make	35.3	5.34	0.3	-2.3					
5850 5900	35.4	16,02	5.21	35.3	5.40	0.0	2.6					

5GHz Head Tissue Equivalent Matter

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager				
Test Dates:	DUT Type:			APPENDIX D:				
01/06/15 - 01/24/15	Portable Handset			Page 5 of 5				
© 2015 PCTEST Engineering Laboratory, Inc.								

07/21/2014

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System validation Summary														
SAR			PROBE SN	PROBE TYPE	PROBE CAL. POINT		COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
SYSTEM #	FREQ. [MHz]	DATE					(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
J	750	9/26/2014	3022	ES3DV2	750	Head	0.916	40.24	PASS	PASS	PASS	N/A	N/A	N/A
J	835	9/30/2014	3022	ES3DV2	835	Head	0.911	41.35	PASS	PASS	PASS	GMSK	PASS	N/A
G	1900	6/27/2014	3258	ES3DV3	1900	Head	1.400	39.22	PASS	PASS	PASS	GMSK	PASS	N/A
D	2450	10/3/2014	3263	ES3DV3	2450	Head	1.846	37.94	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
E	5300	10/28/2014	7308	EX3DV4	5250	Head	4.617	36.20	PASS	PASS	PASS	OFDM	N/A	PASS
E	5500	10/28/2014	7308	EX3DV4	5600	Head	4.828	35.97	PASS	PASS	PASS	OFDM	N/A	PASS
E	5600	10/28/2014	7308	EX3DV4	5600	Head	4.914	35.82	PASS	PASS	PASS	OFDM	N/A	PASS
E	5800	10/28/2014	7308	EX3DV4	5750	Head	5.113	35.53	PASS	PASS	PASS	OFDM	N/A	PASS
J	750	9/29/2014	3022	ES3DV2	750	Body	0.955	53.59	PASS	PASS	PASS	N/A	N/A	N/A
К	835	10/13/2014	3288	ES3DV3	835	Body	0.998	52.95	PASS	PASS	PASS	GMSK	PASS	N/A
G	1900	6/25/2014	3258	ES3DV3	1900	Body	1.534	51.23	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	3/5/2014	3258	ES3DV3	2450	Body	2.044	51.30	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
н	5300	12/30/2014	3920	EX3DV4	5300	Body	5.523	47.80	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5500	12/30/2014	3920	EX3DV4	5500	Body	5.800	47.43	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5600	12/30/2014	3920	EX3DV4	5600	Body	5.932	47.26	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5800	12/30/2014	3920	EX3DV4	5800	Body	6.191	46.98	PASS	PASS	PASS	OFDM	N/A	PASS
E	5800	10/30/2014	7308	EX3DV4	5750	Body	6.276	46.92	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-I SAR System Validation Summary

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

FCC ID: A3LSMG920KOR		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
01/06/15 - 01/24/15	Portable Handset	Page 1 of 1		

© 2015 PCTEST Engineering Laboratory, Inc.