

FCC CFR47 PART 22 SUBPART H FCC CFR47 PART 24 SUBPART E

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE PHONE + BLUETOOTH + DTS b/g/n + NFC

MODEL NUMBER: SM-G531F and SM-G531F/DD

FCC ID: A3LSMG531F

REPORT NUMBER: 15I20736-E1, Revision A

ISSUE DATE: June 11, 2015

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 416, MAETAN 3-DONG, YEONGTONG-GU SUWON-CITY, GYEONGGI-DO 443-742, SOUTH KOREA

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	05/27/15	Initial issue	P. Zhang
Α	06/11/25	Add Another Model	A. Aumentado

DATE: JUNE 11, 2015

FCC ID: A3LSMG531F

TABLE OF CONTENTS

1.		ATT	ESTATION OF TEST RESULTS	5
2.		TES	T METHODOLOGY	6
3.			ILITIES AND ACCREDITATION	
4.		CAL	IBRATION AND UNCERTAINTY	7
	4.1.	ME	EASURING INSTRUMENT CALIBRATION	7
	4.2.	SA	MPLE CALCULATION	7
	4.3.	ME	ASUREMENT UNCERTAINTY	7
5.		EQU	IPMENT UNDER TEST	8
	5.1.	DE	SCRIPTION OF EUT	8
	5.2.	MA	XXIMUM OUTPUT POWER	8
	5.3.	MA	XXIMUM OUTPUT POWER (LTE)	9
	5.4.	DE	SCRIPTION OF AVAILABLE ANTENNAS1	10
	5.5.		SCRIPTION OF TEST SETUP1	
6.			T AND MEASUREMENT EQUIPMENT1	
7.			ımary Table1	
8.		RF F	POWER OUTPUT VERIFICATION1	6
	8.1.	GS	SM/GPRS/EDGE1	16
	-	1.1.		
	8.2.	UN	/ITS REL 991	18
			UMTS REL 99 OUTPUT POWER RESULT1	
	8.3.	UN	ITS HSDPA1	19
	8.	3.1.	UMTS HSDPA OUTPUT POWER RESULT2	_
	8.4.	UN	ITS HSUPA2	21
	8.	4.1.	UMTS HSUPA OUTPUT POWER RESULT2	22
	8.5.	LT	E OUTPUT VERIFICATION2	23
	8.	5.1.	LTE OUTPUT RESULT2	23
9.		PEA	K TO AVERAGE RATIO2	25
	9.1.	CC	NDUCTED PEAK TO AVERAGE RESULT2	25
10).	LIMI	TS AND CONDUCTED RESULTS3	30
	10.1	1. (OCCUPIED BANDWIDTH	30
	10	0.1.1.	OCCUPIED BANDWIDTH RESULTS	31
	10	0.1.2.	LTE OCCUPIED BANDWIDTH RESULTS3	33

12. SETU	P PHOTOS		.101
11.2.1.	SPURIOUS RADIATION DATA		85
11.2. Fl	ELD STRENGTH OF SPURIOUS RADIATIO	ON	84
11.1.3.	ERP/EIRP DATA		68
11.1.2.	LTE ERP/EIRP Results		66
11.1.1.	ERP/EIRP Results		64
11.1. RA	ADIATED POWER (ERP & EIRP)		63
11. RADIA	ATED TEST RESULTS		63
10.4.1.	FREQUENCY STABILITY RESULTS		61
10.4. FF	REQUENCY STABILITY		60
10.3.2.	OUT OF BAND EMISSIONS PLOTS		56
10.3.1.	OUT OF BAND EMISSIONS RESULT		53
10.3. O	UT OF BAND EMISSIONS		52
10.2.1.	BAND EDGE PLOTS		40
10.2. BA	AND EDGE EMISSIONS		39
10.1.1.	OCCUPIED BANDWIDTH PLOTS		35
MODEL NUMB	BER: SM-G531F & SM-G531F/DD	FCC ID: A3LSMG531F	
REPORT NO:	15I20736-E1A	DATE: JUNE 11, 2015	

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + Bluetooth & WLAN 2.4GHz b/g/n + NFC

MODEL: SM-G531F and SM-G531F/DD

SERIAL NUMBER: R38G40TQMVX (Conducted), R38G40TQM9X (Radiated)

DATE TESTED: MAY 8 – 27, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H & 24E PASS

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Tested By:

PENG ZHANG

CONSUMER TECHNOLOGY DIVISION

PROJECT LEAD

UL Verification Services Inc.

CHARLES VERGONIO

CONSUMER TECHNOLOGY DIVISION

LAB ENGINEER

UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR 47 Part 22, FCC CFR Part 24, and FCC CFR 47 Part 27.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 27000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + Bluetooth + WLAN 2.4GHz b/g/n + NFC.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted and radiated ERP / EIRP output powers as follows:

FCC Part 22/24								
Band	Frequency	Modulation	Cond	Radiated				
	Range(MHz)	Peak	Avg	mW	Avg	mW		
	824~849	GMSK	32.7	1862.09				
GSM850	824~849	GPRS	32.7	1862.09	29.74	941.89		
	824~849	EGPRS	27.4	549.54	24.76	299.23		
	1850~1910	GMSK	30.1	1023.29				
GSM1900	1850~1910	GPRS	30.1	1023.29	31.24	1330.45		
	1850~1910	EGPRS	27.1	512.86	27.22	527.23		
	824~849	REL99	23.0	199.53	20.66	116.41		
Band 5	824~849	HSDPA	23.0	199.53	20.56	113.76		
	824~849	HSUPA	23.0	199.53				
	1850~1910	REL99	23.6	229.09	24.17	261.22		
Band 2	1850~1910	HSDPA	23.0	199.53	24.04	253.51		
	1850~1910	HSUPA	23.0	199.53				

5.3. MAXIMUM OUTPUT POWER (LTE)

The transmitter has a maximum peak conducted and radiated ERP/EIRP output powers as follows:

FCC Part 22								
Band	Frequency			dulation Conducted		Radiated		
	Range(MHz)	(MHz)		AVG(dBm)	AVG(mW)	AVG(dBm)	AVG(mW)	
LTE5	824~849	10MHz	QPSK	24.1	257.04	20.97	125.03	
	824~849	10MHz	16QAM	23.5	223.87	20.09	102.09	

FCC Part 22								
Band	Frequency	· · ·		Cond	Conducted		Radiated	
	Range(MHz)	(MHz)	AVG(dBm)	AVG(mW)	AVG(dBm)	AVG(mW)		
LTE5	824~849	5MHz	QPSK	24.2	263.03	20.88	122.46	
	824~849	5MHz	16QAM	23.5	223.87	20.0	100.00	

	FCC Part 22								
Band	Trequency Banaviati				ucted	Radiated			
	Range(MHz) (MHz)		AVG(dBm)	AVG(mW)	AVG(dBm)	AVG(mW)			
LTE5	824~849	3MHz	QPSK	24.2	263.03	20.75	118.85		
	824~849	3MHz	16QAM	23.5	223.87	19.94	98.63		

	FCC Part 22								
Band	Frequency			Modulation Condu		Radiated			
	Range(MHz)	(MHz)		AVG(dBm)	AVG(mW)	AVG(dBm)	AVG(mW)		
LTE5	824~849	1.4MHz	QPSK	24.2	263.03	20.28	106.66		
	824~849	1.4MHz	16QAM	23.5	223.87	19.61	91.41		

FORM NO: CCSUP4701I

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna for the bands list below with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
Band 5, 824~849MHz	-1.2
Band 2, 1850~1910MHz	1.4

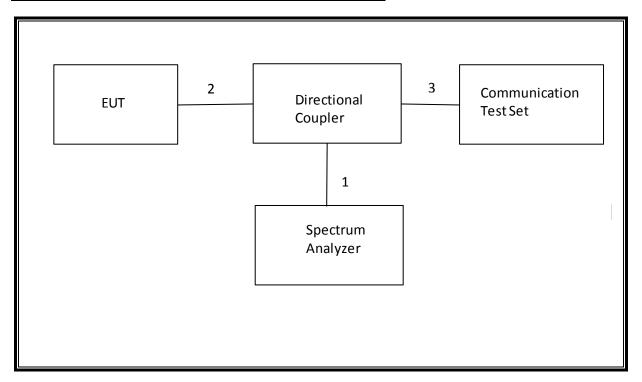
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

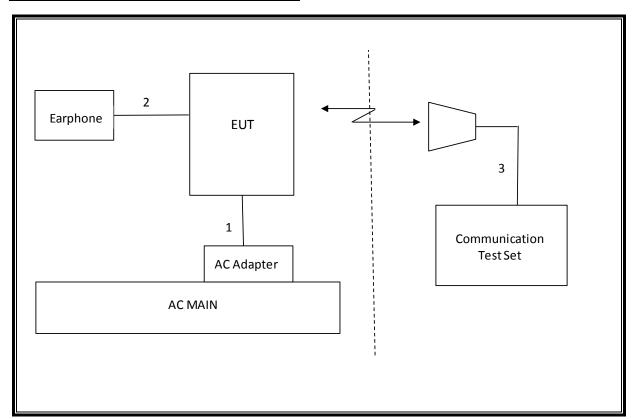
Support Equipment List								
Description Manufacturer Model Serial Number FCC ID								
AC Adapter	SAMSUNG	N/A	N/A	N/A				
Earphone	SAMSUNG	N/A	N/A	N/A				

I/O CABLES (CONDUCTED SETUP)

	I/O Cable List										
Cable No			Connector Type	Cable Type	Cable Length (m)	Remarks					
1	RF Out	1	Spectrum Analyzer	Shielded	None	NA					
2	Antenna Port	1	EUT	Shielded	0.1m	NA					
3	RF In/Out	1	Communication Test Set	Shielded	1m	NA					


I/O CABLES (RADIATED SETUP)

	I/O CABLE LIST									
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks				
1	USB	1	AC Adapter	Un-shielded	1.2m	No				
2	Jack	1	Headset	Shielded	1m	No				
3	RF In/out	1	Communication Test Set	Un-shielded	2m	Yes				


TEST SETUP

The EUT is continuously communicated to the call box during the tests.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset	Cal Due				
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01179	05/01/16				
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	04/22/16				
Antenna, Horn, 18 GHz	EMCO	3115	C00783	10/25/15				
Antenna, Horn, 18 GHz	EMCO	3115	C00784	10/25/15				
Highpass Filter, 2.7 GHz	Micro-Tronics	HPM13194	N02687	CNR				
Highpass Filter, 1.5 GHz	Micro-Tronics	HPM13193	N02688	CNR				
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	05/11/16				
Communications Test Set	R&S	CMW500	T159	07/02/16				
DC power supply, 8 V @ 3 A or 15 V	Agilent / HP	E3610A	None	CNR				
Vector signal generator, 6 GHz	Agilent / HP	E4438C	None	06/18/15				
Antenna, Tuned Dipole 400~1000	ETS	3121C DB4	C00993	02/11/16				
Directional Coupler	RF-Lambda	RFDC5M06G15	None	CNR				
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	12/17/15				
Multimeter	Fluke	26111	74320701	4/15/2016				

Test Software List								
Description	Manufacturer	Model	Version					
Radiated Software	UL	UL EMC	Version 9.5, 07/22/14					
Conducted Software	UL	UL EMC	Version 9.5, 05/17/14					
CLT Software	UL	UL RF	Version 1.0, 02/02/15					
Antenna Port Software	UL	UL RF	Version 2.1.1.1, 1/20/15					

7. Summary Table

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
2.1049	N/A	Occupied Band width (99%)	N/A		Pass	9.028 MHz
22.917(a) 24.238(a)	RSS-132(4.5.1) RSS-133(6.5.1)	Band Edge / Conducted Spurious Emission	-13dBm	Conducted	Pass	-13.441dBm
2.1046	N/A	Conducted output power	N/A	Conducted	Pass	32.7 dBm
22.355 24.235	RSS-132(4.3) RSS-133(6.3)	Frequency Stability	2.5PPM		Pass	0.040 PPM
22.913(a)(2)	RSS-132(4.4)	Effective Radiated Power	38 dBm		Pass	29.74dBm
24.232(c)	RSS-133(6.4)	Equivalent Isotropic Radiated Power	33dBm	Radiated	Pass	31.24 dBm
22.917(a) 24.238(a)	RSS-132(4.5.1) RSS-133(6.5.1)	Radiated Spurious Emission	-13dBm		Pass	-37.5dBm

8. RF POWER OUTPUT VERIFICATION

8.1. GSM/GPRS/EDGE

Function: Menu select > GSM Mobile Station > GSM 850/900/1800/1900

Press Connection control to choose the different menus

Press RESET > choose all to reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM+GPRS or GSM+EGPRS

Main Service > Packet Data

Service selection > Test Mode A - Auto Slot Config. off

MS Signal Press Slot Config bottom on the right twice to select and change the number of time slots and

power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850/900 > 30 dBm for GPRS1800/1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and

BCCH channel]

Channel Type > Off

P0> 4 dB

Slot Config > Unchanged (if already set under MS Signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3 (Default)

Network Coding Scheme > CS4 (GPRS) and MCS5 ~ MCS9 (EGPRS)

Bit Stream > 2E9-1PSR Bit Pattern

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal On to turn on the signal and change settings

8.1.1. GSM OUTPUT POWER RESULT

Band	Mode	Ch.	f(MHz)	1 time slot	2 time slot	3 time slot	4 time slot
20112			.(2)	Peak (dBm)	Peak (dBm)	Peak (dBm)	Peak (dBm)
		128	824.2	32.7			
	GMSK	190	836.6	32.7			
		251	848.8	32.7			
		128	824.2	32.7	31.3	29.0	27.0
GSM850	GPRS	190	836.6	32.7	31.4	29.0	27.0
		251	848.8	32.7	31.4	29.0	27.0
		128	824.2	27.2	25.8	23.6	21.5
	EGPRS	190	836.6	27.0	25.6	23.4	21.2
		251	848.8	27.4	25.9	23.8	21.6
		512	1850.2	29.9			
	GMSK	661	1880	30.1			
		810	1909.8	29.9			
		512	1850.2	29.9	28.5	26.5	24.3
GSM1900	GPRS	661	1880	30.1	28.5	26.5	24.4
		810	1909.8	29.9	28.3	26.2	23.9
		512	1850.2	26.3	24.8	22.6	20.2
	EGPRS	661	1880	27.1	25.4	23.0	21.0
		810	1909.8	26.2	24.6	22.3	20.0

8.2. UMTS REL 99

TEST PROCEDURE

The following summary of these settings are illustrated below:

	Mode	Rel99	
	Subtest	-	
	Loopback Mode	Test Mode 1	
	Rel99 RMC	12.2kbps RMC	
	HSDPA FRC	Not Applicable	
	HSUPA Test	Not Applicable	
WCDMA General	Power Control Algorithm	Algorithm2	
Settings	βc	Not Applicable	
Settings	βd	Not Applicable	
	βес	Not Applicable	
	βc/βd	8/15	
	βhs	Not Applicable	
	βed	Not Applicable	

8.2.1. UMTS REL 99 OUTPUT POWER RESULT

Band	Mode	Ch.	f(MHz)	Conducted Power (dBm) Avg (dBm)
		4132	826.4	23.0
Band 5	REL99	4183	836.6	23.0
		4233	846.6	23.0
		9262	1852.4	23.0
Band 2	REL99	9400	1880	23.6
		9538	1907.6	22.9

8.3. UMTS HSDPA

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	Rel5 HSDPA					
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
MCDAAA	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1					
	Power Control Algorithm	Algorithm 2					
WCDMA General	βс	2/15	12/15	15/15	15/15		
Settings	βd	15/15	15/15	8/15	4/15		
Settings	Bd (SF)	64					
	βc/βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR (dB)	0	0	0.5	0.5		
	D _{ACK}	8					
	D _{NAK}	8					
LICDDA	DCQI	8	8				
HSDPA Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback (Table 5.2B.4)	4ms					
Jettings	CQI Repetition Factor (Table						
	5.2B.4)	2					
	Ahs =βhs/βc	30/15			•		

8.3.1. UMTS HSDPA OUTPUT POWER RESULT

Band	Mode	Subset	Ch.	f(MHz)	Conducted Power (dBm) Avg (dBm)
		1	4132	826.4	23.0
			4183	836.6	23.0
			4233	846.6	23.0
			4132	826.4	22.6
		2	4183	836.6	22.7
Band 5	HSDPA		4233	846.6	22.7
			4132	826.4	22.1
		3	4183	836.6	22.3
			4233	846.6	22.3
		4	4132	826.4	22.1
			4183	836.6	22.3
			4233	846.6	22.3
			9262	1852.4	23.0
		1	9400	1880	22.8
			9538	1907.6	22.9
			9262	1852.4	22.8
		2	9400	1880	22.8
Band 2	HSDPA		9538	1907.6	22.3
			9262	1852.4	22.5
		3	9400	1880	22.4
			9538	1907.6	21.9
			9262	1852.4	22.5
		4	9400	1880	22.4
			9538	1907.6	21.9

8.4. UMTS HSUPA

TEST PROCEDURE

The following summary of these settings are illustrated below: (ETSI TS 134.121-1 Table C.11.1)

	Mode	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA				
	Subtest	1	2	3	4	5				
	Loopback Mode	Test Mode 1								
	P-CPICH (dB)	-10								
	P-CCPCH (dB)	-12								
	SCH (dB)	-12								
	PICH(dB)	-15								
	DPCH (dB)	-9								
	HS-SCCH_1 (dB)	-8								
	HS-PDSCH (dB)	-3								
WCDMA	Rel99 RMC	12.2kbps RMC								
General	HSDPA FRC	H-Set1								
Settings	HSUPA Test	HSUPA Loopba	ck							
Settings	Power Control Algorithm	Algorithm2		•						
	Вс	11/15	6/15	15/15	2/15	15/15				
	Bd	15/15	15/15	9/15	15/15	15/15				
	Bec	209/225	12/15	30/15	2/15	5/15				
	βc/βd	11/15	6/15	15/9	2/15	15/15				
	Bhs	22/15	12/15	30/15	4/15	30/15				
				47/15						
	βed (note1)	1309/225	94/75	47/15	56/75	134/15				
	MPR	0	2	1	2	0				
	DACK 8									
	DNAK	8								
HSDPA	DCQI	8								
Specific	Ack-Nack repetition factor	3								
Settings	CQI Feedback (Table 5.2B.4)	4ms								
	CQI Repetition Factor (Table 5.2B.4)	2								
	Ahs = βhs/βc	30/15	Т -	T =	T_	T_				
	D E-DPCCH	6	8	8	5	7				
	DHARQ	0	0	0	0	0				
	AG Index	20	12	15	17	21				
	Reference E-TFCIs	5	5	2	5	5				
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81				
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9				
HSUPA		E-TFCI 11 E-TFCI PO 4			E-TFCI 11					
Specific		E-TFCI PO 4			E-TFCI PO 4 E-TFCI 67					
Settings		E-TFCI PO 18			E-TFCI PO 18					
		E-TFCI 70 18			E-TFCI 70 18					
	Reference E_TFCIs	E-TFCI PO 23			E-TFCI PO 23					
		E-TFCI 75		E-TFCI 11	E-TFCI 75					
		E-TFCI PO 26		E-TFCI PO 4	E-TFCI PO 26					
		E-TFCI 81		E-TFCI 92	E-TFCI 81					
		E-TFCI PO 27		E-TFCI PO 18	E-TFCI PO 27					

Note1: βed cannot be set directly, it is set by Absolute Grant Value.

8.4.1. UMTS HSUPA OUTPUT POWER RESULT

Band	Mode	Subset Ch.	Ch.	f(MHz)	Conducted Power (dBm)
				,	Avg (dBm)
			4132	826.4	22.9
		1	4183	836.6	22.7
			4233	846.6	22.8
			4132	826.4	21.7
		2	4183	836.6	21.5
			4233	846.6	21.6
			4132	826.4	22.3
Band 5	HSUPA	3	4183	836.6	22.0
			4233	846.6	22.1
			4132	826.4	21.7
		4	4183	836.6	21.5
			4233	846.6	21.6
		5	4132	826.4	23.0
			4183	836.6	23.0
			4233	846.6	23.0
		1	9262	1852.4	23.1
			9400	1880	23.1
			9538	1907.6	22.8
			9262	1852.4	21.9
		2	9400	1880	22.0
			9538	1907.6	21.8
			9262	1852.4	22.4
Band 2	HSUPA	3	9400	1880	22.5
			9538	1907.6	22.2
			9262	1852.4	21.9
		4	9400	1880	22.0
			9538	1907.6	21.8
			9262	1852.4	23.0
		5	9400	1880	23.0
			9538	1907.6	23.0

8.5. LTE OUTPUT VERIFICATION

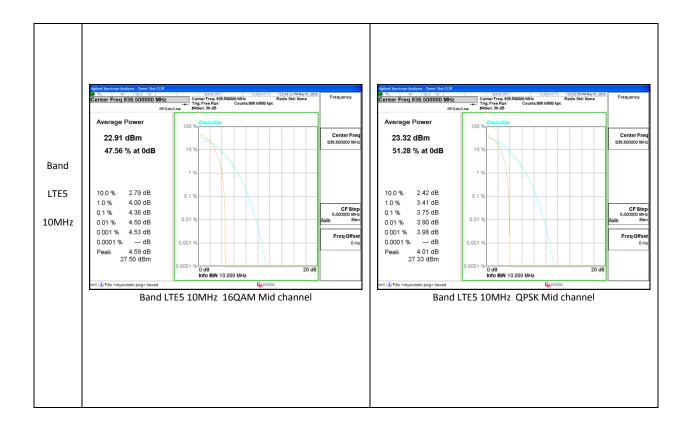
8.5.1. LTE OUTPUT RESULT

		Mode	DB.				Avg Pwr (dBm)		
Band	BW (MHz)		RB Allocation	RB offset	Target MPR	20450	20525	20600	
	(*** 12)					829 MHz	836.5 MHz	844 MHz	
			1	0	0	24.1	24.1	24.0	
			1	25	0	24.1	24.0	24.0	
			1	49	0	24.1	20450 20525 20600 829 MHz 836.5 MHz 844 MHz 24.1 24.0 24.0 24.1 24.0 23.9 23.2 23.1 23.0 23.2 23.1 23.0 23.2 23.1 23.0 23.2 23.1 23.0 23.5 23.5 23.4 23.4 23.5 23.4 23.4 23.5 23.3 22.5 22.4 22.4 22.5 22.4 22.4 22.4 22.4 22.4 22.4 22.3 22.3 Avg Pwr (dBm) 20425 20525 20625		
		QPSK	25	0	1	23.2			
			25	12	1	23.2	23.1	23.0	
			25	25	1	23.2	23.1	23.0	
LTE	10		50	0	1	23.2	23.1	23.0	
Band 5	10		1	0	1	23.5	23.5	23.4	
			1	25	1	23.5	23.5	23.4	
			1	49	1	23.4	23.5	23.3	
		16QAM	25	0	2	22.5	22.4	22.4	
			25	12	2	22.5	22.4	22.4 22.4 22.4 22.4	
			25	25	2	22.5	22.4	22.4	
			50	0	2	22.4	22.3	22.3	
					_	Avg Pwr (dBm)			
Band	BW (MHz)	Mode	RB Allocation	RB offset	Target MPR	20425	20525	20625	
	, , ,					826.5 MHz	836.5 MHz	846.5 MHz	
			1	0	0	24.1	24.2	24.1	
			1	12	0	24.1	24.2	24.1	
			1	24	0	24.2	24.1	24.0	
		QPSK	12	0	1	23.2	23.2	23.1	
			12	7	1	23.2	23.2	23.1	
			12	13	1	23.2	23.1	23.1	
LTE	5		25	0	1	23.2	20525 20600 836.5 MHz 844 MHz 24.1 24.0 24.0 23.9 23.1 23.0 23.1 23.0 23.1 23.0 23.5 23.4 23.5 23.4 23.5 23.3 22.4 22.4 22.4 22.4 22.3 22.3 Avg Pwr (dBm) 20525 836.5 MHz 846.5 MHz 24.2 24.1 24.1 24.0 23.2 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.5 23.5	23.0	
Band 5	3		1	0	1	23.5	23.5	23.5	
			1	12	1	23.5	23.5	23.5	
			1	24	1	23.5	23.5	23.5	
		16QAM	12	0	2	22.5	24.0 24.0 24.0 23.9 23.1 23.0 23.1 23.0 23.1 23.0 23.1 23.0 23.1 23.0 23.5 23.4 23.5 23.4 23.5 23.3 22.4 22.4 22.4 22.4 22.4 22.4 22.3 22.3 Avg Pwr (dBm) 20525 20625 836.5 MHz 846.5 MHz 24.2 24.1 24.1 24.0 23.2 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 22.4 22.5 22.4		
			12	7	2	22.5	22.5	22.4	
			12	13	2	22.5	22.5	22.4	
			25	0	2	22.5	22.4	22.3	

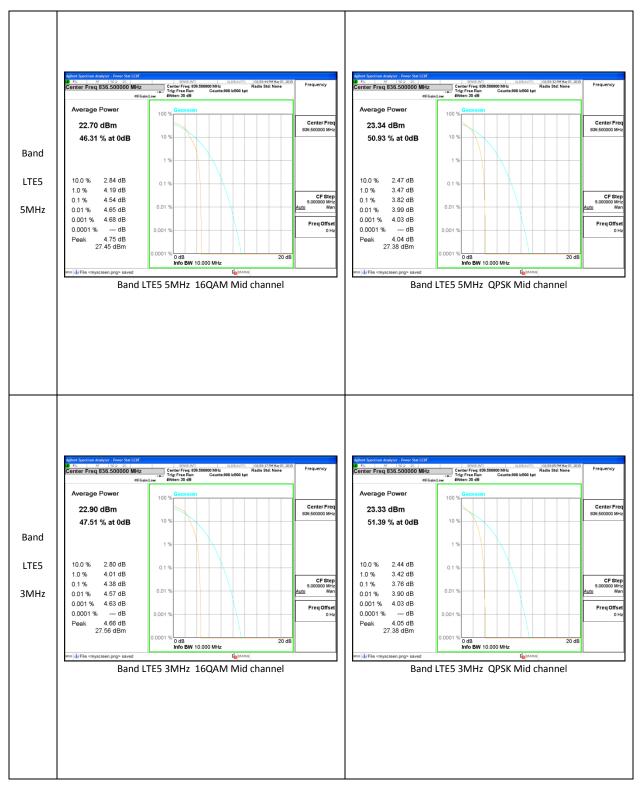
MODEL NUMBER: SM-G531F & SM-G531F/DD

		Mode				Avg Pwr (dBm)		
Band	BW		RB	RB	Target MPR	20415	20525	20635
	(MHz)		Allocation	offset		825.5 MHz	836.5 MHz	847.5 MHz
			1	0	0	24.1	24.1	24.0
			1	8	0	24.2	24.1	23.9
			1	14	0	24.2	24.0	23.9
		QPSK	8	0	1	23.3	23.3	23.2
			8	4	1	23.3	23.3	23.1
			8	7	1	23.3	23.3	23.2
LTE	3		15	0	1	23.2	23.1	
Band 5	3		1	0	1	23.4	23.5	23.4
			1	8	1	23.5	23.5	23.3
			1	14	1	23.5	23.5	23.3
		16QAM	8	0	2	22.5	22.4	22.5
			8	4	2	22.5	22.4	22.5
			8	7	2	22.5	22.4	22.5
			15	0	2	22.5	22.5	22.3
							Avg Pwr (dBm)	<u> </u>
Band	BW (MHz)	Mode	RB Allocation	RB offset	Target MPR	20407	Avg Pwr (dBm) 20525	20643
Band		Mode				20407 824.7 MHz		20643 848.3 MHz
Band		Mode					20525	
Band		Mode	Allocation	offset	MPR	824.7 MHz	20525 836.5 MHz	848.3 MHz
Band		Mode	Allocation 1	offset 0	MPR 0	824.7 MHz 24.1	20525 836.5 MHz 24.0	848.3 MHz 24.0
Band		Mode QPSK	Allocation 1 1	offset 0 3	0 0	824.7 MHz 24.1 24.1	20525 836.5 MHz 24.0 24.0	848.3 MHz 24.0 24.0
Band			Allocation 1 1 1	offset 0 3 5	0 0 0	824.7 MHz 24.1 24.1 24.1	20525 836.5 MHz 24.0 24.0 24.0	848.3 MHz 24.0 24.0 23.9
Band			Allocation 1 1 1 3	0 3 5 0	0 0 0 0	824.7 MHz 24.1 24.1 24.1 24.1 24.2	20525 836.5 MHz 24.0 24.0 24.0 24.2	24.0 24.0 23.9 24.1
LTE	(MHz)		Allocation 1 1 1 3 3	0 3 5 0	0 0 0 0 0	824.7 MHz 24.1 24.1 24.1 24.1 24.2 24.2	20525 836.5 MHz 24.0 24.0 24.0 24.2 24.2	23.5 23.4 23.5 23.3 23.5 23.3 22.4 22.5 22.4 22.5 22.4 22.5 22.5 22.3 AVG PWr (dBm) 20525 20643 836.5 MHz 848.3 MHz 24.0 24.0 24.0 24.0 24.0 23.9 24.2 24.1 24.2 24.1
			Allocation 1 1 1 3 3 3	0 3 5 0 1 3 3	0 0 0 0 0 0	824.7 MHz 24.1 24.1 24.1 24.2 24.2 24.2	20525 836.5 MHz 24.0 24.0 24.0 24.2 24.2 24.2 24.2 23.3	24.0 24.0 23.9 24.1 24.1 24.1 23.1
LTE	(MHz)		1 1 1 3 3 3 3 6	0 3 5 0 1 3 0	0 0 0 0 0 0 0	824.7 MHz 24.1 24.1 24.2 24.2 24.2 23.3	20525 836.5 MHz 24.0 24.0 24.0 24.2 24.2 24.2 23.3 23.5	24.0 24.0 23.9 24.1 24.1 24.1 23.1 23.4
LTE	(MHz)		1 1 1 3 3 3 6 1 1	0 3 5 0 1 3 0 0	0 0 0 0 0 0 0	824.7 MHz 24.1 24.1 24.1 24.2 24.2 24.2 23.3 23.5	20525 836.5 MHz 24.0 24.0 24.2 24.2 24.2 24.2 23.3 23.5 23.5	24.0 24.0 23.9 24.1 24.1 24.1 23.1 23.4 23.3
LTE	(MHz)		1 1 1 3 3 3 6 1 1 1	0 3 5 0 1 3 0 0 3	0 0 0 0 0 0 0 1 1	824.7 MHz 24.1 24.1 24.1 24.2 24.2 24.2 23.3 23.5 23.5	20525 836.5 MHz 24.0 24.0 24.2 24.2 24.2 24.2 23.3 23.5 23.5	24.0 24.0 23.9 24.1 24.1 24.1 23.1 23.4 23.3
LTE	(MHz)	QPSK	1 1 1 3 3 3 6 1 1 1 1 1 1	0 3 5 0 1 3 0 0 3 5 5	0 0 0 0 0 0 0 1 1 1	824.7 MHz 24.1 24.1 24.2 24.2 24.2 23.3 23.5 23.5 23.5	20525 836.5 MHz 24.0 24.0 24.2 24.2 24.2 23.3 23.5 23.5 23.5	24.0 24.0 23.9 24.1 24.1 23.1 23.4 23.3 23.3
LTE	(MHz)	QPSK	Allocation 1 1 1 3 3 3 6 1 1 1 3	0 3 5 0 1 3 0 0 3 5 0 0 0 3 5 0 0	MPR 0 0 0 0 0 1 1 1 1	824.7 MHz 24.1 24.1 24.1 24.2 24.2 24.2 23.3 23.5 23.5 23.5 23.4	20525 836.5 MHz 24.0 24.0 24.0 24.2 24.2 24.2 23.3 23.5 23.5 23.5 23.4	24.0 24.0 23.9 24.1 24.1 24.1 23.1 23.4 23.3 23.3 23.4

9. PEAK TO AVERAGE RATIO

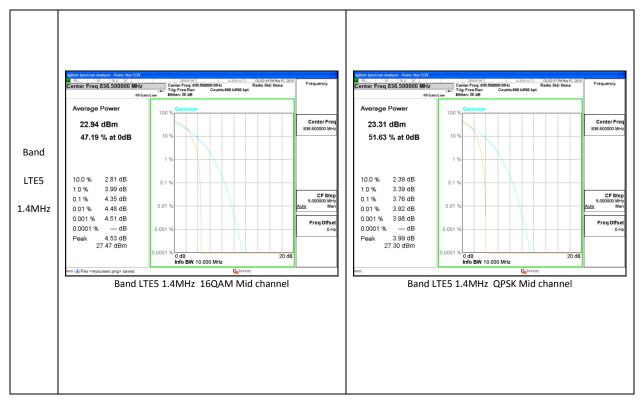

Test Procedure

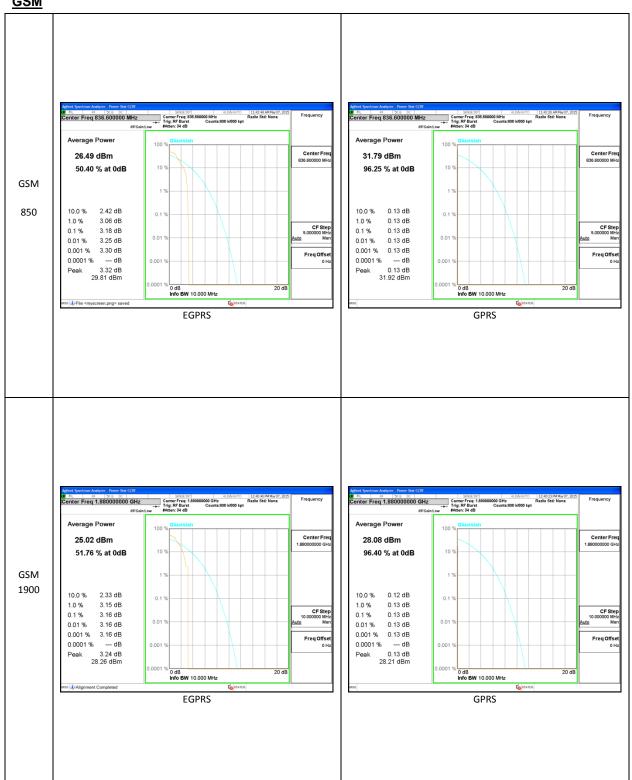
Per KDB 971168 D01 Power Meas License Digital Systems v02r02


Test Spec

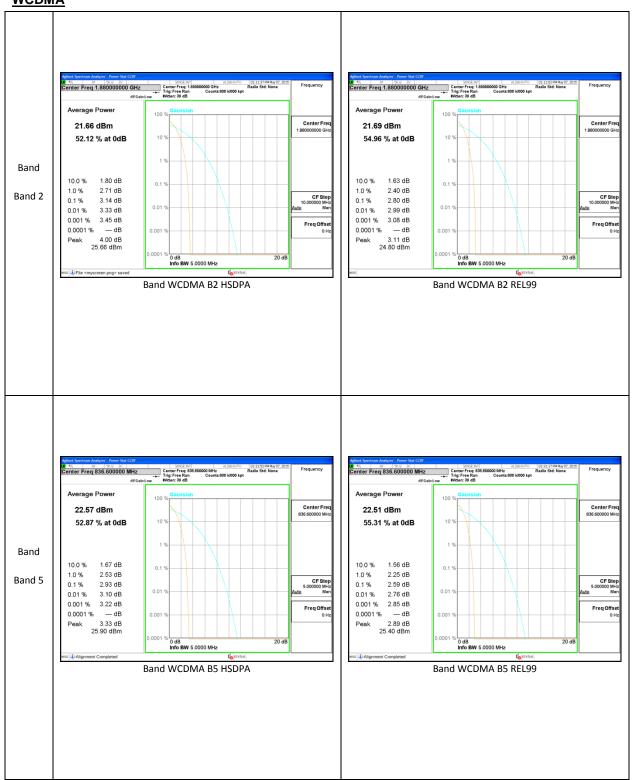
In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

9.1. CONDUCTED PEAK TO AVERAGE RESULT


FCC ID: A3LSMG531F


REPORT NO: 15I20736-E1A

MODEL NUMBER: SM-G531F & SM-G531F/DD


DATE: JUNE 11, 2015 FCC ID: A3LSMG531F

GSM

WCDMA

10. LIMITS AND CONDUCTED RESULTS

10.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

IC: RSS-132, 4.5; RSS-133, 6.5

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v02r02)

MODES TESTED

GSM 850, GSM 1900, WCDMA Band 2, WCDMA Band 5

TEL: (510) 771-1000

FORM NO: CCSUP4701I

10.1.1. OCCUPIED BANDWIDTH RESULTS

Band	Mode	Channel	f (MHz)	99% BW (KHz)	-26dB BW (KHz)
		128	824.2		
	GMSK	190	836.6		
		251	848.8		
		128	824.2	244.2	318.1
GSM850	GPRS	190	836.6	245.1	326.4
		251	848.8	244.2	320.4
	EGPRS	128	824.2	248.5	315.6
		190	836.6	245.3	308.5
		251	848.8	239.7	290.9
	GMSK	512	1850.2		
		661	1880		
		810	1909.8		
		512	1850.2	246.5	321.2
GSM1900	GPRS	661	1880	245.9	317.7
		810	1909.8	243.4	322.9
		512	1850.2	245.7	319.6
	EGPRS	661	1880	240.6	315.9
		810	1909.8	242.8	301.8

REPORT NO: 15I20736-E1A DATE: JUNE 11, 2015 FCC ID: A3LSMG531F

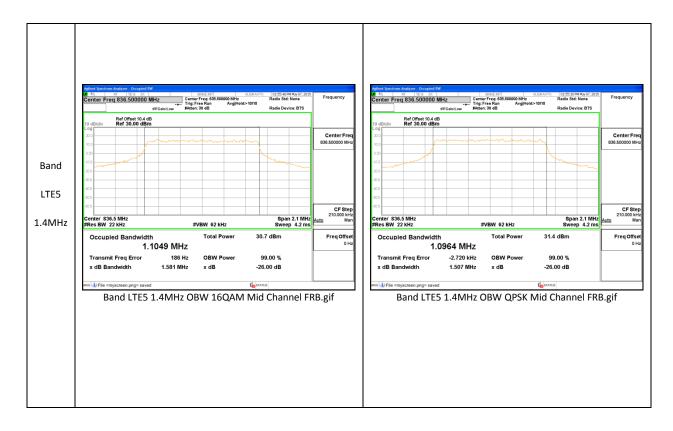
MODEL NUMBER: SM-G531F & SM-G531F/DD

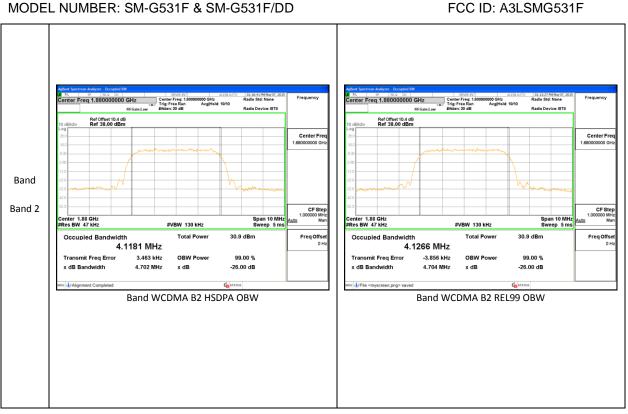
Band	Mode	Channel	f (MHz)	99% BW (MHz)	-26dB BW (MHz)
		4132	826.4	4.118	4.686
	REL99	4183	836.6	4.142	4.745
		4233	846.6	4.138	4.686
		4132	826.4	4.129	4.688
Band 5	HSDPA	4183	836.6	4.143	4.685
		4233	846.6	4.126	4.67
		4132	826.4		
	HSUPA	4183	836.6		
		4233	846.6		
	REL99	9262	1852.4	4.139	4.728
		9400	1880	4.127	4.704
		9538	1907.6	4.138	4.708
		9262	1852.4	4.118	4.702
Band 2	HSDPA	9400	1880	4.118	4.702
		9538	1907.6	4.136	4.67
		9262	1852.4		
	HSUPA	9400	1880		
		9538	1907.6		

10.1.2. LTE OCCUPIED BANDWIDTH RESULTS

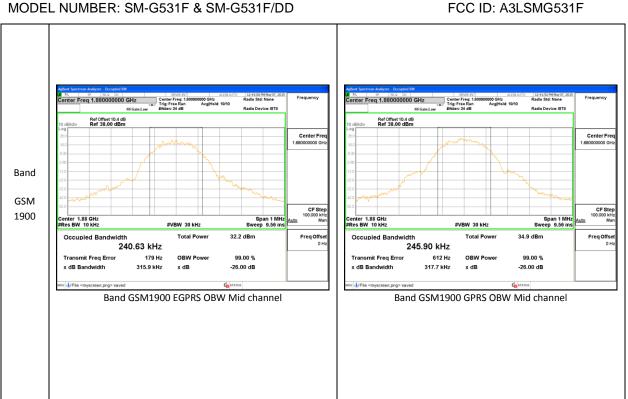
Band	BW(MHz)	Mode	RB/RB Size	f (MHz)	99% BW (MHz)	-26dB BW (MHz)
			50/0	829	9.004	10.392
		QPSK	50/0	836.5	8.997	10.345
LTE5	LTE5 10		50/0	844	9.021	10.394
			50/0	829	8.971	10.57
		16QAM	50/0	836.5	9.025	10.44
			50/0	844	9.028	10.566


Band	BW(MHz)	Mode	RB/RB Size	f (MHz)	99% BW (MHz)	-26dB BW
						(MHz)
			25/0	826.5	4.515	5.256
		QPSK	25/0	836.5	4.498	5.276
LTE5	5		25/0	846.5	4.52	5.232
			25/0	826.5	4.51	5.249
		16QAM	25/0	836.5	4.504	5.217
			25/0	846.5	4.525	5.43


Band	BW(MHz)	Mode	RB/RB Size	f (MHz)	99% BW (MHz)	-26dB BW
						(MHz)
			15/0	825.5	2.716	3.417
		QPSK	15/0	836.5	2.724	3.355
LTE5	3		15/0	847.5	2.715	3.325
			15/0	825.5	2.723	3.476
		16QAM	15/0	836.5	2.72	3.539
			15/0	847.5	2.715	3.491


Band	BW(MHz)	Mode	RB/RB Size	f (MHz)	99% BW (MHz)	-26dB BW
						(MHz)
		6/0	824.7	1.106	1.553	
		QPSK	6/0	836.5	1.096	1.507
LTE5	LTE5 1.4		6/0	848.3	1.104	1.522
			6/0	824.7	1.1	1.545
		16QAM	6/0	836.5	1.105	1.581
			6/0	848.3	1.112	1.595

10.1.1. OCCUPIED BANDWIDTH PLOTS





TEL: (510) 771-1000

DATE: JUNE 11, 2015

DATE: JUNE 11, 2015

10.2. BAND EDGE EMISSIONS

RULE PART(S)

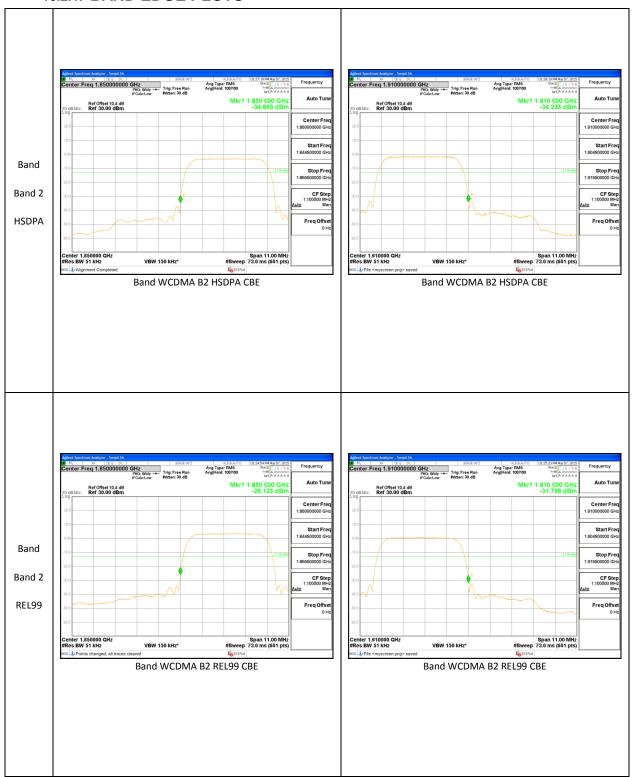
FCC: §22.359, §24.238, §27.53

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

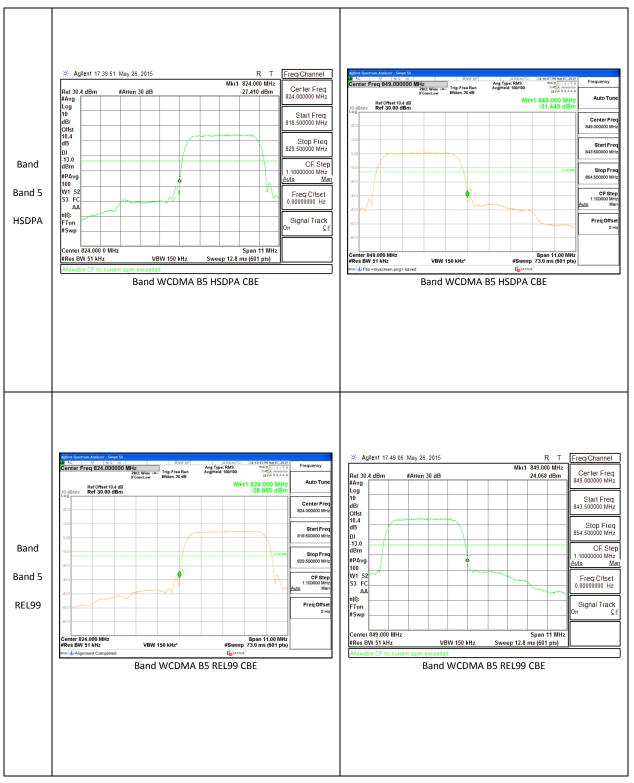
TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r02


The transmitter output was connected to an Agilent 8960 or a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

MODES TESTED

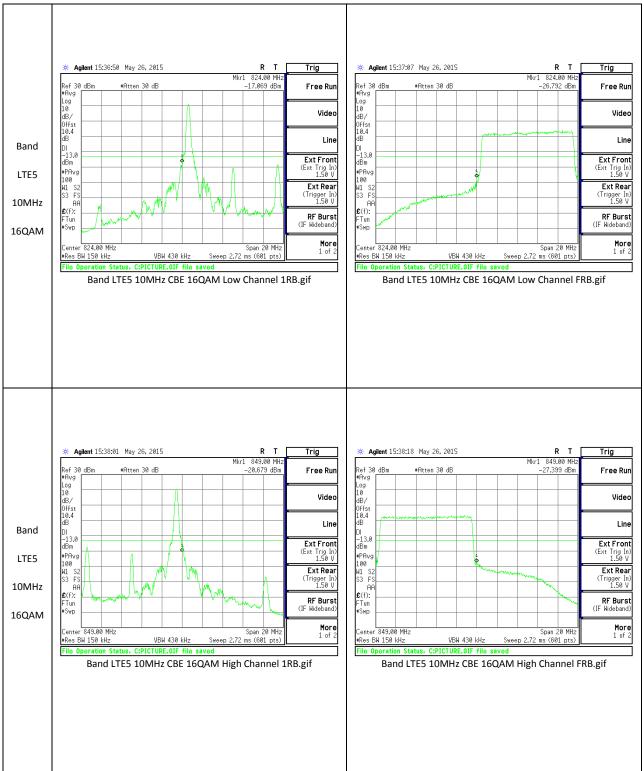
GSM 850, GSM 1900, WCDMA Band 2, WCDMA Band 5

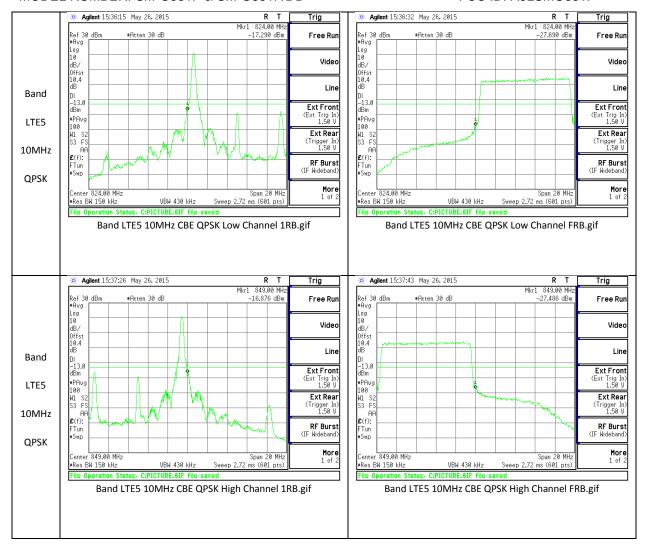

RESULTS

10.2.1. BAND EDGE PLOTS

DATE: JUNE 11, 2015

MODEL NUMBER: SM-G531F & SM-G531F/DD FCC ID: A3LSMG531F

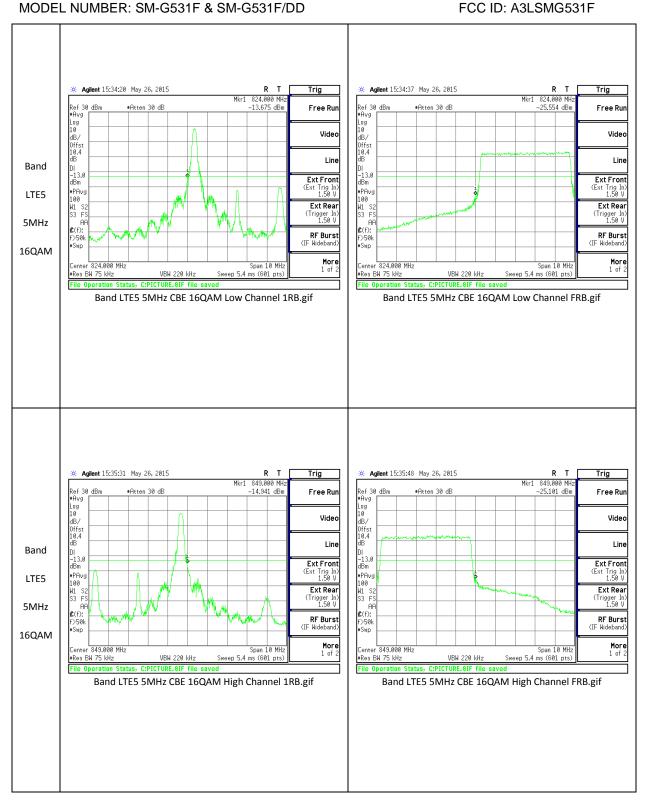

Avg Type: RMS AvgiHold: 100/100 Avg Type: RMS AvgiHold: 100/100 Mkr2 1.849 967 GH -26.987 dBr Ref Offset 19.4 dB Ref 39.00 dBm Center Fr Center Fr Band GSM 1900 Freq Offse Freq Offse **EGPRS** Span 1.000 MHz #Sweep 1.00 s (200 pts) Band GSM1900 EGPRS CBE Low channel Band GSM1900 EGPRS CBE High channel Mkr2 1.849 982 GH -19.374 dBr Center Fr Center Fr Start Fre Band Stop Fre GSM 1900 Freq Offse Freq Offse **GPRS** VBW 27 kHz* Band GSM1900 GPRS CBE Low channel Band GSM1900 GPRS CBE High channel

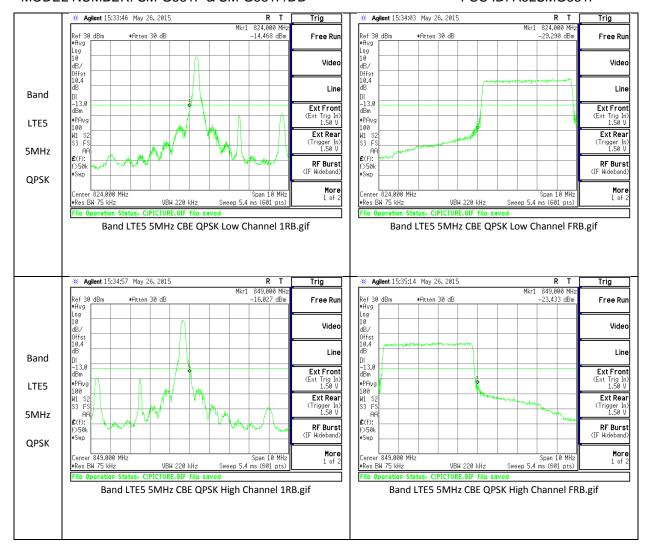

DATE: JUNE 11, 2015

FCC ID: A3LSMG531F

FCC ID: A3LSMG531F Avg Type: RMS AvgiHold: 100/100 Ref Offset 19.4 dB Ref 39.00 dBm Center Fr Center Fr Band GSM 850 Freq Offse Freq Offse **EGPRS** Band GSM850 EGPRS CBE Low channel Band GSM850 EGPRS CBE High channel Center Fr Center Fr Band Stop Fre GSM 850 Freq Offse Freq Offse **GPRS** Band GSM850 GPRS CBE Low channel Band GSM850 GPRS CBE High channel

DATE: JUNE 11, 2015

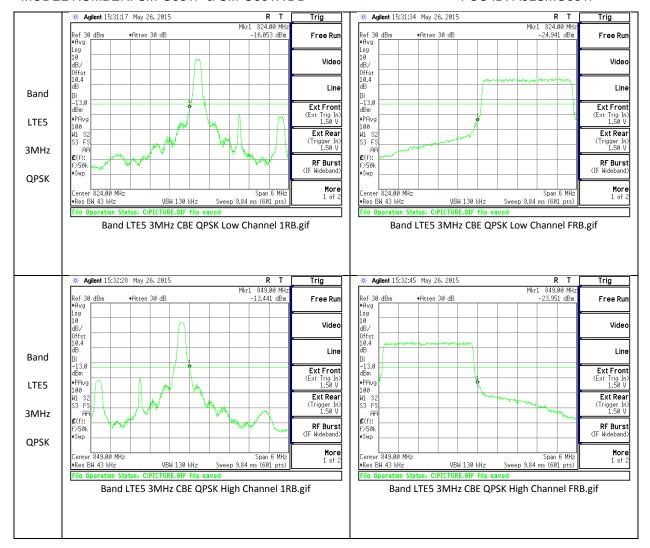




FORM NO: CCSUP4701I

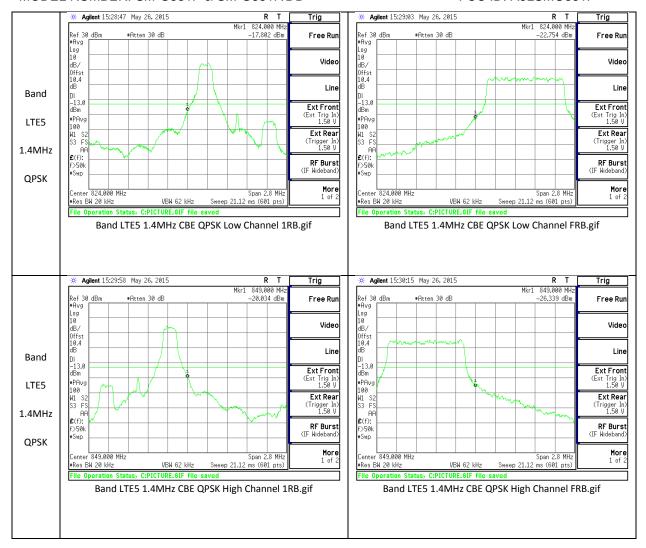
REPORT NO: 15120736-E1A

DATE: JUNE 11, 2015



Agilent 15:31:51 May 26, 2015 **Agilent** 15:32:08 May 26, 2015 Mkr1 824.00 MH Mkr1 824.00 MH; Ref 30 dBm #Avg •Atten 30 dB -16.048 dBm Free Rur •Atten 30 dB Free Run Log Video Video dB/ Offst 10.4 dB Offst 10.4 Line Line Band Ext Front Ext Front *PAv: Trig In 1.50 V *PAvs Trig In 1.50 V LTE5 Ext Rear (Trigger In) 1.50 V Ext Rear (Trigger In) 1.50 V 3MHz £(f): f>50k #Swp £(f): f>50k #Swp RF Burst RF Burst (IF Wideband) 16QAM 824.00 MH; Center 824.00 MH; •Res BW 43 kHz VBW 130 kHz File Operation Status, C:PICTURE.GIF file saved File Operation Status, C:PICTURE.GIF file saved Band LTE5 3MHz CBE 16QAM Low Channel 1RB.gif Band LTE5 3MHz CBE 16QAM Low Channel FRB.gif * Agilent 15:33:02 May 26, 2015 Trig Agilent 15:33:19 May 26, 2015 Trig Mkr1 849.00 MH Mkr1 849.00 MH -24.575 dBm Free Ru Free Rur Log Video Video dB/ Line Line Band Ext Front (Ext Trig In) 1.50 V Ext Front (Ext Trig In) 1.50 V LTE5 Ext Rear (Trigger In) 1.50 V Ext Rear (Trigger In) 1.50 V 3MHz £(f): f>50k #Swp £(f): f>50k RF Burst RF Burst (IF Wideband) Swp 16QAM Span 6 MHz Sweep 9.84 ms (601 pts) Center 849.00 MHz •Res BW 43 kHz Center 849.00 MHz •Res BW 43 kHz Span 6 MH: Sweep 9.84 ms (601 pts) VBW 130 kHz VBW 130 kHz File Operation Status, C:PICTURE.GIF file saved File Operation Status, C:PICTURE.GIF file saved Band LTE5 3MHz CBE 16QAM High Channel 1RB.gif Band LTE5 3MHz CBE 16QAM High Channel FRB.gif

DATE: JUNE 11, 2015


FCC ID: A3LSMG531F

FCC ID: A3LSMG531F Agilent 15:29:21 May 26, 2015 **Agilent** 15:29:38 May 26, 2015 824.000 MH Mkr1 824,000 MH Ref 30 dBm #Avg •Atten 30 dB Free Rur •Atten 30 dB Free Run Log Video Video dB/ Offst 10.4 dB Offst 10.4 Line Line Band Ext Front Ext Front *PAv: Trig In 1.50 V *PAvs Trig In 1.50 V LTE5 Ext Rear (Trigger In) 1.50 V Ext Rear (Trigger In) 1.50 V 1.4MHz £(f): f>50k #Swp £(f): f>50k #Swp RF Burst RF Burst (IF Wideband) 16QAM Center 824.000 MHz •Res BW 20 kHz File Operation Status, C:PICTURE.GIF file save File Operation Status, C:PICTURE.GIF file saved Band LTE5 1.4MHz CBE 16QAM Low Channel 1RB.gif Band LTE5 1.4MHz CBE 16QAM Low Channel FRB.gif * Agilent 15:30:32 May 26, 2015 Trig * Agilent 15:30:49 May 26, 2015 Trig 849.000 MH 849.000 MH Free Ru Free Rur Log Video Video dB/ Line Line Band Ext Front (Ext Trig In) 1.50 V Ext Front (Ext Trig In) 1.50 V LTE5 Ext Rear (Trigger In) 1.50 V Ext Rear (Trigger In) 1.50 V 1.4MHz £(f): f>50k #Swp £(f): f>50k #Swp RF Burst RF Burst (IF Wideband) 16QAM Center 849.000 MHz •Res BW 20 kHz Center 849.000 MHz •Res BW 20 kHz Span 2.8 MHz Sweep 21.12 ms (601 pts) Span 2.8 MH: Sweep 21.12 ms (601 pts) VBW 62 kHz VBW 62 kHz File Operation Status, C:PICTURE.GIF file saved File Operation Status, C:PICTURE.GIF file saved Band LTE5 1.4MHz CBE 16QAM High Channel 1RB.gif Band LTE5 1.4MHz CBE 16QAM High Channel FRB.gif

TEL: (510) 771-1000

DATE: JUNE 11, 2015

10.3. OUT OF BAND EMISSIONS

RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r02

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

MODES TESTED

GSM 850, GSM 1900, WCDMA Band 2, WCDMA Band 5

RESULTS

10.3.1. OUT OF BAND EMISSIONS RESULT

Band	BW (MHz)	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
			829	-28.49	-13	-15.49
		QPSK	836.5	-28.20	-13	-15.2
LTE5	10		844	-28.33	-13	-15.33
			829	-27.88	-13	-14.88
		16QAM	836.5	-27.87	-13	-14.87
			844	-28.10	-13	-15.1

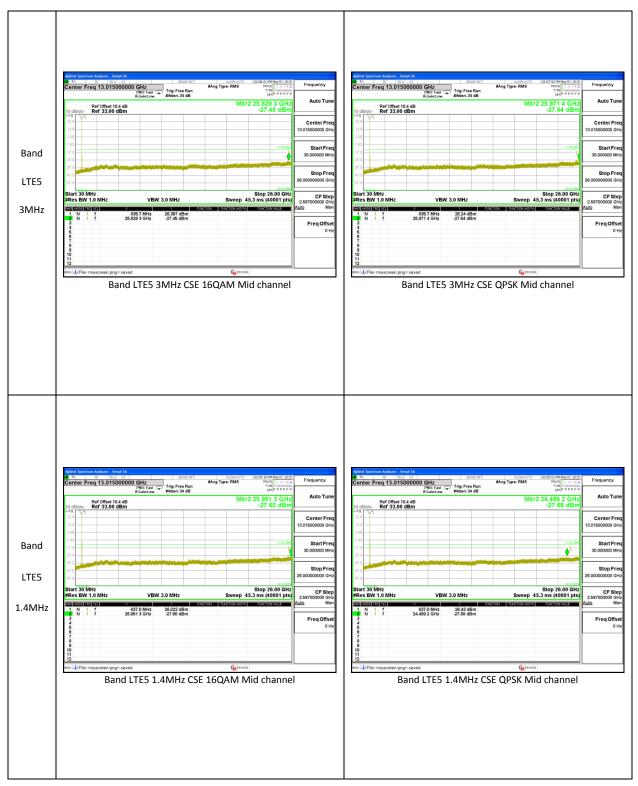
Band	BW (MHz)	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
			826.5	-34.92	-13	-21.92
		QPSK	836.5	-28.19	-13	-15.19
LTE5	5		846.5	-27.91	-13	-14.91
	2.125		826.5	-35.37	-13	-22.37
		16QAM	836.5	-28.21	-13	-15.21
			846.5	-28.21	-13	-15.21

Band	BW (MHz)	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
			825.5	-34.50	-13	-21.5
		QPSK	836.5	-27.64	-13	-14.64
LTE5	3		847.5	-27.13	-13	-14.13
	2.125	16QAM	825.5	-35.43	-13	-22.43
			836.5	-27.45	-13	-14.45
			847.5	-28.24	-13	-15.24


FORM NO: CCSUP4701I

Band	BW (MHz)	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
			824.7	-34.40	-13	-21.4
		QPSK	836.5	-27.68	-13	-14.68
LTE5	1.4		848.3	-34.98	-13	-21.98
		16QAM	824.7	-34.75	-13	-21.75
			836.5	-27.60	-13	-14.6
			848.3	-35.17	-13	-22.17

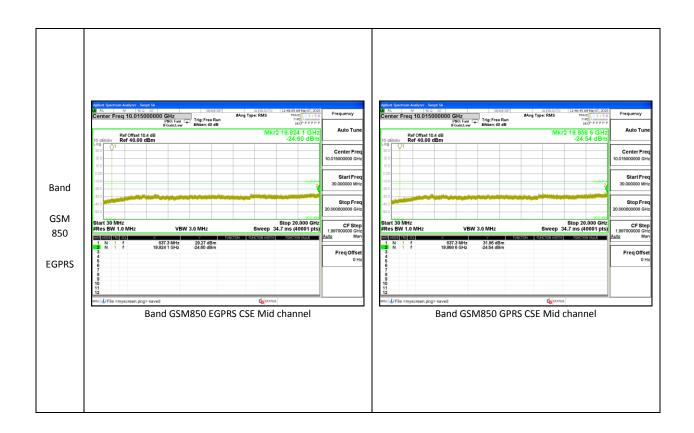
Band	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
		824.2	-24.486	-13	-11.486
	GPRS	836.6	-24.544	-13	-11.544
GSM 850		848.8	-25.308	-13	-12.308
G3IVI 630		824.2	-24.376	-13	-11.376
	EGPRS	836.6	-24.603	-13	-11.603
		848.8	-25.227	-13	-12.227
	GPRS	1850.2	-24.568	-13	-11.568
		1880	-24.628	-13	-11.628
GSM 1900		1909.8	-24.871	-13	-11.871
G3IVI 1900		1850.2	-24.93	-13	-11.93
	EGPRS	1880	-24.744	-13	-11.744
		1909.8	-24.753	-13	-11.753


Band	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
		826.4	-34.274	-13	-21.274
	REL99	836.6	-35.109	-13	-22.109
Band 5		846.6	-33.773	-13	-20.773
Dallu 3		826.4	-34.174	-13	-21.174
	HSDPA	836.6	-34.752	-13	-21.752
		846.6	-34.322	-13	-21.322
		1852.4	-35.034	-13	-22.034
	REL99	1880	-34.996	-13	-21.996
Band 2		1907.6	-34.558	-13	-21.558
Dailu Z		1852.4	-33.927	-13	-20.927
	HSDPA	1880	-35.332	-13	-22.332
	_	1907.6	-34.041	-13	-21.041

10.3.2. OUT OF BAND EMISSIONS PLOTS

DATE: JUNE 11, 2015

FCC ID: A3LSMG531F



FCC ID: A3LSMG531F Ref Offset 10.4 dB Ref 30.00 dBm Ref Offset 10.4 dB Ref 30.00 dBm Center Fr Center F Band Stop Fr art 30 MHz Res BW 1.0 MHz Band 2 VBW 3.0 MHz VBW 3.0 MHz 21.96 dBm -35.33 dBm HSDPA Freq Offse Freq Offse Band WCDMA B2 HSDPA CSE Band WCDMA B2 REL99 CSE

DATE: JUNE 11, 2015

FCC ID: A3LSMG531F Ref Offset 10.4 dB Ref 40.00 dBm Ref Offset 10.4 dB Ref 40.00 dBm Center F Center F Band Stop Fr GSM VBW 3.0 MHz VBW 3.0 MHz 1900 25.01 dBm -24.74 dBm Freq Offse Freq Offse **EGPRS** Band GSM1900 GPRS CSE Mid channel Band GSM1900 EGPRS CSE Mid channel

DATE: JUNE 11, 2015

REPORT NO: 15I20736-E1A DATE: JUNE 11, 2015

MODEL NUMBER: SM-G531F & SM-G531F/DD FCC ID: A3LSMG531F

10.4. FREQUENCY STABILITY

RULE PART(S)

FCC: §2.1055, §22.355, §24.235

LIMITS

 $\S22.355$ - The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations.

§24.235 - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

§27.54 - The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r02

MODES TESTED

GSM 850, GSM 1900, LTE Band 41

RESULTS

See the following pages.

10.4.1. FREQUENCY STABILITY RESULTS

GPRS 850, Channel 190 Freq: 836.6MHz- MID CHANNEL

Re	Reference Frequency: Cell Mid Channel			MHz @ 20°C
	Limit: to	stay +- 2.5 ppm =	2091.500	Hz
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	50	836.599991	0.032	2.5
3.80	40	836.599985	0.040	2.5
3.80	30	836.599992	0.031	2.5
3.80	20	836.600018	0	2.5
3.80	10	836.600006	0.014	2.5
3.80	0	836.599989	0.035	2.5
3.80	-10	836.600004	0.017	2.5
3.80	-20	836.600018	0.001	2.5
3.80	-30	836.600008	0.012	2.5

Re	ference Frequency:	836.6	MHz @ 20°C	
	Limit: to	2091.500	Hz	
Power Supply	Environment	viation Measureed wi	th Time Elapse	
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	20	836.600018	0	2.5
4.37	20	836.6000069	0.013	2.5
3.23(End of volt)	20	836.6000113	0.008	2.5

TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT NO: 15I20736-E1A DATE: JUNE 11, 2015

FCC ID: A3LSMG531F

MODEL NUMBER: SM-G531F & SM-G531F/DD

GPRS 1900, Channel 661 Freq: 1880MHz- MID CHANNEL

Re	Reference Frequency: PCS Mid Channel			MHz @ 20°C	
	Limit: to	stay +- 2.5 ppm =	4700.000	Hz	
Power Supply	Environment	Frequency Dev	iation Measureed with Time Elapse		
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)	
3.80	50	1879.999988	0.000	2.5	
3.80	40	1879.999990	-0.001	2.5	
3.80	30	1879.999985	0.002	2.5	
3.80	20	1879.999988	0	2.5	
3.80	10	1879.999984	0.002	2.5	
3.80	0	1879.999984	0.002	2.5	
3.80	-10	1879.999983	0.003	2.5	
3.80	-20	1879.999988	0.000	2.5	
3.80	-30	1879.999989	0.000	2.5	

Re	ference Frequency:	1880	MHz @ 20°C	
	Limit: to	4700.000	Hz	
Power Supply	Environment	Frequency Dev	riation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	20	1879.999988	0	2.5
4.37	20	1879.999988	0.000	2.5
3.23(End of volt)	20	1879.999983	0.003	2.5

REPORT NO: 15I20736-E1A DATE: JUNE 11, 2015

MODEL NUMBER: SM-G531F & SM-G531F/DD FCC ID: A3LSMG531F

11. RADIATED TEST RESULTS

11.1. RADIATED POWER (ERP & EIRP)

RULE PART(S)

FCC: §2.1046, §22.913, §24.232.

LIMITS

22.913(a) - The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) - Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13dB.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17; PSA setting reference to 971168 D01 v02r02

For peak power measurement with a PSA:

a) Set the RBW \geq OBW; b) Set VBW \geq 3 × RBW; c) Set span \geq 2 x RBW; d) Sweep time = auto couple; e) Detector = peak; f) Ensure that the number of measurement points \geq span/RBW; g) Trace mode = max hold;

For average power measurement with a PSA:

a) Set span to at least 1.5 times the OBW; b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz; c) Set VBW \geq 3 x RBW; d) Set number of points in sweep \geq 2 × span / RBW; e) Sweep time = auto-couple; f) Detector = RMS (power averaging); g) Use free run trigger If burst duty cycle \geq 98; h) Use trigger to capture bursts If burst duty cycle < 98; i) Trace average at least 100 traces in power averaging (*i.e.*, RMS) mode. j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function.

MODES TESTED

GSM 850, GSM 1900, WCDMA Band 2, WCDMA Band 5, LTE Band 41

TEST RESULTS

FORM NO: CCSUP4701I

11.1.1. ERP/EIRP Results

Band	Mode	Channel	f(MHz)	ERP / EIRP	
				dBm	mW
		9262	1852.4	23.86	243.22
	REL99	9400	1880	23.99	250.61
		9538	1907.6	24.17	261.22
		9262	1852.4	23.70	234.42
Band 2	HSDPA	9400	1880	23.90	245.47
		9538	1907.6	24.04	253.51
		9262	1852.4		
	HSUPA	9400	1880		
		9538	1907.6		

Band	Mode	Channel	f(MHz)	ERP / EIRP	
				dBm	mW
		4132	826.4	20.41	109.90
	REL99	4183	836.6	20.66	116.41
		4233	846.6	20.33	107.89
		4132	826.4	20.37	108.89
Band 5	HSDPA	4183	836.6	20.56	113.76
		4233	846.6	20.19	104.47
		4132	826.4		
	HSUPA	4183	836.6		
		4233	846.6		

Band	Mode	Channel	f(MHz)	ERP /	' EIRP
				dBm	mW
		512	1850.2		
	GMSK	661	1880		
		810	1909.8		
		512	1850.2	31.24	1330.45
GSM1900	GPRS	661	1880	30.14	1032.76
		810	1909.8	31.0	1258.93
		512	1850.2	27.21	526.02
	EGPRS	661	1880	26.84	483.06
		810	1909.8	27.22	527.23

Band	Mode	Channel	f(MHz)	ERP /	' EIRP
				dBm	mW
		128	824.2		
	GMSK	190	836.6		
		251	848.8		
	GPRS	128	824.2	29.74	941.89
GSM850		190	836.6	29.20	831.76
		251	848.8	29.33	857.04
		128	824.2	24.76	299.23
	EGPRS	190	836.6	24.66	292.42
		251	848.8	24.58	287.08

11.1.2. LTE ERP/EIRP Results

Band	BW (MHz) Mode RB/RB Size f (MHz)		f (MHz)	ERP / EIRP		
	, ,		,	, ,	dBm	mW
			1/0	829	20.97	125.03
		QPSK	1/0	836.5	20.88	122.46
LTE5	10		1/0	844	20.65	116.14
			1/0	829	20.07	101.62
		16QAM	1/0	836.5	20.09	102.09
			1/0	844	19.78	95.06

Band	BW (MHz)	Mode	RB/RB Size	f (MHz)	ERP / EIRP		
					dBm	mW	
			1/0	826.5	20.88	122.46	
		QPSK	1/0	836.5	20.68	116.95	
LTE5	5		1/0	846.5	20.51	112.46	
			1/0	826.5	19.98	99.54	
		16QAM	1/0	836.5	20.0	100.00	
			1/0	846.5	19.74	94.19	

Band	BW (MHz)	Mode	RB/RB Size	f (MHz)	ERP / EIRP	
					dBm	mW
			1/0	825.5	20.59	114.55
		QPSK	1/0	836.5	20.75	118.85
LTE5	3		1/0	847.5	20.17	103.99
			1/0	825.5	19.94	98.63
		16QAM	1/0	836.5	19.88	97.27
			1/0	847.5	19.31	85.31

Band	BW (MHz)	Mode	RB/RB Size	f (MHz)	ERP / EIRP		
	, ,				dBm	mW	
			1/0	824.7	20.22	105.20	
		QPSK	1/0	836.5	20.28	106.66	
LTE5	1.4		1/0	848.3	19.84	96.38	
			1/0	824.7	19.61	91.41	
		16QAM	1/0	836.5	19.57	90.57	
			1/0	848.3	19.17	82.60	

REPORT NO: 15I20736-E1A DATE: JUNE 11, 2015

FCC ID: A3LSMG531F

MODEL NUMBER: SM-G531F & SM-G531F/DD

11.1.3. ERP/EIRP DATA

LTE Band 41

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: LTE 16QAM Band 5 Fundamentals, 10MHz Bandwidth

Band Test Equpment:

Receiving: Hybrid T243, and Chamber B SMA Cables

LTE5
Substitution: Dipole T446, Xft SMA Cable (SN # SEDIA

Substitution: Dipole T416, Xft SMA Cable (SN # SERIALNUMBER) Warehouse

10MHz

16QAM

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
829.00	20.97	V	0.9	0.0	20.07	38.5	-18.4	
829.00	3.46	Н	0.9	0.0	2.56	38.5	-35.9	
Mid Ch								
836.50	20.99	V	0.9	0.0	20.09	38.5	-18.4	
836.50	3.54	Н	0.9	0.0	2.64	38.5	-35.9	
High Ch								
844.00	20.68	V	0.9	0.0	19.78	38.5	-18.7	
844.00	2.94	Н	0.9	0.0	2.04	38.5	-36.5	

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: LTE_QPSK Band 5 Fundamentals, 10MHz Bandwidth

Band LTE5

Test Equpment:

Receiving: Hybrid T243, and Chamber B SMA Cables

Substitution: Dipole T416, Xft SMA Cable (SN # SERIALNUMBER) Warehouse

10MHz

QPSK

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
829.00	21.87	V	0.9	0.0	20.97	38.5	-17.5	
829.00	4.54	Н	0.9	0.0	3.64	38.5	-34.9	
Mid Ch								
836.50	21.78	V	0.9	0.0	20.88	38.5	-17.6	
836.50	4.58	Н	0.9	0.0	3.68	38.5	-34.8	
High Ch								
844.00	21.55	V	0.9	0.0	20.65	38.5	-17.9	
844.00	4.04	Н	0.9	0.0	3.14	38.5	-35.4	

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: LTE_16QAM Band 5 Fundamentals, 5MHz Bandwidth

Band LTE5

Test Equpment:

Receiving: Hybrid T243, and Chamber B SMA Cables

Substitution: Dipole T416, Xft SMA Cable (SN # SERIALNUMBER) Warehouse

5MHz

16QAM

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
826.50	20.88	V	0.9	0.0	19.98	38.5	-18.5	
826.50	3.16	Н	0.9	0.0	2.26	38.5	-36.2	
Mid Ch								
836.50	20.90	V	0.9	0.0	20.00	38.5	-18.5	
836.50	3.59	Н	0.9	0.0	2.69	38.5	-35.8	
High Ch								
846.50	20.64	V	0.9	0.0	19.74	38.5	-18.8	
846.50	2.62	Н	0.9	0.0	1.72	38.5	-36.8	

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: LTE_QPSK Band 5 Fundamentals, 5MHz Bandwidth

Band LTE5

Test Equpment:

Receiving: Hybrid T243, and Chamber B SMA Cables

Substitution: Dipole T416, Xft SMA Cable (SN # SERIALNUMBER) Warehouse

5MHz

QPSK

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
826.50	21.78	V	0.9	0.0	20.88	38.5	-17.6	
826.50	4.24	Н	0.9	0.0	3.34	38.5	-35.2	
Mid Ch								
836.50	21.58	V	0.9	0.0	20.68	38.5	-17.8	
836.50	4.36	Н	0.9	0.0	3.46	38.5	-35.0	
High Ch								
846.50	21.41	V	0.9	0.0	20.51	38.5	-18.0	
846.50	3.83	Н	0.9	0.0	2.93	38.5	-35.6	

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 05/16/15

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: LTE_16QAM Band 5 Fundamentals, 3MHz Bandwidth

Band LTE5

Test Equpment:

Receiving: Hybrid T243, and Chamber B SMA Cables Substitution: Dipole T273, 3ft SMA Cable Warehouse

3MHz

16QAM

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
825.50	20.84	V	0.9	0.0	19.94	38.5	-18.6	
825.50	3.12	Н	0.9	0.0	2.22	38.5	-36.3	
Mid Ch								
836.50	20.78	V	0.9	0.0	19.88	38.5	-18.6	
836.50	3.44	Н	0.9	0.0	2.54	38.5	-36.0	
High Ch								
847.50	20.21	V	0.9	0.0	19.31	38.5	-19.2	
847.50	2.59	Н	0.9	0.0	1.69	38.5	-36.8	
011100								.i

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 05/16/15

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: LTE_QPSK Band 5 Fundamentals, 3MHz Bandwidth

Band LTE5

Test Equpment:

Receiving: Hybrid T243, and Chamber B SMA Cables Substitution: Dipole T273, 3ft SMA Cable Warehouse

3MHz

QPSK

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
825.50	21.49	V	0.9	0.0	20.59	38.5	-17.9	
825.50	4.25	Н	0.9	0.0	3.35	38.5	-35.2	
Mid Ch								
836.50	21.65	V	0.9	0.0	20.75	38.5	-17.8	
836.50	4.35	Н	0.9	0.0	3.45	38.5	-35.1	
High Ch								
847.50	21.07	V	0.9	0.0	20.17	38.5	-18.3	
847.50	3.61	Н	0.9	0.0	2.71	38.5	-35.8	

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT Only

 Location:
 Chamber B

Mode: LTE5 1.4MHz 16QAM FUND

Band LTE5

Test Equpment:

Receiving: Hybrid T899, and Chamber G SMA Cables Substitution: Dipole T273, 6ft SMA Cable Warehouse

1.4MHz

16QAM

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
824.70	20.51	V	0.9	0.0	19.61	38.5	-18.9	
824.70	2.69	Н	0.9	0.0	1.79	38.5	-36.7	
Mid Ch								
836.50	20.47	V	0.9	0.0	19.57	38.5	-18.9	
836.50	2.85	Н	0.9	0.0	1.95	38.5	-36.6	
High Ch								
848.30	20.07	V	0.9	0.0	19.17	38.5	-19.3	
848.30	2.18	Н	0.9	0.0	1.28	38.5	-37.2	

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15!20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT Only

 Location:
 Chamber B

Mode: LTE5 1.4MHz QPSK FUND

Band LTE5

Test Equpment:

Receiving: Hybrid T899, and Chamber G SMA Cables Substitution: Dipole T273, 6ft SMA Cable Warehouse

1.4MHz

QPSK

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
824.70	21.12	V	0.9	0.0	20.22	38.5	-18.3	
824.70	3.70	Н	0.9	0.0	2.80	38.5	-35.7	
Mid Ch								
836.50	21.18	V	0.9	0.0	20.28	38.5	-18.2	
836.50	3.92	Н	0.9	0.0	3.02	38.5	-35.5	
High Ch								
848.30	20.74	V	0.9	0.0	19.84	38.5	-18.7	
848.30	3.21	Н	0.9	0.0	2.31	38.5	-36.2	

WCDMA

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/11/2015

 Test Engineer:
 D. Mun

 Configuration:
 X-Pos EUT Only

 Location:
 Chamber B

 Mode:
 HSDPA B2

Band

Receiving: Horn T345, and Chamber B SMA Cables

Substitution: Horn T59 Substitution, 4ft SMA Cable Warehouse

Band 2

HSDPA

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch								
1852.40	2.12	V	0.9	8.0	9.23	33.0	-23.8	
1852.40	16.59	Н	0.9	8.0	23.70	33.0	-9.3	
Mid Ch								
1880.00	3.36	V	0.9	8.0	10.47	33.0	-22.5	
1880.00	16.79	Н	0.9	8.0	23.90	33.0	-9.1	
High Ch								
1907.60	6.45	V	0.9	8.0	13.56	33.0	-19.4	
1907.60	16.93	Н	0.9	8.0	24.04	33.0	-9.0	

Rev. 3.17.11

Test Equipment:

Note: For Band 4 EIRP limit is 30dBm

High Frequency Substitution Measurement UL Verification Services, Inc.

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/11/2015

 Test Engineer:
 D. Mun

 Configuration:
 X-pos EUT Only

 Location:
 Chamber B

 Mode:
 Rel99 B2

Band

Receiving: Horn T345, and Chamber C SMA Cables

Substitution: Horn T59 Substitution, 4ft SMA Cable Warehouse

Band 2

REL99

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch								_
1852.40	1.30	V	0.9	8.0	8.41	33.0	-24.6	
1852.40	16.75	Н	0.9	8.0	23.86	33.0	-9.1	
Mid Ch		i						
1880.00	2.60	V	0.9	8.0	9.71	33.0	-23.3	
1880.00	16.88	Н	0.9	8.0	23.99	33.0	-9.0	
High Ch								
1907.60	4.41	V	0.9	8.0	11.52	33.0	-21.5	
1907.60	17.06	Н	0.9	8.0	24.17	33.0	-8.8	

Rev. 3.17.11

Test Equipment:

Note: For Band 4 EIRP limit is 30dBm

High Frequency Substitution Measurement UL Verification Services, Inc. Chamber B

 Company:
 LG

 Project #:
 15!20736

 Date:
 05/11/15

 Test Engineer:
 D. Mun

 Configuration:
 Z-pos EUT

Mode: WCDMA Band 5 HSDPA

Band Receiving: Sunol

Receiving: Sunol T243, and 3m Chamber B N-type Cable Substitution: Dipole T416, 6ft SMA Cable Warehouse

Band 5

HSDPA

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
826.40	21.27	V	0.9	0.0	20.37	38.5	-18.1	
826.40	4.49	Н	0.9	0.0	3.59	38.5	-34.9	
Mid Ch								
836.60	21.46	V	0.9	0.0	20.56	38.5	-17.9	
836.60	4.34	Н	0.9	0.0	3.44	38.5	-35.0	
High Ch								
846.60	21.09	V	0.9	0.0	20.19	38.5	-18.3	
846.60	3.91	Н	0.9	0.0	3.01	38.5	-35.4	

Rev. 3.17.11

Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBm

High Frequency Substitution Measurement UL Verification Services, Inc. Chamber B

 Company:
 LG

 Project #:
 15!20736

 Date:
 05/11/15

 Test Engineer:
 D. Mun

 Configuration:
 Z-pos EUT

 Mode:
 REL99 B5 FUND

Band Receiving: Sunol

Receiving: Sunol T243, and 3m Chamber B N-type Cable Substitution: Dipole T416, 6ft SMA Cable Warehouse

Band 5

REL99	

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
826.40	21.31	V	0.9	0.0	20.41	38.5	-18.0	
826.40	4.56	Н	0.9	0.0	3.66	38.5	-34.8	
Mid Ch								
836.60	21.56	V	0.9	0.0	20.66	38.5	-17.8	
836.60	4.49	Н	0.9	0.0	3.59	38.5	-34.9	
High Ch								
846.60	21.23	V	0.9	0.0	20.33	38.5	-18.1	
846.60	4.11	Н	0.9	0.0	3.21	38.5	-35.2	

Rev. 3.17.11

Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBm

GSM

High Frequency Substitution Measurement UL Verification Services, Inc.

Company: Samsung
Project #: 15120736
Date: 5/11/2015
Test Engineer: D. Mun
Configuration: EUT X-pos only
Mode: EGPRS 1900

Band

<u>Test Equipment:</u> Receiving: Horn T345, and Chamber B SMA Cables

Substitution: Horn T59 Substitution, 4ft SMA Cable Warehouse

GSM 1900

EGPRS

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch								
1850.20	8.72	V	0.9	8.0	15.88	33.0	-17.1	
1850.20	20.05	Н	0.9	8.0	27.21	33.0	-5.8	
Mid Ch								
1880.00	3.70	V	0.9	8.0	10.86	33.0	-22.1	
1880.00	19.68	Н	0.9	8.0	26.84	33.0	-6.2	
High Ch								
1909.80	9.23	V	0.9	8.0	16.39	33.0	-16.6	
1909.80	20.06	Н	0.9	8.0	27.22	33.0	-5.8	

Rev. 3.17.11

Note: For Band 4 EIRP limit is 30dBm

High Frequency Substitution Measurement UL Verification Services, Inc.

Company: Samsung
Project #: 15/20736
Date: 5/11/2015
Test Engineer: D. Mun

Configuration: EUT X-pos Mode: GPRS 1900

Band

Receiving: Horn T345, and Chamber B SMA Cables

Substitution: Horn T59 Substitution, 4ft SMA Cable Warehouse

GSM 1900

GPRS

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch								
1850.20	10.02	V	0.9	8.0	17.18	33.0	-15.8	
1850.20	24.08	Н	0.9	8.0	31.24	33.0	-1.8	
Mid Ch								
1880.00	9.47	V	0.9	8.0	16.63	33.0	-16.4	
1880.00	22.98	Н	0.9	8.0	30.14	33.0	-2.9	
High Ch						•		
1909.80	10.29	V	0.9	8.0	17.45	33.0	-15.6	
1909.80	23.84	Н	0.9	8.0	31.00	33.0	-2.0	

Rev. 3.17.11

Test Equipment:

Note: For Band 4 EIRP limit is 30dBm

High Frequency Substitution Measurement UL Verification Services, Inc. Chamber B

 Company:
 Sony

 Project #:
 15/20736

 Date:
 05/11/15

 Test Engineer:
 David Mun

 Configuration:
 EUT Z-Position

 Mode:
 EGPRS850

Band

Receiving: Hybrid T243, and Chamber B N-type Cable Substitution: Dipole T273, 8ft SMA Cable Warehouse.

GSM 850

EGPRS

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
824.20	25.66	V	0.9	0.0	24.76	38.5	-13.7	
824.20	8.25	Н	0.9	0.0	7.35	38.5	-31.1	
Mid Ch								
836.60	25.56	V	0.9	0.0	24.66	38.5	-13.8	
836.60	8.38	Н	0.9	0.0	7.48	38.5	-31.0	
High Ch								
848.80	25.48	V	0.9	0.0	24.58	38.5	-13.9	
848.80	8.01	Н	0.9	0.0	7.11	38.5	-31.3	

Rev. 3.17.11

Test Equipment:

Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBm

High Frequency Substitution Measurement UL Verification Services, Inc. Chamber B

 Company:
 Sony

 Project #:
 15/20736

 Date:
 05/11/15

 Test Engineer:
 David Mun

 Configuration:
 EUT Z-Position

 Mode:
 GPRS850

Band

Receiving: Hybrid T243, and Chamber B N-type Cable Substitution: Dipole T273, 8ft SMA Cable Warehouse.

GSM 850

GPRS

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
824.20	30.64	V	0.9	0.0	29.74	38.5	-8.7	
824.20	13.02	Н	0.9	0.0	12.12	38.5	-26.3	
Mid Ch								
836.60	30.10	V	0.9	0.0	29.20	38.5	-9.2	
836.60	12.81	Н	0.9	0.0	11.91	38.5	-26.5	
High Ch								
848.80	30.23	V	0.9	0.0	29.33	38.5	-9.1	
848.80	12.39	Н	0.9	0.0	11.49	38.5	-27.0	

Rev. 3.17.11

Test Equipment:

Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBm

11.2. FIELD STRENGTH OF SPURIOUS RADIATION

RULE PART(S)

FCC: §2.1053, §22.917, §24.238, §27.53 and §90.691

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

MODES TESTED

GSM 850, GSM 1900, WCDMA Band 2, WCDMA Band 5, LTE Band 41

11.2.1. SPURIOUS RADIATION DATA

LTE Band 5

UL Verfication Services, Inc.
Above 1GHz High Frequency Substitution Measurement

Company: Samsung
Project #: 15/20736
Date: 5/16/2015
Test Engineer: Charles Vergonio
Configuration: EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_16QAM Band 5 Harmonics, 10MHz Bandwidth

Band LTE5

10MHz

16QAM

SG reading Ant. Pol. Distance Preamp Filter EIRP Delta Notes MHz (dBm) (H/V) (dB) (dBm) (dBm) (dB) (m) (dB) Low Ch, 829 -50.8 1658.00 3.0 37.0 1.0 -63.8 -13.0 2487.00 -22.9 3.0 36.4 1.0 -58.3 -13.0 -45.3 3316.00 -21.2 V 3.0 36.1 1.0 -56.3 -13.0 -43.3 1658.00 37.0 -63.3 -13.0 -50.3 -27.3 3.0 1.0 2487.00 Н 3.0 36.4 1.0 -59.8 -13.0 -46.8 -24.4 3316.00 -42.5 -20.4 Н 36.1 -55.5 -13.0 3.0 1.0 Mid Ch, 836.5 .27 A 37.0 1.0 -13.0 -50.4 1673.00 3.0 -63.4 2509.50 -22.7 V 3.0 36.4 1.0 -58.1 -13.0 -45.1 3346.00 -21.0 V 3.0 36.1 1.0 -56.1 -13.0 -43.1 1673.00 -26.9 Н 3.0 37.0 1.0 -62.9 -13.0 -49.9 2509.50 -24.6 3.0 36.4 1.0 -60.0 -13.0 -47.0 3346.00 -20.5 Н 3.0 36.1 1.0 -55.6 -13.0 -42.6 High Ch, 844 1688.00 -27.3 3.0 37.0 1.0 -63.3 -13.0 -50.3 2532.00 -22.4 3.0 36.4 1.0 -57.8 -44.8 V -13.0 -21.0 3376.00 43.1 V 3.0 36.1 1.0 -56.1 -13.0 1688.00 -26.8 Ή 3.0 37.0 1.0 -62.8 -13.0 -49.8 2532.00 -24.5 Н 3.0 36.4 1.0 -59.9 -13.0 -46.9 3376.00 -19.9 3.0 36.1 -55.0 -13.0 -42.0

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_QPSK Band 5 Harmonics, 10MHz Bandwidth

Band LTE5

10MHz QPSK

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82	9								
1658.00	-27.7	V	3.0	37.0	1.0	-63.7	-13.0	-50.7	
2487.00	-22.8	V	3.0	36.4	1.0	-58.3	-13.0	-45.3	
3316.00	-21.1	V	3.0	36.1	1.0	-56.2	-13.0	-43.2	
1658.00	-27.3	Н	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2487.00	-24.7	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3316.00	-20.5	Н	3.0	36.1	1.0	-55.7	-13.0	-42.7	
Mid Ch, 836	5.5								
1673.00	-27.3	V	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2509.50	-22.9	V	3.0	36.4	1.0	-58.3	-13.0	-45.3	
3346.00	-21.0	V	3.0	36.1	1.0	-56.1	-13.0	-43.1	
1673.00	-27.0	Н	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.50	-24.6	Н	3.0	36.4	1.0	-60.0	-13.0	-47.0	
3346.00	-20.5	Н	3.0	36.1	1.0	-55.6	-13.0	-42.6	
High Ch, 84	4								
1688.00	-27.3	V	3.0	37.0	1.0	-63.2	-13.0	-50.2	
2532.00	-22.8	V	3.0	36.4	1.0	-58.2	-13.0	-45.2	
3376.00	-20.9	V	3.0	36.1	1.0	-56.0	-13.0	-43.0	
1688.00	-26.7	Н	3.0	37.0	1.0	-62.6	-13.0	-49.6	
2532.00	-24.3	Н	3.0	36.4	1.0	-59.7	-13.0	-46.7	
3376.00	-20.1	Н	3.0	36.1	1.0	-55.1	-13.0	-42.1	
						<u> </u>			

FORM NO: CCSUP4701I

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_16QAM Band 5 Harmonics, 5MHz Bandwidth

Band LTE5

5MHz

16QAM

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 8	26.5								
1653.00	-27.8	V	3.0	37.0	1.0	-63.9	-13.0	-50.9	
2479.50	-23.5	V	3.0	36.4	1.0	-58.9	-13.0	-45.9	
3306.00	-20.4	V	3.0	36.1	1.0	-55.6	-13.0	-42.6	
1653.00	-27.1	Н	3.0	37.0	1.0	-63.1	-13.0	-50.1	
2479.50	-25.0	Н	3.0	36.4	1.0	-60.5	-13.0	-47.5	
3306.00	-20.9	Н	3.0	36.1	1.0	-56.1	-13.0	-43.1	
Mid Ch, 83	6.5								
1673.00	-27.4	V	3.0	37.0	1.0	-63.4	-13.0	-50.4	
2509.50	-23.2	V	3.0	36.4	1.0	-58.7	-13.0	-45.7	
3346.00	-20.3	V	3.0	36.1	1.0	-55.4	-13.0	-42.4	
1673.00	-27.2	Н	3.0	37.0	1.0	-63.2	-13.0	-50.2	
2509.50	-25.0	Н	3.0	36.4	1.0	-60.4	-13.0	-47.4	
3346.00	-20.9	Н	3.0	36.1	1.0	-56.0	-13.0	-43.0	
High Ch, 8	46.5								
1693.00	-27.3	V	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2539.50	-23.4	V	3.0	36.4	1.0	-58.8	-13.0	-45.8	
3386.00	-20.0	V	3.0	36.1	1.0	-55.1	-13.0	-42.1	
1693.00	-27.0	Н	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2539.50	-24.8	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3386.00	-20.6	Н	3.0	36.1	1.0	-55.6	-13.0	-42.6	

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_QPSK Band 5 Harmonics, 5MHz Bandwidth

Band LTE5

5MHz

QPSK

f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Low Ch, 8		()		(42)	(0.0)	(42.11)	(4.2)	()	=
1653.00	-27.7	V	3.0	37.0	1.0	-63.7	-13.0	-50.7	
2479.50	-23.4	V	3.0	36.4	1.0	-58.8	-13.0	-45.8	
3306.00	-20.4	V	3.0	36.1	1.0	-55.6	-13.0	-42.6	
1653.00	-27.1	Н	3.0	37.0	1.0	-63.1	-13.0	-50.1	
2479.50	-24.7	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3306.00	-20.9	Н	3.0	36.1	1.0	-56.1	-13.0	-43.1	
Mid Ch, 83	6.5								
1673.00	-27.4	V	3.0	37.0	1.0	-63.4	-13.0	-50.4	
2509.50	-23.2	V	3.0	36.4	1.0	-58.6	-13.0	-45.6	
3346.00	-20.2	V	3.0	36.1	1.0	-55.4	-13.0	-42.4	
1673.00	-27.0	Н	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.50	-25.1	Н	3.0	36.4	1.0	-60.5	-13.0	-47.5	
3346.00	-20.8	Н	3.0	36.1	1.0	-55.9	-13.0	-42.9	
High Ch, 8	46.5								
1693.00	-27.2	V	3.0	37.0	1.0	-63.2	-13.0	-50.2	
2539.50	-23.3	V	3.0	36.4	1.0	-58.7	-13.0	-45.7	
3386.00	-20.0	V	3.0	36.1	1.0	-55.1	-13.0	-42.1	
1693.00	-26.9	Н	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2539.50	-24.8	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3386.00	-20.5	Н	3.0	36.1	1.0	-55.6	-13.0	-42.6	

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_16QAM Band 5 Harmonics, 3MHz Bandwidth

Band LTE5

3MHz

16QAM

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82	5.5								
1651.00	-27.5	V	3.0	37.0	1.0	-63.5	-13.0	-50.5	
2476.50	-23.7	V	3.0	36.4	1.0	-59.1	-13.0	-46.1	
3302.00	-20.1	V	3.0	36.2	1.0	-55.3	-13.0	-42.3	
1651.00	-27.3	Н	3.0	37.0	1.0	-63.4	-13.0	-50.4	
2476.50	-25.0	Н	3.0	36.4	1.0	-60.5	-13.0	-47.5	
3302.00	-21.4	Н	3.0	36.2	1.0	-56.5	-13.0	-43.5	
Mid Ch, 836	პ. 5								
1673.00	-27.2	V	3.0	37.0	1.0	-63.2	-13.0	-50.2	
2509.50	-23.4	V	3.0	36.4	1.0	-58.8	-13.0	-45.8	
3346.00	-20.0	V	3.0	36.1	1.0	-55.1	-13.0	-42.1	
1673.00	-27.0	Н	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.50	-25.0	Н	3.0	36.4	1.0	-60.4	-13.0	-47.4	
3346.00	-20.9	Н	3.0	36.1	1.0	-56.1	-13.0	-43.1	
High Ch, 84	1 7.5								
1695.00	-26.9	V	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2542.50	-23.3	V	3.0	36.4	1.0	-58.7	-13.0	-45.7	
3390.00	-19.8	V	3.0	36.1	1.0	-54.9	-13.0	-41.9	
1695.00	-26.9	Н	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2542.50	-24.2	Н	3.0	36.4	1.0	-59.6	-13.0	-46.6	
3390.00	-20.8	Н	3.0	36.1	1.0	-55.9	-13.0	-42.9	

FORM NO: CCSUP4701I

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_QPSK Band 5 Harmonics, 3MHz Bandwidth

Band LTE5

3MHz

QPSK

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB) .	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82	25.5								
1651.00	-27.5	V	3.0	37.0	1.0	-63.5	-13.0	-50.5	
2476.50	-23.6	V	3.0	36.4	1.0	-59.1	-13.0	-46.1	
3302.00	-20.1	V	3.0	36.2	1.0	-55.2	-13.0	-42.2	
1651.00	-27.3	Н	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2476.50	-25.0	Н	3.0	36.4	1.0	-60.5	-13.0	-47.5	
3302.00	-21.3	Н	3.0	36.2	1.0	-56.4	-13.0	-43.4	
Mid Ch, 83	6.5								
1673.00	-27.1	V	3.0	37.0	1.0	-63.1	-13.0	-50.1	
2509.50	-23.3	V	3.0	36.4	1.0	-58.7	-13.0	-45.7	
3346.00	-19.9	V	3.0	36.1	1.0	-55.0	-13.0	-42.0	
1673.00	-27.0	Н	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.50	-25.0	Н	3.0	36.4	1.0	-60.4	-13.0	-47.4	
3346.00	-20.9	Н	3.0	36.1	1.0	-56.0	-13.0	-43.0	
High Ch, 8	47.5								
1695.00	-26.9	V	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2542.50	-23.3	V	3.0	36.4	1.0	-58.7	-13.0	-45.7	
3390.00	-19.8	V	3.0	36.1	1.0	-54.9	-13.0	-41.9	
1695.00	-26.9	Н	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2542.50	-24.8	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3390.00	-20.9	Н	3.0	36.1	1.0	-56.0	-13.0	-43.0	

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_16QAM Band 5 Harmonics, 1.4MHz Bandwidth

Band LTE5

1.4MHz

16QAM

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82	4.7								
1649.40	-27.5	V	3.0	37.0	1.0	-63.5	-13.0	-50.5	
2474.10	-22.9	V	3.0	36.4	1.0	-58.3	-13.0	-45.3	
3298.80	-20.4	V	3.0	36.2	1.0	-55.6	-13.0	-42.6	
1649.40	-27.1	Н	3.0	37.0	1.0	-63.1	-13.0	-50.1	
2474.10	-24.5	Н	3.0	36.4	1.0	-59.9	-13.0	-46.9	
3298.80	-20.2	Н	3.0	36.2	1.0	-55.3	-13.0	-42.3	
Mid Ch, 83	6.5								
1673.00	-27.0	V	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.50	-22.7	V	3.0	36.4	1.0	-58.1	-13.0	-45.1	
3346.00	-20.4	V	3.0	36.1	1.0	-55.5	-13.0	-42.5	
1673.00	-27.0	Н	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.50	-24.4	Н	3.0	36.4	1.0	-59.8	-13.0	-46.8	
3346.00	-20.4	Н	3.0	36.1	1.0	-55.5	-13.0	-42.5	
High Ch, 84	48.3								
1696.60	-26.8	V	3.0	37.0	1.0	-62.7	-13.0	-49.7	
2544.90	-22.4	V	3.0	36.4	1.0	-57.8	-13.0	-44.8	
3393.20	-20.4	V	3.0	36.1	1.0	-55.4	-13.0	-42.4	
1696.60	-26.8	Н	3.0	37.0	1.0	-62.8	-13.0	-49.8	
2544.90	-24.2	Н	3.0	36.4	1.0	-59.6	-13.0	-46.6	
3393.20	-20.0	Н	3.0	36.1	1.0	-55.1	-13.0	-42.1	

FORM NO: CCSUP4701I

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT/ AC Charger/ Headset

Location: Chamber B

Mode: LTE_QPSK Band 5 Harmonics, 1.4MHz Bandwidth

Band LTE5

1.4MHz

QPSK

SG reading Ant. Pol. Distance Preamp Filter FIRP Limit Delta Notes MHz (dBm) (H/V) (dB) (dB) (dBm) (dBm) (dB) (m) Low Ch, 824.7 1649.40 -27.5 V 3.0 37.0 1.0 -63.5 -13.0 -50.5 2474.10 -22.9 V 3.0 36.4 1.0 -58.3 -13.0 -45.3 3298.80 -20.6 V 3.0 36.2 1.0 -55.7 -13.0 -42.7 1649.40 27.4 Н 3.0 37.0 1.0 -63.4 -13.0 -50.4 2474.10 -24.8 3.0 36.4 1.0 -60.3 -13.0 -47.3 3298.80 -20.4 Н 3.0 36.2 1.0 -55.5 -13.0 -42.5 Mid Ch, 836.5 -27.2 1673.00 3.0 37.0 1.0 -63.2 -13.0 -50.2 2509.50 -22.8 V 3.0 36.4 1.0 -58.2 -13.0 45.2 3346.00 -20.5 V 3.0 36.1 1.0 -55.7 -13.0 42.7 1673.00 -27.1 Н 3.0 37.0 1.0 -63.1 -13.0 -50.1 2509.50 -24.6 3.0 36.4 1.0 -60.0 -13.0 -47.0 3346.00 -20.4 3.0 36.1 1.0 -55.5 -13.0 High Ch, 848.3 1696.60 26.9 3.0 37.0 1.0 -62.9 -13.0 -49.9 2544.90 -22.7 3.0 36.4 1.0 -58.1 -13.0 -45.1 3.0 3393.20 V 36.1 -55.6 -42.6 20.5 1.0 -13.0 1696.60 26.9 Н 3.0 37.0 1.0 -62.8 -13.0 49.8 2544.90 -24.2 Н 3.0 36.4 1.0 -59.6 -13.0 -46.6 3393.20 -19.9 Н 3.0 36.1 1.0 -55.0 -13.0 -42.0

WCDMA

UL Verfication Services, Inc. Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: HSDPA Band 2 Harmonics

Band

Band 2 HSDPA

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 18	852.4								
3704.80	-13.2	V	3.0	35.9	1.0	-48.1	-13.0	-35.1	
5557.20	-7.7	V	3.0	35.5	1.0	-42.2	-13.0	-29.2	
7409.60	-7.2	V	3.0	35.7	1.0	-42.0	-13.0	-29.0	
3704.80	-12.2	Н	3.0	35.9	1.0	-47.1	-13.0	-34.1	
5557.20	-7.7	Н	3.0	35.5	1.0	-42.1	-13.0	-29.1	
7409.60	-7.3	Н	3.0	35.7	1.0	-42.1	-13.0	-29.1	
Mid Ch, 18	80								
3760.00	-13.1	V	3.0	35.8	1.0	-47.9	-13.0	-34.9	
5640.00	-9.0	V	3.0	35.5	1.0	-43.4	-13.0	-30.4	
7520.00	-7.2	V	3.0	35.7	1.0	-41.9	-13.0	-28.9	
3760.00	-12.3	Н	3.0	35.8	1.0	-47.1	-13.0	-34.1	
5640.00	-7.2	Н	3.0	35.5	1.0	-41.6	-13.0	-28.6	
7520.00	-7.1	Н	3.0	35.7	1.0	-41.8	-13.0	-28.8	
High Ch, 1	907.6								
3815.20	-12.8	V	3.0	35.8	1.0	-47.6	-13.0	-34.6	
5722.80	-5.9	V	3.0	35.5	1.0	-40.4	-13.0	-27.4	
7630.40	-6.7	V	3.0	35.8	1.0	-41.4	-13.0	-28.4	
3815.20	-11.9	Н	3.0	35.8	1.0	-46.7	-13.0	-33.7	
5722.80	-6.9	Н	3.0	35.5	1.0	-41.4	-13.0	-28.4	
7630.40	-6.1	Н	3.0	35.8	1.0	-40.9	-13.0	-27.9	

Company: Samsung Project #: 15120736 Date: 5/16/2015 Test Engineer: Charles Vergonio Configuration: EUT only Location: Chamber B

Mode: Rel99 Band 2 Harmonics

Band

Band 2

REL99

ow Ch, 1852.4 1704.80 -1 1557.20 -7 1409.60 -7 1557.20 -7 1409.60 -7 1409.60 -7 1409.60 -7 16640.00 -1 16640.00 -7 1760.00 -1	13.2 \\ -7.5 \\ -7.4 \\ -7.3 \\ 12.9 \\ -7.1 \	7 3.0 7 3.0 H 3.0 H 3.0	35.9 35.5 35.7 35.9 35.5 35.7 35.8 35.8	1.0 1.0 1.0 1.0 1.0 1.0	48.0 42.0 42.2 47.4 41.9 42.0	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	35.0 -29.0 -29.2 -34.4 -28.9 -29.0	
704.80 -1 557.20 -7 409.60 -7 704.80 -1 557.20 -7 409.60 -7 lid Ch, 1880 760.00 -1 640.00 -7 760.00 -1 640.00 -7	7.5 \\ 7.4 \\ 12.5 \\ 7.4 \\ 12.5 \\ 7.4 \\ 12.7.3 \\ 12.9 \\ 7.1 \\ 1.1	V 3.0 V 3.0 H 3.0 H 3.0 H 3.0 V 3.0	35.5 35.7 35.9 35.5 35.7 35.7	1.0 1.0 1.0 1.0 1.0	-42.0 -42.2 -47.4 -41.9 -42.0	-13.0 -13.0 -13.0 -13.0 -13.0	-29.0 -29.2 -34.4 -28.9 -29.0	
557.20 -7 409.60 -7 704.80 -1 557.20 -7 409.60 -7 flid Ch, 1880 760.00 -1 640.00 -7 760.00 -1	7.5 \\ 7.4 \\ 12.5 \\ 7.4 \\ 12.5 \\ 7.4 \\ 12.7.3 \\ 12.9 \\ 7.1 \\ 1.1	V 3.0 V 3.0 H 3.0 H 3.0 H 3.0 V 3.0	35.5 35.7 35.9 35.5 35.7 35.7	1.0 1.0 1.0 1.0 1.0	-42.0 -42.2 -47.4 -41.9 -42.0	-13.0 -13.0 -13.0 -13.0 -13.0	-29.0 -29.2 -34.4 -28.9 -29.0	
7409.60 -7 3704.80 -1 5557.20 -7 7409.60 -7 Mid Ch, 1880 3760.00 -1 5640.00 -7 57520.00 -7 3760.00 -1	7.4 \ \\ 12.5 \ \ \ -7.4 \ \\ -7.3 \ \ \ \\ 12.9 \ \\ -7.1 \ \\ \\	V 3.0 H 3.0 H 3.0 H 3.0 V 3.0	35.7 35.9 35.5 35.7 35.8	1.0 1.0 1.0 1.0	-42.2 -47.4 -41.9 -42.0	-13.0 -13.0 -13.0 -13.0	-29.2 -34.4 -28.9 -29.0	
3704.80 -1 5557.20 -7 7409.60 -7 Mid Ch, 1880 -7 3760.00 -1 5640.00 -7 7520.00 -7 3760.00 -1	12.5 1.7.4 1.7.3 1.7.3 1.7.3 1.7.1	1 3.0 1 3.0 1 3.0 1 3.0 1 3.0	35.9 35.5 35.7 35.8	1.0 1.0 1.0	-47.4 -41.9 -42.0	-13.0 -13.0 -13.0	-34.4 -28.9 -29.0	
5557.20 -7 7409.60 -7 Wid Ch, 1880 3760.00 -1 56640.00 -7 3760.00 -1 5640.00 -1	7.4 - -7.3 - 12.9 \ -7.1 \	1 3.0 1 3.0 V 3.0	35.5 35.7 35.8	1.0 1.0	-41.9 -42.0	-13.0 -13.0	-28.9 -29.0	
7409.60 -7 Mid Ch, 1880 3760.00 -1 5640.00 -7 7520.00 -7 3760.00 -1 5640.00 -7	-7.3 h 12.9 \ -7.1 \	d 3.0 / 3.0	35.7 35.8	1.0 1.0	-42.0	-13.0	-29.0	
Mid Ch, 1880 3760.00 -1 5640.00 -7 7520.00 -7 3760.00 -1 5640.00 -7	12.9 \ -7.1 \	/ 3.0	35.8	1.0				
3760.00 -1 5640.00 -7 7520.00 -7 3760.00 -1 5640.00 -7	-7.1 \				47.9			
5640.00 -7 7520.00 -7 3760.00 -1 5640.00 -7	-7.1 \				47 Q			
7520.00 -7 3760.00 -1 5640.00 -7		/ 3.0	35.5		-47.0	-13.0	-34.8	
3760.00 -1 5640.00 -7	7.2		33.3	1.0	-41.6	-13.0	-28.6	
5640.00 -7	-1.3	/ 3.0	35.7	1.0	-42.1	-13.0	-29.1	
	12.4 H	H 3.0	35.8	1.0	-47.2	-13.0	-34.2	
7500 00	-7.3 H	H 3.0	35.5	1.0	-41.8	-13.0	-28.8	
7520.00 -8	-8.1 H	H 3.0	35.7	1.0	-42.9	-13.0	-29.9	
High Ch, 1907.6								
3815.20 -1	13.2	/ 3.0	35.8	1.0	-48.0	-13.0	-35.0	
5722.80 -6	-6.9 \	/ 3.0	35.5	1.0	-41.4	-13.0	-28.4	
7630.40 -7	-7.1 \	/ 3.0	35.8	1.0	-41.9	-13.0	-28.9	
3815.20 -1	12.1 H	H 3.0	35.8	1.0	-46.9	-13.0	-33.9	
5722.80 -7	-7.3 H	d 3.0	35.5	1.0	-41.8	-13.0	-28.8	
7630.40 -7	-7.1 H	1 3.0	35.8	1.0	-41.8	-13.0	-28.8	

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

Configuration: Z-pos EUT w/ AC Adapter + Headset

Location: Chamber B

Mode: HSDPA Band 5 Harmonics

Band

Band 5

HSDPA

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 8	26.4								
1652.80	-27.3	V	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2479.20	-21.9	V	3.0	36.4	1.0	-57.3	-13.0	-44.3	
3305.60	-21.1	V	3.0	36.1	1.0	-56.2	-13.0	-43.2	
1652.80	-27.3	Н	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2479.20	-24.7	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3305.60	-21.7	Н	3.0	36.1	1.0	-56.8	-13.0	-43.8	
Mid Ch, 83	6.6								
1673.20	-27.0	V	3.0	37.0	1.0	-63.0	-13.0	-50.0	
2509.80	-21.5	V	3.0	36.4	1.0	-56.9	-13.0	-43.9	
3346.40	-20.9	V	3.0	36.1	1.0	-56.0	-13.0	-43.0	
1673.20	-27.2	Н	3.0	37.0	1.0	-63.2	-13.0	-50.2	
2509.80	-25.0	Н	3.0	36.4	1.0	-60.4	-13.0	-47.4	
3346.40	-21.1	Н	3.0	36.1	1.0	-56.2	-13.0	-43.2	
High Ch, 8	46.6								
1693.20	-27.0	V	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2539.80	-21.4	V	3.0	36.4	1.0	-56.8	-13.0	-43.8	
3386.40	-20.9	V	3.0	36.1	1.0	-56.0	-13.0	-43.0	
1693.20	-26.9	Н	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2539.80	-24.8	Н	3.0	36.4	1.0	-60.2	-13.0	-47.2	
3386.40	-20.9	Н	3.0	36.1	1.0	-55.9	-13.0	-42.9	

FORM NO: CCSUP4701I

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

Configuration: Z-pos EUT w/ AC Adapter + Headset

Location: Chamber B

Mode: Rel99 Band 5 Harmonics

Band

Band 5

REL99

t MHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Low Ch, 82	<u> </u>	(11	(\	1/	
1652.80	-27.2	V	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2479.20	-21.7	V	3.0	36.4	1.0	-57.2	-13.0	-44.2	
3305.60	-21.0	V	3.0	36.1	1.0	-56.1	-13.0	-43.1	
1652.80	-27.3	Н	3.0	37.0	1.0	-63.3	-13.0	-50.3	
2479.20	-24.9	Н	3.0	36.4	1.0	-60.4	-13.0	-47.4	
3305.60	-21.7	Н	3.0	36.1	1.0	-56.8	-13.0	-43.8	
Mid Ch, 83	5.6								
1673.20	-26.9	V	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2509.80	-21.5	V	3.0	36.4	1.0	-56.9	-13.0	-43.9	
3346.40	-20.8	V	3.0	36.1	1.0	-55.9	-13.0	-42.9	
1673.20	-27.1	Н	3.0	37.0	1.0	-63 .1	-13.0	-50.1	
2509.80	-24.9	Н	3.0	36.4	1.0	-60.3	-13.0	-47.3	
3346.40	-20.9	Н	3.0	36.1	1.0	-56.1	-13.0	-43.1	
High Ch, 84	16.6								
1693.20	-27.1	V	3.0	37.0	1.0	-63.1	-13.0	-50.1	
2539.80	-21.4	V	3.0	36.4	1.0	-56.8	-13.0	-43.8	
3386.40	-20.8	V	3.0	36.1	1.0	-55.9	-13.0	-42.9	
1693.20	-26.9	Н	3.0	37.0	1.0	-62.9	-13.0	-49.9	
2539.80	-24.7	Н	3.0	36.4	1.0	-60.1	-13.0	-47.1	
3386.40	-20.8	Н	3.0	36.1	1.0	-55.9	-13.0	-42.9	

GSM

UL Verfication Services, Inc. Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: EGPRS 1900 MHz Harmonics

Band GSM 1900

EGPRS

f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Low Ch, 18	· \ / ·	(11/0)	(,	(ub)	(ub)	(ubiii)	(ubiii)	(ub)	
3700.40	-10.6	V	3.0	35.9	1.0	-45.4	-13.0	-32.4	
5550.60	-5.7	V	3.0	35.5	1.0	-40.2	-13.0	-27.2	
7400.80	-8.4	V	3.0	35.7	1.0	-43.1	-13.0	-30.1	
3700.40	-10.4	Н	3.0	35.9	1.0	-45.2	-13.0	-32.2	
5550.60	-5.4	Н	3.0	35.5	1.0	-39.9	-13.0	-26.9	
7400.80	-6.0	Н	3.0	35.7	1.0	-40.7	-13.0	-27.7	
Mid Ch, 18	80								
3760.00	-10.4	V	3.0	35.8	1.0	-45.2	-13.0	-32.2	
5640.00	-5.9	V	3.0	35.5	1.0	-40.4	-13.0	-27.4	
7520.00	-4.2	V	3.0	35.7	1.0	-39.0	-13.0	-26.0	
3760.00	-11.5	Н	3.0	35.8	1.0	-46.3	-13.0	-33.3	
5640.00	-5.5	Н	3.0	35.5	1.0	-40.0	-13.0	-27.0	
7520.00	-2.8	Н	3.0	35.7	1.0	-37.5	-13.0	-24.5	
High Ch, 1	909.8								
3819.60	-10.2	V	3.0	35.8	1.0	-45.0	-13.0	-32.0	
5729.40	-5.8	V	3.0	35.5	1.0	-40.3	-13.0	-27.3	
7639.20	-6.8	V	3.0	35.8	1.0	-41.6	-13.0	-28.6	
3819.60	-10.3	Н	3.0	35.8	1.0	-45.0	-13.0	-32.0	
5729.40	-5.0	Н	3.0	35.5	1.0	-39.5	-13.0	-26.5	
7639.20	-4.2	Н	3.0	35.8	1.0	-39.0	-13.0	-26.0	

UL Verfication Services, Inc.

Above 1GHz High Frequency Substitution Measurement

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

 Configuration:
 EUT only

 Location:
 Chamber B

Mode: GPRS 1900 MHz Harmonics

GSM 1900

GPRS

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 18	350.2								
3700.40	-10.1	V	3.0	35.9	1.0	-45.0	-13.0	-32.0	
5550.60	-5.6	V	3.0	35.5	1.0	-40.1	-13.0	-27.1	
7400.80	-6.9	V	3.0	35.7	1.0	-41.7	-13.0	-28.7	
3700.40	-10.9	Н	3.0	35.9	1.0	-45.8	-13.0	-32.8	
5550.60	-5.3	Н	3.0	35.5	1.0	-39.8	-13.0	-26.8	
7400.80	-6.7	Н	3.0	35.7	1.0	-41.4	-13.0	-28.4	
Mid Ch, 18	80								
3760.00	-9.9	V	3.0	35.8	1.0	-44.7	-13.0	-31.7	
5640.00	-5.6	V	3.0	35.5	1.0	-40.1	-13.0	-27.1	
7520.00	-7.1	V	3.0	35.7	1.0	-41.8	-13.0	-28.8	
3760.00	-10.8	Н	3.0	35.8	1.0	-45.6	-13.0	-32.6	
5640.00	-5.0	Н	3.0	35.5	1.0	-39.5	-13.0	-26.5	
7520.00	-6.6	Н	3.0	35.7	1.0	-41.3	-13.0	-28.3	
High Ch, 19	909.8								
3819.60	-9.8	V	3.0	35.8	1.0	-44.5	-13.0	-31.5	
5729.40	-5.5	V	3.0	35.5	1.0	-40.0	-13.0	-27.0	
7639.20	-6.7	V	3.0	35.8	1.0	-41.5	-13.0	-28.5	
3819.60	-10.6	Н	3.0	35.8	1.0	-45.3	-13.0	-32.3	
5729.40	-5.4	Н	3.0	35.5	1.0	-39.9	-13.0	-26.9	
7639.20	-5.6	Н	3.0	35.8	1.0	-40.3	-13.0	-27.3	

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

Configuration: Z-pos EUT w/ AC Adapter + Headset

Location: Chamber B

Mode: EGPRS 850 MHz Harmonics

GSM 850

EGPRS

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82	24.2								
1648.40	-24.0	V	3.0	37.0	1.0	-60.0	-13.0	-47.0	
2472.60	-18.8	V	3.0	36.4	1.0	-54.3	-13.0	-41.3	
3296.80	-17.2	V	3.0	36.2	1.0	-52.4	-13.0	-39.4	
1648.40	-24.0	Н	3.0	37.0	1.0	-60.1	-13.0	-47.1	
2472.60	-20.5	Н	3.0	36.4	1.0	-55.9	-13.0	-42.9	
3296.80	-17.0	Н	3.0	36.2	1.0	-52.1	-13.0	-39.1	
Mid Ch, 83	6.6							i	
1673.20	-23.6	V	3.0	37.0	1.0	-59.6	-13.0	-46.6	
2509.80	-18.6	V	3.0	36.4	1.0	-54.0	-13.0	-41.0	
3346.40	-17.3	V	3.0	36.1	1.0	-52.4	-13.0	-39.4	
1673.20	-23.7	Н	3.0	37.0	1.0	-59.7	-13.0	-46.7	
2509.80	-20.3	Н	3.0	36.4	1.0	-55.8	-13.0	-42.8	
3346.40	-16.9	Н	3.0	36.1	1.0	-52.0	-13.0	-39.0	
High Ch, 8	48.8								
1697.60	-23.3	V	3.0	37.0	1.0	-59.3	-13.0	-46.3	
2546.40	-18.5	V	3.0	36.4	1.0	-53.9	-13.0	-40.9	
3395.20	-17.0	V	3.0	36.1	1.0	-52.1	-13.0	-39.1	
1697.60	-23.3	Н	3.0	37.0	1.0	-59.3	-13.0	-46.3	
2546.40	-20.1	Н	3.0	36.4	1.0	-55.5	-13.0	-42.5	
3395.20	-16.6	Н	3.0	36.1	1.0	-51.7	-13.0	-38.7	

 Company:
 Samsung

 Project #:
 15/20736

 Date:
 5/16/2015

 Test Engineer:
 Charles Vergonio

Configuration: Z-pos EUT w/ AC Adapter + Headset

Location: Chamber B

Mode: GPRS 850 MHz Harmonics

GSM 850

GPRS

f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82	4.2				1				
1648.40	-23.1	V	3.0	37.0	1.0	-59.1	-13.0	-46.1	
2472.60	-18.0	V	3.0	36.4	1.0	-53.4	-13.0	-40.4	
3296.80	-16.9	V	3.0	36.2	1.0	-52.0	-13.0	-39.0	
1648.40	-24.0	Н	3.0	37.0	1.0	-60.1	-13.0	-47.1	
2472.60	-19.7	Н	3.0	36.4	1.0	-55.1	-13.0	-42.1	
3296.80	-15.8	Н	3.0	36.2	1.0	-51.0	-13.0	-38.0	
Mid Ch, 836	6.6	ĺ		į į	·		1		
1673.20	-23.0	V	3.0	37.0	1.0	-59.0	-13.0	-46.0	
2509.80	-17.9	V	3.0	36.4	1.0	-53.3	-13.0	-40.3	
3346.40	-16.9	V	3.0	36.1	1.0	-52.0	-13.0	-39.0	
1673.20	-23.8	Н	3.0	37.0	1.0	-59.8	-13.0	-46.8	
2509.80	-19.8	Н	3.0	36.4	1.0	-55.2	-13.0	-42.2	
3346.40	-15.9	Н	3.0	36.1	1.0	-51.0	-13.0	-38.0	
High Ch, 84	48.8	ĺ			i				
1697.60	-22.7	V	3.0	37.0	1.0	-58.7	-13.0	-45.7	
2546.40	-17.6	V	3.0	36.4	1.0	-53.0	-13.0	-40.0	
3395.20	-16.3	V	3.0	36.1	1.0	-51.4	-13.0	-38.4	
1697.60	-23.2	Н	3.0	37.0	1.0	-59.1	-13.0	-46.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2546.40	-19.3	Н	3.0	36.4	1.0	-54.7	-13.0	-41.7	
3395.20	-15.7	Н	3.0	36.1	1.0	-50.8	-13.0	-37.8	