

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT

FCC Part 22, 24

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 02/08 - 02/11/2014 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1403070539.A3L

FCC ID:

A3LSMG900I

APPLICANT:

SAMSUNG ELECTRONICS, CO. LTD.

Application Type: Model(s): EUT Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): Test Device Serial No.:

Certification SM-G900I Portable Handset PCS Licensed Transmitter Held to Ear (PCE) §2, §22(H), §24(E) ANSI/TIA-603-C-2004, KDB 971168 v02r01 *identical prototype* [S/N: 15E9F]

			ERP/EIRP	
Mode	Tx Frequency	Emission	Max.	Max.
woue	(MHz)	Designator	Power	Power
			(W)	(dBm)
GSM850	824.2 - 848.8	247KGXW	1.132	30.54
EDGE850	824.2 - 848.8	244KG7W	0.315	24.98
GSM1900	1850.2 - 1909.8	243KGXW	0.962	29.83
EDGE1900	1850.2 - 1909.8	247KG7W	0.352	25.46
WCDMA850	826.4 - 846.6	4M16F9W	0.139	21.42
WCDMA1900	1852.4 - 1907.6	4M16F9W	0.223	23.49

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 1 of 59	
© 2014 PCTEST Engineering Laboratory, Inc.					

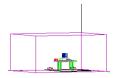
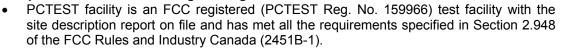


TABLE OF CONTENTS

1.2 TESTING FACILITY	FCC P	ART 2	2, 24 MEASUREMENT REPORT	3
1.2 TESTING FACILITY 2.0 PRODUCT INFORMATION. 2.1 EQUIPMENT DESCRIPTION 2.2 DEVICE CAPABILITIES. 2.3 TEST CONFIGURATION. 2.4 EMI SUPPRESSION DEVICE(S)/MODIFICATIONS 3.0 DESCRIPTION OF TESTS 3.1 EVALUATION PROCEDURE 3.2 CELLULAR - BASE FREQUENCY BLOCKS. 3.3 CELLULAR - MOBILE FREQUENCY BLOCKS. 3.4 PCS - BASE FREQUENCY BLOCKS. 3.5 PCS - MOBILE FREQUENCY BLOCKS. 3.6 RADIATED MEASUREMENTS. 4.0 TEST EQUIPMENT CALIBRATION DATA 5.0 SAMPLE CALCULATIONS 6.0 TEST RESULTS. 6.1 SUMMARY. 6.2 OCCUPIED BANDWIDTH. 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION	1.0	INTR	ODUCTION	4
 2.0 PRODUCT INFORMATION. 2.1 EQUIPMENT DESCRIPTION		1.1	SCOPE	4
2.1 EQUIPMENT DESCRIPTION 2.2 DEVICE CAPABILITIES 2.3 TEST CONFIGURATION 2.4 EMI SUPPRESSION DEVICE(S)/MODIFICATIONS 3.0 DESCRIPTION OF TESTS 3.1 EVALUATION PROCEDURE 3.2 CELLULAR - BASE FREQUENCY BLOCKS 3.3 CELLULAR - MOBILE FREQUENCY BLOCKS 3.4 PCS - BASE FREQUENCY BLOCKS 3.5 PCS - MOBILE FREQUENCY BLOCKS 3.6 RADIATED MEASUREMENTS 4.0 TEST EQUIPMENT CALIBRATION DATA 5.0 SAMPLE CALCULATIONS 6.0 TEST RESULTS 6.1 SUMMARY 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION		1.2	TESTING FACILITY	4
 2.2 DEVICE CAPABILITIES	2.0	PRO	DUCT INFORMATION	5
 2.3 TEST CONFIGURATION		2.1	EQUIPMENT DESCRIPTION	5
 2.4 EMI SUPPRESSION DEVICE(S)/MODIFICATIONS 3.0 DESCRIPTION OF TESTS 3.1 EVALUATION PROCEDURE 3.2 CELLULAR - BASE FREQUENCY BLOCKS 3.3 CELLULAR - MOBILE FREQUENCY BLOCKS 3.4 PCS - BASE FREQUENCY BLOCKS 3.5 PCS - MOBILE FREQUENCY BLOCKS 3.6 RADIATED MEASUREMENTS 4.0 TEST EQUIPMENT CALIBRATION DATA 5.0 SAMPLE CALCULATIONS 6.1 SUMMARY 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 		2.2	DEVICE CAPABILITIES	5
 3.0 DESCRIPTION OF TESTS 3.1 EVALUATION PROCEDURE 3.2 CELLULAR - BASE FREQUENCY BLOCKS 3.3 CELLULAR - MOBILE FREQUENCY BLOCKS 3.4 PCS - BASE FREQUENCY BLOCKS 3.5 PCS - MOBILE FREQUENCY BLOCKS 3.6 RADIATED MEASUREMENTS 4.0 TEST EQUIPMENT CALIBRATION DATA 5.0 SAMPLE CALCULATIONS 6.1 SUMMARY 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 		2.3	TEST CONFIGURATION	5
 3.1 EVALUATION PROCEDURE 3.2 CELLULAR - BASE FREQUENCY BLOCKS. 3.3 CELLULAR - MOBILE FREQUENCY BLOCKS. 3.4 PCS - BASE FREQUENCY BLOCKS. 3.5 PCS - MOBILE FREQUENCY BLOCKS. 3.6 RADIATED MEASUREMENTS. 4.0 TEST EQUIPMENT CALIBRATION DATA. 5.0 SAMPLE CALCULATIONS 6.1 SUMMARY. 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL. 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL. 6.5 PEAK-AVERAGE RATIO. 6.6 RADIATED POWER (ERP/EIRP). 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS. 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION 		2.4	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
 3.2 CELLULAR - BASE FREQUENCY BLOCKS	3.0	DES	CRIPTION OF TESTS	6
 3.3 CELLULAR - MOBILE FREQUENCY BLOCKS		3.1	EVALUATION PROCEDURE	6
 3.4 PCS - BASE FREQUENCY BLOCKS		3.2	CELLULAR - BASE FREQUENCY BLOCKS	6
 3.5 PCS - MOBILE FREQUENCY BLOCKS		3.3	CELLULAR - MOBILE FREQUENCY BLOCKS	6
 3.6 RADIATED MEASUREMENTS		3.4	PCS - BASE FREQUENCY BLOCKS	6
 4.0 TEST EQUIPMENT CALIBRATION DATA		3.5	PCS - MOBILE FREQUENCY BLOCKS	7
 5.0 SAMPLE CALCULATIONS		3.6	RADIATED MEASUREMENTS	7
 6.0 TEST RESULTS 6.1 SUMMARY 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION 	4.0	TEST	F EQUIPMENT CALIBRATION DATA	8
 6.1 SUMMARY 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION	5.0	SAM	PLE CALCULATIONS	9
 6.2 OCCUPIED BANDWIDTH 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION	6.0	TEST	r Results	10
 6.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION		6.1	SUMMARY	10
 6.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION 		6.2	OCCUPIED BANDWIDTH	11
 6.5 PEAK-AVERAGE RATIO 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION 		6.3	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	15
 6.6 RADIATED POWER (ERP/EIRP) 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION 		6.4	BAND EDGE EMISSIONS AT ANTENNA TERMINAL	30
 6.7 RADIATED SPURIOUS EMISSIONS MEASUREMENTS 6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION 		6.5	PEAK-AVERAGE RATIO	36
6.8 FREQUENCY STABILITY / TEMPERATURE VARIATION		6.6	RADIATED POWER (ERP/EIRP)	39
		6.7	RADIATED SPURIOUS EMISSIONS MEASUREMENTS	42
7.0 CONCLUSION			FREQUENCY STABILITY / TEMPERATURE VARIATION	
	7.0	CON	CLUSION	59

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 2 01 59
© 2014 PCTEST Engineering La	aboratory, Inc.			V 3.0 06/17/2013

MEASUREMENT REPORT FCC Part 22, 24



§2.1033 General Information

APPLICANT:	Samsung Electronics, Co. Ltd.			
APPLICANT ADDRESS:	129, Samsung-ro, Maetan dong,			
	Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742, Korea			
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.			
TEST SITE ADDRESS:	7185 Oakland Mills Road, Columbia, MD 21046 USA			
FCC RULE PART(S):	§2, §22(H), §24(E)			
BASE MODEL:	SM-G900I			
FCC ID:	A3LSMG900I			
FCC CLASSIFICATION:	PCS Licensed Transmitter Held to Ear (PCE)			
MODE:	GSM/EDGE/WCDMA			
FREQUENCY TOLERANCE:	±0.00025 % (2.5 ppm)			
Test Device Serial No.:	15E9F Production Pre-Production Engineering			
DATE(S) OF TEST:	02/08 - 02/11/2014			
TEST REPORT S/N:	0Y1403070539.A3L			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 2 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 3 of 59	
© 2014 PCTEST Engineering Laboratory. Inc.					

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (*See Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on February 15, 2012.

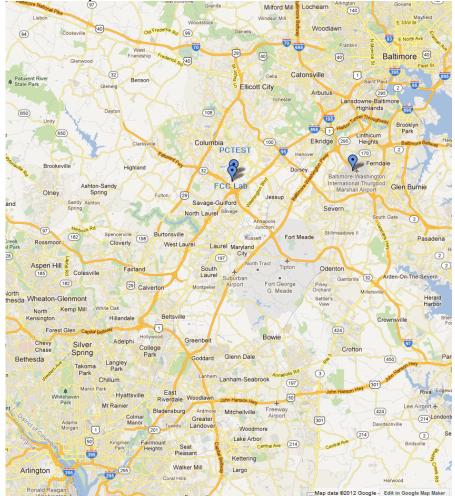


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSMG9001	PCTEST	FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 4 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 4 of 59	
© 2014 PCTEST Engineering I	2014 PCTEST Engineering Laboratory Inc				

© 2014 PCTEST Engineering Laboratory, Inc.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMG900I**. The test data contained in this report pertains only to the emissions due to the EUT's 2G/3G licensed transmitters.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1900 WCDMA/HSPA, Band 2, 5 LTE, 802.11a/b/g/n/ac WLAN (DTS/NII), Bluetooth (1x,EDR, LE), NFC, ANT+

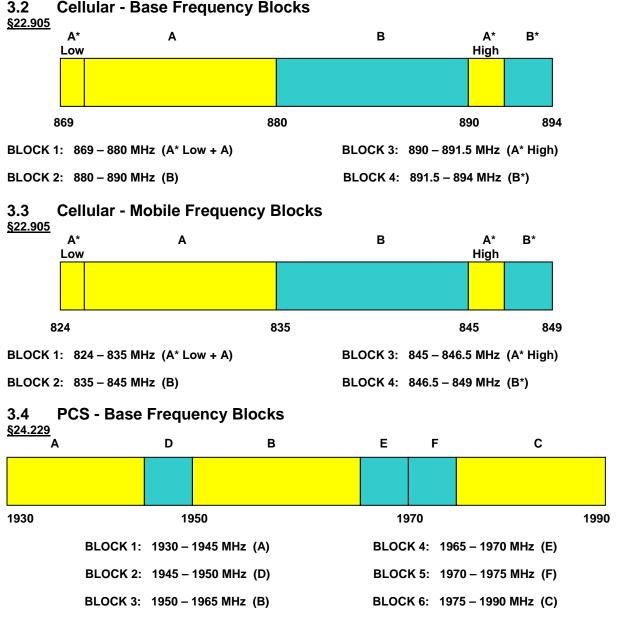
2.3 Test Configuration

The Samsung Portable Handset FCC ID: A3LSMG900I was tested per the guidance of ANSI/TIA-603-C-2004 and KDB 971168 v02r01. See Section 6.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 5 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 5 of 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			



DESCRIPTION OF TESTS 3.0

Evaluation Procedure 3.1

The measurement procedures described in the "Land Mobile FM or PM - Communications Equipment -Measurements and Performance Standards" (ANSI/TIA-603-C-2004) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 v02r01) were used in the measurement of the Samsung Portable Handset FCC ID: A3LSMG900I.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 6 01 59
2014 PCTEST Engineering Laboratory, Inc.				V 3.0

3.2 **Cellular - Base Frequency Blocks**

<u>§24.229</u>	A	D	В	Е	F	С	
1850		18	370	189) 90		1910
	BLOCK 1:	1850 –	1865 MHz (A)	BLOC	K4: 188	85 – 1890 MHz (E)	
	BLOCK 2:	1865 –	1870 MHz (D)	BLOC	K 5: 189	90 – 1895 MHz (F)	
	BLOCK 3:	1870 –	1885 MHz (B)	BLOC	K6: 189	95 – 1910 MHz (C)	

3.5 PCS - Mobile Frequency Blocks

3.6 Radiated Measurements

§2.1053 §22.913(a.2) §22.917(a) §24.232(c) §24.238(a) RSS-132(4.4) RSS-132(4.5.1) RSS-133(6.4) RSS-133(6.5.1)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A ³/₄" (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. For the EUT positioning, "H" is defined with the EUT lying flat on the test surface, "H2" is defined with the EUT standing up on its side, and "V" is defined with the EUT standing upright.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss_{[dB]} + antenna gain_{[dBd/dBi]}$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \text{ [dBm]}}$ – cable loss $_{\text{[dB]}}$.

Radiated power levels are investigated with the receive antenna vertically polarized while radiated spurious emissions levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-C-2004.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 7 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 7 of 59
2014 PCTEST Engineering Laboratory Inc				

© 2014 PCTEST Engineering Laboratory, Inc.

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/29/2014	Annual	1/29/2015	N/A
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	3/29/2013	Annual	3/29/2014	N/A
-	RE2	Radiated Emissions Cable Set (VHF/UHF)	3/29/2013	Annual	3/29/2014	N/A
Agilent	8447D	Broadband Amplifier	5/31/2013	Annual	5/31/2014	2443A01900
Agilent	E8267C	Vector Signal Generator	10/31/2013	Biennial	10/31/2015	US42340152
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	6/26/2013	Annual	6/26/2014	121034
Espec	ESX-2CA	Environmental Chamber	4/16/2013	Annual	4/16/2014	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	7/24/2013	Biennial	7/24/2015	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Biennial	5/30/2014	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	11/7/2012	Biennial	11/7/2014	128338
Mini-Circuits	VHF-1200+	High Pass Filter	1/27/2014	Annual	1/27/2015	30923
Mini-Circuits	VHF-3100+	High Pass Filter	1/27/2014	Annual	1/27/2015	30841
Mini-Circuits	SSG-4000HP	USB Synthesized Signal Generator		N/A		11208010032
Mini-Circuits	PWR-SENS-4RMS	USB Power Sensor	4/17/2013	Annual	4/17/2014	11210140001
Mini-Circuits	TVA-11-422	RF Power Amp		N/A		QA1303002
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		836536/0005
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	10/16/2013	Annual	10/16/2014	100976
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	1/27/2014	Annual	1/27/2015	100342
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	11/21/2013	Biennial	11/21/2015	9105-2404
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/28/2014	Biennial	1/28/2016	A051107

Table 4-1. Test Equipment

Notes:

Equipment used for signaling with a calibration date of "N/A" shown in this list was only used for maintaining a link between the piece of equipment and the EUT. This equipment was not used to make direct calibrated measurements.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 8 of 59	
2 2014 PCTEST Engineering Laboratory, Inc.					

06/17/2013

5.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W

EDGE BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W

WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 59		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 9 01 59		
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.					

6.0 TEST RESULTS

6.1 Summary

Company Name:	Samsung Electronics, Co. Ltd.
FCC ID:	A3LSMG9001
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>GSM/EDGE/WCDMA</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference				
TRANSMITTER	TRANSMITTER MODE (TX)								
2.1049	Occupied Bandwidth	N/A		PASS	Section 6.2				
2.1051 22.917(a) 24.238(a)	Conducted Band Edge / Spurious Emissions	> 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions		PASS	Sections 6.3, 6.4				
24.232(d)	Peak-Average Ratio	< 13 dB	CONDUCTED	PASS	Section 6.5				
2.1046	Transmitter Conducted Output Power	N/A		PASS	RF Exposure Report				
2.1055 22.355 24.235	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24)		PASS	Section 6.8				
22.913(a.2)	Effective Radiated Power	< 7 Watts max. ERP		PASS	Section 6.6				
24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.6				
2.1053 22.917(a) 24.238(a)	Radiated Spurious Emissions	> 43 + log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 6.7				

Table 6-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation", Version 2.3.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 10 of 59	
2014 PCTEST Engineering Laboratory, Inc.					

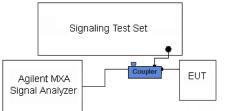
6.2 Occupied Bandwidth §2.1049 RSS-Gen(4.6.1) RSS-133(2.3)

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 v02r01 - Section 4.2


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1 – 5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 6-1. Test Instrument & Measurement Setup

Test Notes

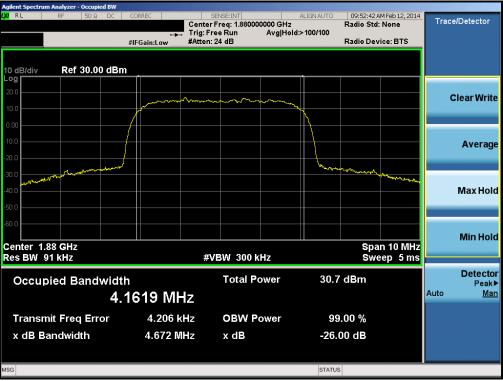
None.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 11 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 11 of 59	
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.				

Plot 6-1. Occupied Bandwidth Plot (Cellular GSM Mode - Ch. 190)

Plot 6-2. Occupied Bandwidth Plot (EDGE850 Mode - Ch. 190)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 12 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 12 of 59	
2014 PCTEST Engineering Laboratory, Inc.					



FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 13 of 59	
2014 PCTEST Engineering Laboratory, Inc.					

Plot 6-5. Occupied Bandwidth Plot (Cellular WCDMA Mode - Ch. 4183)

Plot 6-6. Occupied Bandwidth Plot (PCS WCDMA Mode - Ch. 9400)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 14 of 59	
2014 PCTEST Engineering Laboratory, Inc.					

Spurious and Harmonic Emissions at Antenna Terminal 6.3 §2.1051 §22.917(a) §24.238(a) RSS-132(4.5.1) RSS-133(6.5.1)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log₁₀(P_[Watts]), where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 v02r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz for cellular band emissions and 20GHz for PCS band emissions (separated into at least two plots per channel)
- 2. RBW \geq 100kHz
- 3. VBW \geq 300kHz
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

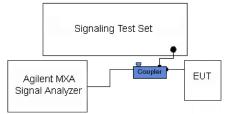
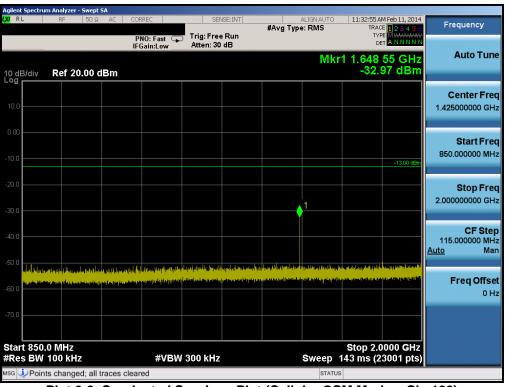


Figure 6-2. Test Instrument & Measurement Setup

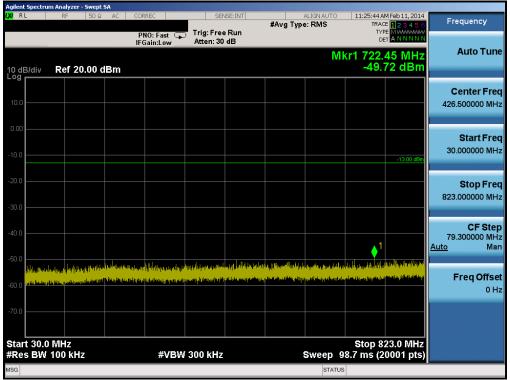
Test Notes


Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 15 of 59		
© 2014 PCTEST Engineering Laboratory. Inc.						

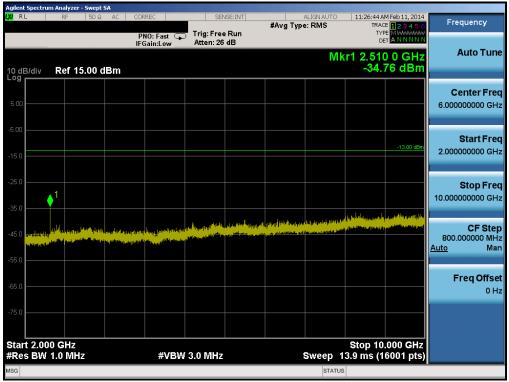
PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB #Avg Type: RMS Trace Bit 2 3 dE G TYPE RWH BY AND STORE AND S		m Analyzer - Swept SA					
Importation Atten: 30 dB Der MINNIN Mkr1 822.52 MHz 42.93 dBm Auto Tune 0 dB/div Ref 20.00 dBm Center Freq 426.50000 MHz 100	LXIRL	RF 50Ω A	C CORREC	SENSE:INT	#Ava Type: RMS	11:32:42 AM Feb 11, 2014 TRACE 1 2 3 4 5 6	Frequency
Order Ref 20.00 dBm Center Freq 42.93 dBm 000			PNO: Fast 🖵 IFGain:Low				
100 Center Freq	10 dB/div Log	Ref 20.00 dBr	n		M	kr1 822.52 MHz -42.93 dBm	Auto Tune
10.0 Image: start Freq Start Freq 30.00000 MHz 200 Image: start Freq 30.00000 MHz Stop Freq 300 Image: start Freq Stop Freq Stop Freq 300 Image: start Freq Image: start Freq Stop Freq 300 Image: start Freq Image: start Freq Image: start Freq 300 Image: start Freq Image: start Freq Image: start Freq 300 Image: start Freq Image: start Freq Image: start Freq 300 Image: start Freq Image: start Freq Image: start Freq <td< td=""><td>10.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	10.0						
Stop Freq 823.000000 MHz 823.000000 MHz 823.000000 MHz 79.00000 MHz 800 800 800 800 800 800 800 800 800 80	-10.0					-13.00 dBm	
40.0 40.0	-20.0						
For the first state of the s	-40.0					<u>\</u>	79.300000 MHz
Start 30.0 MHz Stop 823.0 MHz	الاله والمحدية	na ferda para fa la fa falla ya dilana fa para finana Termana za kapa di ana kapa di ana kapa di ana kapa di ana ka	Mandaliyo Apato ad Usu taya sanang pant Tana Manang Ing Panang Kanang Katang Katang Tana Manang Ing Panang Katang Kata	yy (teny televa) (taylog a feljantika (taka feljantika ny ny ny nanana disey daga tanah politika serak politik	er (4) an fan fan fan fan fan fan fan fan fan	lever gest opperinge anne Aus Sprekken het	•
	-70.0	MHz				Stop 823 0 MHz	
			#VBW	300 kHz	Sweep 9	8.7 ms (20001 pts)	
SG STATUS	MSG				STATUS	3	

Plot 6-7. Conducted Spurious Plot (Cellular GSM Mode - Ch. 128)


Plot 6-8. Conducted Spurious Plot (Cellular GSM Mode – Ch. 128)

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 59	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 16 01 59	
2014 PCTEST Engineering Laboratory, Inc.					

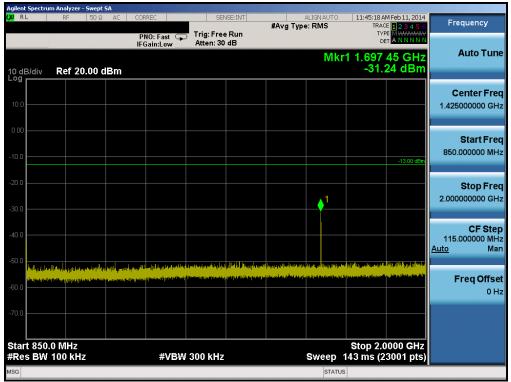
Agilent Spectrum Analyzer - Swept SA L <mark>XI</mark> R L RF 50Ω A	C CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	11:33:55 AM Feb 11, 2014 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 26 dB		TYPE MWWWWW DET A N N N N N	Auto Tune
10 dB/div Ref 15.00 dBr	n		IVI P	r1 2.472 5 GHz -35.00 dBm	
5.00					Center Freq 6.000000000 GHz
-5.00				-13.00 dBm	Start Freq 2.000000000 GHz
-25.0					Stop Freq 10.000000000 GHz
-45.0		ti han atta fal ¹ ina na atta falina ka ka	l neg tel frenski kil nen er et en stansker find helter fi geografiseren timen angesser per stanskeren et en et er et		CF Step 800.000000 MH: <u>Auto</u> Mar
-65.0					Freq Offse 0 H:
-75.0				Stop 10.000 GHz	
#Res BW 1.0 MHz	#VBW	3.0 MHz		Stop 10.000 GHz 3.9 ms (16001 pts)	
ISG			STATUS		


Plot 6-10. Conducted Spurious Plot (Cellular GSM Mode – Ch. 190)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dego 17 of 50			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 17 of 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

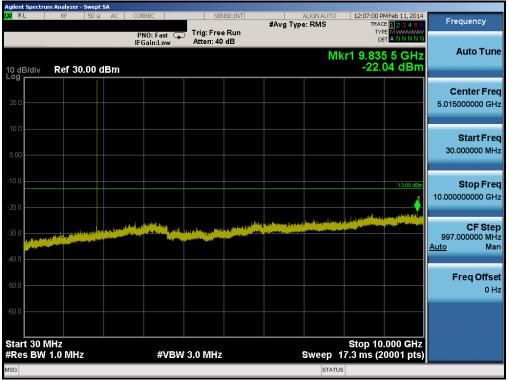
Agilent Spectrur <mark>IXI</mark> RL	m Analyzer - Swept ! RF 50 Ω	AC COR		Talas Free	#Avg Type	ALIGN AUTO e: RMS	TRAC	M Feb 11, 2014 CE 1 2 3 4 5 6 PE M WWWWWW	Frequency
10 dB/div	Ref 20.00 d	IFG	IO: Fast 🕞 Gain:Low	Atten: 30		Mkr	₀ 1 1.673	30 GHz 27 dBm	Auto Tune
10.0									Center Freq 1.425000000 GHz
-10.0								-13.00 dBm	Start Freq 850.000000 MHz
-20.0						↓ 1			Stop Fred 2.000000000 GHz
-40.0									CF Step 115.000000 MHz <u>Auto</u> Mar
-50.0 10 10 10 10 10 10 10 10	aliy hay in Andrey Davy of Mayor an Aliy hay in Angelan Aliy his sector and sec	(nog Hapipagon Piperni Piper Alaman politika na katala di ta					t <mark>har og part som sport og s</mark> om som som som som som som som som som s	a ganagan kapi dan sangan di Ar	Freq Offse 0 Hz
-70.0 Start 850.1							Stop 2.0	0000 GHz	
#Res BW	100 kHz s changed; all t	races cleare		300 kHz		Sweep 7	143 ms (2	3001 pts)	

Plot 6-11. Conducted Spurious Plot (Cellular GSM Mode – Ch. 190)


Plot 6-12. Conducted Spurious Plot (Cellular GSM Mode - Ch. 190)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 18 of 50			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset	Page 18 of 59				
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

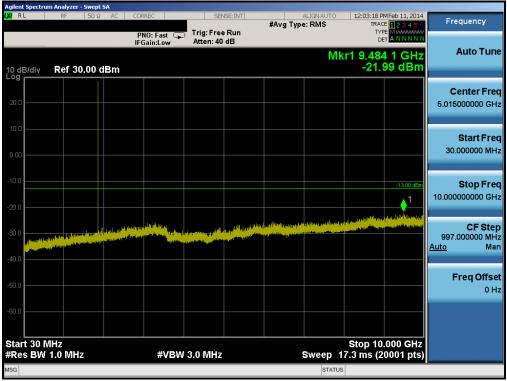
	m Analyzer - Swept									
L <mark>XI</mark> RL	RF 50 Ω	AC CO	RREC	SEN	ISE:INT	#Avg Typ	ALIGNAUTO e: RMS		M Feb 11, 2014	Frequency
			NO: Fast 🖵 Gain:Low	Trig: Free Atten: 30				T Y F DE		Auto Tune
10 dB/div Log	Ref 20.00 c	dBm					MI	(r1 781. -49.	57 MHz 76 dBm	Auto Tune
										Center Freq
10.0										426.500000 MHz
0.00										Start Freq
-10.0									-13.00 dBm	30.000000 MHz
-20.0										Stop Freq
-30.0										823.000000 MHz
										CF Step
-40.0									1	79.300000 MHz <u>Auto</u> Man
-50.0	riguanda (upolano puala a feria		alpertress dauges to	house and the state of the stat	alpiklemie	որերապեկենությո	- <mark>Andr</mark> audrau - Andrea	alayan daan	AND A PARTY OF A PARTY OF A	
-60.0 Milliona	فتصلح فراعت بالقوير بمررأ واغم	o to Al Calific Data and	i daharing salih disalagin	للمصغر إباعتندان اخر	and the second states in the latest	undaliministilajinala	in the color of the line of	n an	a da cui linatatora	Freq Offset 0 Hz
-70.0										
Start 30.0 #Res BW			#VBW	300 kHz			Sweep 9	Stop 8 8.7 ms <u>(2</u>	23.0 MHz 0001 pts)	
MSG							STATUS			


Plot 6-14. Conducted Spurious Plot (Cellular GSM Mode - Ch. 251)

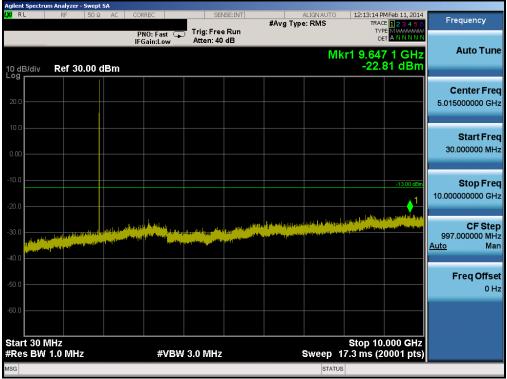
FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 50			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 19 of 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

	BW 1.0			#VBW	/ 3.0 MHz			Sweep 1		.000 GHz 6001 pts)	
start 2	2.000 G	Hz							Stop 10	.000 GHz	
75.0											
											0 H
65.0 —											Freq Offse
55.0	and the second										<u>Auto</u> Ma
45.0		ر د د داره ایرامیوریان باز دانسان در برد بر برد	light of the second	and the second secon Second second	and a second	anne a chaine ann	en en staat die kaarde kaa Na in teen staat die kaarde	ang pang pang bang bang bang bang bang bang bang b	ىلىكەلى _{تىت} بار يېڭلىر رەمەر.	بأمنا غلط والألالات.	CF Ste 800.000000 MH Auto Ma
35.0						a a freesastal o	and a star of the second		a a section of the se		05.044
05.0	$(\mathbf{a}^{1} $										10.00000000 GH
25.0 —											Stop Fre
15.0 —										-13.00 0011	2.000000000 GH
5.00										-13.00 dBm	Start Fre
5.00											Center Fre 6.000000000 GH
0 dB/d . ^{og} 🖵	div R	ef 15.00	dBm					1	-33.:	22 dBm	
			IF	Gain:Low	Atten: 26	dB		Mk		5 5 GHz	Auto Tur
				PNO: Fast 🔾	Trig: Free		#Avg Typ	e: RMS	TYF	E 123456 E M WWWWW	Frequency
RL		RF 50 Ω	2 AC CO	RREC	SEN	VSE:INT		ALIGN AUTO		M Feb 11, 2014	Frequency

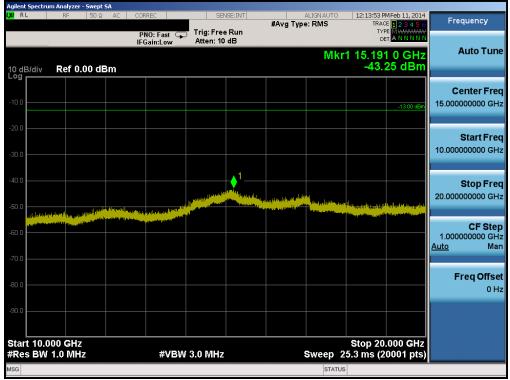
Plot 6-15. Conducted Spurious Plot (Cellular GSM Mode - Ch. 251)

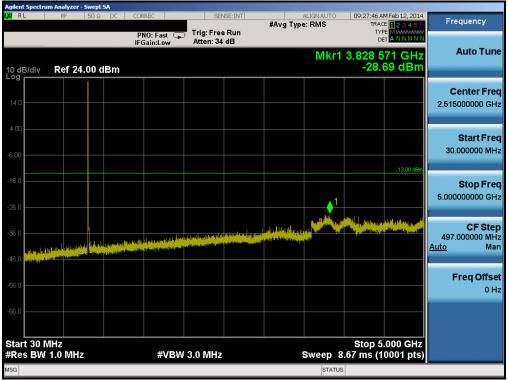

Plot 6-16. Conducted Spurious Plot (PCS GSM Mode - Ch. 512)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 20 of 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

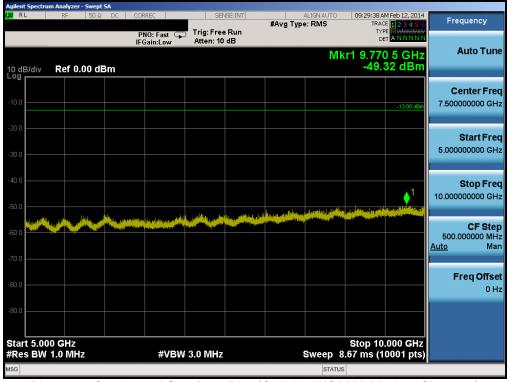

Plot 6-18. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

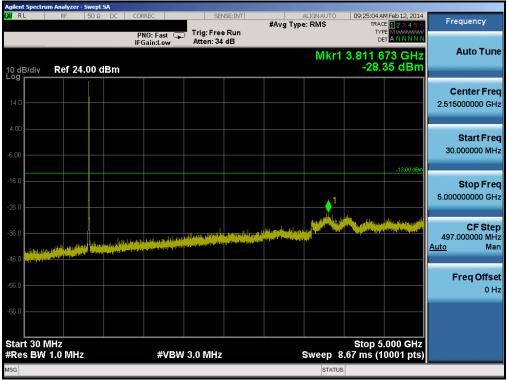
FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 50			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 21 of 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						




Plot 6-20. Conducted Spurious Plot (PCS GSM Mode - Ch. 810)

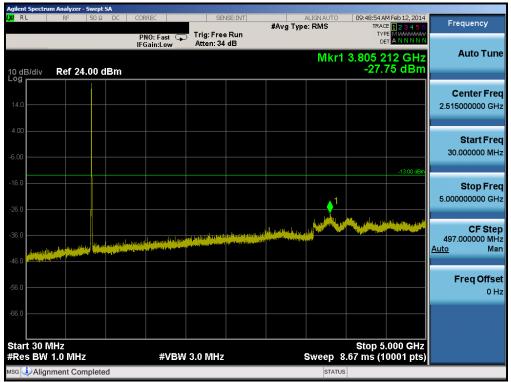
FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 59			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 22 01 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						




Plot 6-22. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4132)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 59			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 25 01 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

Plot 6-23. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4132)


Plot 6-24. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4183)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 59			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 24 01 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

gilent Spectrum Analyzer - Swept SA <mark>0</mark> RL RF 50Ω (DC CORREC PNO: Fast 💭	SENSE:INT	ALIGN AUTO #Avg Type: RMS	09:25:24 AM Feb 12, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
0 dB/div Ref 0.00 dBn	IFGain:Low	Atten: 10 dB	Mk	r1 9.861 5 GHz -50.03 dBm	Auto Tuno
10.0				-13.00 dBm	Center Fre 7.500000000 GH
20.0					Start Fre 5.000000000 GH
40.0			1	1 1	Stop Fre 10.000000000 GH
		n Lin helden an Lin den en son an lin d Lin per den en son an lin den en son an	(1) (1) por porte de la contrata de Contrata de la contrata de la contrat Contrata de la contrata de la contra	ng han kang ng pangangan kang di kang pangangan kang di kang pangangan kang di kang pangangan kang di kang pang Kang di Kang panganganganganganganganganganganganganga	CF Ste 500.000000 MH <u>Auto</u> Ma
20.0					Freq Offse 0 H
90.0				Stop 10.000 GHz	
Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 8.	67 ms (10001 pts)	

Plot 6-25. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4183)

Plot 6-26. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4233)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 25 of 59		
© 2014 PCTEST Engineering Laboratory, Inc.						

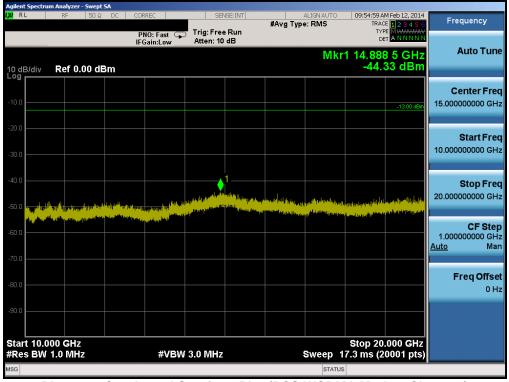
gilent Spectrum Analyzer - Swept SA 0 R L RF 50 Ω D	C CORREC PNO: Fast	SENSE:INT	ALIGN AUTO #Avg Type: RMS	09:49:13 AM Feb 12, 2014 TRACE 123456 TYPE MWWWWW	Frequency
odB/div Ref 0.00 dBm	IFGain:Low	Atten: 10 dB	Mk	r1 8.688 0 GHz -50.19 dBm	Auto Tune
10.0				-13.00 dBm	Center Free 7.500000000 GH
30.0					Start Fre 5.000000000 GH
40.0			1	. xxadır. 4.mar <u>lalı</u> nın 4.bibbi (ili	Stop Fre 10.000000000 GH
	lygydanis y blas fydd y gynany fabra. Yn ywraith arwy y argyna gynany fabra.	, jet klaine, og som det som generaliseter generaliseter og som det som generaliseter og som det som generaliseter og som det som generaliseter og som det	a Million of an Andreas Andreas (an Andreas) of Angrey of Angrey Angree and Angrey of		CF Ste 500.000000 MH <u>Auto</u> Ma
30.0					Freq Offse 0 H
90.0 GHz				Stop 10.000 GHz	
Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 8.	67 ms (10001 pts)	

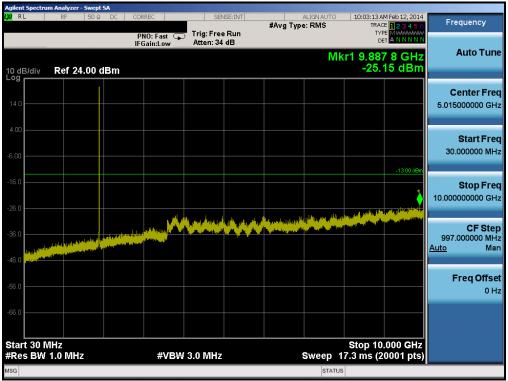
Plot 6-27. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4233)

Plot 6-28. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9262)

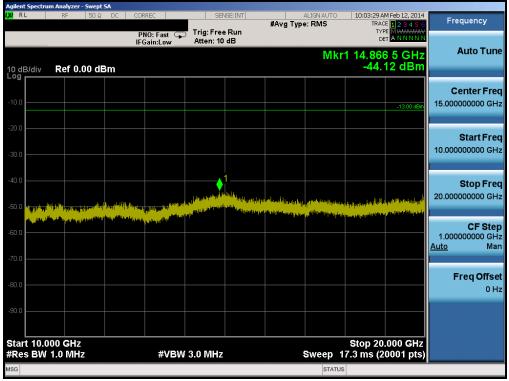
FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 26 of 59		
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.					

gilent Spectrum Analyzer - Swept SA <mark>X/</mark> RL RF 50 Ω DC	CORREC	SENSE:INT	#Avg Type	ALIGN AUTO e: RMS	TRACE	1 Feb 12, 2014	Frequency
10 dB/div Ref 0.00 dBm		: Free Run en: 10 dB		Mkr	DE1	ANNNNN	Auto Tune
						-13.00 dBm	Center Fred 15.000000000 GH
30.0							Start Free 10.000000000 GH
-40.0	in the second	In contract of the probability o) at the table of the state of	and the Disconstant of the party of the part	litere at the state	Den se din seguri per se	Stop Free 20.000000000 GH
60.0					2010 Alex 2.		CF Stej 1.000000000 GH <u>Auto</u> Ma
80.0							Freq Offse 0 H
90.0				Sweep 1	Stop 20.	000 GHz	
Res BW 1.0 MHz	#VBW 3.01	VIFIZ		Sweep 1	7.3 ms (20	1001 pts)	


Plot 6-29. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9262)


Plot 6-30. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9400)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset	Page 27 of 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.					


Plot 6-31. Conducted Spurious Plot (PCS WCDMA Mode – Ch. 9400)

Plot 6-32. Conducted Spurious Plot (PCS WCDMA Mode – Ch. 9538)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 28 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 28 of 59		
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.					

Plot 6-33. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9538)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 29 of 59		
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.					

6.4 Band Edge Emissions at Antenna Terminal §2.1051 §22.917(a) §24.238(a) §27.53(h) RSS-132(4.5.1) RSS-133(6.5.1)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 v02r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

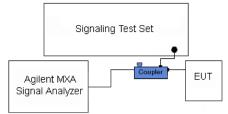
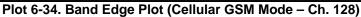
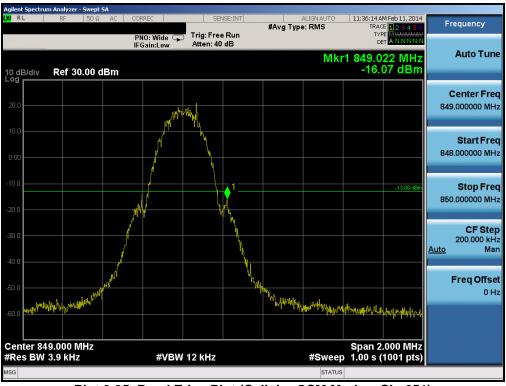
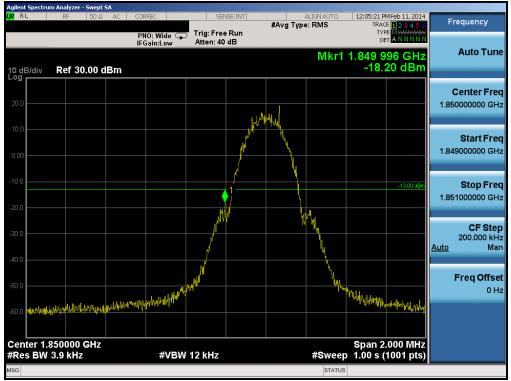


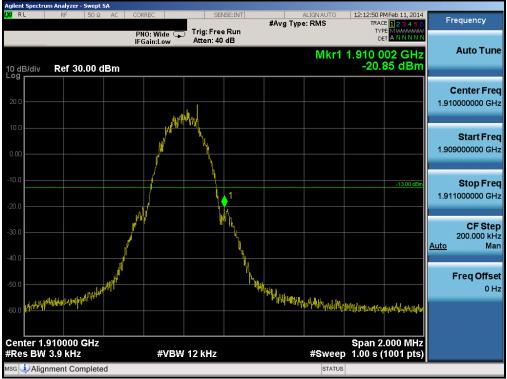
Figure 6-3. Test Instrument & Measurement Setup


Test Notes


Per 22.917(b) and 24.238(b), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset	Page 30 of 59		
2014 PCTEST Engineering Laboratory, Inc.					





FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 31 of 59	
2014 PCTEST Engineering Laboratory, Inc.					

Plot 6-37. Band Edge Plot (PCS GSM Mode - Ch. 810)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 32 of 59	
2014 PCTEST Engineering Laboratory, Inc.					

Agilent Spectrum /	Analyzer - Swept SA RF 50 Ω DC	CORREC	SENSE:INT	ALIGNAUTO	09:27:14 AM Feb 12, 2014	
	Nr 30 % DC			#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE M WAAAAAAA	Frequency
10 dB/div	Ref 24.00 dBm	PNO: Wide 🖵 IFGain:Low	Atten: 34 dB	Mkr	1 824.000 MHz -25.704 dBm	Auto Tune
14.0						Center Freq 824.000000 MHz
4.00						Start Freq 816.500000 MHz
-16.0			1		-13.00 dBm	Stop Freq 831.500000 MHz
-36.0		and the second s				CF Step 1.500000 MHz <u>Auto</u> Man
-56.0	un and a start of the start of					Freq Offset 0 Hz
-66.0 Center 824. #Res BW 10		#\/B\/	300 kHz	#Sween	Span 15.00 MHz 1.00 s (1001 pts)	
MSG	A A A A A A A A A A A A A A A A A A A		-000 MHZ	STATUS	-1.00 S (100 Ppts)	

Plot 6-38. Band Edge Plot (Cellular WCDMA Mode - Ch. 4132)

Plot 6-39. Band Edge Plot (Cellular WCDMA Mode - Ch. 4233)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 33 of 59
0 2014 PCTEST Engineering Laboratory, Inc.				V 3.0

		SENSE:INT	ALIGNAUTO #Avg Type: RMS	09:57:09 AM Feb 12, 2014	Frequency
	PNO: Wide 🖵 IFGain:Low	Trig: Free Run Atten: 34 dB		TRACE 123456 TYPE MWWWWW DET A N N N N N	
0 dB/div Ref 24.00 dBm			Mkr	1 1.850 000 GHz -26.767 dBm	Auto Tune
14.0					Center Fred 1.850000000 GHz
6.00					Start Free 1.842500000 GH:
16.0		1		-13.00 dBm	Stop Fred 1.857500000 GH:
36.0					CF Stej 1.500000 MH <u>Auto</u> Mai
56.0					Freq Offse 0 H
EE.0				Span 15.00 MHz	
Res BW 100 kHz	#VBW	300 kHz	#Swee	ep 1.00 s (1001 pts)	

Plot 6-40. Band Edge Plot (PCS WCDMA Mode - Ch. 9262)

Plot 6-41. 4MHz Span Plot (PCS WCDMA Mode - Ch. 9262)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 34 of 59
0 2014 PCTEST Engineering Laboratory, Inc.				V 3.0

RL RF 50Ω DC	CORREC	SENSE:INT		ALIGN AUTO	10:00:59 AM Feb 12,	
	PNO: Wide 😱 IFGain:Low	Trig: Free Run Atten: 34 dB	#Avg Typ	e: RMS	TRACE 123 TYPE MWWW DET A N N 1	
0 dB/div Ref 24.00 dBm				Mkr1	1.910 000 G -28.116 dE	Hz Auto Tun Sm
14.0	~					Center Fre 1.910000000 G⊦
4.00 5.00					-13.00	Start Fre 1.902500000 GH
26.0		1			-13.00	Stop Fre 1.917500000 G⊢
6.0		- Colorena	Anna and			CF Ste 1.500000 MH <u>Auto</u> Ma
6.0				"adament and	and a construction of the second	Freq Offs 0 F
enter 1.910000 GHz Res BW 100 kHz	#VBW 3	00 kH2		#Sweep	Span 15.00 M 1.00 s (1001 p	1Hz
	#VDVV J	OU KHZ		#Sweep	1.00 5 (1001 p	

Plot 6-43. 4MHz Span Plot (PCS WCDMA Mode - Ch. 9538)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 35 of 59
2 2014 PCTEST Engineering Laboratory, Inc.				V 3.0

6.5 Peak-Average Ratio §24.232(d) RSS-132(5.4) RSS-133(6.4)

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

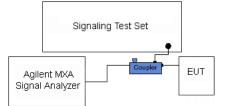
KDB 971168 v02r01 - Section 5.7.1

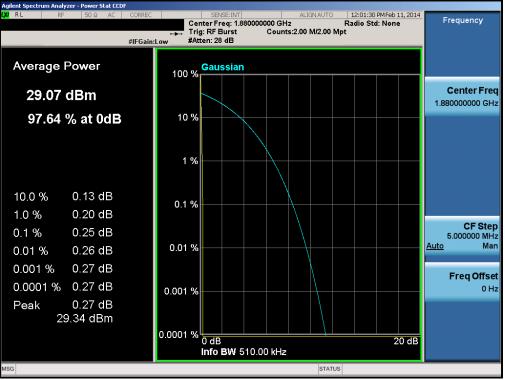
Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

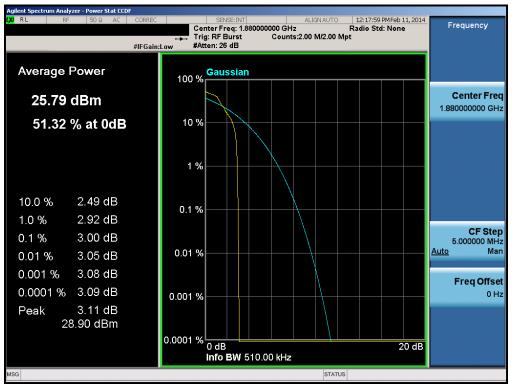
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



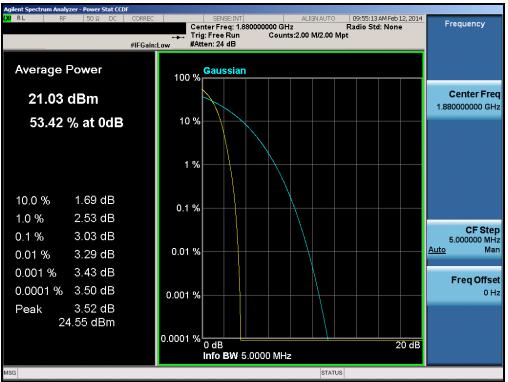

Figure 6-4. Test Instrument & Measurement Setup

Test Notes


None.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 36 of 59
© 2014 PCTEST Engineering Laboratory, Inc.				

Plot 6-44. Peak-Average Ratio Plot (PCS GSM Mode - Ch. 661)



Plot 6-45. Peak-Average Ratio Plot (EDGE1900 Mode - Ch. 661)

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset	Page 37 of 59	
© 2014 PCTEST Engineering L	aboratory Inc			V 3 0

© 2014 PCTEST Engineering Laboratory, Inc.

Plot 6-46. Peak-Average Ratio Plot (PCS WCDMA Mode - Ch. 9400)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 20 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 38 of 59
© 2014 PCTEST Engineering La	aboratory, Inc.			V 3.0

6.6 Radiated Power (ERP/EIRP) §22.913(a)(2) RSS-132(4.4) [SRSP-503(5.1.3)]

Test Overview

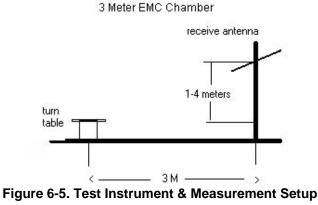
Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-C-2004 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 v02r01 – Section 5.2.1

ANSI/TIA-603-C-2004 - Section 2.2.17

Test Settings


- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 39 of 59		
2014 PCTEST Engineering Laboratory, Inc.						

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. For WCDMA and HSUPA transmission, all configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2kbps with HSDPA inactive and TPC bits all set to "1."
- 3) This unit was tested with its standard battery.
- 4) The worst case test configuration was found in the EUT in the [V] position for cellular band operation and in the [H2] position for PCS band operation. The data reported in the tables below was measured in this test setup.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 50		
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 40 of 59		
© 2014 PCTEST Engineering La	0 2014 PCTEST Engineering Laboratory, Inc.					

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBd]	EUT Pol [H/V]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
824.20	GSM850	Standard	25.95	4.59	V	30.54	1.132	38.45	-7.91
836.60	GSM850	Standard	25.65	4.82	V	30.47	1.114	38.45	-7.98
848.80	GSM850	Standard	24.20	5.05	V	29.25	0.841	38.45	-9.20
824.20	EDGE850	Standard	20.39	4.59	V	24.98	0.315	38.45	-13.47

Table 6-2. ERP (Cellular GSM)

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBd]	EUT Pol [H/V]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
826.40	WCDMA850	Standard	16.12	4.59	V	20.71	0.118	38.45	-17.74
836.60	WCDMA850	Standard	16.60	4.82	V	21.42	0.139	38.45	-17.03
846.60	WCDMA850	Standard	15.93	5.05	V	20.98	0.125	38.45	-17.47
		т	able 6-1 E		ar WCE				

Table 6-4. ERP (Cellular WCDMA)

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBi]	EUT Pol [H/V]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1850.20	GSM1900	Standard	20.24	9.59	H2	29.83	0.962	33.01	-3.18
1880.00	GSM1900	Standard	19.72	9.53	H2	29.25	0.841	33.01	-3.76
1909.80	GSM1900	Standard	18.51	9.48	H2	27.99	0.630	33.01	-5.02
1850.20	EDGE1900	Standard	15.87	9.59	H2	25.46	0.352	33.01	-7.55

Table 6-3. EIRP (PCS GSM)

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBi]	EUT Pol [H/V]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1852.40	WCDMA1900	Standard	13.90	9.59	H2	23.49	0.223	33.01	-9.52
1880.00	WCDMA1900	Standard	13.39	9.53	H2	22.92	0.196	33.01	-10.09
1907.60	WCDMA1900	Standard	13.15	9.48	H2	22.63	0.183	33.01	-10.38

Table 6-4. EIRP (PCS WCDMA)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 50	
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset	Page 41 of 59		
2014 PCTEST Engineering Laboratory, Inc.					

v 3.0 06/17/2013

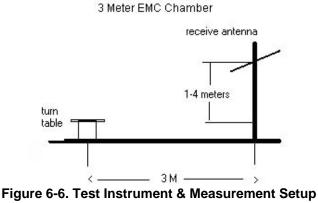
6.7 Radiated Spurious Emissions Measurements §2.1053 §22.917(a) RSS-132(4.5.1)

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-C-2004 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 v02r01 - Section 5.8


ANSI/TIA-603-C-2004 - Section 2.2.12

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points \geq 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

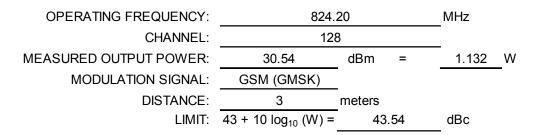
The EUT and measurement equipment were set up as shown in the diagram below.

 FCC ID: A3LSMG9001
 FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)
 Reviewed by: Quality Manager

 Test Report S/N:
 Test Dates:
 EUT Type:
 Page 42 of 59

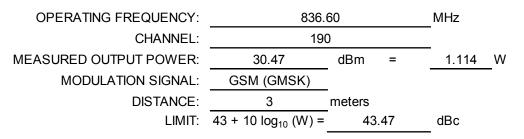
 0Y1403070539.A3L
 02/08 - 02/11/2014
 Portable Handset
 Page 42 of 59

© 2014 PCTEST Engineering Laboratory, Inc.



Test Notes

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. For WCDMA and HSUPA transmission, all configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2kbps with HSDPA inactive and TPC bits all set to "1."
- 3) This unit was tested with its standard battery.
- 4) The worst case test configuration was found in the EUT in the [V] position for cellular band operation and in the [H2] position for PCS band operation. The data reported in the table above was measured in this test setup.
- 5) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.


FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dogo 42 of 50			
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 43 of 59			
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.						

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1648.40	-38.62	3.75	-34.87	V	65.4
2472.60	-41.60	3.61	-37.99	V	68.5
3296.80	-83.28	5.58	-77.69	V	108.2
4121.00	-83.25	6.88	-76.37	V	106.9
4945.20	-82.06	7.78	-74.28	V	104.8

Table 6-4. Radiated Spurious Data (Cellular GSM Mode – Ch. 128)

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1673.20	-36.42	3.67	-32.75	V	63.2
2509.80	-34.89	3.65	-31.24	V	61.7
3346.40	-83.43	5.74	-77.69	V	108.2
4183.00	-83.41	7.04	-76.37	V	106.8
5019.60	-81.97	7.90	-74.07	V	104.5

Table 6-5. Radiated Spurious Data (Cellular GSM Mode – Ch. 190)

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 44 of 59
© 2014 PCTEST Engineering Laboratory, Inc.				

OPERATING FREQUENCY:	Y: 848.80		MHz
CHANNEL:	251		_
MEASURED OUTPUT POWER:	29.25	dBm =	0.841 W
MODULATION SIGNAL:	GSM (GMSK)	_	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	42.25	dBc

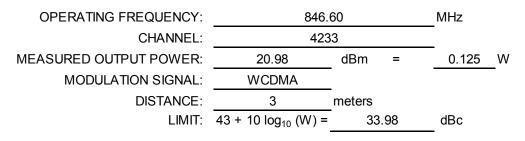
FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1697.60	-43.52	3.58	-39.93	V	69.2
2546.40	-47.57	3.76	-43.81	V	73.1
3395.20	-83.57	5.89	-77.68	V	106.9
4244.00	-83.45	7.15	-76.30	V	105.5
5092.80	-81.71	7.95	-73.76	V	103.0

Table 6-6. Radiated Spurious Data (Cellular GSM Mode – Ch. 251)

OPERATING FREQUENCY:	826.4	40	MHz
CHANNEL:	413	2	_
MEASURED OUTPUT POWER:	20.71	dBm =	0.118 W
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	33.71	dBc
			-

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1652.80	-44.90	3.74	-41.16	V	61.9
2479.20	-52.11	3.61	-48.50	V	69.2
3305.60	-83.30	5.61	-77.69	V	98.4
4132.00	-83.28	6.91	-76.37	V	97.1
4958.40	-82.05	7.81	-74.25	V	95.0

Table 6-7. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4132)


FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 45 of 59
2014 PCTEST Engineering Laboratory, Inc.				V 3.0

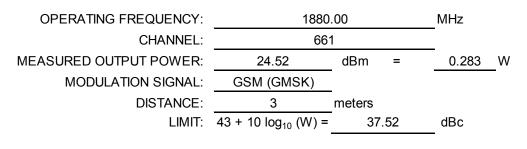
OPERATING FREQUENCY:	836.60		MHz
CHANNEL:	4183		_
MEASURED OUTPUT POWER:	21.42	dBm =	0.139 W
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	34.42	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1673.20	-47.76	3.68	-44.08	V	65.5
2509.80	-53.05	3.64	-49.41	V	70.8
3346.40	-83.41	5.72	-77.69	V	99.1
4183.00	-83.39	7.02	-76.37	V	97.8
5019.60	-82.15	7.90	-74.25	V	95.7

Table 6-8. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4183)

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1693.20	-49.35	3.60	-45.75	V	66.7
2539.80	-52.19	3.74	-48.45	V	69.4
3386.40	-83.56	5.86	-77.69	V	98.7
4233.00	-83.51	7.14	-76.37	V	97.4
5079.60	-82.19	7.94	-74.25	V	95.2

Table 6-9. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4233)


FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 46 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 46 01 59
2014 PCTEST Engineering Laboratory, Inc.				V 3.0

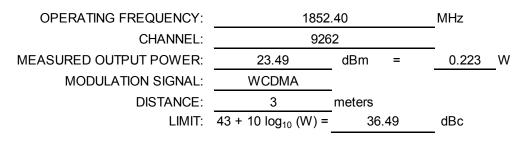
OPERATING FREQUENCY:	1850.20		MHz
CHANNEL:	512		_
MEASURED OUTPUT POWER:	25.23	dBm =	0.333 W
MODULATION SIGNAL:	GSM (GMSK)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	38.23	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3700.40	-53.01	8.29	-44.71	H2	69.9
5550.60	-58.62	10.57	-48.06	H2	73.3
7400.80	-82.21	11.94	-70.27	H2	95.5
9251.00	-80.96	13.17	-67.79	H2	93.0
11101.20	-78.41	13.25	-65.17	H2	90.4

Table 6-10. Radiated Spurious Data (PCS GSM Mode – Ch. 512)

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi) SPURIOL EMISSIO LEVEL (dBm)		EUT POL (H/V)	(dBc)
3760.00	-52.16	8.32	-43.84	H2	68.4
5640.00	-58.69	10.67	-48.01	H2	72.5
7520.00	-82.14	12.05	-70.09	H2	94.6
9400.00	-80.73	13.16	-67.58	H2	92.1
11280.00	-78.10	13.32	-64.77	H2	89.3

Table 6-11. Radiated Spurious Data (PCS GSM Mode – Ch. 661)


FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 47 of 59
0 2014 PCTEST Engineering Laboratory, Inc.				V 3.0

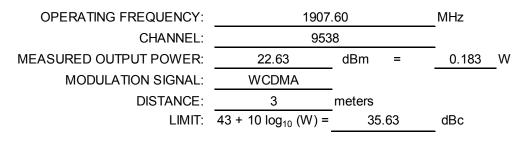
OPERATING FREQUENCY:	1909.80		MHz
CHANNEL:	810	_	
MEASURED OUTPUT POWER:	23.19	dBm =	0.208 W
MODULATION SIGNAL:	GSM (GMSK)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	36.19	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3819.60	-54.07	8.37	-45.70	H2	68.9
5729.40	-59.41	10.73	-48.68	H2	71.9
7639.20	-81.99	12.13	-69.86	H2	93.0
9549.00	-80.44	13.14	-67.30	H2	90.5
11458.80	-77.91	13.36	-64.56	H2	87.7

Table 6-12. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3704.80	-53.85	8.30	-45.55	H2	69.0
5557.20	-58.19	10.58	-47.61	H2	71.1
7409.60	-82.20	11.95	-70.25	H2	93.7
9262.00	-80.94	13.17	-67.77	H2	91.3
11114.40	-78.38	13.25	-65.13	H2	88.6

Table 6-13. Radiated Spurious Data (PCS WCDMA Mode - Ch. 9262)


FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 49 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 48 of 59
© 2014 PCTEST Engineering Laboratory, Inc.				

OPERATING FREQUENCY:	1880.00		MHz
CHANNEL:	940	_	
MEASURED OUTPUT POWER:	22.92	dBm =	0.196 W
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	35.92	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3760.00	-51.92	8.32	-43.60	H2	66.5
5640.00	-58.55	10.67	-47.87	H2	70.8
7520.00	-82.31	12.05	-70.25	H2	93.2
9400.00	-80.93	13.16	-67.77	H2	90.7
11280.00	-78.46	13.32	-65.13	H2	88.1

Table 6-14. Radiated Spurious Data (PCS WCDMA Mode - Ch. 9400)

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3815.20	-47.14	8.36	-38.78	H2	61.4
5722.80	-58.77	10.73	-48.04	H2	70.7
7630.40	-82.38	12.12	-70.25	H2	92.9
9538.00	-80.91	13.14	-67.77	H2	90.4
11445.60	-78.49	13.36	-65.13	H2	87.8

Table 6-15. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9538)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 49 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 49 01 59
0 2014 PCTEST Engineering Laboratory, Inc.				

Frequency Stability / Temperature Variation 6.8 §2.1055 §22.355 §24.229 §24.235 RSS-132(4.3) RSS-133(6.3)

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an a.) environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stavs within the authorized frequency block.

Test Procedure Used

ANSI/TIA-603-C-2004

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 50 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 50 01 59
© 2014 PCTEST Engineering Laboratory, Inc.				

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §22.355 §24.229 §24.235 §27.54 RSS-132(4.3) RSS-133(6.3) RSS-139(6.3)

OPERATING FREQUENCY: 836,600,000 Hz

CHANNEL: 190

REFERENCE VOLTAGE: 3.8 VDC

DEVIATION LIMIT: ±0.00025 % or 2.5 ppm

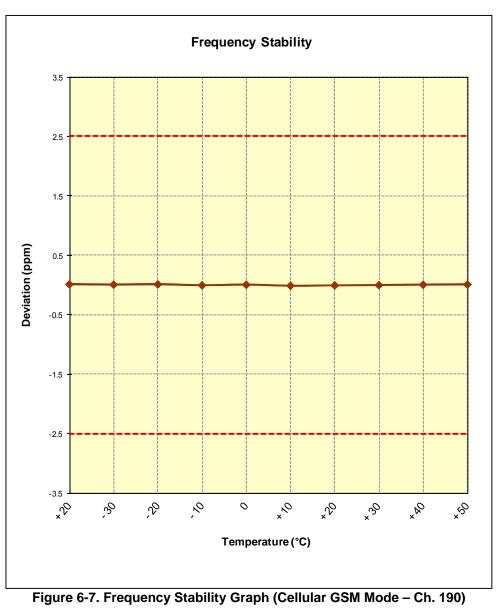

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	836,600,008	8	0.0000010
100 %		- 30	836,600,003	3	0.0000004
100 %		- 20	836,600,007	7	0.0000008
100 %		- 10	836,599,994	-6	-0.0000007
100 %		0	836,600,002	2	0.0000002
100 %		+ 10	836,599,988	-12	-0.0000014
100 %		+ 20	836,599,993	-7	-0.0000008
100 %		+ 30	836,599,996	-4	-0.0000005
100 %		+ 40	836,600,002	2	0.0000002
100 %		+ 50	836,600,005	5	0.0000006
115 %	4.37	+ 20	836,599,993	-7	-0.0000008
BATT. ENDPOINT	3.42	+ 20	836,600,009	9	0.0000011

Table 6-16. Frequency Stability Data (Cellular GSM Mode – Ch. 190)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 51 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 51 01 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §22.355 RSS-132(4.3)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 52 of 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §22.355 RSS-132(4.3)

OPERATING FREQUENCY:	836,600,000	Hz

CHANNEL: 4183

REFERENCE VOLTAGE: 3.8 VDC

DEVIATION LIMIT:	± 0.00025	% or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	836,600,012	12	0.0000014
100 %		- 30	836,600,002	2	0.0000002
100 %		- 20	836,599,999	-1	-0.0000001
100 %		- 10	836,600,007	7	0.0000008
100 %		0	836,599,989	-11	-0.0000013
100 %		+ 10	836,600,012	12	0.0000014
100 %		+ 20	836,599,990	-10	-0.0000012
100 %		+ 30	836,599,991	-9	-0.0000011
100 %		+ 40	836,600,004	4	0.0000005
100 %		+ 50	836,600,002	2	0.0000002
115 %	4.37	+ 20	836,599,994	-6	-0.0000007
BATT. ENDPOINT		+ 20	836,599,996 a (Cellular WCDN	-4	-0.0000005

 Table 6-17. Frequency Stability Data (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 53 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 55 01 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §22.355 RSS-132(4.3)

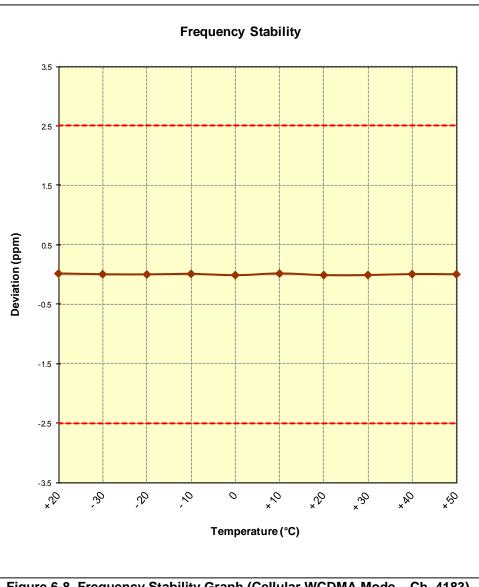


Figure 6-8. Frequency Stability Graph (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 54 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 54 01 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §24.235 RSS-139(6.3)

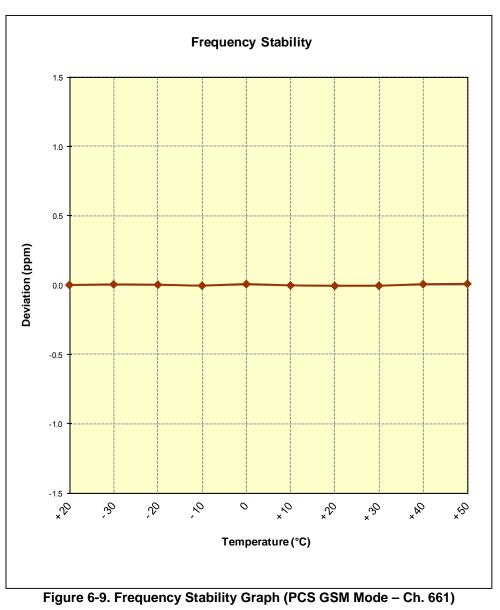
OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 661

REFERENCE VOLTAGE: 3.8 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,879,999,999	-1	-0.0000001
100 %		- 30	1,880,000,007	7	0.0000004
100 %		- 20	1,880,000,003	3	0.0000002
100 %		- 10	1,879,999,990	-10	-0.0000005
100 %		0	1,880,000,011	11	0.0000006
100 %		+ 10	1,879,999,993	-7	-0.0000004
100 %		+ 20	1,879,999,987	-13	-0.0000007
100 %		+ 30	1,879,999,989	-11	-0.0000006
100 %		+ 40	1,880,000,010	10	0.0000005
100 %		+ 50	1,880,000,015	15	0.0000008
115 %	4.37	+ 20	1,880,000,010	10	0.0000005
BATT. ENDPOINT	3.42	+ 20	1,879,999,988	-12	-0.0000006

Table 6-18. Frequency Stability Data (PCS GSM Mode - Ch. 661)


Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EE of E0
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 55 of 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §24.235 RSS-139(6.3)

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga EC of EQ
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 56 of 59
© 2014 PCTEST Engineering La	2014 PCTEST Engineering Laboratory, Inc.			

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §24.235 RSS-139(6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 9400

REFERENCE VOLTAGE: 3.8 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,880,000,003	3	0.0000002
100 %		- 30	1,880,000,007	7	0.0000004
100 %		- 20	1,880,000,008	8	0.0000004
100 %		- 10	1,879,999,988	-12	-0.0000006
100 %		0	1,880,000,002	2	0.0000001
100 %		+ 10	1,879,999,993	-7	-0.0000004
100 %		+ 20	1,879,999,996	-4	-0.0000002
100 %		+ 30	1,880,000,006	6	0.0000003
100 %		+ 40	1,880,000,010	10	0.0000005
100 %		+ 50	1,879,999,991	-9	-0.0000005
115 %	4.37	+ 20	1,879,999,994	-6	-0.0000003
BATT. ENDPOINT	3.42	+ 20	1,880,000,002	2	0.0000001

Table 6-19. Frequency Stability Data (PCS WCDMA Mode – Ch. 9400)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 50
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 57 of 59
2014 PCTEST Engineering Laboratory, Inc.				

06/17/2013

Frequency Stability / Temperature Variation (Cont'd) §2.1055 §24.235 RSS-139(6.3)

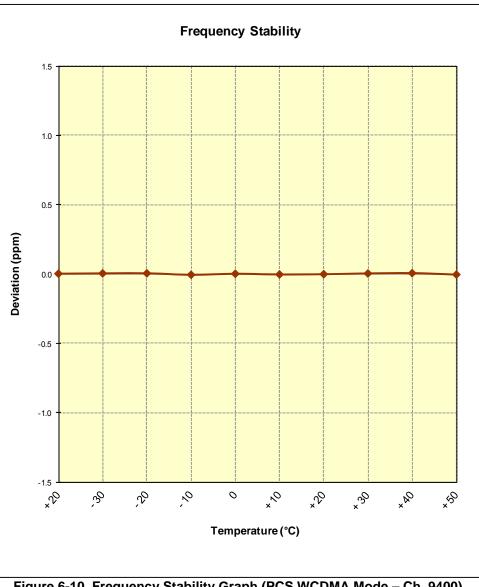


Figure 6-10. Frequency Stability Graph (PCS WCDMA Mode – Ch. 9400)

FCC ID: A3LSMG9001		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 58 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 56 01 59
© 2014 PCTEST Engineering Laboratory, Inc.				

7.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMG900I** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.

FCC ID: A3LSMG900I		FCC Pt. 22, 24 GSM/EDGE/WCDMA MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 59 of 59
0Y1403070539.A3L	02/08 - 02/11/2014	Portable Handset		Page 59 01 59
© 2014 PCTEST Engineering Laboratory, Inc.				