Report No: HCT-SR-2311-FC002 #### DASY5 Validation Report for Head TSL Date: 23.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1014 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\epsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.58 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.42 W/kg Smallest distance from peaks to all points 3 dB below = 17.1 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 2.90 W/kg 0 dB = 2.90 W/kg = 4.62 dBW/kg Certificate No: D750V3-1014_May23 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D750V3-1014_May23 Page 6 of 6 Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Gyeonogi-do, Republic of Kores Certificate No. D835V2-4d165_May23 | QA CAL-05.v12
Calibration Proce | | | |--|--|--| | THE PARTY OF P | | | | | dure for SAR Validation Sources | between 0.7-3 GHz | | | | | | May 23, 2023 | | | | nts the traceability to natio | onal standards, which realize the physical uni | ts of measurements (SI). | | | | | | ed in the closed laborator | y facility; environment temperature (22 ± 3)°C | and humidity < 70%. | | | | | | E critical for calibration) | | | | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | SN: 104778 | The state of s | Mar-24 | | | N N M N N N N N N N N N N N N N N N N N | Mar-24 | | | 사람들이 보고 하는 중요 있게 하면 하고 있습니다. 이 사람들이 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이다. | Mar-24 | | MANAGER STATE OF THE T | | Mar-24 | | 22.23.23.22.22.22.22.22.22.22.22.22.22.2 | | Mar-24 | | | | Jan-24 | | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | The second second | Signature | | Name | Function | | | Name
Michael Weber | Laboratory Technician | MESET | | | nts the traceability to national interest with confidence point the closed laborator critical for calibration) ID # | Into the traceability to national standards, which realize the physical unit ainties with confidence probability are given on the following pages and ed in the closed laboratory facility; environment temperature (22 ± 3)°C critical for calibration) ID # | FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d165_May23 Page 2 of 6 Report No: HCT-SR-2311-FC002 # **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 0.93 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.51 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.74 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.33 W/kg ± 16.5 % (k=2) | Report No: HCT-SR-2311-FC002 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.2 Ω - 3.2 Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 29.5 dB | | #### General Antenna Parameters and Design | Banks and the second | | |---|----------| | Electrical Delay (one direction) | 1,389 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: D835V2-4d165_May23 Page 4 of 6 Report No: HCT-SR-2311-FC002 #### DASY5 Validation Report for Head TSL Date: 23.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d165 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\epsilon_e = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.33 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.79 W/kg SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.62 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 3.35 W/kg Certificate No: D835V2-4d165_May23 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d165_May23 Page 6 of 6 Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Certificate No. D1800V2-2d015_May23 | Object | D1800V2 - SN:26 | - SN:2d015 | | | |--|---|---|---|--| | Calibration procedure(s) | QA CAL-05.v12
Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | | Calibration date: | May 17, 2023 | | | | | The measurements and the uncert | ainties with confidence p | coal standards, which realize the physical unitrobability are given on the following pages an
y facility: environment temperature $(22 \pm 3)^{\circ}$ 0 | d are part of the certificate. | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349 Jan23) | Jan-24 | | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | | | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | | | CONTRACTOR OF STREET | | | | | RF generator R&S SMT-08 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | | RF generator R&S SMT-08 | SN: 100972
SN: US41080477 | 15-Jun-15 (in house check Oct-22)
31-Mar-14 (in house check Oct-22) | In house check: Oct-24
In house check: Oct-24 | | | Power sensor HP 8481A
RF generator R&S SMT-08
Network Analyzer Agilent E8358A | THE COURSE | [Help 40 Help 12 Help 40 Help 21 Help 22 2 | | | | RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (In house check Oct-22) Function | In house check: Oct-24
Signature | | | RF generator R&S SMT-08 | SN: US41080477
Name | 31-Mar-14 (In house check Oct-22) Function | In house check: Oct-24
Signature | | | RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: US41080477
Name | 31-Mar-14 (In house check Oct-22) Function | In house check: Oct-24 | | | RF generator R&S SMT-08
Network Analyzer Agillent E8358A
Calibrated by: | SN:
US41080477
Name
Paulo Pina | 31-Mar-14 (In house check Oct-22) Function | In house check: Oct-24 Signature | | | RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by: | SN: US41080477 Name Paulo Pina Sven Kühn | 31-Mar-14 (In house check Oct-22) Function | In house check: Oct-24 Signature | | | RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by: | SN: US41080477 Name Paulo Pina Sven Kühn | 31-Mar-14 (In house check Oct-22) Function Laboratory Technician Technical Manager | In house check: Oct-24 Signature Signature Signature Signature Signature Signature | | | RF generator R&S SMT-08 Network Analyzer Agilent E8358A Calibrated by: Approved by: This calibration certificate shall not | SN: US41080477 Name Paulo Pina Sven Kühn be reproduced except in | 31-Mar-14 (In house check Oct-22) Function Laboratory Technician Technical Manager | In house check: Oct-24 Signature Signature Signature Signature Signature Signature | | | RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by: | SN: US41080477 Name Paulo Pina Sven Kühn be reproduced except in | 31-Mar-14 (in house check Oct-22) Function Laboratory Technician Technical Manager full without written approval of the Japoratory | In house check: Oct-24 Signature Signature Issued: May 25, 2023 | | Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swise Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1800V2-2d015_May23 Page 2 of 6 Report No: HCT-SR-2311-FC002 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | | | | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.5 ± 6 % | 1,37 mho/m ± 6 % | | Head TSL temperature change during test | < 0,5 °C | **** | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.92 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.7 W/kg ± 16.5 % (k=2) | Report No: HCT-SR-2311-FC002 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.9 Ω - 4.0 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.6 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.214 ns | |--|-------------| | and the state of t | 1.2.1.7.113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signais. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1800V2-2d015_May23 Page 4 of 6 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 #### DASY5 Validation Report for Head TSL Date: 17.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d015 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ S/m; $\epsilon_z = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.42 W/kg; SAR(10 g) = 4.92 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.8% Maximum value of SAR (measured) = 14.5 W/kg Report No: HCT-SR-2311-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D1800V2-2d015_May23 Page 6 of 6 Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di
taratura S wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT (Dymstec) Certificate No: D1900V2-5d061_Jan23 | Object | D1900V2 - SN:5 | d061 | | | |--|------------------------------------|-----------------------------------|--|------------------------------| | Calibration procedure(s) | QA CAL-05.v12
Calibration Proce | edure for SAR Validation | on Sources t | etween 0.7-3 GHz | | Calibration date: | January 23, 2023 | 3 | | | | This calibration certificate document
The measurements and the uncert
All calibrations have been conductor
Calibration Equipment used (M&TE | ainties with confidence po | robability are given on the folio | wing pages and a | are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/ | 135241 | Apr-23 | | Power sensor NRP-291 | SN: 103244 | 04-Apr-22 (No. 217-03524) | | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349 . | Isin23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_ | | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | | Scheduled Check | | Power meter E44198 | SN: GB39512475 | 30-Oct-14 (in house check (| Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | 5N: US37292783 | 07-Oct-15 (in house check (| 20-00 to 200 to 1 | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check (| Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check (| | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check | ACCUSED OF THE PARTY PAR | In house check: Oct-24 | | | Name | Function | | Signature | | Calibrated by: | Paulo Pina | Laboratory Teci | hnician | Tank to | | Approved by: | Svan Kühn | Technical Mana | oger . | 5.12 | | | | | | Issued: January 24, 2023 | | This calibration certificate shall not | be reproduced except in | full without written approval of | the laboratory | 당자 확위자 | | | Terrano | 400,000 (2.00) | 원 | 76 // | | ertificate No: D1900V2-5d061 | Jan23 | Page 1 of 6 | | 11 110 | FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d061_Jan23 Page 2 of 6 Report No: HCT-SR-2311-FC002 #### Measurement Conditions | DASY52 | V52.10.4 | |------------------------|--| | Advanced Extrapolation | | | Modular Flat Phantom | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 1900 MHz ± 1 MHz | | | | Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 "C | | Name : | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.77 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d061_Jan23 Page 3 of 6 Report No: HCT-SR-2311-FC002 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.2 Ω + 6.3 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.193 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | The state of s | SAME TO T |
--|--| | Manufactured by | SPEAG | Certificate No: D1900V2-5d061_Jan23 Page 4 of 6 Report No: HCT-SR-2311-FC002 #### DASY5 Validation Report for Head TSL Date: 23.01.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d061 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx-5mm, dy-5mm, dz-5mm Reference Value = 109.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.09 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg Certificate No: D1900V2-5d061_Jan23 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d061 Jan23 Page 6 of 6 Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Certificate No. D2450V2-1049_Apr23 | Calibration date: | April 25, 2023 | edure for SAR Validation Sources | | |---|---
--|---------------------------------| | This calibration certificate document | Calibration Proce | onal standards, which reslize the physical un | | | Calibration date: This calibration certificate document | April 25, 2023 | onal standards, which reslize the physical un | | | This calibration certificate document | A CONTRACTOR DE CONTRACTOR DE LA CONTRACTOR DE | onal standards, which reslize the physical un | | | This calibration certificate document | ts the traceability to nati | onal standards, which realize the physical un | | | This calibration certificate document | ts the traceability to nati- | onal standards, which realize the physical un | | | The monsurpments and the moneta | inting with apollouses a | and the facility of the second | its of measurements (SI). | | | musis with confidence p | robability are given on the following pages an | d are part of the certificate. | | All calibrations have been conducted | d in the closed laborator | y facility: environment temperature (22 ± 3)*0 | C and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | 200-01-02 | | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Scheduled Calibration
Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349 Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Ower meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Ower sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator FI&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | in house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M. Nose | | Approved by: | Sven Kühn | Technical Manager • | 11111 | | | | /.a. | h. bested | | | | | Issued: April 26, 2023 | | nis calibration certificate shall not be | e reproduced except in t | full without written approval of the jaboratory, | 日日 日 即 門本 | | artificate Nie. Doutours and a | | Section Control | 15 1/15 | | ertificate No: D2450V2-1049_Ap | H23 | Page 1 of 7 기계 | 0 1/0 | | | | 440/4/4 D.C | 14413 /13 / 513 | Report No: HCT-SR-2311-FC002 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the classificate. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-1049_Apr23 Page 2 of 7 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6,23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-1049_Apr23 Page 3 of 7 Report No: HCT-SR-2311-FC002 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1 Ω + 8.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.160 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint
may be damaged. #### Additional EUT Data | 200 000 000 | | |--|--------| | Manufactured by | SPEAG | | The state of s | to the | Certificate No: D2450V2-1049_Apr23 Page 4 of 7 Report No: HCT-SR-2311-FC002 #### **DASY5 Validation Report for Head TSL** Date: 25.04.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1049 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.23 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.1% Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg Certificate No: D2450V2-1049_Apr23 Page 5 of 7 Report No: HCT-SR-2311-FC002 ## Impedance Measurement Plot for Head TSL Certificate No: D2450V2-1049_Apr23 Page 6 of 7 Report No: HCT-SR-2311-FC002 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ ## **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | | |---------|------------------|-----------------------------|--| | | | | | # SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 56.2 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 57.3 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 54.0 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear D90) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 34.6 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | Certificate No: D2450V2-1049_Apr23 Page 7 of 7 ¹ Additional assessments outside the current scope of SCS 0108 Report No: HCT-SR-2311-FC002 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Certificate No. D2600V2-1106_May23 | CALIBRATION C | and the same | | | |---|--|--|--| | Object | D2600V2 - SN:1 | 106 | | | Calibration procedure(s) | QA CAL-05.v12
Calibration Proce | edure for SAR Validation Source | es between 0.7-3 GHz | | Calibration date: | May 24, 2023 | | | | The measurements and the uncert | ainties with confidence point | onel standards, which realize the physical μ robability are given on the following pages of facility: environment temperature (22 \pm 3) | and are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP2
Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 30-Mar-23 (No. 217-03804/03805)
30-Mar-23 (No. 217-03804) | Mar-24
Mar-24 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 30-Mar-23 (No. 217-03805)
30-Mar-23 (No. 217-03809)
30-Mar-23 (No. 217-03810) | Mar-24
Mar-24
Mar-24 | | Reference Probe EX3DV4
DAE4 | SN: 7349
SN: 601 | 10-Jan-23 (No. EX3-7349_Jan23)
19-Dec-22 (No. DAE4-601_Dec22) | Jan-24
Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | ower sensor HP 8481A | 5N: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | ower sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: 100972
SN: US41080477 | 15-Jun-15 (in house check Oct-22)
31-Mar-14 (in house check Oct-22) | In house check: Oct-24
In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | 7=62 | | | resident supplies | Technical Manager | | | Approved by: | Sven Kühn | 1 and a medical desired | SUT | | 77. 315.340 | | full without written approval of the jabbrato | S, Ussued: May 24, 2023
양 당 자 의 연 자 | | 77. 315.340 | | | S, Ussued: May 24, 2023
양 당시 의 인 자 | F-TP22-03 (Rev.00) 258 / 292 HCT CO.,LTD. Report No: HCT-SR-2311-FC002 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland lac-MR/ Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause).
The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1106 May23 Page 2 of 6 Report No: HCT-SR-2311-FC002 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|------------------------| | Extrapolation | Advanced Extrapolation | - College Constitution | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 2.00 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 0000 | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | Report No: HCT-SR-2311-FC002 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.9 Ω - 6.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23,1 dB | | ## General Antenna Parameters and Design | | 21 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.149 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data Certificate No: D2600V2-1106_May23 Page 4 of 6 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 ## **DASY5 Validation Report for Head TSL** Date: 24.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1106 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2 \text{ S/m}$; $\varepsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.6 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.37 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 51.4% Maximum value of SAR (measured) = 23.0 W/kg 0 dB = 23.0 W/kg = 13.62 dBW/kg Certificate No: D2600V2-1106_May23 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1106_May23 Page 6 of 6 Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D3500V2-1040_Jan23 #### HCT (Dymstec) CALIBRATION CERTIFICATE D3500V2 - SN:1040 QA CAL-22.V7 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: January 22, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-22 (No. 217-03525/03524) Apr-23 Power sensor NRP-Z91 SN: 103244 04-Apr-22 (No. 217-03524) Apr-23 Power sensor NRP-Z91 SN: 103245 04-Apr-22 (No. 217-03525) Apr-23 Reference 20 dB Attenuator SN: BH9394 (20k) 04-Apr-22 (No. 217-03527) Apr-23 Type-N mismatch combination SN: 310982 / 06327 04-Apr-22 (No. 217-03528) Apr-23 Reference Probe EX3DV4 SN: 3503 08-Mar-22 (No. EX3-3503_Mar22) Mar-23 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Cathristed by: Paulo Pina Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: January 23, 2023 This calibration certificate shall not be reproduced except in full without written approval pt the to Certificate No: D3500V2-1840 Jan23 Page 1 of 6 p1/41265 K5/ 486 재 2023.02.09 2023.02,00 Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizie svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1040 Jan23 Page 2 of 6 Report No: HCT-SR-2311-FC002 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution
| dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 2.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1040_Jan23 Page 3 of 6 Report No: HCT-SR-2311-FC002 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.7 Ω - 3.1 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.9 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.140 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by SPEAG | |-----------------------| |-----------------------| Certificate No: D3500V2-1040_Jan23 Page 4 of 6 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 # **DASY5 Validation Report for Head TSL** Date: 22.01.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1040 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.93$ S/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 08.03.2022 · Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.71 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.48 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 76% Maximum value of SAR (measured) = 12.6 W/kg Certificate No: D3500V2-1040 Jan23 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D3500V2-1040_Jan23 Page 6 of 6 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 2022.12.05 2022,12,00 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates HCT (Dymstec) Certificate No. D3700V2-1066_Nov22 CALIBRATION CERTIFICATE Object D3700V2 - SN:1066 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz November 14, 2022 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si), The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-22 (No. 217-03525/03524) Apr-23 Power sensor NRP-Z91 SN: 103244 04-Apr-22 (No. 217-03524) Apr-23 Power sensor NRP-Z91 SN: 103245 04-Apr-22 (No. 217-03525) Apr-23 Reference 20 dB Attenuator SN: BH9394 (20k) 04-Apr-22 (No. 217-03527) Apr-23 Type-N mismatch combination SN: 310982 / 06327 04-Apr-22 (No. 217-03528) Apr-23 Reference Probe EX3DV4 SN: 3503 08-Mar-22 (No. EX3-3503_Mar22) Mar-23 DAE4 SN: 601 31-Aug-22 (No. DAE4-601_Aug22) Aug-23 Secondary Standards Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check; Oct-24 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: MY41093315 87-Oct-15 (in house check Oct-22) In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent EB358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Function Calibrated by: Joanna Lieshai Laboratory Technician Approved by: Sven Kunn Technical Manager This calibration certificate shall not be reproduced except in full without written approval of the jabo Certificate No: D3700V2-1066 Nov22 Page 1 of 6 OL/ USBS 1519/2 Report No: HCT-SR-2311-FC002 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1066_Nov22 Page 2 of 6 Report No: HCT-SR-2311-FC002 # Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|---------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction | | Frequency | 3700 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 3.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | |
---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 19.5 % (k=2) | Report No: HCT-SR-2311-FC002 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.7 Ω + 0.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 36.9 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.130 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D3700V2-1066_Nov22 Page 4 of 6 Report No: HCT-SR-2311-FC002 # **DASY5 Validation Report for Head TSL** Date: 14.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1066 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.08$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 08.03.2022 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 31.08.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.55 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.76 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.4% Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.13 dBW/kg Certificate No: D3700V2-1066 Nov22 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D3700V2-1066_Nov22 Page 6 of 6 Report No: HCT-SR-2311-FC002 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Gyeonggi-do, Republic of Korea Certificate No. D3900V2-1019_May23 # CALIBRATION CERTIFICATE D3900V2 - SN:1019 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|--| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Heterence 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310962 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Krešimir Franjić | Laboratory Technician | The same of sa | | Approved by: | Sven Kühn | Technical Manager | 561 | Certificate No: D3900V2-1019_May23 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced except in full without written approval of the laboration certificate shall not be reproduced as a DL/收拾 2013 106.02 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY
System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1019_May23 Page 2 of 6 Report No: HCT-SR-2311-FC002 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy ≈ 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz | | # Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 36.7 ± 6 % | 3,23 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1019_May23 Page 3 of 6 Report No: HCT-SR-2311-FC002 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 48.0 Ω - 7.8 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21,7 dB | | #### General Antenna Parameters and Design | Temporary and the part of | 0.0350000000 | |--|--------------| | Electrical Delay (one direction) | 1.100 ns | | The state of s | 1,100115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | -1 | Manufactured by | SPEAG | | |----|-----------------|-------|--| | | | | | Certificate No: D3900V2-1019_May23 Page 4 of 6 Report No: HCT-SR-2311-FC002 #### DASY5 Validation Report for Head TSL Date: 19.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1019 Communication System: UID 0 - CW; Frequency: 3900 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.23$ S/m; $\epsilon_c = 36.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz; Calibrated: 07.03.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.29 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.8 W/kg SAR(1 g) = 6.97 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.5% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg Certificate No: D3900V2-1019_May23 Page 5 of 6 Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Report No: HCT-SR-2311-FC002 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Certificate No. D5GHzV2-1317_May23 | CALIBRATION C | ENTIFICATE | | | |--|--|---|--| | Object | D5GHzV2 - SN:1 | 317 | | | Calibration procedure(s) | QA CAL-22.v7
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | May 17, 2023 | | | | The measurements and the uncert | ainties with confidence pr | onal standards, which realize the physical uni-
robability are given on the following pages an
y facility: environment temperature (22 \pm 3) $^{\circ}$ C | d are part of the certificate. | | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 8H6394 (20k)
SN: 310982 (06327 | 30-Mar-23 (No. 217-03804/03805)
30-Mar-23 (No. 217-03804)
30-Mar-23 (No. 217-03805)
30-Mar-23 (No. 217-03809)
30-Mar-23 (No. 217-03810) | Mar-24
Mar-24
Mar-24
Mar-24
Mar-24 | | Reference Probe EX3DV4
DAE4 | SN: 3503
SN: 601 | 07-Mar-23 (No. EX3-3503_Mar23)
19-Dec-22 (No. DAE4-601_Dec22) | Mar-24
Dec-23 | | Secondary Standards | lip.v | Check Date (in house) | Scheduled Check | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: GB39512475
SN: US37292783
SN:
MY41093315
SN: 100972
SN: US41080477 | 30-Oct-14 (in house check Oct-22)
07-Oct-15 (in house check Oct-22)
07-Oct-15 (in house check Oct-22)
15-Jun-15 (in house check Oct-22)
31-Mar-14 (in house check Oct-22) | In house check: Oct-24
In house check: Oct-24
In house check: Oct-24
In house check: Oct-24
In house check: Oct-24 | | | Name | Function
Laboratory Technician | Signature | | Calibrated by: | Michael Weber | | MINES | | Calibrated by: | Michael Weber | | A CONTRACT COMP | | Calibrated by: | Michael Weber
Sven Kühn | Technical Manager | 56 | | Approved by: | Sven Kütin | Technical Manager full without written approval of the laboratory | S. G. Issued: May 25, 2023 | F-TP22-03 (Rev.00) 282 / 292 HCT CO.,LTD. Report No: HCT-SR-2311-FC002 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kafibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1317_May23 Page 2 of 11 Report No: HCT-SR-2311-FC002 # **Measurement Conditions** DASY system configuration, as for as not given on name 1 | AS r system configuration, as far as no | ot given on page 1. | | |---|--|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5800 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1317_May23 Page 3 of 11 Report No: HCT-SR-2311-FC002 #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|--------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | (-11) | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.08 mho/m ± 8 % | | Head TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1317_May23 Page 4 of 11 Report No: HCT-SR-2311-FC002 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|---------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 5.11 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | S erie I | | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1317_May23 Page 5 of 11 Report No: HCT-SR-2311-FC002 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 44.6 Ω - 2.0 Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 48.0 Ω - 0.3 μΩ | |--------------------------------------|-----------------| | Return Loss | - 33.6 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 47.2 Ω + 1.2 μΩ | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | $46.0 \Omega + 0.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.4 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) 1.191 ns | | | |---|----------------------------------|----------| | | Electrical Delay (one direction) | 1.191 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length
is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | P | | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D5GHzV2-1317_May23 Page 6 of 11 FCC ID: A3LSMG556B Report No: HCT-SR-2311-FC002 #### DASY5 Validation Report for Head TSL Date: 17.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1317 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 4.6 S/m; $ε_r$ = 34.8; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 4.97 S/m; $ε_r$ = 34.6; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.08 S/m; $ε_r$ = 34.4; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.11 S/m; $ε_r$ = 34.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.29 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.8% Maximum value of SAR (measured) = 17.6 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.66 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 68.8% Maximum value of SAR (measured) = 18.8 W/kg Certificate No: D5GHzV2-1317_May23 Page 7 of 11 Report No: HCT-SR-2311-FC002 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.14 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 18.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.84 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.2 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.8 W/kg = 12.74 dBW/kg Report No: HCT-SR-2311-FC002 # Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1317_May23 Page 9 of 11 Report No: HCT-SR-2311-FC002 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ # Evaluation Conditions (f=5250 MHz) | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| | | | | # SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 84.3 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.5 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | #### SAR result with SAM Head (Neck) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 52.8 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | | | | Certificate No: D5GHzV2-1317_May23 Page 10 of 11 Additional assessments outside the current scope of SCS 0108 Report No: HCT-SR-2311-FC002 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head² # Evaluation Conditions (f=5800 MHz) | Phantom SAM Head Phantom For usage with cSAR3DV2-R/L | |--| |--| # SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 79.9 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 86.4 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 77.1 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 54.9 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | Certificate No: D5GHzV2-1317_May23 Page 11 of 11 Additional assessments outside the current scope of SCS 0108