

# **CERTIFICATION TEST REPORT**

**Report Number.**: 12810732-E5V2

Applicant: Samsung Electronics Co., Ltd.

129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

Model: SM-G398FN/DS and SM-G398FN

FCC ID : A3LSMG398FN

**EUT Description**: GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac and

**NFC** 

Test Standard(s): FCC 47 CFR PART 15 SUBPART E

Date Of Issue: May 22, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A.

TEL: (510) 319-4000 FAX: (510) 661-0888



# **REPORT REVISION HISTORY**

| Rev. | Issue<br>Date | Revisions         | Revised By  |
|------|---------------|-------------------|-------------|
| V1   | 5/14/2019     | Initial Issue     |             |
| V2   | 5/22/2019     | Updated Section 2 | Kiya Kedida |

# **TABLE OF CONTENTS**

| RE | POR             | T REVISION HISTORY                         | 2  |
|----|-----------------|--------------------------------------------|----|
| TA | BLE             | OF CONTENTS                                | 3  |
| 1. | AT              | TESTATION OF TEST RESULTS                  | 6  |
| 2. | TES             | ST METHODOLOGY                             | 7  |
| 3. | FA              | CILITIES AND ACCREDITATION                 | 7  |
| 4. | CA              | LIBRATION AND UNCERTAINTY                  | 8  |
| 4  | 4.1.            | MEASURING INSTRUMENT CALIBRATION           | 8  |
| 4  | 4.2.            | SAMPLE CALCULATION                         | 8  |
| 4  | 4.3.            | MEASUREMENT UNCERTAINTY                    |    |
| 5. | EQ              | UIPMENT UNDER TEST                         | 9  |
|    | 5.1.            | EUT DESCRIPTION                            |    |
|    | 5.2.            | MAXIMUM OUTPUT POWER                       |    |
|    | 5.3.            | DESCRIPTION OF AVAILABLE ANTENNAS          |    |
|    | 5. <i>4</i> .   | SOFTWARE AND FIRMWARE Error! Booki         |    |
|    | 5. <i>5</i> .   | WORST-CASE CONFIGURATION AND MODE          |    |
|    | 5.6.            | DESCRIPTION OF TEST SETUP                  |    |
| 6. | ME              | ASUREMENT METHOD                           | 14 |
| 7. | TES             | ST AND MEASUREMENT EQUIPMENT               | 15 |
| 8. | AN <sup>.</sup> | TENNA PORT TEST RESULTS                    | 16 |
|    | 8.1.            |                                            |    |
| ě  | 8.2.            | 26 dB BANDWIDTH                            | 18 |
|    | _               | .1. 802.11a MODE IN THE 5.2 GHz BAND       | 19 |
|    | 8.2             |                                            |    |
|    | 8.2             |                                            |    |
|    | 8.2<br>8.2      |                                            |    |
|    | 8.2             |                                            |    |
|    | 8.2             | .7. 802.11n HT40 MODE IN THE 5.3 GHz BAND  | 25 |
|    | 8.2             |                                            |    |
|    | 8.2             |                                            |    |
|    |                 | .10. 802.11n HT20 MODE IN THE 5.6 GHz BAND |    |
|    |                 | .11. 802.11111140 MODE IN THE 5.6 GHz BAND |    |
|    |                 | .13. 802.11a MODE IN THE 5.8 GHz BAND      |    |
|    |                 | .14. 802.11n HT20 MODE IN THE 5.8 GHz BAND |    |
|    |                 | Page 3 of 220                              |    |

| 1 00 | ID. AGE |                                                        |     |
|------|---------|--------------------------------------------------------|-----|
|      | 8.2.15. | 802.11n HT40 MODE IN THE 5.8 GHz BAND                  | 33  |
|      | 8.2.16. | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND                | 34  |
| R    | 3. 6    | dB BANDWIDTH                                           | 35  |
| _    | 8.3.1.  | 802.11a MODE IN THE 5.8 GHz BAND                       |     |
|      | 8.3.2.  | 802.11n HT20 MODE IN THE 5.8 GHz BAND                  |     |
|      | 8.3.3.  | 802.11n HT40 MODE IN THE 5.8 GHz BAND                  |     |
|      | 8.3.4.  | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND                |     |
|      |         |                                                        |     |
| 8.   |         | UTPUT POWER AND PSD                                    |     |
|      | 8.4.1.  | 802.11a MODE IN THE 5.2 GHz BAND                       |     |
|      | 8.4.2.  | 802.11n HT20 MODE IN THE 5.2 GHz BAND                  |     |
|      | 8.4.3.  | 802.11n HT40 MODE IN THE 5.2 GHz BAND                  |     |
|      | 8.4.4.  | 802.11ac VHT80 MODE IN THE 5.2 GHz BAND                |     |
|      | 8.4.5.  | 802.11a MODE IN THE 5.3 GHz BAND                       |     |
|      | 8.4.6.  | 802.11n HT20 MODE IN THE 5.3 GHz BAND                  |     |
|      | 8.4.7.  | 802.11n HT40 MODE IN THE 5.3 GHz BAND                  |     |
|      | 8.4.8.  | 802.11ac VHT80 MODE IN THE 5.3 GHz BAND                |     |
|      | 8.4.9.  | 802.11a MODE IN THE 5.6 GHz BAND                       |     |
|      | 8.4.10. |                                                        |     |
|      | 8.4.11. |                                                        |     |
|      | 8.4.12. |                                                        |     |
|      | 8.4.13. |                                                        |     |
|      | 8.4.14. |                                                        |     |
|      | 8.4.15. |                                                        |     |
|      | 8.4.16. | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND                | /1  |
| _    | DADIA   | TED TEST DESULTS                                       | 70  |
| 9.   | KADIA   | TED TEST RESULTS                                       | /3  |
| 9.   | 1. TF   | RANSMITTER ABOVE 1 GHz                                 |     |
|      | 9.1.1.  | TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND        | 75  |
|      | 9.1.2.  | TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND   | 83  |
|      | 9.1.3.  | TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND   |     |
|      | 9.1.4.  | TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.2 GHz BAND | 97  |
|      | 9.1.5.  | TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND        | _   |
|      | 9.1.6.  | TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND   |     |
|      | 9.1.7.  | TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND   |     |
|      |         | TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.3 GHz BAND |     |
|      | 9.1.9.  |                                                        |     |
|      |         | TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND   |     |
|      | 9.1.11. |                                                        |     |
|      | 9.1.12. |                                                        |     |
|      | 9.1.13. |                                                        |     |
|      | 9.1.14. |                                                        |     |
|      | 9.1.15. |                                                        |     |
|      | 9.1.16. | TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.8 GHz BAND | 201 |
| 9.   | 2. W    | ORST CASE BELOW 30MHz                                  | 207 |
| 9.   | 3. W    | ORST CASE BELOW 1 GHz                                  | 209 |
| 9.   | 4. W    | ORST CASE 18-26 GHz                                    | 211 |
| 9.   | 5. W    | ORST CASE 26-40 GHz                                    | 213 |
| 10.  | AC PO   | WER LINE CONDUCTED EMISSIONS                           | 215 |
|      |         |                                                        |     |

| 11  | SETUP PHOTOS           | 215             |
|-----|------------------------|-----------------|
|     | AC Power Line Norm     | 216             |
| FCC | C ID: A3LSMG398FN      |                 |
| REF | PORT NO: 12810732-E5V2 | DATE: 5/22/2019 |

# 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** Samsung Electronics Co., Ltd.

129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

**EUT DESCRIPTION:** GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac and NFC

MODEL: SM-G398FN/DS and SM-G398FN

SERIAL NUMBER: Radiated: R38M4044FGF. R38M4044QSK

Conducted: R38M4044PNW

**DATE TESTED:** April 22 – May 10, 2019

#### APPLICABLE STANDARDS

STANDARD

**TEST RESULTS** 

DATE: 5/22/2019

CFR 47 Part 15 Subpart E

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Reviewed By:

Dan Coronia

Operations Leader
Consumer Technology Division
UL Verification Services Inc.

Kiya Kedida Senior Project Engineer Consumer Technology Division UL Verification Services Inc.

Page 6 of 220

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC KDB 905462 D02 v02/D03 v01r02/D06 v02, FCC KDB 789033 D02 v02r01, FCC KDB 644545 D03 v01, ANSI C63.10-2013, FCC 06-96.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street | 47266 Benicia Street | 47658 Kato Rd |  |
|----------------------|----------------------|---------------|--|
| Chamber A            | Chamber D            | Chamber I     |  |
| ☐ Chamber B          | Chamber E            | Chamber J     |  |
| ☐ Chamber C          | Chamber F            | Chamber K     |  |
|                      | ☐ Chamber G          | Chamber L     |  |
|                      | ☐ Chamber H          | ☐ Chamber M   |  |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

### **RADIATED EMISSIONS**

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

# MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

 $36.5 \, dBuV + 0 \, dB + 10.1 \, dB + 0 \, dB = 46.6 \, dBuV$ 

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                           | UNCERTAINTY |
|-----------------------------------------------------|-------------|
| Worst Case Conducted Disturbance, 9KHz to 0.15 MHz  | 3.84 dB     |
| Worst Case Conducted Disturbance, 0.15 to 30 MHz    | 3.65 dB     |
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 2.52 dB     |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 4.88 dB     |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.24 dB     |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.37 dB     |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.17 dB     |

Uncertainty figures are valid to a confidence level of 95%.

# 5. EQUIPMENT UNDER TEST

#### **EUT DESCRIPTION** 5.1.

The EUT is a GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac and NFC.

# **5.2. MAXIMUM OUTPUT POWER**

The transmitter has a maximum conducted output power as follows:

# 5.2 GHz BAND

| Frequency Range Mode (MHz) |                | Output<br>Power<br>(dBm) | Output Power<br>(mW) |  |  |
|----------------------------|----------------|--------------------------|----------------------|--|--|
| 5.2 GHz band, 1TX          |                |                          |                      |  |  |
| 5180-5240                  | 802.11a        | 15.02                    | 31.77                |  |  |
| 5180-5240                  | 802.11n HT20   | 14.12                    | 25.82                |  |  |
| 5190-5230                  | 802.11n HT40   | 13.58                    | 22.80                |  |  |
| 5210                       | 802.11ac VHT80 | 9.52                     | 8.95                 |  |  |

### 5.3 GHz BAND

| Frequency Range Mode (MHz) |                | Output<br>Power<br>(dBm) | Output Power<br>(mW) |  |  |
|----------------------------|----------------|--------------------------|----------------------|--|--|
| 5.3 GHz band, 1TX          |                |                          |                      |  |  |
| 5260 - 5320                | 802.11a        | 14.04                    | 25.35                |  |  |
| 5260 - 5320                | 802.11n HT20   | 13.78                    | 23.88                |  |  |
| 5270 - 5310                | 802.11n HT40   | 13.49                    | 22.34                |  |  |
| 5290                       | 802.11ac VHT80 | 7.25                     | 5.31                 |  |  |

### 5.6 GHz BAND

| Frequency Range<br>(MHz) | Mode           | Output<br>Power<br>(dBm) | Output Power<br>(mW) |  |  |
|--------------------------|----------------|--------------------------|----------------------|--|--|
| 5.6 GHz band, 1TX        |                |                          |                      |  |  |
| 5500-5720                | 802.11a        | 15.33                    | 34.12                |  |  |
| 5500-5720                | 802.11n HT20   | 14.92                    | 31.05                |  |  |
| 5510-5710                | 802.11n HT40   | 13.36                    | 21.68                |  |  |
| 5530-5690                | 802.11ac VHT80 | 12.44                    | 17.54                |  |  |

# 5.8 GHz BAND

| Frequency Range<br>(MHz) | Mode           | Output<br>Power<br>(dBm) | Output Power<br>(mW) |  |  |
|--------------------------|----------------|--------------------------|----------------------|--|--|
| 5.8 GHz band, 1TX        |                |                          |                      |  |  |
| 5745-5825                | 802.11a        | 15.29                    | 33.81                |  |  |
| 5745-5825                | 802.11n HT20   | 14.33                    | 27.10                |  |  |
| 5755-5795                | 802.11n HT40   | 13.28                    | 21.28                |  |  |
| 5775                     | 802.11ac VHT80 | 12.59                    | 18.16                |  |  |

# 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -2.88 dBi.

### 5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0 802.11ac VHT80 mode: MCS0

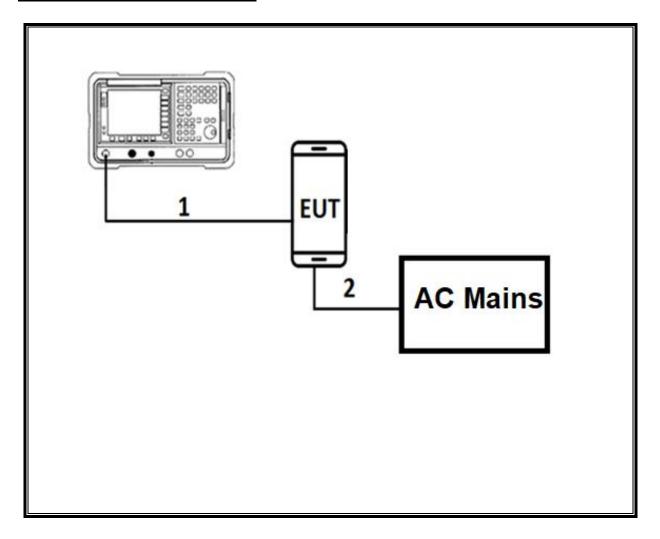
# 5.5. DESCRIPTION OF TEST SETUP

# **SUPPORT EQUIPMENT**

| Support Equipment List                              |         |          |                |     |  |  |
|-----------------------------------------------------|---------|----------|----------------|-----|--|--|
| Description Manufacturer Model Serial Number FCC ID |         |          |                |     |  |  |
| AC Adapter                                          | Samsung | EP-TA200 | R37M14P3GY1SE3 | N/A |  |  |
| Earphone                                            | Samsung | N/A      | N/A            | N/A |  |  |

# **I/O CABLES (CONDUCTED TEST)**

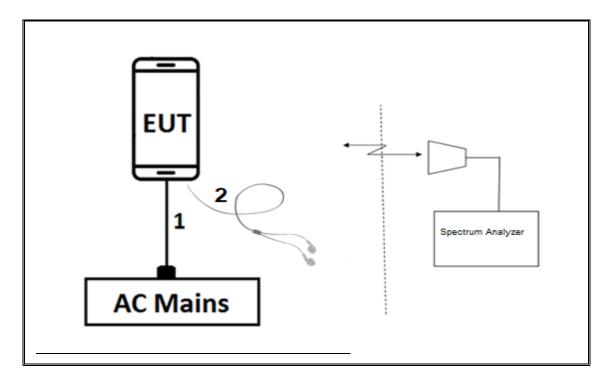
|             | I/O Cable List |                      |                   |             |                     |                      |  |
|-------------|----------------|----------------------|-------------------|-------------|---------------------|----------------------|--|
| Cable<br>No | Port           | # of identical ports | Connector<br>Type | Cable Type  | Cable<br>Length (m) | Remarks              |  |
| 1           | Antenna        | 1                    | RF                | Shielded    | 0.2                 | To spectrum Analyzer |  |
| 2           | USB            | 1                    | USB               | Un-shielded | 1                   | EUT to AC Mains      |  |


# I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

|             | I/O Cable List |                      |                   |             |                     |         |
|-------------|----------------|----------------------|-------------------|-------------|---------------------|---------|
| Cable<br>No | Port           | # of identical ports | Connector<br>Type | Cable Type  | Cable<br>Length (m) | Remarks |
| 1           | USB            | 1                    | USB               | Shielded    | 1                   | N/A     |
| 2           | Earphone       | 1                    | 3.5mm             | Un-shielded | 1                   | N/A     |

# **TEST SETUP**

The EUT is a stand alone unit. Test software exercised the radio card.


# **CONDUCTED TEST SETUP DIAGRAM**



# **TEST SETUP**

For conducted tests: the EUT was stand alone. The test software exercises the radio.

# RADIATED EMISSIONS SETUP DIAGRAM



# **TEST SETUP**

For radiated tests, the EUT is stand alone unit and the test software exercises the radio.

# 6. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 789033 D02 v02r01, Section II.B.

6 dB Emission BW: KDB 789033 D02 v02r01, Section II.C.2.

26 dB Emission BW: KDB 789033 D02 v02r01, Section II.C.1.

Conducted Output Power: KDB 789033 D02 v02r01, Sections II.E.3.b (Method PM-G) & II.E.2.b (Method SA-1).

Power Spectral Density: KDB 789033 D02 v02r01, Section II F

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

<u>Unwanted emissions</u>: KDB 789033 D02 v02r01, Sections II.G.3 – II.G.6.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

# 7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

|                                                  | TEST EQ                            | UIPMENT LIST               |            |              |              |
|--------------------------------------------------|------------------------------------|----------------------------|------------|--------------|--------------|
| Description                                      | Manufacturer                       | Model                      | ID Num     | Cal Due      | Last Cal     |
| 6 port rf switch, 1-18GHz                        | Pasternack                         | PE7159                     | 171455     | 08/01/2019   | 08/01/2018   |
| Power Meter, P-series single channel             | Agilent (Keysight) Technologies    | N1911A                     | T1271      | 07/26/2019   | 07/26/2018   |
| Power Sensor, P-series, 50MHz to 18GHz, Wideband | Agilent (Keysight) Technologies    | N1921A                     | T1224      | 10/09/2019   | 10/09/2018   |
| Antenna, Passive Loop 30Hz – 1MHz                | Electro-Metrics                    | EM-6871                    | PRE0179465 | 05/22/2019   | 05/22/2018   |
| Antenna, Passive Loop 100kHz - 30MHz             | Electro-Metrics                    | EM-6872                    | PRE0179467 | 05/23/2019   | 05/23/2018   |
| Antenna, Horn 1-18GHz                            | AR                                 | AMPL-ATH1G18               | PRE0189055 | 04/20/2020   | 04/20/2019   |
| Antenna, Horn 1-18GHz                            | ETS-Lindgren                       | 3117                       | T862       | 05/24/2019   | 05/24/2018   |
| Antenna, Horn 1-18GHz                            | ETS-Lindgren                       | 3117                       | T863       | 06/21/2019   | 06/21/2018   |
| EMI TEST RECEIVER                                | Rohde & Schwarz                    | ESW44                      | PRE0179372 | 02/26/2020   | 02/26/2019   |
| EMI TEST RECEIVER                                | Rohde & Schwarz                    | ESW44                      | PRE0179377 | 02/15/2020   | 02/15/2019   |
| EMI TEST RECEIVER                                | Rohde & Schwarz                    | ESW44                      | PRE0179376 | 02/14/2020   | 02/14/2019   |
| Spectrum Analyzer, PXA, 3Hz to 44GHz             | Agilent (Keysight)<br>Technologies | N9030A                     | T908       | 01/23/2020   | 01/23/2019   |
| Amplifier, 1-18GHz                               | MITEQ                              | AFS42-00101800-<br>25-S-42 | 171460     | 08/01/2019   | 08/01/2018   |
| Amplifier, 1-18GHz, 35 dB                        | AMPLICAL                           | AMP1G18-35                 | T1571      | 07/30/2019   | 07/30/2018   |
| Amplifier, 1-18GHz, 35 dB                        | AMPLICAL                           | AMP1G18-35                 | T1569      | 07/30/2019   | 07/30/2018   |
| Amplifier, 100kHz to 1GHz, 32 dB                 | Sonoma Instrument                  | 310                        | PRE0180175 | 07/09/2019   | 07/09/2018   |
| Hybrid Antenna, 30MHz to 3GHz                    | SunAR rf motion                    | JB3                        | PRE0181571 | 11/13/2019   | 11/13/2018   |
| Antenna, Horn 18 to 26.5GHz                      | ARA                                | MWH-1826/B                 | PRE0182188 | 08/29/2019   | 08/29/2018   |
| Pre-Amp, 18-26.5GHz                              | AMPLICAL                           | AMP18G26.5-60              | PRE0181238 | 05/01/2020   | 05/01/2019   |
|                                                  | AC Lin                             | e Conducted                |            |              |              |
| EMI Receiver                                     | Rohde & Schwarz                    | ESR                        | T1436      | 02/14/2020   | 02/14/2019   |
| LISN for Conducted Emissions<br>CISPR-16         | FCC INC.                           | FCC LISN 50/250            | T1310      | 06/15/2019   | 06/15/2018   |
|                                                  | Test S                             | oftware List               |            |              |              |
| Radiated Software                                | UL                                 | UL EM                      | С          | Ver 9.5, Jui | ne 22, 2018  |
| Antenna Port Software                            | UL                                 | UL RF                      | -          | Ver 9.6, Ap  | ril 18, 2019 |
| AC Line Conducted Software                       | UL                                 | UL EM                      | С          | Ver 9.5, Ma  | ay 26, 2015  |

### NOTES:

- Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

# 8. ANTENNA PORT TEST RESULTS

# 8.1. ON TIME AND DUTY CYCLE

# **LIMITS**

None; for reporting purposes only.

# **PROCEDURE**

KDB 558074 Zero-Span Spectrum Analyzer Method.

# **ON TIME AND DUTY CYCLE RESULTS**

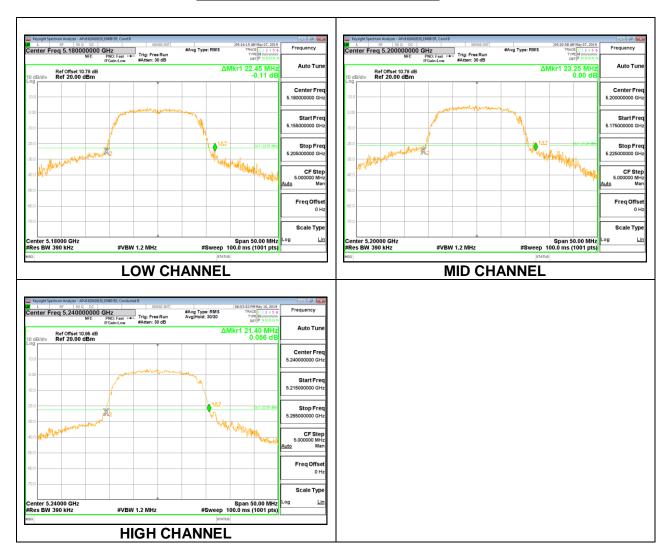
| Mode           | ON Time | Period | <b>Duty Cycle</b> | Duty   | Duty Cycle        | 1/B         |
|----------------|---------|--------|-------------------|--------|-------------------|-------------|
|                | В       |        | х                 | Cycle  | Correction Factor | Minimum VBW |
|                | (msec)  | (msec) | (linear)          | (%)    | (dB)              | (kHz)       |
| 802.11a        | 1.419   | 1.535  | 0.924             | 92.44% | 0.34              | 0.705       |
| 802.11n HT20   | 1.333   | 1.449  | 0.920             | 91.99% | 0.36              | 0.750       |
| 802.11n HT40   | 0.659   | 0.779  | 0.846             | 84.62% | 0.73              | 1.517       |
| 802.11ac VHT80 | 0.595   | 0.620  | 0.960             | 95.96% | 0.18              | 1.682       |

### **DUTY CYCLE PLOTS**



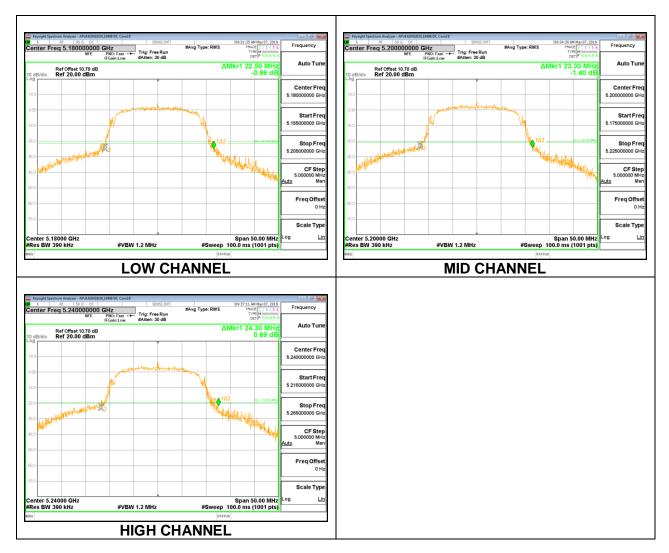
REPORT NO: 12810732-E5V2 FCC ID: A3LSMG398FN

# 8.2. 26 dB BANDWIDTH


# **LIMITS**

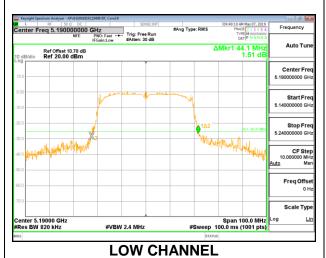
None; for reporting purposes only.

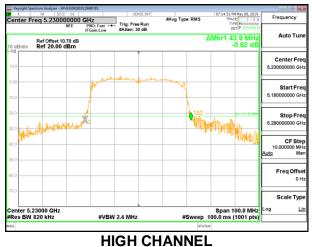
**RESULTS** 


# 8.2.1. 802.11a MODE IN THE 5.2 GHz BAND

| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5180      | 22.45           |
| Mid     | 5200      | 23.25           |
| High    | 5240      | 21.40           |

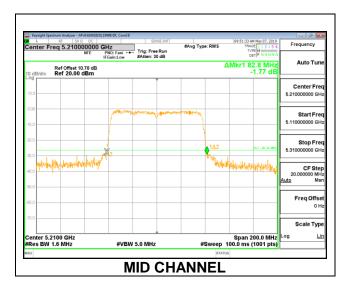



# 8.2.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND


| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5180      | 22.50           |
| Mid     | 5200      | 23.30           |
| High    | 5240      | 24.30           |

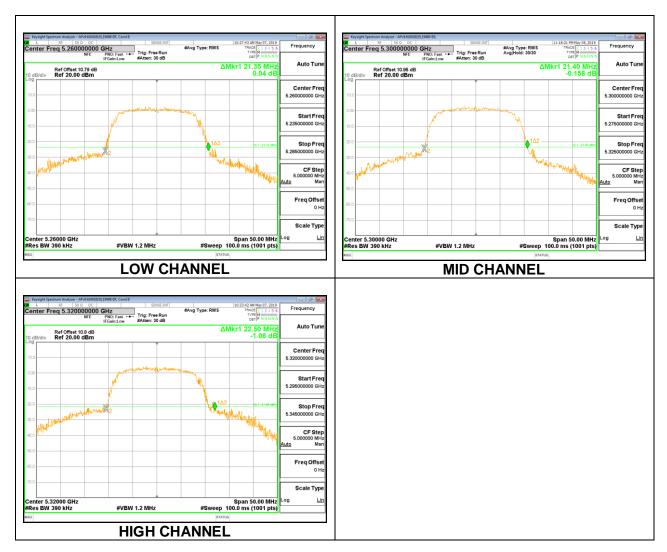


# 8.2.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND


| Channel | Frequency | 26dB Bandwidth |
|---------|-----------|----------------|
|         |           |                |
|         | (MHz)     | (MHz)          |
| Low     | 5190      | 44.10          |
| High    | 5230      | 43.90          |






# 8.2.4. 802.11ac VHT80 MODE IN THE 5.2 GHz BAND

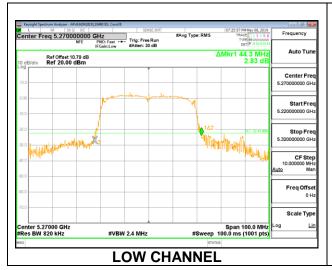
| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         |           |                 |
|         | (MHz)     | (MHz)           |
| Mid     | 5210      | 82.80           |

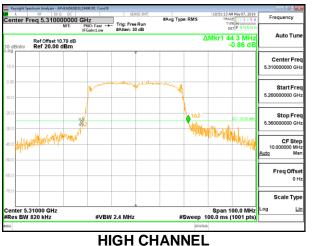



# 8.2.5. 802.11a MODE IN THE 5.3 GHz BAND

| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5260      | 21.35           |
| Mid     | 5300      | 21.40           |
| High    | 5320      | 22.50           |

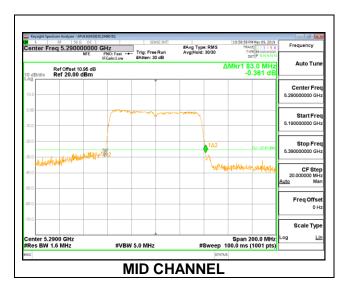



# 8.2.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND


| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5260      | 22.95           |
| Mid     | 5300      | 23.35           |
| High    | 5320      | 22.95           |

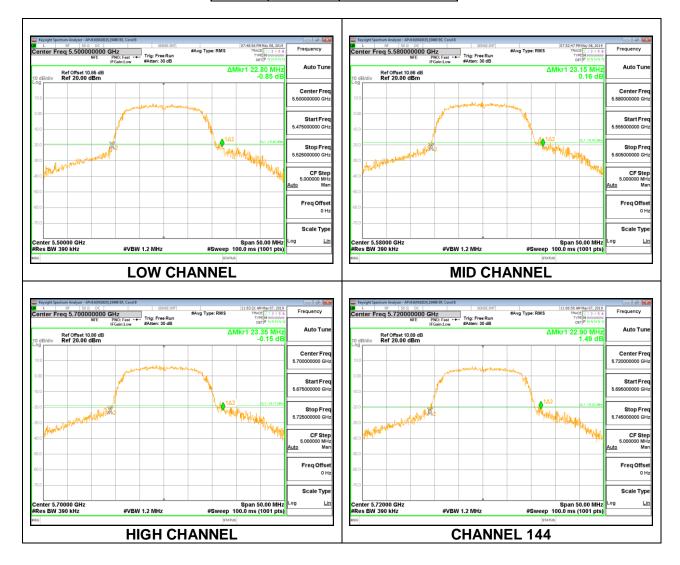


# 8.2.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND


| I | Channel | Frequency | 26dB Bandwidth |
|---|---------|-----------|----------------|
|   |         |           |                |
|   |         | (MHz)     | (MHz)          |
|   | Low     | 5270      | 44.30          |
|   | High    | 5310      | 44.30          |






# 8.2.8. 802.11ac VHT80 MODE IN THE 5.3 GHz BAND

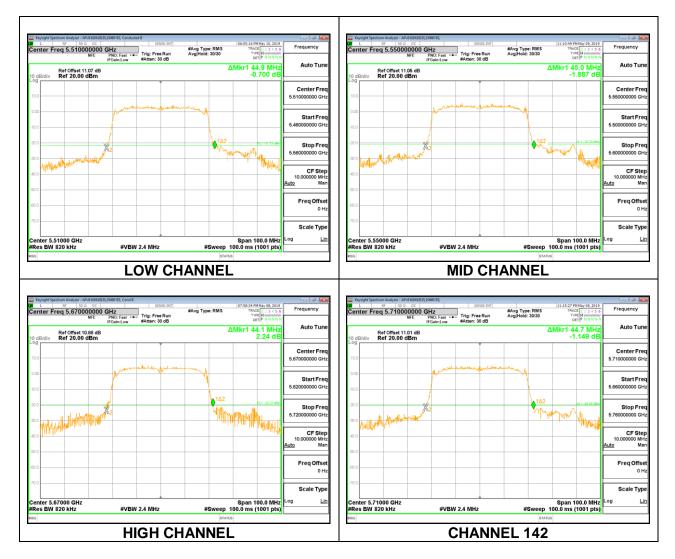
| Channel | Frequency | 26 dB Bandwidth |  |
|---------|-----------|-----------------|--|
|         |           |                 |  |
|         | (MHz)     | (MHz)           |  |
| Mid     | 5290      | 83.00           |  |




### 8.2.9. 802.11a MODE IN THE 5.6 GHz BAND

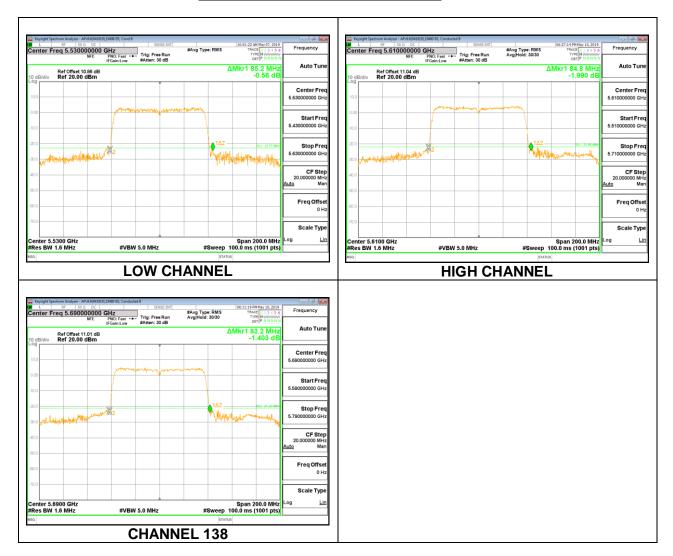
| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5500      | 22.80           |
| Mid     | 5580      | 23.15           |
| High    | 5700      | 23.35           |
| 144     | 5720      | 22.90           |




### 8.2.10. 802.11n HT20 MODE IN THE 5.6 GHz BAND

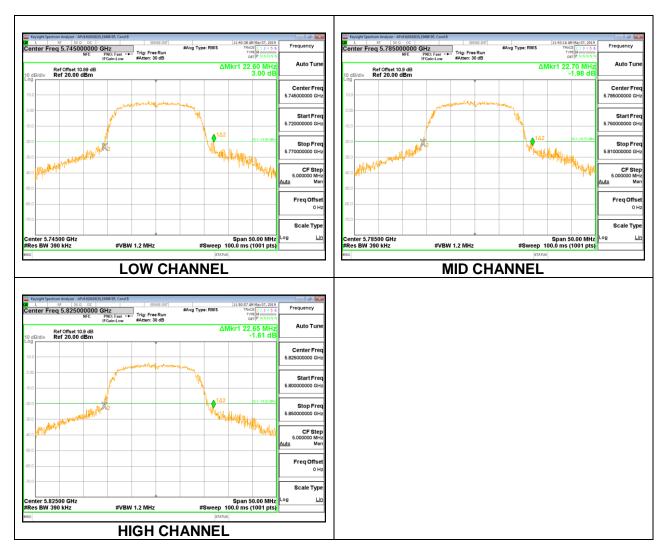
| Channel | el Frequency 26 dB Bandwid |       |
|---------|----------------------------|-------|
|         | (MHz)                      | (MHz) |
| Low     | 5500                       | 25.25 |
| Mid     | 5580                       | 24.65 |
| High    | 5700                       | 23.15 |
| 144     | 5720                       | 23.20 |




### 8.2.11. 802.11n HT40 MODE IN THE 5.6 GHz BAND

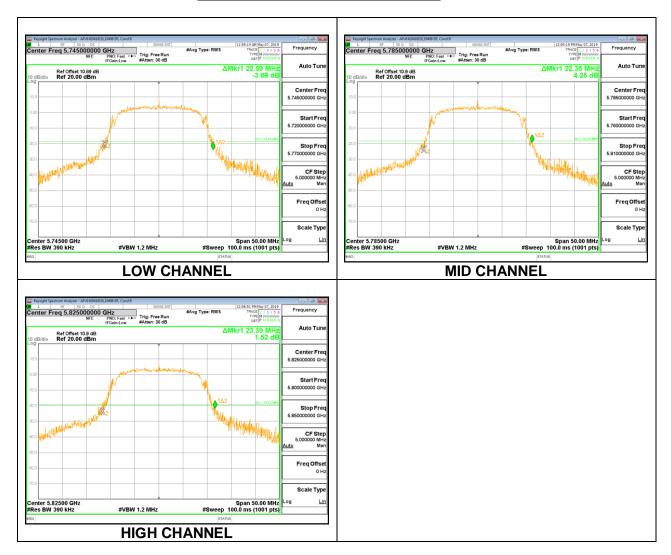
| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5510      | 44.90           |
| Mid     | 5550      | 45.00           |
| High    | 5670      | 44.10           |
| 142     | 5710      | 44.70           |




# 8.2.12. 802.11ac VHT80 MODE IN THE 5.6 GHz BAND

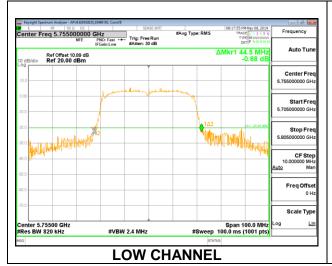
| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5530      | 85.20           |
| High    | 5610      | 84.80           |
| 138     | 5690      | 83.20           |

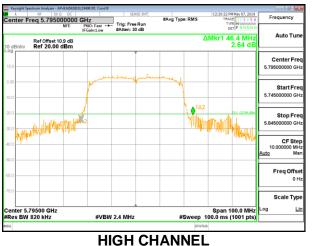



# 8.2.13. 802.11a MODE IN THE 5.8 GHz BAND

| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5745      | 22.60           |
| Mid     | 5785      | 22.70           |
| High    | 5825      | 22.65           |

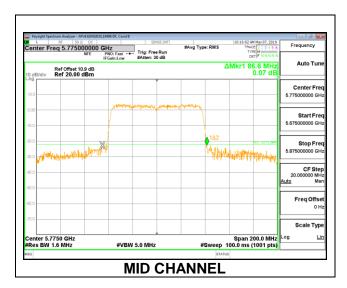



# 8.2.14. 802.11n HT20 MODE IN THE 5.8 GHz BAND


| Channel | Frequency | 26 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (MHz)           |
| Low     | 5745      | 22.50           |
| Mid     | 5785      | 22.35           |
| High    | 5825      | 23.30           |



#### 802.11n HT40 MODE IN THE 5.8 GHz BAND 8.2.15.


| Channel | Frequency | 26dB Bandwidth |
|---------|-----------|----------------|
|         | (MHz)     | (MHz)          |
| Low     | 5755      | 44.50          |
| High    | 5795      | 46.40          |





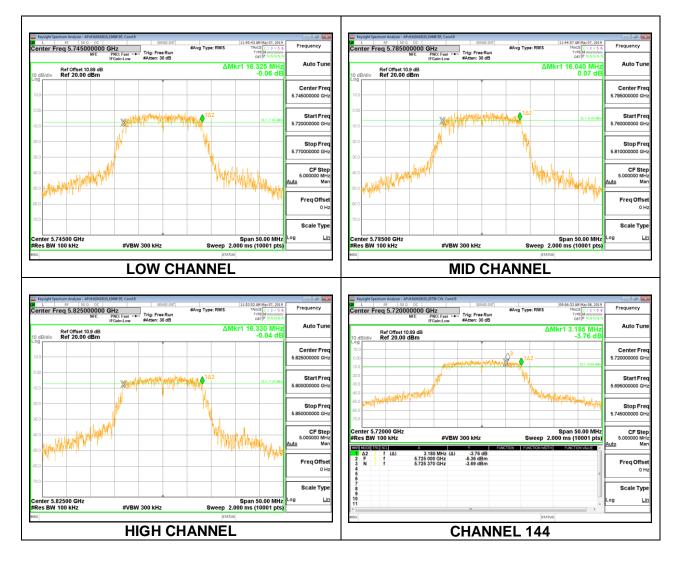
#### 802.11ac VHT80 MODE IN THE 5.8 GHz BAND 8.2.16.

| Channel | Frequency     | 26 dB Bandwidth |  |
|---------|---------------|-----------------|--|
|         | / N / L L _ \ | ( N 41 I = )    |  |
|         | (MHz)         | (MHz)           |  |
| Mid     | 5775          | 86.60           |  |



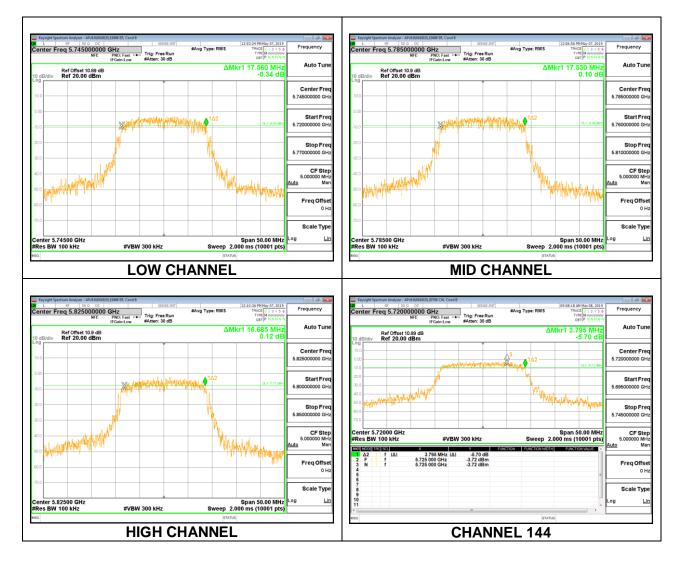
# 8.3. 6 dB BANDWIDTH

# **LIMITS**


FCC §15.407 (e)

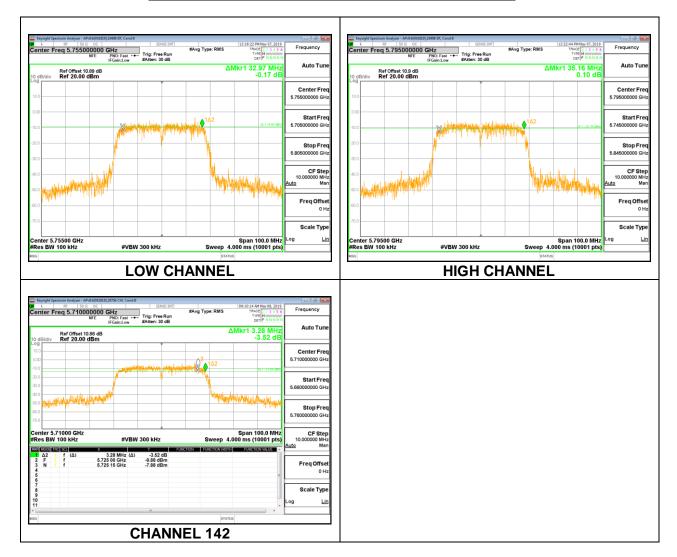
The minimum 6 dB bandwidth shall be at least 500 kHz.

# **RESULTS**


### 8.3.1. 802.11a MODE IN THE 5.8 GHz BAND

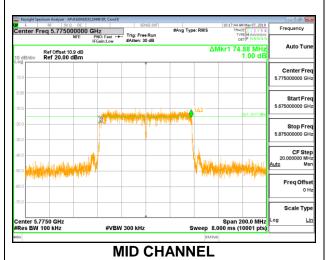
| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 5745      | 16.325         | 0.5           |
| Mid     | 5785      | 16.040         | 0.5           |
| High    | 5825      | 16.330         | 0.5           |
| 144     | 5720      | 3.185          | 0.5           |

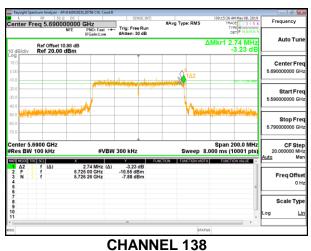



### 8.3.2. 802.11n HT20 MODE IN THE 5.8 GHz BAND

| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 5745      | 17.560         | 0.5           |
| Mid     | 5785      | 17.530         | 0.5           |
| High    | 5825      | 16.685         | 0.5           |
| 144     | 5720      | 3.795          | 0.5           |




# 8.3.3. 802.11n HT40 MODE IN THE 5.8 GHz BAND


| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 5755      | 32.970         | 0.5           |
| High    | 5795      | 35.160         | 0.5           |
| 142     | 5710      | 3.280          | 0.5           |



# 8.3.4. 802.11ac VHT80 MODE IN THE 5.8 GHz BAND

| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Mid     | 5775      | 74.880         | 0.5           |
| 138     | 5690      | 2.740          | 0.5           |





# 8.4. OUTPUT POWER AND PSD

#### **LIMITS**

# FCC §15.407

### Band 5.15–5.25 GHz (pick the section that applies to your product)

(i (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### Bands 5.25-5.35 GHz and 5.47-5.725 GHz

The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### Band 5.725-5.85 GHz

The maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

### **TEST PROCEDURE**

The measurement method used for output power is KDB 789033 D02 v02r01, Section E.3.b (Method PM-G) and for straddles channels KDB 789033 D02 v02r01, Section E.2.b (Method SA-1) was used.

The measurement method used for power spectral density is KDB 789033 D02 v02r01, Section

#### **DIRECTIONAL ANTENNA GAIN**

For 1 TX: There is only one transmitter output therefore the directional gain is equal to the antenna gain.

# **RESULTS**

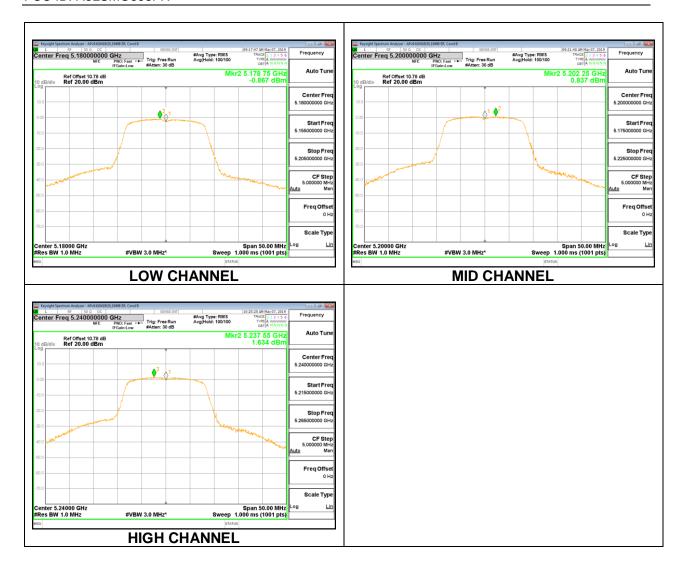
| Tester | 19498 ER            |
|--------|---------------------|
| Date   | 5/7/2019 - 5/8/2019 |

# 8.4.1. 802.11a MODE IN THE 5.2 GHz BAND

# (FCC) MOBILE

### **Antenna Gain and Limits**

| Channel | Frequency | Directional | Power | PSD   |
|---------|-----------|-------------|-------|-------|
|         |           | Gain        | Limit | Limit |
|         |           |             |       |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm/ |
|         |           |             |       | 1MHz) |
| Low     | 5180      | -2.88       | 24.00 | 11.00 |
| Mid     | 5200      | -2.88       | 24.00 | 11.00 |
| High    | 5240      | -2.88       | 24.00 | 11.00 |


| Duty Cycle CF (dB) 0.34 Included in Calcul | ulations of Corr'd PSD |
|--------------------------------------------|------------------------|
|--------------------------------------------|------------------------|

### **Output Power Results**

| Channel | Frequency |       | Total  | Power | Power  |
|---------|-----------|-------|--------|-------|--------|
|         |           | Meas  | Corr'd | Limit | Margin |
|         |           | Power | Power  |       |        |
|         | (MHz)     | (dBm) | (dBm)  | (dBm) | (dB)   |
| Low     | 5180      | 13.21 | 13.21  | 24.00 | -10.79 |
| Mid     | 5200      | 14.99 | 14.99  | 24.00 | -9.01  |
| High    | 5240      | 15.02 | 15.02  | 24.00 | -8.98  |

### **PSD Results**

| Channel | Frequency (MHz) | Meas<br>PSD<br>(dBm/1MHz) | Total<br>Corr'd<br>PSD<br>(dBm/1MHz) | •     | PSD<br>Margin<br>(dB) |
|---------|-----------------|---------------------------|--------------------------------------|-------|-----------------------|
| -       |                 |                           |                                      | 1MHz) |                       |
| Low     | 5180            | -0.867                    | -0.527                               | 11.00 | -11.53                |
| Mid     | 5200            | 0.837                     | 1.177                                | 11.00 | -9.82                 |
| High    | 5240            | 1.634                     | 1.974                                | 11.00 | -9.03                 |



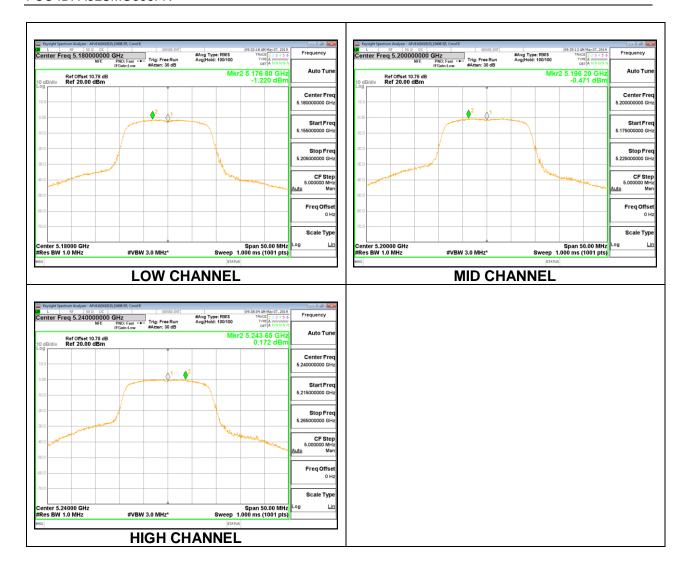
DATE: 5/22/2019

# 8.4.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

# (FCC) MOBILE

# **Antenna Gain and Limits**

| Channel | Frequency | Directional | Power | PSD   |
|---------|-----------|-------------|-------|-------|
|         |           | Gain        | Limit | Limit |
|         |           |             |       |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm/ |
|         |           |             |       | 1MHz) |
| Low     | 5180      | -2.88       | 24.00 | 11.00 |
| Mid     | 5200      | -2.88       | 24.00 | 11.00 |
| High    | 5240      | -2.88       | 24.00 | 11.00 |


| Duty Cycle CF (dB) 0.36 | Included in Calculations of Corr'd PSD |
|-------------------------|----------------------------------------|
|-------------------------|----------------------------------------|

# **Output Power Results**

| Channel | Frequency |       | Total  | Power | Power  |
|---------|-----------|-------|--------|-------|--------|
|         |           | Meas  | Corr'd | Limit | Margin |
|         |           | Power | Power  |       |        |
|         | (MHz)     | (dBm) | (dBm)  | (dBm) | (dB)   |
| Low     | 5180      | 13.56 | 13.56  | 24.00 | -10.44 |
| Mid     | 5200      | 13.89 | 13.89  | 24.00 | -10.11 |
| High    | 5240      | 14.12 | 14.12  | 24.00 | -9.88  |

### **PSD Results**

| Channel | Frequency (MHz) | Meas<br>PSD<br>(dBm/1MHz) | Total<br>Corr'd<br>PSD<br>(dBm/1MHz) | PSD<br>Limit<br>(dBm/<br>1MHz) | PSD<br>Margin<br>(dB) |
|---------|-----------------|---------------------------|--------------------------------------|--------------------------------|-----------------------|
| Low     | 5180            | -1.220                    | -0.860                               | 11.00                          | -11.86                |
| Mid     | 5200            | -0.471                    | -0.111                               | 11.00                          | -11.11                |
| High    | 5240            | 0.172                     | 0.532                                | 11.00                          | -10.47                |



# 8.4.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

# (FCC) MOBILE

### **Antenna Gain and Limits**

| Channel | Frequency | Directional | Power | PSD   |
|---------|-----------|-------------|-------|-------|
|         |           | Gain        | Limit | Limit |
|         |           | for Power   |       |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm/ |
|         |           |             |       | 1MHz) |
| Low     | 5190      | -2.88       | 24.00 | 11.00 |
| High    | 5230      | -2.88       | 24.00 | 11.00 |

| Duty Cycle CF (dB) | 0.73 | Included in Calculations of Corr'd PSD |
|--------------------|------|----------------------------------------|
|--------------------|------|----------------------------------------|

# **Output Power Results**

| Channel | Frequency |       | Total  | Power | Power  |
|---------|-----------|-------|--------|-------|--------|
|         |           | Meas  | Corr'd | Limit | Margin |
|         |           | Power | Power  |       |        |
|         | (MHz)     | (dBm) | (dBm)  | (dBm) | (dB)   |
| Low     | 5190      | 9.02  | 9.02   | 24.00 | -14.98 |
| High    | 5230      | 13.58 | 13.58  | 24.00 | -10.42 |

### **PSD Results**

| i ob itodato |           |            |            |       |        |  |  |
|--------------|-----------|------------|------------|-------|--------|--|--|
| Channel      | Frequency |            | Total      | PSD   | PSD    |  |  |
|              |           | Meas       | Corr'd     | Limit | Margin |  |  |
|              |           | PSD        | PSD        |       |        |  |  |
|              | (MHz)     | (dBm/1MHz) | (dBm/1MHz) | (dBm/ | (dB)   |  |  |
|              |           |            |            | 1MHz) |        |  |  |
| Low          | 5190      | -7.153     | -6.423     | 11.00 | -17.42 |  |  |
| High         | 5230      | -3.174     | -2.444     | 11.00 | -13.44 |  |  |