

TEST REPORT

KCTL KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-837 www.kctl.co.kr	Report No.: KR21-SRF0013 ¹ Page (1) of (48)	KCTL				
1. Client						
∘ Name : Samsung Ele	ectronics Co., Ltd.					
 Address : 129, Samsun Rep. of Korea 	g-ro, Yeongtong-gu, Suwor	-si, Gyeonggi-do, 16677,				
 Date of Receipt : 2020-12-03 						
2. Use of Report : Certification						
3. Name of Product / Model	Mobile Phone / SM-G525I	F/DS				
4. Manufacturer / Country of Origin :	Samsung Electronics Co	., Ltd. / Vietnam				
5. FCC ID	A3LSMG525F					
6. Date of Test : 2020-12-11 t	o 2021-01-11					
7. Location of Test : ■ Permanent Te	sting Lab 🛛 On Site Testing (Add	ress: Address of testing location)				
8. Test method used : FCC Part 15	Subpart C, 15.247					
9. Test Result : Refer to the	est result in the test repo	rt				
Tested by	Technical M	lanager				
Affirmation Name : Taeyoung Kim	Rice Name : Seu	ngyong Kim (Signature)				
2021-01-14						
KCTL Inc.						
As a test result of the sample which was submitted from the client, this report does not guar antee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (2) of (48)

REPORT REVISION HISTORY

Date	Revision	Page No
2021-01-14	Originally issued	-

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

General remarks for test reports

Nothing significant to report.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (3) of (48)

CONTENTS

1.	General information	4
2.	Device information	4
2.1	I. Frequency/channel operations	6
2.2	2. Duty Cycle Correction Factor	7
3.	Antenna requirement	7
4.	Summary of tests	8
5.	Measurement uncertainty	9
6.	Measurement results explanation example	10
7	Test results	11
7.1	I. Maximum peak output power	11
7.2	2. Carrier frequency separation	13
7.3	3. 20dB channel bandwidth	16
7.4	 Number of hopping channels 	19
7.5	5. Time of occupancy(Dwell time)	21
7.6	8. Radiated spurious emissions & band edge	25
7.7	7. Conducted Spurious Emission	43
7.8	B. AC Conducted emission	46
8.	Measurement equipment	48

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR21-SRF0013

Page (4) of (48)

General information 1.

Client	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Manufacturer	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Factory	: Samsung Electronics Vietnam Thai Nguyen Co., Ltd.
Address	: KCN Yen Binh I, Pho Yen, Thai Nguyen, VNM, Thai Nguyen Thai Nguyen, VNM
Laboratory	: KCTL Inc.
Address	: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	Industry Canada Registration No. : 8035A
	KOLAS No.: KT231

Device information 2.

Equipment under test		
Model	:	SM-G525F/DS
Derivative model	:	SM-G525F
Modulation technique	:	Bluetooth(BDR/EDR)_GFSK, π/4DQPSK, 8DPSK
		Bluetooth(BLE)_GFSK
		WIFI(802.11a/b/g/n/ac)_DSSS, OFDM
		LTE_QPSK, 16QAM
		WCDMA_QPSK
		GSM_GMSK, 8-PSK
		NFC_ASK
Number of channels	:	Bluetooth(BDR/EDR)_79 ch / Bluetooth(BLE)_40 ch
		802.11b/g/n_HT20 : 13 ch
		UNII-1: 4 ch (20 Mb), 2 ch (40 Mb), 1 ch (80 Mb)
		UNII-2A: 4 ch (20 Mz), 2 ch (40 Mz), 1 ch (80 Mz)
		UNII-2C: 12 ch (20 Mb), 6 ch (40 Mb), 3 ch (80 Mb)
		UNII-3: 5 ch (20 Mb), 2 ch (40 Mb), 1 ch (80 Mb)
		NFC: 1 ch
Power source	:	DC 3.85 V
Antenna specification	:	LTE/WCDMA/GSM_SCI Antenna
		WIFI/Bluetooth(BDR/EDR/BLE)_SCI Antenna
		NFC_FPCB Antenna

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR21-SRF0013

Page (5) of (48)

Antenna gain	: WIFI/Bluetooth(BDR/EDR/BLE)4.00 dBi UNII-1 : -4.30 dBi UNII-2A : -4.50 dBi UNII-2C : -4.30 dBi UNII-3 : -4.70 dBi
Frequency range	: Bluetooth(BDR/EDR/BLE)_2 402 M½ ~ 2 480 M½ 2 412 M½ ~ 2 472 M½ (802.11b/g/n_HT20) UNII-1: 5 180 M½ ~ 5 240 M½ (802.11a/n/ac_HT20/VHT20) UNII-1: 5 190 M½ ~ 5 230 M½ (802.11n/ac_HT40/VHT40) UNII-2A: 5 210 M½ (802.11ac_VHT80) UNII-2A: 5 260 M½ ~ 5 320 M½ (802.11a/n/ac_HT20/VHT20) UNII-2A: 5 270 M½ ~ 5 310 M½ (802.11a/n/ac_HT40/VHT40) UNII-2A: 5 290 M½ (802.11ac_VHT80) UNII-2A: 5 290 M½ (802.11ac_VHT80) UNII-2C: 5 500 M½ ~ 5 720 M½ (802.11a/n/ac_HT20/VHT20) UNII-2C: 5 500 M½ ~ 5 700 M½ (802.11a/n/ac_HT40/VHT40) UNII-2C: 5 500 M½ ~ 5 690 M½ (802.11a/n/ac_HT40/VHT40) UNII-2C: 5 530 M½ ~ 5 690 M½ (802.11a/n/ac_HT40/VHT40) UNII-3: 5 745 M½ ~ 5 825 M½ (802.11a/n/ac_HT40/VHT40) UNII-3: 5 755 M½ ~ 5 795 M½ (802.11a/n/ac_HT40/VHT40) UNII-3: 5 775 M½ (802.11ac_VHT80) LTE Band 2_1 850.7 M½ ~ 1 909.3 M½ LTE Band 5_824.7 M½ ~ 848.3 M½ LTE Band 5_824.7 M½ ~ 848.3 M½ LTE Band 12_699.7 M½ ~ 713.5 M½ LTE Band 12_699.7 M½ ~ 713.5 M½ LTE Band 12_699.7 M½ ~ 713.5 M½ LTE Band 4_1 710.7 M½ ~ 1 779.3 M½ GSM 850_824.2 M½ ~ 848.8 M½ GSM 1900_1 850.2 M½ ~ 1 909.8 M½ WCDMA 850_826.4 M½ ~ 846.6 M½ WCDMA 1700_1 712.4 M½ ~ 1 752.6 M½ WCDMA 1700_1 852.4 M½ ~ 1 907.6 M½
Software version	NFC_13.56 Mb
Software version	: G525F.001 : REV0.1
Hardware version Test device serial No.	REV0.1 Conducted(R38NB03HNYF. R38NB03HNBK) Radiated(R38NB03HNMW)
Operation temperature	-30 °C ~ 50 °C

Note. The Product equality letter includes detailed information about the differences between basic and derivative model.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (6) of (48)

2.1. Frequency/channel operations

This device contains the following capabilities:

WiFi (802.11a/b/g/n/ac), Bluetooth (BDR/EDR/BLE), NFC

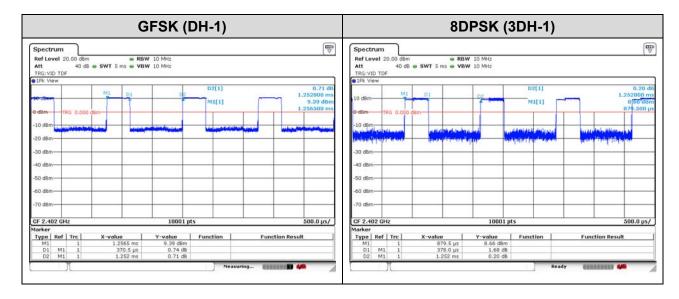
LTE Band 2, LTE Band 4, LTE Band 5, LTE Band 12, LTE Band 17, LTE Band 26, LTE Band 41, LTE Band 66, GSM 850, GSM 1900, WCDMA 850, WCDMA 1700, WCDMA 1900

Ch.	Frequency (Mb)
00	2 402
-	-
39	2 441
	-
78	2 480

Table 2.1.1. Bluetooth(BDR/EDR) mode

15.247 Requirements for Bluetooth transmitter:

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - 1) This system is hopping pseudo-randomly.
 - 2) Each frequency is used equally on the average by each transmitter.
 - 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
 - 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (7) of (48)

2.2. Duty Cycle Correction Factor

Test mode	Period (ms)	On time (ms)	Reduced VBW (Hz)
GFSK	1.252	0.371	2 699.06
8DPSK	1.252	0.378	2 645.50

3. Antenna requirement

Requirement of FCC part section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has permanently attached SCI Antenna (Internal antenna) on board.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (8) of (48)

. Summary c	of tests		
FCC Part section(s)	Paramotor		Test results
15.247(b)(1), (4)	Maximum peak output power		Pass
15.247(a)(1)	Carrier frequency separation		Pass
15.247(a)(1)	20dB channel bandwidth	20dB channel bandwidth	
15.247(a)(iii) 15.247(b)(1)	Number of hopping channel	Conducted	Pass
15.247(a) (iii)	Time of occupancy(dwell time)		Pass
15.207(a)	AC Conducted Emissions		Pass
15.247(d)	Conducted Spurious Emissions		Pass
15.205(a),	Spurious emission	Radiated	Pass
15.209(a)	Band-edge, restricted band	Raulaleu	Pass

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. According to exploratory test no any obvious emission were detected from 9 klz to 30 Mlz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that **Z** orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in **Z** orientation.
- All the radiated tests have been performed several case. (Stand-alone, with TA, with Earphone) Worst case: Stand-alone
- 5. The worst-case data rate were: BDR Packet type DH-1

EDR Packet type 3DH-1

- 6. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 558074 D01 v05r02

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (9) of (48)

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (±)		
Conducted RF power	1.3 dB		
Conducted spurious emissions	1.3 dB		
Radiated spurious emissions	9 kHz ~ 30 MHz:	2.3 dB	
	30 MHz ~ 300 MHz	5.4 dB	
	300 MHz ~ 1 000 MHz	5.5 dB	
	Above 1 GHz	6.7 dB	
Conducted emissions	9 kHz ~ 150 kHz	3.7 dB	
	150 kHz ~ 30 MHz	3.3 dB	

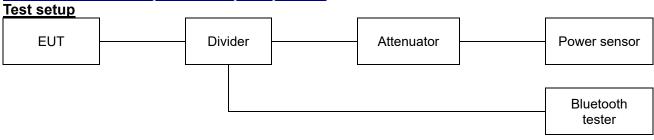
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (10) of (48)

6. Measurement results explanation example

Frequency (Mb)	Factor(dB)	Frequency (Mb)	Factor(dB)
30	15.42	9 000	18.41
50	15.52	10 000	18.66
100	15.61	11 000	18.68
200	15.73	12 000	18.77
300	15.81	13 000	19.74
400	15.93	14 000	20.78
500	15.98	15 000	21.63
600	16.03	16 000	20.58
700	16.05	17 000	20.73
800	16.17	18 000	20.86
900	16.22	19 000	19.66
1 000	16.24	20 000	19.79
2 000	16.78	21 000	20.03
3 000	16.99	22 000	20.06
4 000	17.18	23 000	20.11
5 000	17.35	24 000	20.31
6 000	17.45	25 000	20.48
7 000	18.08	26 000	20.76
8 000	18.38	26 500	20.80

Note.


Offset(dB) = RF cable loss(dB) + Power Divider(dB) + Attenuator (dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (11) of (48)

7 Test results 7.1. Maximum peak output power

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(b)(1), for frequency hopping systems operating in the 2 400-2 483.5 Mb band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 Mb band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 Mb band: 0.125 watts.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

ANSI C63.10-2013 - Section 7.8.5

<u>Test settings</u>

The test follows ANSI C63.10-2013 – Section 7.8.5. Using the power sensor instead of a spectrum analyzer.

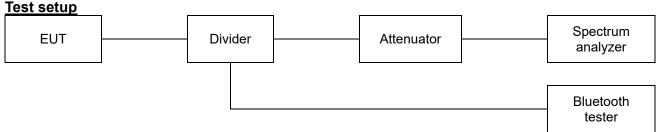
Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (12) of (48)

Test results


Eroquopov(Mk)	Data rata(Mbpa)	Measured outp	Limit(dDm)	
Frequency(朏)	Data rate(Mbps)	Peak	Average	Limit(dBm)
2 402	1	9.63	8.88	
2 441	1	10.11	9.39	
2 480	1	8.93	8.19	
2 402	2	9.90	7.61	
2 441	2	10.37	8.16	20.97
2 480	2	9.08	7.06	
2 402	3	10.54	7.62	
2 441	3	11.10	8.17	
2 480	3	9.72	7.09	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (13) of (48)

7.2. Carrier frequency separation

<u>Limit</u>

According to \$15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test procedure

ANSI C63.10-2013 - Section 7.8.2

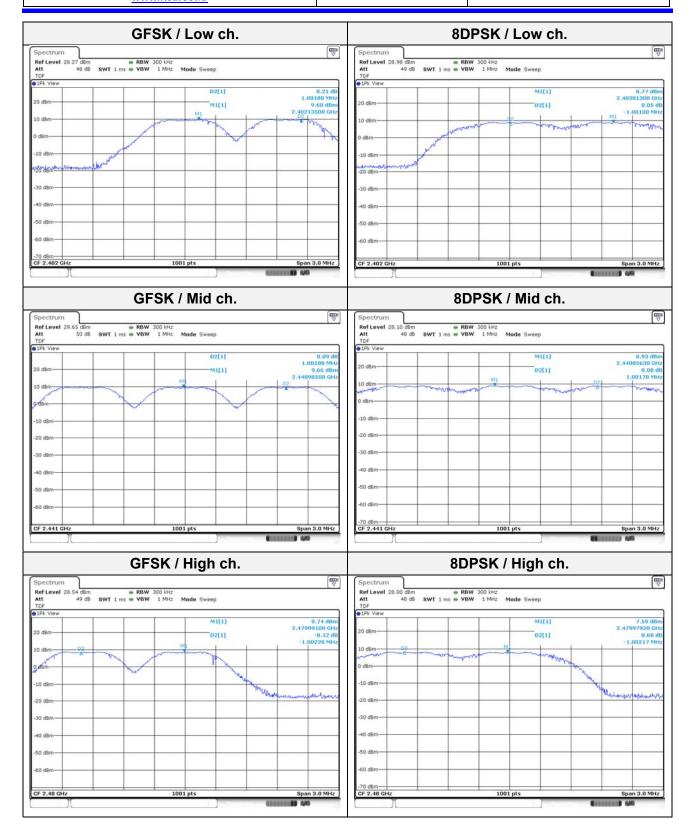
Test settings

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \ge RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

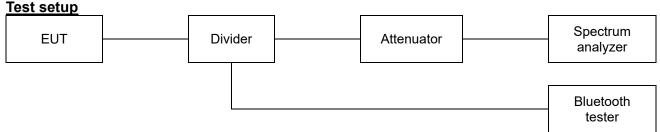
Page (14) of (48)


Test results

Frequency(Mb)	Data rate(Mbps)	Carrier frequency separation(Mb)	Limit(册)
2 402	1	1.002	0.687
2 441	1	1.002	0.680
2 480	1	1.002	0.680
2 402	3	1.001	0.853
2 441	3	1.002	0.853
2 480	3	1.002	0.860

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (15) of (48)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (16) of (48)

7.3. 20dB channel bandwidth

<u>Limit</u>

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test procedure

ANSI C63.10-2013 - Section 6.9.2

Test settings

20dB channel bandwidth and Occupied bandwidth

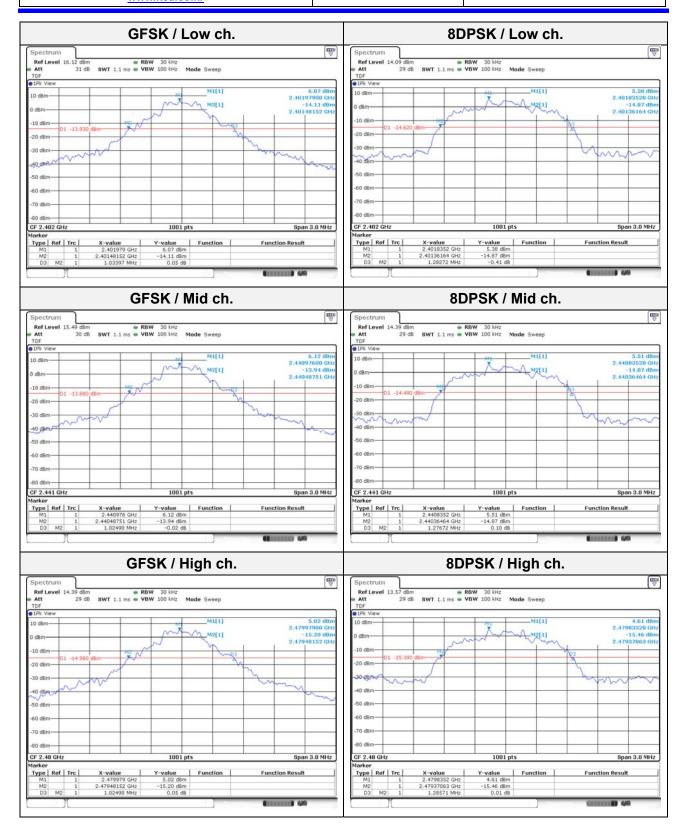
The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by a specified ratio (or in decibels, a specified number of dB down from the reference value). Typical ratios, expressed in dB, are $-6 \, dB$, $-20 \, dB$, and $-26 \, dB$, corresponding to 6 dB BW, 20 dB BW, and 26 dB BW, respectively. In this subclause, the ratio is designated by "-xx dB." The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. Some requirements might specify a specific maximum or minimum value for the "-xx dB" bandwidth; other requirements might specify that the "-xx dB" bandwidth be entirely contained within the authorized or designated frequency band.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
- b) Span: Two times and five times the OBW.
- c) RBW = 1 % to 5 % of the OBW and VBW \ge 3 x RBW
- d) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Detector: peak
- g) Trace mode: max hold.
- h) Allow the trace to stabilize.
- i) Determine the "-xx dB down amplitude" using ((reference value) xx). Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- j) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- k) Place two markers, one at the lowest frequency and the other at the highest frequency of the

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (17) of (48)

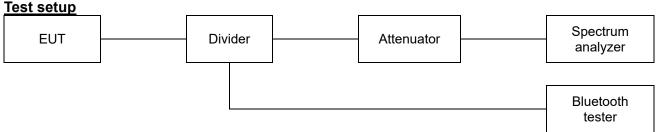
envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.


<u>Test results</u>

Frequency(Mb)	Data rate (Mbps)	20 dB Bandwidth (Mz)
2 402	1	1.03
2 441	1	1.02
2 480	1	1.02
2 402	3	1.28
2 441	3	1.28
2 480	3	1.29

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (18) of (48)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (19) of (48)

7.4. Number of hopping channels

<u>Limit</u>

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels.

Test procedure

ANSI C63.10-2013 - Section 7.8.3

Test settings

- a)Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b)RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

<u>Test results</u>

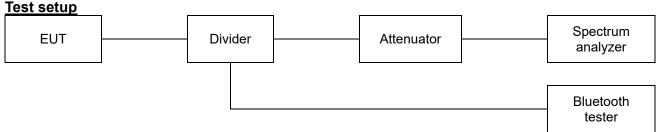
Mode	Number of hopping channel	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Notes:

In case of AFH mode, minimum number of hopping channels is 20.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (20) of (48)


GFSK	π/4DQPSK				
Spectrum 🕎	Spectrum 🕎				
RefLevel 20.06 dBm ● RBW 300 kHz Att 40 dB SWT 1 ms ● VBW 300 kHz Mode Sweep TDF ToF VBW 300 kHz Mode Sweep 100 kHz Node Sweep 100 kHz Node Sweep 100 kHz Node Sweep 100 kHz Node Node<	RefLevel 19.57 dBm @ RBW 300 kHz Att 40 dB SWT 1 ms @ VBW 300 kHz Mode Sweep TDF TDF TDF TDF				
1Pk View	1Pk View				
19 สีชีวิทางที่การการการการการการการการการการการการการก	19/000mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm				
olgem	Q dBm-				
-10 d8m	-10 d8m				
-20 dBm	-20 d8m				
-30 d8m	-30 d8m				
-40 dBm	-40 d8m				
-50 dBm	-50 dBm				
-60 d8m	-60 d8m				
	-00 dbm				
-70 d8m-	-/0 dem				
Start 2.4 GHz 1001 pts Stop 2.4835 GHz	Start 2.4 GHz 1001 pts Stop 2.4835 GHz				
	(11111) 4/4				
8DPSK					
Spectrum 🕎					
Ref Level 19.22 dBm					
TDF • IPk View					
19.88 การการการการการการการการการการการการการก					
O d8m					
-10 d8m					
20 dBm					
-30 dBm	Blank				
-40 d8m					
-50 dBm-					
-60 dBm					
-70 dBm-					
Start 2.4 GHz 1001 pts Stop 2.4835 GHz					

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (21) of (48)

7.5. Time of occupancy(Dwell time)

<u>Limit</u>

According to \$15.247(a)(1)(iii), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test procedure

ANSI C63.10-2013 - Section 7.8.4

Test settings

- a) Span: Zero span, centered on a hopping channel.
- b) RBW \leq channel spacing and >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.
- f) Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR21-SRF0013

Page (22) of (48)

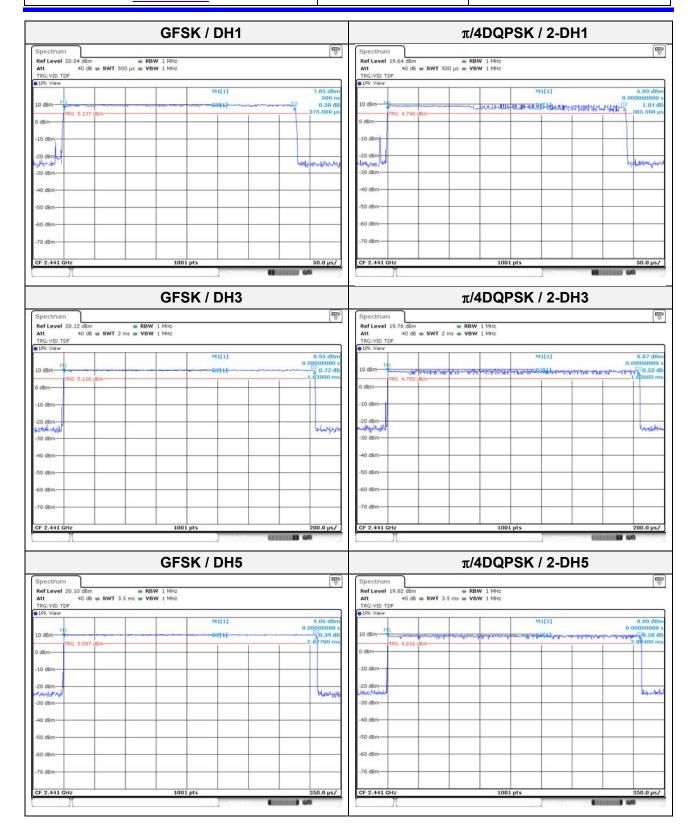
Test results

- Non-AFH

Modulation	Frequency (₩₺)	Pulse Width (ms)	Hopping rate (hop/s)	Number of Channels	Result (s)	Limit (s)		
DH1		0.375	800.000		0.120			
DH3		1.630	400.000		0.261			
DH5		2.877	266.667		0.307			
2-DH1	2 441	0.386	800.000	79	0.124	0.400		
2-DH3		1.636	400.000		0.262			
2-DH5		2.884	266.667		0.308			
3-DH1		0.387	800.000		0.124			
3-DH3		1.636	400.000		0.262			
3-DH5		2.884	266.667		0.308			

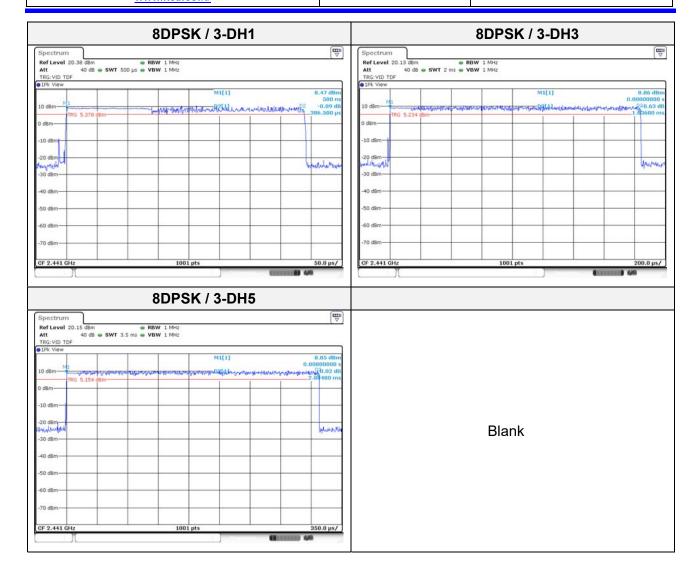
- AFH

Modulation	Frequency (₩₺)	Pulse Width (ms)	Hopping rate (hop/s)	Number of Channels	Result (s)	Limit (s)	
DH1		0.375	400.000		0.060		
DH3		1.630	200.000		0.130		
DH5		2.877	133.333		0.153		
2-DH1		0.386	400.000		0.062		
2-DH3	2 441	1.636	200.000	20	0.131	0.400	
2-DH5		2.884	133.333		0.154		
3-DH1		0.387	400.000		0.062		
3-DH3		1.636	200.000		0.131		
3-DH5		2.884	133.333		0.154		


Notes:

- 1. Non-AFH
- Period Time: 0.4 sec x 79 channels = 31.6 sec
- Result (s)= (Hopping rate (hop/s/slot) / 79 channels) x 31.6 sec x Pulse width (ms) 2. AFH
- Period Time: 0.4 sec x 20 channels = 8 sec
- Result (s)= (Hopping rate (hop/s/slot) / 20 channels) x 8 sec x Pulse width (ms)

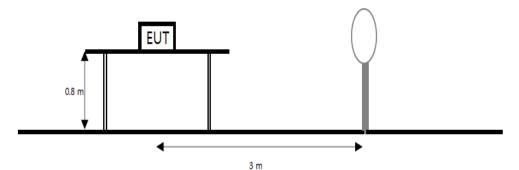
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013


Page (23) of (48)

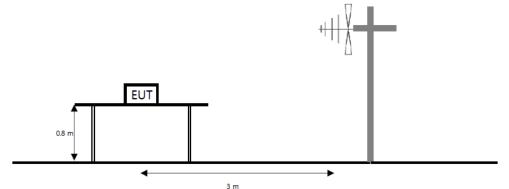
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (24) of (48)

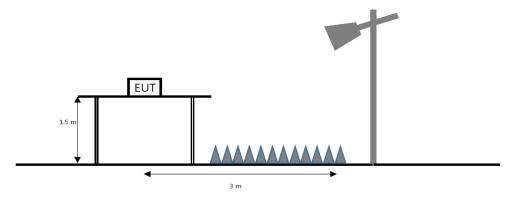
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013



Page (25) of (48)


7.6. Radiated spurious emissions & band edge

<u>Test setup</u>


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

<u>Limit</u>

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section 15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 – 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (27) of (48)

Test procedure

ANSI C63.10-2013

Test settings

Peak field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in table
- 3. VBW \geq (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

Table. Row as a function of frequency						
Frequency	RBW					
9 kHz to 150 kHz	200 Hz to 300 Hz					
0.15 Mt to 30 Mt	9 kHz to 10 kHz					
30 MHz to 1 000 MHz	100 kHz to 120 kHz					
> 1 000 MHz	1 MHz					

Table. RBW as a function of frequency

Average field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1 MHz
- 3. VBW = 1/T ≥ 1 Hz
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to run for at least 50 times(1/duty cycle) traces

Notes:

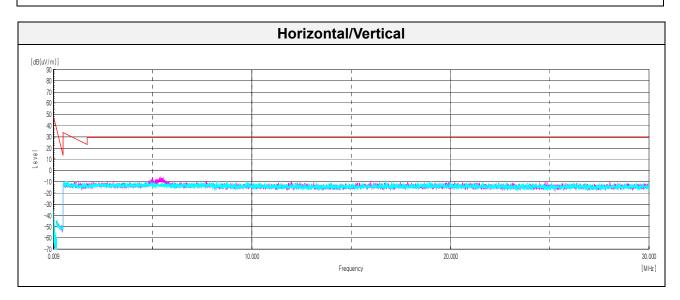
- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 3 kb(≥1/T) for Average detection (AV) at frequency above 1 Gb.
- 2. f <30 Mz, extrapolation factor of 40 dB/decade of distance. $F_d = 40log(D_m/Ds)$
- f≥30 Mb, extrapolation factor of 20 dB/decade of distance. F_d = 20log(D_m/Ds) Where:

 $F_d\text{=}$ Distance factor in $\ensuremath{\,\mathrm{dB}}$

D_m= Measurement distance in meters

D_s= Specification distance in meters

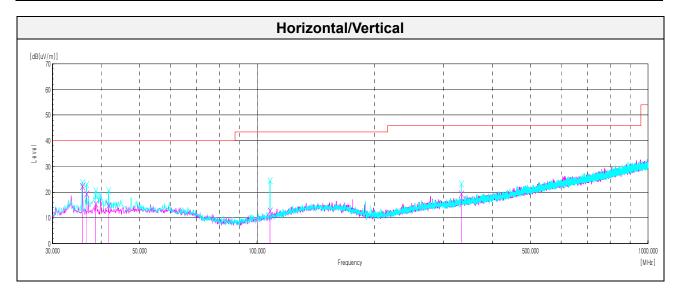
- 3. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or $F_d(dB)$
- 4. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 5. Average test would be performed if the peak result were greater than the average limit.
- 6. ¹⁾ means restricted band.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (28) of (48)

Test results (Below 30 Mb) – Worst case: 8DPSK 2 441 Mb

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	Distance Factor	DCCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB)	(dB(<i>µ</i> V/ m))	(dB(<i>µ</i> V/ m))	(dB)
No spurious emissions were detected within 20 dB of the limit.									

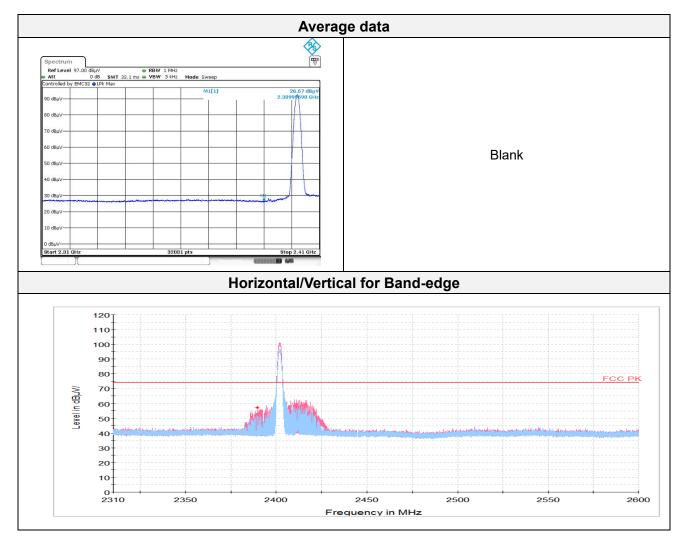

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (29) of (48)

Test results (Below 1 000 ₩) - Worst case: 8DPSK 2 441 ₩

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> V/ m))	(dB)
Quasi peak data								
35.82	V	35.40	17.58	-30.66	-	22.32	40.00	17.68
36.67	V	32.60	17.57	-30.62	-	19.55	40.00	20.45
38.73	V	28.40	17.53	-30.53	-	15.40	40.00	24.60
41.76	V	27.70	17.78	-30.45	-	15.03	40.00	24.97
107.96	V	26.30	15.60	-29.26	-	12.64	43.50	30.86
333.37 ¹⁾	V	25.80	20.03	-26.54	-	19.29	46.00	26.71

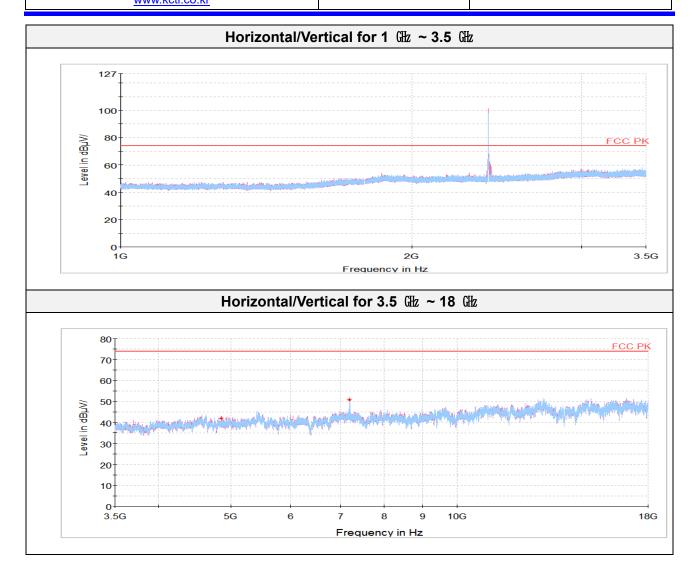
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013



Page (30) of (48)

Test results (Above 1 000 Mb)

GFSK_Lowest Channel


Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(<i>µ</i> N/ m))	(dB(<i>µ</i> N/ m))	(dB)
Peak data								
2 390.00 ¹⁾	V	52.84	32.00	-27.79	-	57.05	74.00	16.95
4 856.20 ¹⁾	V	61.03	33.81	-52.87	-	41.97	74.00	32.03
7 206.11	Н	65.99	35.30	-50.52	-	50.77	74.00	23.23
Average Data								
2 390.00 ¹⁾	V	26.67	32.00	-27.79	-	30.88	54.00	23.12

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

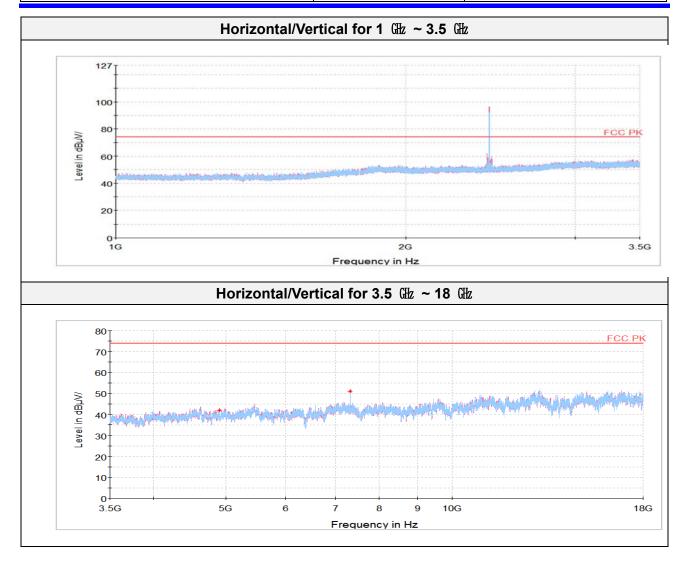
Page (31) of (48)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (32) of (48)

_ Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(µN))	(dB)	(dB)	(dB)	(dB(<i>µ</i> V/ m))	(dB(µV/m))	(dB)	
Peak data									
4 901.06 ¹⁾	Н	60.79	33.84	-52.85	-	41.78	74.00	32.22	
7 323.00 ¹⁾	Н	66.52	35.30	-50.79	-	51.03	74.00	22.97	
Average Data									
7 323.00 ¹⁾	Н	58.53	35.30	-50.79	-	43.04	54.00	10.96	

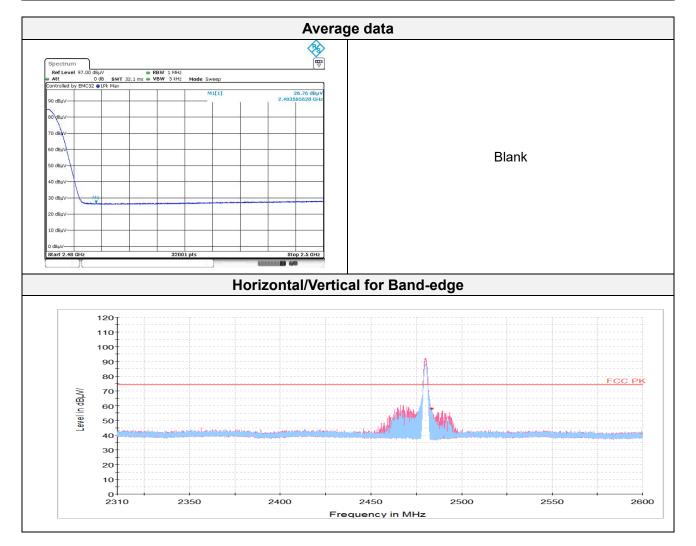
Average data							
Spectrum Ref Level 97.00 dBµV Att 0 dB SWT :	● RBW 1 MHz 32.1 ms ● VBW 3 kHz Mode Sweep	(B)					
Controlled by EMC32 1Pk Max	32.1 ms • YOW 3 KH2 Mode sweep						
90 dBµV	M1[1]	58.53 dBµV 7.32299840 GHz					
80 dBµV							
70 dBµV							
60 d8µV	м1		Blank				
50 dBµV			Diarin				
40 dBµV							
30 dBµV							
20 dBµV							
10 dBµV							
0 d8µV							
CF 7.323 GHz	32001 pts	Span 50.0 MHz					
	The symptot	CERTIFICATION AND					


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR21-SRF0013

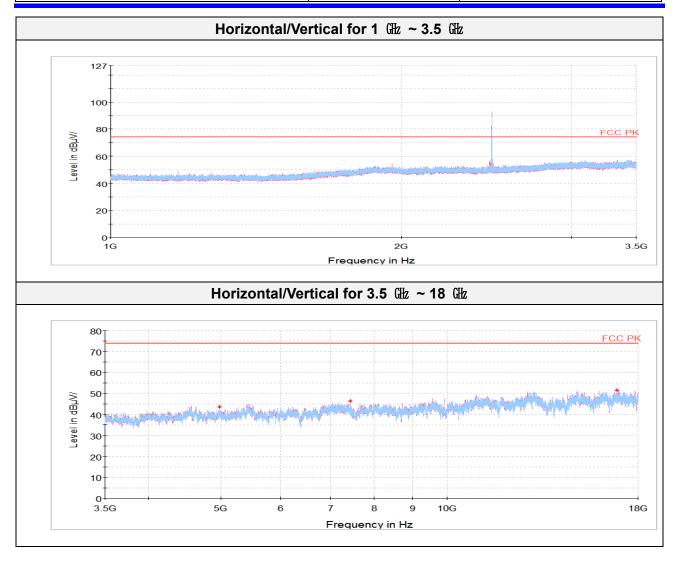
Page (33) of (48)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (34) of (48)

GFSK_Highest Channel

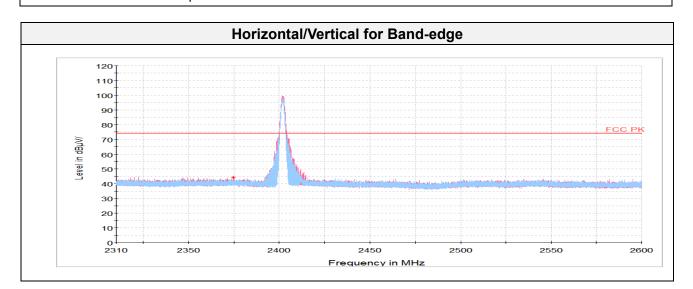
Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(µV/m))	(dB)		
	Peak data									
2 483.59 ¹⁾	Н	54.28	32.17	-28.54	-	57.91	74.00	16.09		
4 982.63 ¹⁾	Н	62.18	33.89	-52.63	-	43.44	74.00	30.56		
7 439.47 ¹⁾	н	61.99	35.30	-51.07	-	46.22	74.00	27.78		
16 851.33	Н	57.34	41.28	-47.07	-	51.55	74.00	22.45		
	Average Data									
2 483.59 ¹⁾	Н	26.76	32.17	-28.54	-	30.39	54.00	23.61		


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

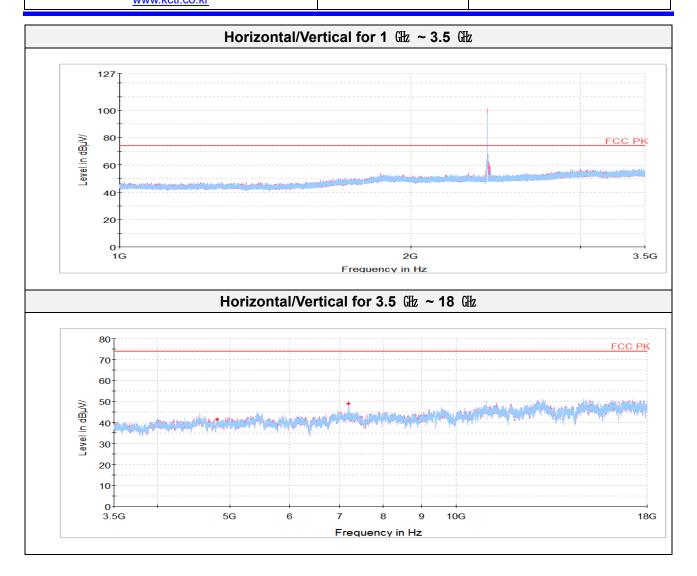
Report No.: KR21-SRF0013

Page (35) of (48)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (36) of (48)

8DPSK_Lowest Channel

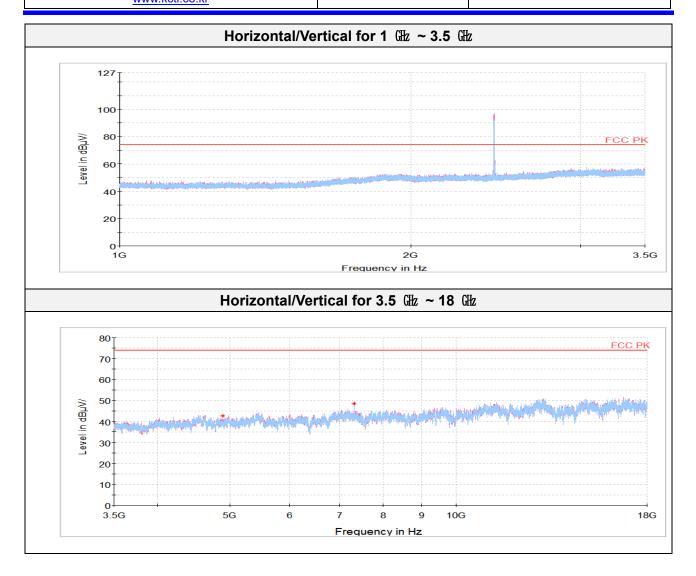

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(µN))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> V/ m))	(dB)	
Peak data									
2 374.76 ¹⁾	V	40.14	31.97	-27.79	-	44.32	74.00	29.68	
4 807.27 ¹⁾	V	60.46	33.78	-52.89	-	41.35	74.00	32.65	
7 206.11	Н	64.07	35.30	-50.52	-	48.85	74.00	25.15	
Average Data									
		No spuriou	s emissions	were detected	d within 20	B of the limi	it.		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (37) of (48)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

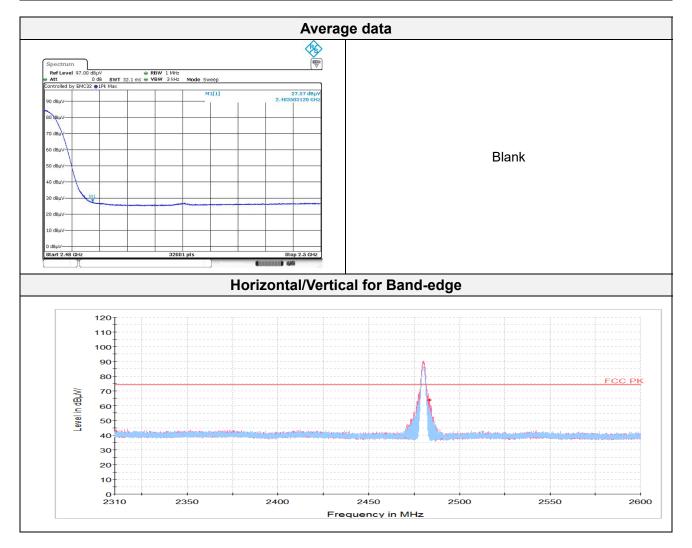
Page (38) of (48)


8DPSK_Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(µN))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> V/ m))	(dB)	
Peak data									
4 896.981)	V	61.50	33.84	-52.86	-	42.48	74.00	31.52	
7 323.02 ¹⁾	7 323.02 ¹⁾ V 63.90 35.30 -50.79 - 48.41 74.00 25.59								
Average Data									
No spurious emissions were detected within 20 dB of the limit.									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

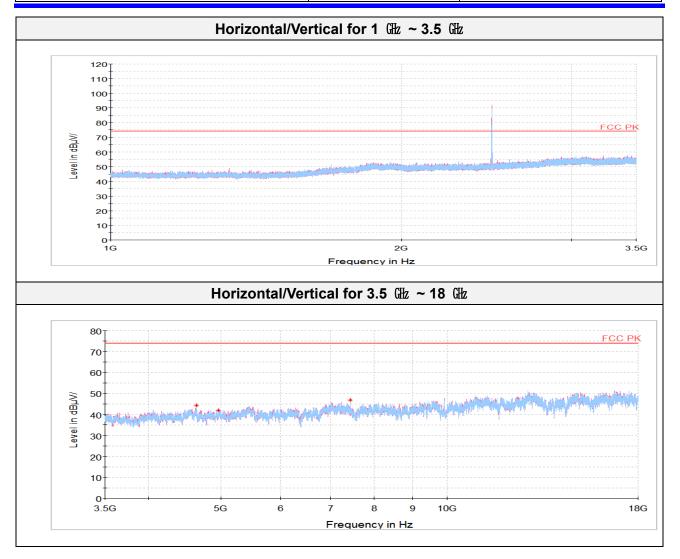
Page (39) of (48)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

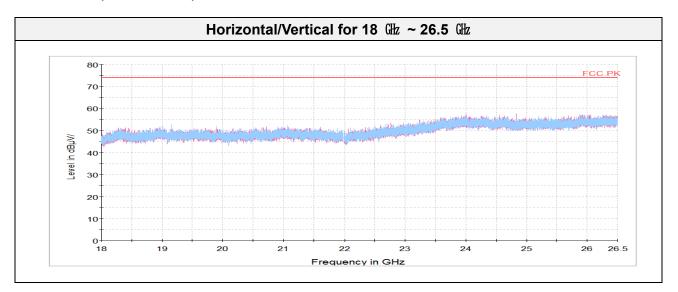
Page (40) of (48)

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(µN))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> V/ m))	(dB)	
Peak data									
2 483.50 ¹⁾	V	60.20	32.17	-28.54	-	63.83	74.00	10.17	
4 635.98 ¹⁾	н	61.91	33.68	-51.40	-	44.19	74.00	29.81	
4 959.97 ¹⁾	Н	60.79	33.88	-52.69	-	41.98	74.00	32.02	
7 440.38 ¹⁾	Н	62.57	35.30	-51.07	-	46.80	74.00	27.20	
Average Data									
2 483.50 ¹⁾	V	27.57	32.17	-28.54	-	31.20	54.00	22.80	


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

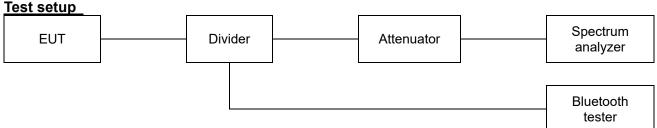
Report No.: KR21-SRF0013


Page (41) of (48)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (42) of (48)

<u>Note:</u> The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR21-SRF0013

Page (43) of (48)

7.7. **Conducted Spurious Emission**

Limit

According to §15.247(d), In any 100 kb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operation, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 km bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation specified in §15.209(a) is not required. In addition, radiated emission limits specified in §15.209(a) (see §15.205(c)). Limit : 20 dBc

Test procedure

ANSI C63.10-2013 - Section 6.10.4, 7.8.8

Test settings

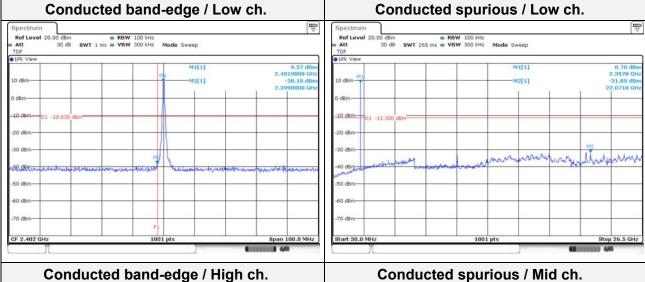
Band-edge

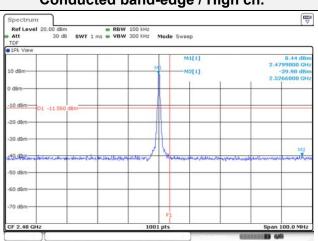
- 1) Span : Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level : As required to keep the signal from exceeding the maximum instrument 2) input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log(OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred)
- 4) Sweep time = Coupled
- 5) RBW : 100 kHz
- 6) VBW : 300 kHz
- 7) Detector : Peak
- 8) Trace : Max hold

Spurious emissions

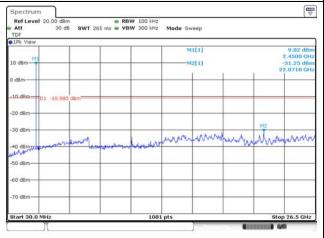
- 1) Span : 30 Mb to 10 times the operating frequency in Gb
- 2) RBW : 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep time : Coupled
- 5) Detector : Peak

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

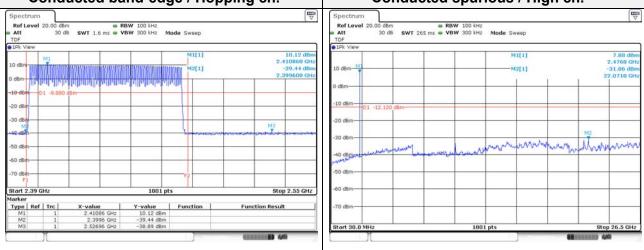

Report No.: KR21-SRF0013



Page (44) of (48)


Test results

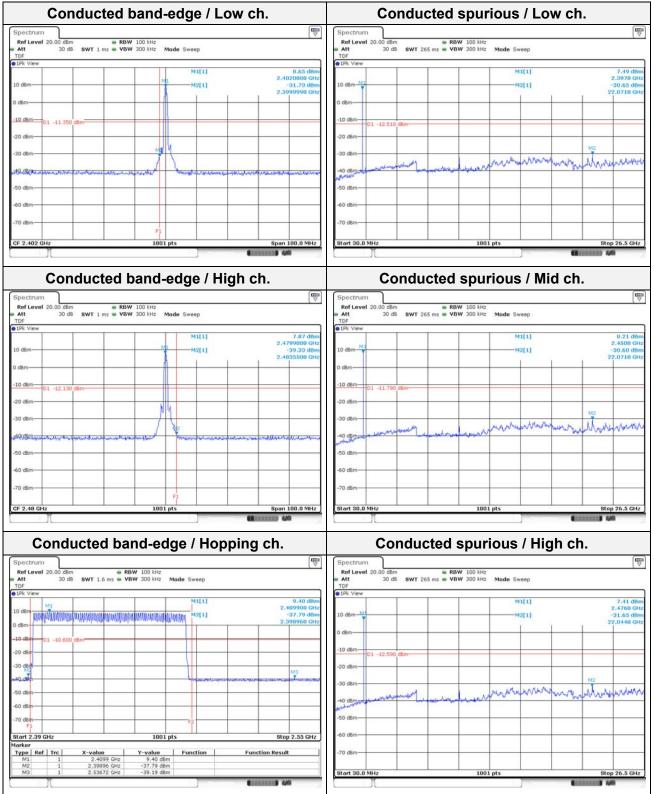
GFSK



Conducted spurious / Mid ch.

Conducted band-edge / Hopping ch.

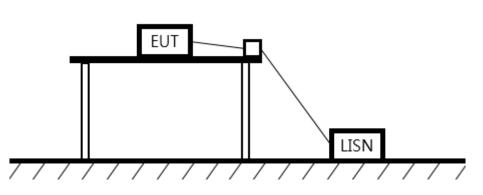
Conducted spurious / High ch.



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (45) of (48)

8DPSK



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (46) of (48)

7.8. AC Conducted emission Test setup

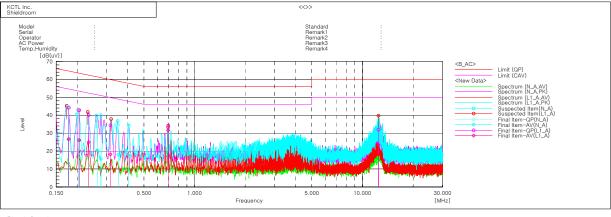
<u>Limit</u>

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Execution of Emission (Mb)	Conducted limit (dB,/V/m)					
Frequency of Emission (Mb)	Quasi-peak	Average				
0.15 – 0.50	66 - 56*	56 - 46*				
0.50 - 5.00	56	46				
5.00 - 30.0	60	50				

Measurement procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu$ H LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kHz or to quasi-peak and average within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (47) of (48)

<u>Test results</u>

Worst case: 8DPSK 2 441 Mb

Final Result

	N_A Phase -									
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
1	[MHz] 0.17703	QP [dB(uV)] 34.3	CAV [dB(uV)] 16.1	[dB] 10.2	QP [dB(uV)] 44.5	CAV [dB(uV)] 26.3	QP [dB(uV)] 64.6	AV [dB(uV)] 54.6	QP [dB] 20.1	CAV [dB] 28.3
2	0.20353	33.1	16.2	10.2	43.1	26.2	63.5	53.5	20.1	27.3
3	0.26466	28.3	10.6	9.8	38.1	20.4	61.3	51.3	23.2	30.9
4 5	0.27729 0.35108	22.9 24.5	5.8 8.0	9.8 9.9	32.7 34.4	15.6 17.9	60.9 58.9	50.9 48.9	28.2 24.5	35.3 31.0
6	0.40478	24.5	7.9	10.0	34.5	17.9	57.8	47.8	23.3	29.9
	L1 A Phase									
No.	Frequency	Reading QP	Reading CAV	c.f	Result OP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
	[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]
1	0.17811	34.0	16.6	10.2	44.2	26.8	64.6	54.6	20.4	27.8 27.3
2 3	0.20567	32.7 30.2	16.1 15.1	10.0 9.8	42.7 40.0	26.1 24.9	63.4 62.3	53.4 52.3	20.7 22.3	27.3
4	0.31544	24.5	8.3	9.8	34.3	18.1	59.8	49.8	25.5	31.7
5	0.69561	23.3	21.7	9.9	33.2	31.6	56.0	46.0	22.8	14.4
6	12.46483	21.5	13.2	10.4	31.9	23.6	60.0	50.0	28.1	26.4

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0013

Page (48) of (48)

Equipment Name Manufacturer Model No. Serial No. Next Cal. Date Spectrum Analyzer R&S FSV30 100807 21.07.29 Attenuator Weinschel ENGINEERING 56-10 51395 21.01.22 Signal Generator R&S SMB100A 176206 21.01.21 Vector Signal Generator R&S SMB100A 257566 21.07.13 Bluetooth Tester TESCOM TC-3000C 3000C000270 21.07.28 Power Divider Agilent 1163.090.02- 106224-1g 21.05.25 Directional Coupler KRYTAR Ibmpfungslied 10.48 in N-50 Ohm 31210 21.05.11 DC Power Suppiy Agilent E3632A MY40001543 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.02.30 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.02.21 <tr< th=""><th>8. Measureme</th><th>ent equipment</th><th></th><th></th><th></th></tr<>	8. Measureme	ent equipment			
Attenuator Weinschel ENGINEERING 56-10 51395 21.01.22 Signal Generator R&S SMB100A 176206 21.01.21 Vector Signal Generator R&S SMBV100A 257566 21.07.13 Bluetooth Tester TESCOM TC-3000C 3000C00270 21.07.28 Power Divider Agilent 111368B 54456 21.12.31* Power Sensor R&S NRP-Z81 1137.9009.02- 106224-02 21.05.25 Directional Coupler KRYTAR 1850 63794 21.05.12 Attenuator R&S DNF Dämpfungsglied 10 db in N-50 Ohm 31210 21.05.12 Spectrum Analyzer R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SINOMA 3117 00155787 21.02.82 Horn antenna ETS-lindgren 3117 00156787 21.02.12 Morn antenna ETS-lindgren 3117 001561083 21.09.23 Horn antenna <th>Equipment Name</th> <th>Manufacturer</th> <th>Model No.</th> <th>Serial No.</th> <th>Next Cal. Date</th>	Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Attenuator ENGINEERING 55-10 51395 21.01.22 Signal Generator R&S SMB100A 176206 21.01.21 Vector Signal Generator R&S SMBV100A 257566 21.07.13 Bluetooth Tester TESCOM TC-3000C 3000C00270 21.07.28 Power Divider Aglient 11636B 54456 21.12.31* Power Sensor R&S NRP-Z81 1137.9009.02- 106224-tg 21.05.12 Directional Coupler KRYTAR 1850 63794 21.05.11 DC Power Supply Aglient E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOM 3117 00155787 21.02.87 Horn antenna ETS-lindgren 3117 00161083 21.09.23 Horn antenna ETS-lindgren	Spectrum Analyzer	R&S	FSV30	100807	21.07.29
Vector Signal Generator R&S SMBV100A 257566 21.07.13 Bluetooth Tester TESCOM TC-3000C 3000C000270 21.07.28 Power Divider Aglent 11636B 54456 21.12.31* Power Divider Aglent 11636B 54456 21.12.31* Directional Coupler KRYTAR 1850 63794 21.05.25 Attenuator R&S DNF Dampfungsglied 10 db in N-50 Ohm 31210 21.05.11 DC Power Supply Aglient E3632A MY40001543 21.02.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.09.20 ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00156832 21.09.21 Horn antenna	Attenuator		56-10	51395	21.01.22
Generator R&S SNIEV 100A 237366 21.07.13 Bluetooth Tester TESCOM TC-3000C 3000C00270 21.07.28 Power Divider Agilent 11636B 54456 21.12.31* Power Sensor R&S NRP-Z81 1137.9009.02- 106224-tg 21.05.25 Directional Coupler KRYTAR 1850 63794 21.05.12 Attenuator R&S DNF Dämpfungsdied 10 db in N-50 Ohm 31210 21.05.11 DC Power Supply Agilent E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA 310N 284608 21.02.32 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS.lindgren 3116 00086632 21.02.12 Broadband Pre-Amplifier	Signal Generator	R&S	SMB100A	176206	21.01.21
Power Divider Agilent 11636B 54456 21.12.31* Power Sensor R&S NRP-Z81 1137.9009.02- 106224-tg 21.05.25 Directional Coupler KRYTAR 1850 63794 21.05.12 Attenuator R&S DNF Dämpfungsglied 10 dB in N-50 Ohm 31210 21.05.11 DC Power Supply Agilent E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.09.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.01.22 AMPLIFIER		R&S	SMBV100A	257566	21.07.13
Power Sensor R&S NRP-Z81 1137.9009.02- 106224-tg 21.05.25 Directional Coupler KRYTAR 1850 63794 21.05.12 Attenuator R&S DNF Dämpfungsglied 10 db in N-50 Ohm 31210 21.05.11 DC Power Supply Agilent E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS-lindgren 3117 00155787 21.10.28 Horn antenna ETS-lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28	Bluetooth Tester	TESCOM	TC-3000C	3000C000270	21.07.28
Power Sensor R&S NRP-281 106224-tg 21.05.25 Directional Coupler KRYTAR 1850 63794 21.05.12 Attenuator R&S DNF Dämpfungsglied 10 dB in N-50 Ohm 31210 21.05.11 DC Power Supply Agilent E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00150787 21.10.28 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.07.28 Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER <	Power Divider	Agilent	11636B	54456	21.12.31*
Attenuator R&S DNF Dämpfungsglied 10 dB in N-50 Ohm 31210 21.05.11 DC Power Supply Agilent E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.01.22 AMPLIFIER L-3 Narda-MITEQ JA44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 A	Power Sensor	R&S	NRP-Z81		21.05.25
Attenuator R&S 10 dB in N-50 Ohm 31210 21.05.11 DC Power Supply Agilent E3632A MY40001543 21.05.11 Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS-lindgren 3117 00155787 21.10.28 Horn antenna ETS-lindgren 3117 00161083 21.09.23 Horn antenna ETS-lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER L-3 Narda-MITEQ JS44-1800400-33-8P 2000996 21.01.22 LOOP Antenna<	Directional Coupler	KRYTAR		63794	21.05.12
Spectrum Analyzer R&S FSV40 100989 21.12.23* EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS.lindgren 3117-PA 00161083 21.09.23 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.02.12 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems DT2000 79 - Turn Table	Attenuator	R&S		31210	21.05.11
EMI TEST RECEIVER R&S ESCI7 100732 21.03.04 Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.02.12 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-ZZ 100355 22.08.21 Antenna Mast Innco Systems DT2000 79 - Turn Table Innco Systems DT2000 79 - High pass Filter	DC Power Supply	Agilent	E3632A	MY40001543	21.05.11
Bi-Log Antenna SCHWARZBECK VULB9168 583 22.04.23 Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS-lindgren 3117-PA 00161083 21.09.23 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.02.12 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems DT2000 79 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK <td>Spectrum Analyzer</td> <td>R&S</td> <td>FSV40</td> <td>100989</td> <td>21.12.23*</td>	Spectrum Analyzer	R&S	FSV40	100989	21.12.23*
Amplifier SONOMA INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS.lindgren 3117 00161083 21.09.23 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.02.12 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-1800400-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems DT2000 79 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V -	EMI TEST RECEIVER	R&S	ESCI7	100732	21.03.04
Amplifier INSTRUMENT 310N 284608 21.08.20 COAXIAL FIXED ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.02.20 Horn antenna ETS.lindgren 3117 00161083 21.09.23 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems MA4600-XP-ET - - Turn Table Innco Systems DT2000 79 - Antenna Mast Innco Systems DT2000 79 - High pass Filter WT WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK </td <td>Bi-Log Antenna</td> <td>SCHWARZBECK</td> <td>VULB9168</td> <td>583</td> <td>22.04.23</td>	Bi-Log Antenna	SCHWARZBECK	VULB9168	583	22.04.23
ATTENUATOR Agilent 8491B-003 2708A18758 21.04.23 Horn antenna ETS.lindgren 3117 00155787 21.10.28 Horn antenna ETS-lindgren 3117-PA 00161083 21.09.23 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-1800400-33-8P 2000996 21.02.12 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems MA4640-XP-ET - - Turn Table Innco Systems DT2000 79 - Antenna Mast Innco Systems DT2000 79 - High pass Filter WT WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29			310N	284608	21.08.20
Horn antenna ETS-lindgren 3117-PA 00161083 21.09.23 Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems MA4640-XP-ET - - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20		Agilent	8491B-003	2708A18758	21.04.23
Horn antenna ETS.lindgren 3116 00086632 21.02.17 Attenuator API Inmet 40AH2W-10 12 21.05.12 Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems DT2000 79 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Horn antenna	ETS.lindgren	3117	00155787	21.10.28
AttenuatorAPI Inmet40AH2W-101221.05.12Broadband Pre-AmplifierSCHWARZBECKBBV971821621.07.28AMPLIFIERL-3 Narda-MITEQAMF-7D-01001800 -22-10P203119621.02.12AMPLIFIERL-3 Narda-MITEQJS44-18004000-33-8P200099621.01.22LOOP AntennaR&SHFH2-Z210035522.08.21Antenna MastInnco SystemsMA4640-XP-ETTurn TableInnco SystemsDT200079-Antenna MastInnco SystemsDT200079-High pass FilterWTWT-A1698-HSWT16041100121.05.11TWO-LINE V- NETWORKR&SENV21610135821.09.29EMI TEST RECEIVERR&SESCI10000121.08.20	Horn antenna	ETS-lindgren	3117-PA	00161083	21.09.23
Broadband Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems MA4640-XP-ET - - Turn Table Innco Systems DT2000 79 - Antenna Mast Innco Systems DT2000 79 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Horn antenna	ETS.lindgren	3116	00086632	21.02.17
Pre-Amplifier SCHWARZBECK BBV9718 216 21.07.28 AMPLIFIER L-3 Narda-MITEQ AMF-7D-01001800 -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems MA4640-XP-ET - - Turn Table Innco Systems DT2000 79 - Antenna Mast Innco Systems DT2000 79 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Attenuator	API Inmet	40AH2W-10	12	21.05.12
AMPLIFIER L-3 Narda-MITEQ -22-10P 2031196 21.02.12 AMPLIFIER L-3 Narda-MITEQ JS44-18004000-33-8P 2000996 21.01.22 LOOP Antenna R&S HFH2-Z2 100355 22.08.21 Antenna Mast Innco Systems MA4640-XP-ET - - Turn Table Innco Systems DT2000 79 - Antenna Mast Innco Systems MA4000-EP 303 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20		SCHWARZBECK		216	21.07.28
LOOP AntennaR&SHFH2-Z210035522.08.21Antenna MastInnco SystemsMA4640-XP-ETTurn TableInnco SystemsDT200079-Antenna MastInnco SystemsMA4000-EP303-Turn TableInnco SystemsDT200079-High pass FilterWTWT-A1698-HSWT16041100121.05.11TWO-LINE V - NETWORKR&SENV21610135821.09.29EMI TEST RECEIVERR&SESCI10000121.08.20	AMPLIFIER	L-3 Narda-MITEQ		2031196	21.02.12
Antenna MastInnco SystemsMA4640-XP-ET-Turn TableInnco SystemsDT200079-Antenna MastInnco SystemsMA4000-EP303-Turn TableInnco SystemsDT200079-High pass FilterWTWT-A1698-HSWT16041100121.05.11TWO-LINE V - NETWORKR&SENV21610135821.09.29EMI TEST RECEIVERR&SESCI10000121.08.20	AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000996	21.01.22
Turn TableInnco SystemsDT200079-Antenna MastInnco SystemsMA4000-EP303-Turn TableInnco SystemsDT200079-High pass FilterWTWT-A1698-HSWT16041100121.05.11TWO-LINE V - NETWORKR&SENV21610135821.09.29EMI TEST RECEIVERR&SESCI10000121.08.20	LOOP Antenna	R&S	HFH2-Z2	100355	22.08.21
Antenna Mast Innco Systems MA4000-EP 303 - Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Turn Table Innco Systems DT2000 79 - High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Turn Table	Innco Systems	DT2000	79	-
High pass Filter WT WT-A1698-HS WT160411001 21.05.11 TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Antenna Mast	Innco Systems	MA4000-EP	303	-
TWO-LINE V - NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	Turn Table	Innco Systems	DT2000	79	-
NETWORK R&S ENV216 101358 21.09.29 EMI TEST RECEIVER R&S ESCI 100001 21.08.20	High pass Filter	WT	WT-A1698-HS	WT160411001	21.05.11
		R&S	ENV216	101358	21.09.29
					21.08.20

* Tests related to this equipment were progressed after the calibration was completed.

