Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.2 Ω + 3.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 51.1 Ω + 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | ### General Antenna Parameters and Design | E1 | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.163 ns | | / / | 1.105118 | | | 1 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 19, 2014 | ### **DASY5 Validation Report for Head TSL** Date: 21.02.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:960 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 31.12.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.01.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.1 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.29 W/kg Maximum value of SAR (measured) = 22.6 W/kg 0 dB = 22.6 W/kg = 13.54 dBW/kg Certificate No: D2450V2-960_Feb17 ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 21.02.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:960 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.01.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.4 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 21.2 W/kg 0 dB = 21.2 W/kg = 13.26 dBW/kg Certificate No: D2450V2-960_Feb17 # Impedance Measurement Plot for Body TSL