

FCC 47 CFR § 2.1093 IEC/IEEE Std 62209-1528 : 2020 IEC TR 63170 : 2018

RF EVALUATION REPORT (Above 6GHz)

FOR

GSM/WCDMA/LTE/5G NR Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, NFC, WPT and UWB

MODEL NUMBER: SM-F946D, SM-F946J

FCC ID: A3LSMF946JPN

REPORT NUMBER: 4790841160-S2V1

ISSUE DATE: 7/5/2023

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

Testing Laboratory

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	7/5/2023	Initial Issue	
		-	

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	6
4.	SAR and Power Density Measurement System & Test Equipment	7
	4.1. SAR Measurement System	
	4.1.1. SAR Scan Procedures	
	4.2. Incident Power Density Measurement System	1 <i>C</i>
	4.2.1. Power Density Scan Procedures	
	4.2.2. Total Field and Power Flux Density Reconstruction(measurement distance)	11
	4.3. Test Equipment	12
	4.3.1. SAR Test Equipment	12
	4.3.2 Incident Power Density Test Equipment	12
5.	Measurement Uncertainty	13
	5.1. SAR Measurement Uncertainty	13
	5.1.1. Decision rule	13
	5.2. Incident Power Density Measurement Uncertainty	14
	5.2.1. Decision rule	14
6.	Device Under Test (DUT) Information	15
	6.1. DUT Description	15
	6.2. Wireless Technologies of UNII 6E	15
	6.3. Nominal Output Power	16
7.	RF Exposure Conditions (Test Configurations)	17
8.	SAR System Check with Dielectric Property Measurements	18
	8.1. Dielectric Property Measurements	18
	8.2. System Check	21
9.	IPD(Incident Power Density) System with Dielectric Property	22
	9.1. Dielectric Property	22
	9.2. System Check	22
	9.3. Wi-Fi 6 GHz (U-NII Bands)	24
10). SAR and APD(Absorbed Power Density) Results	25
	10.1. WiFi (UNII Bands-Above 6GHz)	26
	10.2. UWB	29

11. I	PD(Incident Power density) Results	31
11.1.	WiFi (UNII Bands-Above 6GHz)	31
11.2.	UWB	32
12. \$	Simultaneous Transmission Analysis	33
Please	refer to section.12 in FCC SAR report S1	33
Append	dixes	33
4790	841160-S2 FCC Report Above 6GHz_App A_PD Photos & Ant. Locations	33
4790	841160-S2 FCC Report Above 6GHz _App B_Highest SAR and PD Test Plots	33
4790	841160-S2 FCC Report Above 6GHz _App C_System Check Plots	33
4790	841160-S2 FCC Report Above 6GHz _App D_SAR Tissue Ingredients	33
4790	841160-S2 FCC Report Above 6GHz _App E_Probe Cal. Certificates	33
4790	841160-S2 FCC Report Above 6GHz App F Dipole and Horn antenna Cal. Certificates	.3.3

1. Attestation of Test Results

Applicant Name		SAMSUNG ELECTRONICS CO.,LTD.						
FCC ID		A3LSMF946U						
Model Number		SM- F946U, SM-F946U1						
Applicable Standards		FCC 47 CFR § 2.1093 IEC/IEEE Std 62209-1528 : 2020 IEC TR 63170 : 2018 Published RF exposure KDB procedures						
		SAR Limits (W/Kg)			Power Density Limits (mW/cm² over 4cm²)			
Exposure Cate	Exposure Category		Peak spatial-average Product Specific 10g (10g of tissue)		APD (Absorbed Power Density)	IPD (Incident Power Density)		
General population / Uncontrolled exposure		1.6	4.0		N/A	1.0		
		Equipment Class						
RF Exposure C	conditions	The Highest Reported S. (W/kg)		API	O (mW/cm²)	IPD (mW/cm²)		
		6CD	UWB	6CD	UWB	6CD	UWB	
Phablet-Head		<0.1	N/A	<0.1	N/A			
Phablet-Body-v	vorn & Hotspot	0.30	N/A	0.16	N/A	0.59	0.02	
Phablet-Produc	t Specific 10g	0.16	<0.1	0.32	<0.1			
UMPC Mini Tal	olet-Body	0.20	N/A	0.11	N/A	0.22	0.02	
UMPC Mini Tal	olet-Extremity 10g	0.21	<0.1	0.41	<0.1	0.22	0.02	
Simultaneous	Head	1.39	N/A					
TX of	Body-worn & Hotspot	1.00	N/A					
Phablet &	Product Specific 10g	0.16	0.16					
UMPC Mini	Body	1.09	N/A					
Tablet	Extremity 10g	3.52	3.52					
Date Tested		5/30/2023 to 6/30/2023						
Test Results	Test Results		Pass					

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
- flex	yzot
Justin Park	Seungyeon Kim
Operations Leader	Laboratory Engineer
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE Std 1528-2013, IEC TR 63170-2018, IEC 62479:2010, IEC/IEEE 63195-1:2022 the following FCC Published RF exposure KDB procedures:

- 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- 648474 D04 Handset SAR v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 941225 D07 UMPC Mini Tablet v01r02

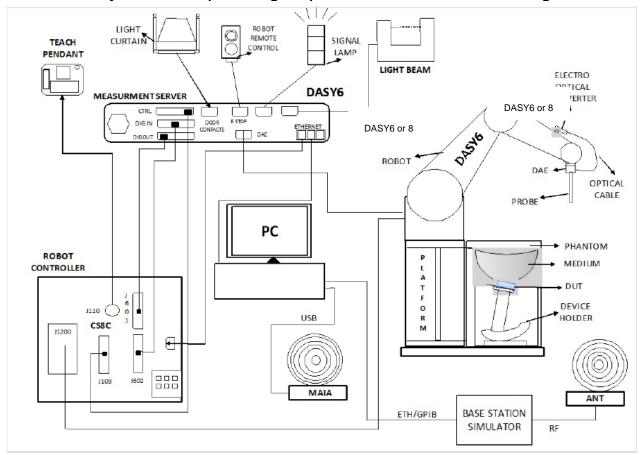
In addition to the above, the following information was used:

- o TCB workshop April, 2021; RF Exposure Policies (U-NII 6-7 GHz Interim Procedures)
- PEAG, 5G Module Application Note: 5G Compliance Testing
- SPEAG DASY6 Application Note: Interim Procedures for Devices Operating at 6 10 GHz

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 1 Room
SAR 6 Room
SAR 8 Room
SAR 9 Room


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

4. SAR and Power Density Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY6 & 8 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY6 or 8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 33

4.1.1. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEC/IEEE Standard 62209-1528, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from IEC/IEEE Standard 62209-1528.

Barranatan	DUT transmit frequency being tested			
Parameter	<i>f</i> ≤ 3 GHz	3 GHz < <i>f</i> ≤ 10 GHz		
Maximum distance between the measured points (geometric centre of the sensors) and the inner phantom surface ($z_{\rm M1}$ in Figure 20 in mm)	5 ± 1	δ In(2)/2 ± 0,5 ^a		
Maximum spacing between adjacent measured points in mm (see O.8.3.1) ^b	20, or half of the corresponding zoom scan length, whichever is smaller	60/f, or half of the corresponding zoom scan length, whichever is smaller		
Maximum angle between the probe axis and the phantom surface normal $(\alpha \text{ in Figure 20})^c$	5° (flat phantom only) 30° (other phantoms)	5° (flat phantom only) 20° (other phantoms)		
Tolerance in the probe angle	1°	1°		

 $^{^{}m a}$ $^{
m c}$ is the penetration depth for a plane-wave incident normally on a planar half-space.

b See Clause O.8 on how Δx and Δy may be selected for individual area scan requirements.

The probe angle relative to the phantom surface normal is restricted due to the degradation in the measurement accuracy in fields with steep spatial gradients. The measurement accuracy decreases with increasing probe angle and increasing frequency. This is the reason for the tighter probe angle restriction at frequencies above 3 GHz.

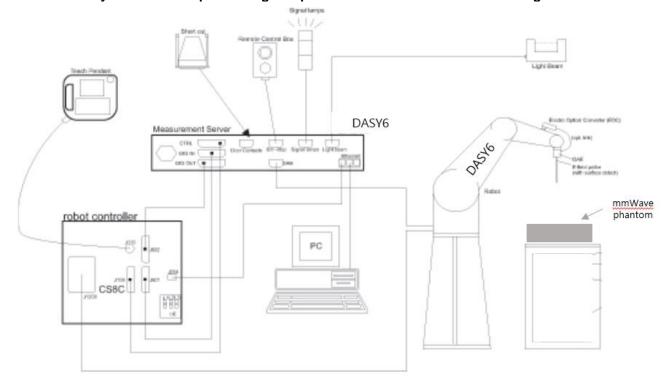
Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from IEC/IEEE Standard 62209-1528.

Darameter	DUT transmit frequency being tested		
Parameter	<i>f</i> ≤ 3 GHz	3 GHz < <i>f</i> ≤ 10 GHz	
Maximum distance between the closest measured points and the phantom surface ($z_{\rm M1}$ in Figure 20 and Table 3, in mm)	5	δ ln(2)/2 ^a	
Maximum angle between the probe axis and the phantom surface normal (α in Figure 20)	5° (flat phantom only) 30° (other phantoms)	5° (flat phantom only) 20° (other phantoms)	
Maximum spacing between measured points in the x - and y -directions (Δx and Δy , in mm)	8	24/f ^b	
For uniform grids: Maximum spacing between measured points in the direction normal to the phantom shell $(\Delta z_1$ in Figure 20, in mm)	5	10/(f - 1)	
For graded grids: Maximum spacing between the two closest measured points in the direction normal to the phantom shell (Δz_1 in Figure 20, in mm)	4	12 <i>lf</i>	
For graded grids: Maximum incremental increase in the spacing between measured points in the direction normal to the phantom shell $(R_z = \Delta z_2/\Delta z_1)$ in Figure 20)	1,5	1,5	
Minimum edge length of the zoom scan volume in the x - and y -directions (L_z in O.8.3.2, in mm)	30	22	
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell $(L_{\rm h}$ in O.8.3.2 in mm)	30	22	
Tolerance in the probe angle	1°	1°	
	<u> </u>		

S is the penetration depth for a plane-wave incident normally on a planar half-space.


Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

This is the maximum spacing allowed, which might not work for all circumstances.

4.2. Incident Power Density Measurement System

The DASY6 & 8 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- The EUmmWVx probe is based on the pseudo-vector probe design, which not only measures the field magnitude but also derives its polarization ellipse.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY6 or 8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom which is specialized for 5G other accessories according to the targeted measurement.

4.2.1. Power Density Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to devise under test.

Step 2: 5G Scan

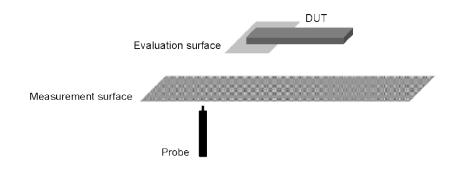
The steps in the X, Y, and Z directions are specified in terms of fractions of the signal wavelength ,lambda. Area Scan Parameters extracted from SPEAG, 5G Module V1.2 Application Note.

Recommended settings for measurement of verification sources

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	$0.125 \left(\frac{\lambda}{8}\right)$	60/60	18 × 18
30	$0.25 \left(\frac{\lambda}{4}\right)$	60/60	26×26
45	$0.25 \left(\frac{\lambda}{4}\right)$	42/42	28 × 28
60	$0.25 \left(\frac{\lambda}{4}\right)$	32.5/32.5	28 × 28
90	$0.25 \left(\frac{\lambda}{4}\right)$	30/30	38 × 38

The minimum distance of probe sensors to verification source surface, horn antenna, is 10 mm.

Per equipment manufacturer guidance for 6-10GHz, Power density was measured at d=2mm and d= λ /5mm using same grid size and grid step size for some frequencies and surfaces. The integrated power Density (iPD) was calculated based on these measurements. Since iPD ratio between the two distances is < 1dB, the grid step was sufficient for determining compliance at d=2mm.


Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. When the drift is larger than \pm 5 %, test is repeated from step1.

4.2.2. Total Field and Power Flux Density Reconstruction(measurement distance)

Reconstruction algorithms are used to project or transform the measured fields from the measurement surface to the evaluation surface (below fig) in order to determine power density or to compute spatial-average and/or local power density with known uncertainty.

Manufacture has developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWVx probe. This reconstruction algorithm, together with the ability of the probe to measure extremely close to the source without perturbing the field, permits reconstruction of the E- and H-fields, as well as of the power density, on measurement planes.

Page 11 of 33

Doc. No.: 1.0(04)

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

4.3.1. SAR Test Equipment

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	ROHDE & SCHWARZ	ZNB 20	102256	8-5-2023
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	7-25-2023
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3851	8-3-2023
Thermometer	LKM	DTM3000	3862	8-3-2023

System Check

System Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Keysight	N5181B	MY59100587	8-4-2023
Power Sensor	KEYSIGHT	U2000A	MY60180020	8-3-2023
Power Sensor	KEYSIGHT	U2000A	MY61010006	8-3-2023
Power Amplifier	EXODUS	AMP2027ADB	10002	1-6-2024
Directional Coupler	KRYTAR	100318010	215542	1-5-2024
Low Pass Filter	Wainwright Instruments	WLKX10-11000-13640-21000-60TS	1	8-2-2023
Attenuator	KEYSIGHT	8491B/010	MY39272011	8-2-2023
Attenuator	KEYSIGHT	8491B/020	MY39272300	8-2-2023
Attenuator	MINI-CIRCUITS	BW-S3W10+	N/A	1-6-2024
E-Field Probe	SPEAG	EX3DV4	7376	7-27-2023
E-Field Probe	SPEAG	EX3DV4	7545	8-19-2023
Data Acquisition Electronics	SPEAG	DAE4	1494	7-18-2023
Data Acquisition Electronics	SPEAG	DAE4	1668	4-26-2024
System Validation Dipole	SPEAG	D6.5GHz	1010	5-27-2024
System Validation Dipole	SPEAG	D8GHzV2	1012	11-1-2023
Thermometer	Lutron	MHB-382SD	AJ.42446	8-9-2023
Thermometer	Lutron	MHB-382SD	AK.12102	8-9-2023
Thermometer	Lutron	MHB-382SD	AK.12103	8-9-2023

Note(s):

- 1. For System Validation Dipole, Calibration interval applied every 2 years according to referencing KDB 865664 guidance.
- 2. Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations. (for blue box items)
- 3. All equipments were used until Cal. Due date.

4.3.2 Incident Power Density Test Equipment

System Check

Cystem Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Keysight	N5181B	MY59100587	8/4/2023
Power Sensor	KEYSIGHT	U2000A	MY60180020	8/3/2023
Power Sensor	KEYSIGHT	U2000A	MY61010006	8/3/2023
Power Amplifier	EXODUS	AMP2027ADB	10002	1/6/2024
Directional Coupler	KRYTAR	100318010	215542	1/5/2024
Low Pass Filter	Wainwright Instruments	WLKX10-11000-13640-21000-60TS	1	8/2/2023
Attenuator	KEYSIGHT	8491B/010	MY39272011	8/2/2023
Attenuator	KEYSIGHT	8491B/020	MY39272300	8/2/2023
Attenuator	MINI-CIRCUITS	BW-S3W10+	N/A	1/6/2024
5G probe	SPEAG	EummWV4	9559	2-16-2024
5G probe	SPEAG	EummWV4	9536	2/16/2024
Data Acquisition Electronics	SPEAG	DAE4	1670	5-23-2024
Data Acquisition Electronics	SPEAG	DAE4	1468	8-18-2023
Verification kit	SPEAG	5G verification source_10GHz	1022	2/20/2024
Thermometer	Lutron	MHB-382SD	AK.12102	8/9/2023

Note(s):

1. All equipments were used until Cal. Due date.

5. Measurement Uncertainty

5.1. SAR Measurement Uncertainty

Measurement uncertainty for 6 GHz to 10 GHz

(According to IEEE 62209-1528)

а	b	(c	d	e f(d,k)	f	g	h = cxf/e	l= cxg/e	k
Uncertainty component	Reference	Tol. 1 g (±%)	Tol. 10 g (±%)	Prob. Dist.	Div.	<i>ci</i> (1 g)	<i>ci</i> (10 g)	1 g <i>ui</i> (± %)	10 g <i>ui</i> (± %)	vi
Measurement System Errors										
Probe Calibration	8.4.1.1	18	3.6	Normal	2	1	1	9.3	9.3	o
Probe Calibration Drift	8.4.1.2	1	.7	Rectangular	1.732	1	1	1.0	1.0	∞
Probe Linearity	8.4.1.3	4	.7	Rectangular	1.732	1	1	2.7	2.7	_∞
Broadband Signal	8.4.1.4	2	.8	Rectangular	1.732	1	1	1.6	1.6	_∞
Probe Isotropy	8.4.1.5	7	.6	Rectangular	1.732	1	1	4.4	4.4	_∞
Data Acquisition	8.4.1.6	0	.3	Normal	1	1	1	0.3	0.3	oo
RF Ambient	8.4.1.7	1	.8	Normal	1	1	1	1.8	1.8	∞
Probe Positioning	8.4.1.8	0.0	005	Normal	1	0.50	0.50	0.25	0.25	∞
Data Processing	8.4.1.9	3	.5	Normal	1	1	1	3.5	3.5	∞
Phantom and Device Errors										
Conductivity (meas.)DAK	8.4.2.1	2	.5	Normal	1	0.78	0.71	2.0	1.8	∞
Conductivity (temp.)BB	8.4.2.2	2	.4	Rectangular	1.732	0.78	0.71	1.1	1.0	∞
Phantom Permittivity	8.4.2.3	14	1.0	Rectangular	1.732	0	0	0.0	0.0	∞
Distance DUT -TSL	8.4.2.4	2	.0	Normal	1	2	2	4.0	4.0	∞
Device Positioning	8.4.2.5	3.1	4.2	Normal	1	1	1	3.1	4.2	50
Device Holder	8.4.2.6	3	.6	Normal	1	1	1	3.6	3.6	_∞
DUT Modulation	8.4.2.7	2	.4	Rectangular	1.732	1	1	1.4	1.4	_∞
Time-average SAR	8.4.2.8	1	.7	Rectangular	1.732	1	1	1.0	1.0	_∞
DUT drift	8.4.2.9	5	.0	Normal	1	1	1	5.0	5.0	_∞
Correction to the SAR results							•	•		
Deviation to Target	8.4.3.1	1	.9	Normal	1	1	0.84	1.9	1.6	∞
Combined Standard Uncertainty Uc(y) =				RSS				14.39	14.61	
Expanded Uncertainty U, Coverage Factor =	2, > 95 % Conf	idence =						28.79	29.23	

5.1.1. Decision rule

Decision rule for statement(s) of conformity is based on Procedures 1, Clause 4.4.2 in IEC Guide 115:2007.

Incident Power Density Measurement Uncertainty 5.2.

Measurement Uncertainty for cDASY6 Module mmWav					_					
Error Description	Uncertainty	Probe Dist.	Divisor	(Ci)	Std. Unc.	(Vi)				
'	value (±dB)	1 1000 51011	Dillooi	(0.)	(±dB)	(*.)				
Uncertainty terms dependent on the measurement sys										
Calibration	0.49	Normal	1	1	0.49	Infinity				
Probe correction	0.00	Rectangular	1.73	1	0.00	Infinity				
Frequency response (BW =< 1 GHz)	0.20	Rectangular	1.73	1	0.12	Infinity				
Sensor cross coupling	0.00	Rectangular	1.73	1	0.00	Infinity				
Isotropy	0.50	Rectangular	1.73	1	0.29	Infinity				
Linearity	0.20	Rectangular	1.73	1	0.12	Infinity				
Probe scattering	0.00	Rectangular	1.73	1	0.00	Infinity				
Probe positioning offset	0.30	Rectangular	1.73	1	0.17	Infinity				
Probe positioning repeatability	0.04	Rectangular	1.73	1	0.02	Infinity				
Sensor mechanical offset	0.00	Rectangular	1.73	1	0.00	Infinity				
Probe spatial resolution	0.00	Rectangular	1.73	1	0.00	Infinity				
Field impedance dependance	0.00	Rectangular	1.73	1	0.00	Infinity				
Amplitude and phase drift	0.00	Rectangular	1.73	1	0.00	Infinity				
Amplitude and phase noise	0.04	Rectangular	1.73	1	0.02	Infinity				
Measurement area truncation	0.10	Rectangular	1.73	1	0.06	Infinity				
Data acquisition	0.03	Normal	1.00	1	0.03	Infinity				
Sampling	0.00	Rectangular	1.73	1	0.00	Infinity				
Field reconstruction	0.60	Rectangular	1.73	1	0.35	Infinity				
Forward transformation	0.00	Rectangular	1.73	1	0.00	Infinity				
Power density scaling	-	Rectangular	1.73	1	-	Infinity				
Spatial averaging	0.10	Rectangular	1.73	1	0.06	Infinity				
System detection limit	0.04	Rectangular	1.73	1	0.02	Infinity				
Uncertainty terms dependent on the DUT and environn	nental factors					•				
Probe coupling with DUT	0.00	Rectangular	1.73	1	0.00	Infinity				
Modulation response	0.40	Rectangular	1.73	1	0.23	Infinity				
Integration time	0.00	Rectangular	1.73	1	0.00	Infinity				
Response time	0.00	Rectangular	1.73	1	0.00	Infinity				
Device holder influence	0.10	Rectangular	1.73	1	0.06	Infinity				
DUT alignment	0.00	Rectangular	1.73	1	0.00	Infinity				
RF ambient conditions	0.04	Rectangular	1.73	1	0.02	Infinity				
Ambient reflections	0.04	Rectangular	1.73	1	0.02	Infinity				
Immunity / secondary reception	0.00	Rectangular	1.73	1	0.00	Infinity				
Drift of the DUT	0.22	Rectangular	1.73	1	0.13	Infinity				
Combir	ned Std. Uncertainty			•	0.76	Infinity				
	Expanded Standard Uncertainty (95%)									

5.2.1. Decision rule

Decision rule for statement(s) of conformity is based on Procedures 2, Clause 4.4.3 in IEC Guide 115:2007.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer to Appe	ndix A.								
Back Cover	⊠ The Back (The Back Cover is not removable.								
Battery Options		geable battery is not user accessible								
Test Sample Information	No.	S/N	Notes							
	1	R3CW408VAHK	Conducted							
	2	732bb529284c7ece	Conducted							
	3	732bb528e24c7ece	Radiated							
	4	R3CW408V1GL	Radiated							
	5	R3CW408U11T	Radiated							
	6	R3CW408U1EX	Radiated							

6.2. Wireless Technologies of UNII 6E

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR & PD testing
Wi-Fi_UNII 6e (Above 6GHz)	UNII Band 5 (5925-6425 MHz) UNII Band 6 (6425-6525 MHz) UNII Band 7 (6525-6885 MHz) UNII Band 8 (6885-7125 MHz)	802.11a 802.11ax (HE20) 802.11ax (HE40) 802.11ax (HE80) 802.11ax (HE160)	99.7% (802.11ax (HE160))
UWB	Ch.5 (6489.6 MHz) Ch.9 (7987.2 MHz)	Signal Configurations(0/1/3), PRF modes(BPRF/HPRF)	N/A

Notes:

Duty cycle for Wi-Fi is referenced from the UNII report.

6.3. Nominal Output Power

								Inc	door AP (d	IBm)						
			Pmax							Pli	mit					
RF Air interface	Mode		IIIIux		DSI=0 (F/O Body)			DS	I=1 (F/C B	ody)	DS	I=2 (F/O H	ead)	DS	I=3 (F/C H	ad)
		WLAN Ant.1	WLAN Ant.2	M IM O (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	MIMO (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	M IM O (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	MIMO (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	M IM O (Ant.1+ Ant.2)
	802.11a	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
W.E. & O. I	802.11ax HE20	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
(UNII - 5)	802.11ax HE40	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
` ′	802.11ax HE80	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE160	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11a	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE20	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
WIFI 6 GHz (UNII - 6)	802.11ax HE40	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
. ,	802.11ax HE80	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE160	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11a	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE20	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE40	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
(01411-7)	802.11ax HE80	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE160	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11a	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE20	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
WiFi 6 GHz	802.11ax HE40	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
(01411 - 0)	802.11ax HE80	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
WiFi 6 GHz (UNII - 6) WiFi 6 GHz (UNII - 7)	802.11ax HE160	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0

								Sta	ndard AP	(dBm)						
			Pmax			Plimit										
RF Air interface Mode	Mode	riiidx			DSI=0 (F/O Body)			DS	I=1 (F/C B	ody)	DS	I=2 (F/O H	ead) D		SI=3 (F/C Head)	
		WLAN Ant.1	WLAN Ant.2	MIMO (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	MIMO (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	M IM O (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	MIMO (Ant.1+Ant.2)	WLAN Ant.1	WLAN Ant.2	M IM O (Ant.1+Ant.2)
	802.11a	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE20	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
WiFi 6 GHz (UNII - 5)	802.11ax HE40	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
(- ',	802.11ax HE80	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE160	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11a	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE20	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
WiFi 6 GHz (UNII - 7)	802.11ax HE40	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
(/	802.11ax HE80	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0
	802.11ax HE160	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0	10.0	10.0	13.0

- Note(s):

 Only MIMO mode supports for UNII 6e Bands.

 This device has support Dual Client (6CD) in UNII 6-7GHz. So Indoor AP support to UNII 5 8, and Standard AP supports to UNII5, 7.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Forder Closed configuration

Wireless	RF Exposure	A 4	DUT-to-User	Test	Antenna-to-	SAR	NI-4-
technologies	Conditions	Antena	Separation	Position	edge/surface	Required	Note
				Left Touch	N/A	Yes	
	Head		0 mm	Left Tilt (15°)	N/A	Yes	
	пеац		0 111111	Right Touch	N/A	Yes	
				Right Tilt (15°)	N/A	Yes	
	Body-worn &		10 mm	Rear	N/A	Yes	
LINIII C-	UNII 6e Hotspot	WiFi 6G	10 111111	Front	N/A	Yes	
UNII 6e		MIMO		Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
	Product		0	Тор	< 25 mm	Yes	
	Specific 10-g		0 mm	Left	< 25 mm	Yes	
				Bottom	> 25 mm	No	1
				Right	< 25 mm	Yes	
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
		Antenna 1	0 mm	Тор	< 25 mm	Yes	
		(Metal Ant.)	0111111	Left	> 25 mm	No	1
				Bottom	> 25 mm	No	1
UWB	Product			Right	< 25 mm	Yes	
I OWB	Specific 10-g			Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
		Antenna 2	0 mm	Тор	< 25 mm	Yes	
		(Patch Ant.)	"""	Left	> 25 mm	No	1
		(1 (10117416.)		Bottom	> 25 mm	No	1
				Right	< 25 mm	Yes	

Forder Opened configuration

Wireless technologies	RF Exposure Conditions	Antena	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
			10 mm	Тор	< 25 mm	Yes	
			10 111111	Left	< 25 mm	Yes	
				Bottom	> 25 mm	No	1
	5	WiFi 6G		Right	> 25 mm	No	1
UNII 6e	Body / Externity	MIMO		Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
				Тор	< 25 mm	Yes	
			0 mm	0 mm Left < 25 mm	< 25 mm	Yes	
				Bottom	> 25 mm	No	1
				Right	> 25 mm	No	1
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
		Antenna 1	0 mm	Тор	< 25 mm	Yes	
		(Metal Ant.)		Left	> 25 mm	No	1
				Bottom	> 25 mm	No	1
UWB	Externity			Right	> 25 mm	No	1
OVVD	Laterinty			Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
		Antenna 2	0 mm	Top	< 25 mm	Yes	
		(Patch Ant.)	0 111111	Left	> 25 mm	No	1
		(. 2		Bottom	> 25 mm	No	1
			<u> </u>	Right	> 25 mm	No	1

Notes:

- SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- For Phablet devices: When hotspot mode applies, Product specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- For Phablet devices: When hotspot mode is not supported, Product specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.
- Per manufacturer guide, UWB SAR was considered about only hand held condition (Extremity 10-g).

8. SAR System Check with Dielectric Property Measurements

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after 1 days of use; for example, when the parameters are marginal at the beginning of the measurement series. Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

Refer to Table 2 within the IEC/IEEE Std 62209-1528: 2020

Target Frequency (MHz)	Tissue parameters				
raiget i requeitcy (Mi iz)	ε_{r}	ஏ (S/m)			
5800	35.3	5.27			
6000	35.1	5.48			
6500	34.5	6.07			
7000	33.9	6.65			
7500	33.3	7.24			
8000	32.7	7.84			
8500	32.1	8.46			

Dielectric Property Measurements Results:

SAR 1 Room

Date	Freq. (MHz)		Lie	quid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 6000	e'	35.8200	Relative Permittivity (ε_r):	35.82	35.10	2.05	5
	rieau 0000	e"	16.0800	Conductivity (σ):	5.36	5.48	-2.11	5
	Head 6200	e'	35.4400	Relative Permittivity (ε_r):	35.44	34.86	1.66	5
	Tieau 0200	e"	16.1200	Conductivity (σ):	5.56	5.72	-2.78	5
	Head 6500	e'	34.7900	Relative Permittivity (ε_r):	34.79	34.50	0.84	5
2023-06-19	rieau 0300	e"	16.3100	Conductivity (σ):	5.89	6.07	-2.89	5
2023-00-19	Head 6600	e'	34.5600	Relative Permittivity (ε_r):	34.56	34.38	0.52	5
	Head 0000	e"	16.4100	Conductivity (σ):	6.02	6.19	-2.65	5
	Head 6800	e'	34.1800	Relative Permittivity (ε_r):	34.18	34.14	0.12	5
	Head 0000	e"	16.5000	Conductivity (σ):	6.24	6.42	-2.79	5
	Head 7000	e'	33.9200	Relative Permittivity (ε_r):	33.92	33.90	0.06	5
	Tieau 7000	e"	16.4300	Conductivity (σ):	6.39	6.65	-3.84	5
	Head 6000	e'	34.4200	Relative Permittivity (ε_r):	34.42	35.10	-1.94	5
	Head 6000	e"	17.0300	Conductivity (σ):	5.68	5.48	3.68	5
	Head 6200	e'	34.0600	Relative Permittivity (ε_r):	34.06	34.86	-2.29	5
	Head 0200	e"	17.0700	Conductivity (σ):	5.88	5.72	2.95	5
	Head 6500	e'	33.5100	Relative Permittivity (ε_r):	33.51	34.50	-2.87	5
2023-06-20	nead 6500	e"	17.3100	Conductivity (σ):	6.26	6.07	3.07	5
2023-00-20	Head 6600	e'	33.2900	Relative Permittivity (ε_r):	33.29	34.38	-3.17	5
	Head 0000	e"	17.4400	Conductivity (σ):	6.40	6.19	3.46	5
	Head 6800	e'	32.8200	Relative Permittivity (ε_r):	32.82	34.14	-3.87	5
	rieau 0000	e"	17.5900	Conductivity (σ):	6.65	6.42	3.63	5
	Head 7000	e'	32.4400	Relative Permittivity (ε_r):	32.44	33.90	-4.31	5
	nead 7000	e"	17.5100	Conductivity (σ):	6.82	6.65	2.49	5
	Head 6000	e'	34.2100	Relative Permittivity (ε_r):	34.21	35.10	-2.54	5
	Head 6000	e"	16.0800	Conductivity (σ):	5.36	5.48	-2.11	5
	Head 6200	e'	33.8300	Relative Permittivity (ε_r):	33.83	34.86	-2.95	5
	Head 0200	e"	16.2500	Conductivity (σ):	5.60	5.72	-1.99	5
	Head 6500	e'	33.2800	Relative Permittivity (ε_r):	33.28	34.50	-3.54	5
2023-06-21	nead 6500	e"	16.5000	Conductivity (σ):	5.96	6.07	-1.76	5
2023-00-21	Hood 6600	e'	33.1100	Relative Permittivity (ε_r):	33.11	34.38	-3.69	5
	Head 6600	e"	16.6000	Conductivity (σ):	6.09	6.19	-1.52	5
	Hood 6900	e'	32.8300	Relative Permittivity (ε _r):	32.83	34.14	-3.84	5
	Head 6800	e"	16.7200	Conductivity (σ):	6.32	6.42	-1.50	5
	Head 7000	e'	32.6000	Relative Permittivity (ε_r):	32.60	33.90	-3.83	5
	nead 7000	e"	16.7800	Conductivity (σ):	6.53	6.65	-1.79	5

	Head 6000	e'	34.6300	Relative Permittivity (ε_r):	34.63	35.10	-1.34	5
	Head 6000	e"	16.9600	Conductivity (σ):	5.66	5.48	3.25	5
	Head 6200	e'	34.2500	Relative Permittivity (ε_r):	34.25	34.86	-1.75	5
	Head 6200	e"	17.1200	Conductivity (σ):	5.90	5.72	3.25	5
	Head 6500	e'	33.7200	Relative Permittivity (ε_r):	33.72	34.50	-2.26	5
2023-06-26	Head 0000	e"	17.3100	Conductivity (σ):	6.26	6.07	3.07	5
2023-00-20	Head 6600	e'	33.5300	Relative Permittivity (ε_r):	33.53	34.38	-2.47	5
	Head 0000	e"	17.3900	Conductivity (σ):	6.38	6.19	3.17	5
	Head 6800	e'	33.1700	Relative Permittivity (ε_r):	33.17	34.14	-2.84	5
	Head 0000	e"	17.5100	Conductivity (σ):	6.62	6.42	3.16	5
	Head 7000	e'	32.8400	Relative Permittivity (ε_r):	32.84	33.90	-3.13	5
	Head 7000	e"	17.5900	Conductivity (σ):	6.85	6.65	2.95	5
	Head 6000	e'	35.9800	Relative Permittivity (ε_r):	35.98	35.10	2.51	5
	Head 6000	e"	16.0000	Conductivity (σ):	5.34	5.48	-2.59	5
	Head 6200	e'	35.6500	Relative Permittivity (ε_r):	35.65	34.86	2.27	5
	Head 6200	e"	16.1900	Conductivity (σ):	5.58	5.72	-2.36	5
	Head 6500	e'	35.2000	Relative Permittivity (ε_r):	35.20	34.50	2.03	5
2023-06-27	Head 0000	e"	16.3900	Conductivity (σ):	5.92	6.07	-2.41	5
2023-00-27	Head 6600	e'	35.0400	Relative Permittivity (ε_r):	35.04	34.38	1.92	5
	nead 6600	e"	16.4700	Conductivity (σ):	6.04	6.19	-2.29	5
	Head 6800	e'	34.7300	Relative Permittivity (ε_r):	34.73	34.14	1.73	5
	nead 6600	e"	16.6000	Conductivity (σ):	6.28	6.42	-2.21	5
	Head 7000	e'	34.4400	Relative Permittivity (ε_r):	34.44	33.90	1.59	5
	neau 7000	e"	16.7000	Conductivity (σ):	6.50	6.65	-2.26	5

SAR 6 Room

Date	Freq. (MHz)		Li	quid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	UI 0000	e'	34.7500	Relative Permittivity (ε _r):	34.75	35.10	-1.00	5
	Head 6000	e"	16.7900	Conductivity (σ):	5.60	5.48	2.22	5
	UI 0000	e'	34.3800	Relative Permittivity (ε _r):	34.38	34.86	-1.38	5
	Head 6200	e"	16.9500	Conductivity (σ):	5.84	5.72	2.23	5
	Hood 6500	e'	33.8900	Relative Permittivity (ε _r):	33.89	34.50	-1.77	5
2023-06-19	Head 6500	e"	17.0800	Conductivity (σ):	6.17	6.07	1.70	5
2023-06-19	Head 6600	e'	33.6900	Relative Permittivity (ε _r):	33.69	34.38	-2.01	5
	nead 6600	e"	17.1300	Conductivity (σ):	6.29	6.19	1.62	5
	Head 6800	e'	33.3000	Relative Permittivity (ε _r):	33.30	34.14	-2.46	5
	nead 6600	e"	17.2100	Conductivity (σ):	6.51	6.42	1.39	5
	Head 7000	e'	32.9300	Relative Permittivity (ε _r):	32.93	33.90	-2.86	5
	nead 7000	e"	17.2800	Conductivity (σ):	6.73	6.65	1.14	5
	UI 0000	e'	36.5700	Relative Permittivity (ε _r):	36.57	35.10	4.19	5
	Head 6000	e"	17.0100	Conductivity (σ):	5.67	5.48	3.56	5
	UI 0000	e'	36.1800	Relative Permittivity (ε _r):	36.18	34.86	3.79	5
	Head 6200	e"	17.1500	Conductivity (σ):	5.91	5.72	3.43	5
		e'	35.6100	Relative Permittivity (ε_r) :	35.61	34.50	3.22	5
2002 00 00	Head 6500	e"	17.3900	Conductivity (σ):	6.29	6.07	3.54	5
2023-06-20	UI 0000	e'	35.4000	Relative Permittivity (ε _r):	35.40	34.38	2.97	5
	Head 6600	e"	17.4900	Conductivity (σ):	6.42	6.19	3.76	5
	UI 0000	e'	35.0500	Relative Permittivity (ε _r):	35.05	34.14	2.67	5
	Head 6800	e"	17.6300	Conductivity (σ):	6.67	6.42	3.86	5
	Head 7000	e'	34.7500	Relative Permittivity (ε _r):	34.75	33.90	2.51	5
	nead 7000	e"	17.7000	Conductivity (σ):	6.89	6.65	3.60	5
	Heed 7000	e'	34.7500	Relative Permittivity (ɛ _r):	34.75	33.90	2.51	5
	nead 7000	e"	17.7000	Conductivity (σ):	6.89	6.65	3.60	5
	Head 7050	e'	34.2800	Relative Permittivity (ɛ _r):	34.28	33.60	2.02	5
	nead 7250	e"	17.8300	Conductivity (σ):	7.19	6.95	3.49	5
	Heed 7500	e'	33.8200	Relative Permittivity (ε _r):	33.82	33.30	1.56	5
2022 06 20	nead 7500	e"	17.9600	Conductivity (σ):	7.49	7.24	3.45	5
2023-00-20	Hood 7000	e'	33.2900	Relative Permittivity (ε_r) :	33.29	32.94	1.06	5
	neau /out	e"	18.1200	Conductivity (σ):	7.86	7.60	3.40	5
	Hood 9000	e'	33.0300	Relative Permittivity (ε_r) :	33.03	32.70	1.01	5
	nead 6000	e"	18.1600	Conductivity (σ):	8.08	7.84	3.04	5
	Head 7000 Head 7250 Head 7500 Head 7800 Head 8000 Head 8100	e'	32.8500	Relative Permittivity (ε_r) :	32.85	32.58	0.83	5
	nead 6100	e"	18.1800	Conductivity (σ):	8.19	7.96	2.81	5

Head 7000
Pack
Head 7500 e* 17.9700 Conductivity (o*); 7.24 6.95 4.31 5 Head 7500 e* 32.4200 Relative Permittivity (e*); 32.42 33.30 -2.64 5 e* 18.0900 Conductivity (o*); 7.54 7.24 4.20 5 Head 7800 e* 31.8600 Relative Permittivity (e*); 31.86 32.94 -3.28 5 Head 8000 e* 18.2600 Conductivity (o*); 7.92 7.60 4.20 5 Head 8000 e* 31.5800 Relative Permittivity (e*); 31.58 32.70 -3.43 5 e* 18.3200 Conductivity (o*); 8.15 7.84 3.94 5 Head 8100 e* 31.4300 Relative Permittivity (e*); 31.43 32.58 -3.53 5 e* 18.3500 Conductivity (o*); 8.26 7.96 3.77 5 Head 7000 e* 33.6500 Relative Permittivity (e*); 33.65 33.90 -0.74 5 Head 7250 e* 33.2600 Relative Permittivity (e*); 33.26 33.60 -1.01 5 Head 7500 e* 32.7600 Relative Permittivity (o*); 7.00 6.95 0.77 5 Head 7800 e* 32.7600 Relative Permittivity (e*); 32.76 33.30 -1.62 5 Head 7800 e* 32.0400 Relative Permittivity (o*); 7.26 7.24 0.28 5 Head 8000 e* 17.4500 Conductivity (o*); 7.57 7.60 -0.42 5 Head 8000 e* 17.4500 Conductivity (o*); 7.57 7.60 -0.42 5 Head 8100 e* 31.7000 Relative Permittivity (e*); 31.70 32.70 -3.06 5 Head 8100 e* 31.5000 Relative Permittivity (o*); 7.75 7.84 -1.11 5 Head 8100 e* 31.5000 Relative Permittivity (o*); 7.75 7.84 -1.11 5 Head 8100 e* 31.5000 Relative Permittivity (o*); 7.75 7.84 -1.11 5 Head 8100 e* 31.5000 Relative Permittivity (o*); 7.75 7.84 -1.11 5 Head 8100 e* 31.5000 Relative Permittivity (o*); 7.75 7.84 -1.11 5 Head 8100 e* 31.5000 Relative Permittivity (o*); 31.50 32.58 -3.31 5
Pack 17.9700 Conductivity (o); 7.24 6.95 4.31 5
Head 7500 e" 18.0900 Conductivity (σ); 7.54 7.24 4.20 5 Head 7800 e' 31.8600 Relative Permittivity (ε _i); 31.86 32.94 -3.28 5 Head 8000 e' 18.2600 Conductivity (σ); 7.92 7.60 4.20 5 Head 8000 e' 18.3200 Relative Permittivity (ε _i); 31.58 32.70 -3.43 5 Head 8100 e' 31.4300 Relative Permittivity (ε _i); 31.43 32.58 -3.53 5 Head 7000 e' 18.3500 Conductivity (σ); 8.26 7.96 3.77 5 Head 7000 e' 33.6500 Relative Permittivity (ε _i); 33.65 33.90 -0.74 5 Head 7250 e' 33.2600 Relative Permittivity (ε _i); 33.26 33.60 -1.01 5 Head 7500 e' 17.3600 Relative Permittivity (ε _i); 32.76 33.30 -1.62 5 Head 7800 e' 32.7600 Relative Permittivity (ε _i); 32.76 33.30 -1.62 5 Head 7800 e' 32.0400 Relative Permittivity (ε _i); 32.76 7.24 0.28 5 Head 8000 e' 17.4500 Conductivity (σ); 7.26 7.24 0.28 5 Head 8000 e' 17.4500 Conductivity (σ); 7.57 7.60 -0.42 5 Head 8000 e' 17.4300 Relative Permittivity (ε _i); 31.70 32.70 -3.06 5 Head 8100 e' 31.5000 Relative Permittivity (ε _i); 31.50 32.58 -3.31 5
Page 14 Page 15 Page
Head 7800 e' 31.8600 Relative Permittivity (e _i): 31.86 32.94 -3.28 5 e' 18.2600 Conductivity (σ): 7.92 7.60 4.20 5 Head 8000 e' 31.5800 Relative Permittivity (e _i): 31.58 32.70 -3.43 5 Head 8100 e' 18.3200 Conductivity (σ): 8.15 7.84 3.94 5 Head 8100 e' 31.4300 Relative Permittivity (e _i): 31.43 32.58 -3.53 5 Head 7000 e' 18.3500 Conductivity (σ): 8.26 7.96 3.77 5 Head 7000 e' 17.2900 Conductivity (σ): 6.73 6.65 1.20 5 Head 7250 e' 17.3600 Relative Permittivity (e _i): 33.26 33.60 -1.01 5 Head 7500 e' 17.3600 Relative Permittivity (e _i): 32.76 33.30 -1.62 5 Head 7800 e' 32.7600 Relative Permittivity (e _i): 7.26 7.24 0.28 5 Head 7800 e' 17.4500 Conductivity (σ): 7.26 7.24 0.28 5 Head 8000 e' 31.7000 Relative Permittivity (e _i): 32.04 32.94 -2.73 5 Head 8000 e' 17.4500 Conductivity (σ): 7.57 7.60 -0.42 5 Head 8100 e' 31.5000 Relative Permittivity (e _i): 31.70 32.70 -3.06 5 Head 8100 e' 31.5000 Relative Permittivity (e _i): 31.50 32.58 -3.31 5
Head 8000 e" 18.2600 Conductivity (o): 7.92 7.60 4.20 5 Head 8000 e" 31.5800 Relative Permittivity (e _i): 31.58 32.70 -3.43 5 Head 8100 e" 18.3200 Conductivity (o): 8.15 7.84 3.94 5 Head 8100 e" 31.4300 Relative Permittivity (e _i): 31.43 32.58 -3.53 5 Head 7000 e" 18.3500 Conductivity (o): 8.26 7.96 3.77 5 Head 7000 e" 33.6500 Relative Permittivity (e _i): 33.65 33.90 -0.74 5 Head 7250 e" 33.2600 Relative Permittivity (e _i): 33.26 33.60 -1.01 5 Head 7500 e" 17.3600 Conductivity (o): 7.00 6.95 0.77 5 Head 7500 e" 17.4100 Conductivity (o): 7.26 7.24 0.28 5 Head 7800 e" 17.4500 Conductivity (o): 7.57 7.60 -0.42 5 Head 8000 e" 17.4300 Relative Permittivity (e _i): 31.70 32.70 -3.06 5 Head 8000 e" 17.4300 Conductivity (o): 7.75 7.84 -1.11 5 Head 8100 e" 31.5000 Relative Permittivity (e _i): 31.50 32.58 -3.31 5
Head 8000 e" 18.3200 Conductivity (or): 8.15 7.84 3.94 5 Head 8100 e" 18.3500 Relative Permittivity (e _r): 31.43 32.58 -3.53 5 Head 7000 e" 18.3500 Conductivity (or): 8.26 7.96 3.77 5 Head 7000 e" 17.2900 Conductivity (or): 6.73 6.65 1.20 5 Head 7250 e" 17.3600 Relative Permittivity (e _r): 33.26 33.60 -1.01 5 Head 7500 e" 17.3600 Conductivity (or): 7.00 6.95 0.77 5 Head 7500 e" 17.4100 Conductivity (or): 7.26 7.24 0.28 5 Head 7800 e" 17.4500 Relative Permittivity (e _r): 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Relative Permittivity (e _r): 31.70 32.70 -3.06 5 Head 8000 e" 17.4300 Relative Permittivity (e _r): 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (e _r): 31.50 32.58 -3.31 5
Head 8100 e" 18.3200 Conductivity (\(\sigma\); 8.15 7.84 3.94 5 Head 8100 e" 31.4300 Relative Permittivity (\(\sigma\); 31.43 32.58 -3.53 5 Head 7000 e" 18.3500 Conductivity (\(\sigma\); 33.65 7.96 3.77 5 Head 7000 e" 17.2900 Conductivity (\(\sigma\); 6.73 6.65 1.20 5 Head 7250 e" 17.3600 Relative Permittivity (\(\sigma\); 33.26 33.60 -1.01 5 Head 7500 e" 17.4100 Conductivity (\(\sigma\); 32.76 33.30 -1.62 5 Head 7800 e" 17.4400 Relative Permittivity (\(\sigma\); 32.76 33.30 -1.62 5 Head 7800 e" 17.4500 Relative Permittivity (\(\sigma\); 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (\(\sigma\); 7.57 7.60 -0.42 5 Head 8000 e" 17.4300 Relative Permittivity (\(\sigma\); 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (\(\sigma\); 31.50 32.58 -3.31 5
Head 8100 e" 18.3500 Conductivity (\sigma): 8.26 7.96 3.77 5 Head 7000 e" 33.6500 Relative Permittivity (\sigma_i): 33.65 33.90 -0.74 5 Head 7000 e" 17.2900 Conductivity (\sigma_i): 6.73 6.65 1.20 5 Head 7250 e" 33.2600 Relative Permittivity (\sigma_i): 33.26 33.60 -1.01 5 Head 7250 e" 17.3600 Conductivity (\sigma_i): 7.00 6.95 0.77 5 Head 7500 e" 32.7600 Relative Permittivity (\sigma_i): 32.76 33.30 -1.62 5 Head 7500 e" 17.4100 Conductivity (\sigma_i): 7.26 7.24 0.28 5 Head 7800 e" 17.4500 Relative Permittivity (\sigma_i): 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (\sigma_i): 7.57 7.60 -0.42 5 Head 8000 e" 17.4300 Relative Permittivity (\sigma_i): 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (\sigma_i): 7.75 7.84 -1.11 5 Head 8100 e" 31.5000 Relative Permittivity (\sigma_i): 31.50 32.58 -3.31 5
Head 7000 e" 18.3500 Conductivity (\sigma): 8.26 7.96 3.77 5 Head 7000 e" 17.2900 Conductivity (\sigma): 6.73 6.65 1.20 5 Head 7250 e" 17.3600 Relative Permittivity (\sigma): 33.26 33.60 -1.01 5 Head 7500 e" 17.3600 Conductivity (\sigma): 7.00 6.95 0.77 5 Head 7500 e" 17.4100 Conductivity (\sigma): 32.76 33.30 -1.62 5 Head 7800 e" 17.4100 Conductivity (\sigma): 7.26 7.24 0.28 5 Head 7800 e" 17.4500 Relative Permittivity (\sigma): 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (\sigma): 7.57 7.60 -0.42 5 Head 8000 e" 17.4300 Relative Permittivity (\sigma): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (\sigma): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (\sighta): 31.50 32.58 -3.31 5
Head 7000 e" 17.2900 Conductivity (σ): 6.73 6.65 1.20 5 Head 7250 e" 33.2600 Relative Permittivity (ε _τ): 33.26 33.60 -1.01 5 Head 7250 e" 17.3600 Conductivity (σ): 7.00 6.95 0.77 5 Head 7500 e" 32.7600 Relative Permittivity (ε _τ): 32.76 33.30 -1.62 5 Head 7500 e" 17.4100 Conductivity (σ): 7.26 7.24 0.28 5 Head 7800 e" 32.0400 Relative Permittivity (ε _τ): 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (σ): 7.57 7.60 -0.42 5 Head 8000 e" 17.4300 Relative Permittivity (ε _τ): 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (ε _τ): 31.50 32.58 -3.31 5
Head 7250 e" 17.2900 Conductivity (\sigma): 6.73 6.65 1.20 5 Head 7250 e" 17.3600 Relative Permittivity (\sigma): 7.00 6.95 0.77 5 Head 7500 e" 32.7600 Relative Permittivity (\sigma): 32.76 33.30 -1.62 5 Head 7500 e" 17.4100 Conductivity (\sigma): 7.26 7.24 0.28 5 Head 7800 e" 32.0400 Relative Permittivity (\sigma): 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (\sigma): 7.57 7.60 -0.42 5 Head 8000 e" 17.4300 Relative Permittivity (\sigma): 31.70 32.70 -3.06 5 Head 8100 e' 31.5000 Relative Permittivity (\sigma): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (\sigma): 31.50 32.58 -3.31 5
Head 7250 e" 17.3600 Conductivity (or); 7.00 6.95 0.77 5 Head 7500 e" 32.7600 Relative Permittivity (e _t); 32.76 33.30 -1.62 5 Head 7500 e" 17.4100 Conductivity (or); 7.26 7.24 0.28 5 Head 7800 e" 32.0400 Relative Permittivity (e _t); 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (or); 7.57 7.60 -0.42 5 Head 8000 e" 31.7000 Relative Permittivity (e _t); 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (e _t); 31.50 32.58 -3.31 5
Head 7500 e" 17.3600 Conductivity (\(\sigma\); 7.00 6.95 0.77 5 Head 7500 e" 32.7600 Relative Permittivity (\(\epsi\); 32.76 33.30 -1.62 5 Head 7800 e" 17.4100 Conductivity (\(\sigma\); 7.26 7.24 0.28 5 Head 7800 e" 32.0400 Relative Permittivity (\(\epsi\); 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (\(\sigma\); 7.57 7.60 -0.42 5 Head 8000 e" 31.7000 Relative Permittivity (\(\epsi\); 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (\(\epsi\); 7.75 7.84 -1.11 5 Head 8100 Head 8100 Relative Permittivity (\(\epsi\); 31.50 32.58 -3.31 5
Head 7500 e" 17.4100 Conductivity (\sigma): 7.26 7.24 0.28 5 Head 7800 e" 32.0400 Relative Permittivity (\sigma_t): 32.04 32.94 -2.73 5 Head 7800 e" 17.4500 Conductivity (\sigma_t): 7.57 7.60 -0.42 5 Head 8000 e" 31.700 Relative Permittivity (\sigma_t): 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (\sigma_t): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (\sigma_t): 31.50 32.58 -3.31 5
2023-06-22 Head 7800 e" 17.4100 Conductivity (\(\text{o}\): 7.26 7.24 0.28 5 Head 7800 e" 32.0400 Relative Permittivity (\(\text{e}_t\): 32.04 32.94 -2.73 5 Head 8000 e" 17.4500 Conductivity (\(\text{o}\): 7.57 7.60 -0.42 5 Head 8000 e" 31.7000 Relative Permittivity (\(\text{e}_t\): 31.70 32.70 -3.06 5 Head 8100 e" 31.5000 Relative Permittivity (\(\text{o}_t\): 7.75 7.84 -1.11 5 Head 8100 Head 8100 E" 31.5000 Relative Permittivity (\(\text{e}_t\): 31.50 32.58 -3.31 5
Head 7800 e' 32.0400 Relative Permittivity (e _r): 32.04 32.94 -2.73 5
e" 17.4500 Conductivity (\sigma): 7.57 7.60 -0.42 5 Head 8000 e' 31.7000 Relative Permittivity (\sigma_t): 31.70 32.70 -3.06 5 e" 17.4300 Conductivity (\sigma): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (\sigma_t): 31.50 32.58 -3.31 5
Head 8000 e" 17.4300 Conductivity (σ): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (e _r): 31.50 32.58 -3.31 5
e" 17.4300 Conductivity (σ): 7.75 7.84 -1.11 5 Head 8100 e' 31.5000 Relative Permittivity (ε _r): 31.50 32.58 -3.31 5
Head 8100
I Head 8100 Head
e" 17.4900 Conductivity (σ): 7.88 7.96 -1.09 5
e' 33.3500 Relative Permittivity (e ₁): 33.35 33.90 -1.62 5
Head 7000 e" 17.7100 Conductivity (σ): 6.89 6.65 3.66 5
e' 32.9900 Relative Permittivity (e _t): 32.99 33.60 -1.82 5
Head 7250 e" 17.9600 Conductivity (σ): 7.24 6.95 4.25 5
e' 32.5600 Relative Permittivity (e _t): 32.56 33.30 -2.22 5
Head 7500 e" 18.0300 Conductivity (σ): 7.52 7.24 3.85 5
2023-06-23 e' 31.9700 Relative Permittivity (e _r): 31.97 32.94 -2.94 5
Head 7800 e" 18.1000 Conductivity (σ): 7.85 7.60 3.29 5
e' 31.6500 Relative Permittivity (ε _τ): 31.65 32.70 -3.21 5
Head 8000 e" 18.2800 Conductivity (σ): 8.13 7.84 3.72 5
e' 31.5200 Relative Permittivity (e.): 31.52 32.58 -3.25 5
Head 8100 e" 18.3900 Conductivity (σ): 8.28 7.96 4.00 5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every days.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 10.0 cm for measurements > 6 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 5 mm (above 6GHz) from dipole center to the simulating
 liquid surface.
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Target SAR V	/alues (W/kg)
System Dipole	Senai No.	Cal. Date	i req. (ivii iz)	1g/10g	Head
				1g	285.00
D6.5GHzV2	1010	2022-05-27	6500	10g	52.90
				APD(4cm ²)	1300.00
				1g	267.00
D8GHzV2	1012	2022-11-01	8000	10g	44.80
				APD(4cm ²)	1100.00

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 1 Room

SAK I KUU	111									
	System	Dipole	-	.S.	Measure	d Results	Torget	Delta		
Date Tested	Type	Serial #		.s. quid	Zoom Scan to	Normalize	Target (Ref. Value)	±10 %	Plot No.	
	туре	Seliai #	Lic	quiu	100 mW	to 1 W	(Rei. Value)	±10 %		
				1g	27.70	277.0	285.00	-2.81		
2023-06-19	D6.5G V2	1010	Head	10g	5.47	54.7	52.90	3.40		
				APD(4cm ²)	133.00	1330.0	1300.00	2.31		
				1g	29.00	290.0	285.00	1.75		
2023-06-20	D6.5G V2	1010	Head	10g	5.48	54.8	52.90	3.59		
	0 D0.3G V2 1010			APD(4cm ²)	133.00	1330.0	1300.00	2.31		
				1g	27.50	275.0	285.00	-3.51		
2023-06-21	D6.5G V2	1010	Head	10g	5.25	52.5	52.90	-0.76		
				APD(4cm ²)	128.00	1280.0	1300.00	-1.54		
					1g	27.40	274.0	285.00	-3.86	
2023-06-26	D6.5G V2	1010	Head	10g	5.25	52.5	52.90	-0.76		
	520 00 20 50.00 12 10.10			APD(4cm^2)		1280.0	1300.00	-1.54		
				1g	26.40	264.0	285.00	-7.37		
2023-06-27	D6.5G V2	1010	Head	10g	5.14	51.4	52.90	-2.84	1	
	2023-06-27 D0.5G V2			APD(4cm ²)	125.00	1250.0	1300.00	-3.85		

SAR 6 Room

	System	Dipole	_	C	Measure	d Results	Townst	Dalta	
Date Tested	Type	Serial #		S. quid	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
				1g	27.10	271.0	285.00	-4.91	
2023-06-19	D6.5GHzV2	1010	Head	10g	5.19	51.9	52.90	-1.89	2
				APD(4cm ²)	126.00	1260.0	1300.00	-3.08	
				1g	28.40	284.0	285.00	-0.35	
2023-06-20	D6.5GHzV2	1010	Head	10g	5.47	54.7	52.90	3.40	
				APD(4cm ²)	133.00	1330.0	1300.00	2.31	
				1g	24.60	246.0	267.00	-7.87	
2023-06-20	D8GHzV2	1012	Head	10g	4.39	43.9	44.80	-2.01	3
				APD(4cm ²)	107.00	1070.0	1100.00	-2.73	
				1g	27.20	272.0	267.00	1.87	
2023-06-21	D8GHzV2	1012	Head	10g	4.81	48.1	44.80	7.37	
				APD(4cm ²)	117.00	1170.0	1100.00	6.36	
				1g	25.10	251.0	267.00	-5.99	
2023-06-22	D8GHzV2	1012	Head	10g	4.44	44.4	44.80	-0.89	
				APD(4cm ²)	108.00	1080.0	1100.00	-1.82	
			1g	26.80	268.0	267.00	0.37		
2023-06-23	2023-06-23 D8GHzV2 1012	Head	10g	4.70	47.0	44.80	4.91		
		HzV2 1012		APD(4cm ²)	115.00	1150.0	1100.00	4.55	

9. IPD(Incident Power Density) System with Dielectric Property

9.1. Dielectric Property

Media is air so Relative Permittivity (ε r) and Conductivity (σ) is 1.

9.2. System Check

Per Nov 2017,TCB Workshop

System validation is required before a system is deployed for measurement

System check is also required before each series of continuous measurement and, as applicable, repeated at least weekly

Peak and spatially averaged power density at the peak location(s) must be compared to calibrated results according to the defined test conditions

- the same spatial resolution and measurement region used in the waveguide calibration should be applied to system validation and system check
- 4 cm² spatial averaging have been used according to FCC requirement.
- power density distribution should also be verified, both spatially (shape) and numerically (level) through visual inspection for noticeable differences
- The Horn antenna input power (forward power) was 100mW.
- The measured results should be within 10% of the calibrated targets

Reference Target PD Values

Per the manufacturer's guide, the target value of the calibration report was converted to a value of 100mW input power.

5G verification	Serial No.	Cal. Date	Freq. (MHz)	Averaging	Prad	Input power	Target PD Va	lues (W/m^2)	Note	Probe No.
Source	Ocharivo.	Oal. Date	1 10q. (IVII 12)	area	(mW)	(mW)	1 cm^2	4 cm^2	Note	T TODE IVO.
10GHz	1022	2/20/2023	100000	Circular	89.1		59.40	54.90	Cal.report target	9536
TOGHZ	1022	2/20/2023	100000	Circular		100	66.67	61.62	Convert target from Cal.report	9556
10GHz	1022	2/20/2023	100000	Circular	89.1		58.60	53.90	Cal.report target	9559
TOGHZ	1022	2/20/2023	100000	Circular		100	65.77	60.49	Convert target from Cal.report	9339

Page 22 of 33

Doc. No.: 1.0(04)

SAR 8 Room

Date	Sorce SN	Sorce Cal. Due Data	Input Pow er (mW)	Measured Results for 1cm^2 (W/m^2)	Target (Ref. Value) (W/m^2)	Delta ±10 %	Measured Total psPD for 4cm^2 (W/m^2)	Target (Ref. Value) (W/m^2)	Delta ±10 %	visual inspection	Plot No.
2023-05-30	1022	3-1-2023	100.0	66.70	66.67	0.04	61.00	61.62	-1.01	confirmed	
2023-05-31	1022	3-1-2023	100.0	63.00	66.67	-5.50	57.60	61.62	-6.52	confirmed	
2023-06-01	1022	3-1-2023	100.0	65.00	66.67	-2.50	60.10	61.62	-2.47	confirmed	
2023-06-05	1022	3-1-2023	100.0	62.10	66.67	-6.85	56.00	61.62	-9.12	confirmed	4
2023-06-07	1022	3-1-2023	100.0	67.70	66.67	1.54	61.80	61.62	0.29	confirmed	
2023-06-08	1022	3-1-2023	100.0	63.70	66.67	-4.45	59.40	61.62	-3.60	confirmed	
2023-06-09	1022	3-1-2023	100.0	64.80	66.67	-2.80	60.00	61.62	-2.63	confirmed	
2023-06-12	1022	3-1-2023	100.0	66.70	66.67	0.04	61.20	61.62	-0.68	confirmed	
2023-06-15	1022	3-1-2023	100.0	68.90	66.67	3.34	62.60	61.62	1.59	confirmed	
2023-06-16	1022	3-1-2023	100.0	61.40	66.67	-7.90	56.30	61.62	-8.63	confirmed	5
2023-06-19	1022	3-1-2023	100.0	63.20	66.67	-5.20	59.20	61.62	-3.93	confirmed	
2023-06-20	1022	3-1-2023	100.0	64.80	66.67	-2.80	58.50	61.62	-5.06	confirmed	
2023-06-21	1022	3-1-2023	100.0	66.00	66.67	-1.00	60.00	61.62	-2.63	confirmed	
2023-06-22	1022	3-1-2023	100.0	66.30	66.67	-0.55	60.70	61.62	-1.49	confirmed	
2023-06-23	1022	3-1-2023	100.0	62.80	66.67	-5.80	57.40	61.62	-6.85	confirmed	
2023-06-25	1022	3-1-2023	100.0	64.20	66.67	-3.70	59.20	61.62	-3.93	confirmed	
2023-06-26	1022	3-1-2023	100.0	67.40	66.67	1.09	61.30	61.62	-0.52	confirmed	
2023-06-27	1022	3-1-2023	100.0	65.60	66.67	-1.60	59.60	61.62	-3.28	confirmed	
2023-06-28	1022	3-1-2023	100.0	65.80	66.67	-1.30	60.10	61.62	-2.47	confirmed	
2023-06-29	1022	3-1-2023	100.0	66.40	66.67	-0.40	60.00	61.62	-2.63	confirmed	
2023-06-30	1022	3-1-2023	100.0	62.80	66.67	-5.80	57.30	61.62	-7.01	confirmed	

SAR 9 Room

Date	Sorce SN	Sorce Cal. Due Data	Input Pow er (mW)	Measured Results for 1cm^2 (W/m^2)	Target (Ref. Value) (W/m^2)	Delta ±10 %	Measured Total psPD for 4cm^2 (W/m^2)	Target (Ref. Value) (W/m^2)	Delta ±10 %	visual inspection	Plot No.
2023-06-15	1022	3-1-2023	100.0	67.20	65.77	2.17	61.40	60.49	1.50	confirmed	6
2023-06-16	1022	3-1-2023	100.0	66.60	65.77	1.26	59.60	60.49	-1.47	confirmed	

Note(s):

psPD value used the pstot avg value of test result plot.

9.3. Wi-Fi 6 GHz (U-NII Bands)

Indoor AP / Standard AP

					Pn	nax (=Plimit) A	verage Pow	er	
					WLANM	IIMO Ant.1	WLAN MI	MO Ant.2	
Band (GHz)	Mode	Data Rate	Ch#	Freq. (MHz)	Avg Pwr (dBm)	Max. Tune- up Limit (dBm)	Avg Pwr (dBm)	Max. Tune- up Limit (dBm)	SAR Test (Yes/No)
			1	5955	9.18		8.99		
	802.11a	6 Mbps	45	6175	9.33	10.00	8.22	10.00	No
-			93 1	6415 5935	9.71 8.87		8.11 8.83		
	802.11ax	7.3 Mbps	45	6175	9.51	10.00	8.45	10.00	No
	(HE20)		93	6415	9.83	1	8.42	1	
UNII 5	802.11ax		3	5965	9.16		9.36		
(5.925 - 6.425	(HE40)	14.6 Mbps	43	6165	9.49	10.00	8.89	10.00	No
GHz)			91 7	6405 5985	9.76		8.37 9.33		
J/	802.11ax	36.0 Mbps	39	6145	9.08 9.06	10.00	8.90	10.00	No
	(HE80)		87	6385	9.81	. 0.00	7.78	1	
	802.11ax		15	6025	9.07		9.06		
	(HE160)	72.0 Mbps	47	6185	9.46	10.00	8.87	10.00	Yes
	(112100)		79	6345	9.62		8.29		
	902 116	6 Mbps	97	6435	9.67	10.00	8.50	10.00	No
	802.11a	6 Mbps	105 113	6475 6515	9.01 8.88	10.00	8.12 8.40	10.00	No
l	000.11		97	6435	9.76		8.68		
	802.11ax	7.3 Mbps	105	6475	9.52	10.00	8.67	10.00	No
UNII 6	(HE20)	-	113	6515	9.45		9.10		
(6.425 - 6.525	802.11ax	14 6 Mbpo	99	6445	9.68	10.00	8.56	10.00	No
GHz)	(HE40)	14.6 Mbps	115	6525	9.02	10.00	8.26	10.00	No
	802.11ax (HE80)	36.0 Mbps	103	6465	9.76	10.00	8.56	10.00	No
	802.11ax (HE160)	72.0 Mbps	111	6505	9.29	10.00	8.18	10.00	Yes
			117	6535	9.02		8.34		
	802.11a	6 Mbps	149	6695	9.63	10.00	8.90	10.00	No
			185	6875	9.11		8.03		
	802.11ax	7.3 Mbps	117 149	6535 6695	9.42 9.56	10.00	8.71 8.88	10.00	No
	(HE20)	7.0 1000	185	6875	9.42	10.00	8.87	1 10.00	140
UNII 7	802.11ax		123	6565	9.26		8.18		
(6.525 - 6.885	(HE40)	14.6 Mbps	147	6685	9.62	10.00	8.82	10.00	No
GHz)	(111240)		179	6845	9.52		8.36		
	802.11ax	36.0 Mbps	119 151	6545 6705	9.16	10.00	8.36	10.00	No
	(HE80)	JU.U IVIDPS	183	6865	9.82 9.12	10.00	9.05 8.16	1 10.00	INU
	802.11ax		143	6665	9.18		8.80		
	(HE160)	72.0 Mbps	175	6825	9.36	10.00	8.16	10.00	Yes
	(112100)				9.35	 		+	
	802.11a	6 Mbps	189 209	5955 6175	9.35	10.00	8.89 8.82	10.00	No
	002.11a	0 Mbps	233	6415	9.27	10.00	9.09	10.00	140
			189	5955	9.41		9.03		
	802.11ax	7.3 Mbps	209	6175	9.37	10.00	8.99	10.00	No
UNII 8	(HE20)		233	6415	9.28	1	9.21	1	_
	802.11ax		187	6885	9.33	j	8.58		
(6.885 - 7.125	602.11ax (HE40)	14.6 Mbps	203	6965	9.26	10.00	8.54	10.00	No
GHz)	. ,		227	7085	9.26		8.18		
[802.11ax	36.0 Mbps	199	6945	9.09	10.00	8.46	10.00	No
	(HE80)		215	7025	9.16	10.00	8.68		1,10
	802.11ax (HE160)	72.0 Mbps	207	6985	9.36	10.00	8.74	10.00	Yes

Note(s):

- 1. Indoor AP for Maximum target power is equal to Standard AP related all RF exposure conditions.
- 2. Because of Pmax tune-up limit value is the same as Plimit tune-up limit value, Pmax average power is equal to Plimit average power. Refer to Section.6.3.
- 3. Per TCB workshop April.2021's guide, Channel power verification was performed for UNII 6e (5925MHz-7125MHz). So, 5 test channels of 802.11ax (HE160) were determined for SAR/PD test. Refer to blue box in table.

10. SAR and APD(Absorbed Power Density) Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for Wi-Fi = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g extremity SAR is required for all surfaces and edges with an antenna located at \leq 25mm From that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; However, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, Including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

Page 25 of 33

10.1. WiFi (UNII Bands-Above 6GHz)

Forder Closed configuration

SAR test results

March Coordinate March		RF Exposure		PWR	Dist.			Freq.	Duty	Power	(dBm)	1-g SAF	R (W/kg)	10-g SAI	R (W/kg)	Plot
Head NA NA NA NA NA NA NA NA NA N	Antenna	the state of the s	Mode			Test Position	Ch #.		Cycle (%)		Meas.	Meas.	Scaled	Meas.	Scaled	No.
Hend Hend N/A N/A N/A N/A N/A N/A N/A N/						Left Touch	79	6345.0			9.62	0.018	0.020			
Head Head NA 0 Right Touch 11																
Head							15	6025.0	99.7%	10.00	9.07	0.041	0.051			
No.							79	6345.0	99.7%	10.00	9.62	0.033	0.036		0.037 0.109 0.137 0.162 2 0.088 0.069	
VULN MIMO Art.		Head		N/A	0	Right Touch	111	6505.0	99.7%	10.00	9.29	0.059	0.070			1
NULAN Body-wom & Hofspot Herido Art. Herido Art. Herido Art. Herido Art. Herido Art. Herido Art. Art. Herido Art.							143	6665.0	99.7%	10.00	9.18	0.024	0.029			
VILAN MMO Art. Body-wom & Body-wom & Body-wom & Helson Art. Body-wom & Holspot Art. Helson A							207	6985.0	99.7%	10.00	9.36					
VILAN MiMO Art. Art. Body-wom & He160 T2.0 Mbps						Right Tilt	79	6345.0	99.7%	10.00	9.62					
MILAN Body war 8							15	6025.0	99.7%	10.00	9.07					
MMIO Art. 1 Hotspot Hefs							79	6345.0	99.7%	10.00	9.62					
Art.1 Porspoil Fich T2.0 Mbps Front T9 6345.0 98.7% 10.00 9.18 Product Specific 10·g N/A N/A N/A N/A N/A N/A N/A N/		Body-worn &	802.11ax	N/A	10	Rear	111	6505.0	99.7%	10.00	9.29					
Product Specific 10-g N/A N/A		Hotspot		IN/A	10		143	6665.0	99.7%	10.00	9.18					
Product Specific 10-g Head NA Rear 79 6345.0 99.7% 10.00 9.62 Front 79 6345.0 99.7% 10.00 9.62 15 6025.0 99.7% 10.00 9.62 0.034 0.037 15 6025.0 99.7% 10.00 9.62 0.125 0.137 143 6665.0 99.7% 10.00 9.18 0.073 0.088 0.099 Right 79 6345.0 99.7% 10.00 9.18 0.073 0.088 0.099 Left Tilt 79 6345.0 99.7% 10.00 9.62 Left Tilt 79 6345.0 99.7% 10.00 8.29 Right Touch 111 6505.0 99.7% 10.00 8.29 Right Touch 99.7% 10.00 8.29 Right Tilt 79 6345.0 99.7% 10.00 8.29 Right Touch 99.7% 10.00 8.29 Right Tilt 79 6345.0 99.7% 10.00 8.29 Right Tilt 79 6345.0 99.7% 10.00 8.29 Right Tilt 79 6345.0 99.7% 10.00 8.29 Right Tilt 6055.0 99.7% 10.00 8.29 Right Tilt 6055.0 99.7% 10.00 8.29 Right Tilt 79 6345.0 99.7% 10.00 8.	,		72.0 Mbps				207	6985.0	99.7%	10.00	9.36					
Product Specific 10-g N/A N/A						Front	79	6345.0	99.7%	10.00	9.62	0.013	0.014			
Product Specific 10-g NA Product Specific 10-g NA NA NA NA NA NA NA NA NA N						Rear	79	6345.0	99.7%	10.00	9.62					
Product Specific 10-g N/A N/A N/A N/A N/A N/A N/A N/						Front	79	6345.0	99.7%	10.00	9.62			0.034	0.037	
Product Specific 10-g Right Touch NA NA NA NA NA NA NA NA NA N						Тор	79	6345.0	99.7%	10.00	9.62					1
Specific 10-g Specific 10-g Left 111 6505.0 99.7% 10.00 9.29 0.137 0.182 0.137 0.162 0.125 0.137 0.162 0.137 0.137 0.162 0.137 0.137 0.162 0.137		Product					15	6025.0	99.7%	10.00	9.07			0.088	0.109	
Head N/A N/A N/A N/A N/A N/A N/A N/				N/A	0		79	6345.0		10.00	9.62			0.125	0.137	
N/A						Left	111			10.00	9.29			0.137	0.162	2
Right																
Head N/A Right Touch Fight Tilt Product Specific 10-g N/A N/A N/A N/A N/A N/A N/A N/																
Head N/A N/A N/A N/A N/A Body Body Right Touch Right Tilt Rear N/A N/A N/A N/A N/A N/A N/A N/						· -							XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			
Head N/A 0 Right Touch Right Touch Right Touch Right Touch 15 6025.0 99.7% 10.00 9.06 79 6345.0 99.7% 10.00 8.29 111 6505.0 99.7% 10.00 8.18 143 6665.0 99.7% 10.00 8.74 10.00 8.29 Right Tilt Rear 111 6505.0 99.7% 10.00 8.29 Right Tilt Rear 111 6505.0 99.7% 10.00 8.29 Rear 111 6505.0 99.7% 10.00 8.80 Rear 111 6505.0 99.7% 10.00 8.29 Rear 111 6505.0 99.7% 10.00 8.00 8.00 8.00 8.00 8.00 8.00 8.0																
WLAN MIMO Ant.2 Product Specific 10-g N/A N/A N/A N/A Product Specific 10-g N/A N/A N/A N/A N/A N/A N/A N/						Left Tilt										
MULAN MIMO Ant.2 Product Specific 10-g Prod																_
WLAN MIMO Ant.2 Product Specific 10-g N/A N/A N/A N/A N/A N/A N/A N/		Head		N/A	0	Di Li T										-
WLAN MIMO Ant.2 Product Specific 10-g N/A N/A N/A N/A N/A N/A N/A N/						Right Touch										-
WLAN MIMO Ant.2 Body Right Tilt Right Tilt Rear 15 6025.0 99.7% 10.00 8.29 0.050 0.074 Rear 111 6505.0 99.7% 10.00 8.18 0.086 0.131 HE160 72.0 Mbps N/A Rear Rear Product Specific 10-g N/A N/A N/A N/A N/A Rear Right Tilt Rear Right Tilt Rear 15 6025.0 99.7% 10.00 8.29 0.050 0.074 Rear 111 6505.0 99.7% 10.00 8.18 0.086 0.131 143 6665.0 99.7% 10.00 8.74 0.225 0.302 Rear Rea													************			!
WLAN MIMO Ant.2 Body B						D: L: Th							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			!
WLAN MIMO Ant.2 Body Ant.2 B						Right Hit						<i></i>				-
MLAN MIMO Ant.2 Body Ant.2 B																_
MIMO Ant.2 Body HE160 72.0 Mbps N/A 10 N/A	WLAN					Poor										-
Ant.2 72.0 Mbps 72.0 Mbps 207 6985.0 99.7% 10.00 8.74 0.225 0.302 Front 79 6345.0 99.7% 10.00 8.29 Rear 79 6345.0 99.7% 10.00 8.29 Front 79 6345.0 99.7% 10.00 8.29 Top 79 6345.0 99.7% 10.00 8.29 Top 79 6345.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 207 6985.0 99.7% 10.00 8.80 207 6985.0 99.7% 10.00 8.74		Body		N/A	10	Neai										-
Front 79 6345.0 99.7% 10.00 8.29 Rear 79 6345.0 99.7% 10.00 8.29 Front 79 6345.0 99.7% 10.00 8.29 Top 79 6345.0 99.7% 10.00 8.29 N/A 0 Left 111 6505.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 207 6985.0 99.7% 10.00 8.80	Ant.2															2
Product Specific 10-g N/A Rear 79 6345.0 99.7% 10.00 8.29 Top 79 6345.0 99.7% 10.00 8.29 15 6025.0 99.7% 10.00 9.06 79 6345.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 Left 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.29 207 6985.0 99.7% 10.00 8.80			· ·			Eront						0.223	0.302			3
Product Specific 10-g N/A N/A Product Specific 20-g N/A N/A Product Specific 20-g N/A Product Specific 20-g N/A N/A Product Specific 20-g N/A N/A N/A N/A Product Specific 20-g N/A N/A N/A N/A N/A N/A Product Specific 20-g N/A N/A N/A N/A N/A N/A N/A N/				—	1								V/////////////////////////////////////	0.044	0.065	
Product Specific 10-g N/A 0 Top 79 6345.0 99.7% 10.00 8.29 15 6025.0 99.7% 10.00 9.06 79 6345.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.18 143 6665.0 99.7% 10.00 8.80 207 6985.0 99.7% 10.00 8.74																
Product Specific 10-g N/A 0 15 6025.0 99.7% 10.00 9.06 79 6345.0 99.7% 10.00 8.29 111 6505.0 99.7% 10.00 8.18 143 6665.0 99.7% 10.00 8.80 207 6985.0 99.7% 10.00 8.74																1
Product Specific 10-g N/A 0 179 6345.0 99.7% 10.00 8.29 Left 111 6505.0 99.7% 10.00 8.18 143 6665.0 99.7% 10.00 8.80 207 6985.0 99.7% 10.00 8.74						TOP								0.010	0.024	
Left 111 6505.0 99.7% 10.00 8.18 143 6665.0 99.7% 10.00 8.80 207 6985.0 99.7% 10.00 8.74				N/A	0											1
143 6665.0 99.7% 10.00 8.80 207 6985.0 99.7% 10.00 8.74		Specific 10-g			Ĭ	Left										1
207 6985.0 99.7% 10.00 8.74																1
																1
						Right	79	6345.0	99.7%	10.00	8.29			0.000	0.000	1

Forder Opened configuration

SAR test results

	RF Exposure		PWR	Dist.			Freq.	Duty	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	- Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Cycle (%)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
						15	6025.0	99.7%	10.00	9.07					
						79	6345.0	99.7%	10.00	9.62					
					Rear	111	6505.0	99.7%	10.00	9.29					
	UMPC Body		N/A	10		143	6665.0	99.7%	10.00	9.18					
	1g SAR		IN/A	10		207	6985.0	99.7%	10.00	9.36					
	3 -				Front	79	6345.0	99.7%	10.00	9.62					
					Тор	79	6345.0	99.7%	10.00	9.62					
WLAN MIMO		802.11ax HE160			Left	79	6345.0	99.7%	10.00	9.62	0.003	0.003			
Ant.1		72.0 Mbps			Rear	79	6345.0	99.7%	10.00	9.62					
						15	6025.0	99.7%	10.00	9.07			0.170	0.211	4
						79	6345.0	99.7%	10.00	9.62			0.177	0.194	
	UMPC Extremity		N/A	0	Front	111	6505.0	99.7%	10.00	9.29			0.152	0.180	
	10g SAR		INA	U		143	6665.0	99.7%	10.00	9.18			0.159	0.193	
						207	6985.0	99.7%	10.00	9.36			0.109	0.127	
					Тор	79	6345.0	99.7%	10.00	9.62					
					Left	79	6345.0	99.7%	10.00	9.62					
						15	6025.0	99.7%	10.00	9.06	0.070	0.074			
						79	6345.0	99.7%	10.00	8.29	0.047	0.070			
					Rear	111	6505.0	99.7%	10.00	8.18	0.065	0.099			
	UMPC Body		N/A	10		143	6665.0	99.7%	10.00	8.80	0.151	0.200			5
	1g SAR		INA	10		207	6985.0	99.7%	10.00	8.74	0.145	0.194			
	.9				Front	79	6345.0	99.7%	10.00	8.29	0.024	0.036			
					Тор	79	6345.0	99.7%	10.00	8.29	0.008	0.012			
WLAN MIMO		802.11ax HE160			Left	79	6345.0	99.7%	10.00	8.29					
Ant.2		72.0 Mbps			Rear	79	6345.0	99.7%	10.00	8.29		•	0.075	0.111	
						15	6025.0	99.7%	10.00	9.06					
						79	6345.0	99.7%	10.00	8.29					
	UMPC Extremity		N/A	0	Front	111	6505.0	99.7%	10.00	8.18					
	10g SAR		IWA	U		143	6665.0	99.7%	10.00	8.80					
	.09 0					207	6985.0	99.7%	10.00	8.74					I
					Тор	79	6345.0	99.7%	10.00	8.29			0.001	0.001	
					Left	79	6345.0	99.7%	10.00	8.29			0.066	0.098	

Forder Closed configuration

APD (Absorbed Power Density) results

	RF Exposure		PWR	Dist.			Freq.	Duty	Power	(dBm)	Measured	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Cycle	Tune-up	Meas.	APD (22) (22) (22) (22)	No.
				, ,		70	0045.0	(%)	limit		(mW/cm ² over 4cm ²)	
					Left Touch	79	6345.0	99.7%	10.00	9.62	0.0077	
					Left Tilt	79	6345.0	99.7%	10.00	9.62	0.0000	
						15	6025.0	99.7%	10.00	9.07	0.0213	-
	Head		N/A	0	Dight Touch	79	6345.0	99.7%	10.00	9.62	0.0197	
					Right Touch	111	6505.0	99.7%	10.00	9.29	0.0346	1
							1				0.0098	
					Right Tilt		1					\vdash
		-			Right filt							\vdash
												\vdash
WLAN	Body-worn &	000.44			Rear		-					\vdash
MIMO	Hotspot	802.11ax HE160	N/A	10	rcai							\vdash
Ant.1	. 1010001	72.0 Mbps				207	1					\vdash
					Front		1				0.0080	\vdash
					Rear						0.0009	
					Front						0.0780	├
					Top		1				0.0709	
					ТОР		1				0.2070	\vdash
	Product		N/A	0		79	-					
	Specific 10-g		1477		Rear-Left	111	1					2
					1100. 2011	143	1					
						207	1					
					Rear-Right	79	-				0.1000	\vdash
					Left Touch	79						
					Left Tilt	79	-					
						15						
						79	1					
	Head		N/A	0	Right Touch	111	1	99.7%		8.18		
						143	6665.0	99.7%	10.00	8.80		
						207	6985.0	99.7%	10.00	8.74	0.0111	
					Right Tilt	79	6345.0	99.7%	10.00	8.29		
						15	6025.0	99.7%	10.00	9.06	0.0757	
						79	6345.0	99.7%	10.00	8.29	0.0344	
WLAN	Body-worn &	802.11ax	NI/A	40	Rear	111	6505.0	99.7%	10.00	8.18	0.0580	
MIMO Ant.2	Hotspot	HE160	N/A	10		143	6665.0	99.7%	10.00	8.80	0.0886	
AIII.2		72.0 Mbps				207	6985.0	99.7%	10.00	8.74	0.1630	3
					Front	79	6345.0	99.7%	10.00	8.29		
					Rear	79	6345.0	99.7%	10.00	8.29	1.0200	
					Front	79	79 6345.0 99.7% 10.00 9.62 0.0089 79 6345.0 99.7% 10.00 9.62 0.0789 79 6345.0 99.7% 10.00 9.62 0.0789 79 6345.0 99.7% 10.00 9.62 0.2070 79 6345.0 99.7% 10.00 9.62 0.2920 11 6505.0 99.7% 10.00 9.29 0.3200 2 43 6665.0 99.7% 10.00 9.18 0.1730 0.1380 79 6345.0 99.7% 10.00 9.36 0.1380 0.1380 79 6345.0 99.7% 10.00 9.62 0.1380 0.1380 79 6345.0 99.7% 10.00 8.29 0.00 0.00 79 6345.0 99.7% 10.00 8.29 0.00 0.00 79 6345.0 99.7% 10.00 8.80 0.00 0.00 1007					
					Тор	79	6345.0	99.7%	10.00	8.29	0.0374	
	Draduat					15	6025.0	99.7%	10.00	9.06		
	Product Specific 10-g		N/A	0		79	6345.0	99.7%	10.00	8.29		
	-,				Rear-Left	111	6505.0	99.7%	10.00	8.18		igsquare
						143	6665.0	99.7%	10.00	8.80		
						207	6985.0		10.00	8.74		
					Rear-Right	79	6345.0	99.7%	10.00	8.29	0.0016	

Note(s):

- 1. APD (Absorbed Power Density) over 4cm^2 averaging area is reported based on SAR measurements.
- 2. $10 \text{ W/m}^2 = 1.0 \text{ mW/cm}^2$

Forder Opened configuration

APD (Absorbed Power Density) results

								Duty	Power	(dBm)	Measured	
Antenna	RF Exposure Conditions	Mode	PWR Back-off	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Cycle (%)	Tune-up limit	Meas.	APD (mW/cm ² over 4cm ²)	Plot No.
						15	6025.0	99.7%	10.00	9.07		
						79	6345.0	99.7%	10.00	9.62		
	= =				Rear	111	6505.0	99.7%	10.00	9.29		
	UMPC Body		N/A	10		143	6665.0	99.7%	10.00	9.18		
	1g SAR		IN/A	10		207	6985.0	99.7%	10.00	9.36		
	.9				Front	79	6345.0	99.7%	10.00	9.62		
					Тор	79	6345.0	99.7%	10.00	9.62		
WLAN MIMO		802.11ax HE160			Rear-Left	79	6345.0	99.7%	10.00	9.62	0.0033	
Ant.1		72.0 Mbps			Rear	79	6345.0	99.7%	10.00	9.62		
7		72.0500				15	6025.0	99.7%	10.00	9.07	0.3950	
						79	6345.0	99.7%	10.00	9.62	0.4120	6
	UMPC				Front	111	6505.0	99.7%	10.00	9.29	0.3530	
	Extremity 10g SAR		N/A	0		143	6665.0	99.7%	10.00	9.18	0.3690	
	10g SAR					207	6985.0	99.7%	10.00	9.36	0.2540	
	.39 52.11				Тор	79	6345.0	99.7%	10.00	9.62		
					Rear-Left	79	6345.0	99.7%	10.00	9.62		
					Nour Lott	15	6025.0	99.7%	10.00	9.06	0.0493	
						79	6345.0	99.7%	10.00	8.29	0.0339	
					Rear	111	6505.0	99.7%	10.00	8.18	0.0461	
	UMPC			40		143	6665.0	99.7%	10.00	8.80	0.1070	5
	Body 1g SAR		N/A	10		207	6985.0	99.7%	10.00	8.74	0.1010	
	ig SAIX				Front	79	6345.0	99.7%	10.00	8.29	0.0193	
					Тор	79	6345.0	99.7%	10.00	8.29	0.0054	
WLAN		802.11ax			Rear-Left	79	6345.0	99.7%	10.00	8.29		
MIMO Ant.2		HE160 72.0 Mbps			Rear	79	6345.0	99.7%	10.00	8.29	0.1730	
AIII.2		72.0 Mbps				15	6025.0	99.7%	10.00	9.06		
	UMPC Extremity 10g SAR					79	6345.0	99.7%	10.00	Meas. (mW/cm^2 over 4cm^2) 9.07 9.62 9.29 9.18 9.36 9.62 9.62 9.62 9.62 0.0033 9.62 9.07 9.62 0.4120 9.29 0.3530 9.18 0.3690 9.36 0.2540 9.62 9.62 9.62 9.62 9.62 9.04 9.62 9.06 9.62 9.06 9.62 9.01 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.02 9.62 9.03		
					Front	111	6505.0	99.7%	10.00	8.18		
			N/A	0		143	6665.0	99.7%	10.00	Meas. (mW/cm/2 over 4cm/2) 9.07 9.62 9.29 9.18 9.36 9.62 9.62 9.62 9.62 9.62 9.07 0.3950 9.62 9.18 0.3690 9.36 0.2540 9.62 9.62 9.62 9.62 9.62 9.18 0.3690 9.36 0.2540 9.62 9.63 9.64 9.65 9.65 9.75 9.75 8.74 0.1010 8.29 0.0193 8.29 0.1730 9.06 8.29 8.29 8.18 8.80 8.74 8.29 0.0180		
	Tog SAIX					207	6985.0	99.7%	10.00	8.74		
					Тор	79	6345.0	99.7%	10.00	8.29	0.0180	
					Rear-Left	79	6345.0	99.7%	10.00	8.29	0.1550	

Note(s):

- 1. APD (Absorbed Power Density) over 4cm^2 averaging area is reported based on SAR measurements.
- 2. $10 \text{ W/m}^2 = 1.0 \text{ mW/cm}^2$

10.2. UWB

SAR test results

Forder Closed configuration

Antenna	RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	10-g SAR (W/kg)	Plot No.
	Cortailloris		(11111)			(1011 12)	Meas.	INO.
				Rear	5	6489.6	0.000	
				ixeai	9	7987.2	0.000	7
1.04/5				Front	5	6489.6	0.000	
UWB Ant.1	Product	CW	0	TTOTIL	9	7987.2	0.000	
Ant.i	Specific 10-g	CVV	"	Top 5		6489.6	0.000	
		1 1 1 1 1 1 9		9	7987.2	0.000		
				Poor Bight	5	6489.6	0.000	
				Rear-Right	Top 9 7987.2 0.000 ear-Right 5 6489.6 0.000 9 7987.2 0.000			
LIMATE				Rear	9	7987.2	0.001	
UWB Ant.2	Product	CW	0	Front	9	7987.2	0.000	
Ant.2	Specific 10-g	CVV	"	Тор	9	7987.2	0.002	8
				Rear-Right	9	7987.2	0.000	, and the second

Forder Opened configuration

Antenna	RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	10-g SAR (W/kg) Meas.	Plot No.
				Poor	5	6489.6	0.000	
LBACE			Rear 9 798		7987.2	0.001	9	
UWB Ant.1	UMPC			Front	5	6489.6	0.000	
Ant.i			0	FIOR	9	7987.2	0.000	
	Extremity	CW		Тор	Meas. 5 6489.6 0.000 9 7987.2 0.001 5 6489.6 0.000 9 7987.2 0.000 9 7987.2 0.000 5 6489.6 0.000 9 7987.2 0.000 9 7987.2 0.000 ar 9 7987.2 0.000 ont 9 7987.2 0.000 ont 9 7987.2 0.000			
	10g SAR			тор	9	7987.2	0.000	
UWB				Rear	9	7987.2	0.000	
Ant.2				Front	9	7987.2	0.000	10
7 11.11.2				Тор	9	7987.2	0.000	·

Note(s):

UWB Ant.1 has support to Ch.5 and Ch.9 and UWB Ant.2 has only support to Ch.9.

APD (Absorbed Power Density) results

Forder Closed configuration

Antenna	RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Measured APD (mW/cm^2 over 4cm^2)	Plot No.
				Rear	5	6489.6	0.0004	
			9			7987.2	0.0018	7
1.04/5				Front	5	6489.6	0.0007	
UWB Ant.1	Product	CW	0	FIOR	9	7987.2	0.0011	
Ant.i	Specific 10-g	Specific 10-g Top	5	6489.6	0.0008			
				ТОР	9	7987.2	0.0008	
				Rear-Right	5	6489.6	0.0012	
				Real-Right	9	7987.2	0.0016	
1.14/5				Rear	9	7987.2	0.0023	
UWB Ant.2	Product	CW	0	Front	9	7987.2	0.0018	
AIII.2	Specific 10-g	CW	U	Тор	9	7987.2	0.0038	8
				Rear-Right	9	7987.2	0.0006	

Forder Opened configuration

Antenna	RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Measured APD (mW/cm^2 over 4cm^2)	Plot No.
				Rear	5	6489.6	0.0004	
1.84/5	UMPC			Near	9	7987.2	0.0023	9
UWB Ant.1				Front	5	6489.6	0.0003	
AIII. I				FIOR	9	7987.2	0.0005	
	Extremity	CW	0	Тор	9 7987.2 0.0005 5 6489.6 0.0002			
	10g SAR			ТОР	9	7987.2	0.0006	
UWB				Rear	9	7987.2	0.0005	
Ant.2				Front	9	7987.2	0.0006	10
				Тор	9	7987.2	0.0004	

Note(s):

- 1. APD (Absorbed Power Density) over 4cm^2 averaging area is reported based on SAR measurements.
- 2 10 W/m² = 1.0 mW/cm²

11. IPD(Incident Power density) Results

11.1. WiFi (UNII Bands-Above 6GHz)

Forder Closed configuration

Antenna	Mode	Test Position	Dist.	Ch.	Freq. (MHz)	Duty Cycle	Grid Step	iPD Note.4 (m W/cm ^2)	Power	(dBm)	Measured. Normal psPD	Measured. Total psPD	Reported. Normal psPD Note.3	Reported. Total psPD Note3	Scailing factor for Measurement Uncertainty per	Scaled Normal psPD	Scaled Total ps PD	Note.	Plot	
			` '				()	, , ,	Tune-up limit	Meas.	mW/cm^2	mW/cm^2	m W/cm ^2	mW/cm^2	IEC 62479 Note.2	mW/cm^2	mW/cm^2			
				15	6025.0	99.7%	0.041	N/A	10.00	9.07					1.541					
				79	6345.0	99.7%	0.043	N/A	10.00	9.62					1.541					
		Rear		111	6505.0	99.7%	0.044	N/A	10.00	9.29					1.541					
WLAN	MIMO 802.11ax			143	6665.0	99.7%	0.045	N/A	10.00	9.18					1.541					
			2.00	207	6985.0	99.7%	0.047	N/A	10.00	9.36					1.541					
Ant.1	Front		79	6345.0	99.7%	0.043	N/A	10.00	9.62	0.0502	0.0547	0.0548	0.0597	1.541	0.0844	0.0920				
		Тор		79	6345.0	99.7%	0.043	N/A	10.00	9.62					1.541					
		Left		79	6345.0	99.7%	0.043	N/A	10.00	9.62	0.0803	0.0885	0.0877	0.0966	1.541	0.1351	0.1489			
		Right		79	6345.0	99.7%	0.043	N/A	10.00	9.62					1.541					
			Rear		15	6025.0	99.7%	0.041	0.0837	10.00	9.06	0.1190	0.1320	0.1480	0.1640	1.541	0.2281	0.2527	4	
				79	6345.0	99.7%	0.043	N/A	10.00	8.29	0.0993	0.1090	0.1470	0.1620	1.541	0.2265	0.2496			
		Rear		111	6505.0	99.7%	0.044	N/A	10.00	8.18	0.1380	0.1560	0.2100	0.2370	1.541	0.3236	0.3652			
				143	6665.0	99.7%	0.045	N/A	10.00	8.80	0.2320	0.2740	0.3050	0.3610	1.541	0.4700	0.5563			
WLAN	802.11ax		2.00	207	6985.0	99.7%	0.047	N/A	10.00	8.74	0.2240	0.2850	0.3000	0.3810	1.541	0.4623	0.5871		11	
MIMO Ant.2	HE 160	Front		79	6345.0	99.7%	0.043	N/A	10.00	8.29					1.541					
		Тор		79	6345.0	99.7%	0.043	N/A	10.00	8.29	0.0307	0.0329	0.0455	0.0488	1.541	0.0701	0.0752			
		Left		79	6345.0	99.7%	0.043	N/A	10.00	8.29					1.541					
		Right		79	6345.0	99.7%	0.043	N/A	10.00	8.29	0.0171	0.0175	0.0254	0.0260	1.541	0.0391	0.0401			
		Rear	9.96	15	6025.0	99.7%	0.041	0.0893	10.00	9.06	0.0782	0.0828	0.0972	0.1030	1.541	0.1498	0.1587	4		

Forder Opened configuration

Antenna	Mode	Test Position	Dist.	Ch.	Freq. (MHz)	Duty Cycle	Grid Step (Lamda)	iPD Note.4 (m W/cm^2)	Power	(dBm)	Measured. Normal psPD	Measured. Total psPD	Reported. Normal psPD Note.3	Reported. Total psPD Note3	Scailing factor for Measurement Uncertainty per	Scaled Normal psPD	Scaled Total psPD	Note.	Plot No.
			()				(Lamaa)	(Tune-up limit	Meas.	mW/cm^2	mW/cm^2	m W/cm ^2	mW/cm^2	IEC 62479 Note.2	mW/cm^2	mW/cm^2		
		Rear		79	6345.0	99.7%	0.043	N/A	10.00	9.62					1.541				
				15	6025.0	99.7%	0.041	N/A	10.00	9.07	0.0559	0.0726	0.0693	0.0900	1.541	0.1068	0.1387		
				79	6345.0	99.7%	0.043	N/A	10.00	9.62	0.0971	0.1090	0.1060	0.1190	1.541	0.1633	0.1834		
WLAN MIMO	802.11ax	Front	2.00	111	6505.0	99.7%	0.044	N/A	10.00	9.29	0.0930	0.1120	0.1100	0.1320	1.541	0.1695	0.2034		
Ant.1	HE 160		2.00	143	6665.0	99.7%	0.045	N/A	10.00	9.18	0.0784	0.0940	0.0946	0.1140	1.541	0.1458	0.1757		
				207	6985.0	99.7%	0.047	N/A	10.00	9.36	0.1020	0.1250	0.1180	0.1450	1.541	0.1818	0.2234		12
		Тор		79	6345.0	99.7%	0.043	N/A	10.00	9.62	0.0236	0.0256	0.0258	0.0280	1.541	0.0398	0.0431		
		Left		79	6345.0	99.7%	0.043	N/A	10.00	9.62	0.0561	0.0634	0.0612	0.0692	1.541	0.0943	0.1066		
		Rear		79	6345.0	99.7%	0.043	N/A	10.00	8.29	0.0860	0.0926	0.1270	0.1370	1.541	0.1957	0.2111		
				15	6025.0	99.7%	0.041	N/A	10.00	9.06					1.541				
				79	6345.0	99.7%	0.043	N/A	10.00	8.29					1.541				
WLAN MIMO	802.11ax	Front	2.00	111	6505.0	99.7%	0.044	N/A	10.00	8.18					1.541				
Ant.2	HE 160		2.00	143	6665.0	99.7%	0.045	N/A	10.00	8.80					1.541				
				207	6985.0	99.7%	0.047	N/A	10.00	8.74					1.541				
		Тор		79	6345.0	99.7%	0.043	N/A	10.00	8.29	0.0236	0.0256	0.0350	0.0380	1.541	0.0539	0.0586		
		Left		79	6345.0	99.7%	0.043	N/A	10.00	8.29					1.541				

Note(s):

- 1. $10 \text{ W/m}^2 = 1.0 \text{ mW/cm}^2$
- 2. Per TCBC workshop guide, Incident power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.65 dB (84.1%) was used to determine the psPD measurement scalling factor.
- 3. Power density test data were scaled to tune-up limit using measurement system tool.
- 4. Grid Step setting were using the automatic grid step function of measurement system tool.
- 5. Per manufacturer guide, Incident power density was measured at d=2mm and d=Lamda/5mm using the same grid size and grid step size for some frequencies and surfaces. iPD(integrated Power Density) was calculated based on these measurements. Since iPD ratio between the two distance is < 1dB, the grid step was sufficient for determining compliance at d=2mm.

Page 31 of 33

11.2. UWB

Forder Closed configuration

Antenna	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHz)	Grid Step (Lamda)	Meas. Normal psPD	Meas. Total psPD	Scailing factor for Measurement Uncertainty per	Scaled Normal psPD	Scaled Total psPD	Note.	Plot No.																																								
							mW/cm^2	m W/cm ^2	IEC 62479 Note.2	m W/cm ^2	m W/cm ^2																																										
		Rear	ear	5	6489.60	0.04	0.0057	0.0065	1.541	0.0088	0.0100																																										
		Real		9	7987.20	0.04	0.0046	0.0066	1.541	0.0071	0.0102																																										
		Front				5	6489.60	0.04	0.0087	0.0096	1.541	0.0134	0.0148																																								
UWB				9	7987.20	0.04	0.0089	0.0095	1.541	0.0137	0.0146																																										
Ant. 1				5	6489.60	0.04	0.0137	0.0137	1.541	0.0211	0.0211																																										
	CW		2.00	2.00	9	7987.20	0.04	0.0109	0.0123	1.541	0.0168	0.0190																																									
						5	6489.60	0.04	0.0138	0.0143	1.541	0.0213	0.0220		13																																						
		Right													- - -	=	=	- -	 - - -	=		_	-	-			- -	- - -	= = - -	= - -	- - -	-	-	9	7987.20	0.04	0.0067	0.0081	1.541	0.0103	0.0125												
		Rear																														9	7987.20	0.04	0.0119	0.0125	1.541	0.0183	0.0193		14												
UWB		Front																														-				<u> </u>						-	_	9	7987.20	0.04	0.0095	0.0106	1.541	0.0146	0.0163		
Ant. 2		Edge 1																																									9	7987.20	0.04	0.0114	0.0119	1.541	0.0176	0.0183			
		Right			9	7987.20	0.04	0.0064	0.0086	1.541	0.0099	0.0133																																									

Forder Opened configuration

Antenna	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHz)	Grid Step (Lamda)	Meas. Normal psPD mW/cm^2	Meas. Total psPD mW/cm^2	Scailing factor for Measurement Uncertainty per IEC 62479 Note.2	Scaled Normal psPD mW/cm^2	Scaled Total psPD mW/cm^2	Note.	Plot No.																																		
		Deen		5	6489.60	0.04	0.0093	0.0098	1.541	0.0143	0.0151																																				
		Rear		9	7987.20	0.04	0.0099	0.0108	1.541	0.0153	0.0166																																				
UWB		Front		5	6489.60	0.04	0.0108	0.0116	1.541	0.0166	0.0179		15																																		
Ant. 1			ıı	2.00	9	7987.20	0.04	0.0103	0.0108	1.541	0.0159	0.0166																																			
	CW				2.00	2.00	2.00	5	6489.60	0.04	0.0093	0.0100	1.541	0.0143	0.0154																																
		Тор									ı												ı	Ì	9	7987.20	0.04	0.0097	0.0106	1.541	0.0149	0.0163															
LIME		Rear	Rear											 	 	-	= -		-						= -	-			 	=	-	-						9	7987.20	0.04	0.0121	0.0135	1.541	0.0186	0.0208		16
UWB Ant. 2		Front	Front																														9	7987.20	0.04	0.0111	0.0126	1.541	0.0171	0.0194							
7 411. 2	Ant. 2	Edge 1		9	7987.20	0.04	0.0124	0.0131	1.541	0.0191	0.0202																																				

Note(s):

- 1. $10 \text{ W/m}^2 = 1.0 \text{ mW/cm}^2$
- 2. Per TCBC workshop guide, Incident power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.65 dB (84.1%) was used to determine the psPD measurement scalling factor.
- 3. IPD verification is not considered in UWB. because the test was conducted with the lowest grid step of WIFI 6e and was verified.

Simultaneous Transmission Analysis 12.

Please refer to section.12 in FCC SAR report S1.

Appendixes

Refer to separated files for the following appendixes.

4790841160-S2 FCC Report Above 6GHz_App A_PD Photos & Ant. Locations 4790841160-S2 FCC Report Above 6GHz App B Highest SAR and PD Test Plots 4790841160-S2 FCC Report Above 6GHz _App C_System Check Plots 4790841160-S2 FCC Report Above 6GHz _App D_SAR Tissue Ingredients 4790841160-S2 FCC Report Above 6GHz _App E_Probe Cal. Certificates 4790841160-S2 FCC Report Above 6GHz _App F_Dipole and Horn antenna Cal. Certificates

END OF REPORT