

CERTIFICATION TEST REPORT

Report Number. : 4789354138-E3V2

Applicant: SAMSUNG ELECTRONICS CO., LTD.

129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI,

GYEONGGI-DO, 16677, KOREA

Model: SM-G770U1

FCC ID : A3LSMG770U

EUT Description: GSM/CDMA/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac,

ANT+ and NFC

Test Standard(s): FCC CFR47 PART 90 SUBPART R

Date Of Issue: March 09, 2020

Prepared by:

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

REPORT NO: 4789354138-E3V2 FCC ID: A3LSMG770U

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	03/04/20	Initial issue	Sungeun Lee
V2	03/09/20	Updated to address TCB's question	Sungeun Lee

TABLE OF CONTENTS

1.	A	ATTESTATION OF TEST RESULTS	4
2.	Т	EST METHODOLOGY	5
3.	F	FACILITIES AND ACCREDITATION	5
4.	C	CALIBRATION AND UNCERTAINTY	6
	4.1	. MEASURING INSTRUMENT CALIBRATION	6
	4.2	. SAMPLE CALCULATION	6
	4.3	MEASUREMENT UNCERTAINTY	6
	4.4	DECISION RULE	6
5.	Е	EQUIPMENT UNDER TEST	7
	5.1	. DESCRIPTION OF EUT	7
	5.2	. MAXIMUM OUTPUT POWER	7
	5.3	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4	. WORST-CASE ORIENTATION	8
	5.5	DESCRIPTION OF TEST SETUP	9
6.	Т	EST AND MEASUREMENT EQUIPMENT1	1
7.	SU	MMARY TABLE1	2
8.	PE	AK TO AVERAGE RATIO1	3
	8.1	. CONDUCTED PEAK TO AVERAGE RESULT1	14
9.	L	.IMITS AND CONDUCTED RESULTS1	5
	9.1	. OCCUPIED BANDWIDTH1	15
		0.1.1. OCCUPIED BANDWIDTH RESULTS1	
		. BAND EDGE EMISSIONS	
		DUT OF BAND EMISSIONS	
		0.3.1. OUT OF BAND EMISSIONS RESULT	
	9.4	FREQUENCY STABILITY2	24
	9	0.4.1. FREQUENCY STABILITY RESULTS2	25
1(). R	RADIATED TEST RESULTS2	
	_	1. RADIATED POWER (ERP & EIRP)	
		0.1.1. ERP/EIRP Results	
		2. FIELD STRENGTH OF SPURIOUS RADIATION	
		0.2.1. SPURIOUS RADIATION PLOTS	

REPORT NO: 4789354138-E3V2 DATE: MAR 09, 2020 FCC ID: A3LSMG770U

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/CDMA/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac, ANT+

and NFC

MODEL NUMBER: SM-G770U1

SERIAL NUMBER: R38MC0CECEP, R38MC0CE38V(CONDUCTED);

R38MC0CE7XM, R38MC0CE7RW(RADIATED)

DATE TESTED: FEB 02, 2020 - MAR 04, 2020;

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 90R Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Korea, Ltd. By:

Tested By:

Junwhan Lee Suwon Lab Engineer

UL Korea, Ltd.

Sungeun Lee Suwon Lab Engineer UL Korea, Ltd.

REPORT NO: 4789354138-E3V2 DATE: MAR 09, 2020 FCC ID: A3LSMG770U

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 90.
- 3. ANSI TIA-603-E, 2016
- 4. ANSI C63.26, 2015
- KDB 971168 D01 Power Meas License Digital Systems v03r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro
☐ Chamber 3

4. CALIBRATION AND UNCERTAINTY

MEASURING INSTRUMENT CALIBRATION 4.1.

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) - cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) - cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.35 dB
Radiated Disturbance, 30 MHz to 1 GHz	3.49 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.82 dB
Radiated Disturbance, 18 GHz to 40 GHz	5.49 dB

Uncertainty figures are valid to a confidence level of 95%.

4.4. **DECISION RULE**

Decision rule for statement(s) of conformity is based on Procedure 1, Clause 4.4.2 in IEC Guide 115:2007.

5. EQUIPMENT UNDER TEST

DESCRIPTION OF EUT 5.1.

The EUT is a GSM/CDMA/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac, ANT+ and NFC. This test report addresses the WWAN operational mode.

5.2. **MAXIMUM OUTPUT POWER**

The transmitter has a maximum average radiated ERP / EIRP output powers as follows:

Note: Conducted output power results were excerpted from RF exposure test report(4789354138-S1 FCC Report SAR).

LTE Band 14

FCC Part 27							
Band	Frequency Band Range		Modulation	Cond	ucted	Radi	ated
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]
	14 788 ~ 798 —	10	QPSK	24.39	275.00	21.88	154.17
			16QAM	23.35	216.38	20.73	118.30
Band 14			64QAM	22.64	183.77		
Danu 14			QPSK	24.63	290.33	21.55	142.89
		5	16QAM	23.68	233.61	20.55	113.50
			64QAM	22.44	175.46		

5.3. **DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes a internal antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
LTE Band 14 788 ~ 798 MHz	-4.79

5.4. WORST-CASE ORIENTATION

Following modes should be considered as worst-case scenario for all other measurements.

For LTE Band 14, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM and 64QAM modulations. It was found that QPSK and 16QAM results were worst case. All testing was performed using QPSK and 16QAM modulations to represent the worst case. However, the out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest power in QPSK.

Highest power setting for each bands						
LTE Band	Frequency (MHz)	Bandwidth (MHz)	RB size	RB offset		
	790.5		1	24		
14	793.0	5	1	24		
	795.5		1	24		

The fundamental and radiated spurious emission were investigated in three orthogonal orientations X, Y and Z, it was determined that below orientation was worst-case orientation for each band.

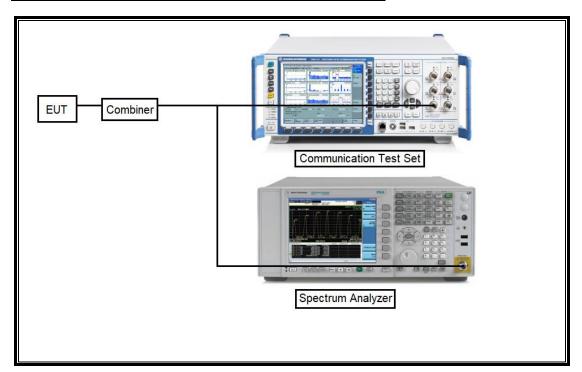
Pand		ERP/EIRP			RSE	
Band	х	Υ	Z	х	Υ	Z
LTE B14	-	-	0	-	-	0

Note: For ERP/EIRP testing, the EUT didn't attached with travel adapter. But radiated spurious testing, the EUT attached with travel adapter for the worst case condition. The EUT is continuously communicated with the call box during the tests.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC I						
Charger	SAMSUNG	EP-TA800	R37MAYF19B7DK3	N/A		
Data Cable	SAMSUNG	EP-DA705BBE	N/A	N/A		


I/O CABLE

	I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	DC Power	1	C Type	Shielded	1.0m	N/A			

TEST SETUP

The EUT is continuously communicated with the call box during the tests.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

Page 10 of 31

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description	Manufacturer	Model	S/N	Cal Due	
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	01-30-21	
Antenna, Horn, 40 GHz	ETS	3116C	00166155	08-13-20	
Preamplifier	ETS	3116C-PA	00168841	08-08-20	
Antenna, Horn, 40 GHz	ETS	3116C	00168645	10-02-21	
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-04-20	
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-04-20	
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-04-20	
Antenna, Horn, 18 GHz	ETS	3115	00167211	08-04-20	
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-04-20	
Antenna, Horn, 18 GHz	ETS	3117	00168724	08-04-20	
Antenna, Horn, 18 GHz	ETS	3117	00205959	08-04-20	
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-04-20	
Combiner	WEINSCHEL	1575	2150	08-08-20	
Communications Test Set	R&S	CMW500	115331	08-05-20	
DC Power Supply	Agilent / HP	E3640A	MY54226395	08-06-20	
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-05-20	
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-05-20	
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-05-20	
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-06-20	
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-06-20	
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-06-20	
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-06-20	
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-06-20	
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-06-20	
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A	
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G005	08-05-20	
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G006	08-05-20	
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	08-05-20	
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	08-05-20	
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G001	08-05-20	
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G002	08-05-20	
Attenuator	PASTERNACK	PE7087-10	A009	08-08-20	
Attenuator	PASTERNACK	PE7087-10	A001	08-08-20	
Attenuator	PASTERNACK	PE7087-10	A008	08-08-20	
Attenuator	PASTERNACK	PE7087-10	2	08-08-20	
Attenuator	PASTERNACK	PE7395-10	A011	08-08-20	
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-02-21	
Temperature Chamber	ESPEC	SH-642	93001109	08-05-20	
Tomperature Chamber	LOFEO	UL Software	33001103	00-00-20	
Docerintian	Manufacturer	l		Version	
Description Antenna port test software	Manufacturer UL	Model CLT		Version Ver 2.5	

7. SUMMARY TABLE

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Band width (99%)	N/A		Pass
90.691	Band Edge / Conducted	-13dBm	Occidented	Pass
90.543(e)	Spurious Emission	-35 dBm		Pass
90.691	Emission mask Section 9.2.2		Pass	
2.1046	Conducted output power	N/A		Pass
90.213	Frequency Stability	2.5PPM		Pass
90.635(b)	Effective Radiated Power	50 dBm	Dadiated	Pass
90.691	Radiated Spurious Emission	-13dBm	Radiated	Pass

REPORT NO: 4789354138-E3V2 DATE: MAR 09, 2020 FCC ID: A3LSMG770U

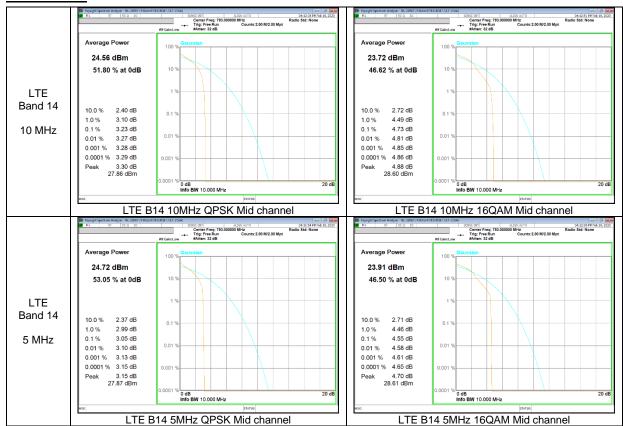
8. PEAK TO AVERAGE RATIO

Test Procedure

Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

Test Spec


In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

RESULTS

DATE: MAR 09, 2020

CONDUCTED PEAK TO AVERAGE RESULT 8.1.

LTE Band 14

FCC ID: A3LSMG770U

9. LIMITS AND CONDUCTED RESULTS

OCCUPIED BANDWIDTH

RULE PART(S)

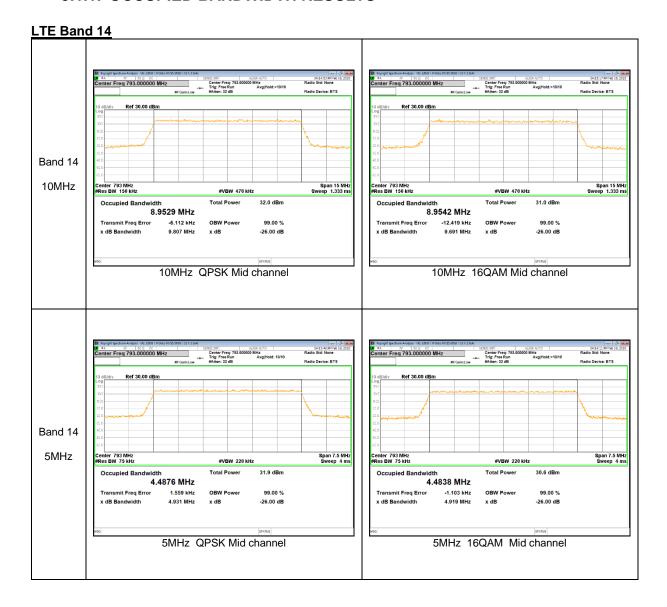
FCC: §2.1049

9.1.

LIMITS

For reporting purposes only

TEST PROCEDURE


The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v03r01)

RESULTS

See the following pages.

9.1.1. OCCUPIED BANDWIDTH RESULTS

9.2. BAND EDGE EMISSIONS

RULE PART(S)

FCC: §90.691

LIMITS

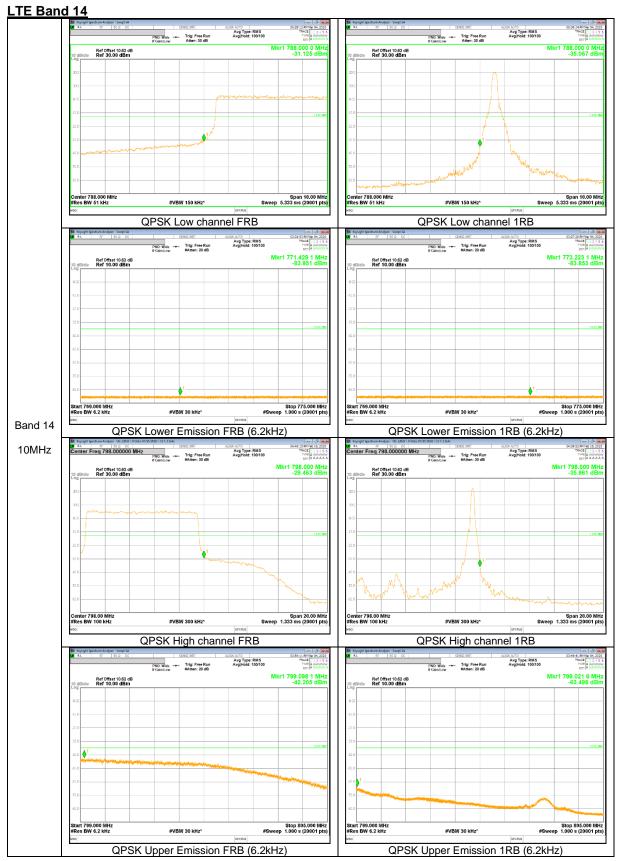
Part 90.691:

- (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

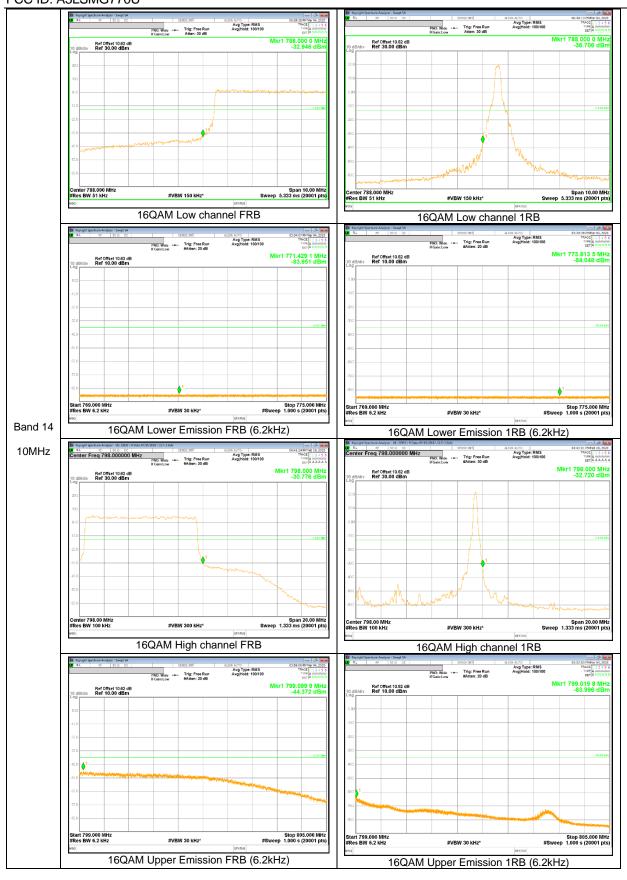
TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

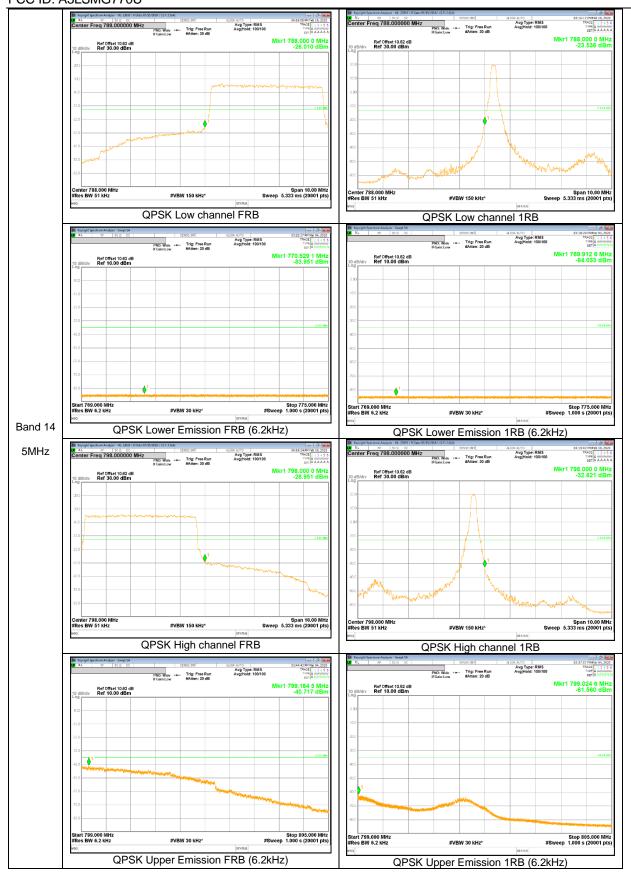
The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

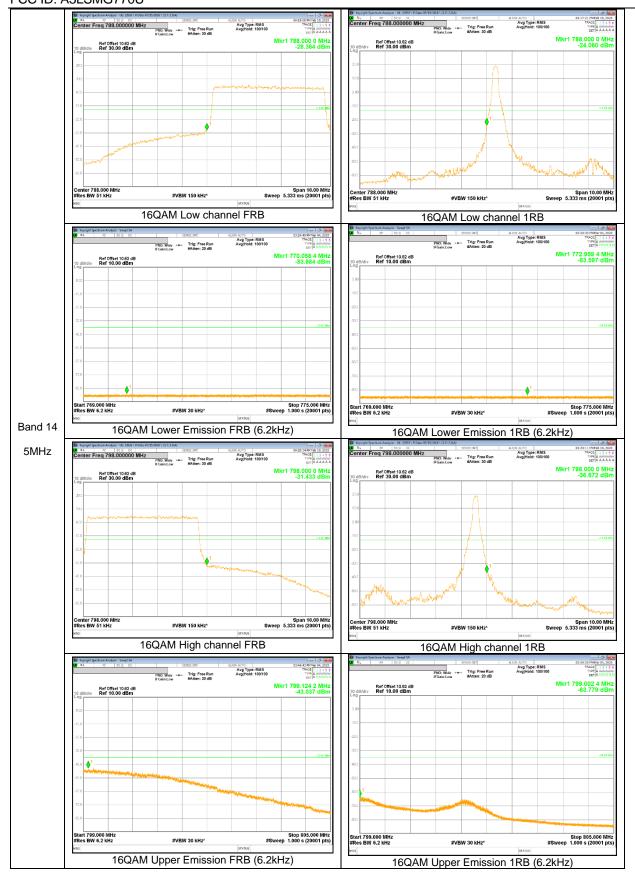

LTE

- a) Set the RBW = 1 ~ 1.5 % of OBW(Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW ≥ 3 × RBW:
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average (100);


RESULTS

See the following pages.


9.2.1. BAND EDGE RESULT



Page 18 of 31

Page 19 of 31

9.3. OUT OF BAND EMISSIONS

RULE PART(S)

FCC: §2.1051 and 90.691

LIMITS

Part 90.691(a):

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz. (NOTE: Use 100kHz reference bandwidth)
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

- a) Set the RBW = 100KHz for emission below 1GHz and 1MHz for emissions above 1GHz (Tests were performed 1MHz [Worst case], to sweep 1 time for all frequency range)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = auto couple;
- e) Detector = rms:
- f) Ensure that the number of measurement points = Max (40001);
- g) Trace mode = average(LTE);

RESULTS

See the following pages.

NOTE: Please refer to section 5.4 for bandwidth and RB setting about LTE bands.

9.3.1. OUT OF BAND EMISSIONS RESULT

9.4. FREQUENCY STABILITY

RULE PART(S)

FCC: §2.1055 and §90.213

LIMITS

§90.213 - The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

RESULTS

See the following pages.

<u>NOTE</u>: Test were performed each lowest or highest frequency on the modulation condition of more wide bandwidth.(Please refer to section 9.1.1 OBW results)

9.4.1. FREQUENCY STABILITY RESULTS

LTE Band 14

	Reference	Frequency: LTE Band 1	14 Low Channel 790.5 MH	z / High Channel 795.5 MH	z @ 20°C				
Limit: +- 2.5 ppm =	Low Channel	988.125	Hz	High Channel	994.375	Hz			
Power Supply [Vdc]	Foreignament	Frequency Deviation Measureed with Time Elapse							
	Environment	Low C	hannel	High C	hannel	12-2-5			
	Temperature [*C]	[MHz]	Delta [ppm]	[MHz]	Delta [ppm]	Limit [ppm]			
3.85	50	790.49998236	0.012	795.49998471	0.003	1.25			
3.85	40	790.49998170	0.014	795.49998223	0.010	1.25			
3.85	30	790.49998860	-0.004	795.49998740	-0.003	1.25			
3.85	20	790.49998715	0.000	795.49998607	0.000	1.25			
3.85	10	790.49998631	0.002	795.49998519	0.002	1.25			
3.85	0	790.49998989	-0.007	795.49999365	-0.019	1.25			
3.85	-10	790.49999039	-0.008	795.49999101	-0.012	1.25			
3.85	-20	790.49999157	-0.011	795.49999248	-0.016	1.25			
3.85	-30	790.49999542	-0.021	795.49999328	-0.018	1.25			

	Reference	Frequency: LTE Band 1	14 Low Channel 790.5 MH	z / High Channel 795.5 MH	Iz @ 20°C			
Limit: +- 2.5 ppm =	Low Channel	988.125	Hz	High Channel	994.375	Hz		
D		Frequency Deviation Measureed with Time Elapse						
Power Supply [Vdc]	Environment Temperature [*C]	Low Channel		High C	Limit [ppm]			
[vac]		[MHz]	Delta [ppm]	[MHz]	Delta [ppm]	Limit [ppm]		
3.85	20	790.49998715	0	795.49998607	0	1.25		
4.35	20	790.49998687	0.001	795.49998846	-0.006	1.25		
3.75	20	790.49999137	-0.011	795.49999040	-0.011	1.25		

REPORT NO: 4789354138-E3V2 DATE: MAR 09, 2020 FCC ID: A3LSMG770U

10. RADIATED TEST RESULTS

10.1. RADIATED POWER (ERP & EIRP)

RULE PART(S)

FCC: §2.1046 and §90.635

LIMITS

Part 90.542(a)(7) Portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13dB.

TEST PROCEDURE

ANSI / TIA / EIA 603 E Clause 2.2.17; ESU40 setting reference to 971168 D01 v03r01

For radiated output power measurement with a ESU40:

a) Set the RBW \geq OBW; b) Set VBW \geq 3 × RBW; c) Set span \geq 2 x RBW; d) Sweep time = auto couple; e) Detector = rms; f) Ensure that the number of measurement points \geq span/RBW; g) Trace mode = max hold(GSM, WCDMA), average(LTE);

TEST RESULTS

10.1.1. ERP/EIRP Results

LTE Band 14

	BW		RB Size/		ERP /	'EIRP
Band	[MHz]	Mode	RB Offset	f [MHz]	[dBm]	[mW]
	10	QPSK	1/0	793.0	21.88	154.17
	10	16QAM	1/0	793.0	20.73	118.30
	5	QPSK	1 / 24	790.5	21.45	139.64
Band 14			1 / 24	793.0	21.32	135.52
Dallu 14			1 / 24	795.5	21.55	142.89
		16QAM	1 / 24	790.5	20.43	110.41
			1 / 24	793.0	20.55	113.50
			1 / 24	795.5	20.43	110.41

10.1.2. ERP/EIRP DATA

LTE Band 14

UL Verification Services, Inc. **High Frequency Substitution Measurement** Company: Samsung Project #: 4789354138 Date: 2020-02-10 Test Engineer: 20896 Configuration: EUT, Z-Position LTE Location: Chamber 2 Mode: LTE_QPSK Band 14 Fundamentals, 10MHz Bandwidth Band 14 **Test Equpment:** Receiving: VULB9163-749, and Chamber 2 SMA Cables 10MHz Substitution: Dipole 3121_DB4, 8.5m SMA-type Cable **QPSK** SG reading Ant. Pol. Cable Loss Antenna Gain ERP Limit Delta Notes MHz (dBm) (H/V) (dB) (dBd) (dBm) (dBm) (dB) Mid Ch 25.89 3.0 -1.1 -12.9 793.00 21.88 34.8 793.00 14.23 н 3.0 -1.1 10.23 34.8 -24.5 UL Verification Services, Inc. **High Frequency Substitution Measurement** Company: Samsung Project #: 4789354138 Date: 2020-02-10 Test Engineer: 20896 Configuration: EUT, Z-Position LTE Location: Chamber 2 Mode: LTE_16QAM Band 14 Fundamentals, 10MHz Bandwidth Band 14 Test Equpment: Receiving: VULB9163-749, and Chamber 2 SMA Cables 10MHz Substitution: Dipole 3121_DB4, 8.5m SMA-type Cable 16QAM SG reading Ant. Pol. Cable Loss Antenna Gain ERP Limit Delta Notes MHz (dBm) (H/V) (dB) (dBd) (dBm) (dBm) (dB) Mid Ch 24.74 v 3.0 -1.1 20.73 34.8 -14.0 793.00 793.00 13.32 н 3.0 -1.1 9.32 34.8 -25.5

UL Verification Services, Inc. High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 4789354138

 Date:
 2020-02-10

 Test Engineer:
 20896

 Configuration:
 EUT, Z-Position

 Location:
 Chamber 2

Mode: LTE_QPSK Band 14 Fundamentals, 5MHz Bandwidth

LTE

Test Equpment:

Band 14 Receiving: VULB9163-749, and Chamber 2 SMA Cables Substitution: Dipole 3121_DB4, 8.5m SMA-type Cable

5MHz QPSK

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
790.50	25.45	V	3.0	-1.1	21.45	34.8	-13.3	
790.50	13.92	Н	3.0	-1.1	9.92	34.8	-24.9	
Mid Ch								
793.00	25.33	V	3.0	-1.1	21.32	34.8	-13.4	
793.00	14.08	Н	3.0	-1.1	10.08	34.8	-24.7	
High Ch								
795.50	25.56	V	3.0	-1.1	21.55	34.8	-13.2	
795.50	14.19	Н	3.0	-1.1	10.18	34.8	-24.6	

UL Verification Services, Inc. High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 4789354138

 Date:
 2020-02-10

 Test Engineer:
 20896

 Configuration:
 EUT, Z-Position

 Location:
 Chamber 2

Mode: LTE_16QAM Band 14 Fundamentals, 5MHz Bandwidth

LTE Band 14

Test Equpment:

Receiving: VULB9163-749, and Chamber 2 SMA Cables Substitution: Dipole 3121_DB4, 8.5m SMA-type Cable

5MHz 16QAM

f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	Limit (dBm)	Delta (dB)	Notes
Low Ch	(ab)	(15.7)	(42)	(uzu,	(u.c)	(u.z)	(u.z.,	
790.50	24.43	V	3.0	-1.1	20.43	34.8	-14.3	
790.50	12.81	Н	3.0	-1.1	8.81	34.8	-26.0	
Mid Ch								
793.00	24.56	V	3.0	-1.1	20.55	34.8	-14.2	
793.00	12.82	Н	3.0	-1.1	8.82	34.8	-26.0	
High Ch								
795.50	24.44	V	3.0	-1.1	20.43	34.8	-14.3	
795.50	13.18	Н	3.0	-1.1	9.17	34.8	-25.6	

DATE: MAR 09, 2020 FCC ID: A3LSMG770U

FIELD STRENGTH OF SPURIOUS RADIATION 10.2.

RULE PART(S)

FCC: §2.1053 and §90.691

LIMIT

Part 90.691(a):

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.(NOTE: Use 100kHz reference bandwidth)
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

TEST PROCEDURE

ANSI / TIA / EIA 603 E Clause 2.2.12; ESU40 setting reference to 971168 D01 v03r01

For peak power measurement with a ESU40:

- a) Set the RBW = 100 KHz for emission below 1GHz and 1MHz for emissions above 1GHz
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = auto couple;
- e) Detector = rms;
- f) Ensure that the number of measurement points ≥ span/RBW;
- g) Trace mode = average(LTE);

RESULTS

See the following pages.

NOTE: Please refer to section 5.4 for bandwidth and RB setting about LTE bands.

10.2.1. SPURIOUS RADIATION PLOTS

LTE Band 14

			ı	UL Verification Services, Inc. Above 1GHz High Frequency Substitution Measurement						
	Company: Project #: Date: Test Engineer: Configuration: Location: Mode:		Samsung 4789354138 2020-02-10 20896 EUT / AC Adapte Chamber 2 LTE_QPSK Band	r, Z-Position d 14 Harmonics, 5	MHz Bandwidth					
	f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
	MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
LTE	Low Ch, 790.	.,						ļ		
	1581.00	-29.9	V	3.0	40.7	1.0	-69.6	-40.0	-29.6	
nd 13	2371.50 3162.00	-11.4 -9.3	V V	3.0 3.0	41.1	1.0	-51.6 -50.3	-13.0	-38.6 -37.3	
			V H		42.0	1.0		-13.0	-37.3 -30.5	
ИHz	1581.00 2371.50	-30.8 -10.7	H H	3.0	40.7	1.0 1.0	-70.5 -50.8	-40.0 -13.0	-30.5 -37.8	
11 12	3162.00	-10.7	Н	3.0	41.1 42.0	1.0	-30.8	-13.0	-37.8	
01/	Mid Ch, 793N		П	3.0	42.0	1.0	-49.9	-13.0	-36.9	
SK	1586.00	-28.8	v	3.0	40.7	1.0	-68.5	-40.0	-28.5	
	2379.00	-12.3	v	3.0	41.1	1.0	-52.4	-13.0	-39.4	
	3172.00	-9.1	V	3.0	42.0	1.0	-50.1	-13.0	-37.1	
	1586.00	-29.9	H	3.0	40.7	1.0	-69.5	-40.0	-29.5	
	2379.00	-11.8	H	3.0	41.1	1.0	-52.0	-13.0	-39.0	
	3172.00	-7.6	H	3.0	42.0	1.0	-48.6	-13.0	-35.6	
			1				1			
	High Ch. 795	.DIVITZ					 	40.0	-29.6	***************************************
	High Ch, 795 1591.00	-29.9	V	3.0	40.7	1.0	-69.6	-40.0	-29.0	
			V V	3.0 3.0	40.7 41.1	1.0 1.0	-69.6 -52.4	-40.0 -13.0	-39.4	
	1591.00	-29.9								
	1591.00 2386.50	-29.9 -12.3	V	3.0	41.1	1.0	-52.4	-13.0	-39.4	
	1591.00 2386.50 3182.00	-29.9 -12.3 -9.2	V V	3.0 3.0	41.1 42.0	1.0 1.0	-52.4 -50.2	-13.0 -13.0	-39.4 -37.2	

END OF REPORT