

SAR TEST REPORT

SAMSUNG Electronics Co., Ltd.
129, Samsung-ro, Yeongtong-gu, Suwon-City,
Gyeonggi-do, 443-742 Republic of Korea

Date of Issue: Jun. 04, 2015
Test Report No.: HCT-A-1505-F001-2
Test Site: HCT CO., LTD.

FCC ID:**A3LSMG361F**

Equipment Type:
Model Name:

Mobile Phone
SM-G361F

Testing has been carried out in accordance with:

47CFR §2.1093
ANSI/ IEEE C95.1 – 1992
IEEE 1528-2003

Date of Test:

April 28, 2015 ~ May 06, 2015

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

Young-Seok Yoo
Test Engineer / SAR Team
Certification Division

Reviewed By

Dong-Seob Kim
Technical Manager / SAR Team
Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

Rev.	DATE	DESCRIPTION
HCT-A-1505-F001	May. 11, 2015	First Approval Report
HCT-A-1505-F001-1	May. 29, 2015	<p>Sec. 13.3 WiFi test note was revised. (Removed note about WiFi power reduction. – typo)</p> <p>Sec. 15 was revised. (Add the operational description for simultaneous transmission capabilities for this device.)</p> <p>Revised attachment 1- plot 5. (Revised 802.11b Head Right touch plot)</p> <p>Revised BT tune-up target power. Sec. 3 was revised. (BT estimated SAR was revised.)</p> <p>Sec. 11.1 was revised. (BT tune-up target power were revised.)</p> <p>Sec. 11.5.2 was revised. (BT estimated SAR was revised.)</p> <p>Sec. 15.2 was revised. (BT estimated SAR was revised.)</p>
HCT-A-1505-F001-2	Jun. 04, 2015	Sec. 3 was revised. (Revised Body-worn SAR value - typo)

Table of Contents

1. INTRODUCTION	4
2. TEST METHODOLOGY	5
3. DESCRIPTION OF DEVICE	6
4. DESCRIPTION OF TEST EQUIPMENT	8
5. SAR MEASUREMENT PROCEDURE	1 6
6. DESCRIPTION OF TEST POSITION	1 7
7. MEASUREMENT UNCERTAINTY	2 0
8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2 1
9. SAR SYSTEM VALIDATION	2 2
10. SYSTEM VERIFICATION	2 3
11. RF CONDUCTED POWER MEASUREMENT	2 5
12. SAR Test configuration & Antenna Information	3 7
13. SAR TEST DATA SUMMARY	3 8
13.1-1 Measurement Results (GSM850 Head SAR)	3 8
13.1-2 Measurement Results (GSM1900 Head SAR)	3 8
13.1-3 Measurement Results (WCDMA850 Head SAR)	3 8
13.1-4 Measurement Results (LTE Band 5 10MHz Head SAR)	3 9
13.1-5 Measurement Results (DTS Head SAR)	3 9
13.2-1 Measurement Results (GSM850 Hotspot SAR)	4 0
13.2-2 Measurement Results (GSM1900 Hotspot SAR)	4 0
13.2-3 Measurement Results (WCDMA850 Hotspot SAR)	4 0
13.2-4 Measurement Results (LTE Band 5 10MHz Hotspot SAR)	4 1
13.2-5 Measurement Results (WLAN Hotspot SAR)	4 1
13.3-1 Measurement Results (DTS Body-worn SAR)	4 2
13.3-2 Measurement Results (Body-worn SAR)	4 2
13.3 SAR Test Notes	4 3
14. SAR Measurement Variability and Uncertainty	4 6
15. SAR Summation Scenario	4 7
16. CONCLUSION	5 0
17. REFERENCES	5 1
Attachment 1. – SAR Test Plots	5 2
Attachment 2. – Dipole Verification Plots	6 5
Attachment 3. – Probe Calibration Data	7 2
Attachment 4. – Dipole Calibration Data	9 5

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., Ne York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

- σ = conductivity of the tissue-simulant material (S/m)
- ρ = mass density of the tissue-simulant material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with IEEE Standard 1528-2003 & IEEE 1528-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 3G SAR Procedures v03
- FCC KDB Publication 941225 D06 Hot Spot SAR v02
- FCC KDB Publication 941225 D05 SAR for LTE Devices v02r03
- FCC KDB Publication 248227 D01 802.11 Wi-Fi SAR v02
- FCC KDB Publication 447498 D01 General SAR Guidance v05r02
- FCC KDB Publication 648474 D04 Handset SAR v01r02
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- FCC KDB Publication 865664 D02 SAR Reporting v01r01
- October 2013 TCB Workshop Notes (GPRS testing criteria)

3. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	Mobile Phone							
FCC ID:	A3LSMG361F							
Model:	SM-G361F							
Trade Name:	SAMSUNG Electronics Co., Ltd.							
Application Type:	Certification							
Production Unit or Identical Prototype:	Prototype							
Max. SAR:	Band	Tx. Frequency	Equipment Class	Reported 1g SAR (W/Kg)				
		(MHz)		Head	Body-Worn	Hotspot		
	GSM/GPRS/ EDGE 850	824.2 - 848.8	PCE	0.41	0.52	0.57		
	GSM/GPRS/ EDGE 1900	1 850.2 - 1 909.8	PCE	0.71	0.52	0.71		
	WCDMA 850	826.4 - 846.6	PCE	0.42	0.68	0.68		
	LTE 5	824.7 - 843	PCE	0.35	0.52	0.52		
	802.11b	2 412.0 - 2 462.0	DTS	0.12	0.05	0.05		
	Bluetooth	2 402 – 2 480	DSS/DTS	-	0.17*	-		
	Simultaneous SAR per KDB 690783 D01v01r03			0.84	0.85			
Date(s) of Tests:	April 28, 2015 ~ May 06, 2015							
Antenna Type:	Integral Antenna							
Hardware Version :	REV1.0							
Software Version :	G361F.001							
GRPS/EDGE:	Multi-slot Class 12, Mode Class B							
EUT Description:	GSM 850/1900, WCDMA 850, LTE 5, BT 3.0/4.0, WLAN b/g/n							
Key Feature(s)	This device supports Mobile Hotspot.							

3.1 KDB 941225 LTE information

Item.		Description					
Frequency Range:		Band 5: 824.7 MHz ~ 848.3 MHz					
Channel Bandwidth:		Band 5: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz					
Channel Number & Frequency:							
		Band 5					
1.4 MHz		3 MHz		5 MHz		10 MHz	
Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)
20407	824.7	20415	825.5	20425	826.5	20450	829.0
20525	836.5	20525	836.5	20525	836.5	20525	836.5
20643	848.3	20635	847.5	20625	846.5	20600	844.0
UE Category & Uplink Modulation		UE Category 3, QPSK, 16QAM					
Description of the LTE Transmitter & antenna		This model has two Tx. paths.					
		One is for GSM and WCDMA and LTE. It can not transmit simultaneously.					
		The other is for BT & WLAN. It can not transmit simultaneously.					
		Please find the section 12					
LTE voice/data requirements		Data Only,					
		LTE voice is available via VoIP.					
		Considering the users may install 3rd party software to enable VoIP, LTE Head SAR is also evaluated.					
Identify if MPR is optional or mandatory optional or mandatory		The EUT incorporates MPR as per 3GPP TS 36.101 sec. 6.2.3 ~ 6.2.5					
		The MPR is permanently built-in by design as a mandatory.					
		A-MPR is not implemented in the EUT.					
		See section 11.4 RF output power measurements in the SAR report.					
Maximum average conducted output power(dBm) Identify all other U.S. wireless operating modes, device exposure configurations and frequency bands.		GSM850/ GSM1900, WCDMA850, and LTE Band 5					
		Head & Body SAR are required.					
Maximum average conducted output power for other Wireless mode and frequency		See section 11 RF output power measurements in the SAR report.					
Simultaneous Transmission condition		This device supports simultaneous transmission. Please find the section 15.					
Power reduction explanation		This device doesn't implement power reduction.					
Description of the test equipment, software, etc.		LTE SAR Testing was performed using a CMW500. UE transmits with maximum output power during SAR testing.					

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

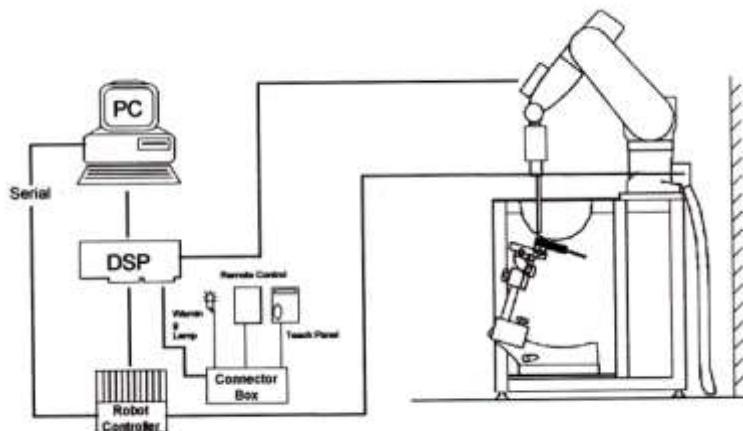


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

4.2 DASY E-FIELD PROBE SYSTEM

4.2.1 ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges
Calibration	In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy: 8 %)
Frequency	10 MHz to > 3 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal probe axis)
Dynamic	5 μ W/g to > 100 mW/g;
Range Linearity:	± 0.2 dB
Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces.
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dissymmetry up to 3 GHz Compliance tests of WCDMA/LTE Phones Fast automatic scanning in arbitrary phantoms

Figure 3. Photograph of the probe and the Phantom

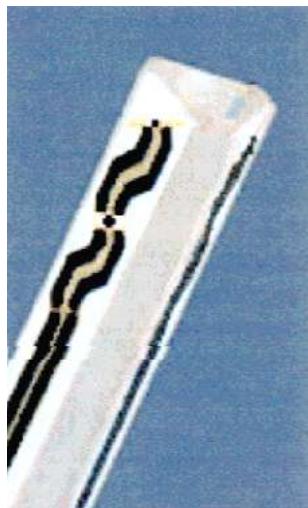


Figure 4. ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric probe ET3DV6, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

4.2.2 EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 900 and HSL 1810
Frequency	Additional CF for other liquids and frequencies upon request 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones



Figure 5. Photograph of the probe and the Phantom

Figure 6. EX3DV4 E-field Probe

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multiterminal line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

4.3 PROBE CALIBRATION PROCESS

4.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than $\pm 10\%$. The spherical isotropy was evaluated with the proper procedure and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

$$SAR = \frac{|E^2| \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

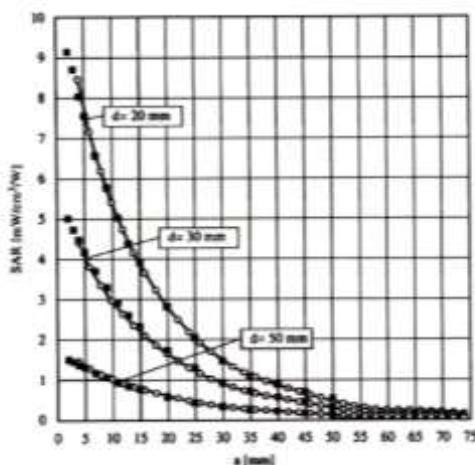


Figure 7. E-Field and Temperature measurements at 900 MHz

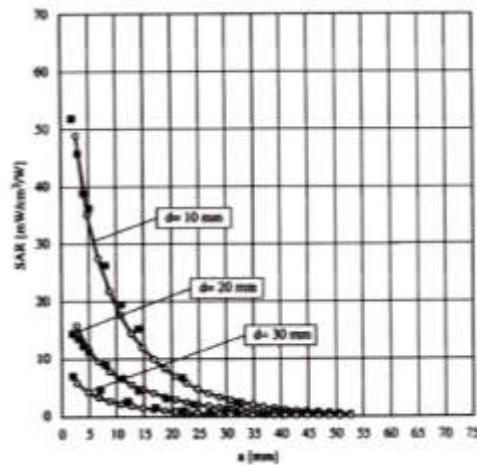


Figure 8. E-Field and temperature measurements at 1.8 GHz

4.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

V_i = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression poing (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

with

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

V_i = compensated signal of channel i (i=x,y,z)
 $Norm_i$ = sensor sensitivity of channel i (i=x,y,z)
 $\mu\text{V}/(\text{V}/\text{m})^2$ for E-field probes
 $ConvF$ = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = E_x^2 + E_y^2 + E_z^2$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in W/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$

with

P_{pwe} = equivalent power density of a plane wave in w/cm²
 E_{tot} = total electric field strength in V/m

4.4 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Figure 9. SAM Phantom

Shell Thickness	2.0 mm \pm 0.2 mm (6 \pm 0.2 mm at ear point)
Filling Volume	about 25 L
Dimensions	810 mm x 1 000 mm x 500 mm (H x L x W)

Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. The MFP V5.1 will be delivered including wooden support only (non-standard SPEAG support).

Applicable for system performance check from 700 MHz to 6 GHz (MFP V5.1C) or 800 MHz - 6 GHz (MFP V5.1A) as well as dosimetric evaluations for body-worn operation.

Figure 10. MFP V5.1 Triple Modular Phantom

Shell Thickness	2.0 mm \pm 0.2 mm
Filling Volume	approx. 9.2 L
Dimensions	830 mm x 500 mm (L x W)

4.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 11. Device Holder

4.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients (% by weight)	Frequency (MHz)							
	835		1 900		2 450 – 2 700		5 200 - 5 800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.45	53.06	54.9	70.17	71.88	73.2	65.52	78.66
Salt (NaCl)	1.45	0.94	0.18	0.39	0.16	0.1	0.0	0.0
Sugar	57.0	44.9	0.0	0	0.0	0.0	0.0	0.0
HEC	1.0	1.0	0.0	0	0.0	0.0	0.0	0.0
Bactericide	0.1	0.1	0.0	0	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	19.97	0.0	17.24	10.67
DGBE	0.0	0.0	44.92	29.44	7.99	26.7	0.0	0.0
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	10.67

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose
Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose
DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]
Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 3.1 Composition of the Tissue Equivalent Matter

4.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	alib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	3403-91935	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4	652	Mar. 18, 2015	Annual	Mar. 18, 2016
SPEAG	DAE3	466	Feb. 24, 2015	Annual	Feb. 24, 2016
SPEAG	E-Field Probe ET3DV6	1631	Jan. 28, 2015	Annual	Jan. 28, 2016
SPEAG	E-Field Probe EX3DV4	3863	Jul. 24, 2014	Annual	Jul. 24, 2015
SPEAG	Dipole D835V2	441	Jan. 23, 2015	Annual	Jan. 23, 2016
SPEAG	Dipole D1900V2	5d061	Jul. 23, 2014	Annual	Jul. 23, 2015
SPEAG	Dipole D2450V2	743	Jul. 24, 2014	Annual	Jul. 24, 2015
Agilent	Power Meter(F) E4419B	MY41291386	Oct. 27, 2014	Annual	Oct. 27, 2015
Agilent	Power Sensor(G) 8481	MY41090680	Oct. 27, 2014	Annual	Oct. 27, 2015
HP	Dielectric Probe Kit 85070C	00721521	CBT		
HP	Dual Directional Coupler 778D	16072	Oct. 27, 2014	Annual	Oct. 27, 2015
Agilent	Base Station E5515C	GB44400269	Feb. 09, 2015	Annual	Feb. 09, 2016
HP	Signal Generator 8664A	3744A02069	Oct. 27, 2014	Annual	Oct. 27, 2015
Agilent	N9020A/ SIGNAL ANALYZER	MY50510407	Mar. 23, 2015	Annual	Mar. 23, 2016
HP	Network Analyzer 8753ES	JP39240221	Mar. 23, 2015	Annual	Mar. 23, 2016
R&S	Base Station CMW500	100990	Dec. 05, 2014	Annual	Dec. 05, 2015

NOTE:

1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.
2. CBT(Calibrating Before Testing). Prior to testing, the dielectric probe kit was calibrated via the network analyzer, with the specified procedure(calibrated in pure water) and calibration kit(standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

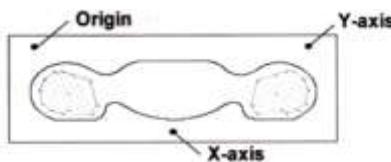


Figure 12. SAR Measurement Point in Area Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extend, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SASR-distribution over 10g.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r03 quoted below.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface $\Delta z_{\text{Zoom}}(n > 1)$: between subsequent points	≤ 4 mm $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.			
* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

6. DESCRIPTION OF TEST POSITION

6.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

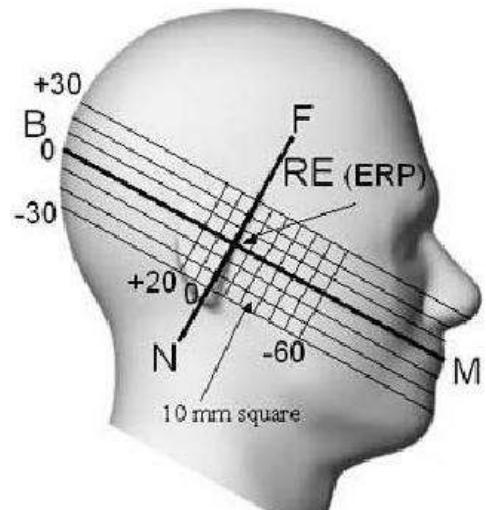


Figure 13. Side view of the phantom

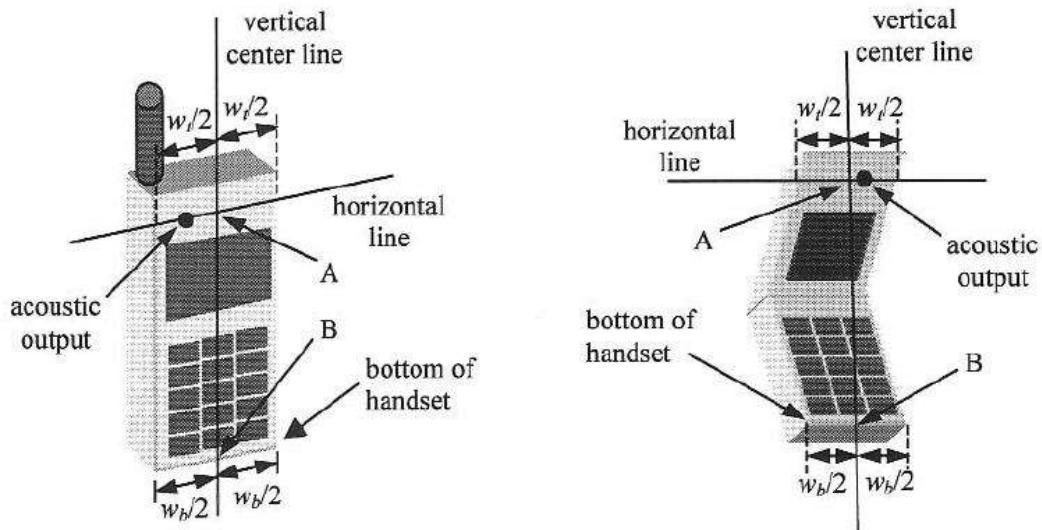


Figure 14. Handset vertical and horizontal reference lines

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

7. MEASUREMENT UNCERTAINTY

Error Description	Tol (± %)	Prob. dist.	Div.	c _i	Standard Uncertainty (± %)	v _{eff}
1. Measurement System						
Probe Calibration	6.00	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2. Test Sample Related						
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	∞
3. Phantom and Setup						
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.50	N	1	0.64	1.60	∞
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	2.50	N	1	0.6	1.50	∞
Combind Standard Uncertainty						10.85
Coverage Factor for 95 %						k=2
Expanded STD Uncertainty						21.70

Table 7.1 Uncertainty (800 MHz- 2 450 MHz)

8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

* The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

** The Spatial Average value of the SAR averaged over the whole-body.

*** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

9. SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01r01, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01v01r03. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System	Probe	Probe Type	Probe Calibration Point		Dipole	Date	Dielectric Parameters		CW Validation			Modulation Validation		
							Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR
10	1631	ET3DV6	Head	835	441	2015.2.9	41.6	0.88	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Body	835	441	2015.2.9	54.9	0.98	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Head	1900	5d061	2014.8.4	39.8	1.4	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Body	1900	5d061	2014.8.4	52.1	1.52	PASS	PASS	PASS	GMSK	PASS	N/A
1	3863	EX3DV4	Head	2450	743	2014.8.5	38.2	1.79	PASS	PASS	PASS	OFDM	N/A	PASS
1	3863	EX3DV4	Body	2450	743	2014.8.5	53.2	1.95	PASS	PASS	PASS	OFDM	N/A	PASS

SAR System Validation Summary

Note:

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r03. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r03.

10. SYSTEM VERIFICATION

10.1 Tissue Verification

Freq. [MHz]	Date	Probe	Dipole	Liquid	Liquid Temp. [°C]	Parameters	Target Value	Measured Value	Deviation	Limit
									[%]	[%]
820	Apr. 28, 2015	1631	441	Head	18.2	ε r	41.578	40.574	- 2.41	± 5
835						σ	0.899	0.904	+ 0.56	± 5
850						ε r	41.5	40.5	- 2.41	± 5
820						σ	0.90	0.919	+ 2.11	± 5
835						ε r	41.500	40.304	- 2.88	± 5
850						σ	0.916	0.930	+ 1.53	± 5
820	Apr. 28, 2015	3863	441	Body	18.9	ε r	55.258	56.909	+ 2.99	± 5
835						σ	0.969	0.963	- 0.62	± 5
850						ε r	55.2	56.8	+ 2.90	± 5
820						σ	0.97	0.979	+ 0.93	± 5
835						ε r	55.154	56.692	+ 2.79	± 5
850						σ	0.988	0.991	+ 0.30	± 5
1850	Apr. 30, 2015	3863	5d061	Head	19.8	ε r	40.000	39.031	- 2.42	± 5
1880						σ	1.400	1.386	- 1.00	± 5
1900						ε r	40.000	38.937	- 2.66	± 5
1910						σ	1.400	1.415	+ 1.07	± 5
1850						ε r	40.0	38.9	- 2.75	± 5
1880						σ	1.40	1.44	+ 2.86	± 5
1900						ε r	40.000	38.823	- 2.94	± 5
1910						σ	1.400	1.444	+ 3.14	± 5
1850	Apr. 30, 2015	3863	5d061	Body	19.8	ε r	53.300	52.481	- 1.54	± 5
1880						σ	1.520	1.452	- 4.47	± 5
1900						ε r	53.300	52.374	- 1.74	± 5
1910						σ	1.520	1.483	- 2.43	± 5
1850						ε r	53.3	52.3	- 1.88	± 5
1880						σ	1.52	1.5	- 1.32	± 5
1900						ε r	53.300	52.254	- 1.96	± 5
1910						σ	1.520	1.512	- 0.53	± 5
2401	May. 06, 2015	3863	743	Head	18.6	ε r	39.287	39.950	+ 1.69	± 5
2450						σ	1.756	1.750	- 0.34	± 5
2499						ε r	39.2	39.8	+ 1.53	± 5
2401						σ	1.80	1.8	+ 0.00	± 5
2450						ε r	39.138	39.714	+ 1.47	± 5
2499						σ	1.853	1.852	- 0.05	± 5
2401	May. 06, 2015	3863	743	Body	18.6	ε r	52.765	51.891	- 1.66	± 5
2450						σ	1.903	1.845	- 3.05	± 5
2499						ε r	52.7	51.7	- 1.90	± 5
2401						σ	1.95	1.9	- 2.56	± 5
2450						ε r	52.638	51.682	- 1.82	± 5
2499						σ	2.019	1.960	- 2.92	± 5

The Tissue dielectronic parameters were measured prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

10.2 System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 835 MHz / 1 900 MHz / 2 450 MHz by using the system Verification kit. (Graphic Plots Attached)

System Verification Results

Freq. [MHz]	Date	Probe (S/N)	Dipole (S/N)	Liquid	Amb. Temp.	Liquid Temp.	1 W Target SAR _{1g} (SPEAG)	Measured SAR _{1g}	1 W Normalized SAR _{1g}	Deviation	Limit [%]
					[°C]	[°C]	[mW/g]	[mW/g]	[mW/g]	[%]	[%]
835	Apr. 28, 2015	1631	441	Head	18.4	18.2	9.21	0.956	9.56	+ 3.80	± 10
835	Apr. 28, 2015	3863		Body	19.1	18.9	9.34	0.956	9.56	+ 2.36	± 10
1 900	Apr. 30, 2015	3863	5d061	Head	20.0	19.8	40.6	4.11	41.1	+ 1.23	± 10
1 900	Apr. 30, 2015	3863		Body	20.0	19.8	40.8	4.02	40.2	- 1.47	± 10
2 450	May. 06, 2015	3863	743	Head	18.8	18.6	53.2	5.36	53.6	+ 0.75	± 10
2 450	May. 06, 2015	3863		Body	18.8	18.6	51.3	5.13	51.3	+ 0.00	± 10

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

NOTE:

SAR Verification was performed according to the FCC KDB 865664 D01v01r03.

11. RF CONDUCTED POWER MEASUREMENT

Power measurements were performed using a base station simulator under digital average power. The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more then 5 % occurred, the tests were repeated.

11.1 Output Power Specifications.

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v05r02.

GSM

GSM850	GSM1900
Target Power : 33.0 dBm	Target Power : 30.0 dBm
GPRS850	PCS1900
GPRS 1tx : 33.0 dBm / EDGE 1tx : 27.0 dBm	GPRS 1tx : 30.0 dBm / EDGE 1tx : 26.0 dBm
GPRS 2tx : 31.4 dBm / EDGE 2tx : 25.5 dBm	GPRS 2tx : 28.5 dBm / EDGE 2tx : 24.5 dBm
GPRS 3tx : 29.0 dBm / EDGE 3tx : 23.5 dBm	GPRS 3tx : 26.5 dBm / EDGE 3tx : 22.0 dBm
GPRS 4tx : 27.0 dBm / EDGE 4tx : 21.2 dBm	GPRS 4tx : 24.4 dBm / EDGE 4tx : 20.0 dBm
Tune-up Tolerance : -1.5 dB/ +0.5 dB	

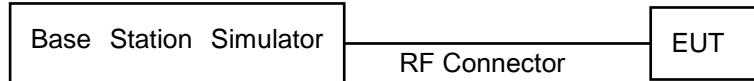
WCDMA

WCDMA850	
3GPP RMC Rel. 8	Target Power : 23.5 dBm
HSDPA 3GPP Cat 14	Target Power : 23.5 dBm
HSUPA 3GPP Rel.6	Target Power : 23.5 dBm
DC-HSDPA 3GPP Rel.8	N/A
Tune-up Tolerance : -1.5 dB/ +0.5 dB	

LTE

Mode/Band	LTE Band 5
Target Power	23.0 dBm
Tune-up Tolerance : -1.5 dB/ +0.5 dB	

Wifi


Mode / Band	IEEE 802.11 (in dBm)				
	802.11 a	802.11 b	802.11 g	802.11 n	802.11 ac
2.4 GHz WIFI	N/A	16	14.5	12.5	N/A
Upper Tune-up Tolerance : +0.5 dB					

BT.

Bluetooth (in dBm)	Target power (dBm)	
	Bluetooth	8.5
	Bluetooth LE	1
Upper Tune-up Tolerance : +0.5 dB		

11.2 GSM

Conducted output power measurements were performed using a base station simulator under digital average power.

SAR Test for WWAN were performed with a base station simulator Agilent E5515C. Communication between the device and the emulator was established by air link. Set base station emulator to allow DUT to radiate maximum output power during all tests. Please refer to the below worst case SAR operation setup.

- GSM voice: Head SAR Body worn SAR
- GPRS Multi-slots : Body SAR with GPRS/EDGE Multi-slot Class 12 with CS 1 (GMSK)

Note:

This EUT'S GSM, GPRS and EDGE device class is B. Per KDB 941225 D01v03, GMSK GPRS and EDGE mode is the primary mode. CS1/MCS7 coding scheme was used in GPRS/EDGE output power measurements and SAR Testing, as a condition where GMSK/8PSK modulation was ensured. Investigation has shown that CS1 - CS4/ MCS5 – MCS9 settings do not have any impact on the output levels in the GPRS/EDGE modes.

GSM Conducted output powers (Burst-Average)

Band	Channel	Voice	GPRS(GMSK) Data – CS1				EDGE Data			
		GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)
GSM 850	128	32.12	32.14	30.64	28.89	26.65	26.39	24.79	22.57	20.50
	190	32.38	32.37	30.90	29.08	26.90	26.53	25.03	22.84	20.76
	251	32.27	32.26	30.77	28.95	26.77	26.64	25.12	22.98	20.85
GSM 1900	512	30.25	30.24	28.61	26.55	24.43	26.45	24.93	22.48	20.45
	661	30.14	30.15	28.48	26.39	24.23	26.01	24.44	22.32	20.24
	810	30.32	30.32	28.61	26.45	24.36	26.44	24.86	22.43	20.46

GSM Conducted output powers (Frame-Average)

Band	Channel	Voice	GPRS(GMSK) Data – CS1				EDGE Data			
		GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)
GSM 850	128	23.09	23.11	24.62	24.63	23.64	17.36	18.77	18.31	17.49
	190	23.35	23.34	24.88	24.82	23.89	17.50	19.01	18.58	17.75
	251	23.24	23.23	24.75	24.69	23.76	17.61	19.10	18.72	17.84
GSM 1900	512	21.22	21.21	22.59	22.29	21.42	17.42	18.91	18.22	17.44
	661	21.11	21.12	22.46	22.13	21.22	16.98	18.42	18.06	17.23
	810	21.29	21.29	22.59	22.19	21.35	17.41	18.84	18.17	17.45

Note:

Time slot average factor is as follows:

1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power – 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power – 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power – 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power – 3.01 dB

11.3 WCDMA

Body SAR is not required for handsets with HSDPA/HSUPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

11.3.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3 GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s".

11.3.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than $\frac{1}{4}$ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

11.3.3 Body SAR Measurement

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

11.3.4 Handsets with Release 5 HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

Sub-Test 1 Setup for Release 5 HSDPA

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$
Note 2: CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$.
Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

11.3.5 Handsets with Release 6 HSPA (HSDPA/HSUPA)

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.1 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than $\frac{1}{4}$ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurement should be used to test for head exposure.

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ed} (SF)	β_{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}: 47/15$ $\beta_{ed2}: 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI} = 8 \Leftrightarrow \beta_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF0) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF0) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Note : Per KDB 941225 D01v03, the 12.2kbps RMC is the primary mode.

WCDMA850

3GPP	Mode	3GPP 34.121	Cellular Band [dBm]		
		Subtest			
			UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458
99	WCDMA	12.2 kbps RMC	22.81	22.79	22.84
99	WCDMA	12.2 kbps AMR	22.81	22.80	22.84
5	HSDPA	Subtest 1	22.64	22.72	22.75
5		Subtest 2	22.02	22.32	22.28
5		Subtest 3	21.52	21.88	21.82
5		Subtest 4	21.50	21.87	21.83
6	HSUPA	Subtest 1	22.54	22.45	22.53
6		Subtest 2	21.47	21.58	21.52
6		Subtest 3	21.93	21.92	21.98
6		Subtest 4	21.45	21.57	21.61
6		Subtest 5	22.43	22.39	22.45

WCDMA Average Conducted output powers

11.4 LTE

SAR testing was performed according to the FCC KDB 941225 D05v02r03 publication.

This DUT is developed base on MPR. The MPR is mandatory.

The device will not operate with any other MPR setting than that stated in the table as indicated.

SAR Testing was performed using a CMW500. UE transmits with Maximum output power during SAR testing. A-MPR has been disabled for all SAR tests by setting NS=01 on the R&S CMW500.

- LTE Band 5

Bandwidth	Modulation	RB Size	RB Offset	Max.Average Power (dBm)		
				20407 824.7 MHz	20525 836.5 MHz	20643 848.3 MHz
1.4 MHz	QPSK	1	0	22.53	22.60	22.74
		1	3	22.55	22.61	22.79
		1	5	22.57	22.60	22.73
		3	0	22.68	22.67	22.78
		3	1	22.67	22.71	22.75
		3	3	22.74	22.69	22.79
		6	0	20.63	20.70	20.77
	16QAM	1	0	22.11	22.08	22.20
		1	3	22.18	22.07	22.19
		1	5	22.18	22.07	22.16
		3	0	21.77	21.79	21.92
		3	1	21.83	21.82	21.90
		3	3	21.85	21.77	21.86
		6	0	20.04	20.02	19.85

Bandwidth	Modulation	RB Size	RB Offset	Max.Average Power (dBm)		
				20415 825.5 MHz	20525 836.5 MHz	20635 847.5 MHz
3 MHz	QPSK	1	0	22.70	22.60	22.69
		1	7	22.80	22.64	22.73
		1	14	22.78	22.56	22.69
		8	0	20.61	20.70	20.82
		8	3	20.62	20.68	20.78
		8	7	20.67	20.71	20.77
		15	0	20.57	20.68	20.76
	16QAM	1	0	22.19	21.92	21.94
		1	7	22.19	21.93	21.98
		1	14	22.17	21.87	21.90
		8	0	19.91	19.95	20.09
		8	3	19.95	19.96	20.13
		8	7	20.03	19.97	20.09
		15	0	19.78	19.78	19.96

Bandwidth	Modulation	RB Size	RB Offset	Max.Average Power (dBm)		
				20425 826.5 MHz	20525 836.5 MHz	20625 846.5 MHz
5 MHz	QPSK	1	0	22.55	22.58	22.62
		1	12	22.66	22.54	22.73
		1	24	22.60	22.59	22.64
		12	0	20.57	20.67	20.69
		12	6	20.61	20.66	20.77
		12	11	20.63	20.64	20.76
		25	0	20.58	20.60	20.69
	16QAM	1	0	21.91	21.90	22.20
		1	12	22.02	21.88	22.18
		1	24	21.95	21.88	22.18
		12	0	19.77	19.95	19.92
		12	6	19.80	19.94	19.94
		12	11	19.81	19.93	19.95
		25	0	19.87	19.77	19.83

Bandwidth	Modulation	RB Size	RB Offset	Max.Average Power (dBm)		
				20450 829 MHz	20525 836.5 MHz	20600 844 MHz
10 MHz	QPSK	1	0	22.56	22.73	22.60
		1	24	22.67	22.69	22.65
		1	49	22.60	22.76	22.64
		25	0	20.57	20.64	20.59
		25	12	20.66	20.64	20.64
		25	24	20.70	20.65	20.71
		50	0	20.60	20.63	20.61
	16QAM	1	0	21.85	21.87	21.93
		1	24	21.95	21.82	21.89
		1	49	21.84	21.88	21.93
		25	0	19.79	19.83	19.84
		25	12	19.86	19.79	19.82
		25	24	19.86	19.85	19.90
		50	0	19.74	19.75	19.87

11.5 WiFi

11.5.1 SAR Testing for 802.11 Transmitters

General Device Setup

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 – 96% is typically achievable in most test mode configurations. A minimum transmission duty factor 85 % is required to avoid certain hardware and device implementation issues related to wide rage SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS is that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated bands, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11 ac or 802.11 g and 802.11 n with the same channel and 802.11 ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

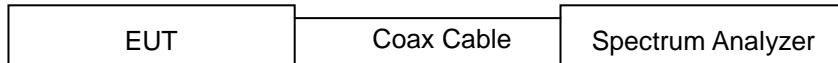
Initial Test configuration procedure

For OFDM, 2.4 GHZ, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

Subsequent Test configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR test for the subsequent test configurations are required.


IEEE 802.11b Average RF Power

Mode	Freq. [MHz]	Channel	802.11b (2.4 GHz) Conducted Power [dBm]
802.11b	2412	1	16.04
	2437	6	16.46
	2462	11	15.06

Justification for test configurations for WLAN per KDB Publication 248227 D01v02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission mode with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Test Configuration

11.6 SAR Test Exclusions Applied

11.6.1 WCDMA

Per FCC KDB 941225 D01V03, 12.2 kbps RMC is the primary mode and HSPA (HSUPA/HSDPA with RMC) is the secondary mode.

Per KDB 941225 D01v03, The SAR test exclusion is applied to the secondary mode by the following equation.

$$\text{Adjusted SAR} = \text{Highest Reported SAR} * \frac{\text{Secondary Max tune - up (mW)}}{\text{Primary Max tune tune - up(mW)}} \leq 1.2 \text{ W/kg.}$$

Based on the highest Reported SAR, the secondary mode is not required.

$$[0.680 * (224/224)] = 0.680 \text{ W/kg} \leq 1.2 \text{ W/kg}$$

And the maximum output power and tune-up tolerance in secondary mode is \leq 0.25 dB higher than the primary mode.

11.6.2 BT

Per FCC KDB 447498 D01v05r02, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

$$\frac{\text{Max Power of Channel}(mW)}{\text{Test Separation Distance (mm)}} * \sqrt{\text{Frequency(GHz)}} \leq 3.0$$

Mode	Frequency	Maximum Allowed Power	Separation Distance	≤ 3.0
	[MHz]	[mW]	[mm]	
Bluetooth	2 480	8	10	1.26
Bluetooth LE	2 480	1	10	0.16

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(8/10)*\sqrt{2.480}] = 1.26 < 3.0$.

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth LE SAR was not required $[(1/10)*\sqrt{2.480}] = 0.16 < 3.0$.

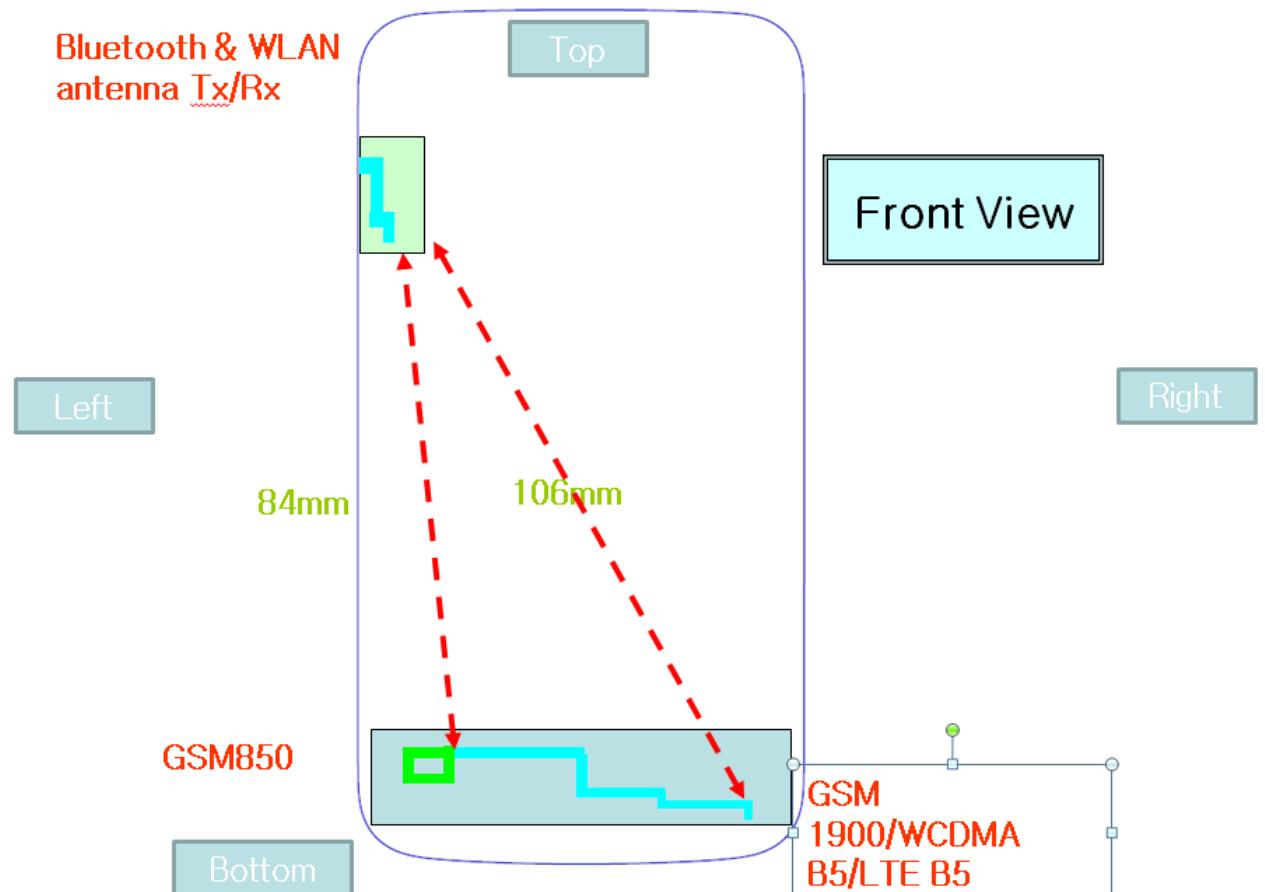
This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific physical test configuration is $\leq 1.6\text{W/kg}$. When standalone SAR is not required to be measured per FCC KDB 447498 D01v05r02 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter.

$$\text{Estimated SAR} = \frac{\sqrt{f(\text{GHz})}}{7.5} * \frac{(\text{Max Power of channel mW})}{\text{Min Separation Distance}}.$$

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[mW]	[mm]	[W/kg]
Bluetooth	2 480	8	10	0.17
Bluetooth LE	2 480	1	10	0.02

Note :

- 1) Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v05r02.
- 2) The frequency of Bluetooth using for estimated SAR was selected highest channel of Bluetooth for highest estimated SAR.


12. SAR Test configuration & Antenna Information

Mode	Rear	Front	Left	Right	Bottom	Top
GSM/GPRS 850	Yes	Yes	Yes	Yes	Yes	No
GSM/GPRS 1900	Yes	Yes	Yes	Yes	Yes	No
WCDMA 850	Yes	Yes	Yes	Yes	Yes	No
LTE Band 5	Yes	Yes	Yes	Yes	Yes	No
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes

Note: All test configurations are based on front view.

12.1 Antenna and Device Information

* Distance between BT/WLAN antenna and Main antenna

※ Please see [SM-G361F] Ant distance file for further information.

13. SAR TEST DATA SUMMARY

13.1-1 Measurement Results (GSM850 Head SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Battery	Phantom Position	Measured SAR(mW/g)	Scaling Factor	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
836.6	190	GSM850	33.5	32.38	0.156	Standard	Left Ear	0.317	1.294	0.410	1
836.6	190		33.5	32.38	-0.140	Standard	Left Tilt	0.145	1.294	0.188	-
836.6	190		33.5	32.38	-0.151	Standard	Right Ear	0.240	1.294	0.311	-
836.6	190		33.5	32.38	-0.046	Standard	Right Tilt	0.133	1.294	0.172	-
ANSI/ IEEE C95.1 - 1992- Safety Limit Spatial Peak Uncontrolled Exposure/ General Population								Head 1.6 W/kg (mW/g) Averaged over 1 gram			

13.1-2 Measurement Results (GSM1900 Head SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Battery	Phantom Position	Measured SAR(mW/g)	Scaling Factor	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
1 880.0	661	GSM1900	30.5	30.14	-0.147	Standard	Left Ear	0.657	1.086	0.714	2
1 880.0	661		30.5	30.14	0.157	Standard	Left Tilt	0.184	1.086	0.200	-
1 880.0	661		30.5	30.14	-0.183	Standard	Right Ear	0.328	1.086	0.356	-
1 880.0	661		30.5	30.14	0.152	Standard	Right Tilt	0.202	1.086	0.219	-
ANSI/ IEEE C95.1 - 1992- Safety Limit Spatial Peak Uncontrolled Exposure/ General Population								Head 1.6 W/kg (mW/g) Averaged over 1 gram			

13.1-3 Measurement Results (WCDMA850 Head SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Battery	Phantom Position	Measured SAR(mW/g)	Scaling Factor	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
836.6	4183	WCDMA 850	24.0	22.79	0.132	Standard	Left Ear	0.317	1.321	0.419	3
836.6	4183		24.0	22.79	-0.067	Standard	Left Tilt	0.145	1.321	0.192	-
836.6	4183		24.0	22.79	-0.045	Standard	Right Ear	0.264	1.321	0.349	-
836.6	4183		24.0	22.79	-0.015	Standard	Right Tilt	0.145	1.321	0.192	-
ANSI/ IEEE C95.1 - 1992- Safety Limit Spatial Peak Uncontrolled Exposure/ General Population								Head 1.6 W/kg (mW/g) Averaged over 1 gram			

13.1-4 Measurement Results (LTE Band 5 10MHz Head SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Battery	Phantom Position	RB Size	RB Offset	Measured SAR (mW/g)	Scaling Factor	Scaled SAR (mW/g)	Plot No
MHz	Ch.		Tune-Up Limit	Conducted Power									
836.5	20525	QPSK	23.5	22.76	0.105	Standard	Left Ear	1	49	0.295	1.186	0.350	4
844.0	20600		22.5	20.71	0.023	Standard	Left Ear	25	24	0.219	1.510	0.331	-
836.5	20525		23.5	22.76	-0.103	Standard	Left Tilt	1	49	0.135	1.186	0.160	-
844.0	20600		22.5	20.71	-0.041	Standard	Left Tilt	25	24	0.104	1.510	0.157	-
836.5	20525		23.5	22.76	-0.006	Standard	Right Ear	1	49	0.242	1.186	0.287	-
844.0	20600		22.5	20.71	0.038	Standard	Right Ear	25	24	0.171	1.510	0.258	-
836.5	20525		23.5	22.76	0.054	Standard	Right Tilt	1	49	0.140	1.186	0.166	-
844.0	20600		22.5	20.71	-0.035	Standard	Right Tilt	25	24	0.099	1.510	0.149	-
ANSI/ IEEE C95.1 1992 – Safety Limit Spatial Peak Uncontrolled Exposure/ General Population								Head 1.6 W/kg (mW/g) Averaged over 1 gram					

13.1-5 Measurement Results (DTS Head SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Phantom Position	Data Rate	Duty Cycle (%)	Peak SAR of Area Scan (W/kg)	Measured SAR (mW/g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power										
2 437	6	802.11b	16.5	16.46	-	Left Ear	1Mbps	99.31	0.0615	-	1.009	1.007	-	-
			16.5	16.46	-	Left Tilt	1Mbps	99.31	0.0642	-	1.009	1.007	-	-
			16.5	16.46	0.171	Right Ear	1Mbps	99.31	0.193	0.120	1.009	1.007	0.122	5
			16.5	16.46	-	Right Tilt	1Mbps	99.31	0.0671	-	1.009	1.007	-	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population								Head 1.6 W/kg (mW/g) Averaged over 1 gram						

13.2-1 Measurement Results (GSM850 Hotspot SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Configuration	Separation Distance	Measured SAR(mW/g)	Scaling Factor	Scaled SAR(mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
836.6	190	GPRS 3Tx	29.5	29.08	-0.059	Rear	1.0 cm	0.520	1.102	0.573	6
836.6	190		29.5	29.08	0.057	Front	1.0 cm	0.346	1.102	0.381	-
836.6	190		29.5	29.08	-0.113	Left	1.0 cm	0.285	1.102	0.314	-
836.6	190		29.5	29.08	-0.128	Right	1.0 cm	0.192	1.102	0.211	-
836.6	190		29.5	29.08	0.198	Bottom	1.0 cm	0.051	1.102	0.056	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Body 1.6 W/kg (mW/g) Averaged over 1 gram				

13.2-2 Measurement Results (GSM1900 Hotspot SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Configuration	Separation Distance	Measured SAR(mW/g)	Scaling Factor	Scaled SAR(mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
1 880.0	661	GPRS 2Tx	29.0	28.48	0.050	Rear	1.0 cm	0.633	1.127	0.714	7
1 880.0	661		29.0	28.48	0.007	Front	1.0 cm	0.597	1.127	0.673	-
1 880.0	661		29.0	28.48	0.020	Left	1.0 cm	0.386	1.127	0.435	-
1 880.0	661		29.0	28.48	-0.192	Right	1.0 cm	0.040	1.127	0.045	-
1 880.0	661		29.0	28.48	0.084	Bottom	1.0 cm	0.104	1.127	0.117	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Body 1.6 W/kg (mW/g) Averaged over 1 gram				

13.2-3 Measurement Results (WCDMA850 Hotspot SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Configuration	Separation Distance	Measured SAR(mW/g)	Scaling Factor	Scaled SAR(mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
836.6	4183	WCDMA 850	24.0	22.79	-0.124	Rear	1.0 cm	0.515	1.321	0.680	8
836.6	4183		24.0	22.79	0.030	Front	1.0 cm	0.339	1.321	0.448	-
836.6	4183		24.0	22.79	-0.038	Left	1.0 cm	0.269	1.321	0.355	-
836.6	4183		24.0	22.79	0.056	Right	1.0 cm	0.179	1.321	0.237	-
836.6	4183		24.0	22.79	0.108	Bottom	1.0 cm	0.047	1.321	0.062	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Body 1.6 W/kg (mW/g) Averaged over 1 gram				

13.2-4 Measurement Results (LTE Band 5 10MHz Hotspot SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Configuration	RB Size	RB Offset	Separation Distance	Measured SAR (mW/g)	Scaling Factor	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power									
836.5	20525	QPSK	23.5	22.76	-0.006	Rear	1	49	1.0 cm	0.438	1.186	0.519	9
844.0	20600		22.5	20.71	-0.114	Rear	25	24	1.0 cm	0.316	1.510	0.477	-
836.5	20525		23.5	22.76	0.059	Front	1	49	1.0 cm	0.316	1.186	0.375	-
844.0	20600		22.5	20.71	-0.057	Front	25	24	1.0 cm	0.231	1.510	0.349	-
836.5	20525		23.5	22.76	0.039	Left	1	49	1.0 cm	0.360	1.186	0.427	-
844.0	20600		22.5	20.71	0.001	Left	25	24	1.0 cm	0.242	1.510	0.365	-
836.5	20525		23.5	22.76	0.041	Right	1	49	1.0 cm	0.270	1.186	0.320	-
844.0	20600		22.5	20.71	0.043	Right	25	24	1.0 cm	0.180	1.510	0.272	-
836.5	20525		23.5	22.76	-0.198	Bottom	1	49	1.0 cm	0.039	1.186	0.046	-
844.0	20600		22.5	20.71	0.109	Bottom	25	24	1.0 cm	0.026	1.510	0.039	-
ANSI/ IEEE C95.1 1992 – Safety Limit Spatial Peak Uncontrolled Exposure/ General Population									Body 1.6 W/kg (mW/g) Averaged over 1 gram				

13.2-5 Measurement Results (WLAN Hotspot SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Configuration	Separation Distance	Duty Cycle (%)	Peak SAR of Area Scan (W/kg)	Measured SAR (mW/g)	Scaling Factor	Scaling Factor (Duty Cycle)	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power										
2437	6	802.11b (1Mbps)	16.5	16.46	0.18	Rear	1.0 cm	99.31	0.0778	0.047	1.009	1.007	0.048	10
			16.5	16.46	-	Front	1.0 cm	99.31	0.0208	-	1.009	1.007	-	-
			16.5	16.46	-	Left	1.0 cm	99.31	0.0505	-	1.009	1.007	-	-
			16.5	16.46	-	Top	1.0 cm	99.31	0.0118	-	1.009	1.007	-	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population									Body 1.6 W/kg (mW/g) Averaged over 1 gram					

13.3-1 Measurement Results (DTS Body-worn SAR)

Frequency MHz	Ch.	Mode	Power (dBm)		Power Drift (dB)	Configuration	Separation Distance	Duty Cycle (%)	Peak SAR of Area Scan (W/kg)	Measured SAR (mW/g)	Scaling Factor	Scaling Factor (Duty Cycle)	Scaled SAR (mW/g)	Plot No.
2437	6	802.11b (1Mbps)	16.5	16.46	0.18	Rear	1.0 cm	99.31	0.0778	0.047	1.009	1.007	0.048	10
ANSI/ IEEE C95.1 - 1992- Safety Limit Spatial Peak Uncontrolled Exposure/ General Population														

13.3-2 Measurement Results (Body-worn SAR)

Frequency		Mode	Power (dBm)		Power Drift (dB)	Configuration	Separation Distance	Measured SAR (mW/g)	Scaling Factor	Scaled SAR (mW/g)	Plot No.
MHz	Ch.		Tune-Up Limit	Conducted Power							
836.6	190	GSM850	33.5	32.38	-0.139	Rear	1.0 cm	0.400	1.294	0.518	11
1 880.0	661	GSM1900	30.5	30.14	0.168	Rear	1.0 cm	0.476	1.086	0.517	12
836.6	4183	WCDMA 850	24.0	22.79	-0.124	Rear	1.0 cm	0.515	1.321	0.680	8
836.5	20525	LTE 5	23.5	22.76	-0.006	Rear (1RB, 49offset)	1.0 cm	0.438	1.186	0.519	9
ANSI/ IEEE C95.1 - 1992- Safety Limit Spatial Peak Uncontrolled Exposure/ General Population											

13.3 SAR Test Notes

General Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC KDB Procedure.
2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
3. Liquid tissue depth was at least 15.0 cm for all frequencies.
4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v05r02.
6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
7. Per FCC KDB 648474 D04v01r02, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
8. Per FCC KDB 865664 D01v01r03, variability SAR tests were not performed since the measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 14 for variability analysis information.

GSM/GPRS Test Notes:

1. This EUT'S GSM and GPRS device class is B.
2. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
3. Justification for reduced test configurations per KDB 941225 D01v03: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power was evaluated for SAR.
4. Per FCC KDB 447498 D01v05r02, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.
5. Justification for reduced test configurations per KDB Publication 941225 D01v03 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.

UMTS Notes:

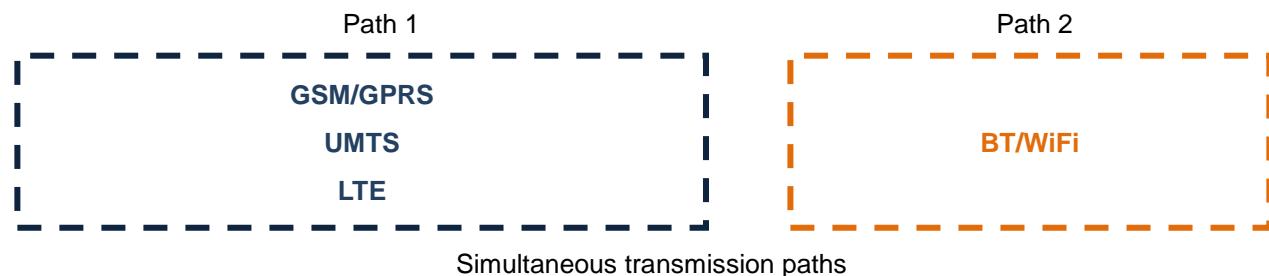
1. The 12.2 kbps RMC mode is the primary mode.
2. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB 941225 D01v03. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and Adjusted SAR value was less than 1.2 W/kg.
3. Per FCC KDB 447498 D01v05r02, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the channel highest output power channel was used.
4. UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

LTE Notes:

1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Consideration for LTE Devices in FCC KDB 941225 D05v02r03.
2. According to FCC KDB 941225 D05v02r01:
When the reported SAR is ≤ 0.8 W/kg, testing of the 100%RB allocation and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the 1RB, 50%RB and 100%RB allocation with highest output power for that channel.
Only one channel, and as reported SAR values for 1RB allocation and 50%RB allocation were less than 1.45W/Kg only the highest power RB offset for each allocation was required.
3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to target MPR is indicated alongside the SAR results.
4. A-MPR was dialed for all SAR tests by setting NS=01 on the base station simulator.
5. Pre-installed VOIP applications are considered.
6. SAR test reduction is applied using the following criteria:
7. Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
When the reported SAR is >0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are >0.8 W/kg, Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation <1.45 W/kg.
Testing for 16-QAM modulation is not required because the reported SAR for QPSK is <1.45 W/kg and its output power is not more than 0.5 dB higher than that a QPSK.
Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is <1.45 W/kg and its

WLAN Notes:

1. Justification for test configurations for WLAN per KDB Publication 248227 D01 for 2.4 GHz WiFi single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11 g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
2. When the maximum reported 1g averaged SAR is \leq 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was \leq 1.20 W/kg or all test channels were measured.
3. The device was configured to transmit continuously at the required data rated, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated WLAN test reports.
4. According to KDB 248227 D01v02 Sec. 5.2 2.4GHz SAR procedures, for 802.11b DSSS SAR measurement of this device, SAR test procedures was applied to fixed exposure test position.


14. SAR Measurement Variability and Uncertainty

In accordance with published RF Exposure KDB procedure 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR ; steps 2) through 4) do not apply.
- 2) When the original highest measured 1g SAR is ≥ 0.80 W/kg or 10g SAR ≥ 2.0 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg for 1g SAR or ≥ 3.625 W/kg for 10g SAR (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg for 1g SAR or ≥ 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

15. SAR Summation Scenario

According to FCC KDB 447498 D01v05r02, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v05r02.

Applicable Combination	Head	Body-Worn	Hotspot
GSM Voice + 2.4 GHz WiFi	Yes	Yes	N/A
GSM Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A
GPRS/EDGE + 2.4 GHz WiFi	N/A	N/A	Yes
UMTS+ 2.4 GHz WiFi	Yes	Yes	Yes
UMTS+ 2.4 GHz Bluetooth	N/A	Yes	N/A
LTE+ 2.4 GHz WiFi	Yes	Yes	Yes
LTE+ 2.4 GHz Bluetooth	N/A	Yes	N/A

1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share antenna path and cannot transmit simultaneously
2. All licensed modes share the same antenna path and cannot transmit simultaneously.
3. UMTS +WLAN scenario also represents the UMTS Voice/DATA + WLAN hotspot scenario.
4. Per the manufacturer, GPRS does not support VOIP service.
5. Per the manufacturer, WiFi Direct is not expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WiFi direct beyond that listed in the above table.

15.1 Simultaneous Transmission Summation for Head

Simultaneous Transmission Summation with 2.4 GHz WIFI

Band	Scaled SAR	2.4 GHz WIFI Scaled SAR	Σ 1-g SAR
	(W/kg)	(W/kg)	(W/kg)
GSM 850	0.410	0.122	0.532
GSM 1900	0.714	0.122	0.836
WCDMA 850	0.419	0.122	0.541
LTE Band 5	0.350	0.122	0.472

15.2 Simultaneous Transmission Summation for Body-Worn

Simultaneous Transmission Summation with Wifi (1.0 cm)

Band	Scaled SAR	2.4 GHz WIFI Scaled SAR	Σ 1-g SAR
	(W/kg)	(W/kg)	(W/kg)
GSM 850	0.518	0.048	0.566
GSM 1900	0.517	0.048	0.565
WCDMA 850	0.680	0.048	0.728
LTE Band 5	0.519	0.048	0.567

Simultaneous Transmission Summation with Bluetooth (1.0 cm)

Band	Scaled SAR	Estimated SAR BT SAR	Σ 1-g SAR
	(W/kg)	(W/kg)	(W/kg)
GSM 850	0.518	0.17	0.688
GSM 1900	0.517	0.17	0.687
WCDMA 850	0.680	0.17	0.850
LTE Band 5	0.519	0.17	0.689

* Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used for SAR summation for body-worn back side at 10 mm to determine simultaneous transmission SAR test exclusion.

15.3 Simultaneous Transmission Summation for Hotspot

Simultaneous Transmission Summation with 2.4 GHz WIFI (1.0 cm)

Band	Scaled SAR	2.4 GHz WIFI Scaled SAR	Σ 1-g SAR
	(W/kg)	(W/kg)	(W/kg)
GSM 850	0.573	0.048	0.621
GSM 1900	0.714	0.048	0.762
WCDMA 850	0.680	0.048	0.728
LTE Band 5	0.519	0.048	0.567

15.4 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05r02.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

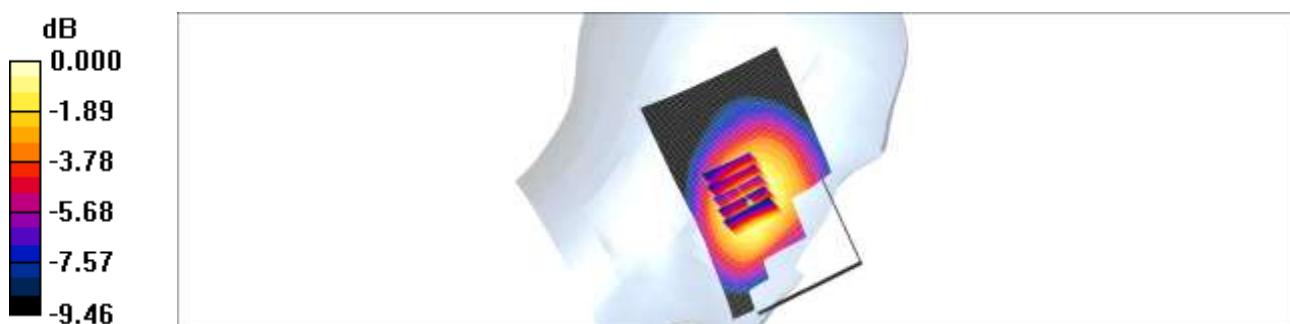
17. REFERENCES

- [1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [3] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [4] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.
- [5] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [6] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [7] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [8] K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [9] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [10] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [11] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [12] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [13] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [14] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Receipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [16] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [17] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields
High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [18] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [19] SAR Evaluation of Handsets with Multiple Transmitters and Antennas #648474.
- [20] SAR Measurement Procedure for 802.11 a/b/g Transmitters #KDB 248227.

Attachment 1. – SAR Test Plots

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.2 °C
Ambient Temperature: 18.4 °C
Test Date: Apr. 28, 2015
Plot No.: 1

DUT: SM-G361F; Type: Bar


Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3
Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1631; ConvF(6.37, 6.37, 6.37); Calibrated: 2015-01-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2015-03-18
- Phantom: 835/900 Phantom; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Left Touch 190ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.337 mW/g

GSM850 Left Touch 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 6.18 V/m; Power Drift = 0.156 dB
Peak SAR (extrapolated) = 0.394 W/kg
SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.237 mW/g
Maximum value of SAR (measured) = 0.339 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 19.8 °C
Ambient Temperature: 20.0 °C
Test Date: Apr. 30, 2015
Plot No.: 2

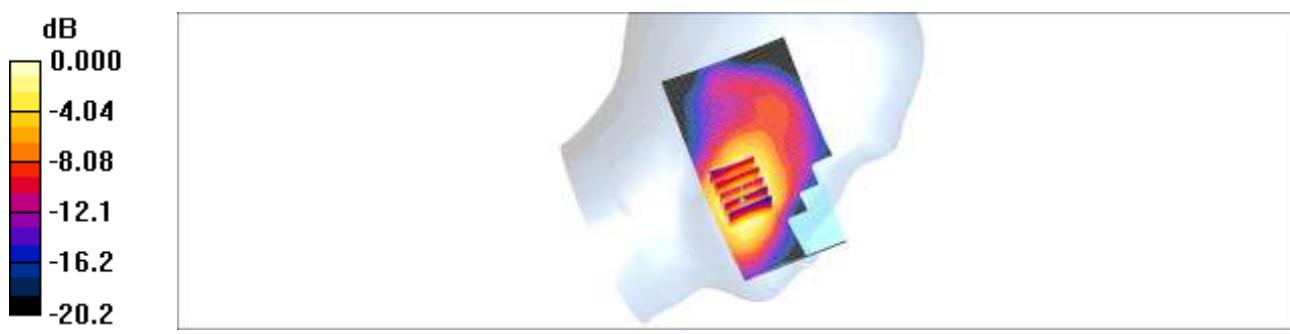
DUT: SM-G361F; Type: Bar

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³
Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(8.02, 8.02, 8.02); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: 1800/1900 Phantom; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Head Left Touch 661ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.822 mW/g


GSM1900 Head Left Touch 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.36 V/m; Power Drift = -0.147 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.657 mW/g; SAR(10 g) = 0.397 mW/g

Maximum value of SAR (measured) = 0.859 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.2 °C
Ambient Temperature: 18.4 °C
Test Date: Apr. 28, 2015
Plot No.: 3

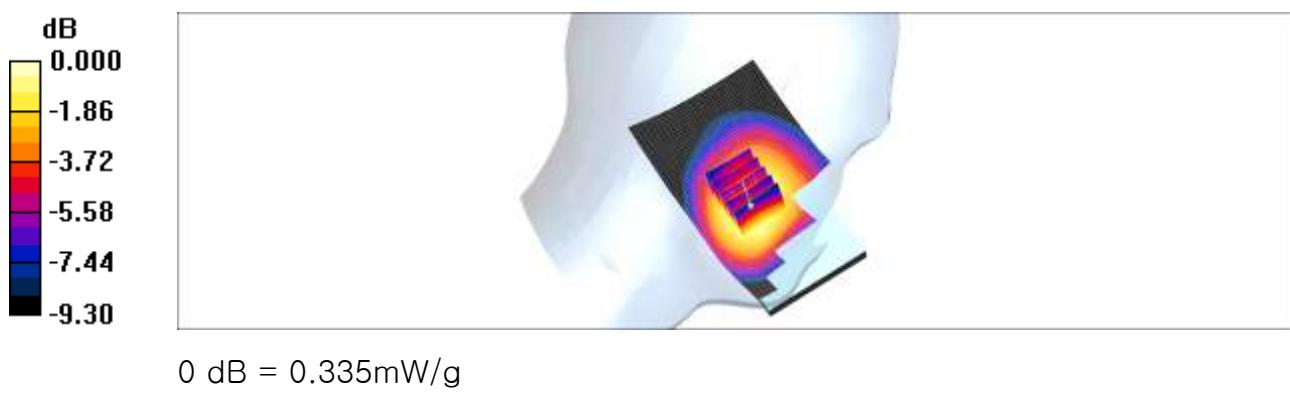
DUT: SM-G361F; Type: Bar

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1631; ConvF(6.37, 6.37, 6.37); Calibrated: 2015-01-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2015-03-18
- Phantom: 835/900 Phantom; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA850 Left Touch 4183ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.336 mW/g


WCDMA850 Left Touch 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.81 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.239 mW/g

Maximum value of SAR (measured) = 0.335 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.2 °C
Ambient Temperature: 18.4 °C
Test Date: Apr. 28, 2015
Plot No.: 4

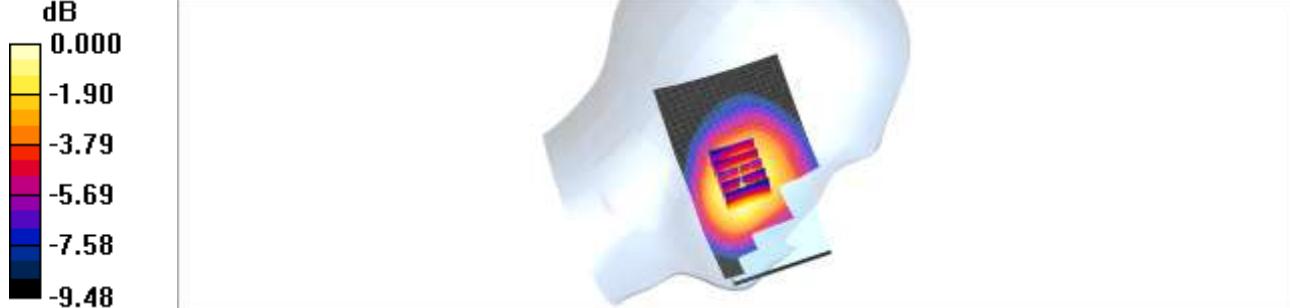
DUT: SM-G361F; Type: Bar

Communication System: LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 836.5$ MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1631; ConvF(6.37, 6.37, 6.37); Calibrated: 2015-01-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2015-03-18
- Phantom: 835/900 Phantom; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE 5 Left Touch QPSK 10MHz 1RB 49offset 20525ch/Area Scan (61x101x1): Measurement grid:
dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.312 mW/g


LTE 5 Left Touch QPSK 10MHz 1RB 49offset 20525ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid:
dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.90 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.221 mW/g

Maximum value of SAR (measured) = 0.314 mW/g

0 dB = 0.314mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.6 °C
Ambient Temperature: 18.8 °C
Test Date: May. 06, 2015
Plot No.: 5

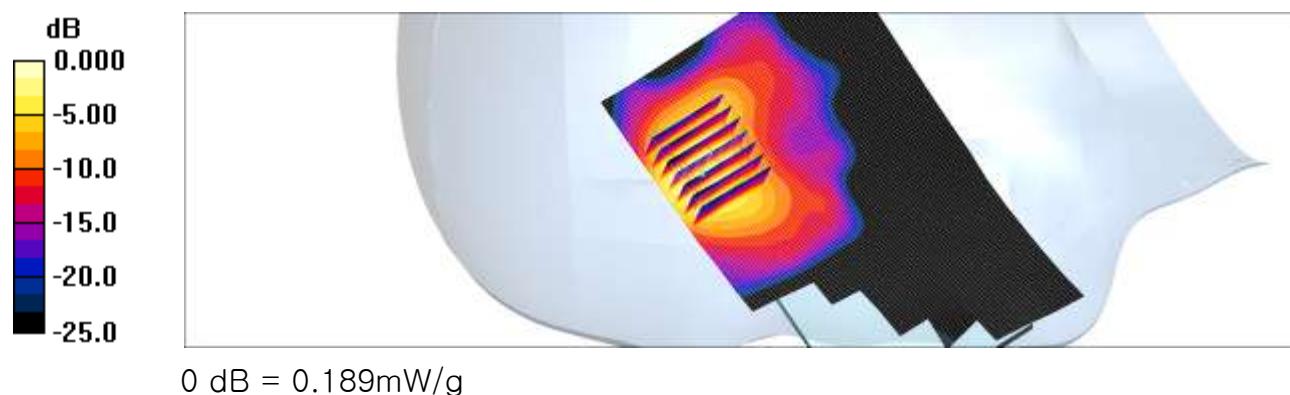
DUT: SM-G361F; Type: Bar

Communication System: 2450MHz FCC; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.78$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³
Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(7.15, 7.15, 7.15); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: SAM Phantom Right; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Head Right Touch 1Mbps 6ch/Area Scan (81x131x1): Measurement grid: dx=12mm, dy=12mm
Maximum value of SAR (interpolated) = 0.193 mW/g


802.11b Head Right Touch 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.41 V/m; Power Drift = 0.171 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.055 mW/g

Maximum value of SAR (measured) = 0.189 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.9 °C
Ambient Temperature: 19.1 °C
Test Date: Apr. 28, 2015
Plot No.: 6

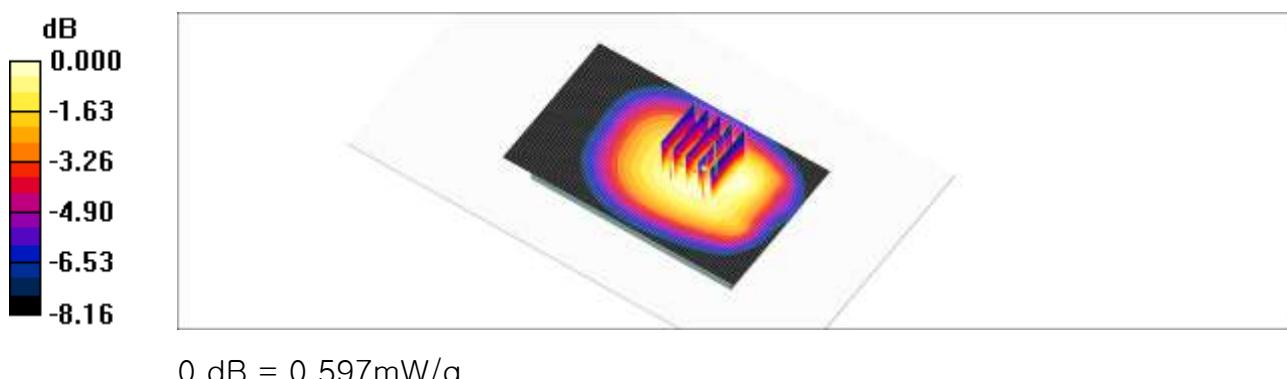
DUT: SM-G361F; Type: Bar

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77
Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.981$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(9.43, 9.43, 9.43); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear 3Tx 190ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.599 mW/g


GSM850 Body Rear 3Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 0.657 W/kg

SAR(1 g) = 0.520 mW/g; SAR(10 g) = 0.398 mW/g

Maximum value of SAR (measured) = 0.597 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 19.8 °C
Ambient Temperature: 20.0 °C
Test Date: Apr. 30, 2015
Plot No.: 7

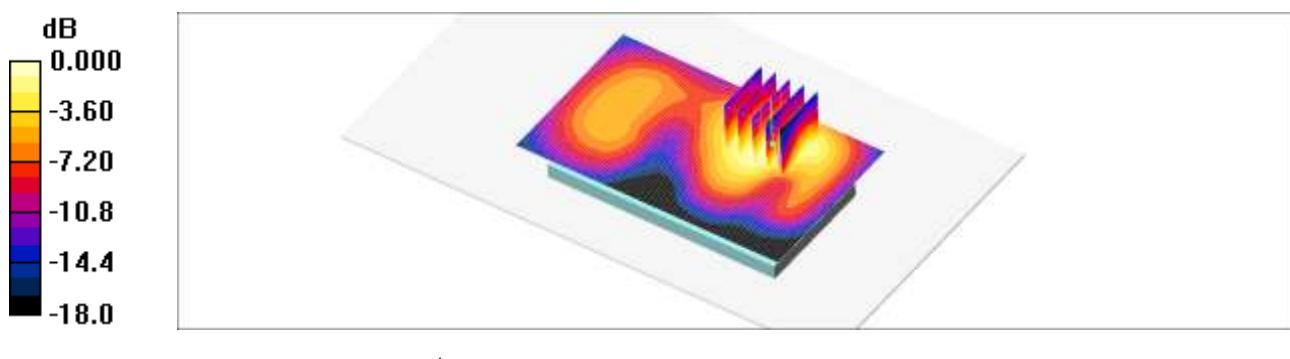
DUT: SM-G361F; Type: Bar

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(7.36, 7.36, 7.36); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Body Rear 2Tx 661ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.814 mW/g


GSM1900 Body Rear 2Tx 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.68 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 0.985 W/kg

SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.380 mW/g

Maximum value of SAR (measured) = 0.804 mW/g

0 dB = 0.804mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.9 °C
Ambient Temperature: 19.1 °C
Test Date: Apr. 28, 2015
Plot No.: 8

DUT: SM-G361F; Type: Bar

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.981$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(9.43, 9.43, 9.43); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA850 Body Rear 4183ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.596 mW/g

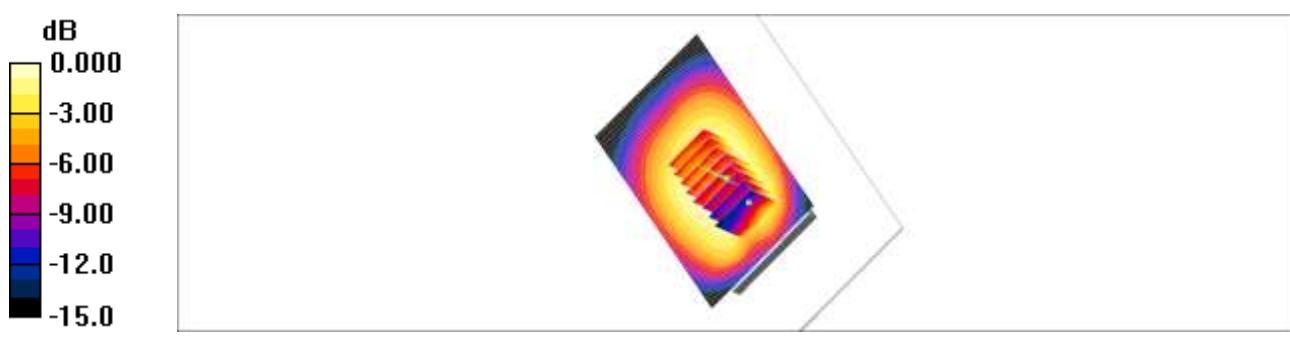
WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.8 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.661 W/kg

SAR(1 g) = 0.515 mW/g; SAR(10 g) = 0.386 mW/g

Maximum value of SAR (measured) = 0.595 mW/g


WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.8 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.652 W/kg

SAR(1 g) = 0.481 mW/g; SAR(10 g) = 0.324 mW/g

Maximum value of SAR (measured) = 0.580 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.9 °C
Ambient Temperature: 19.1 °C
Test Date: Apr. 28, 2015
Plot No.: 9

DUT: SM-G361F; Type: Bar

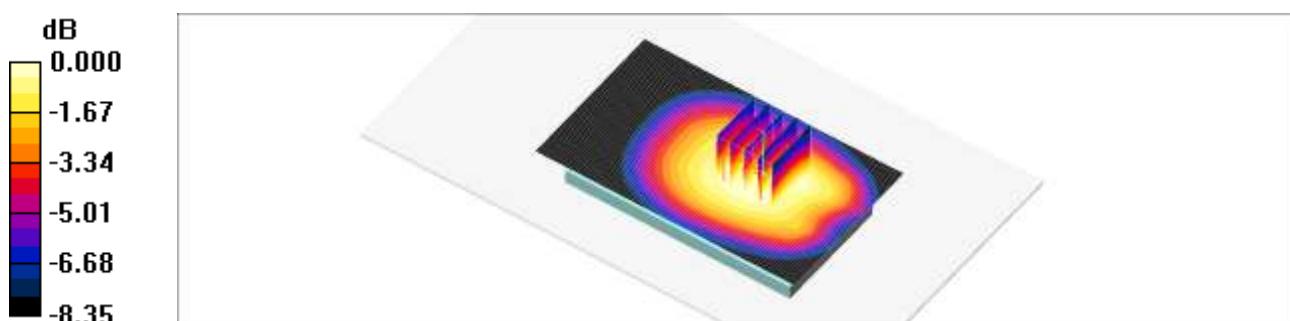
Communication System: LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 836.5$ MHz; $\sigma = 0.981$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(9.43, 9.43, 9.43); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 5 Body Rear QPSK 10MHz 1RB 49 offset 20525ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.496 mW/g


LTE Band 5 Body Rear QPSK 10MHz 1RB 49 offset 20525ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.438 mW/g; SAR(10 g) = 0.336 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

0 dB = 0.500mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.6 °C
Ambient Temperature: 18.8 °C
Test Date: May. 06, 2015
Plot No.: 10

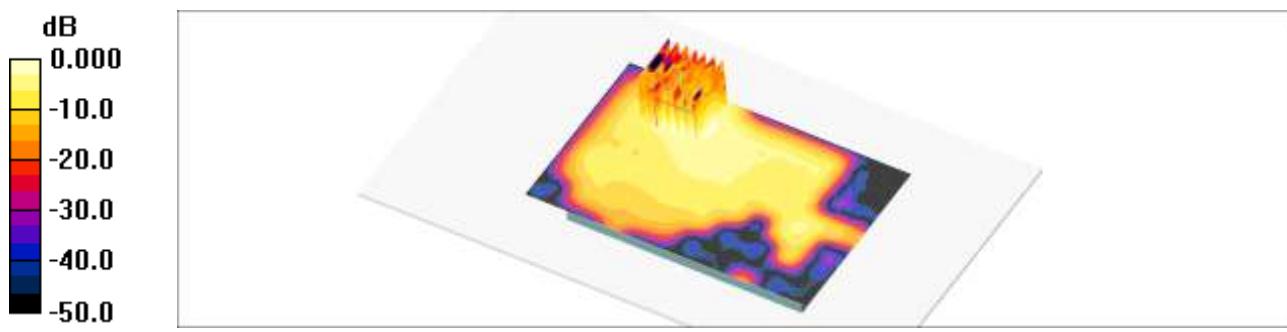
DUT: SM-G361F; Type: Bar

Communication System: 2450MHz FCC; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(6.97, 6.97, 6.97); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Body Rear 1Mbps 6ch/Area Scan (81x131x1): Measurement grid: dx=12mm, dy=12mm
Maximum value of SAR (interpolated) = 0.078 mW/g


802.11b Body Rear 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.34 V/m; Power Drift = 0.18 dB

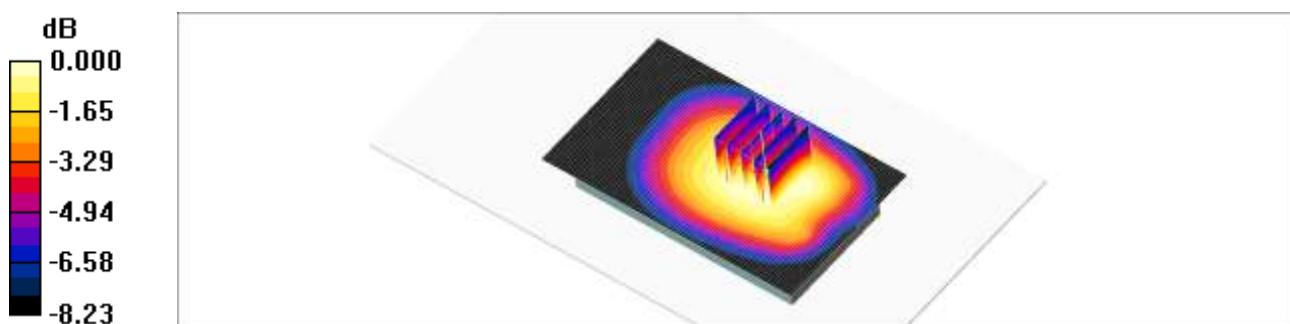
Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.047 mW/g; SAR(10 g) = 0.019 mW/g

Maximum value of SAR (measured) = 0.074 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 18.9 °C
Ambient Temperature: 19.1 °C
Test Date: Apr. 28, 2015
Plot No.: 11

DUT: SM-G361F; Type: Bar


Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3
Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.981$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(9.43, 9.43, 9.43); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

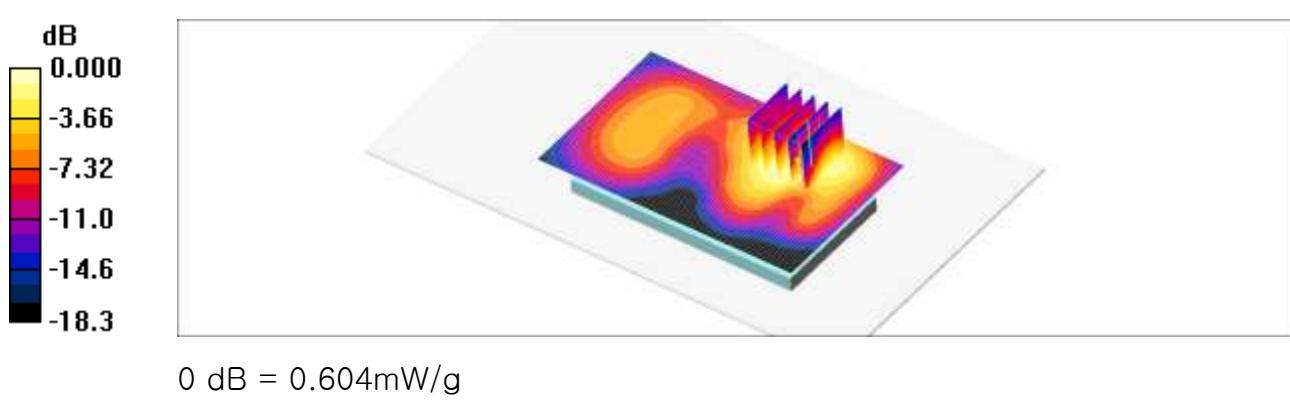
GSM850 Body Rear 190ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.462 mW/g

GSM850 Body Rear 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 19.1 V/m; Power Drift = -0.139 dB
Peak SAR (extrapolated) = 0.509 W/kg
SAR(1 g) = 0.400 mW/g; SAR(10 g) = 0.305 mW/g
Maximum value of SAR (measured) = 0.457 mW/g

0 dB = 0.457mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Mobile Phone
Liquid Temperature: 19.8 °C
Ambient Temperature: 20.0 °C
Test Date: Apr. 30, 2015
Plot No.: 12

DUT: SM-G361F; Type: Bar


Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(7.36, 7.36, 7.36); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Body Rear 661ch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.602 mW/g

GSM1900 Body Rear 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.63 V/m; Power Drift = 0.168 dB
Peak SAR (extrapolated) = 0.742 W/kg
SAR(1 g) = 0.476 mW/g; SAR(10 g) = 0.286 mW/g
Maximum value of SAR (measured) = 0.604 mW/g

Attachment 2. – Dipole Verification Plots

■ Verification Data (835 MHz Head)

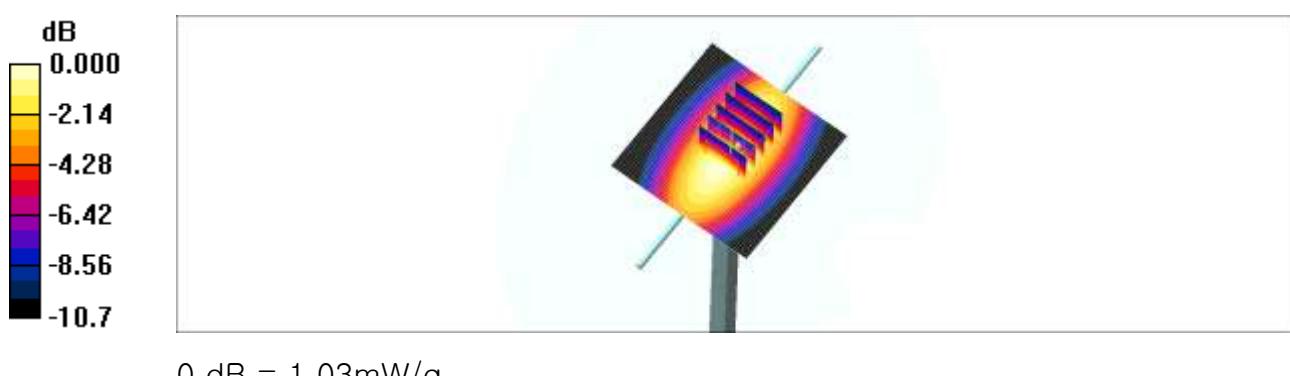
Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)
Liquid Temp: 18.2 °C
Test Date: Apr. 28, 2015

DUT: Dipole 835 MHz; Type: D835V2

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 835$ MHz; $\sigma = 0.919$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1631; ConvF(6.37, 6.37, 6.37); Calibrated: 2015-01-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2015-03-18
- Phantom: 835/900 Phantom; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186


835MHz Head Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.03 mW/g

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 34.9 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.632 mW/g

Maximum value of SAR (measured) = 1.03 mW/g

■ Verification Data (835 MHz Body)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 18.9 °C

Test Date: Apr. 28, 2015

DUT: Dipole 835 MHz; Type: D835V2

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835 \text{ MHz}$; $\sigma = 0.979 \text{ mho/m}$; $\epsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

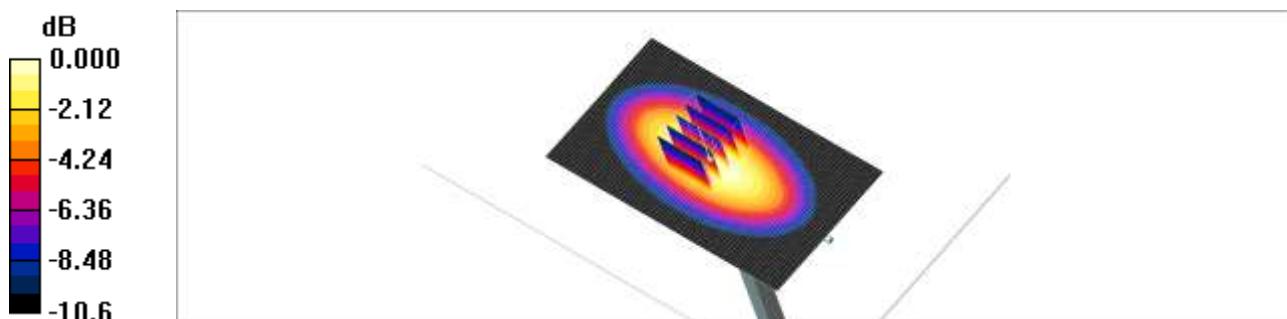
Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(9.43, 9.43, 9.43); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz Body Verification/Area Scan (111x61x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 1.04 mW/g


835MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 32.5 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.622 mW/g

Maximum value of SAR (measured) = 1.03 mW/g

0 dB = 1.03mW/g

■ Verification Data (1 900 MHz Head)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 19.8 °C

Test Date: Apr. 30, 2015

DUT: Dipole 1900 MHz; Type: D1900V2

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(8.02, 8.02, 8.02); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: 1800/1900 Phantom; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz Head Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 4.81 mW/g

1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 56.6 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 7.92 W/kg

SAR(1 g) = 4.11 mW/g; SAR(10 g) = 2.1 mW/g

Maximum value of SAR (measured) = 4.49 mW/g

■ Verification Data (1 900 MHz Body)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 19.8 °C

Test Date: Apr. 30, 2015

DUT: Dipole 1900 MHz; Type: D1900V2

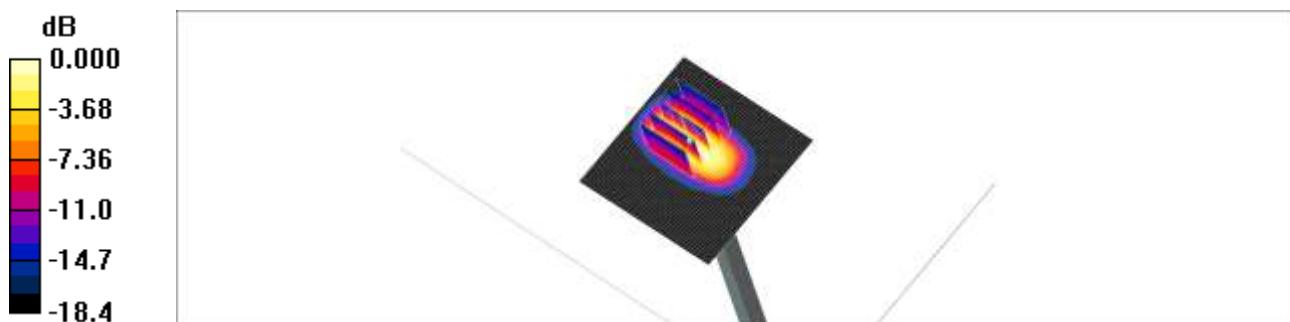
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(7.36, 7.36, 7.36); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186


1900MHz Body Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 5.99 mW/g

1900MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 41.3 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 8.23 W/kg

SAR(1 g) = 4.02 mW/g; SAR(10 g) = 1.9 mW/g

Maximum value of SAR (measured) = 4.54 mW/g

■ Verification Data (2 450 MHz Head)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 18.6 °C

Test Date: May. 06, 2015

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³

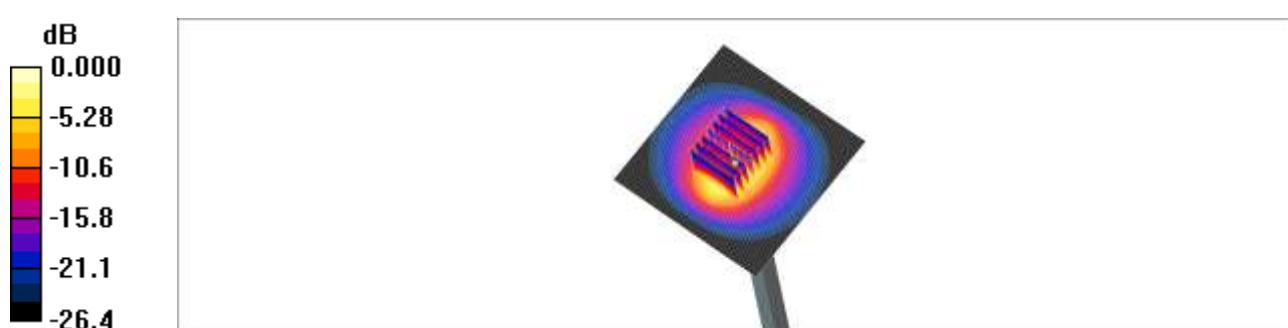
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(7.15, 7.15, 7.15); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: SAM Phantom Right; Type: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Head Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 8.77 mW/g


2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.2 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 12.5 W/kg

SAR(1 g) = 5.36 mW/g; SAR(10 g) = 2.34 mW/g

Maximum value of SAR (measured) = 8.48 mW/g

0 dB = 8.48mW/g

■ Verification Data (2 450 MHz Body)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 18.6 °C

Test Date: May. 06, 2015

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

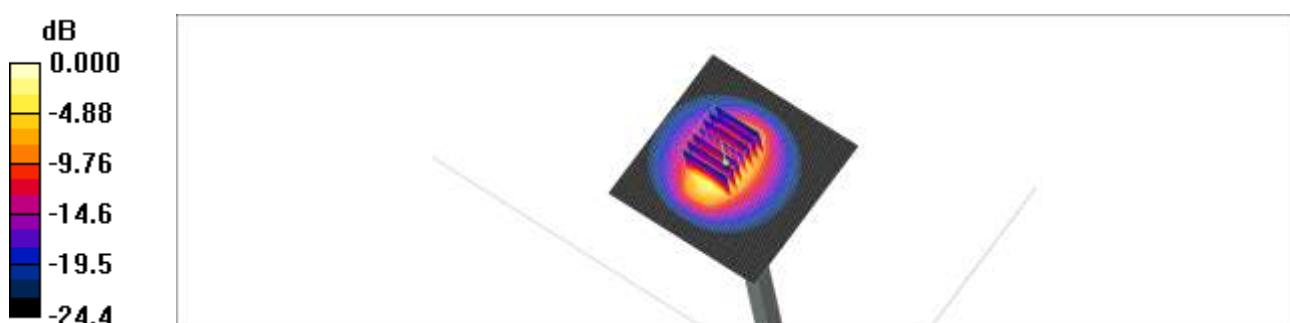
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3863; ConvF(6.97, 6.97, 6.97); Calibrated: 2014-07-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2015-02-24
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Body Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm
Maximum value of SAR (interpolated) = 8.33 mW/g


2450MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.9 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 11.4 W/kg

SAR(1 g) = 5.13 mW/g; SAR(10 g) = 2.28 mW/g

Maximum value of SAR (measured) = 8.11 mW/g

Attachment 3. – Probe Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **HCT (Dymstec)**Certificate No: **ET3-1631_Jan15**

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1631**Calibration procedure(s) **QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6**
Calibration procedure for dosimetric E-field probesCalibration date: **January 28, 2015**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293B74	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dect14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-15
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8548C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name Claudio Leutler	Function Laboratory Technician	Signature
Approved by:	Name Katja Pokovic	Function Technical Manager	Signature

Issued: January 28, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di toratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., $\beta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f_{x,y,z} = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCP_{x,y,z}$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}$: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and Inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

ET3DV6 – SN:1631

January 28, 2015

Probe ET3DV6

SN:1631

Manufactured: October 12, 2001
Calibrated: January 28, 2015

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

ET3DV6- SN:1631

January 28, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1631**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/ μ (V/m)) ^a	1.77	1.82	1.72	\pm 10.1 %
DCP (mV) ^b	101.9	99.0	101.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Unc ^c (k=2)
0	CW	X	0.0	0.0	1.0	0.00	257.3	\pm 3.5 %
		Y	0.0	0.0	1.0		227.8	
		Z	0.0	0.0	1.0		251.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6-SN:1631

January 28, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1631**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unct. (k=2)
300	45.3	0.87	7.67	7.67	7.67	0.20	2.25	± 13.3 %
450	43.5	0.87	7.47	7.47	7.47	0.26	2.75	± 13.3 %
750	41.9	0.89	6.65	6.65	6.65	0.56	1.98	± 12.0 %
835	41.5	0.90	6.37	6.37	6.37	0.30	3.00	± 12.0 %
900	41.5	0.97	6.25	6.25	6.25	0.30	3.00	± 12.0 %
1750	40.1	1.37	5.34	5.34	5.34	0.56	2.54	± 12.0 %
1900	40.0	1.40	5.09	5.09	5.09	0.80	2.08	± 12.0 %
1950	40.0	1.40	4.92	4.92	4.92	0.80	2.05	± 12.0 %
2300	39.5	1.67	4.77	4.77	4.77	0.80	1.90	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.80	1.90	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

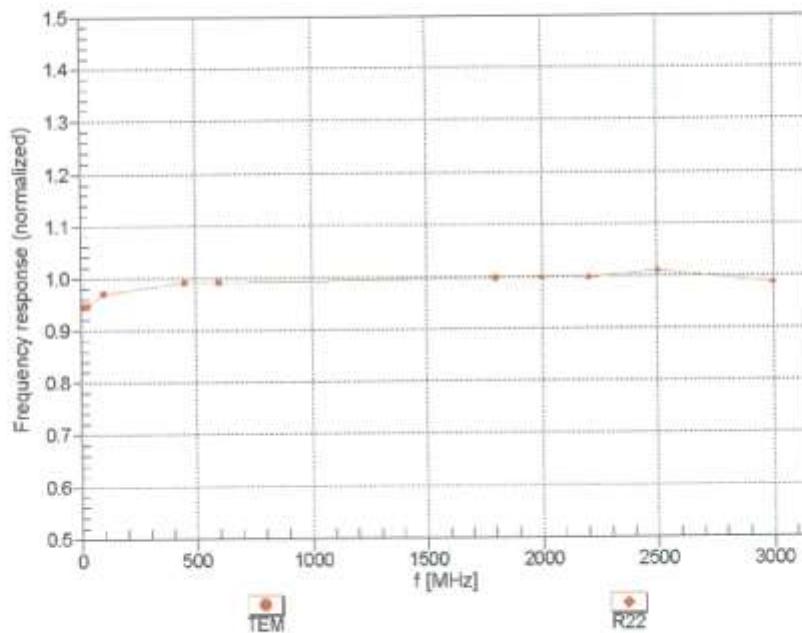
^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ET3DV6-SN:1631

January 28, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1631**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^h (mm)	Unct. (k=2)
300	58.2	0.92	7.39	7.39	7.39	0.15	1.70	± 13.3 %
450	56.7	0.94	7.54	7.54	7.54	0.18	2.11	± 13.3 %
750	55.5	0.96	6.26	6.26	6.26	0.28	3.00	± 12.0 %
835	55.2	0.97	6.22	6.22	6.22	0.31	2.88	± 12.0 %
1750	53.4	1.49	4.87	4.87	4.87	0.78	2.50	± 12.0 %
1900	53.3	1.52	4.87	4.87	4.87	0.80	2.40	± 12.0 %
2450	52.7	1.95	4.24	4.24	4.24	0.80	1.80	± 12.0 %

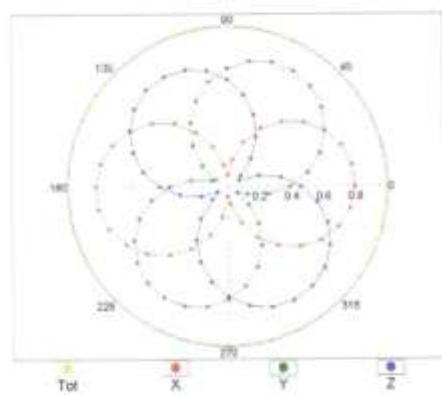

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

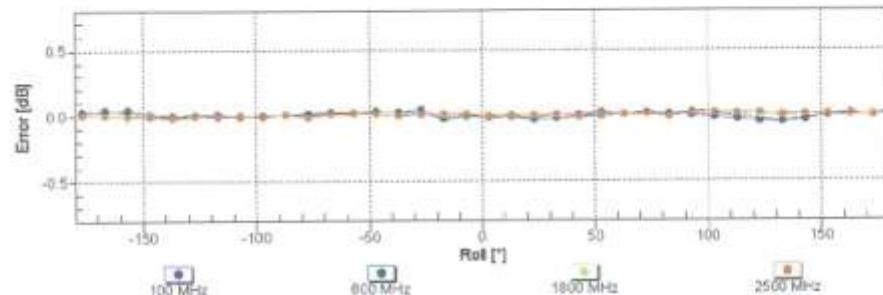
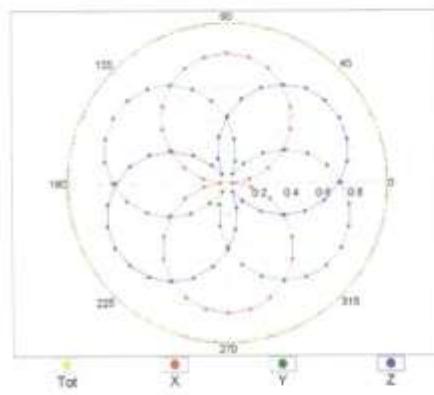
^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ET3DV6- SN:1631

January 28, 2015

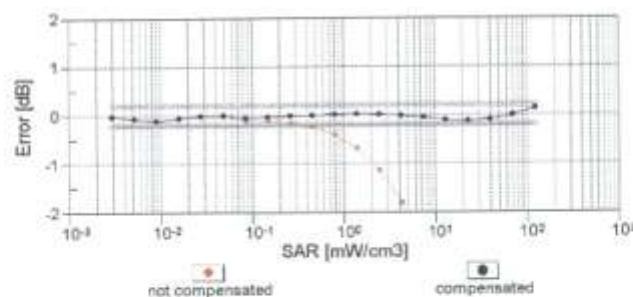
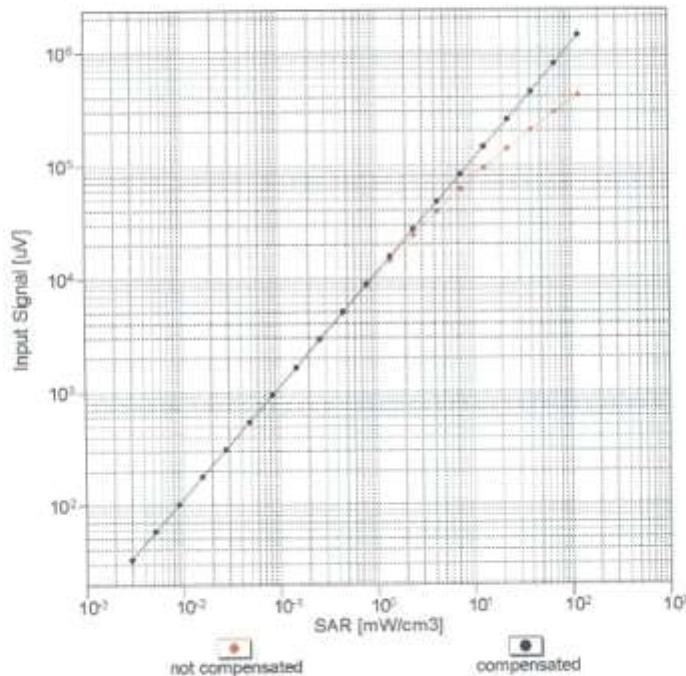

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

ET3DV6-SN:1631



January 28, 2015

Receiving Pattern (ϕ), $\theta = 0^\circ$

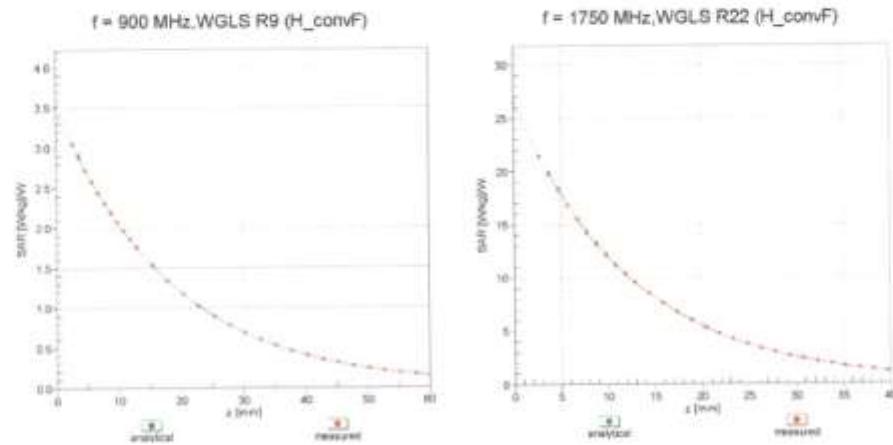
f=600 MHz, TEM

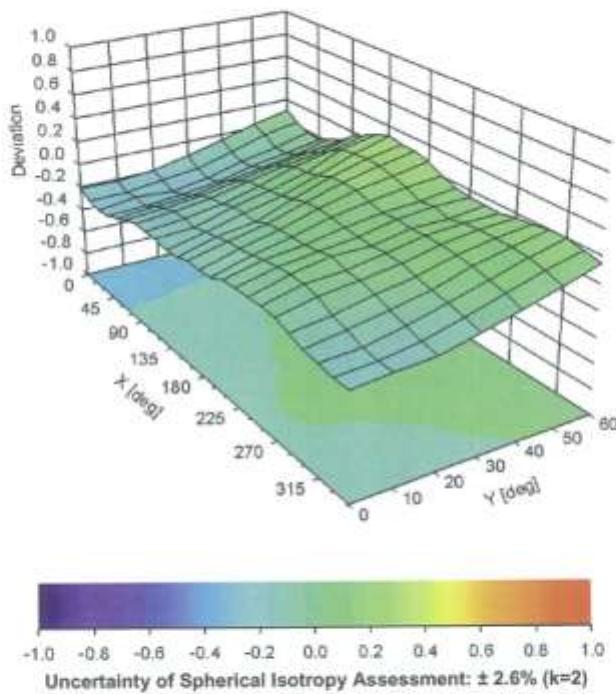
f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

ET3DV6- SN:1631


January 28, 2015

Dynamic Range f(SAR_{head})
(TEM cell, f_{eval}= 1900 MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


ET3DV6-SN:1631

January 28, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900$ MHz

ET3DV6- SN:1631

January 28, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1631**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-136.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **HCT (Dymstec)**Certificate No: **EX3-3863_Jul14**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3863**Calibration procedure(s) **QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6**
Calibration procedure for dosimetric E-field probesCalibration date: **July 24, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration):

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES30V2	SN: 3013	30-Dec-13 (No. E53-3013_Dec13)	Dec-14
DAE4	SN: 860	13-Dec-13 (No. DAE4-860_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name	Function	Signature
	Jelton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: July 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3863_Jul14

Page 1 of 11

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	Information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORM_{x,y,z} * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 – SN:3863

July 24, 2014

Probe EX3DV4

SN:3863

Manufactured: February 2, 2012
Calibrated: July 24, 2014

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3863

July 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) 2) ^A	0.37	0.35	0.45	\pm 10.1 %
DCP (mV) ^B	99.8	98.7	100.6	

Modulation Calibration Parameters

UID	Communication System Name	A dB	B dB/ μ V	C	D dB	VR mV	Unc ^C (k=2)
0	CW	X 0.0	0.0	1.0	0.00	133.0	\pm 2.5 %
		Y 0.0	0.0	1.0		131.3	
		Z 0.0	0.0	1.0		149.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3863

July 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^h (mm)	Unct. (k=2)
835	41.5	0.90	9.50	9.50	9.50	0.80	0.50	± 12.0 %
900	41.5	0.97	9.21	9.21	9.21	0.59	0.71	± 12.0 %
1450	40.5	1.20	8.50	8.50	8.50	0.66	0.65	± 12.0 %
1750	40.1	1.37	8.38	8.38	8.38	0.75	0.58	± 12.0 %
1900	40.0	1.40	8.02	8.02	8.02	0.78	0.59	± 12.0 %
1950	40.0	1.40	7.71	7.71	7.71	0.56	0.70	± 12.0 %
2300	39.5	1.67	7.48	7.48	7.48	0.54	0.69	± 12.0 %
2450	39.2	1.80	7.15	7.15	7.15	0.70	0.59	± 12.0 %
2600	39.0	1.96	7.05	7.05	7.05	0.50	0.74	± 12.0 %
5200	36.0	4.66	4.98	4.98	4.98	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.77	4.77	4.77	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.76	4.76	4.76	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.58	4.58	4.58	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.55	4.55	4.55	0.45	1.80	± 13.1 %

^c Frequency validity above 300 MHz or ± 100 MHz only applied for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

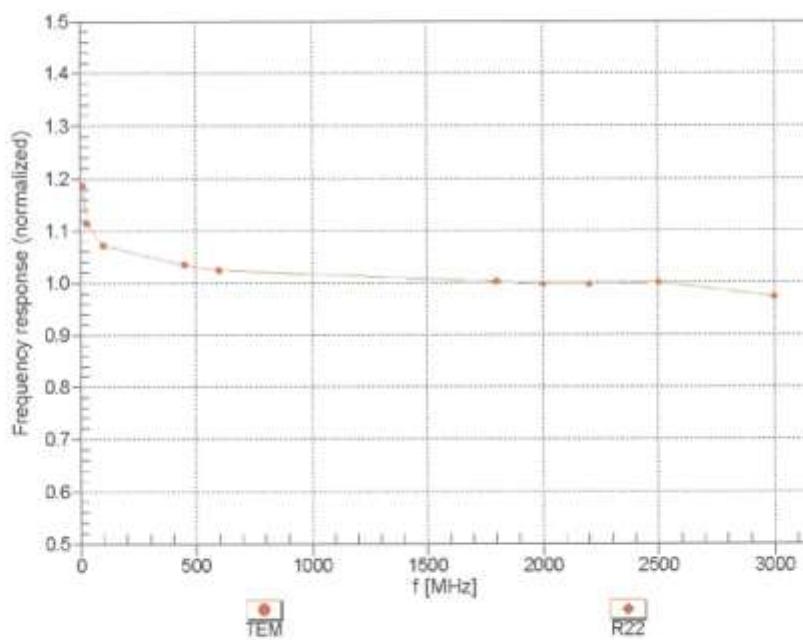
EX3DV4-SN:3863

July 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^e	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^h (mm)	Unct. (k=2)
835	55.2	0.97	9.43	9.43	9.43	0.80	0.61	± 12.0 %
1750	53.4	1.49	7.80	7.80	7.80	0.52	0.75	± 12.0 %
1900	53.3	1.52	7.36	7.36	7.36	0.26	1.18	± 12.0 %
2450	52.7	1.95	6.97	6.97	6.97	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.87	6.87	6.87	0.63	0.50	± 12.0 %
5200	49.0	5.30	4.50	4.50	4.50	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.27	4.27	4.27	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.01	4.01	4.01	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.83	3.83	3.83	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.07	4.07	4.07	0.50	1.90	± 13.1 %

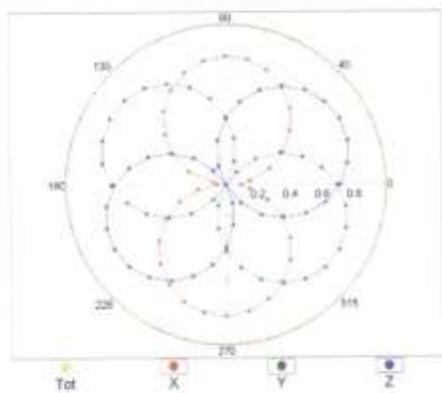

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^e At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

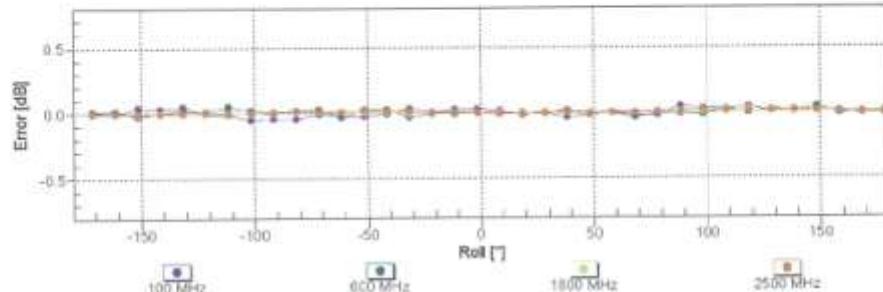
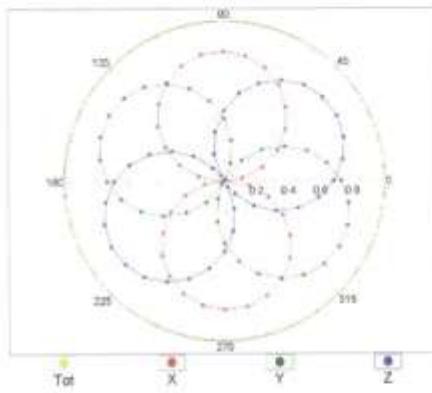
^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3863

July 24, 2014

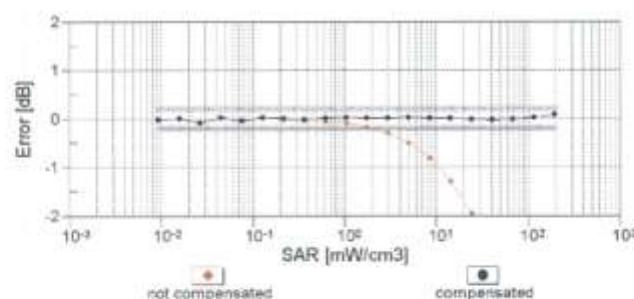
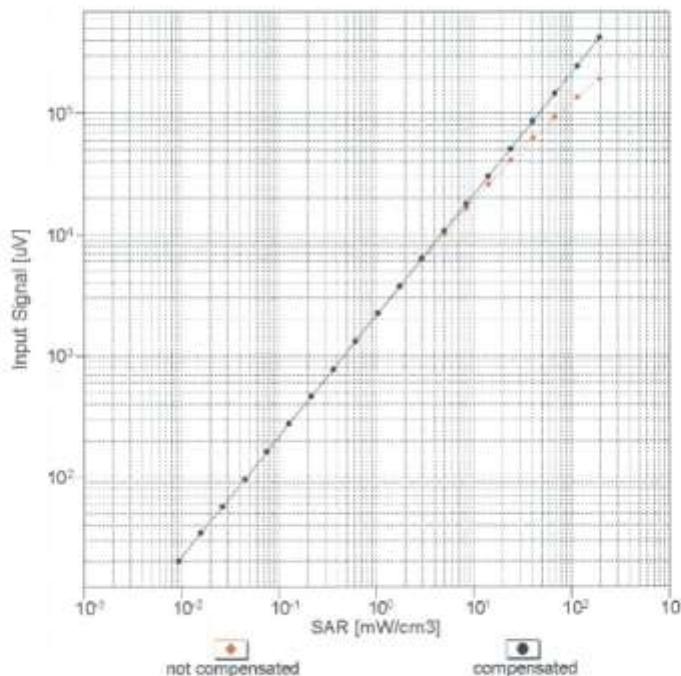

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

EX3DV4- SN:3863



July 24, 2014

Receiving Pattern (ϕ), $\theta = 0^\circ$

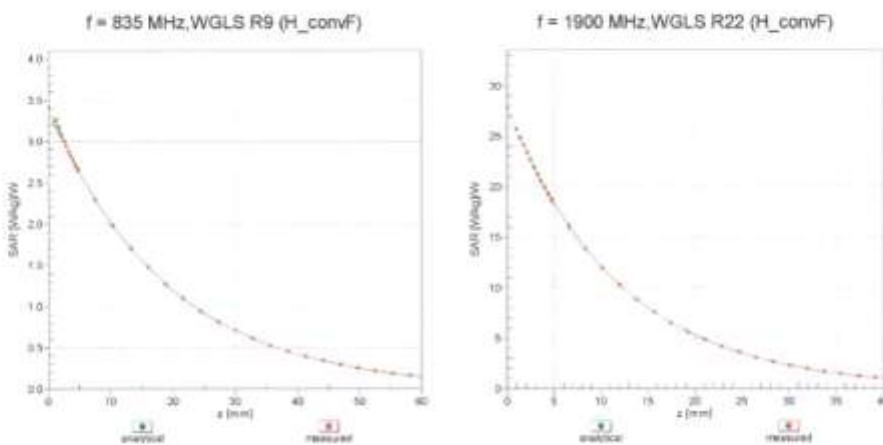
f=600 MHz, TEM

f=1800 MHz, R22

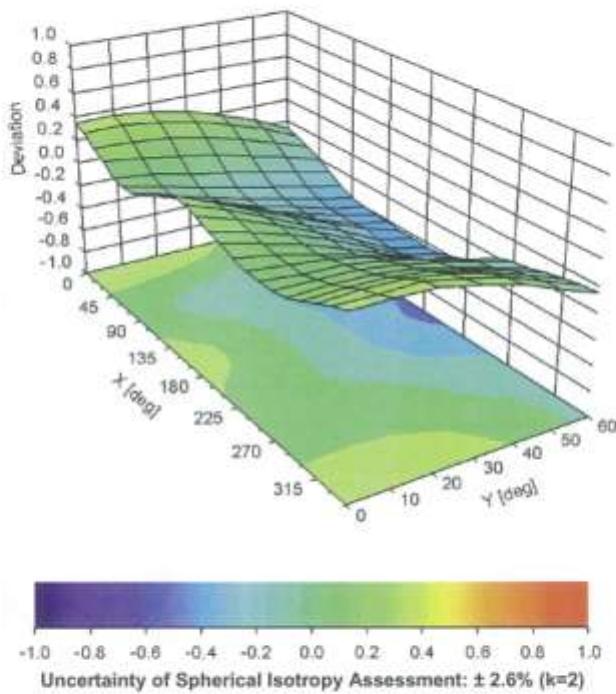
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

EX3DV4- SN:3863


July 24, 2014

Dynamic Range f(SAR_{head})
(TEM cell, f_{eval}= 1900 MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

EX3DV4- SN:3863


July 24, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3863

July 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-71.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **HCT (Dymstec)**Certificate No: **D835V2-441_Jan15**

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 441**Calibration procedure(s) **QA CAL-05.v9**
Calibration procedure for dipole validation kits above 700 MHzCalibration date: **January 23, 2015**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-15
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name	Function	Signature
	Michael Weber	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: January 26, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D835V2-441_Jan15**

Page 1 of 8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.21 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.04 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.14 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	51.7 Ω - 1.0 $\mu\Omega$
Return Loss	- 34.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω - 2.7 $\mu\Omega$
Return Loss	- 27.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,369 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

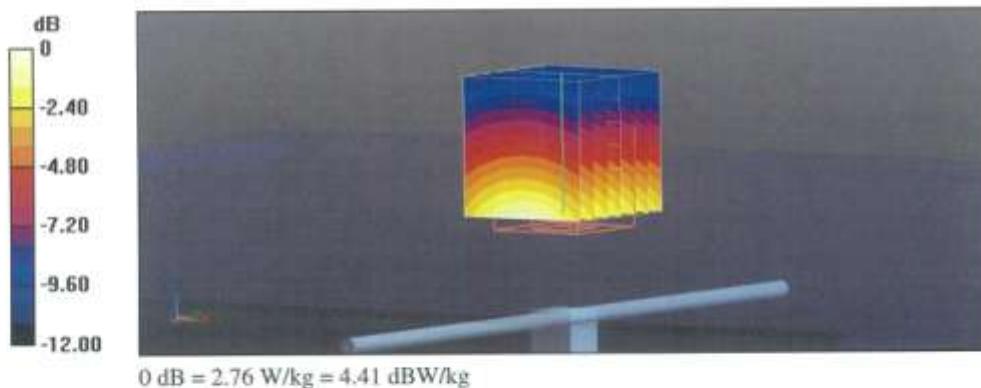
Manufactured by	SPEAG
Manufactured on	March 09, 2001

DASY5 Validation Report for Head TSL

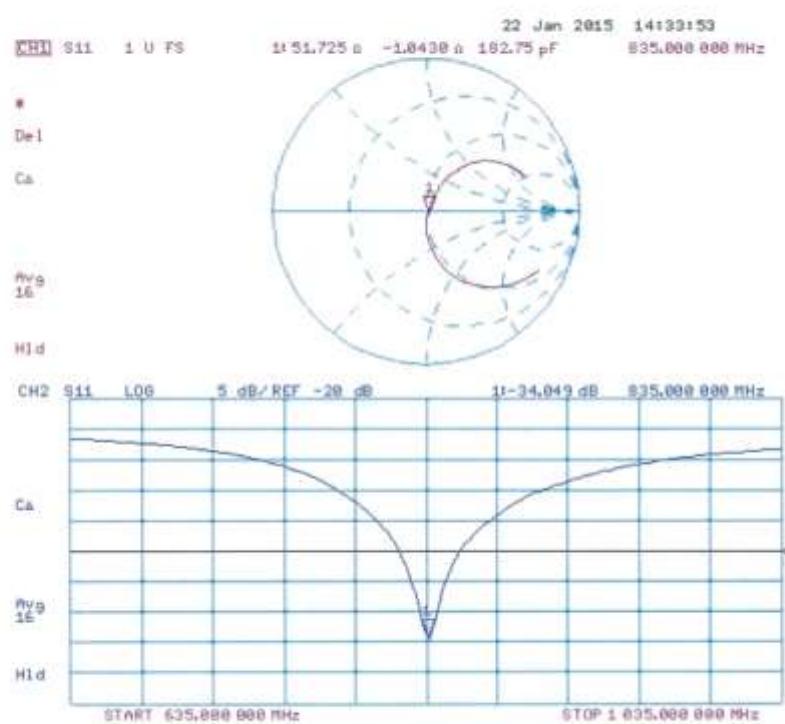
Date: 22.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441


Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $f = 835$ MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 56.43 V/m; Power Drift = -0.04 dB
Peak SAR (extrapolated) = 3.49 W/kg
SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kg
Maximum value of SAR (measured) = 2.76 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.8$; $\rho = 1000$ kg/m³

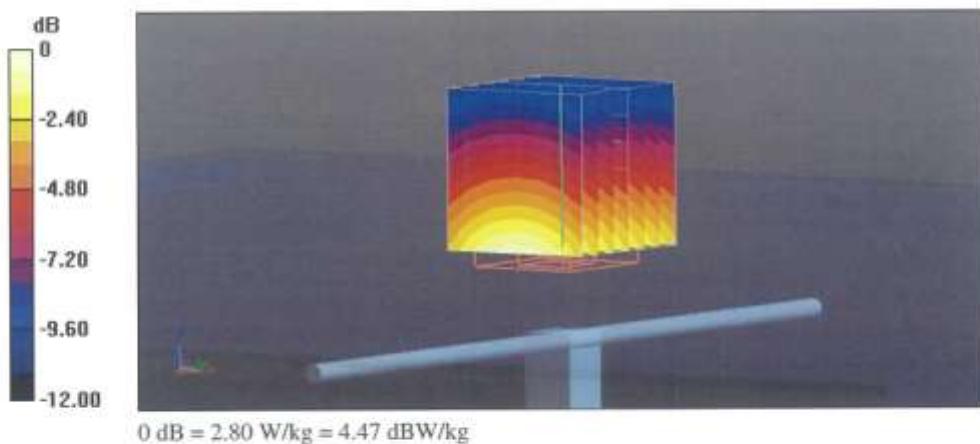
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

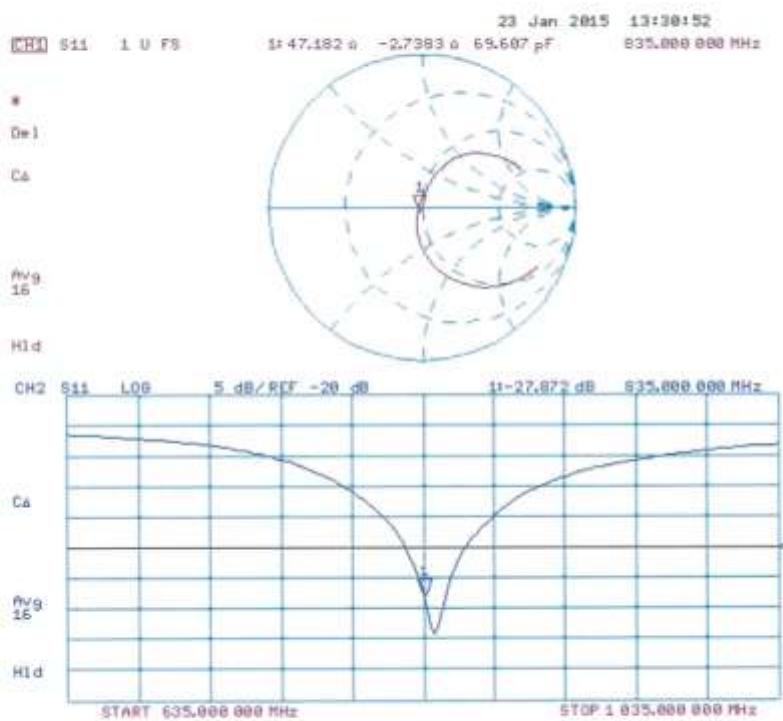
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.59 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **HCT (Dymstec)**Certificate No: **D1900V2-5d061_Jul14**

CALIBRATION CERTIFICATE

Object **D1900V2 - SN: 5d061**Calibration procedure(s) **QA CAL-05.v9**
Calibration procedure for dipole validation kits above 700 MHzCalibration date: **July 23, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe E53DV3	SN: 3205	30-Dec-13 (No. E53-3205_Dec13)	Dec-14
DAE4	SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-09 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: July 23, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D1900V2-5d061_Jul14**

Page 1 of 8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	51.1 Ω + 6.2 $j\Omega$
Return Loss	- 24.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω + 7.0 $j\Omega$
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

DASY5 Validation Report for Head TSL

Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d061

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

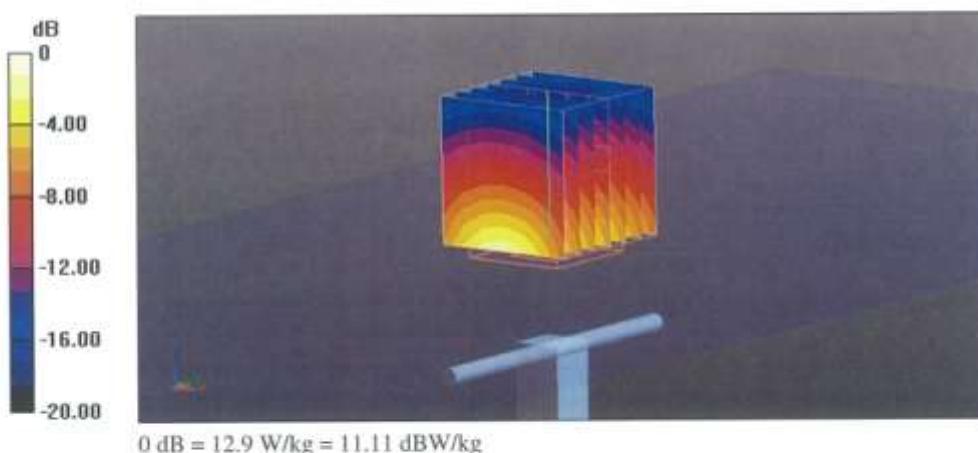
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

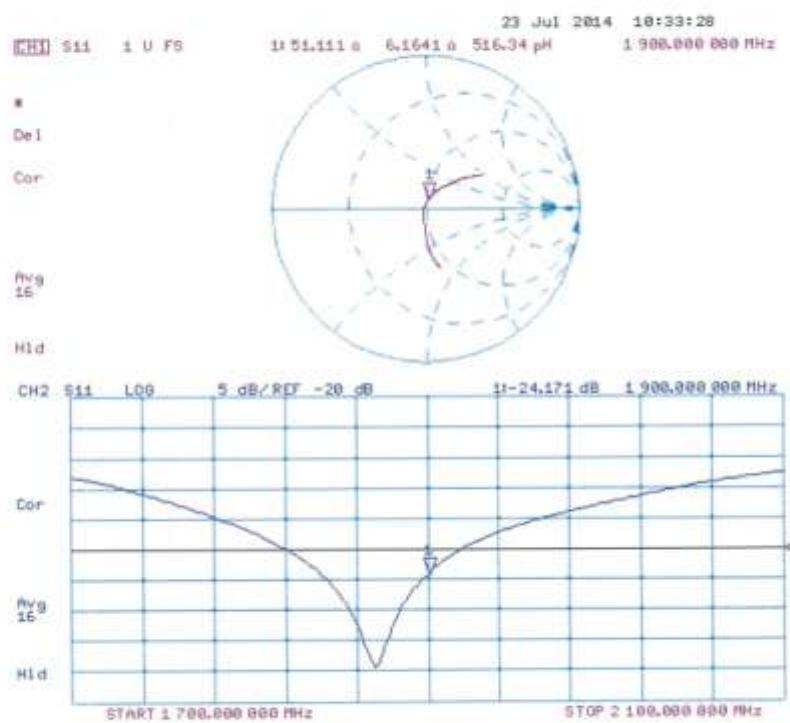
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.40 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

Impedance Measurement Plot for Head TSL.

DASY5 Validation Report for Body TSL

Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d061

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

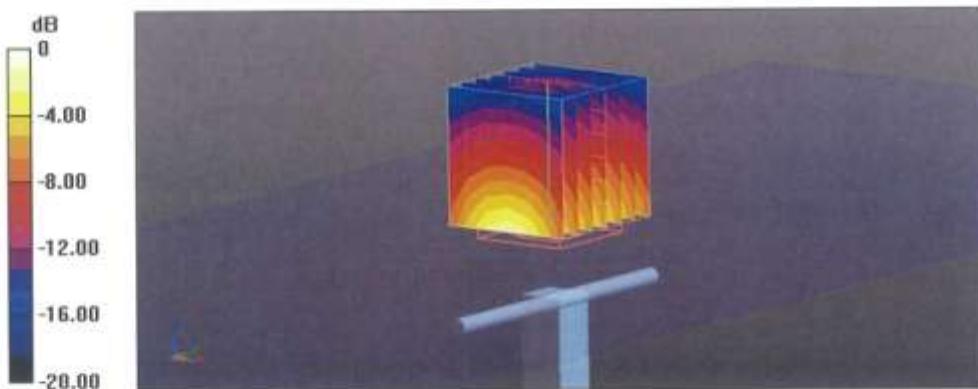
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

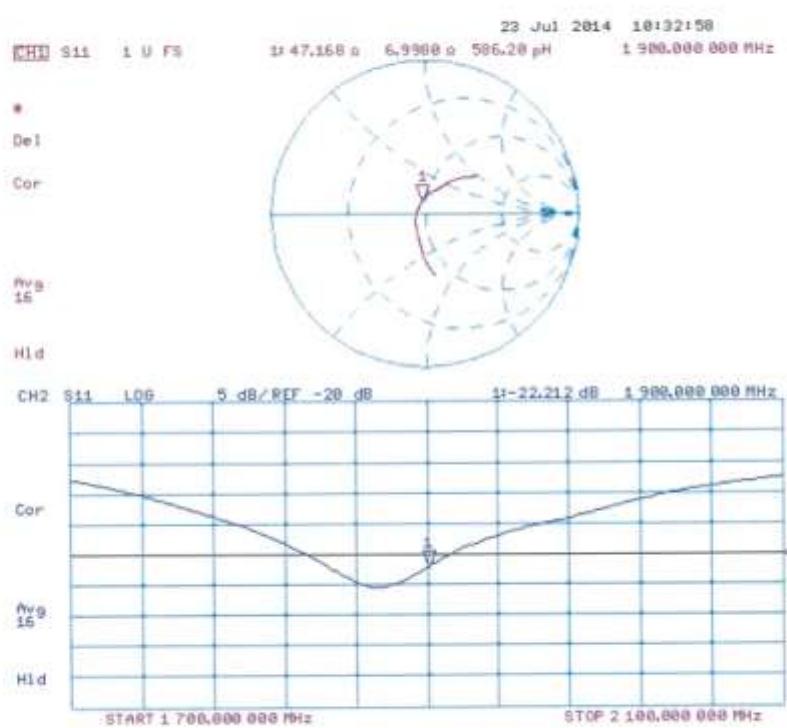
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.22 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.39 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client HCT (Dymstec)

Certificate No: D2450V2-743_Jul14

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 743

Calibration procedure(s) QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: July 24, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES30V3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 54206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by: Name: Claudio Leubler Function: Laboratory Technician

Signature:

Approved by: Name: Katja Pokovic Function: Technical Manager

Issued: July 25, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-743_Jul14

Page 1 of 8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	2450 MHz $\pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	$53.2 \Omega + 4.5 \text{ j}\Omega$
Return Loss	-25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.8 \Omega + 6.3 \text{ j}\Omega$
Return Loss	-24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

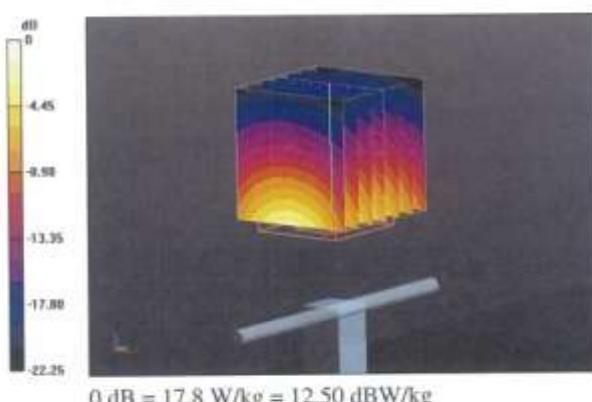
Phantom section: Flat Section

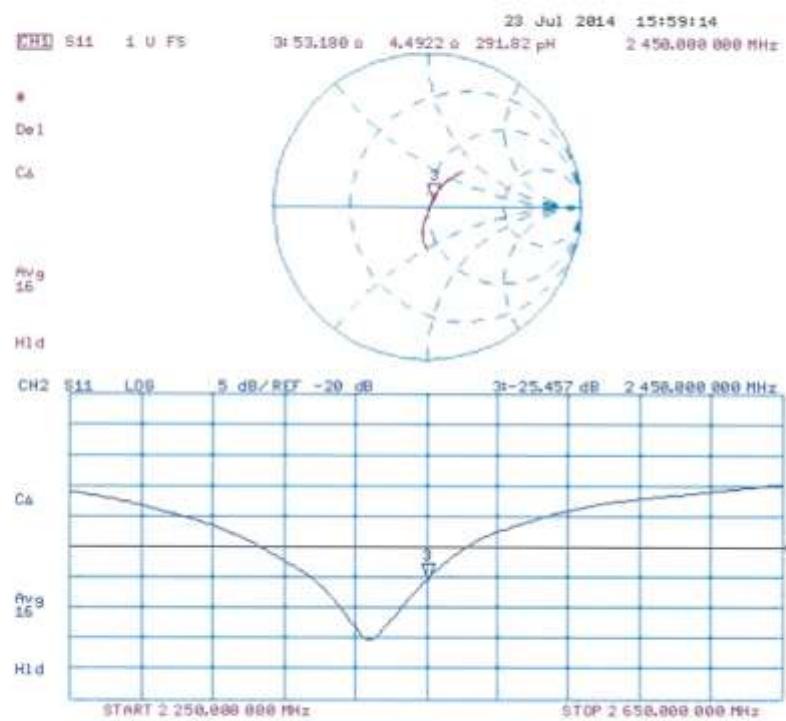
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 102.3 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³

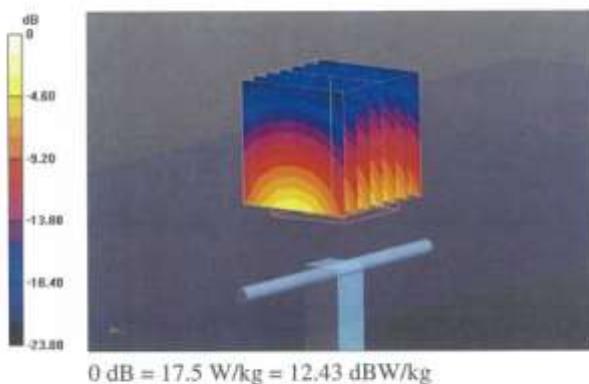
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

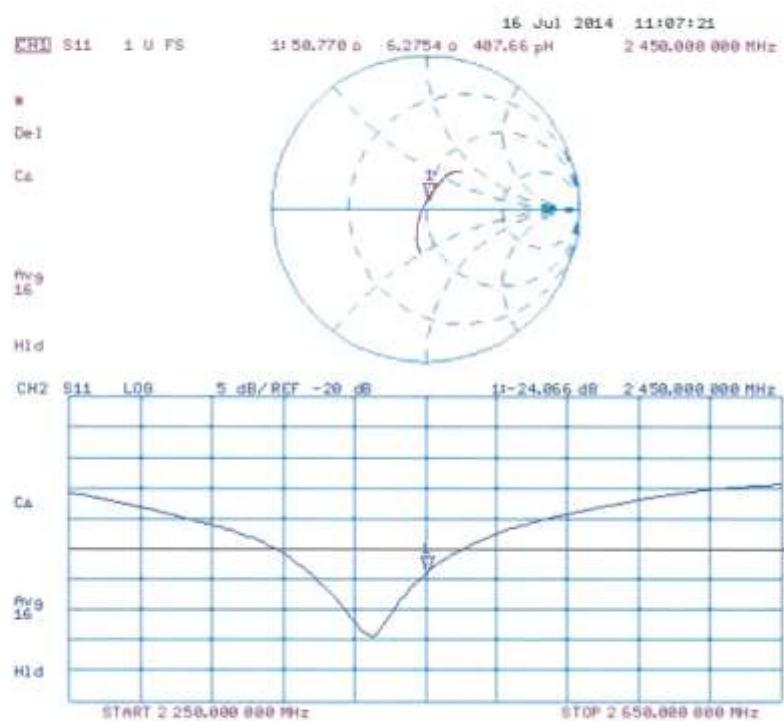
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.80 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-743_Jul14

Page 8 of 8