

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

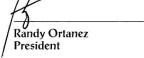
SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 08/29/16 - 09/06/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1608291498.A3L

FCC ID: A3LSMG610Y

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.


DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Model(s): SM-G610Y, SM-G610Y/DS

Equipment	Band & Mode	Tx Frequency .	SAR					
Class			1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	10 gm Phablet (W/kg)		
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.27	0.50	1.09	N/A		
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.24	0.39	0.59	N/A		
PCE	UMTS 850	826.40 - 846.60 MHz	0.36	0.61	0.90	N/A		
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.50	0.94	0.94	N/A		
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.40	0.57	0.75	N/A		
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.15	< 0.1	< 0.1	N/A		
DSS/DTS Bluetooth 2402 - 2480 MHz			N/A					
Simultaneous SAR per KDB 690783 D01v01r03:			0.65	1.13	1.13	N/A		

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 1 of 44
0Y1608291498.A3L	08/29/16 — 09/06/16	Portable Handset	Page 1 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	8
3	INTROD	JCTION	9
4	DOSIME	TRIC ASSESSMENT	10
5	DEFINIT	ON OF REFERENCE POINTS	11
6	TEST CO	NFIGURATION POSITIONS	12
7	RF EXPO	SURE LIMITS	16
8	FCC ME	ASUREMENT PROCEDURES	17
9	RF CONI	DUCTED POWERS	22
10	SYSTEM	VERIFICATION	28
11	SAR DAT	A SUMMARY	30
12	FCC MUI	_TI-TX AND ANTENNA SAR CONSIDERATIONS	36
13	SAR ME	ASUREMENT VARIABILITY	39
14	EQUIPM	ENT LIST	40
15	MEASUF	REMENT UNCERTAINTIES	41
16	CONCLU	SION	42
17	REFERE	NCES	43
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: A3LSMG610Y		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 2 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Fage 2 01 44

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz
ANT+	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 2 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 3 of 44

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

A. Maximum Power

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.0	33.0	31.5	30.0	29.0	27.5	25.5	24.0	23.0
GSM/GPRS/EDGE 850	Nominal	32.5	32.5	31.0	29.5	28.5	27.0	25.0	23.5	22.5
GSM/GPRS/EDGE 1900	Maximum	30.0	30.0	29.0	27.0	25.5	26.5	25.0	23.5	22.0
	Nominal	29.5	29.5	28.5	26.5	25.0	26.0	24.5	23.0	21.5

	Modulated Average (dBm)				
Mode / Band	3GPP	3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	DC-HSDPA	
UMTS Band 5 (850 MHz)	Maximum	24.5	24.5	22.5	24.5
	Nominal	24.0	24.0	22.0	24.0
UMTS Band 2 (1900 MHz)	Maximum	23.0	23.0	21.5	23.0
OW13 Ballu 2 (1900 WH2)	Nominal	22.5	22.5	21.0	22.5

Mode / Band	Modulated Average (dBm)	
LTE D LE (C.II)	Maximum	24.5
LTE Band 5 (Cell)	Nominal	24.0

Mode / Band	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	17.5
TEEE 802.11b (2.4 GHZ)	Nominal	17.0
IEEE 903 11~ (3.4 CH-)	Maximum	16.5
IEEE 802.11g (2.4 GHz)	Nominal	16.0
IFFF 802 11 ~ (2.4 CH-)	Maximum	16.5
IEEE 802.11n (2.4 GHz)	Nominal	16.0
Divista eth	Maximum	9.5
Bluetooth	Nominal	9.0
Divista eth I C	Maximum	9.0
Bluetooth LE	Nominal	8.5

B. Reduced Power

Mode / Band	Modulated Average (dBm)	
JEEE 903 11h /3 4 CU-)	Maximum	14.5
IEEE 802.11b (2.4 GHz)	Nominal	14.0
IEEE 802.11g (2.4 GHz)	Maximum	14.5
TEEE 802.11g (2.4 GHZ)	Nominal	14.0
IEEE 802.11n (2.4 GHz)	Maximum	14.5
1666 002.1111 (2.4 GHZ)	Nominal	14.0

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 4 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 4 of 44

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet.".

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	ISUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo F of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset		Page 5 of 44

Table 1-2 Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory		Phablet
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes
2	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes
3	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes
4	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes
5	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes
6	LTE + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes
7	GPRS/EDGE + 2.4 GHz WI-FI	N/A	N/A	Yes	Yes
8	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	N/A	N/A	Yes

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel IDPCCHI) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. This device supports VoLTE and VoWIFI.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; $[(9/10)^* \sqrt{2.480}] = 1.4 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v06, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 7.5$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, phablet Bluetooth SAR was not required; $[(9/5)^*\sqrt{2.480}] = 2.8 < 7.5$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for 2.4 GHz WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 6 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 6 of 44

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for licensed technologies since wireless router 1g SAR was < 1.2 W/kg for these modes.

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number	Phablet Serial Number
GSM/GPRS/EDGE 850	05339	05339	05339	-
GSM/GPRS/EDGE 1900	05289	05321	05321	-
UMTS 850	05339	05339	05339	-
UMTS 1900	05289	05339	05339	-
LTE Band 5 (Cell)	05339	05339	05339	-
2.4 GHz WLAN	05289	05297	05297	-

FCC ID: A3LSMG610Y	CPCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 7 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 7 of 44

2 LTE INFORMATION

	LTE Information		
FCC ID		A3LSMG610Y	
Form Factor		Portable Handset	
Frequency Range of each LTE transmission band	LTE B	and 5 (Cell) (824.7 - 848.3	3 MHz)
Channel Bandwidths	LTE Band 5 (Cell): 1.4 MHz, 3 MHz, 5	MHz, 10 MHz
Channel Numbers and Frequencies (MHz)	Low	Mid	High
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)
UE Category		4	
Modulations Supported in UL		QPSK, 16QAM	
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided)		YES	
A-MPR (Additional MPR) disabled for SAR Testing?		YES	
LTE Release 10 Additional Information	This device does not support full CA features on 3GPP Release 10. All uplink communications are identical to the Release 8 Specifications. The following LTE Release 10 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, elClC, WIFI Offloading, MDH, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.		

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 9 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 8 of 44

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Fage 9 01 44

© 2016 PCTEST Engineering Laboratory, Inc.

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

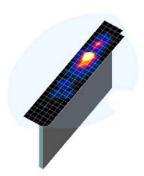


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan			nesolation (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)	
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*		
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30	
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30	
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28	
4-5 GHz	≤10	≤ 4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25	
5-6 GHz	≤10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22	

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMG610Y	PCTEST SHOULD BE LABORATED INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 10 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 10 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

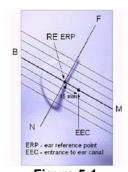


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

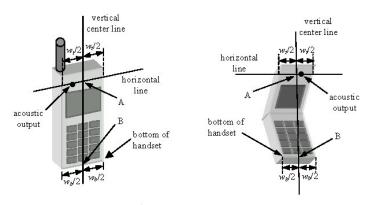


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 11 of 11
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 11 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front. Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: A3LSMG610Y	PCTEST STREET LABOUR INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 12 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 12 of 44	

© 2016 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

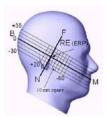


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 12 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 13 of 44	

© 2016 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 14 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 14 of 44	

© 2016 PCTEST Engineering Laboratory, Inc.

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 15 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Fage 13 01 44	

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)				
Peak Spatial Average SAR _{Head}	1.6	8.0				
Whole Body SAR	0.08	0.4				
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20				

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMG610Y	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 16 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Fage 10 01 44

© 2016 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: A3LSMG610Y	PCTEST INDIVIDUAL TO THE PROPERTY OF THE PROPE	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dog 17 of 11	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset		Page 17 of 44	

© 2016 PCTEST Engineering Laboratory, Inc.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.6 SAR Measurement Conditions for DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 18 of 44	

© 2016 PCTEST Engineering Laboratory, Inc.

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 19 of 44	

© 2016 PCTEST Engineering Laboratory, Inc.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.4 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the

FCC ID: A3LSMG610Y	COPCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 20 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.4). When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 24 of 44
Y1608291498.A3L 08/29/16 – 09/06/16 P		Portable Handset	Page 21 of 44

9.1 GSM Conducted Powers

Maximum Burst-Averaged Output Power										
		Voice			OGE Data NSK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	32.18	32.11	30.97	29.11	27.97	26.96	24.00	22.36	21.31
GSM 850	190	32.19	32.13	30.99	29.21	27.91	27.00	24.03	22.39	21.17
	251	32.21	32.15	31.02	29.17	27.86	26.99	24.23	22.44	21.38
	512	29.58	29.54	28.23	26.88	25.39	25.82	24.30	22.49	21.30
GSM 1900	661	29.57	29.45	28.28	26.67	25.27	25.60	23.91	22.50	21.27
810 29.08 29.04 28.57 26.65 25.43 25.49 23.30 22.3					22.33	21.19				
		Calculat	ed Maxim	um Fram	e-Averag	ed Output	Power			
		Voice			OGE Data <i>I</i> SK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	23.15	23.08	24.95	24.85	24.96	17.93	17.98	18.10	18.30
GSM 850	190	23.16	23.10	24.97	24.95	24.90	17.97	18.01	18.13	18.16
	251	23.18	23.12	25.00	24.91	24.85	17.96	18.21	18.18	18.37
	512	20.55	20.51	22.21	22.62	22.38	16.79	18.28	18.23	18.29
GSM 1900	661	20.54	20.42	22.26	22.41	22.26	16.57	17.89	18.24	18.26
	810	20.05	20.01	22.55	22.39	22.42	16.46	17.28	18.07	18.18
						1	1	1		
GSM 850	Frame	23.47	23.47	24.98	25.24	25.49	17.97	18.98	19.24	19.49
GSM 1900	Avg.Targets:	20.47	20.47	22.48	22.24	21.99	16.97	18.48	18.74	18.49

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 22 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 22 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

Note:

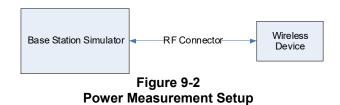
- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 33 (Max 4 Tx uplink slots)
EDGE Multislot class: 33 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-1 Power Measurement Setup

FCC ID: A3LSMG610Y	POTEST SEGMENT INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 23 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset		Faye 23 01 44


9.2 **UMTS Conducted Powers**

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band	[dBm]	PCS	Band [d	Bm]	3GPP MPR [dB]
Version		Subtest	4132	4183	4233	9262	9400	9538	WFK [UD]
99	WCDMA	12.2 kbps RMC	23.92	23.83	23.95	22.23	22.32	22.20	-
99	VVCDIVIA	12.2 kbps AMR	24.14	23.99	23.95	21.17	21.33	22.00	-
6		Subtest 1	24.10	24.12	24.15	22.58	22.57	22.31	0
6	HSDPA	Subtest 2	24.14	24.11	24.15	22.59	22.54	22.31	0
6	TIODI A	Subtest 3	24.16	24.14	24.13	22.58	22.30	22.30	0.5
6		Subtest 4	24.12	24.11	24.18	22.63	22.47	22.54	0.5
6		Subtest 1	20.30	20.33	20.35	20.54	20.52	20.54	0
6		Subtest 2	18.86	18.84	18.87	18.54	18.62	18.50	2
6	HSUPA	Subtest 3	22.50	22.13	22.46	21.50	21.48	21.46	1
6		Subtest 4	18.33	18.21	18.30	18.18	18.24	18.12	2
6		Subtest 5	21.42	21.38	21.35	21.37	21.45	21.49	0
8		Subtest 1	24.27	24.34	24.50	21.85	21.83	21.84	0
8	DC-HSDPA	Subtest 2	23.75	24.10	23.46	21.93	22.00	21.88	0
8		Subtest 3	22.55	23.00	22.85	21.41	20.77	21.00	0.5
8		Subtest 4	22.57	22.74	22.63	21.50	21.00	20.76	0.5

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 24 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 24 01 44

9.3 LTE Conducted Powers

9.3.1 LTE Band 5 (Cell)

Table 9-1 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

			Mid Channel		
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	24.29		0
	1	25	24.25	0	0
	1	49	24.27		0
QPSK	25	0	23.37	0-1	1
	25	12	23.39		1
	25	25	23.17		1
	50	0	23.32		1
	1	0	23.26		1
	1	25	23.23	0-1	1
	1	49	23.19		1
16QAM	16QAM 25 0	0	22.36		2
	25	12	22.40	0-2	2
	25	25	22.28	0-2	2
	50	0	22.38		2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

			Barra & (Scri) S		15 CIVILLE BUIL		
				LTE Band 5 (Cell) 5 MHz Bandwidth			
	1					<u> </u>	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.35	24.45	24.21		0
	1	12	24.35	24.31	23.95	0	0
	1	24	24.07	24.41	24.46	1	0
QPSK	12	0	23.26	23.30	23.02		1
	12	6	23.33	23.39	23.03	0-1	1
	12	13	23.27	22.98	22.92	0-1	1
	25	0	23.31	23.20	23.26		1
	1	0	23.45	23.13	23.24		1
	1	12	23.34	23.42	23.20	0-1	1
	1	24	23.04	23.34	23.32		1
16QAM	12	0	22.36	22.38	22.25		2
	12	6	22.46	22.36	22.00		2
	12	13	22.22	22.46	22.31	0-2	2
	25	0	22.38	22.25	22.35		2

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 25 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 25 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M 05/16/2016

Table 9-3 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

			Band 5 (Cell) C	onducted Powe	13 - 3 WILL Dall	awiatii	
				LTE Band 5 (Cell)			
			1 011	3 MHz Bandwidth	Litaria Observant		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415	20525	20635	MPR Allowed per	MPR [dB]
		112 011001	(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	3GPP [dB]	
				Conducted Power [dBm	1]		
	1	0	24.27	24.16	24.04		0
	1	7	24.36	24.07	24.20	0	0
	1	14	24.23	24.25	24.45		0
QPSK	8	0	23.24	23.02	23.09		1
	8	4	23.27	23.25	23.06	0-1	1
	8	7	23.46	23.00	23.08	0-1	1
	15	0	23.16	23.06	23.35		1
	1	0	23.39	23.20	23.10		1
	1	7	23.06	22.99	23.28	0-1	1
	1	14	22.74	23.29	23.27		1
16QAM	8	0	22.09	22.16	22.31		2
	8	4	22.27	22.00	22.11	0-2	2
	8	7	22.47	22.43	22.26	0-2	2
	15	0	22.33	22.30	22.45		2

Table 9-4 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

	LTE Band 5 (Cell) 1.4 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm]				
	1	0	24.30	24.32	23.90		0		
	1	2	24.22	24.25	24.50		0		
	1	5	24.07	24.08	24.34	0	0		
QPSK	3	0	24.43	24.48	24.00		0		
	3	2	24.36	24.11	24.29		0		
	3	3	24.09	23.93	24.34		0		
	6	0	22.90	22.78	23.45	0-1	1		
	1	0	23.27	23.37	22.97		1		
	1	2	22.88	23.27	23.06		1		
	1	5	23.09	23.23	23.34	0-1	1		
16QAM	3	0	23.48	23.24	22.99	0-1	1		
	3	2	22.98	23.17	23.04		1		
	3	3	22.82	23.15	23.45]	1		
	6	0	22.40	22.28	22.19	0-2	2		

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 26 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 26 of 44

WLAN Conducted Powers 9.4

Table 9-5 2.4 GHz WLAN Reduced Average RF Power

		2.4GHz C	onducted Pov	ver [dBm]
Freq [MHz]	Channel	IEEE 1	Mode	
		802.11b	802.11g	802.11n
2412	1	14.00	13.84	13.75
2437	6	13.72	14.49	14.45
2462	11	13.89	13.90	13.77

Table 9-6 2.4 GHz WLAN Maximum Average RF Power

		2.4GHz C	onducted Pov	ver [dBm]	
Freq [MHz]	Channel	IEEE Transmission Mode			
		802.11b	802.11g	802.11n	
2412	1	16.91	16.28	16.25	
2437	6	16.50	16.16	16.08	
2462	11	16.76	16.42	16.27	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

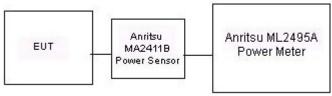


Figure 9-3 **Power Measurement Setup**

FCC ID: A3LSMG610Y	PCTEST INCIDENCE LADICATION, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 27 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 27 of 44

10.1 Tissue Verification

Table 10-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε
			820	0.873	40.798	0.899	41.578	-2.89%	-1.88%
8/29/2016	835H	21.5	835	0.891	40.602	0.900	41.500	-1.00%	-2.16%
			850	0.902	40.390	0.916	41.500	-1.53%	-2.67%
			1850	1.384	38.918	1.400	40.000	-1.14%	-2.71%
8/29/2016	1900H	21.6	1880	1.416	38.777	1.400	40.000	1.14%	-3.06%
			1910	1.448	38.643	1.400	40.000	3.43%	-3.39%
			2400	1.813	37.962	1.756	39.289	3.25%	-3.38%
8/29/2016	2450H	22.9	2450	1.865	37.780	1.800	39.200	3.61%	-3.62%
			2500	1.924	37.568	1.855	39.136	3.72%	-4.01%
			820	1.001	54.669	0.969	55.258	3.30%	-1.07%
8/29/2016	835B	20.8	835	1.013	54.482	0.970	55.200	4.43%	-1.30%
			850	1.029	54.403	0.988	55.154	4.15%	-1.36%
			820	0.965	54.215	0.969	55.258	-0.41%	-1.89%
9/6/2016	835B	20.5	835	0.983	54.140	0.970	55.200	1.34%	-1.92%
			850	0.997	53.941	0.988	55.154	0.91%	-2.20%
			1850	1.502	51.191	1.520	53.300	-1.18%	-3.96%
8/29/2016	1900B	21.9	1880	1.537	51.117	1.520	53.300	1.12%	-4.10%
			1910	1.571	51.020	1.520	53.300	3.36%	-4.28%
			1850	1.498	51.857	1.520	53.300	-1.45%	-2.71%
8/31/2016	1900B	23.1	1880	1.536	51.758	1.520	53.300	1.05%	-2.89%
			1910	1.564	51.730	1.520	53.300	2.89%	-2.95%
			2400	1.884	52.610	1.902	52.767	-0.95%	-0.30%
8/29/2016	2450B	23.4	2450	1.957	52.442	1.950	52.700	0.36%	-0.49%
			2500	2.024	52.298	2.021	52.636	0.15%	-0.64%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 20 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 28 of 44

© 2016 PCTEST Engineering Laboratory, Inc.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-2 System Verification Results

						system Vei)				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR ₁₉ (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
Н	835	HEAD	08/29/2016	20.7	21.5	0.200	4d047	3319	1.900	9.130	9.500	4.05%
D	1900	HEAD	08/29/2016	22.6	21.6	0.100	5d149	3213	4.160	40.100	41.600	3.74%
G	2450	HEAD	08/29/2016	23.9	22.9	0.100	981	3334	5.490	52.800	54.900	3.98%
I	835	BODY	08/29/2016	21.2	20.8	0.200	4d133	3333	1.890	9.500	9.450	-0.53%
Н	835	BODY	09/06/2016	20.4	20.5	0.200	4d047	3319	2.010	9.570	10.050	5.02%
J	1900	BODY	08/29/2016	20.5	21.9	0.100	5d080	3318	4.010	39.100	40.100	2.56%
Н	1900	BODY	08/31/2016	21.9	23.1	0.100	5d149	3319	4.080	39.900	40.800	2.26%
E	2450	BODY	08/29/2016	22.9	22.7	0.100	981	7406	4.970	50.800	49.700	-2.17%

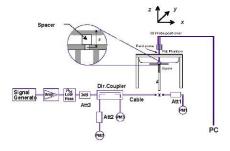


Figure 10-1 **System Verification Setup Diagram**

Figure 10-2 **System Verification Setup Photo**

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 29 of 44

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

					М	EASURE	MENT RI	ESULTS						
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, ,	(W/kg)	J	(W/kg)	
836.60	190	GSM 850	GSM	33.0	32.19	0.00	Right	Cheek	05339	1:8.3	0.152	1.205	0.183	
836.60	190	GSM 850	GSM	33.0	32.19	0.05	Right Tilt 05339 1:8.3 0.110 1.205 0.133							
836.60	190	GSM 850	GSM	33.0	32.19	-0.04	Left	Cheek	05339	1:8.3	0.220	1.205	0.265	A1
836.60	190	GSM 850	GSM	-0.01	Left	Tilt	05339	1:8.3	0.136	1.205	0.164			
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Head W/kg (mW/g) ged over 1 grar			

Table 11-2 GSM 1900 Head SAR

	COM 1000 Flead CAIX															
					М	EASURE	MENT R	ESULTS								
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #		
MHz	Ch.	iii o do / Dana	5011.00	Power [dBm]	Power [dBm]	Drift [dB]	0.00	Position	Number	Daily Cyclic	(W/kg)	Journal Later	(W/kg)			
1880.00	661	GSM 1900	GSM	30.0	29.57	-0.04	Right	Cheek	05289	1:8.3	0.099	1.104	0.109			
1880.00	661	GSM 1900	GSM	30.0	29.57	0.00	Right Tilt 05289 1:8.3 0.084 1.104 0.093									
1880.00	661	GSM 1900	GSM	30.0	29.57	0.04	Left	Cheek	05289	1:8.3	0.216	1.104	0.238	A2		
1880.00	661	GSM 1900	GSM	30.0	29.57	0.06	Left	Tilt	05289	1:8.3	0.076	1.104	0.084			
		ANSI / IE	EE C95.1 1992 -	SAFETY LIMI	Т		Head									
			Spatial Pea	ak			1.6 W/kg (mW/g)									
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	jed over 1 gran	n				

Table 11-3 UMTS 850 Head SAR

							oo iica	 							
					М	EASURE	MENT RI	ESULTS							
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power Drift [dB]	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#	
MHz	MHz Ch. Power [dBm]							Position	Number		(W/kg)		(W/kg)		
836.60	4183	UMTS 850	RMC	24.5	23.83	0.06	Right	Cheek	05339	1:1	0.213	1.167	0.249		
836.60	4183	UMTS 850	RMC	24.5	23.83	0.06	Right Tilt 05339 1:1 0.161 1.167 0.188								
836.60	4183	UMTS 850	RMC	24.5	23.83	0.02	Left	Cheek	05339	1:1	0.309	1.167	0.361	A3	
836.60	4183	UMTS 850	RMC	24.5	23.83	0.02	Left Tilt 05339 1:1 0.181 1.167 0.211								
		ANSI / IE	EE C95.1 1992 -	SAFETY LIMI	Т		Head								
			Spatial Pea	ak			1.6 W/kg (mW/g)								
		Uncontrolle	d Exposure/Ge	neral Popula	tion		averaged over 1 gram								

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 30 of 44

Table 11-4 UMTS 1900 Head SAR

	CIMTO 1300 Fledd CAIX														
					М	EASURE	MENT RI	ESULTS							
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	•	(W/kg)		
1880.00	9400	UMTS 1900	RMC	23.0	22.32	0.01	Right	Cheek	05289	1:1	0.187	1.169	0.219		
1880.00	9400	UMTS 1900	RMC	23.0	22.32	-0.05	Right Tilt 05289 1:1 0.162 1.169 0.189								
1880.00	9400	UMTS 1900	RMC	23.0	22.32	0.02	Left	Cheek	05289	1:1	0.429	1.169	0.502	A4	
1880.00	9400	UMTS 1900	RMC	23.0	22.32	0.06	Left Tilt 05289 1:1 0.140 1.169 0.164								
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak										Head				
				1.6 W/kg (mW/g)											
		Uncontrolle	d Exposure/Ge	neral Populat	tion					averaç	ged over 1 gran	n			

Table 11-5 LTE Band 5 (Cell) Head SAR

									<u> </u>	 	iouu	•							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	1.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.05	0	Right	Cheek	QPSK	1	0	05339	1:1	0.250	1.050	0.263	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	0.03	1	Right	Cheek	QPSK	25	12	05339	1:1	0.195	1.026	0.200	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.03	0	Right	Tilt	QPSK	1	0	05339	1:1	0.185	1.050	0.194	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	0.08	1	Right	Tilt	QPSK	25	12	05339	1:1	0.134	1.026	0.137	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	0.01	0	Left	Cheek	QPSK	1	0	05339	1:1	0.383	1.050	0.402	A5
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	0.07	1	Left	Cheek	QPSK	25	12	05339	1:1	0.275	1.026	0.282	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.06	0	Left	Tilt	QPSK	1	0	05339	1:1	0.209	1.050	0.219	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	0.03	1	Left	Tilt	QPSK	25	12	05339	1:1	0.158	1.026	0.162	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head 1.6 W/kg (mW/g) averaged over 1 gram										

Table 11-6 DTS Head SAR

							1	MEASUF	REMENT	RESULT	s							
FREQUI	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	14.5	14.00	0.15	Right	Cheek	05289	1	98.9	0.175	0.134	1.122	1.011	0.152	A6
2412	1	802.11b	DSSS	22	14.5	14.00	0.03	Right	Tilt	05289	1	98.9	0.148	-	1.122	1.011	-	
2412	1	802.11b	DSSS	22	14.5	14.00	-0.15	Left	Cheek	05289	1	98.9	0.075	-	1.122	1.011		
2412	1	802.11b	DSSS	22	14.5	14.00	0.15	Left	Tilt	05289	1	98.9	0.070	-	1.122	1.011	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Hea	ıd				
	Spatial Peak							1.6 W/kg (mW/g)										
	Uncontrolled Exposure/General Population												averaged ov	er 1 gram				

FCC ID: A3LSMG610Y	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 21 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 31 of 44

11.2 Standalone Body-Worn SAR Data

Table 11-7 GSM/UMTS Body-Worn SAR Data

					OIVI/OIVI		<u>uy 11.</u>		IN Dui	u							
					М	EASURE	MENTR	ESULTS									
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial		Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #		
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)		(W/kg)	1		
836.60	190	GSM 850	GSM	33.0	32.19	-0.01	10 mm	05339	1	1:8.3	back	0.417	1.205	0.502	A7		
1880.00	661	GSM 1900	GSM	30.0	29.57	-0.07	10 mm	05321	1	1:8.3	back	0.351	1.104	0.388	A9		
836.60	4183	UMTS 850	RMC	24.5	23.83	-0.11	10 mm	05339	N/A	1:1	back	0.519	1.167	0.606	A11		
1852.40	9262	UMTS 1900	RMC	23.0	22.23	0.03	10 mm	05339	N/A	1:1	back	0.671	1.194	0.801			
1880.00	9400	UMTS 1900	RMC	23.0	22.32	0.01	10 mm	05339	N/A	1:1	back	0.713	1.169	0.833			
1907.60	9538	UMTS 1900	0.02	10 mm	05339	N/A	1:1	back	0.782	1.202	0.940	A13					
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT	•		Body										
	Spatial Peak							1.6 W/kg (mW/g)									
		Uncontrolled	Exposure/Gener						averaged	over 1 gram							

Table 11-8 LTE Body-Worn SAR

									· ,										
								MEASU	IREMENT	RESULTS	;								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHZ]	Power [dBm]	Power [abm]	Dritt [dB]		Number						Cycle	(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.10	0	05339	QPSK	1	0	10 mm	back	1:1	0.546	1.050	0.573	A14
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	-0.02	1	05339	QPSK	25	12	10 mm	back	1:1	0.395	1.026	0.405	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Во	dy		•		
	Spatial Peak													1.6 W/kg	(mW/g)				
	Uncontrolled Exposure/General Population								averaged over 1 gram										

Table 11-9 DTS Body-Worn SAR

							М	EASURE	MENT	RESUL ⁻	rs							
FREQU	JENCY	Mode	Service	Maxim um Allowed	Conducted Power [dBm]	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor	Reported SAR (1g)	Plot#	
MHz	Ch.			[MHz]	Power [dBm]	Power [abm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.5	16.91	0.11	10 mm	05297	1	back	98.9	0.049	0.035	1.146	1.011	0.041	A16
		ANSI	/ IEEE C95	.1 1992 - SA	FETY LIMIT								В	Body				
									1.6 W/I	kg (mW/g)								
	Uncontrolled Exposure/General Population												averaged	over 1 gram				

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 32 of 44

11.3 Standalone Hotspot SAR Data

Table 11-10 GPRS/UMTS Hotspot SAR Data

					GPRS/U		•	RESULTS	Data						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial		Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]	.,	Number	Slots	Cycle		(W/kg)	,	(W/kg)	
836.60	190	GSM 850	GPRS	29.0	27.91	-0.17	10 mm	05339	4	1:2.076	back	0.601	1.285	0.772	
836.60	190	GSM 850	GPRS	29.0	27.91	-0.04	10 mm	05339	4	1:2.076	front	0.529	1.285	0.680	
836.60	190	GSM 850	GPRS	29.0	27.91	-0.20	10 mm	05339	4	1:2.076	bottom	0.399	1.285	0.513	
836.60	190	GSM 850	GPRS	29.0	27.91	0.03	10 mm	05339	4	1:2.076	right	0.436	1.285	0.560	
824.20	128	GSM 850	GPRS	29.0	27.97	-0.02	10 mm	05339	4	1:2.076	left	0.858	1.268	1.088	A8
836.60	190	GSM 850	GPRS	29.0	27.91	-0.01	10 mm	05339	4	1:2.076	left	0.838	1.285	1.077	
848.80	251	GSM 850	GPRS	29.0	27.86	0.00	10 mm	05339	4	1:2.076	left	0.642	1.300	0.835	
824.20	128	GSM 850	GPRS	29.0	27.97	-0.05	10 mm	05339	4	1:2.076	left	0.841	1.268	1.066	
1880.00	661	GSM 1900	GPRS	27.0	26.67	0.07	10 mm	05321	3	1:2.76	back	0.547	1.079	0.590	A10
1880.00	661	GSM 1900	GPRS	27.0	26.67	0.03	10 mm	05321	3	1:2.76	front	0.469	1.079	0.506	
1880.00	661	GSM 1900	GPRS	27.0	26.67	-0.01	10 mm	05321	3	1:2.76	bottom	0.202	1.079	0.218	
1880.00	661	GSM 1900	GPRS	27.0	26.67	0.04	10 mm	05321	3	1:2.76	right	0.081	1.079	0.087	
1880.00	661	GSM 1900	GPRS	27.0	26.67	-0.06	10 mm	05321	3	1:2.76	left	0.364	1.079	0.393	
836.60	4183	UMTS 850	RMC	24.5	23.83	-0.11	10 mm	05339	N/A	1:1	back	0.519	1.167	0.606	
836.60	4183	UMTS 850	RMC	24.5	23.83	-0.03	10 mm	05339	N/A	1:1	front	0.517	1.167	0.603	
836.60	4183	UMTS 850	RMC	24.5	23.83	-0.06	10 mm	05339	N/A	1:1	bottom	0.365	1.167	0.426	
836.60	4183	UMTS 850	RMC	24.5	23.83	-0.04	10 mm	05339	N/A	1:1	right	0.371	1.167	0.433	
826.40	4132	UMTS 850	RMC	24.5	23.92	-0.04	10 mm	05339	N/A	1:1	left	0.789	1.143	0.902	A12
836.60	4183	UMTS 850	RMC	24.5	23.83	-0.04	10 mm	05339	N/A	1:1	left	0.745	1.167	0.869	
846.60	4233	UMTS 850	RMC	24.5	23.95	-0.05	10 mm	05339	N/A	1:1	left	0.640	1.135	0.726	
1852.40	9262	UMTS 1900	RMC	23.0	22.23	0.03	10 mm	05339	N/A	1:1	back	0.671	1.194	0.801	
1880.00	9400	UMTS 1900	RMC	23.0	22.32	0.01	10 mm	05339	N/A	1:1	back	0.713	1.169	0.833	
1907.60	9538	UMTS 1900	RMC	23.0	22.20	0.02	10 mm	05339	N/A	1:1	back	0.782	1.202	0.940	A13
1880.00	9400	UMTS 1900	RMC	23.0	22.32	-0.02	10 mm	05339	N/A	1:1	front	0.576	1.169	0.673	
1880.00	9400	UMTS 1900	RMC	23.0	22.32	-0.05	10 mm	05339	N/A	1:1	bottom	0.244	1.169	0.285	
1880.00	9400	UMTS 1900	RMC	23.0	22.32	0.00	10 mm	05339	N/A	1:1	right	0.154	1.169	0.180	
1880.00	9400	UMTS 1900	RMC	23.0	22.32	-0.02	10 mm	05339	N/A	1:1	left	0.588	1.169	0.687	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak							Body 1.6 W/kg (mW/g)							
		Uncontrolled	Exposure/Gener	al Population	1							over 1 gram			

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 33 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset		Page 33 01 44

Table 11-11 LTE Band 5 (Cell) Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	١.		[WHZ]	Power [dBm]	Power [dBm]	Drift (aB)		Number							(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.10	0	05339	QPSK	1	0	10 mm	back	1:1	0.546	1.050	0.573	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	-0.02	1	05339	QPSK	25	12	10 mm	back	1:1	0.395	1.026	0.405	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	-0.05	0	05339	QPSK	1	0	10 mm	front	1:1	0.515	1.050	0.541		
836.50	836.50 20525 Mid LTE Band 5 (Cell) 10 23.5 23.39 0.4								05339	QPSK	25	12	10 mm	front	1:1	0.361	1.026	0.370	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.11	0	05339	QPSK	1	0	10 mm	bottom	1:1	0.367	1.050	0.385	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	-0.16	1	05339	QPSK	25	12	10 mm	bottom	1:1	0.309	1.026	0.317	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.29	-0.02	0	05339	QPSK	1	0	10 mm	right	1:1	0.325	1.050	0.341	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	-0.05	1	05339	QPSK	25	12	10 mm	right	1:1	0.297	1.026	0.305	
836.50	836.50 20525 Mid LTE Band 5 (Cell) 10 24.5 24.29 -0.0							0	05339	QPSK	1	0	10 mm	left	1:1	0.710	1.050	0.746	A15
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.5	23.39	-0.02	1	05339	QPSK	25	12	10 mm	left	1:1	0.599	1.026	0.615	
			ANSI / IEEE C95.		ETY LIMIT									Body					
	Spatial Peak												1.6 V	//kg (mW	//g)				
		ı	Jncontrolled Expo	sure/Genera	I Population							average	ed over 1	gram					

Table 11-12 WLAN Hotspot SAR

							N	IEASURI	MENT	RESUL	rs							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [abm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.5	16.91	0.11	10 mm	05297	1	back	98.9	0.049	-	1.146	1.011		
2412	1	802.11b	DSSS	22	17.5	16.91	0.19	10 mm	05297	1	front	98.9	0.057	0.039	1.146	1.011	0.045	A17
2412	1	802.11b	DSSS	22	17.5	16.91	0.16	10 mm	05297	1	top	98.9	0.041	-	1.146	1.011	٠	
2412	1	802.11b	DSSS	22	17.5	16.91	0.18	10 mm	05297	1	left	98.9	0.057	-	1.146	1.011	٠	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												В	ody				
	Spatial Peak												1.6 W/k	g (mW/g)				
		Uncontro							averaged	over 1 gram								

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 34 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Faye 34 01 44

10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
 GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
 was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
 more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.3 for more information. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 3. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 25 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 35 of 44

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	9.50	10	0.189

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Main antenna SAR testing was not required for phablet exposure conditions per FCC KDB 648474 D04v01r03. Therefore, no further analysis was required to determine that possible simultaneous scenarios would not exceed the SAR limit.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 36 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	

© 2016 PCTEST Engineering Laboratory, Inc.

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM 850	0.265	0.152	0.417
	GSM 1900	0.238	0.152	0.390
Head SAR	UMTS 850	0.361	0.152	0.513
	UMTS 1900	0.502	0.152	0.654
	LTE Band 5 (Cell)	0.402	0.152	0.554

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-3
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM 850	0.502	0.041	0.543
	GSM 1900	0.388	0.041	0.429
Body-Worn	UMTS 850	0.606	0.041	0.647
	UMTS 1900	0.940	0.041	0.981
	LTE Band 5 (Cell)	0.573	0.041	0.614

Table 12-4
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	GSM 850	0.502	0.189	0.691
	GSM 1900	0.388	0.189	0.577
Body-Worn	UMTS 850	0.606	0.189	0.795
	UMTS 1900	0.940	0.189	1.129
	LTE Band 5 (Cell)	0.573	0.189	0.762

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 37 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Faye 37 01 44

12.5 Hotspot SAR Simultaneous Transmission Analysis

Table 12-5
Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	1.088	0.045	1.133
	GPRS 1900	0.590	0.045	0.635
Hotspot SAR	UMTS 850	0.902	0.045	0.947
	UMTS 1900	0.940	0.045	0.985
	LTE Band 5 (Cell)	0.746	0.045	0.791

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: A3LSMG610Y	PCTEST STREET LABOUR INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 29 of 44	
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 38 of 44	

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 13-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS													
Band	FREQUE	NCY	Mode	Service	# of Time Slots	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
835	824.20	128	GSM 850	GPRS	4	left	10 mm	0.858	0.841	1.02	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Во	dy					
	Spatial Peak			1.6 W/kg (mW/g)										
		U	ncontrolled Exposure/General Pop	oulation					а	veraged o	ver 1 gram			

13.2 Measurement Uncertainty

The measured 1g SAR was <1.5 W/kg and 10g SAR was <3.75 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Page 39 of 44

14 EQUIPMENT LIST

Agilent BS96A (1931-2-2-2014) Section Analyzer 37,2705 Annual 37,2707 P98200182	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Aglient 8738E 30846-60017 Network Analyzer 37/2016 Annual 37/2017 38/2017	Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Aglient		8753E	(30kHz-6GHz) Network Analyzer	3/2/2016	Annual	3/2/2017	JP38020182
Aglient					Annual		US39170122
Aglient		E4432B			Annual		US40053896
Aglient 149/100 149/		E4438C		3/13/2015	Biennial	3/13/2017	MY42082385
Agient	Agilent	E5515C	Wireless Communications Test Set	1/29/2016	Biennial	1/29/2018	GB46310798
Agient							
Anritsu		N4010A		N/A	N/A		GB46170464
Anritsu	Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anntsu		MA24106A	USB Power Sensor	6/2/2016	Annual		1231538
Anritsu	Anritsu	MA24106A	USB Power Sensor	6/2/2016	Annual	6/2/2017	1231535
Anritsu Malasa Power Sensor 3/3/2016 Annual 3/2/2017 5318	Anritsu	MA2411B	Pulse Power Sensor	12/7/2015	Annual	12/7/2016	1207364
Annitsu	Anritsu	MA2411B	Pulse Power Sensor	8/18/2016	Annual	8/18/2017	1126066
Anritsu M12895A Power Meter 10/15/2015 Biennial 10/15/2017 94/10/15	Anritsu	MA2481A	Power Sensor	3/3/2016	Annual	3/3/2017	5318
Anritsu M.2895A Power Meter 10/16/2015 Biennial 10/16/2017 941001	Anritsu	ML2438A	Power Meter	3/3/2016	Annual	3/3/2017	1070030
Anritsu	Anritsu	ML2495A	Power Meter	10/16/2015	Biennial		941001
Annitsu	Anritsu	ML2495A	Power Meter		Biennial		1039008
Control Company	Anritsu	MT8820C	Radio Communication Analyzer		Annual		6201240328
Control Company 4940 Digital Thermometer 3/15/2015 Biennial 3/15/2017 150194029 Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261701 Control Company 4353 Long Stem Thermometer 1/22/2015 Biennial 3/8/2016 13005081 Gigatronics 80701A (0.05-186/tz) Power Sensor 11/4/2015 Annual 11/4/2016 1833460 Gigatronics 8051A Universal Power Meter 11/4/2015 Annual 11/4/2016 1833460 Keysight 772D Dual Directional Coupler CBT N/A CBT M/A C	COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Control Company	Control Company	4040		3/15/2015	Biennial	3/15/2017	
Control Company							
Gigatronics 80701A (0.05-18GHz) Power Sensor 11/4/2015 Annual 11/4/2016 183460 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Reysight 772D Dual Directional Coupler CBT N/A CBT MY52180215 MY6. BW-N6W5+ 668 Attenuator CBT N/A CBT MY52180215 MINICIPAL SEP-2400+ Low Pass Filter CBT N/A CBT MY52180215 MINICIPAL SEP-2400+ Low Pass Filter CBT N/A CBT R8979500030 MINICIPAL SEP-2400+ Low Pass Filter CBT N/A CBT N							
Gigatronics Resign First First							
Keysight 772D Dual Directional Coupler CBT N/A CBT MYS2180215 MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500093 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950- Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950- Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950- Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits ALP-2950- Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A <td></td> <td>8651A</td> <td>,</td> <td></td> <td>Annual</td> <td></td> <td>8650319</td>		8651A	,		Annual		8650319
MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT R897950093 Mini-Circuits VLP-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950- Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950- Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950- Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits NLP-1200- Digital Calliper CBT N/A CBT N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
MiniCircuits SLP_2400+ Low Pass Filter CBT N/A CBT R89795000303 Mini-Circuits VIF-6000+ Low Pass Filter CBT N/A CBT							
Mini-Circuits					•		
Mini-Circuits							
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits NIP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NIP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mitutoyo CD-6"CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 13264162 Narda 4014-6- 4-8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A Narda 4772-3 Attenuator (3dB) CBT N/A CBT N/A Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 3/29/2017 38371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 10/13/2015 Annual 10/13/2016 100376 Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial							
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2959+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mitutoyo CD-6°CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 13284162 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 10/13/2016 100976 Seekonk NC-100 Torque Wrench 5/16°, 8° lbs 3/2/2016 Annual 10/13/2018 N/A SPEAG DAK-3.2 Dielectric Assessment Kit (10MHz-3GHz) 3/1/2016 Annual 3/1/2017	Mini-Circuits	BW-N20W5+		CBT	•	CBT	N/A
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mitutoyo CD-6**CSX Digital Caliper 3/2/2016 Blennial 3/2/2018 13264162 Narda 4014C-6 4 × 8 GRz SMA 6 dB Directional Coupler CBT N/A CBT N/A Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Pasternack NC-100 Torque Wrench 11/6/2015 Blennial 11/6/2017 N/A Pasternack PE208-6 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 3/29/2017 83871/0079 Rohde & Schwarz CMW500 Radio Communication Tester 10/13/2015 Annual 10/13/2016 100976 Seekonk NC-100 Torque Wrench 5/16*, 8* 1bs 3/2/2016 Binnial 3/2/2018 N/A SPEAG DAK-12 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017							
Narda				CBT			
Narda	Mitutoyo	CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264162
Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 3/29/2017 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 10/13/2015 Annual 10/13/2016 100976 Seekonk NC-100 Torque Wrench 5/16", 8" ibs 3/2/2016 Biennial 3/2/2018 N/A SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 5/10/2017 1070 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual							
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 3/29/2017 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 10/13/2015 Annual 10/13/2016 100976 Seekonk NC-100 Torque Wrench S/16", 8" lbs 3/2/2016 Blennial 3/1/2018 N/A SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 7/19/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/1	Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 3/29/2017 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 10/13/2015 Annual 10/13/2016 100976 Seekonk NC-100 Torque Wrench S/16", 8" lbs 3/2/2016 Blennial 3/1/2018 N/A SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 7/19/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/1				11/6/2015		11/6/2017	N/A
Rohde & Schwarz CMW500 Radio Communication Tester 10/13/2015 Annual 10/13/2016 100976 Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 5/10/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 7/19/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3333 SPEAG ES3DV3 SAR Probe 11/17/2016 Annual 12/19/2017 3318 </td <td>Pasternack</td> <td>PE2208-6</td> <td></td> <td></td> <td>N/A</td> <td></td> <td>N/A</td>	Pasternack	PE2208-6			N/A		N/A
Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 7/19/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 11/17/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 12/19/2017 3318	Rohde & Schwarz	CMU200	Base Station Simulator	3/29/2016	Annual	3/29/2017	836371/0079
SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 7/19/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 11/17/2016 3333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 11/12/2017 7406 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 2/19/2017 7406 SPEAG	Rohde & Schwarz	CMW500	Radio Communication Tester	10/13/2015	Annual	10/13/2016	100976
SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 7/19/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 11/17/2016 3333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 11/17/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3318 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 2/19/2017 3318 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1406 SPEAG <t< td=""><td>Seekonk</td><td>NC-100</td><td>Torque Wrench 5/16", 8" lbs</td><td>3/2/2016</td><td>Biennial</td><td>3/2/2018</td><td>N/A</td></t<>	Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 7/19/2016 Annual 7/19/2017 1039 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 10/29/2017 3318 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 10/29/2017 3318 SPEAG ES3DV4 SAR Probe 2/19/2016 Annual 2/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG	SPEAG	DAK-12	Dielectric Assessment Kit (10MHz - 3GHz)	3/1/2016	Annual	3/1/2017	1102
SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 10/29/2017 3318 SPEAG ES3DV4 SAR Probe 2/19/2016 Annual 2/19/2017 7406 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 2/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/12/2016 14/11/2016 14/15	SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2016	Annual	5/10/2017	1070
SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 10/29/2017 3318 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 2/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/18/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/12/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/27/2015 Annual 11/12/2016 11/12/2016 11/12/2016 11/12/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/201		DAKS-3.5					
SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 10/29/2017 3318 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 2/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/18/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/12/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/27/2015 Annual 11/12/2016 11/12/2016 11/12/2016 11/12/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/201	SPEAG	ES3DV3	SAR Probe	3/18/2016	Annual		3319
SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3318 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 2/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 3/14/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017							
SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3318 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual	SPEAG	ES3DV3	SAR Probe		Annual	11/17/2016	3334
SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3318 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7406 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 2/19/2017 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual<							
SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG DB35V2 835 MHz SAR Dipole 7/13/2016 Annual 4/14/2017 4047 SPEAG D1900V2 1990 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5149 SPEAG D2450V2 2450 MHz SAR Dipole 7/12/2016 <	SPEAG	ES3DV3	SAR Probe	2/19/2016	Annual	2/19/2017	3318
SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4d047 SPEAG D1900V2 1990 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/14/2017 4d133 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG	EX3DV4	SAR Probe	4/19/2016	Annual	4/19/2017	7406
SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4d047 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/14/2017 4d133 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG	DAE4	Dasy Data Acquisition Electronics	3/14/2016	Annual	3/14/2017	1368
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4047 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 50149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG	DAE4			Annual	2/18/2017	1272
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 40047 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG	DAE4	Dasy Data Acquisition Electronics	11/11/2015	Annual	11/11/2016	1415
SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4d047 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133		DAE4			Annual		
SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2017 1407 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4d047 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG	DAE4		1	Annual		665
SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4d047 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG						
SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133		D835V2			Annual		4d047
SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133	SPEAG	D1900V2	1900 MHz SAR Dipole	7/15/2016	Annual	7/15/2017	5d149
SPEAG D835V2 835 MHz SAR Dipole 7/14/2016 Annual 7/14/2017 4d133					Annual		
					Annual		5d080

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 40 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	raye 40 01 44

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u _i	ui	vi
, ,	(5.50.	5,,,		10 8	(± %)	(± %)	''
Measurement System			ı	ı		\	(= ,,,	
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	œ
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	œ
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	oc
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	œ
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	× ×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	œ
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	× ×
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	œ
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	oc
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	œ
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1,7	1.4	oc
Combined Standard Uncertainty (k=1)	3.0	RSS	3	0.00	01.5	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	-
(95% CONFIDENCE LEVEL)		2				_5.0		

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 41 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	Faye 41 01 44

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 42 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMG610Y	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 43 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMG610Y	PCTEST MANUFACTURE LABORATOR INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 44 of 44
0Y1608291498.A3L	08/29/16 - 09/06/16	Portable Handset	

APPENDIX A: SAR TEST DATA

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.892 \text{ S/m}; \ \epsilon_r = 40.579; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-29-2016; Ambient Temp: 20.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 850, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.63 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.220 W/kg

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05289

Communication System: UID 0, GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.416 \text{ S/m}; \ \epsilon_r = 38.777; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

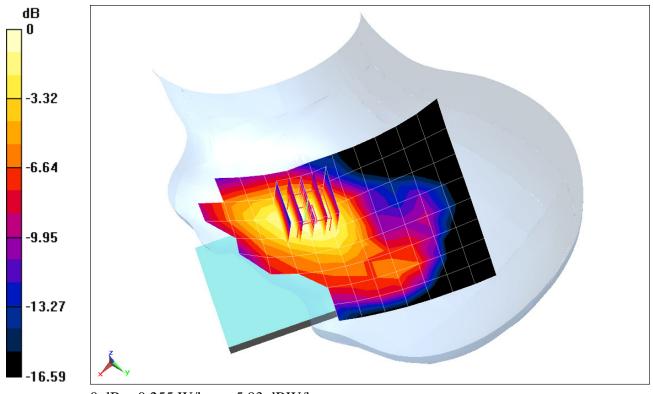
Test Date: 08-29-2016; Ambient Temp: 22.6°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3213; ConvF(5.05, 5.05, 5.05); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/18/2016

Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.01 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.335 W/kg

SAR(1 g) = 0.216 W/kg

0 dB = 0.255 W/kg = -5.93 dBW/kg

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.892 \text{ S/m}; \ \epsilon_r = 40.579; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-29-2016; Ambient Temp: 20.7°C; Tissue Temp: 21.5°C

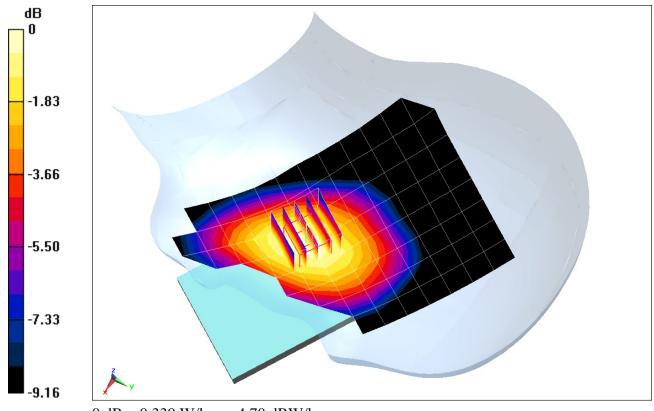
Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.60 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.380 W/kg

SAR(1 g) = 0.309 W/kg

0 dB = 0.339 W/kg = -4.70 dBW/kg

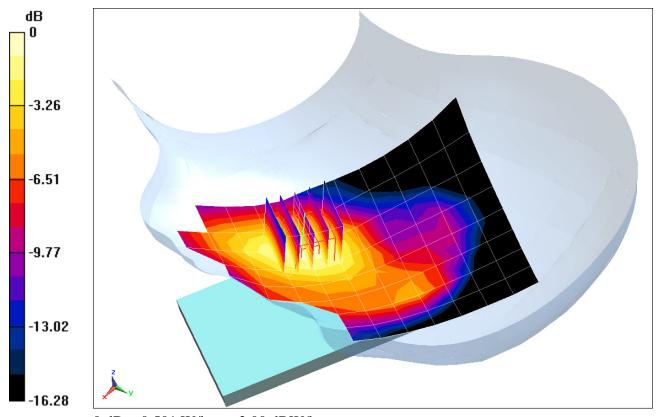
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05289

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.416 \text{ S/m}; \ \epsilon_r = 38.777; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-29-2016; Ambient Temp: 22.6°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3213; ConvF(5.05, 5.05, 5.05); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.26 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.667 W/kg

SAR(1 g) = 0.429 W/kg

0 dB = 0.501 W/kg = -3.00 dBW/kg

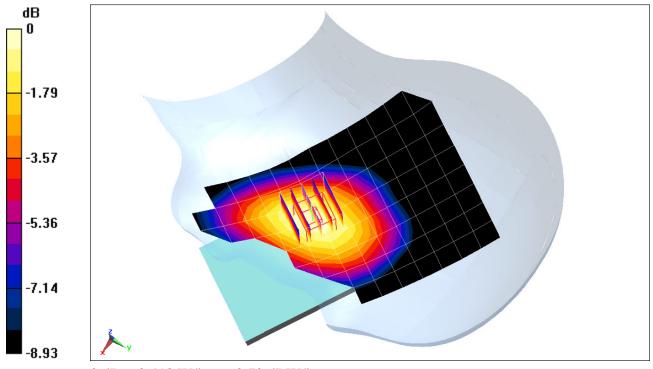
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.892 \text{ S/m}; \ \epsilon_r = 40.581; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-29-2016; Ambient Temp: 20.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Left Head, Cheek, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.66 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.466 W/kg

SAR(1 g) = 0.383 W/kg

0 dB = 0.418 W/kg = -3.79 dBW/kg

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05289

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.825 \text{ S/m}; \ \epsilon_r = 37.918; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

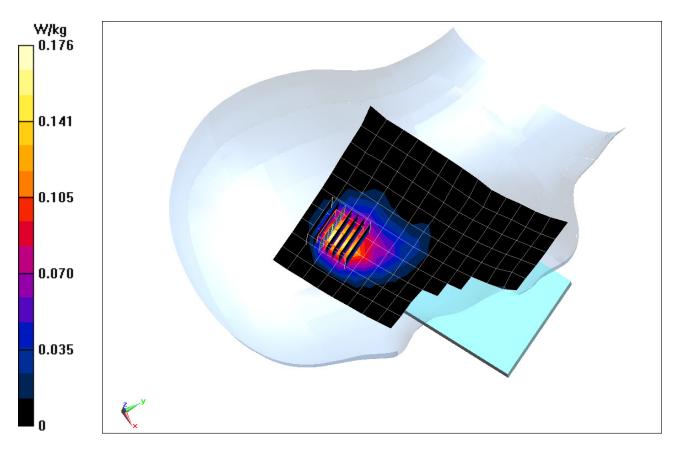
Test Date: 08-29-2016; Ambient Temp: 23.9°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3334; ConvF(4.58, 4.58, 4.58); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 1, 1 Mbps


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.941 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.328 W/kg

SAR(1 g) = 0.134 W/kg

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Body, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.984 \text{ S/m}; \ \epsilon_r = 54.119; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

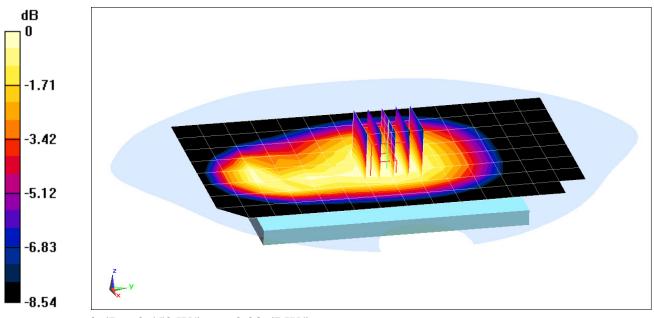
Test Date: 09-06-2016; Ambient Temp: 20.4°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.28 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.532 W/kg

SAR(1 g) = 0.417 W/kg

0 dB = 0.459 W/kg = -3.38 dBW/kg

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 824.2 MHz; Duty Cycle: 1:2.076 Medium: 835 Body, Medium parameters used (interpolated): $f = 824.2 \text{ MHz}; \ \sigma = 0.97 \text{ S/m}; \ \epsilon_r = 54.194; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

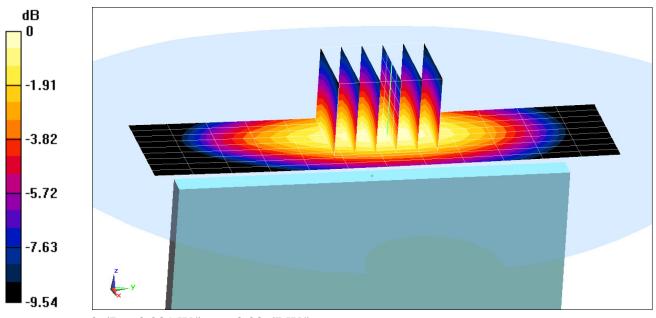
Test Date: 09-06-2016; Ambient Temp: 20.4°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3319; ConvF (6.04, 6.04, 6.04); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Left Edge, Low.ch, 4 Tx Slots


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.10 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.858 W/kg

0 dB = 0.981 W/kg = -0.08 dBW/kg

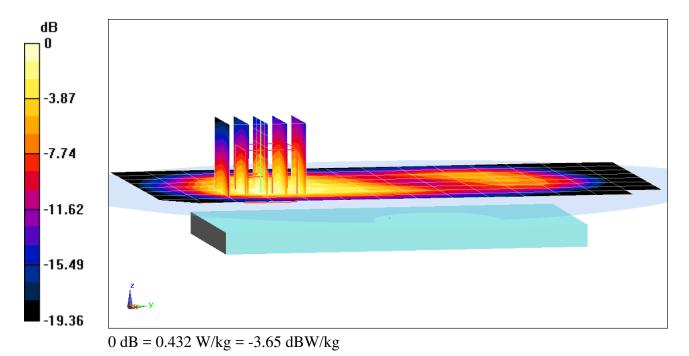
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05321

Communication System: UID 0, GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.537 \text{ S/m}; \ \epsilon_r = 51.117; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 20.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3318; ConvF(4.81, 4.81, 4.81); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.17 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.636 W/kg

SAR(1 g) = 0.351 W/kg

Α9

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05321

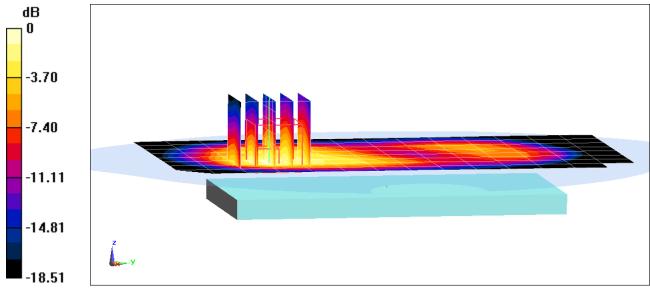
Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.537 \text{ S/m}; \ \epsilon_r = 51.117; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 20.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3318; ConvF(4.81, 4.81, 4.81); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.14 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.998 W/kg

SAR(1 g) = 0.547 W/kg

0 dB = 0.672 W/kg = -1.73 dBW/kg

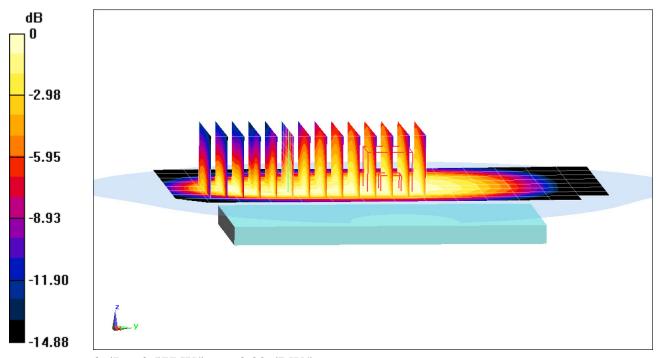
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 54.474$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 21.2°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3333; ConvF(6.25, 6.25, 6.25); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (8x14x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.19 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.816 W/kg

SAR(1 g) = 0.519 W/kg

0 dB = 0.577 W/kg = -2.39 dBW/kg

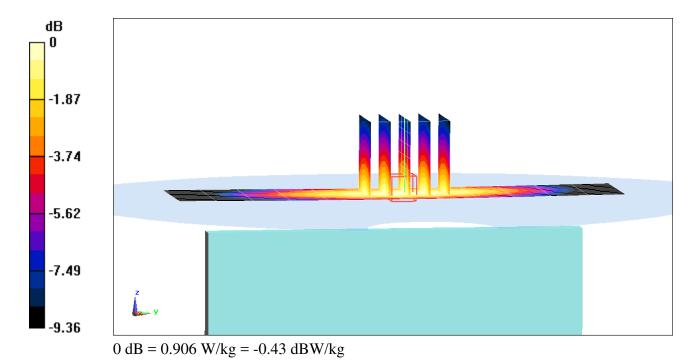
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, UMTS; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): $f = 826.4 \text{ MHz}; \ \sigma = 1.006 \text{ S/m}; \ \epsilon_r = 54.589; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 21.2°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3333; ConvF(6.25, 6.25, 6.25); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Left Edge, Low.ch


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.37 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.789 W/kg

DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, UMTS, Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \ \sigma = 1.562 \text{ S/m}; \ \epsilon_r = 51.732; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

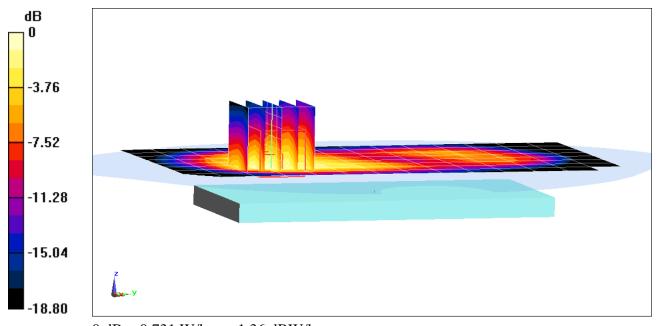
Test Date: 08-31-2016; Ambient Temp: 21.9°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3319; ConvF(4.7, 4.7, 4.7); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.92 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.782 W/kg

0 dB = 0.731 W/kg = -1.36 dBW/kg

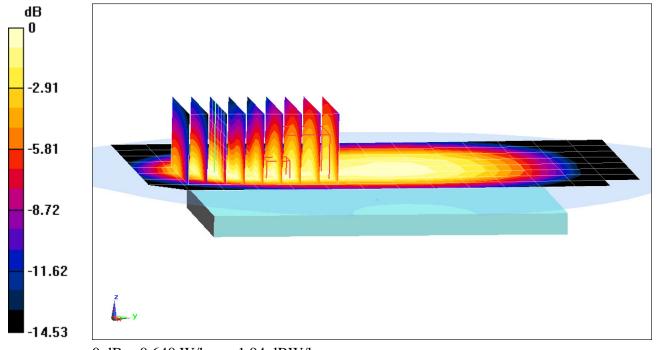
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 1.015 \text{ S/m}; \ \epsilon_r = 54.474; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 21.2°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3333; ConvF(6.25, 6.25, 6.25); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x9x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.88 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.546 W/kg

0 dB = 0.640 W/kg = -1.94 dBW/kg

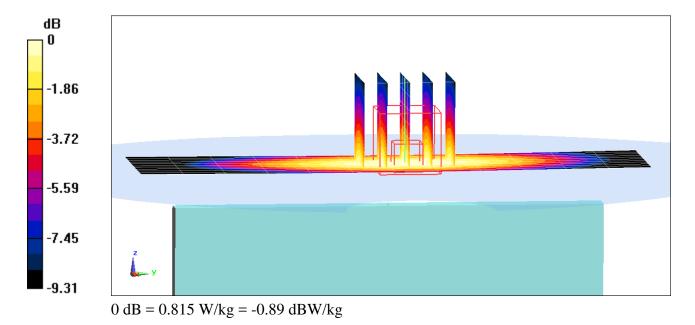
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05339

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 1.015 \text{ S/m}; \ \epsilon_r = 54.474; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 21.2°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3333; ConvF(6.25, 6.25, 6.25); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Left Edge, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.72 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.995 W/kg

SAR(1 g) = 0.710 W/kg

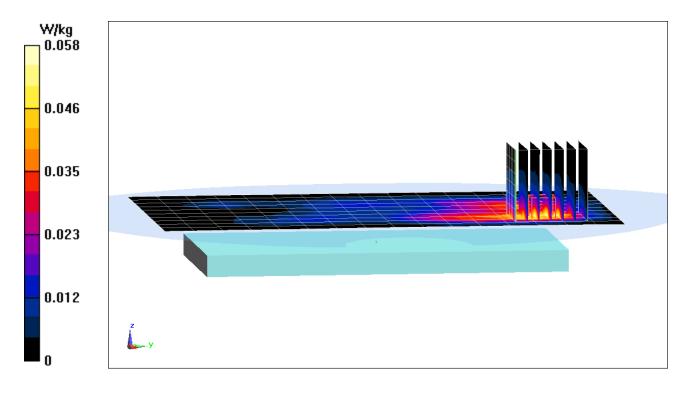
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05297

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.902 \text{ S/m}; \ \epsilon_r = 52.57; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 22.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.224 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0740 W/kg

SAR(1 g) = 0.035 W/kg

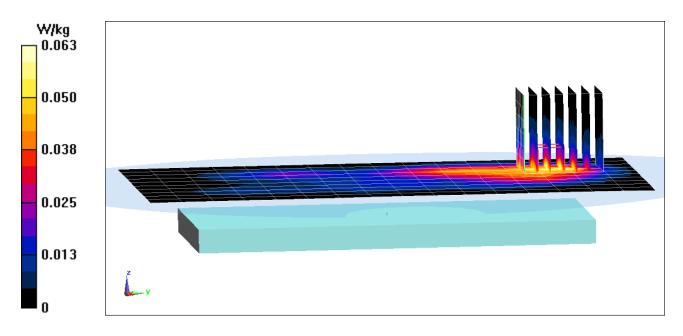
DUT: A3LSMG610Y; Type: Portable Handset; Serial: 05297

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.902 \text{ S/m}; \ \epsilon_r = 52.57; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 22.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Front Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.403 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0810 W/kg

SAR(1 g) = 0.039 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

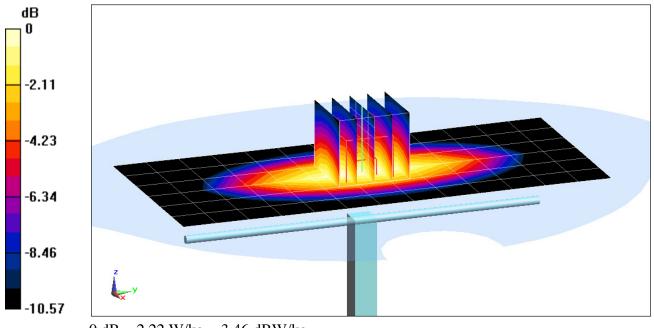
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.891 \text{ S/m}; \ \epsilon_r = 40.602; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-29-2016; Ambient Temp: 20.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.73 W/kg

SAR(1 g) = 1.90 W/kg

Deviation(1 g) = 4.05%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

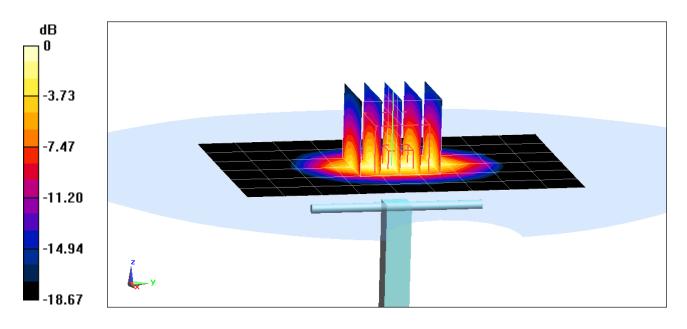
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.437 \text{ S/m}; \ \epsilon_r = 38.688; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 22.6°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3213; ConvF(5.05, 5.05, 5.05); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.74 W/kg

SAR(1 g) = 4.16 W/kg

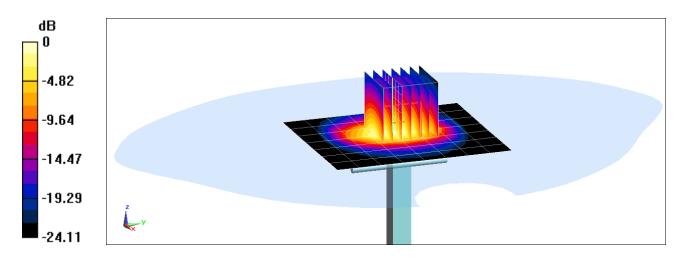
Deviation(1 g) = 3.74%

0 dB = 5.27 W/kg = 7.22 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.865 \text{ S/m}; \ \epsilon_r = 37.78; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 23.9°C; Tissue Temp: 22.9°C


Probe: ES3DV3 - SN3334; ConvF(4.58, 4.58, 4.58); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

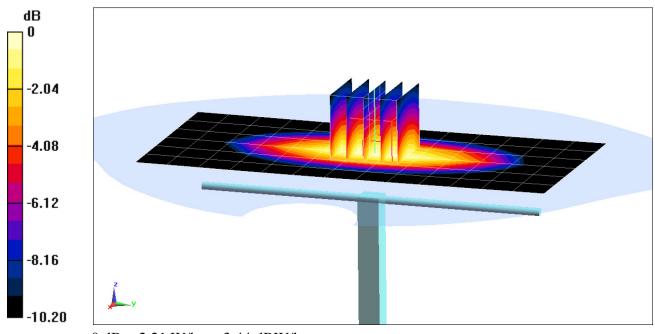
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.49 W/kg Deviation(1 g) = 3.98%

0 dB = 7.27 W/kg = 8.62 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 1.013$ S/m; $\epsilon_r = 54.482$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-29-2016; Ambient Temp: 21.2°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3333; ConvF(6.25, 6.25, 6.25); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.74 W/kg SAR(1 g) = 1.89 W/kg Deviation(1 g) = -0.53%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.983 \text{ S/m}; \ \epsilon_r = 54.14; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

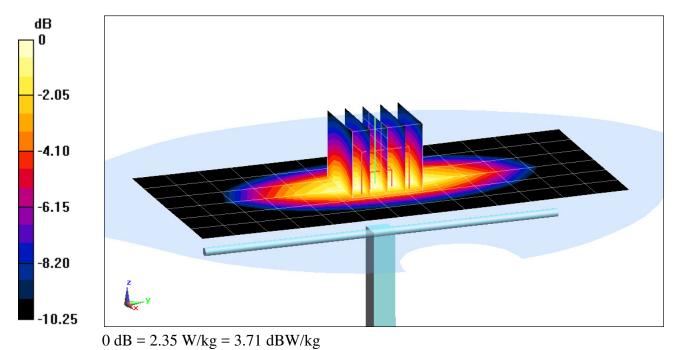
Test Date: 09-06-2016; Ambient Temp: 20.4°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

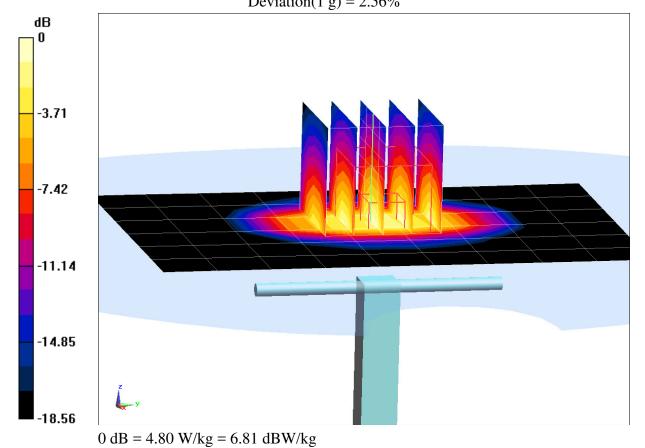
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.96 W/kg

SAR(1 g) = 2.01 W/kg

Deviation(1 g) = 5.02%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.56$ S/m; $\epsilon_r = 51.052$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 20.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3318; ConvF(4.81, 4.81, 4.81); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.25 W/kg SAR(1 g) = 4.01 W/kg Deviation(1 g) = 2.56%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

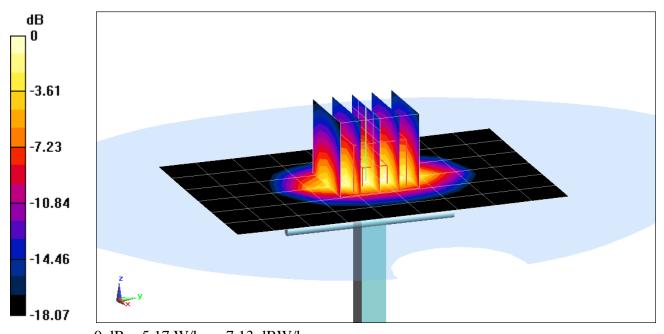
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.555 \text{ S/m}; \ \epsilon_r = 51.739; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2016; Ambient Temp: 21.9°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3319; ConvF(4.7, 4.7, 4.7); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

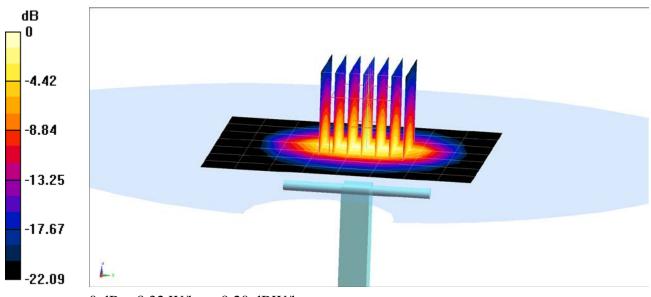
Peak SAR (extrapolated) = 7.38 W/kg

SAR(1 g) = 4.08 W/kg

Deviation(1 g) = 2.26%

0 dB = 5.17 W/kg = 7.13 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.957 \text{ S/m}; \ \epsilon_r = 52.442; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-29-2016; Ambient Temp: 22.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.2 W/kg SAR(1 g) = 4.97 W/kg Deviation(1 g) = -2.17%

0 dB = 8.32 W/kg = 9.20 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3319 Mar16

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3319

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

March 18, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager

Issued: March 21, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3319_Mar16

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

sensitivity in free space sensitivity in TSL / NORMx,v,z

ConvF sensitivity in TSL / NORM DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3319_Mar16 Page 2 of 12

ES3DV3 - SN:3319 March 18, 2016

Probe ES3DV3

SN:3319

Manufactured: Calibrated:

January 10, 2012 March 18, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3- SN:3319 March 18, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.12	1.08	1.16	± 10.1 %
DCP (mV) ^B	104.1	104.5	103.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	203.1	±3.5 %
		Υ	0.0	0.0	1.0		203.8	***************************************
		Z	0.0	0.0	1.0		200.4	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	2.29	60.1	11.2	10.00	42.0	±1.2 %
		Υ	1.95	58.7	10.4		42.0	
		Z	3.15	62.5	12.1		42.9	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	3.45	71.5	19.9	1.87	122.0	±0.5 %
		Υ	2.88	68.4	18.6		122.8	
		Z	3.35	70.8	19.5		120.5	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.39	67.3	19.5	5.67	132.3	±1.2 %
		Υ	6.54	68.2	20.1		134.5	
		Z	6.40	67.4	19.6		130.2	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	10.41	75.3	25.6	9.29	124.2	±2.2 %
		Υ	10.45	76.3	26.6		122.6	
		Z	10.82	75.9	25.8		124.8	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.30	67.1	19.5	5.80	130.7	±1.2 %
		Υ	6.35	67.5	19.9		131.5	
		Z	6.33	67.1	19.6		128.5	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.70	74.1	25.2	9.28	118.8	±2.2 %
***************************************		Y	9.65	74.9	26.0		117.1	
		Z	10.15	75.0	25.5		119.2	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.00	66.6	19.3	5.75	127.4	±1.2 %
		Υ	6.01	66.9	19.6		128.9	
		Z	6.02	66.6	19.3		125.6	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.45	67.2	19.6	5.82	132.2	±1.2 %
		Y	6.47	67.5	19.9		133.5	
		Z	6.45	67.1	19.5		130.0	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.76	65.7	19.0	5.73	110.8	±0.9 %
		Y	4.80	66.3	19.5	 	112.0	
40470	1 TE TOD (00 EDIA) 1 DD 00 MH	Z	4.84	65.9	19.1	<u> </u>	109.2	1 .0 5 67
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	8.98	78.7	27.7	9.21	132.0	±2.5 %
		Y	9.71	82.4	30.0		132.2	
10175	LTF FDD (OC FDMA 4 DD 40 M)-	Z	9.79	80.4	28.4	<u> </u>	133.4	1000
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.76	65.6	19.0	5.72	109.8	±0.9 %
		Y	4.76	66.1	19.4		111.4	
		Z	4.83	65.8	19.1		108.9	

Certificate No: ES3-3319_Mar16 Page 4 of 12

ES3DV3-SN:3319 March 18, 2016

10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	4.77	65.7	19.1	5.72	109.2	±0.9 %
		Υ	4.78	66.2	19.4		111.9	
		Z	5.24	67.7	20.2		149.0	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	8.93	78.5	27.6	9.21	131.4	±2.5 %
		Υ	9.48	81.7	29.7		131.7	
		Ζ	9.69	80.3	28.3		131.6	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	8.94	73.0	24.7	9.24	111.2	±2.2 %
		Υ	9.05	74.3	25.9		111.8	
		Z	9.29	73.6	24.9		111.3	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	9.62	73.9	25.1	9.30	117.4	±2.2 %
· ·		Υ	9.73	75.1	26.1		118.2	
		Z	10.08	74.8	25.5		118.2	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.31	67.1	19.6	5.81	128.6	±1.2 %
		Υ	6.39	67.6	20.0		132.2	
		Z	6.33	67.1	19.6	***************************************	127.2	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.87	67.6	19.9	6.06	132.8	±1.4 %
		Υ	6.96	68.2	20.3		137.0	
		Z	6.88	67.6	19.9		131.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-- SN:3319 March 18, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.44	6.44	6.44	0.49	1.80	± 12.0 %
835	41.5	0.90	6.16	6.16	6.16	0.46	1.80	± 12.0 %
1750	40.1	1.37	5.20	5.20	5.20	0.51	1.45	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.58	1.40	± 12.0 %
2300	39.5	1.67	4.69	4.69	4.69	0.80	1.21	± 12.0 %
2450	39.2	1.80	4.47	4.47	4.47	0.75	1.32	± 12.0 %
2600	39.0	1.96	4.33	4.33	4.33	0.80	1.31	± 12.0 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Certificate No: ES3-3319_Mar16 Page 6 of 12

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

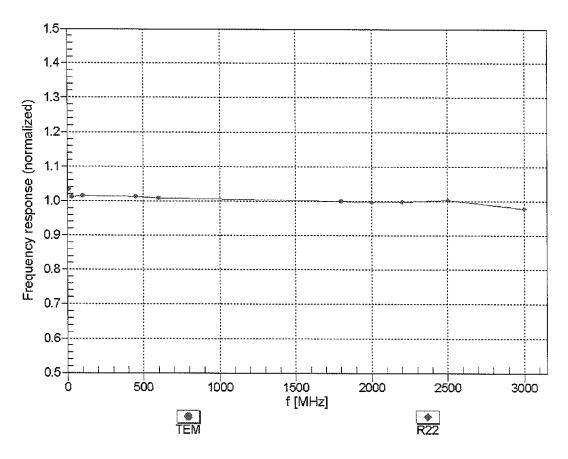
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- SN:3319 March 18, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.06	6.06	6.06	0.47	1.45	± 12.0 %
835	55.2	0.97	6.04	6.04	6.04	0.63	1.27	± 12.0 %
1750	53.4	1.49	4.91	4.91	4.91	0.46	1.66	± 12.0 %
1900	53.3	1.52	4.70	4.70	4.70	0.80	1.24	± 12.0 %
2300	52.9	1.81	4.36	4.36	4.36	0.74	1.33	± 12.0 %
2450	52.7	1.95	4.20	4.20	4.20	0.80	1.25	± 12.0 %
2600	52.5	2.16	3.99	3.99	3.99	0.80	1.20	± 12.0 %

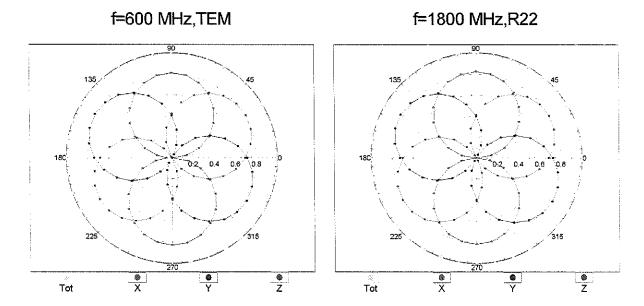

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

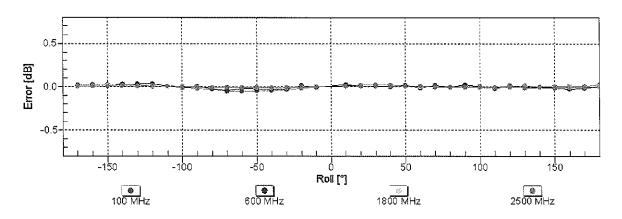
Certificate No: ES3-3319_Mar16 Page 7 of 12

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

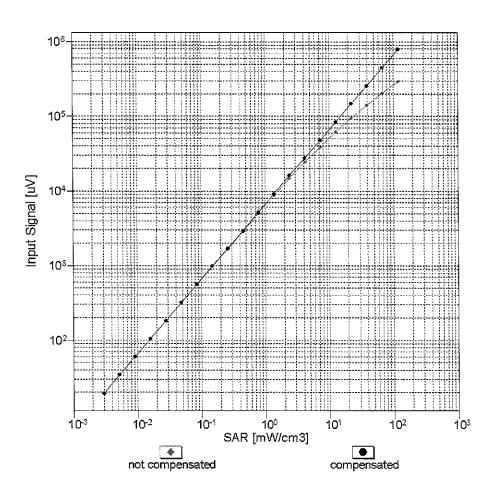
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

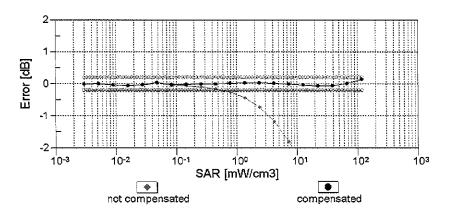



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ES3DV3-SN:3319 March 18, 2016

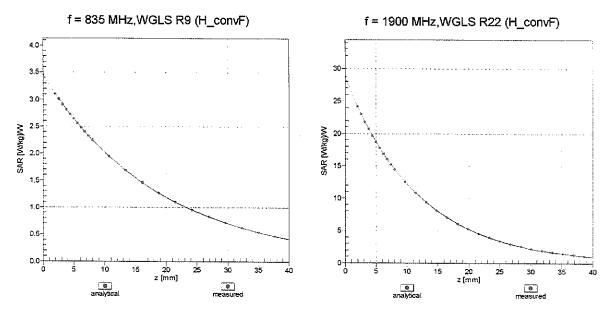
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

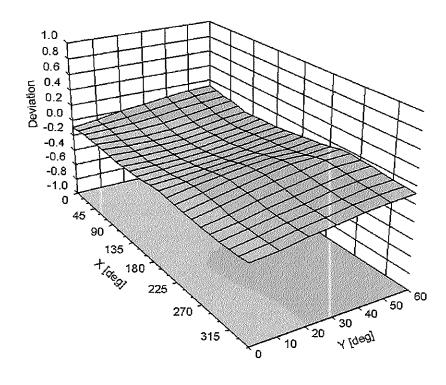


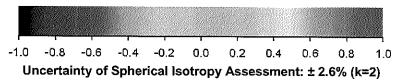


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3- SN:3319 March 18, 2016


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	60
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3213_Feb16

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3213

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

03/01/2016

Calibration date:

February 19, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: February 20, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3213_Feb16

Page 1 of 12

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL NORMx,y,z tissue simulatina liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx, v, z diode compression point

CF

crest factor (1/duty cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization o

o rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization $\theta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz; R22 wavequide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.v.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3213

Calibrated:

Manufactured: October 14, 2008
Calibrated: February 19, 2016 February 19, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3-SN:3213

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.50	1.38	1.34	± 10.1 %
DCP (mV) ⁸	99.8	101.9	99.8	

Modulation Calibration Parameters

ŲID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	195.2	±3.5 %
		Υ	0.0	0.0	1.0		214.0	
		Z	0.0	0.0	1.0		215.1	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	5.06	68.1	14.5	10.00	42.1	±0.9 %
		Υ	11.23	76.3	17.0		39.8	
		Z	6.02	70.0	14.9		39.7	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	3.09	69.2	18.8	1.87	137.2	±0.7 %
		Y	3.15	70.3	19.6		133.1	
		Z	2.82	67.6	18.0		132.3	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.22	66.6	19.2	5.67	125.7	±1.7 %
		Υ	6.51	68.0	20.1		146.0	
10100	1.75 TDD (00 5DM 4000) DD 00	Z	6.41	67.3	19.6		143.7	.0.0.04
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	10.84	76.7	26.6	9.29	143.8	±3.3 %
		Υ	10.81	77.3	27.2		137.5	
- (0.100	1.75 500 (00 50) (00 60)	Z	10.28	75.3	25.8		136.3	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.44	67.4	19.8	5.80	148.4	±1.7 %
		Y	6.38	67.6	20.0		142.8	
		Z	6.32	67.1	19.5		141.5	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.08	75.4	26.1	9.28	137.0	±3.3 %
	-	Υ	10.08	76.2	26.8		131.6	
10151	1.55 500 (00 501)	Z	9.63	74.3	25.4		130.7	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.09	66.7	19.5	5.75	144.2	±1.4 %
		Υ	6.07	67.1	19.8		139.5	
		Z	5.98	66.4	19.3		137.4	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.59	67.5	19.8	5.82	149.8	±1.7 %
		Υ	6.51	67.6	20.1		146.2	
10100		Z	6.44	67.0	19.5		145.3	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.13	67.0	19.8	5.73	146.8	±1.4 %
		Y	5.10	67.4	20.2		144.4	
40470	LTT TOD (OO EDW) 4 DD COAN	Z	4.99	66.5	19.5	0.04	141.2	.0.0.01
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	8.31	76.6	26.9	9.21	125.5	±3.3 %
		Y	10.61	84.9	31.4		149.4	
40475	LTT TDD (OO FDMA 4 DD 46 : "	Z	8.76	78.4	27.8	F 70	143.6	. 4 4 5/
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	5.05	66.6	19.6	5.72	144.9	±1.4 %
		Υ	5.06	67.2	20.1		142.1	
		Z	4.99	66.5	19.5		140.5	

ES3DV3-SN:3213 February 19, 2016

10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	5.12	66.9	19.8	5.72	145.1	±1.4 %
		Υ	5.09	67.3	20.2		143.7	
		Z	5.00	66.6	19.5		140.2	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	8.18	76.1	26.7	9.21	124.8	±3.3 %
		Υ	10.45	84.4	31.2		148.6	
		Z	8.75	78.3	27.7		143.4	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.24	74.1	25.5	9.24	126.6	±2.7 %
		Υ	9.21	74.8	26.2		122.2	
		Z	9.78	76.0	26.5		147.7	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	9.92	75.0	25.9	9.30	133.4	±3.3 %
		Υ	9.95	75.8	26.6		128.8	
		Ζ	9.55	74.0	25.3		127.2	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.43	67.3	19.8	5.81	146.2	±1.4 %
		Y	6.42	67.7	20.1		141.6	
		Z	6.28	66.9	19.5		140.2	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.70	66.9	19.5	6.06	128.1	±1.7 %
		Y	6.97	68.2	20.4		147.3	
		Z	6.91	67.7	20.0		146.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-SN:3213

Certificate No: ES3-3213_Feb16

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Calibration Parameter Determined in Head Tissue Simulating Media

					•			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.43	6.43	6.43	0.55	1.36	± 12.0 %
835	41.5	0.90	6.18	6.18	6.18	0.58	1.33	± 12.0 %
1750	40.1	1.37	5.23	5.23	5.23	0.80	1.14	± 12.0 %
1900	40.0	1.40	5.05	5.05	5.05	0.60	1.30	± 12.0 %
2300	39.5	1.67	4.78	4.78	4.78	0.59	1.41	± 12.0 %
2450	39.2	1.80	4.58	4.58	4.58	0.75	1.30	± 12.0 %
2600	39.0	1.96	4.38	4.38	4.38	0.71	1.38	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

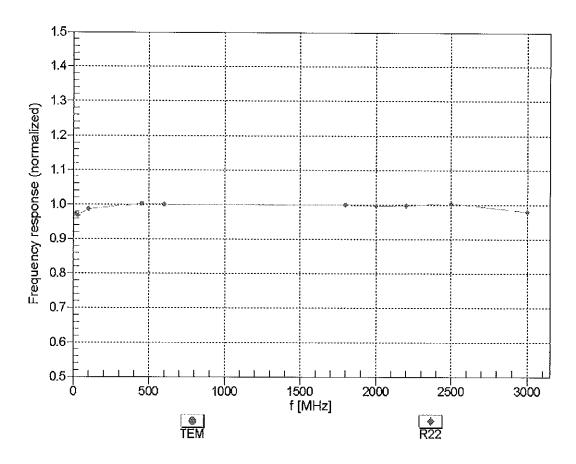
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3213_Feb16

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	5.98	5.98	5.98	0.60	1.31	± 12.0 %
835	55.2	0.97	6.00	6.00	6.00	0.36	1.70	± 12.0 %
1750	53.4	1.49	4.94	4.94	4.94	0.48	1.57	± 12.0 %
1900	53.3	1.52	4.78	4.78	4.78	0.52	1.55	± 12.0 %
2300	52.9	1.81	4.50	4.50	4.50	0.74	1.34	± 12.0 %
2450	52.7	1.95	4.41	4.41	4.41	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.21	4.21	4.21	0.90	1.05	± 12.0 %

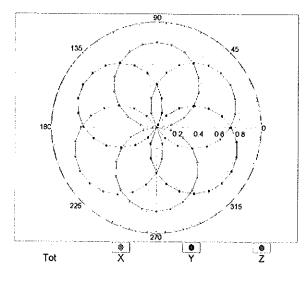

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

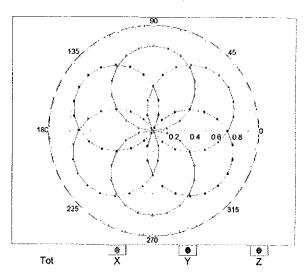
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

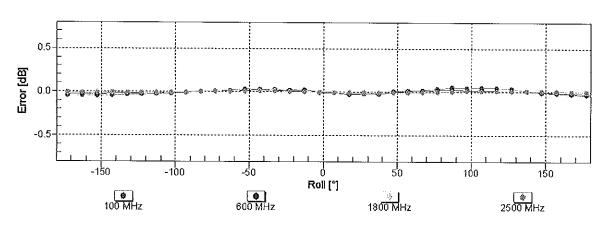
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

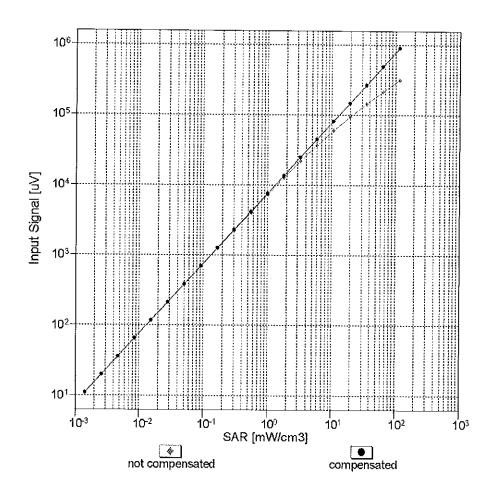


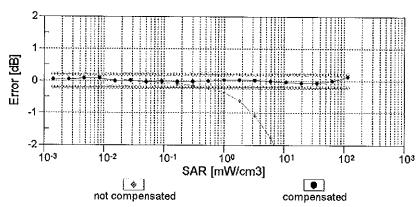

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

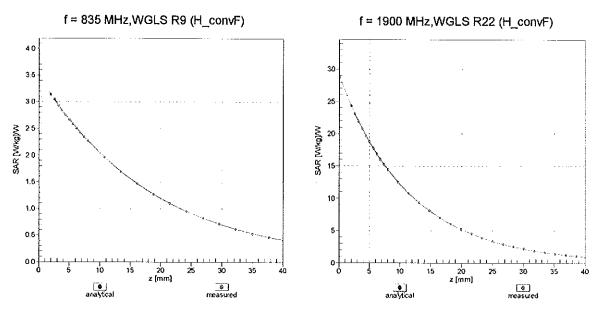
f=600 MHz,TEM

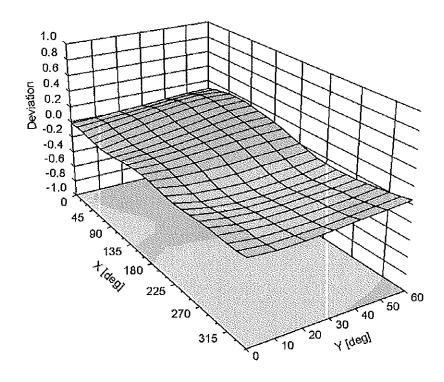
f=1800 MHz,R22

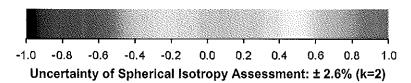




Uncertainty of Axial Isotropy Assessment: \pm 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	97.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overali Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 3004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: ES3-3334_Nov15

C

CALIBRATION CERTIFICATE

Object ES3DV3 SN:3334

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

11/57A/12

Calibration date:

November 17, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	G841293874	01-Apr-16 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-18
Reference 3 dB Attenuator	SN: \$5054 (3a)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: 85277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	\$N; \$5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013 Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	al	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	U\$37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Name Function Signature

Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 17, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3334, Nov15 Page 1 of 13

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Katibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx.v.z sensitivity in free space

NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diade compression point

DCP diade compression point
CE crest factor (1/duty, cycle) (

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip
 (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3334_Nov15 Page 2 of 13

Probe ES3DV3

SN:3334

Manufactured: Calibrated:

January 24, 2012 November 17, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

E\$3DV3-SN:3334

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.03	1,03	0.99	± 10.1 %
DCP (mV)B	107.6	105.3	107.9	

Modulation Calibration Parameters

ÜID	Communication System Name		A	В	С	D	VR	Unç ^E
	A		dB	dΒ√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	192.1	±2.7 %
		Y	0.0	0.0	1.0		183.6	
40040		Z	0.0	0.0	1.0	:	183.3	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	х	2.27	60.1	10.2	10.00	38.6	±1.4 %
	****	Y	1.99	59.3	10.2	L	38.4	!
40		Z	5.38	67.8	12.9		37.2	:
10011- CAB	UMTS-FDD (WCDMA)	<u> </u>	3.40	68.0	18.9	2.91	131.7	±0.5 %
		' Υ .		67.0	18.2		130.2	
		Z	3.41	68.3	19.1		148.5	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	2.93	68.9	18.7	1.87	132.9	±0.7 %
		Y	3.12	69.6	18.8	:	130.2	
		Z	3.24	71.1	19.7		128.2	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (D\$\$\$- OFDM, 6 Mbps)	×	10.90	70.3	23.0	9.46	133.5	±3.3 %
		Υ	10.53	69.0	22.1		124.6	
		Z	11.14	71.2	23.6		147.1	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	15.05	91.0	24.4	9.39	139.5	±1.9 %
		Y	10.1 1	85.5	23.3		131.9	
		Z	11.84	87.6	23.4		130.0	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	х	10.42	84.9	22.6	9.57	131.5	±3.0 %
		İΥ	13.29	89.7	24.6		141.1	
		Z	14.17	90.2	24.2		148.7	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	. x	11.26	83.1	19.4	6.56	140.7	±1.9 %
		Υ	26.29	95.5	23.8		134.7	
		_ Z	16.82	88.9	21.3		131.6	112
10027- DA B	GPRS-FOD (TDMA, GMSK, TN 0-1-2)	X	64.74	99.9	22.2	4.80	131.5	±2.2 %
		Y	56.71	99.8	22.7	L.,	124.7	
		Z	63.10	99.9	22.2		124.1	
10028- DA B	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	62. 1 1	99.6	21.6	3.55	146. 1	±1.9 %
		Υ	77.61	99.8	21.2		132.0	
10000		Z	72.33	99.7	2 1.2		133.3	
CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	96.24	92.7	15.9	1.1 6	137.2	±1.7 %
		Υ	95.69	93.1	16.2		129.5	
	14 44444	Ζ	98.67	94.1	16.4		149.7	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	х	6.14	66.8	19.2	5.67	126.2	±1.7 %
	7,000	Υ	6.21	66.8	19.1		139.9	
		Ζ	6.41	67.9	19.9		145.9	

10103-	LTE-TDD (SC-FDMA, 100% RB. 20							
CAB	MHz, QPSK)	X	10.07	75.4	25.8	9.29	138.2	±2.5 %
	:	Y	9.54	73.3	24.5	i "	130.5	
40400		Į Z	9.84	75,1	25.8		130.6	, ,,,
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.34	67.6	19.8	5.80	149.5	±1.4 %
<u> </u>		įΥ	6.13	66.6	19.1	<u> </u>	132.1	·-
10117		Z	6.19	67.2	19.7	i "	; 137.8	<u> </u>
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps. BPSK)	X	10.13	68.9	21.2	8.07	138.8	±2.7 %
i	,	T _Y	10.16	68.9	21.1	 	149.6	·
40754		Ž	9,96	68.7	21,1		127.1	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz. QPSK)	X	9.42	74.4	25.5	9.28	132.9	±3.0 %
		, Y	9.50	74.0	25.0	i	143.7	
10154-	TE EDD (OO EDLI)	Z _	9.01	73.4	25.0	I	126.5	1.~
CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.03	67.1	19.6	5.75	145.5	±1.4 %
<u> </u>	···	<u> </u>	5.81	66.0	18.9	ļ	128.9	
10160-	LIE EDD (DO EDAM	įΖ	5,91	66.8	19.5		j 135.1	
CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.19	66.5	19.2	5.82 j	126.7	±1.4 %
		Y	6.20	66.4	19.0	L.	132.8	
10169-	LTE COD (CO CELLA / CO CELLA	Z	6.39	67.5	19.8		141.1	
CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	5.05	67.6	20.0	5.73	146.8	±1.4 %
		Y	4.82	66.2	19.2		132.2	
10172-	LTE TER ISO ERIN	Z	4.96	67.4	20.0	_	143.8	
CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	8.88	79.7	28.3	9.21	147.9	±3.0 %
		Y	8.00	76.1	26.2		138.9	
10175-	LTE-FDD (SC-FDMA, 1 RB, 10 MHz.	<u>Z</u>	8.39	78.5	27,8	,	141.5	
CAC	QPSK)	X	4.99	67.3	19.9	5.72	140.7	±1.2 %
		Y	4.80	66.2	19.1		131.3	
10181-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z	4.90	67.1	19.8		136.1	i
CAB	. QPSK)	x !	4.99	67.3	19.9	5.72	145.4	±1.4 %
		Y	4,81	66.2	19.2	·-	130.9	
10196-	IEEE 802.11n (HT Mixed, 6.5 Mbps,	_Z	4.89	67.1	19.8		136.0	
CAB	BPSK)	X	9.78	68.8	21.3	8.10	131.0	±2.5 %
		Υ	9.73	68.4	21.0	_,	140.7	
10225-	UMTS-FDD (HSPA+)	Z	9.94	69.4	21,6		14 6 .6	
CAB	OWIS-FDD (#SPA+)	x !	6.88	66.9 ———————————————————————————————————	19.3	5.97	133.9	±1.7 %
~		Y	6.96	67.1	19.3	·	144.8	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz.	Z	6.71	66.6	19.2		125.7	
CAB	QPSK)	×	9.00	80.2	28.5	9.21	148.2	±3.0 %
		_ <u>`</u>	7.73	75.1	25.7		131.6	
10252-	LITE TOD (OC EDNA EAST OC ASTER	Z	8.27	78.2	27.7		136.1	
CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.59	76.3	26.7	9.24	144.1	±2.7 %
	<u> </u>	Y	8.74	72.9	24.5		133.4	
10267-	LTE-TOD (SC FEMA 4000 FD 40	2	9.14	75.2	26.1		136.9	<u> </u>
CAB CAB	LTE-TOD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.25	73.9	25.3	9.30	124.8	±3.0 %
	 	Υ :	9.40	73.7	24.9		142.1	
		_ <u>Z</u>	9.86	76.1	26.5		145.3	

ES3DV3- \$N;3334 November 17, 2015

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.38	66.9	18.7	3.96	133.3	±0.9 %
		Υ	4.44	66.9	18.6		148.2	
		Z	4.30	66.7	18.6	-	128.9	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.68	67,3	18.7	3.46	145.8	±0.7 %
		Υ	3.58	66.6	18.2		136.3	
	111111	Z	3.62	67.3	18.8		139.4	
10292- AAB	CDMA2000, RC3, SQ32, Full Rate	X	3.73	68.0	19.1	3.39	147.5	±0.7 %
		Ϋ́	3.55	66.7	18.3		138.5	
		· Z	3.60	67.6	18.9		143.0	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	. X	6.30	67.4	19.7	5.81	141.4	±1,2 %
		: Y	6.11	66.5	19.1		130.3	
		Z	6.17	67.0	19.5		138.8	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.88	68.0	20.1	6.06	147.0	±1.7 %
		Υ	6.68	67.1	19.5		136.0	
		Ζ	6.75	67.7	20.0	T	141.6	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Х	9.97	68.8	21.4	8.37	126.9	±2.7 %
		Υ	10.07	68.9	21.4		143.6	
		Z	10.21	69.7	22.0	[: 147,4	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.77	68.5	18.8	3.76	134.9	±0.5 %
		Y	4.69	68.1	18.5	:	126.7	
		İΖ	4.74	68.8	18.9		129.4	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.72	68.7	18.8	3.77	132.9	±0.7 %
		Υ	4.78	68.9	18.9		147.4	
		Z	4.63	68.7	18.9		127.1	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	2.72	68.9	18.8	1.54	131.9	±0.5 %
		Υ	2.65	68.0	18.1		145,9	
		Z	2 .72	69.3	19.D		127.3	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	9.81	68.6	21.2	8.23	131.6	±2.7 %
		Υ	9.90	68.7	21.2		144.1	
		z	9.97	69.3	21.7		146.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^k The uncertainties of Norm X.Y,Z do not affect th≑ E²-field uncertainty inside TSL (see Pages 7 and 8).
 ^g Numerical linearization parameter: uncertainty not required.
 ^g Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvFY	ConvF Z	Alpha ⁶	Depth ⁶ (mm)	Unc (k=2)
6	55.5	0.75	6.13	6.13	6.13	0.00	1.00	± 13.3 %
13	55.5	0.75	5.76	5.76	5.76	j 0.00	1.00	± 13.3 %
750	41.9	0.89	6.56	6.56	6.56	0.24	2.36	± 12.0 %
835	41.5	0.90	6.37	6.37	6.37	0.37	1.70	± 12.0 %
1750	40.1	1.37	5.39	5.39	5.39	0.58	1.32	± 12.0 %
1900	40.0	1,40	5.18	5.18	5.18	0.77	1.20	± 12.0 %
2300	39.5	1.67	4.85	4.85	4.85	0.71	1.28	± 12.0 %
2450	39.2	1.8 <u>0</u> j	4,58	4.58	4.58	0.79	1.17	± 12.0 %
2600	39.0	1.96	4.46	4.46	4.46	0.80	1.26	± 12.0 %

Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

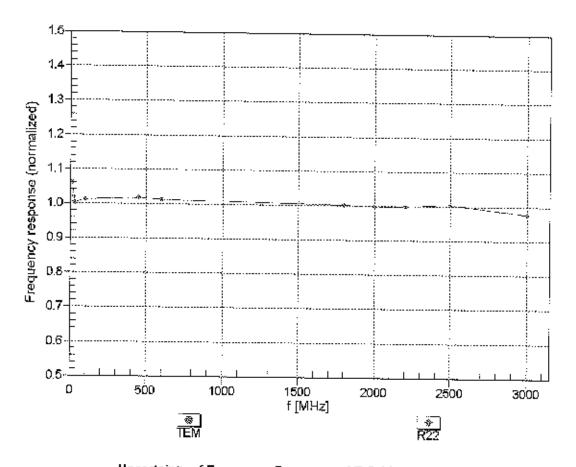
Alpha/Depth are determined during ca/ibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Calibration Parameter Determined in Body Tissue Simulating Media

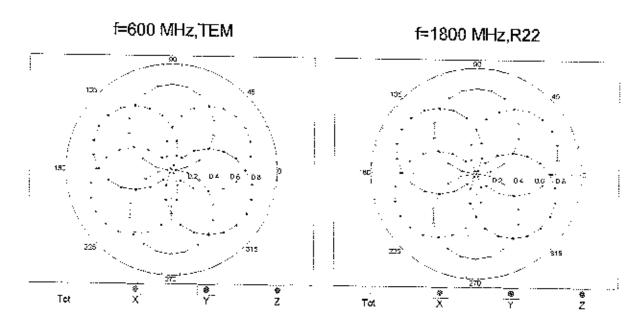
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ⁵ (mm)	Unc (k=2)
750	55.5	0.96	6.37	6.37	6.37	0.74	1.22	± 12.0 %
835	55.2	0.97	6.24	6.24	6.24	0.31	1.94	± 12.0 %
1750	53.4	1.49	5.03	5.03	5.03	0.50	1.57	± 12.0 %
1900	53.3	1.52	4.84	4.84	4.84	0.50	1,58	± 12.0 %
2300	52.9	1.81	4.61	4.61	4.61	0.74	1.23	± 12.0 %
2450	52.7	1.95	4.45	4.45	4.45	0.74	1.20	± 12.0 %
2600	52.5	2.16	4.29	4.29	4,29	0.80	1.20	± 12.0 %

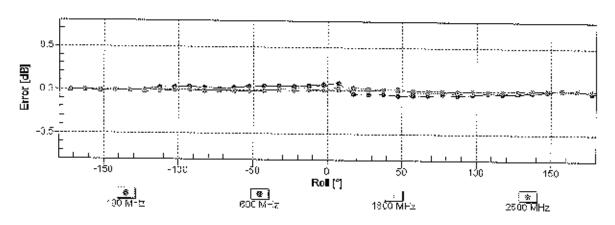
 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


⁶ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be retaxed to \pm 10% if figure compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters,

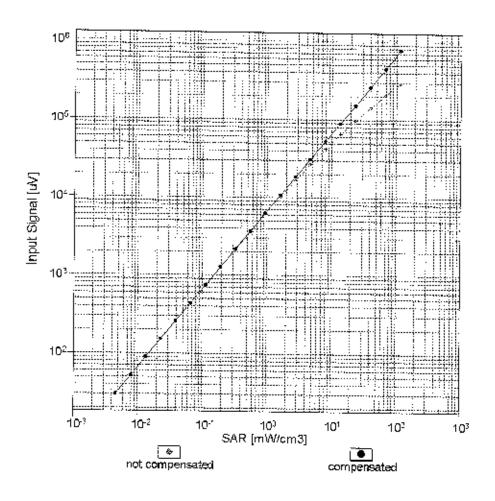
the ConvF uncertainty for indicated target tissue parameters,

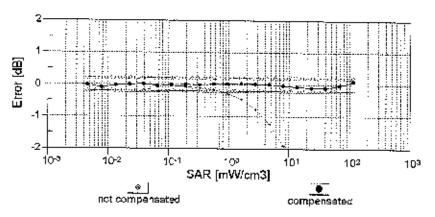
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


ES3DV3- \$N:3334 November 17, 2015

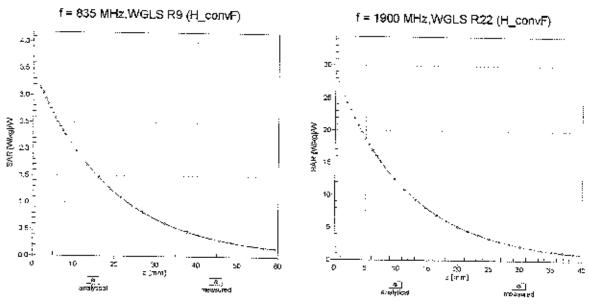

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

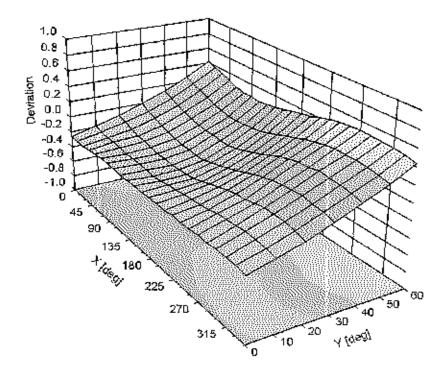
Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

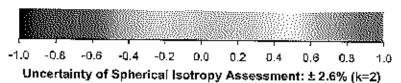

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

E\$3DV3-- \$N:3334

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	17.4
Mechanical Surface Detection Mode	.4
Optical Surface Detection Mode	enabled
	disabled
Probe Overall Length	337 mm
Probe Body Diameter	
Tip Length	10 mm
Tip Diameter	
Probe Tip to Sensor X Calibration Point	4 mm
	2 mm
Probe Tip to Sensor Y Calibration Point	į 2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

S Schweizerfscher Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swtss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3333_Oct15

CALIBRATION CERTIFICATE

Object (ES3DV3 - SN:3333)

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: October 29, 2015

This callbratton certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity \leq 70%.

Catibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Altenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-680_Jan15)	Jan-16
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3842D01700	4-Aug-99 (In house check Apr-13)	In house check: Apr-16
Natwork Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Lelf Klysner

Laboratory Technicien

Approved by:

Ketja Pokovíc

Technical Manager

Issued: October 29, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3333_Oci15 Page 1 of 13

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnane C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

tissue simulating liquid T\$L NORMx,y,z sensitivity in free space

sensitivity in TSL / NORMx,y,z. ConvF diode compression point DCP

crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A. B. C. D.

φ rotation around probe axis Polarization φ

৪ rotation around an axis that is in the plane normal to probe axis (at measurement center). Polarization 9

i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORMx_{s}y_{s}z_{s}^{2}$: Assessed for E-field polarization 9 = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(I)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Certificate No: ES3-3333_Oct15 Page 2 of 13 ES3DV3 - SN:3333 October 29, 2015

Probe ES3DV3

SN:3333

Manufactured:

January 24, 2012

Calibrated:

October 29, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)²) ^A	1.07	0.90	0.88	± 10.1 %
DCP (mV) ^B	106.8	108.5	106,8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	cw	×	0.0	0.0	1.0	0.00	201.0	±3.5 %
	<u> </u>	Y	0.D	0.0	1.0		187.1	
		Z	0.0	0.0	1.0	_	184.8	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	х	2.43	60.7	11.4	10.00	41.6	±2.2 %
_		Υ	4.35	67.4	13.2		35.6	
		Z	1.46	57.0	8.7		36.2	
10011- CAB	UMTS-FDD (WCDMA)	х	3.35	67.9	19.1	2.91	138.2	±0.5 %
		Υ	3.48	68.6	19.2		127.5	_
		Z	3,37	67.6	18.6		149.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	3.60	72.8	20.8	1.87	141.0	±0.7 %
		Y	3.68	73.3	20.8		128.0	
		Z	3.01	69.3	18.8		128.2	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	11.52	71.7	23.9	9.46	139.3	±3.0 %
		Y	10.94	70.4	22.9		147.1	
40004		Z	10.95	70.8	23.4		144.5	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	21.45	95.2	26.5	9.39	139,9	±2.5 %
	<u> </u>	Υ	9.12	82.9	21,9		142.0	
10000		Z	11.47	88.1	23.9		127.6	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	20.81	95.6	27.0	9.57	135,8	±2.2 %
	<u> </u>	Υ	9.78	84.4	22.7		135.3	
40024	CDDQ EDD (TOLU - OLION TV - C)	Z	9.12	83.5	22.1		144.6	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	39.84	99.6	25.2	6.56	140.9	±1.9 %
		Υ	35.07	100.0	25.0		128.4	
40000		Z	35.20	99.8	24.7		131.9	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	х	47.16	99.8	23.9	4.80	124.9	±2.5 %
		Υ	49.75	99.6	22.8		145.4	
		Z	45.37	99.9	23.1		148.5	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	×	56.24	99.6	22.6	3.55	140.4	±2.7 %
	· ·	ĮΥ	56.95	99.7	21.9		129.1	
40000	IEEE 000 45 4 Object of 45500 Exist	Z	48.45	99.6	22.1		133.2	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	18.03	99.1	22.8	1.16	127.5	±1.9 %
	 	Y	35.17	99.6	20.7		141.1	
40400	LITE FOR (FO FOM) 400% FO 90	Z	21.08	99.9	21.9		127.5	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.36	67.6	19.8	5.67	137.5	±1.2 %
		Υ	6.29	67.4	19.6		129.9	
	<u> </u>	Z	6.35	67.5	19.7		139.5	

10103- CAB	LTE-TOD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	10.85	76.6	26.4	9.29	130.6	±2.7 %
		Υ	9.58	73.7	24.8		143.0	
		Z	9.94	75.6	26.2	_	149.3	
10108- CAC	LTE-FDD (SC-FOMA, 100% RB, 10 MHz, QPSK)	Х	6.21	67.0	19.7	5.80	126.9	±1.2 %
		Υ	6.16	66.9	19.5		129.2	
		Z	6.22	67.2	19.7		138.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.05	68.7	21.2	8.07	126.1	±2.5 %
	<u> </u>	ΙY	10.13	69.0	21.3		146.1	
40454	LTS TOP (20 SPLIA MAN DE CONTRE	Z	9.97	68.7	21,1		126.2	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.11	75.5	26.0	9.28	125.8	±3.3 %
		Y	9.08	73.2	24.7	<u> </u>	138.2	
10 15 4-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z	9.32	74.8	26.0	5.35	143.1	14 O B/
CAC	QPSK)	X	5.97	66.8	19.6	5.75	133.4	±1.2 %
	-	Y	5.92	66.7	19.5		127.0	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z X	5.91	66.7	19.5	5.82	134.2 137.8	±1.2 %
ÇAB	QPSK)		6.40	67.3	19.9	0.62	137.8	±1.2 %
	 	Y	6.31	67.1	19.6		139.8	
10169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z	6.32	67.1	19.6	5 72		14.0.07
CAB	QPSK)	Х.	5.05	67.3	20.1	5.73	136.8 131.1	±1.2 %
	·	Z	4.89 4.93	67.0	19.9		137.4	
10172-	LTE-TOD (SC-FDMA, 1 RB, 20 MHz,	X	10.74	67.2	20.0	9.21	136.8	±2.7 %
CAB	QPSK)	Y	7.34	83.9 74.3	30,3 25,5	9.21	125.9	12.7 70
		Z	7.74	76.6	27.1		131.2	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.97	66.9	19.9	5.72	130.8	±1.2 %
		Υ	4.66	66.9	19.8		128.5	
		Z	4.97	67.3	20.1		137.0	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	4.99	67.0	19.9	5.72	130.1	±1.2 %
		Υ	4.88	67.0	19.9		127.6	
		Z	4.95	67.2	20.0		136,2	
10196- CAB	JEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	10.00	69.2	21.7	8.10	137.9	±2.2 %
		Υ '	9.75	68.7	21.2		137.5	
1000		Z	9.94	69.4	21.7		145.3	
10225- CAB	UMTS-FDD (HSPA+)	х	7.08	67.5	19.8	5.97	147,1	±1.4 %
		Y	7.06	67.7	19.8		142.3	
		Z	7.04	67.7	19.9		148.8	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	10.66	83.5	30.1	9.21	144.0	±3.0 %
		Y	7.43	74.7	25.7		127.6	
10060	LITE TOD ICC COMA SOU DO ACTUA	Z	7.86	77.1	27.4	0.04	132,3	10.00
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X .	10.81	78.7	27.9	9.24	139.7	±3.0 %
	1	Y	8.48	72.4	24.4		130.1	
10267	LTG TDD (QC-EDMA 4009) DD 40	Z	8.71	74.1	25.8	B 75	135.2	+2.0.04
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	11,73	79,9	28.3	9.30	148.6	±3.3 %
		Y	9.11	73.2	24.8		139.0	
		Z	9.38	74.9	26.1		142.7	

ES3DV3-- SN:3333 October 29, 2015

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Ref8.4)	X	4.52	67.6	19.3	3.96	144.5	±0.7 %
		Y	4.67	68.3	19.6		146.0	
		Z	4.41	67.0	18.9		130.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.66	67.2	19.0	3.46	134.5	±0.5 %
		Υ	3.91	68.9	19.9		133.2	
		Z	3.86	66.5	19.6		146.9	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.63	67.5	19.1	3.39	134.9	±0.5 %
		Υ	3.93	69.3	20.0		136.0	
		Z	3.81	68.5	19.6		148.6	
10297- AAA	LTE-FDD (SC-FDMA, 50% R8, 20 MHz, QPSK)	Х	6.20	67.1	19.7	5.81	129.0	±1.2 %
		Υ	6.20	67.0	19.6		128.0	
		Z	6.32	67.5	19.9		142.7	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.76	67.6	20.0	6.06	134.7	±1.4 %
		Y	6.75	67.5	19.9		133.5	
		Z	6.90	68.1	20.3		149.2	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Х	10.30	69.7	22.1	8.37	140.1	±2.5 %
		Υ	10.05	69.0	21.5		141.2	
	<u> </u>	Z	9.94	69.0	2 1.7		126.3	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.80	68.5	19.0	3.76	129.3	±0.5 %
		Υ	5.30	71.1	20.2		148,4	
		Z	5,10	70.4	19.9		135.2	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	4.77	68.8	19.2	3.77	127.3	±0.7 %
		Y	5.35	71.7	20.5		145.4	
		Z	5.03	70.6	20.1		133.3	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	×	2.77	69.7	19.7	1.54	147 .D	±0.7 %
		Υ	3.73	75.4	22.2		143.7	
		Z	3.25	72.2	20.7		133.9	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X_	10.11	69.4	21.8	8.23	144.7	±2.5 %
		Υ	9.86	8.86	21.4		139.3	
	-	Z	9.72	66.6	21.3		126.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-liefd uncertainty inside TSL (see Pages 7 and 8).

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3333 October 29, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^e (mm)	Unc (k=2)
750	41.9	0.89	6.46	6.46	6.46	0.75	1.22	± 12.0 %
835	41.5	0.90	6.16	6.16	6.16	0.36	1.67	± 12.0 %
1750	40.1	1.37	5,21	5.21	5.21	0.80	1.19	± 12.0 <u>%</u>
1900	40.0	1.40	5.03	5.03	5.03_	0.73	1.25	<u>± 12.0 %</u>
2300	39.5	1.67	4.73	4.73	4.73	0.60	1.43	± 12.0 %
2450	39.2	1.80	4.53	4.53	4.53	08.0	1.28	± 12.0 %
2600	39.0	1.96	4.39	4.39	4.39	0.80	1.29	± 12.0 %

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Cartificate No: ES3-3333_Oct15 Page 7 of 13

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% If liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- \$N:3333 October 29, 2015

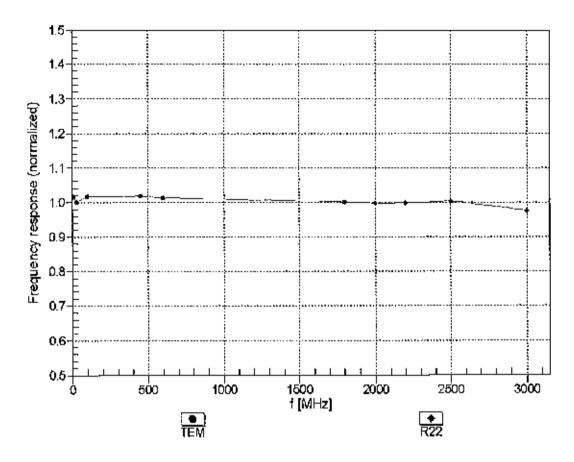
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Calibration Parameter Determined in Body Tissue Simulating Media

			_		-			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ⁶ (mm)	Unc (k=2)
750	55.5	0.96	6,31	6.31	6.31	0.70	1.26	± 12.0 %
835	55.2	0.97	6.25	6.25	6.25	0.47	1.54	±12.0 %
1750	53.4	1.49	4.90	4.90	4.90	0.49	1.63	± 12.0 %
1900	53.3	1.52	4.70	4.70	4.70	0.54	1.49	± 12.0 %
2300	52.9	1.81	4.51	4.51	4.51	0.80	1.15	± 12.0 %
2450	52.7	1.95	4.34	4.34	4.34	0.80	1.15	± 12.0 %
2600	52.5	2.16	4.23	4.23	4.23	0.80	1.03	± 12.0 %

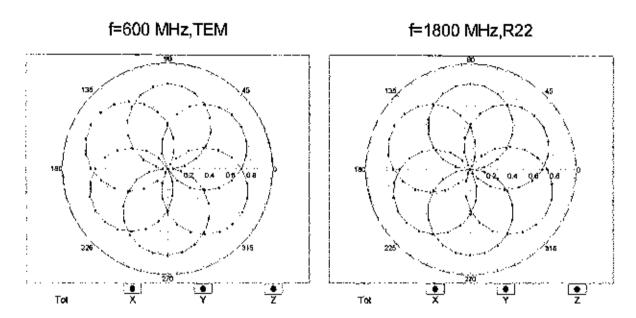
⁶ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

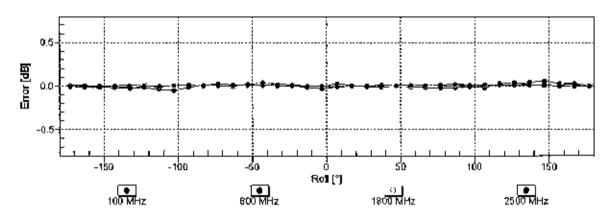
Certificate No: ES3-3333_Oct15 Page 8 of 13


validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the Copy Exprediciply for indicated terral tissue parameters.

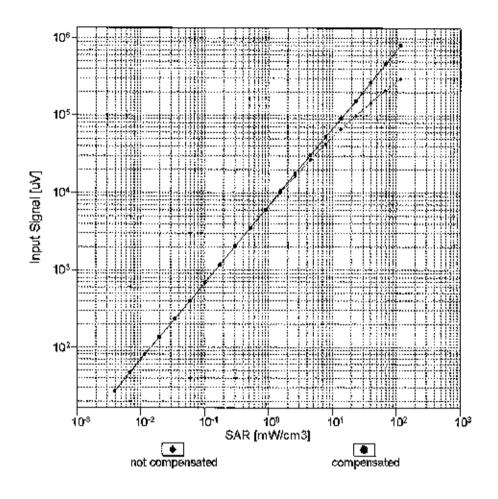
the ConvF uncertainty for indicated larget tissue parameters that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

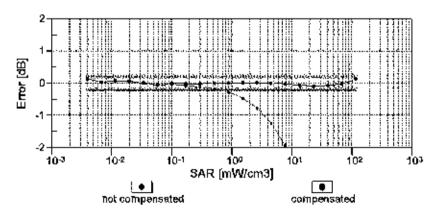

ES3DV3-SN:3333 October 29, 2015


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

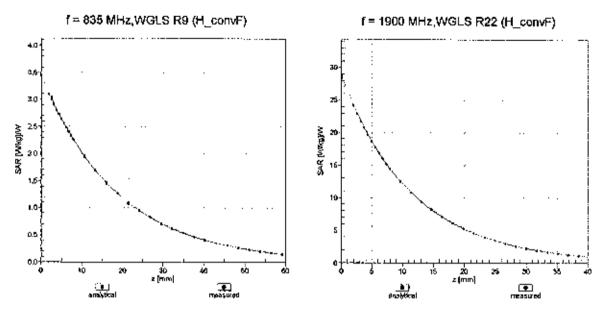
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

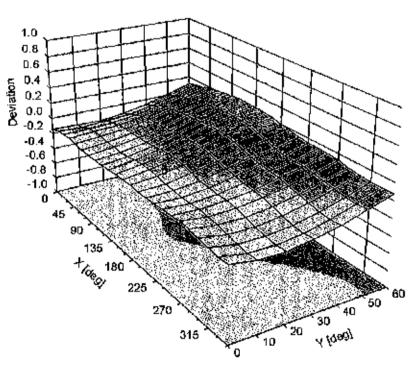




Uncertainty of Axial (sotropy Assessment: ± 0.5% (k=2)

Page 10 of 13


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

ES3DV3- SN:3333 October 29, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-32.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Típ Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3318 Feb16

Client

PC Test

		ICATE

Object ES3DV3 - SN:3318

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

05/01/2016

Calibration date:

February 19, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: February 20, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 12

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3318_Feb16

Probe ES3DV3

SN:3318

Manufactured: Calibrated:

January 10, 2012 February 19, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3-SN:3318

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.16	0.93	1.29	± 10.1 %
DCP (mV) ^B	102.2	104.2	103.7	

Modulation Calibration Parameters

ŲID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊵] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	199.2	±3.5 %
		Y	0.0	0.0	1.0		176.5	
		Z	0.0	0.0	1.0		194.6	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	3.19	63.2	12.6	10.00	42.3	±1.4 %
		Υ	19.74	82.9	18.6		35.5	
		Z	4.87	67.6	14.6		43.3	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	2.99	68.6	18.5	1.87	141.3	±0.9 %
		Υ	3.46	71.1	19.6		145.1	
		Z	3.19	70.2	19.5		144.7	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.30	67.0	19.4	5.67	128.2	±1.4 %
		Y	6.32	67.0	19.2		129.9	
12.12-		Z	6.36	67.5	19.8		131.3	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	11.31	78.0	27.3	9.29	146.7	±3.5 %
		Y	9.35	72.8	24.3		141.3	
		Z	11.02	76.9	26.7		131.7	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.22	66.7	19.4	5.80	126.2	±1.4 %
		Υ	6.20	66.5	19.1		128.1	
10151	1 1 T T T T T T T T T T T T T T T T T T	Z	6.27	67.1	19.7		131.1	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	10.46	76.6	26.8	9.28	138.8	±3.3 %
		Υ	8.80	72.0	24.0		134.3	
10151	1.75 FDD (00 FD) 4 500 FD (0.44)	Z	10.01	75.0	25.9		122.1	. 4 7 0/
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.12	67.0	19.6	5.75	146.0	±1.7 %
		Υ	6.15	67.1	19.5		148.7	
10100	1.75 FDD (0.0 FD) 1.75 FD 1.75	Z	5.95	66.5	19.4	5.00	127.4	. 4 4 0/
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	6.33	66.7	19.4	5.82	127.2	±1.4 %
		Y	6.33	66.6	19.2		128.2 133.6	
10100	LTC COD (OO COM)	Z	6.38	67.1	19.7	E 70		14.0.0/
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.10	67.2	20.0	5.73	147.9	±1.2 %
		Y	4.85	66.3	19.3		127.1	
40470	LTCTDD (OC CDMA 4 DD 20 ML)	Z	4.97	66.7	19.8	0.24	133.9	±3.0 %
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	8.71	78.3	27.8	9.21	127.5	±3.0 %
		Y	7.52	74.8	25.7	1	144.7	
40475	LITE EDD (OO EDMA 4 DD 40 ML)	Z	10.09	81.9	29.5	E 70	136.4	14 0 97
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.09	67.2	20.0	5.72	146.9	±1.2 %
		Y	4.97	66.9	19.6		140.9	
		Z	4.95	66.6	19.7	ļ	133.1	

ES3DV3-SN:3318 February 19, 2016

10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	5.11	67.3	20.0	5.72	146.8	±1.2 %
		Υ	5.03	67.2	19.8		147.0	
		Z	5.00	66.8	19.8		135.0	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	8.73	78.3	27.8	9.21	126.7	±3.0 %
		Υ	7.60	75.1	25.9		146.1	
***************************************		Z	10.76	83.8	30.4		143.4	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	9.61	75.3	26.2	9.24	129.4	±3.3 %
		Υ	8.55	72.3	24.3		143.1	
		Ζ	11.05	79.1	28.1		146.1	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	10.44	76.5	26.8	9.30	137.7	±3.3 %
		Υ	8.62	71.3	23.6		125.8	
		Z	10.24	75.6	26.2	1	125.3	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.51	67.8	20.0	5.81	148.5	±1.7 %
		Υ	6.42	67.3	19.6		144.3	
		Z	6.31	67.3	19.8		134.7	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.80	67.4	19.9	6.06	128.6	±1.4 %
		Υ	6.69	66.9	19.4		125.3	
		Z	6.91	68.0	20.3		140.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.48	6.48	6.48	0.54	1.35	± 12.0 %
835	41.5	0.90	6.23	6.23	6.23	0.70	1.21	± 12.0 %
1750	40.1	1.37	5.34	5.34	5.34	0.72	1.27	± 12.0 %
1900	40.0	1.40	5.13	5.13	5.13	0.80	1.18	± 12.0 %
2300	39.5	1.67	4.78	4.78	4.78	0.76	1.29	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.59	1.49	± 12.0 %
2600	39.0	1.96	4.40	4.40	4.40	0.80	1.31	± 12.0 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters

The stated SAR values. At frequencies above 3 GHz, the values of itssue parameters (£ and 6) is restricted to £ 5%. The uncertainty is the ROS of the ConvF uncertainty for indicated target tissue parameters.

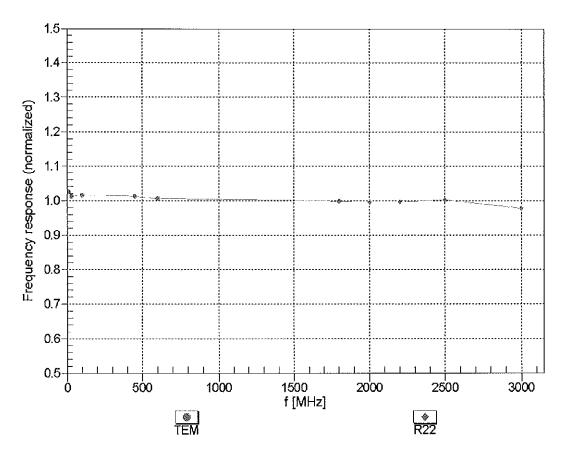
^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.19	6.19	6.19	0.50	1.51	± 12.0 %
835	55.2	0.97	6.11	6.11	6.11	0.47	1.56	± 12.0 %
1750	53.4	1.49	5.02	5.02	5.02	0.49	1.55	± 12.0 %
1900	53.3	1.52	4.81	4.81	4.81	0.80	1.24	± 12.0 %
2300	52.9	1.81	4.55	4.55	4.55	0.80	1.27	± 12.0 %
2450	52.7	1.95	4.45	4.45	4.45	0.80	1.16	± 12.0 %
2600	52.5	2.16	4.18	4.18	4.18	0.80	1.13	± 12.0 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

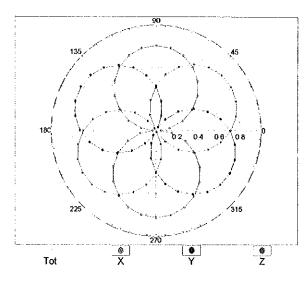

validity can be extended to ± 110 MHz.

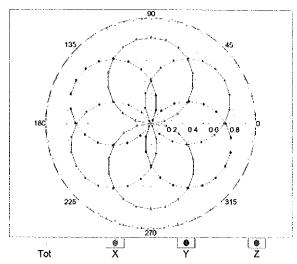
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

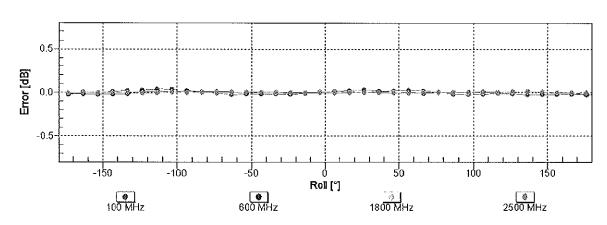
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

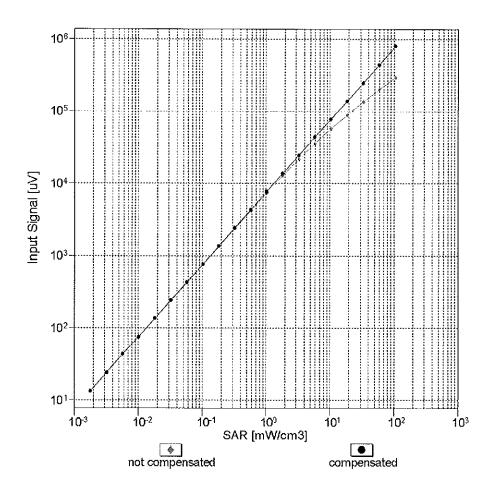

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

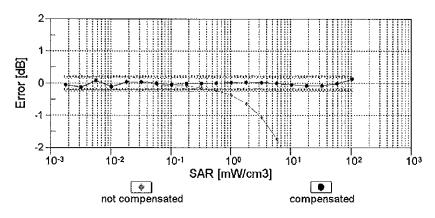

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


f=600 MHz,TEM

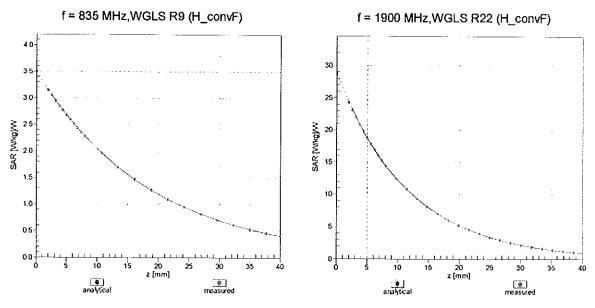
0 MHz,TEM

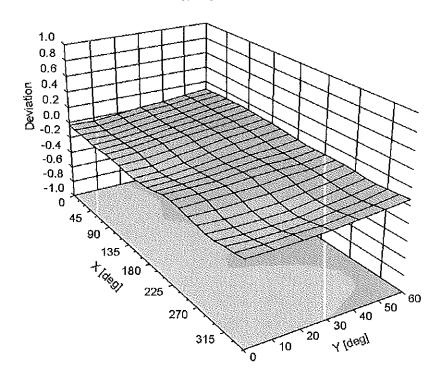
f=1800 MHz,R22

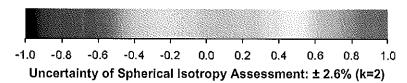




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	76.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-7406_Apr16

S

C

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

and the second of the second o

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7406

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

BN 04/26/2016

Calibration date:

April 19, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-7406_Apr16

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (No. 217-02285/02284)	In house check: Jun-16
Power sensor E4412A	SN: MY41498087	06-Apr-16 (No. 217-02285)	In house check: Jun-16
Power sensor E4412A	SN: 000110210	06-Apr-16 (No. 217-02284)	In house check: Jun-16
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Apr-13)	In house check: Jun-16
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 20, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point
CF crest factor (1/duty, cycle) of the

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

Certificate No: EX3-7406_Apr16

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

April 19, 2016 EX3DV4 - SN:7406

Probe EX3DV4

SN:7406

Manufactured: November 24, 2015 Calibrated: April 19, 2016

Calibrated:

April 19, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.48	0.44	0.47	± 10.1 %
DCP (mV) ^B	100.7	97.9	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	120.4	±3.3 %
		Y	0.0	0.0	1.0		148.3	
_		Z	0.0	0.0	1.0		146.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	0.81	54.6	7.4	10.00	50.3	±2.2 %
		Υ	0.68	55.1	7.9	-	47.9	
		Z	1.34	61.0	11.0		46.8	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	2.83	68.0	18.3	1.87	127.8	±0.5 %
		Υ	2.82	68.4	18.4		117.8	
		Z	3.00	69.2	19.0		115.9	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.54	67.4	19.5	5.67	142.1	±1.2 %
		Y	6.19	66.7	19.3		127.6	
		Z	6.37	66.7	19.2		125.7	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	7.58	67.9	21.8	9.29	114.4	±1.7 %
		Y	7.34	68.3	22.5		144.3	
		Z	7.53	67.7	21.8		139.5	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.34	66.9	19.4	5.80	137.5	±1.2 %
		Υ	5.90	65.9	19.0		123.8	
40454		Z	6.24	66.4	19.2		123.7	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	7.17	67.2	21.5	9.28	109.5	±1.7 %
		Υ	6.83	67.6	22.3		137.0	
45.45.		Z	7.23	67.4	21.7		135.1	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	5.99	66.4	19.2	5.75	132.4	±0.9 %
		Y	5.61	65.8	19.1		119.4	
		Z	5.91	65.9	19.0		120.1	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	6.47	67.0	19.5	5.82	137.0	±1.2 %
		Y	5.96	66.0	19.1		123.9	
		Z	6.33	66.3	19.1		124.2	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	4.71	65.5	18.9	5.73	113.2	±1.2 %
		Υ	4.60	66.2	19.6		144.2	
		Z	4.93	66.5	19.5		143.2	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.68	68.2	22.4	9.21	117.6	±1.7 %
		Υ	5.56	70.1	24.1		146.1	
		Z	<u>5</u> .87	69.4	23.2		143.7	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.75	65.7	19.1	5.72	112.3	±0.9 %
		Υ	4.58	66.1	19.5		143.2	
		Z	4.95	66.7	19.6		142.0	

EX3DV4-SN:7406 April 19, 2016

10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	4.71	65.5	18.9	5.72	110.2	±0.9 %
		Υ	4.53	65.8	19.4		141.4	
		Z	4.90	66.5	19.5		138.1	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	5.69	68.3	22.5	9.21	117.3	±1.7 %
		Υ	5.47	69.5	23.8		145.1	-
		Z	5.85	69.3	23.1		142.0	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	7.04	68.1	22.2	9.24	141.2	±1.9 %
	-	Υ	6.35	67.2	22.2		125.4	
		Z	6.82	67.1	21.7		127.5	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	7.45	68.3	22.2	9.30	148.0	±1.9 %
		Υ	6.84	67.5	22.3		132.0	
		Z	7.24	67.4	21.8		134.6	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.35	66.9	19.4	5.81	135.3	±1.2 %
		Υ	5.92	65.9	19.0		122.9	
		Z	6.26	66.4	19.2		122.1	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.92	67.4	19.7	6.06	139.3	±1.2 %
		Υ	6.52	66.6	19.5		127.9	
		Z	6.82	66.9	19.5		126.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.52	10.52	10.52	0.52	0.89	± 12.0 %
835	41.5	0.90	9.83	9.83	9.83	0.54	0.80	± 12.0 %
1750	40.1	1.37	8.85	8.85	8.85	0.49	0.85	± 12.0 %
1900	40.0	1.40	8.22	8.22	8.22	0.40	0.88	± 12.0 %
2300	39.5	1.67	7.67	7.67	7.67	0.36	0.89	± 12.0 %
2450	39.2	1.80	7.29	7.29	7.29	0.40	0.80	± 12.0 %
2600	39.0	1.96	7.08	7.08	7.08	0.37	0.95	± 12.0 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 CHz, the validity of the provided to 100 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters

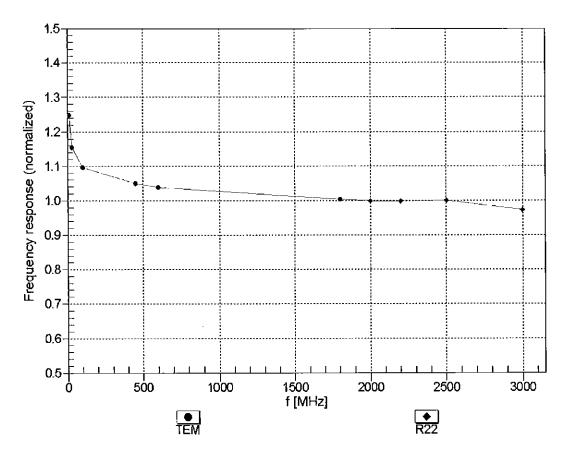
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:7406 April 19, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Calibration Parameter Determined in Body Tissue Simulating Media

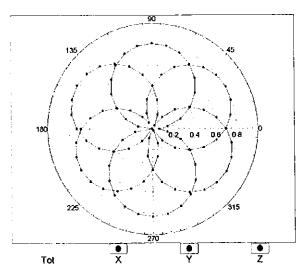

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.54	9.54	9.54	0.46	0.80	± 12.0 %
835	55.2	0.97	9.35	9.35	9.35	0.45	0.84	± 12.0 %
1750	53.4	1.49	7.78	7.78	7.78	0.37	0.85	± 12.0_%
1900	53.3	1.52	7.49	7.49	7.49	0.33	0.91	± 12.0 %
2300	52.9	1.81	7.37	7.37	7.37	0.42	0.80	± 12.0 %_
2450	52.7	1.95	7.24	7.24	7.24	0.37	0.88	± 12.0 %
2600	52.5	2.16	6.94	6.94	6.94	0.27	0.99	± 12.0 %

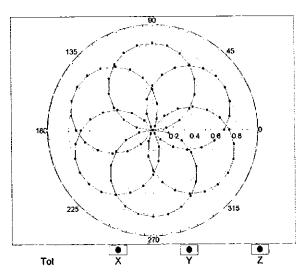
Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

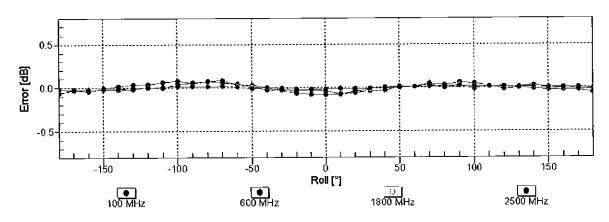
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

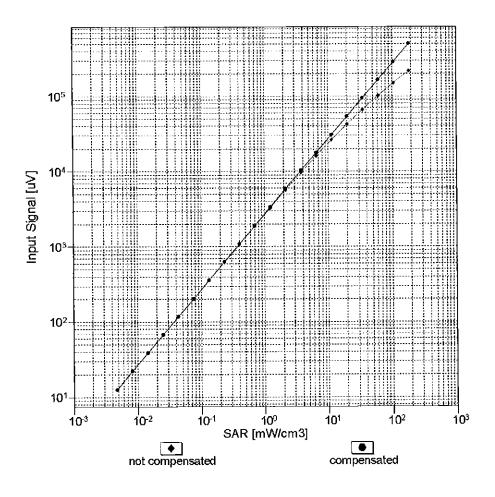

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

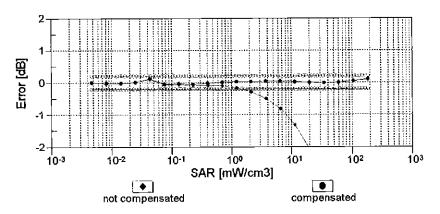

April 19, 2016


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

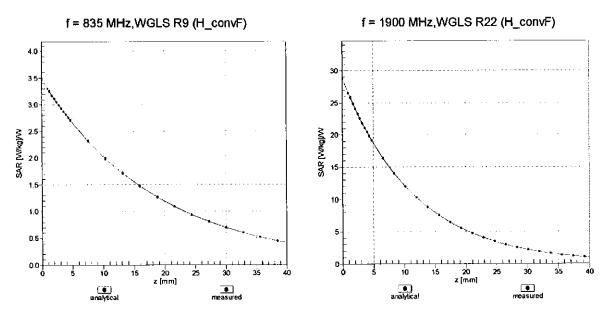


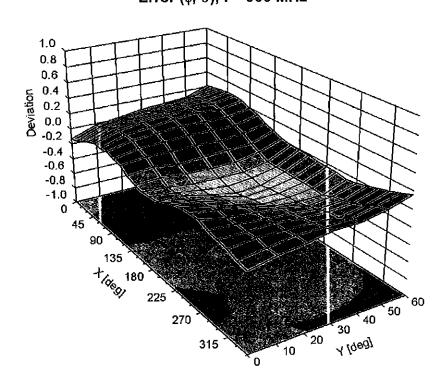


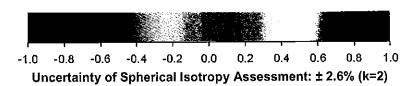
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


EX3DV4- SN:7406 April 19, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

April 19, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	0.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d047_Jul16

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d047

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

7/16/2016

Calibration date:

July 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	in house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	of le
Approved by:	Kalja Pokovic	Technical Manager	John My

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d047_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not appli

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d047_Jul16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	·
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.13 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.95 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.57 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	-
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.24 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 5.9 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 8.2 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	lone ns
----------------------------------	---------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 16, 2006

DASY5 Validation Report for Head TSL

Date: 13.07.201

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;

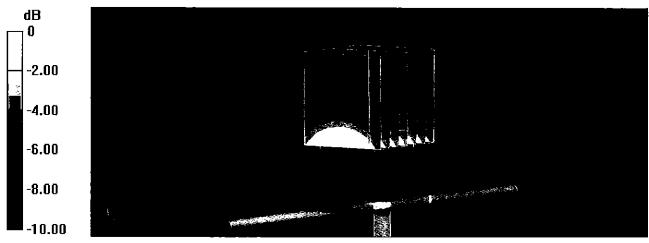
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

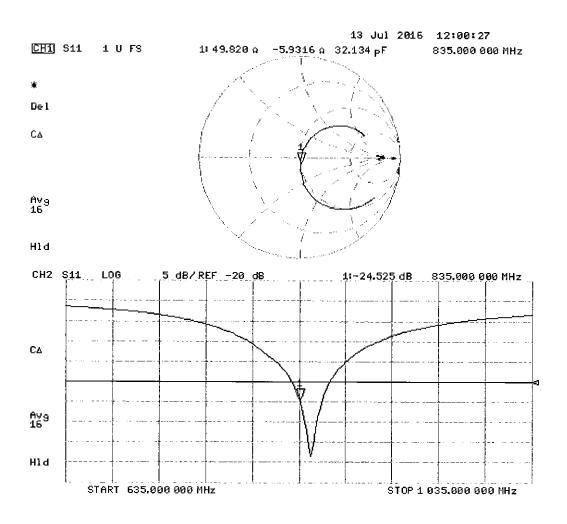
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.98 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.56 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.27 W/kg

0 dB = 3.27 W/kg = 5.15 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D1900V2-5d149_Jul16

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d149

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 15, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (în house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
			\wedge
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	1 12/
Approved by:	Katja Pokovic	Technical Manager	10 MI.
			lex let
1			

Issued: July 19, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149_Jul16

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	_
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d149_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.4 \Omega + 5.5 j\Omega$
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 7.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 15.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;

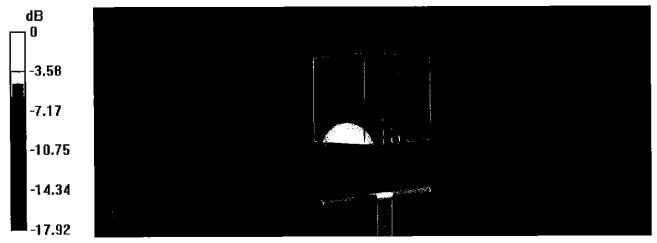
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

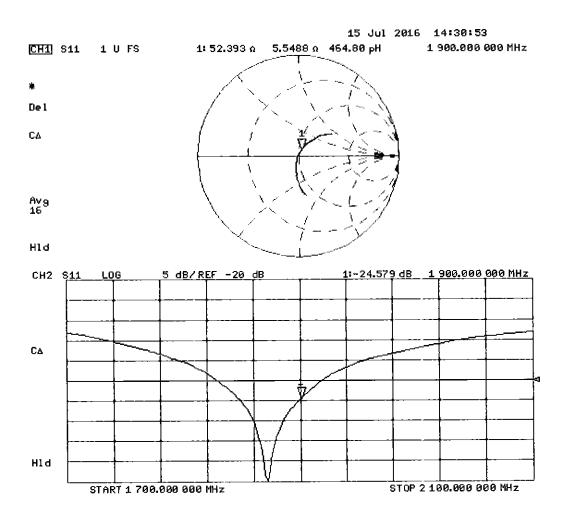
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.5 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.23 W/kg

Maximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;

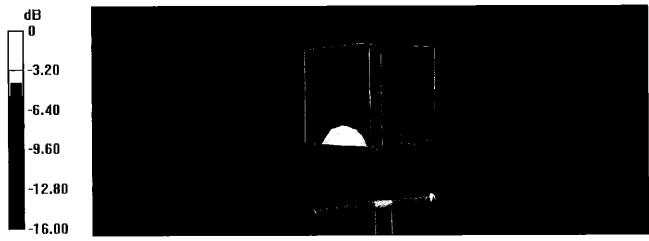
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

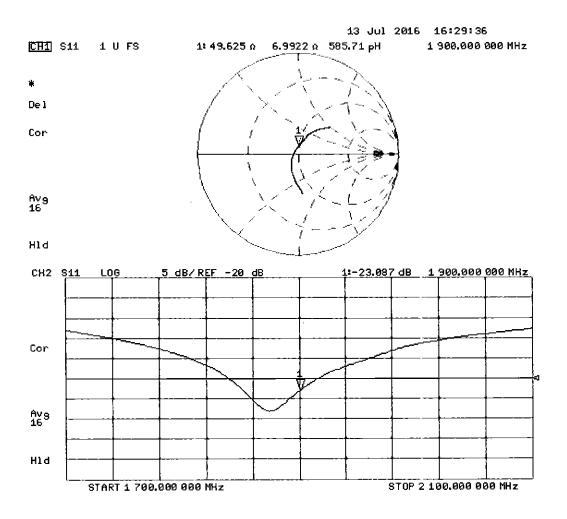
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.9 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.4 W/kg


SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-981_Jul16

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 25, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Dale (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Ocl-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signalure
Calibrated by:	Michael Weber	Laboratory Technician	MILOT
Approved by:	Katja Pokovic	Technical Manager	JELLY-

Issued: July 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-981_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A no

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-981_Jul16 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-981_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 3.4 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.5 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2014

Certificate No: D2450V2-981_Jul16

DASY5 Validation Report for Head TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;

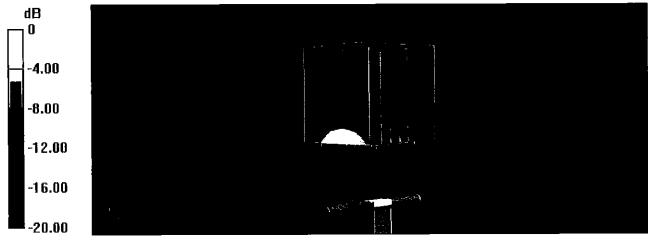
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

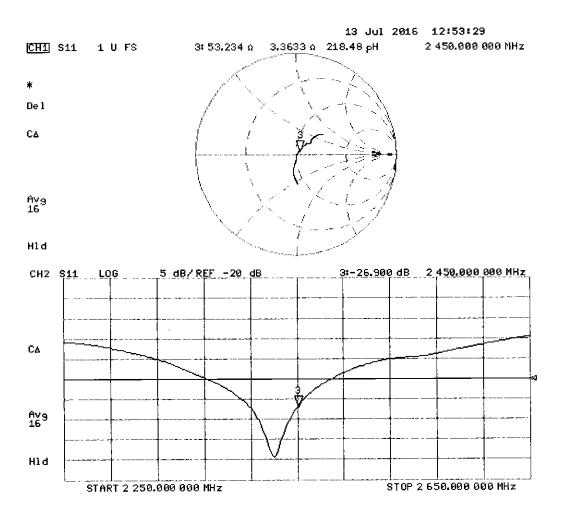
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.8 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

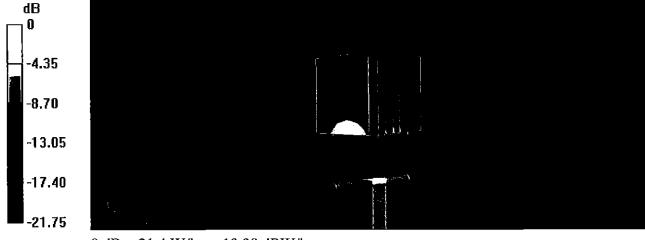
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

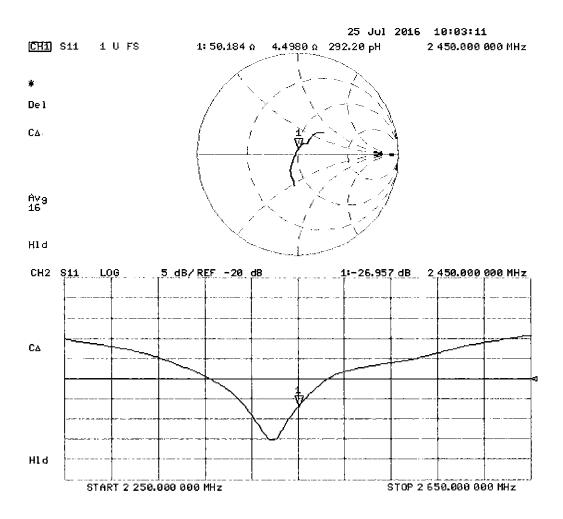
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.0 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d133_Jul16

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d133

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 14, 2016

07/27/2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signalure
Calibrated by:	Jeton Kastrati	Laboratory Technician	12 M2-
	•		100
Approved by:	Kalja Pokovic	Technical Manager	AM.

Issued: July 14, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133_Jul16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.32 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.50 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.20 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d133_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω - 5.1 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4 Ω - 7.5 jΩ
Return Loss	- 21.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,395 ns
	1.300 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d133_Jul16

DASY5 Validation Report for Head TSL

Date: 14.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

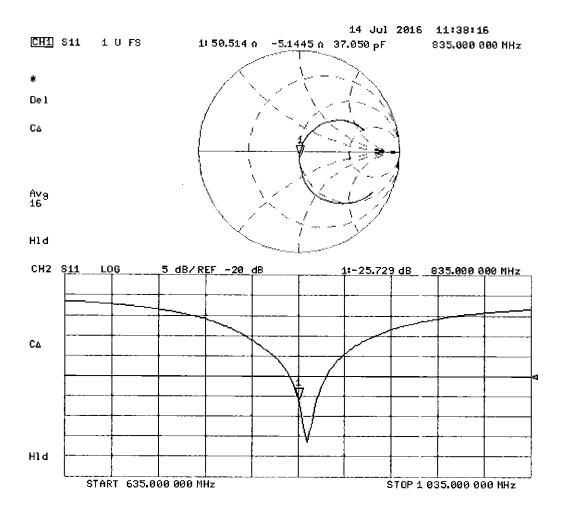
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.36 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;

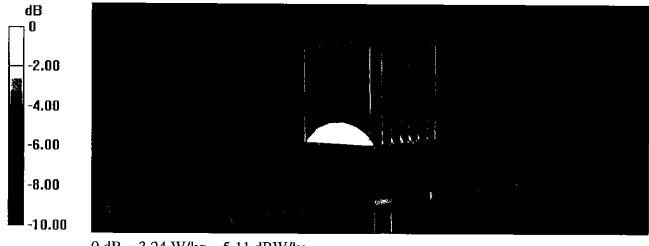
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

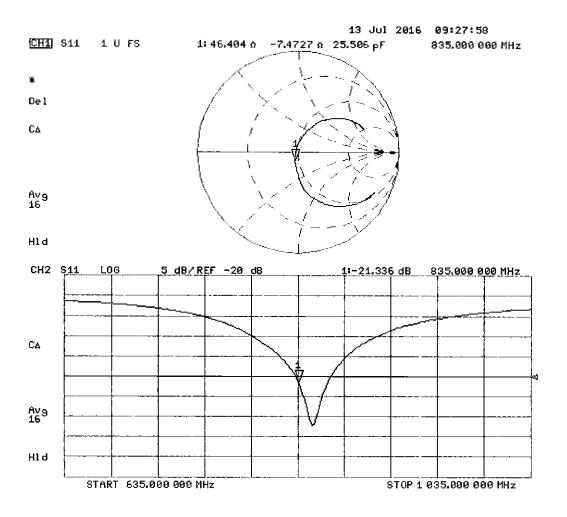
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.93 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.62 W/kg


SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

| Certificate No: D1900V2-5d080_Jul16

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d080

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 08, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	I Ma
Approved by:	Katja Pokovic	Technical Manager	All-
	* *		

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d080_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.3 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.4 \Omega + 6.8 j\Omega$
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 08.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;

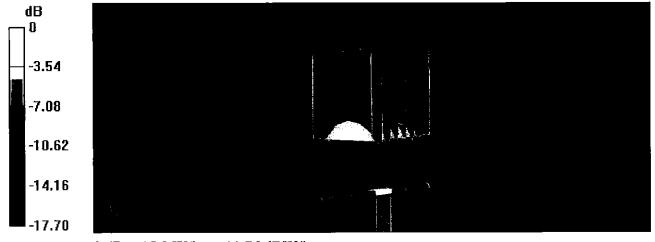
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

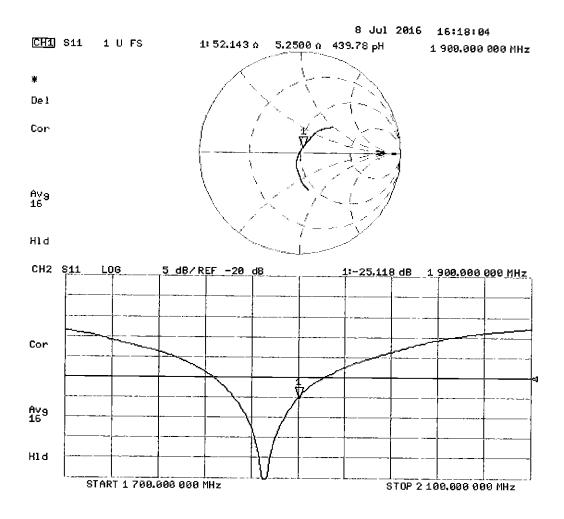
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.6 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.4 W/kg


SAR(1 g) = 9.76 W/kg; SAR(10 g) = 5.1 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;

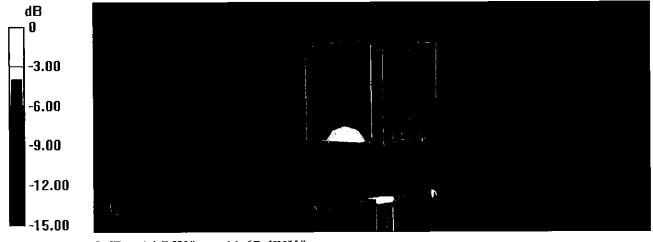
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

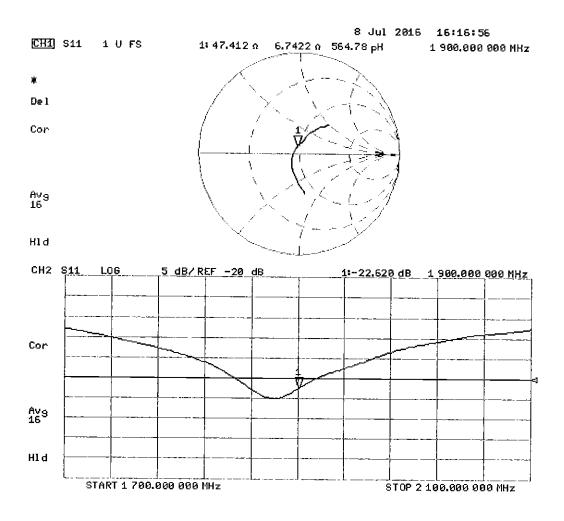
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.1 W/kg


SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Impedance Measurement Plot for Body TSL

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-I Composition of the Tissue Equivalent Matter

Frequency (MHz)	835	835	1900	1900	2450	2450
Tissue	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)						
Bactericide	0.1	0.1				
DGBE			44.92	29.44		26.7
HEC	1	1			Caa maaa 2	
NaCl	1.45	0.94	0.18	0.39	See page 2	0.1
Sucrose	57	44.9				
Water	40.45	53.06	54.9	70.17		73.2

FCC ID: A3LSMG610Y	PCTEST	SAR EVALUATION REPORT		Reviewed by: Quality Manager	
Test Dates:	DUT Type:			APPENDIX D:	
08/29/16 - 09/06/16	Portable Handset			Page 1 of 2	

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

H2O Water, 52 – 75%

C8H18O3 Diethylene glycol monobutyl ether (DGBE), 25 – 48%

(CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)

Relevant for safety; Refer to the respective Safety Data Sheet*.

NaCl Sodium Chloride, <1.0%

Figure D-1

Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test Item Name Head Tissue Simulating Liquid (HSL2450V2) Product No. SL AAH 245 BA (Charge: 150206-3) Manufacturer SPEAG asurement Method TSL dielectric parameters measured using calibrated OCP probe. Validation results were within $\pm 2.5\%$ towards the target values of Methanol. Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. **Test Condition** Ambient Envir TSL Temperature 23°C Environment temperatur (22 ± 3)°C and humidity < 70%. 11-Feb-15 Test Date Operator IEN Additional Information TSL Density 0.988 a/cm TSL Heat-capacity 3.680 kJ/(kg*K) Target Diff.to Target [%] f [MHz] HP-e' HP-e" sigma eps sigma Δ-eps ∆-sigma 1.26 40.0 1.40 -10.25.0 1925 40.3 11.98 1.28 40.0 1.40 -8.3 2.5 1950 40.2 12.07 1.31 40.0 1.40 0.4 -6.4 40.0 12.15 1.34 1.40 -4.6 0.2 -2.5 -5.0 -7.5 2000 40.0 12.23 1.36 40.0 1.40 -0.1 -2.8 Dev 2025 39.9 12.32 1.39 40.0 1.42 -0.2 -2.4 39.9 -10.0 12.41 1.42 1.44 -0.3 -2.0 1900 2000 2100 2200 2300 2400 2500 2600 2700 2075 39.7 12.50 1.44 39.9 1.47 -1.6 Frequency MHz 2100 39.6 12.59 1.47 39.8 1.49 -0.5 -1.2 39.5 12.66 1.50 39.8 1.51 -0.7 -0.9 2150 39.4 12.73 1.52 39.7 1.53 -0.7 -0.8 2175 39.3 12.83 1.55 39.7 1.56 -0.9 -0.2 2200 39.2 12.92 1.58 39.6 1.58 -1.1 0.2 5.0 2225 39.1 13.00 39.6 0.6 Conductivity 2.5 2250 39.0 13.08 1.64 39.6 1.62 -1.3 0.9 0.0 1.67 39.5 1.64 -1.5 -2.5 2300 38.8 13.26 1.70 39.5 1.67 1.8 Dev. 2325 38.7 13.34 1.73 39.4 2.2 1.75 2350 38.6 13.42 39.4 1.71 -2.0 2.5 38.5 13.50 1.78 39.3 1900 2000 2100 2200 2300 2400 2500 2600 2700 1.73 2.9 2400 38.4 13.58 1.81 39.3 1.76 -2.3 3.3 Frequency MHz 2425 38.3 13.65 1.84 39.2 2450 38.2 13.73 1.87 39.2 1.80 -2.6 2475 38.1 13.80 1.90 39.2 1.83 2500 38.0 13.87 1.93 39.1 1.85 -3.0 4.0 13.90 1.95 39.1 1.88 -3.1 3.8 2550 37.8 13.93 1.98 39.1 1.91 2575 37.7 14.05 2.01 39.0 1.94 2600 37.6 14.17 2.05 39.0 -3.7 4.4 39.0 38.9 37.4 14.23 2.08 1.99 2.11 37.3 14.29 -4.1 4.4 2675 37.2 14.37 38.9 2.05 2700 37.1 14.45 2.17 38.9

Figure D-2
2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMG610Y	SAR EVALUATION REPORT		SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
08/29/16 - 09/06/16	Portable Handset			Page 2 of 2

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

> Table E-I **SAR System Validation Summary**

SAR	FREQ.		PROBE	PROBE			COND.	PERM.	C'	CW VALIDATION		MOD. VALIDATION		
SYSTEM	[MHz]	DATE	SN	TYPE	PROBE CA	AL. POINT	(σ)	(er)	SENSITIVITY	PROBE	PROBE	MOD.	DUTY	PAR
#	[IVII IZ]		5				(0)	(13)	OLIVOITIVITI	LINEARITY	ISOTROPY	TYPE	FACTOR	IAII
Н	835	4/7/2016	3319	ES3DV3	835	Head	0.914	42.395	PASS	PASS	PASS	GMSK	PASS	N/A
D	1900	4/7/2016	3213	ES3DV3	1900	Head	1.430	39.380	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	3/9/2016	3334	ES3DV3	2450	Head	1.875	39.542	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
I	835	11/3/2015	3333	ES3DV3	835	Body	1.006	54.946	PASS	PASS	PASS	GMSK	PASS	N/A
Н	835	4/7/2016	3319	ES3DV3	835	Body	1.000	54.246	PASS	PASS	PASS	GMSK	PASS	N/A
J	1900	3/14/2016	3318	ES3DV3	1900	Body	1.561	52.094	PASS	PASS	PASS	GMSK	PASS	N/A
Н	1900	4/6/2016	3319	ES3DV3	1900	Body	1.584	53.356	PASS	PASS	PASS	GMSK	PASS	N/A
E	2450	4/27/2016	7406	EX3DV4	2450	Body	2.016	51.629	PASS	PASS	PASS	OFDM/TDD	PASS	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A3LSMG610Y	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
08/29/16 — 09/06/16	Portable Handset			Page 1 of 1
016 PCTEST Engineering Laboratory	, Inc.			REV 18 M