65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (212) of (274) # Appendix A.4 Dipole Calibration certificate (D750V3_1183) # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlecher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KCTL (Dymstec) Certificate No: D750V3-1183_Sep20 | Object | D750V3 - SN:1183 | | | |---|---|--|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | September 15, 2 | 020 | | | The measurements and the unce | tainties with confidence p | ional standards, which realize the physical un
robability are given on the following pages an
ry facility: environment temperature (22 ± 3)*(| nd are part of the certificate. | | | | | | | | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: 103245
SN: 310962 / 06327
SN: 7405
SN: 601 | Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7405_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) | Scheduled Calibration
Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH8394 (20k)
SN: 310982 / 06327
SN: 7405
SN: 601 | 01-Apr-20 (No. 217-09100/03101)
01-Apr-20 (No. 217-09100)
01-Apr-20 (No. 217-09101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7405_Jun20)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778 SN: 103244 SN: 103245 SN: 8H8394 (20k) SN: 310982 / 06327 SN: 7405 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7405_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18)
31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power mater NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power mater E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 8H8394 (20k)
SN: 310982 / 06327
SN: 7405
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7405_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D750V3-1183_Sep20 Page 1 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (213) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1183_Sep20 Page 2 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (214) of (274) ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0,2) °C | 42.4 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.36 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.49 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1183_Sep20 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (215) of (274) # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.4 Ω - 1.9 jΩ
| | |--------------------------------------|-----------------|--| | Return Loss | - 28.5 dB | | ### General Antenna Parameters and Design | The state of s | | |--|------------| | Electrical Delay (one direction) | 1.030 ns | | | 1000000000 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | A Approximation of the control th | | |--|--------| | Manufactured by | SPEAG | | | of EAG | Certificate No: D750V3-1183_Sep20 Page 4 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (216) of (274) ### DASY5 Validation Report for Head TSL Date: 15.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1183 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN7405; ConvF(10, 10, 10) @ 750 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.38 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.39 W/kg Smallest distance from peaks to all points 3 dB below = 18.9 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 2.84 W/kg 0 dB = 2.84 W/kg = 4.53 dBW/kg Certificate No: D750V3-1183_Sep20 Page 5 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (217) of (274) # Impedance Measurement Plot for Head TSL Certificate No: D750V3-1183_Sep20 Page 6 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (218) of (274) # Appendix A.5 Dipole Calibration certificate (D850V2_1006) # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates KCTL (Dymstec) Certificate No: D850V2-1006_Apr20 | Object | D850V2 - SN:1006 | | | |--|---|--|---| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | April 21, 2020 | | | | The measurements and the uncert | ainties with confidence p | onal standards, which realize the physical un
robability are given on the following pages an
ry facility: environment temperature (22 ± 3)*0 | d are part of the certificate. | | Calibration Equipment used (M&TE | Editical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-0310003101) | Apr-21 | | ower sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03100) | Apr-21 | | | G14, 103640 | 01-Mpr-20 (MD, 217-03101) | Apr-21 | | 7.000 NEWSTAN STATE | SM: BH0304 (30k) | 21 May 20 (No. 217 02108) | Apr-21 | | leference 20 dB Attenuator | SN: 8H9394 (20k)
SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106) | | | teference 20 dB Attenuator
type-N mismatch combination | SN; 310982 / 06327 | 31-Mar-20 (No. 217-03104) | 110500000 | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | | : 이 - 10 - 10 : 이 시작 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : | Dec-20
Dec-20 | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 310982 / 06327
SN: 7349 | 31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | leference 20 dB Attenuator
Type-N mismatch
combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 310982 / 06327
SN: 7349
SN: 601 | 31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19) | Dec-20
Dec-20 | | Reference 20 dB Attenuator (Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 310982 / 06327
SN: 7349
SN: 601 | 31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house) | Dec-20
Dec-20
Scheduled Check | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN; 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39612475 | 31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19) | Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | seterence 20 dB Attenuator (ype-N mismatch combination Reference Probe EX3DV4 AE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN; 310982 / 06327
SN; 7349
SN; 601
ID #
SN; GB39612475
SN; US37292783 | 31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-16) | Dec-20
Dec-20
Scheduled Check
In house check: Oct-20 | | Reference 20 dB Attenuator (ype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39612475
SN: US37292783
SN: MY41092317 | 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39612475
SN: US37292783
SN: MY41092317
SN: 100972 | 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent EB358A | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (In house) 30-Oct-14 (In house check Feb-19) 07-Oct-15 (In house check Oct-16) 07-Oct-15 (In house check Oct-18) 15-Jun-15 (In house check Oct-18) 31-Mar-14 (In house check Oct-19) | Dec-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent EB358A Calibrated by: | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41090477
Name | 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (In house) 30-Oct-14 (In house check Feb-19) 07-Oct-15 (In house check Oct-16) 07-Oct-15 (In house check Oct-18) 15-Jun-15 (In house check Oct-18) 31-Mar-14 (In house check Oct-19) | Dec-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D850V2-1006 Apr20 Page 1 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (219) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D850V2-1006_Apr20 Page 2 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (220) of (274) ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52,10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 850 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.92 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.95 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.45 W/kg ± 16.5 % (k=2) | Certificate No: D850V2-1006_Apr20 Page 3 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (221) of (274) ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 2.5 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.4 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.434 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions"
paragraph, The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|--------| | manufactored by | or End | Certificate No: D850V2-1006_Apr20 This test report shall not be reproduced, except in full, without the written approval KCTL-TIA002-004/3 KP20-06768 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (222) of (274) ### DASY5 Validation Report for Head TSL Date: 21.04,2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT; Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN:1006 Communication System: UID 0 - CW; Frequency: 850 MHz Medium parameters used: f = 850 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.78, 9.78, 9.78) @ 850 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.51 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.62 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66% Maximum value of SAR (measured) = 3.34 W/kg 0 dB = 3.34 W/kg = 5.24 dBW/kg A Secretary Control of the o Certificate No: D850V2-1006_Apr20 Page 5 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (223) of (274) ### Impedance Measurement Plot for Head TSL Certificate No: D850V2-1006_Apr20 Page 6 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (224) of (274) # Appendix A.6 Dipole Calibration certificate (D1750V2_1072) #### Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KCTL (Dymstec) Certificate No: D1750V2-1072_Apr20 | | D1750V2 - SN:10 | 072 | | |------------------------------------|------------------------------------|---|------------------------| | Calibration procedure(s) | QA CAL-05,v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | April 20, 2020 | | | | | | onei standards, which realize the physical un
robability are given on the following pages an | | | All calibrations have been conduct | led in the closed laborator | by facility: environment temperature (22 \pm 3)** | C and humidity < 70%. | | Calibration Equipment used (M&T | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | ower sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | ype-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN; US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | section y ridgest rigidity cocour | Name | Function | Signatule | | enterior region region | | Laboratory Technician | | | Calibrated by: | Claudio Leubler | Calciacity (delinear) | | | 27 | Claudio Leubler
Katja Pokovic | Technical Manager | 464 | Certificate No: D1750V2-1072_Apr20 Page 1 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (225) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1072_Apr20 Page 2 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (226) of (274) ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied. | TO THE STATE OF TH | Temperature | Permittivity | Conductivity |
--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.35 mhp/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.1 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1072_Apr20 Page 3 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (227) of (274) ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 0.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 39.4 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.217 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | CARROLL CONTROL CONTROL | STATE | |--|---------------| | Manufactured by | SPEAG | | and the second s | 500 X-0 V/374 | Certificate No: D1750V2-1072_Apr20 Page 4 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (228) of (274) ## **DASY5 Validation Report for Head TSL** Date: 20.04,2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1072 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.76, 8.76, 8.76) @ 1750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.3 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.9 W/kg ## SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.75 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.7% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Certificate No: D1750V2-1072_Apr20 Page 5 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (229) of (274) ### Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1072_Apr20 Page 6 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (230) of (274) # Appendix A.7 Dipole Calibration certificate (D1900V2_5d160) # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signstories to the EA Multilateral Agreement for the recognition of calibration certificates Client KCTL (Dymstec) Certificate No: D1900V2-5d160_Apr20 | | D1900V2 - SN:5d160 | | | |--|---|---|--| | Calibration procedure(s) | QA
CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | April 22, 2020 | | | | The measurements and the uncert | ainties with confidence p | onal standards, which realize the physical un
robability are given on the following pages an
γ facility: environment temperature (22 \pm 3)°(| d are part of the certificate. | | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | ower meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | | SN: 104778
SN: 103244 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | Apr-21
Apr-21 | | ower sensor NRP-Z91 | | | | | rower sensor NRP-Z91
lower sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91
Power sensor NRP-Z91
deference 20 dB Attenuator | SN: 103244
SN: 103245 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101) | Apr-21
Apr-21 | | Power sensor NRP-291
Power sensor NRP-291
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103244
SN: 103245
SN: BH9394 (20k) | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21
Apr-21 | | Power sensor NAP-291 Power sensor NAP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310862 / 06327 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21
Apr-21
Apr-21 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310862 / 06327
SN: 7349 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Dec-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310862 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Dec-20
Dec-20
Scheduled Check | | Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E44198 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310862 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E4418B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310862 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E44198 Power sensor HP 8481A Power sensor HP 8481A | SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310862 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18) | Apr-21
Apr-21
Apr-21
Apr-21
Dec-20
Dec-20 | | Power sensor NAP-Z91 Power sensor NAP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310882 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-7349_Dec19)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E44196 Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310882 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec-19) 27-Dec-19 (No. DAE4-601_Dec-19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8461A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310882 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310882 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec-19) 27-Dec-19 (No. DAE4-601_Dec-19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | | Power moter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Cafibrated by: | SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310882 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D1900V2-5d160_Apr20 Page 1 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (231) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlacher Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swisa Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d160_Apr20 Page 2 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (232) of (274) ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY5 | V52.10.4 | |------------------------|--| | Advanced Extrapolation | | | Modular Flat Phantom | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 1900 MHz ± 1 MHz | | | | Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm | ### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 41.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d160_Apr20 Page 3 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (233) of (274) ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω + 5.9 JΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.7 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 na | |--|--| | Later and the second se | 11 11 11 11 11 11 11 11 11 11 11 11 11 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | 1000 m 100 000 000 m 100 000 000 000 000 | Manufactured by | SPEAG | |--|-----------------|-------| |--|-----------------|-------| Certificate No: D1900V2-5d160_Apr20 Page 4 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (234) of (274) ### **DASY5 Validation Report for Head TSL** Date: 22.04.2020 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d160 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_c = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.6, 8.6, 8.6) @ 1900 MHz; Calibrated: 31.12,2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom; Flat Phantom 5.0 (front); Type; QD 000 P50 AA; Serial; 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.1 W/kg #### SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.10 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.3% Maximum value of SAR (measured) = 15.2 W/kg 0 dB = 15.2 W/kg = 11.82 dBW/kg Certificate No: D1900V2-5d160_Apr20 Page 5 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (235) of (274) ### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d160_Apr20 Page 6 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (236) of (274) # Appendix A.8 Dipole Calibration certificate (D2450V2_895) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taretura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KCTL (Dymstec) Certificate No: D2450V2-895_Jul20 | Object | D2450V2 - SN:895 | | |
--|---|---|--| | Calibration procedure(s) | QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | | | Calibration date: | July 21, 2020 | | | | The measurements and the uncer | tainties with confidence p | ional standards, which realize the physical un
robstillity are given on the following pages ar
ry facility: environment temperature (22 ± 3)° | nd are part of the certificate. | | Calibration Equipment used (M&T) | | | | | | 4 | | | | rimary Standards | ID# | Cal Date (Certificate Np.) | Scheduled Calibration | | The state of s | ID #
SN: 104778 | | Scheduled Calibration
Apr-21 | | ower meter NRP | | Cal Date (Certificate No.)
01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | Apr-21 | | ower meter NRP
ower sensor NRP-Z91 | SN: 104778 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | Apr-21
Apr-21 | | ower meter NRP
ower sensor NRP-Z91
ower sensor NRP-Z91 | SN: 104778
SN: 103244 | 01-Apr-20 (No. 217-03100/03101) | Apr-21
Apr-21
Apr-21 | | Cover meter NRP
Cover sensor NRP-291
Cover sensor NRP-291
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101) | Apr-21
Apr-21
Apr-21
Apr-21 | | Cower mater NRP
Cower senacr NRP-Z91
Cower senacr NRP-Z91
leference 20 dB Attenuator
ype-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k) | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21
Apr-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21 | | Power meter NRP Power senaor NRP-Z91 Power senaor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Recondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20
Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Fab-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Peterson 20 dB Attenuator (rype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | 9N: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Feb-19)
07-Oct-15 (In house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondury Standards Power meter E44198 Power sensor HP 8481A | 9N: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Feb-19)
07-Oct-15 (In house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Ideference 20 dB Aftenuator ype-N mismatch combination Ideference Probe EX3DV4 AE4 Idecondary Standards Tower meter E4419B Tower sensor HP 8481A Tower sensor HP 8481A Telephone PROBE SMT-06 | 9N: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Feb-19)
07-Oct-15 (In house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | 9N: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Feb-19)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18)
31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power meter
NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Heference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Prower sensor HP 8481A RF generator R&S SMT-06 Hetwork Analyzer Agilant E8358A | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41082317
SN: 100972
SN: US41080477 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Cot-18)
07-Oct-15 (In house check Oct-18)
15-Jun-15 (In house check Oct-18)
31-Mar-14 (In house check Oct-19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Inference 20 dB Attenuator ype-N mismatch combination Reference Probe EX30V4 IAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A F generator R&S SMT-06 Refwork Analyzer Agilant E8358A | 9N: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37282783
SN: WY41082317
SN: 100972
SN: US41080477 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Feb-19)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18)
31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards Power meter E44198 Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41082317
SN: 100972
SN: US41080477 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (In house)
30-Oct-14 (In house check Cot-18)
07-Oct-15 (In house check Oct-18)
15-Jun-15 (In house check Oct-18)
31-Mar-14 (In house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D2450V2-895_Jut20 Page 1 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (237) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-895_Jul20 Page 2 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (238) of (274) ## Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | | | | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.5 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 1 | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-895_Jul20 Page 3 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (239) of (274) # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.5 Ω + 3.5 JΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.2 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-895_Jul20 Page 4 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (240) of (274) # DASY5 Validation Report for Head TSL Date: 21.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used; f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_c = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.4 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.3
W/kg; SAR(10 g) = 6.12 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.2% Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Certificate No: D2450V2-895_Jul20 Page 5 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (241) of (274) ### Impedance Measurement Plot for Head TSL Certificate No: D2450V2-895_Jut20 Page 6 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (242) of (274) # Appendix A.9 Dipole Calibration certificate (D2600V2_1050) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swise Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KCTL (Dymstec) Certificate No: D2600V2-1050_Jul20 | Object | D2600V2 - SN:1 | 050 | | |--|---|---|---| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | July 21, 2020 | | | | The measurements and the unce | rtainties with confidence p | ional standards, which receive the physical un
robability are given on the following pages at
ry facility: environment temperature (22 \pm 3) $^{\circ}$ | nd are part of the certificate. | | | | | | | The state of s | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: BH9994 (20k)
SN: 310962 / 06327
SN: 7349
SN: 601 | Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03105) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) | Scheduled Calibration
Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH8994 (20k)
SN: 310862 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310862 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: 100972 SN: 100972 SN: US41080477 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Oct-18)
07-Oct-15 (In house check Oct-18)
15-Jun-15 (in house check Oct-18)
31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N miamatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310862 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03108)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun-20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house)
30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | Certificate No: D2500V2-1050_Jul20 Page 1 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR21-SPF0001-A Page (243) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR
normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1050_Jul20 Page 2 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (244) of (274) #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | | | | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 16.5 % (km2) | Certificate No: D2600V2-1050_Jul20 Page 3 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (245) of (274) # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8 Ω - 6.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.6 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.150 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1050_Jul20 Page 4 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (246) of (274) ### DASY5 Validation Report for Head TSL Date: 21.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1050 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.01 \text{ S/m}$; $\epsilon_c = 37.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.54, 7.54, 7.54) @ 2600 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.5 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 29.4 W/kg ### SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.30 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 48.7% Maximum value of SAR (measured) = 24.3 W/kg 0 dB = 24.3 W/kg = 13.86 dBW/kg Certificate No: D2600V2-1050_Jul20 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (247) of (274) # Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1050_Jut20 Page 6 of 6 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (248) of (274) # Appendix A.10 Dipole Calibration certificate (D5础V2_1134) ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KCTL (Dymstec) Certificate No: D5GHzV2-1134 May20 #### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1134 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: May 20, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3503 31-Dec-19 (No. EX3-3503 Dec-19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-801_Dec19) Dec-20 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20. Name Function Calibrated by: Jeffrey Katzman Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 20, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D5GHzV2-1134_May20 Page 1 of 9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (249) of (274) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat
phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1134_May20 Page 2 of 9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (250) of (274) ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 10.0 mm, dz = 10.0 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ## Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mha/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.49 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | _ | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2:25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1134_May20 Page 3 of 9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (251) of (274) ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mhq/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | | ### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k≈2) | ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | | ## SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.64 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 86.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1134_May20 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (252) of (274) ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mha/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | _ | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | _ | ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ¹ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1134_May20 Page 5 of 9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR21-SPF0001-A Page (253) of (274) # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.8 Ω - 9.8 [Ω | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | -20.1 dB | | | | # Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 49.5 Ω - 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.1 dB | ## Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 51.2 Ω - 4.0 μΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 27.8 dB | | | | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.7 Ω - 3.1 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | + 26.6 dB | | | | ### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 54.1 Ω - 3.7 JΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 25.4 dB | | | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1134_May20 Page 6 of 9 65,
Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (254) of (274) #### DASY5 Validation Report for Head TSL Date: 20.05.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1134 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.49 \text{ S/m}$; $\epsilon_r = 35.4$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5300 MHz; σ = 4.60 S/m; ϵ_r = 35.3; ρ = 1000 kg/m 3 , Medium parameters used: f = 5500 MHz; $\sigma = 4.80$ S/m; $\epsilon_r = 35.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.90$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 34.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 17.8 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.24 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.8% Maximum value of SAR (measured) = 18.6 W/kg Certificate No: D5GHzV2-1134_May20 Page 7 of 9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (255) of (274) Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.84 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.64 W/kg; SAR(10 g) = 2.43 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 20.0 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.98 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.46 W/kg; SAR(10 g) = 2.4 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 19.8 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.71 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 8.20 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.5 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg Certificate No: D5GHzV2-1134_May20 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (256) of (274) ### Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1134_May20 Page 9 of 9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SPF0001-A Page (257) of (274) # Appendix B. SAR Tissue Specification The brain mixtures consist of a viscous gel using hydrox-ethl cellullose(HEC) gelling agent and saline solution. Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue | Frequency (쌘) | 750 ~ 835 | | 2 450 | | 5 200 ~
5 800 | | | | | | |-------------------------------|-------------|-------|-------|-------|------------------|-------|-------|-------|-------|-------| | Tissue Type | Head | Body | | Ingredient | % by weight | | | | | | | | | | | Water | 40.29 | 51.97 | 53.00 | 68.00 | 55.00 | 70.50 | 72.00 | 73.00 | 65.52 | 80.00 | | Salt (NaCl) | 1.38 | 0.93 | 0.40 | 0.20 | 0.35 | 0.30 | 0.10 | 0.10 | 0 | 0 | | Sugar | 57.90 | 47.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | HEC | 0.24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Bactericide | 0.19 | 0.10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Triton X-100 | 0 | 0 | 0 | 0 | 0 | 0 | 20.00 | 0 | 17.24 | 0 | | DGBE | 0 | 0 | 46.60 | 31.80 | 44.65 | 29.20 | 0 | 26.90 | 0 | 0 | | Diethylene glycol hexyl ether | 0 | 0 | 0 | 0 | 0 | 0 | 7.90 | 0 | 17.24 | 0 | | Polysorbate (Tween) 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20.00 | ## Tissue parameter target by C. Gabriel and G. Harts grove. Salt: 99 % Pure Sodium Chloride Sucrose: 98 % Pure Sucrose Water: De-ionized, 16 M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy) ethanol] Triton X-100(ultra-pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethybutyl)phenyl] ether